WO2020183899A1 - 記録装置、読取装置、記録方法、記録プログラム、読取方法、読取プログラム、および磁気テープ - Google Patents

記録装置、読取装置、記録方法、記録プログラム、読取方法、読取プログラム、および磁気テープ Download PDF

Info

Publication number
WO2020183899A1
WO2020183899A1 PCT/JP2020/001096 JP2020001096W WO2020183899A1 WO 2020183899 A1 WO2020183899 A1 WO 2020183899A1 JP 2020001096 W JP2020001096 W JP 2020001096W WO 2020183899 A1 WO2020183899 A1 WO 2020183899A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
magnetic
recorded
recording
partition
Prior art date
Application number
PCT/JP2020/001096
Other languages
English (en)
French (fr)
Inventor
栄貴 小沢
理貴 近藤
健太郎 宮本
佐野 直樹
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021505550A priority Critical patent/JP7154380B2/ja
Priority to CN202080017785.7A priority patent/CN113498539B/zh
Priority to EP20770268.9A priority patent/EP3940700A4/en
Publication of WO2020183899A1 publication Critical patent/WO2020183899A1/ja
Priority to US17/393,415 priority patent/US11495247B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/008Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires
    • G11B5/00813Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/708Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by addition of non-magnetic particles to the layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers

Definitions

  • the present disclosure relates to a recording device, a reading device, a recording method, a recording program, a reading method, a reading program, and a magnetic tape.
  • LTFS Linear Tape File System
  • Japanese Patent Application Laid-Open No. 2016-4413 discloses a technique for continuously writing a plurality of files on a tape so as to form one combined file. In this technique, after writing a first index on the tape containing the start position and size of the combined files on the tape, a second index containing the start position and size for each of the multiple files in the combined file on the tape. Write the index to tape.
  • the sliding type magnetic recording / reproducing device information is recorded on the magnetic recording medium and the recorded information is reproduced by bringing the surface of the magnetic layer of the magnetic recording medium into contact with the magnetic head and sliding it.
  • a high coefficient of friction when sliding between the surface of the magnetic layer and the magnetic head causes a decrease in running stability and the like.
  • controlling the shape of the surface of the magnetic layer can contribute to lowering the above-mentioned coefficient of friction.
  • the recording area of the magnetic tape is divided into an index partition and a data partition.
  • Data to be saved by the user such as document data and image data, is recorded from the beginning of the data partition of the magnetic tape. Then, for example, when the total size of the recorded data exceeds a predetermined size, an index (index1 in FIG. 20) including information indicating the position of each of the recorded data on the magnetic tape is assigned to the data partition. Recorded.
  • index2 in FIG. 20 contains information representing the position on the magnetic tape of each of all the data recorded from the beginning of the magnetic tape.
  • the effective capacity means a capacity on a magnetic tape that can record data to be stored by the user.
  • the number of times of repeated sliding between the magnetic head and the magnetic recording medium when reading data from the magnetic recording medium increases. Furthermore, as the capacity of magnetic recording media has increased in recent years, the amount of data that can be recorded has also increased. Therefore, when reading data from such a large-capacity magnetic recording medium, the number of repeated round trips is further increased, and as a result, the running stability of the magnetic recording medium is greatly reduced.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to suppress an increase in the friction coefficient and improve the decrease in running stability of the magnetic recording medium.
  • the recording apparatus of the present disclosure records data and a plurality of objects including metadata about the data on a magnetic recording medium, and after recording at least one object, the metadata contained in the object. It is provided with a recording unit that executes a process of recording the first set data, which is a set of, at predetermined timings, and each of the first set data is an object recorded after the recording of the first set data recorded immediately before. Is a collection of metadata contained in The magnetic recording medium has a magnetic layer containing a ferromagnetic powder and a binder on a non-magnetic support, and is measured under a pressure of 0.5 atm by an optical interferometry after washing with n-hexane on the surface of the magnetic layer.
  • the difference between pacing S 0.5 and pacing S 13.5 measured under pressure of 13.5 atm by optical interferometry after washing with n-hexane on the surface of the magnetic layer, S 0.5- S 13.5 , is 3.0 nm or less. ..
  • the recording device of the present disclosure may have a difference of 1.5 nm or more and 3.0 nm or less.
  • S 0.5 may be in the range of 5.0 to 50.0 nm.
  • 5.0 to 50.0 nm means 5.0 nm or more and 50.0 nm or less.
  • the magnetic layer may include inorganic oxide-based particles.
  • the inorganic oxide-based particles may be composite particles of an inorganic oxide and a polymer.
  • the magnetic layer may contain one or more lubricants selected from the group consisting of fatty acids, fatty acid esters and fatty acid amides.
  • the recording device of the present disclosure may have a non-magnetic layer containing a non-magnetic powder and a binder between the non-magnetic support and the magnetic layer.
  • the recording device of the present disclosure may have a backcoat layer containing a non-magnetic powder and a binder on the surface side opposite to the surface side having the magnetic layer of the non-magnetic support.
  • the magnetic recording medium may be a magnetic tape.
  • the recording unit may record at least one first set data and then record the second set data, which is a set of the recorded first set data, on the magnetic recording medium. ..
  • the recording device of the present disclosure is a second set when the recording unit records the object on the magnetic recording medium when the size of the second set data recorded on the magnetic recording medium is equal to or less than a predetermined size.
  • the data may be overwritten and recorded.
  • the magnetic recording medium includes a reference partition and a data partition in which objects are recorded, and the recording unit records the first set data and the second set data in the data partition, and the data partition. If the size of the second set data recorded in the data exceeds a predetermined size, the second set data recorded in the data partition may be recorded in the reference partition.
  • the recording unit when the recording unit records the second set data recorded in the data partition in the reference partition, the second set data recorded in the data partition is recorded in the reference partition without being deleted. You may.
  • the metadata may include system-specific identification information and object-specific identification information including the metadata.
  • the magnetic recording medium may be a magnetic tape.
  • the reading device of the present disclosure is an object recorded in a data partition of a magnetic recording medium including a reference partition and a data partition in which an object containing data and metadata about the data is recorded.
  • the position on the magnetic recording medium is the second set data recorded in the reference partition, the second set data recorded in the data partition, the first set data recorded in the data partition, and the meta recorded in the data partition. It is provided with a specific unit specified by using at least one of data and a reading unit that reads an object recorded at a position specified by the specific unit.
  • the magnetic recording medium has a magnetic layer containing a ferromagnetic powder and a binder on a non-magnetic support, and is measured under a pressure of 0.5 atm by an optical interferometry after washing with n-hexane on the surface of the magnetic layer.
  • the difference between pacing S 0.5 and pacing S 13.5 measured under pressure of 13.5 atm by optical interferometry after washing with n-hexane on the surface of the magnetic layer, S 0.5- S 13.5 is 3.0 nm or less. ..
  • the specific unit may be used for the second set data recorded in the reference partition, the second set data recorded in the data partition, the first set data recorded in the data partition, and the data partition.
  • the above position may be specified by referring to the order of the recorded metadata.
  • the recording method of the present disclosure is included in an object after recording a plurality of objects including data and metadata related to the data on a magnetic recording medium and recording at least one object.
  • the process of recording the first set data, which is a set of metadata, is executed at predetermined timings, and each of the first set data is recorded after the recording of the first set data that has been recorded immediately before.
  • the magnetic recording medium has a magnetic layer containing a ferromagnetic powder and a binder on a non-magnetic support, and is measured under a pressure of 0.5 atm by an optical interferometry after washing with n-hexane on the surface of the magnetic layer.
  • the difference between pacing S 0.5 and pacing S 13.5 measured under pressure of 13.5 atm by optical interferometry after washing with n-hexane on the surface of the magnetic layer, S 0.5- S 13.5 is 3.0 nm or less. ..
  • the recording program of the present disclosure records a plurality of objects including data and metadata related to the data on a magnetic recording medium, and after recording at least one object, the recording program is included in the object.
  • the process of recording the first set data, which is a set of metadata, is executed at predetermined timings, and each of the first set data is recorded after the recording of the first set data that has been recorded immediately before.
  • the magnetic recording medium has a magnetic layer containing a ferromagnetic powder and a binder on a non-magnetic support, and is measured under a pressure of 0.5 atm by an optical interferometry after washing with n-hexane on the surface of the magnetic layer.
  • the difference between pacing S 0.5 and pacing S 13.5 measured under pressure of 13.5 atm by optical interferometry after washing with n-hexane on the surface of the magnetic layer, S 0.5- S 13.5 is 3.0 nm or less. ..
  • the reading method of the present disclosure is an object recorded in a data partition of a magnetic recording medium including a reference partition and a data partition in which an object containing data and metadata about the data is recorded.
  • the position on the magnetic recording medium is the second set data recorded in the reference partition, the second set data recorded in the data partition, the first set data recorded in the data partition, and the meta recorded in the data partition.
  • the magnetic recording medium has a magnetic layer containing a ferromagnetic powder and a binder on a non-magnetic support, and is measured under a pressure of 0.5 atm by an optical interferometry after washing with n-hexane on the surface of the magnetic layer.
  • the difference between pacing S 0.5 and pacing S 13.5 measured under pressure of 13.5 atm by optical interferometry after washing with n-hexane on the surface of the magnetic layer, S 0.5- S 13.5 is 3.0 nm or less. ..
  • the reading program of the present disclosure is an object recorded in a data partition of a magnetic recording medium including a reference partition and a data partition in which an object containing data and metadata about the data is recorded.
  • a reading program that causes a computer to perform a process of reading an object recorded at a specified position by specifying it using at least one piece of data.
  • the magnetic recording medium has a magnetic layer containing a ferromagnetic powder and a binder on a non-magnetic support, and is measured under a pressure of 0.5 atm by an optical interferometry after washing with n-hexane on the surface of the magnetic layer.
  • the difference between pacing S 0.5 and pacing S 13.5 measured under pressure of 13.5 atm by optical interferometry after washing with n-hexane on the surface of the magnetic layer, S 0.5- S 13.5 is 3.0 nm or less. ..
  • the magnetic tape of the present disclosure records a plurality of objects including data and metadata related to the data, and after at least one object is recorded, a set of metadata contained in the objects.
  • the process of recording the first set data is a magnetic tape executed at predetermined timings, and each of the first set data was recorded after the recording of the immediately recorded first set data.
  • a magnetic tape that is a collection of metadata contained in an object. Spacing S 0.5 which has a magnetic layer containing a ferromagnetic powder and a binder on a non-magnetic support and is measured under a pressure of 0.5 atm by an optical interferometry after washing with n-hexane on the surface of the magnetic layer. On the surface of the magnetic layer, the difference from the spacing S 13.5 measured under pressure of 13.5 atm by the optical interferometry after n-hexane cleaning, S 0.5- S 13.5 , is 3.0 nm or less.
  • the other recording devices of the present disclosure include a memory for storing instructions to be executed by a computer, and a memory. Equipped with a processor configured to execute stored instructions The processor records data and a plurality of objects including metadata about the data on a magnetic recording medium, records at least one object, and then records the first set of data, which is a set of metadata contained in the objects. Is a process to be executed at predetermined timings, and each of the first set data is a set of metadata included in the object recorded after the recording of the first set data recorded immediately before.
  • the magnetic recording medium has a magnetic layer containing a ferromagnetic powder and a binder on a non-magnetic support, and is measured under a pressure of 0.5 atm by an optical interferometry after washing with n-hexane on the surface of the magnetic layer.
  • the difference between pacing S 0.5 and pacing S 13.5 measured under pressure of 13.5 atm by optical interferometry after washing with n-hexane on the surface of the magnetic layer, S 0.5- S 13.5 is 3.0 nm or less. ..
  • the other reading devices of the present disclosure include a memory for storing an instruction to be executed by a computer, and a memory. Equipped with a processor configured to execute stored instructions The processor records in the reference partition the position of the object on the magnetic recording medium recorded in the data partition of the magnetic recording medium, including the reference partition and the data partition in which the object containing the data and metadata about the data is recorded. The location identified and identified using at least one of the second set of data, the second set of data recorded in the data partition, the first set of data recorded in the data partition, and the metadata recorded in the data partition.
  • the magnetic recording medium has a magnetic layer containing a ferromagnetic powder and a binder on a non-magnetic support, and is measured under a pressure of 0.5 atm by an optical interferometry after washing with n-hexane on the surface of the magnetic layer.
  • the difference between pacing S 0.5 and pacing S 13.5 measured under pressure of 13.5 atm by optical interferometry after washing with n-hexane on the surface of the magnetic layer, S 0.5- S 13.5 is 3.0 nm or less. ..
  • the recording / reading system 10 includes an information processing device 12 and a tape library 14.
  • the tape library 14 is connected to the information processing device 12.
  • the information processing device 12 and the plurality of terminals 16 are connected to the network N, and communication is possible via the network N.
  • the tape library 14 includes a plurality of slots (not shown) and a plurality of tape drives 18, and a magnetic tape T is stored in each slot.
  • the magnetic tape T is an example of a magnetic recording medium in which data is written or read by sequential access.
  • An example of the magnetic tape T is an LTO (Linear Tape-Open) tape.
  • the magnetic tape T to be written or read is loaded from the slot into a predetermined tape drive 18.
  • the magnetic tape T is unloaded from the tape drive 18 into the slot originally stored.
  • an object storage system As a format of data to be recorded on the magnetic tape T, an example in which an object including data to be saved by the user such as document data and image data and metadata related to the data is applied will be described.
  • the storage system that handles this object is called an object storage system.
  • the information processing device 12 includes a CPU (Central Processing Unit) 20, a memory 21 as a temporary storage area, and a non-volatile storage unit 22. Further, the information processing device 12 includes a display unit 23 such as a liquid crystal display, an input unit 24 such as a keyboard and a mouse, a network I / F (InterFace) 25 connected to the network N, and an external I to which the tape library 14 is connected. Includes / F26.
  • the CPU 20, the memory 21, the storage unit 22, the display unit 23, the input unit 24, the network I / F25, and the external I / F26 are connected to the bus 27.
  • the storage unit 22 is realized by an HDD (Hard Disk Drive), an SSD (Solid State Drive), a flash memory, or the like.
  • the recording program 30 and the reading program 32 are stored in the storage unit 22 as a storage medium.
  • the CPU 20 reads the recording program 30 from the storage unit 22, expands it into the memory 21, and executes the expanded recording program 30. Further, the CPU 20 reads the reading program 32 from the storage unit 22, expands it into the memory 21, and executes the expanded reading program 32.
  • An example of the information processing device 12 is a server computer or the like. Further, the information processing device 12 is an example of a recording device that records an object on the magnetic tape T. The information processing device 12 is also an example of a reading device that reads an object recorded on the magnetic tape T.
  • the information processing device 12 includes a reception unit 40 and a recording unit 42.
  • the CPU 20 executes the recording program 30, it functions as a reception unit 40 and a recording unit 42.
  • the data cache 44 and the metadata database (DB) 46 are stored in the predetermined storage area of the storage unit 22.
  • the data cache 44 and the metadata DB 46 are prepared for each magnetic tape T.
  • the reception unit 40 receives the data transmitted from the terminal 16 and the metadata related to the data using the API (Application Programming Interface) for handling the object via the network I / F25. Then, the reception unit 40 stores the received data in the data cache 44, and stores the metadata in the metadata DB 46.
  • the metadata transmitted from the terminal 16 includes identification information such as a data name of the corresponding data, data size, and attribute information indicating data attributes such as a time stamp. In addition, the reception unit 40 adds the object-specific identification information including the received data and the metadata to the metadata.
  • FIG. 4 shows an example of a state in which data is stored in the data cache 44 and metadata is stored in the metadata DB 46. Further, in FIG. 4, the magnetic tape T is in a state immediately after being formatted and no object has been recorded yet.
  • data is stored in the data cache 44, and metadata is stored in the metadata DB 46 in association with the data.
  • the magnetic tape T according to the present embodiment is divided into two partitions, a reference partition RP and a data partition DP on which objects are recorded. Further, the reference partition RP and the data partition DP are separated by a guard wraps GW including a plurality of wraps.
  • a label is recorded at the beginning of each of the reference partition RP and the data partition DP. This label includes identification information of the magnetic tape T, format information regarding a format for writing data to the magnetic tape T, and the like.
  • the recording unit 42 controls the tape library 14 and loads the magnetic tape T to be recorded of the object into a predetermined tape drive 18. Further, the recording unit 42 records the data stored in the data cache 44 and the object including the corresponding metadata stored in the metadata DB 46 in the data partition DP of the loaded magnetic tape T. At this time, the recording unit 42 adds management information for managing the object such as the identification information of the magnetic tape T on which the corresponding object is recorded and the information indicating the recording position on the magnetic tape T to the metadata. .. FIG. 5 shows an example of a state in which two objects are recorded in the data partition DP.
  • the recording unit 42 records a set of recorded object metadata in the data partition DP at predetermined timing intervals.
  • this set of metadata will be referred to as "first set data”.
  • the recording unit 42 records the first set data, which is a set of the metadata of the recorded objects, in the data partition DP every time the total size of the recorded objects exceeds a predetermined size.
  • the recording unit 42 uses the first set data, which is a set of the metadata of the objects recorded after the immediately preceding first set data. Record in the data partition DP.
  • the recording unit 42 executes a process of recording the first set data, which is a set of metadata included in the objects, at predetermined timing intervals. Then, the recording unit 42 executes the above processing so that each of the first set data becomes a set of metadata included in all the objects recorded after the recording of the first set data recorded immediately before. Therefore, each of the first set data is a set of metadata of all the objects recorded between the immediately preceding first set data and itself.
  • the above processing corresponds to a commit processing that guarantees that the objects recorded before the first set data have been written normally.
  • the predetermined size in this case is predetermined as, for example, a value for preventing the commit process from being performed for a long time.
  • the predetermined size in this case is the size obtained by multiplying the recording capacity of the magnetic tape T by a predetermined ratio, the recording capacity of the magnetic tape T, the usage environment or the usage conditions of the magnetic tape T, and the like. It may be decided or changed experimentally according to the situation.
  • the predetermined size in this case is determined according to the upper limit of the time (hereinafter referred to as "recording time") required to collectively record the objects in the data partition DP by one recording instruction. May be good.
  • the upper limit of the recording time as the required performance of the system is 35 seconds and the recording speed of data on the magnetic tape T is 300 MB / sec
  • the total size of the objects to be recorded is 10 GB or less. If so, the recording time will be 35 seconds or less. Therefore, in this case, the predetermined size may be set to 10 GB.
  • the recording unit 42 records at least one set of first set data in the data partition DP, and then records the set of the first set data recorded in the data partition DP in the data partition DP.
  • this set of first set data will be referred to as "second set data”.
  • the recording unit 42 data the second set data, which is a set of the first set data recorded after the set of the immediately preceding first set data. Record in partition DP. Therefore, each of the second set data is a set of all the first set data recorded between the immediately preceding second set data and itself.
  • the first set data which is a set of metadata recorded from the beginning of the data partition DP
  • the second set data which is a set of the first set data recorded from the beginning of the data partition DP
  • the first set data is referred to as the "first set”
  • the second set data is referred to as the "second set”. Further, this notation is the same in FIGS. 7 to 9 described later.
  • the recording unit 42 when recording the first set data and the second set data in the data partition DP, the recording unit 42 records the file marks before and after the first set data and before and after the second set data. To do. By using this file mark, the first set data and the second set data recorded in the data partition DP can be searched.
  • the first set data which is a set of the metadata of the objects recorded after the immediately preceding first set data
  • the second set data is recorded in the data partition DP
  • the second set data which is a set of the first set data recorded after the immediately preceding second set data
  • the data partition DP since the metadata is not duplicated in the plurality of first set data recorded in the data partition DP, it is possible to suppress a decrease in the effective capacity of the magnetic tape T. Further, in the present embodiment, since the first set data is not duplicated in the plurality of second set data recorded in the data partition DP, it is possible to suppress a decrease in the effective capacity of the magnetic tape T.
  • the recording unit 42 when recording an object in the data partition DP, the recording unit 42 overwrites the object with the second set data and records the object if the size of the immediately preceding second set data is less than or equal to a predetermined size.
  • FIG. 7 shows an example in which the second set data of FIG. 6 is overwritten.
  • the predetermined size in this case is predetermined according to, for example, the recording speed of the magnetic tape T. Further, for example, the predetermined size in this case is the size obtained by multiplying the recording capacity of the magnetic tape T by a predetermined ratio, the recording capacity of the magnetic tape T, the usage environment or the usage conditions of the magnetic tape T, and the like. It may be decided or changed experimentally according to the situation.
  • the recording unit 42 when the size of the second set data recorded in the data partition DP exceeds a predetermined size, the recording unit 42 records the second set data in the reference partition RP without deleting the second set data. (make a copy. At this time, the recording unit 42 records the file mark before and after the second set data of the reference partition RP.
  • the recording unit 42 when the recording of the data stored in the data cache 44 in the data partition DP is completed and the magnetic tape T is unloaded, the recording unit 42 similarly performs the first set data and The second set data is recorded in the data partition DP. In this case, the recording unit 42 also records the second set data in the reference partition RP.
  • Magnetic recording medium One aspect of the magnetic recording medium used in the present embodiment is a magnetic recording medium having a magnetic layer containing a ferromagnetic powder and a binder on a non-magnetic support, and the surface of the magnetic layer is washed with n-hexane. Spacing S0.5, which is later measured under a pressure of 0.5 atm by the optical interference method, and spacing S13, which is later measured under a pressure of 13.5 atm by the optical interference method after washing n-hexane on the surface of the magnetic layer. The difference from .5 (S0.5-S13.5) relates to a magnetic recording medium of 3.0 nm or less.
  • n-hexane cleaning refers to ultrasonic cleaning (ultrasonic cleaning) for 100 seconds by immersing a sample piece cut out from a magnetic recording medium in fresh n-hexane (200 g) having a liquid temperature of 20 to 25 ° C. Output: 40 kHz).
  • the magnetic recording medium to be cleaned is a magnetic tape
  • a sample piece having a length of 5 cm is cut out and subjected to n-hexane cleaning.
  • a sample piece having a length of 5 cm may be cut out and subjected to n-hexane washing.
  • the magnetic recording medium to be cleaned is a magnetic disk
  • a sample piece having a size of 5 cm ⁇ 1.27 cm is cut out and subjected to n-hexane cleaning.
  • the measurement of spacing described in detail below shall be performed after the sample piece after washing with n-hexane is left to stand in an environment of a temperature of 23 ° C. and a relative humidity of 50% for 24 hours.
  • the "surface of the magnetic layer" of the magnetic recording medium is synonymous with the surface of the magnetic recording medium on the magnetic layer side.
  • the spacing measured by the optical interferometry on the surface of the magnetic layer of the magnetic recording medium is a value measured by the following method.
  • a magnetic recording medium (specifically, the above sample piece; the same applies hereinafter) and a transparent plate-shaped member (for example, a glass plate) are superposed so that the magnetic layer surface of the magnetic recording medium faces the transparent plate-shaped member.
  • the pressing member is pressed with a pressure of 0.5 atm or 13.5 atm from the side opposite to the magnetic layer side of the magnetic recording medium.
  • the surface of the magnetic layer of the magnetic recording medium is irradiated with light via a transparent plate-shaped member (irradiation area: 150,000 to 200,000 ⁇ m 2 ), and the reflected light from the surface of the magnetic layer of the magnetic recording medium and the transparent plate shape.
  • the magnetic layer surface of the magnetic recording medium and the magnetic recording medium of the transparent plate-shaped member Find the spacing between the side surface.
  • the light emitted here is not particularly limited.
  • the emitted light is light having an emission wavelength over a relatively wide wavelength range, such as white light containing multiple wavelengths of light, a transparent plate-shaped member and a light receiving portion that receives reflected light are provided.
  • a member having a function of selectively cutting light of a specific wavelength or light other than the specific wavelength region such as an interference filter is arranged between the two, and the light of a part of the reflected light or the light of a part of the wavelength region is arranged.
  • Light is selectively incident on the light receiving part.
  • the wavelength of the light incident on the light receiving portion can be in the range of, for example, 500 to 700 nm.
  • the wavelength of the light incident on the light receiving portion is not limited to the above range.
  • the transparent plate-shaped member may be a member having transparency that transmits the irradiated light to the extent that light is irradiated to the magnetic recording medium through this member to obtain interference light.
  • the interference fringe image obtained by the measurement of the spacing is divided into 300,000 points, and the spacing of each point (distance between the surface of the magnetic layer of the magnetic recording medium and the surface of the transparent plate-like member on the magnetic recording medium side) is determined. Obtain it, use this as a histogram, and use the mode in this histogram as spacing.
  • the above measurements can be performed using, for example, a commercially available tape spacing analyzer (TSA; Tape Spacing Analyzer) such as Tape Spacing Analyzer manufactured by Micro Physics.
  • TSA tape Spacing Analyzer
  • the spacing measurement in the examples was carried out using a Tape Spacing Analyzer manufactured by Micro Physics.
  • the coefficient of friction during sliding between the magnetic layer surface and the magnetic head can be reduced by forming protrusions on the magnetic layer surface to reduce the portion of the magnetic layer surface that comes into contact with the magnetic head (so-called true contact). it can. However, if the height of the protrusions on the surface of the magnetic layer is lowered due to repeated sliding with the magnetic head, the portion of the surface of the magnetic layer that is in true contact with the magnetic head increases, and the coefficient of friction increases.
  • the inventors of the present disclosure have studied diligently, and the pressure applied to the surface of the magnetic layer when sliding with the magnetic head is repeated is not constant, and a large pressure may be applied.
  • a large pressure When a large pressure is applied, the protrusions are deformed or sink into the magnetic layer, which lowers the height of the protrusions, which causes the coefficient of friction to increase when sliding with the magnetic head is repeated. I came to think that it might be.
  • the case where the above-mentioned large pressure is applied may be, for example, the time of contact with the edge portion of the magnetic head.
  • the fact that the difference (S0.5-S13.5) between S0.5 and S13.5 obtained by the above method is as small as 3.0 nm or less means that the protrusions on the surface of the magnetic layer are projected even when a large pressure is applied. It shows that a large change in the height of the magnet is unlikely to occur. Therefore, it is considered that the magnetic recording medium having the difference of 3.0 nm or less has little change in the height of the protrusions on the surface of the magnetic layer even if the sliding with the magnetic head is repeated.
  • the inventors of the present disclosure presume that this is the reason why the increase in the friction coefficient can be suppressed even if the sliding with the magnetic head is repeated according to the magnetic recording medium. However, this disclosure is not limited to the above speculation.
  • 0.5 atm is adopted as an exemplary value of the pressure mainly applied to the surface of the magnetic layer when sliding with the magnetic head, and the magnetic head is used.
  • 13.5 atm is adopted as an exemplary value of the large pressure applied to the surface of the magnetic layer when sliding, and the pressure applied to the magnetic recording medium when sliding with the magnetic head is not limited to the above pressure.
  • the difference (S0.5-S13.5) of the magnetic recording medium is 3.0 nm or less, and is preferably 2.9 nm or less from the viewpoint of further suppressing an increase in the friction coefficient, and is preferably 2.8 nm or less. It is more preferably 2.7 nm or less, further preferably 2.6 nm or less, and even more preferably 2.5 nm or less. Further, the difference can be, for example, 1.0 nm or more, 1.5 nm or more, 1.8 nm or more, or 2.0 nm or more.
  • the difference can be controlled by the type of non-magnetic filler (hereinafter, referred to as "protrusion forming agent") capable of forming protrusions on the surface of the magnetic layer and the manufacturing conditions of the magnetic recording medium. Details of this point will be described later.
  • protrusion forming agent the type of non-magnetic filler
  • the magnetic recording media S0.5 and S13.5 are not particularly limited as long as the difference (S0.5-S13.5) is 3.0 nm or less.
  • S0.5 is preferably 50.0 nm or less, more preferably 40.0 nm or less, further preferably 30.0 nm or less, and 20.0 nm or less. It is even more preferably 16.0 nm or less, even more preferably 15.5 nm or less, and even more preferably 14.5 nm or less.
  • S0.5 is preferably 5.0 nm or more, more preferably 8.0 nm or more, and 10.0 nm.
  • S13.5 is preferably 5.0 nm or more, more preferably 8.0 nm or more, from the viewpoint of maintaining good running stability even after repeated sliding with the magnetic head. It is more preferably 10.0 nm or more. Further, from the viewpoint of exhibiting excellent electromagnetic conversion characteristics even after repeated sliding with the magnetic head, S13.5 is preferably 15.0 nm or less, more preferably 14.0 nm or less. It is more preferably 13.5 nm or less, further preferably 13.0 nm or less, and even more preferably 12.0 nm or less.
  • the ferromagnetic powder contained in the magnetic layer As the ferromagnetic powder contained in the magnetic layer, a ferromagnetic powder usually used in the magnetic layer of various magnetic recording media can be used. It is preferable to use a ferromagnetic powder having a small average particle size from the viewpoint of improving the recording density of the magnetic recording medium. From this point, the average particle size of the ferromagnetic powder is preferably 50 nm or less, more preferably 45 nm or less, further preferably 40 nm or less, further preferably 35 nm or less, and more preferably 30 nm or less. It is even more preferably 25 nm or less, and even more preferably 20 nm or less.
  • the average particle size of the ferromagnetic powder is preferably 5 nm or more, more preferably 8 nm or more, further preferably 10 nm or more, and further preferably 15 nm or more. Is more preferable, and 20 nm or more is even more preferable.
  • a preferred specific example of the ferromagnetic powder is a hexagonal ferrite powder.
  • the hexagonal ferrite powder for example, paragraphs 0012 to 0030 of JP2011-225417A, paragraphs 0134 to 0136 of JP2011-216149A, paragraphs 0013 to 0030 of JP2012-204726 and the like. References can be made to paragraphs 0029 to 0084 of JP-A-2015-127985.
  • the hexagonal ferrite powder hexagonal barium ferrite powder and hexagonal strontium ferrite powder are particularly preferable.
  • the preferred embodiment when hexagonal strontium ferrite powder is used as the ferromagnetic powder is as follows.
  • the activated volume of the hexagonal strontium ferrite powder is preferably in the range of 800 to 1500 nm 3 .
  • the finely divided hexagonal strontium ferrite powder exhibiting an activated volume in the above range is suitable for producing a magnetic tape exhibiting excellent electromagnetic conversion characteristics.
  • the activated volume of the hexagonal strontium ferrite powder is preferably 800 nm 3 or more, and can be, for example, 850 nm 3 or more. From the viewpoint of further improvement of the electromagnetic conversion characteristics, activation volume of hexagonal strontium ferrite powder is more preferably 1400 nm 3 or less, still more preferably 1300 nm 3 or less, that is 1200 nm 3 or less More preferably, it is 1100 nm 3 or less, even more preferably.
  • the "activated volume” is a unit of magnetization reversal and is an index indicating the magnetic size of a particle.
  • the activated volume described in the present disclosure and the present specification and the anisotropic constant Ku described later are measured using a vibrating sample magnetometer at magnetic field sweep speeds of 3 minutes and 30 minutes in the coercive force Hc measuring unit (measurement). Temperature: 23 ° C ⁇ 1 ° C), which is a value obtained from the following relational expression between Hc and activated volume V.
  • 1 erg / cc 1.0 ⁇ 10 -1 J / m 3 .
  • Hc 2Ku / Ms ⁇ 1-[(kT / KuV) ln (At / 0.693)] 1/2 ⁇
  • Ku anisotropic constant (unit: J / m 3 )
  • Ms saturation magnetization (unit: kA / m)
  • k Boltzmann constant
  • T absolute temperature (unit: K)
  • V activity. Volume (unit: cm 3 )
  • A spin lag frequency (unit: s -1 )
  • t magnetic field reversal time (unit: s)]
  • Anisotropy constant Ku can be mentioned as an index for reducing thermal fluctuation, in other words, improving thermal stability.
  • the hexagonal strontium ferrite powder can preferably have a Ku of 1.8 ⁇ 10 5 J / m 3 or more, and more preferably a Ku of 2.0 ⁇ 10 5 J / m 3 or more.
  • Ku of hexagonal strontium ferrite powder can be, for example, not 2.5 ⁇ 10 5 J / m 3 or less.
  • the higher the Ku the higher the thermal stability, which is preferable, and therefore, the value is not limited to the above-exemplified value.
  • the mass magnetization ⁇ s of the ferromagnetic powder contained in the magnetic tape is high.
  • the hexagonal strontium ferrite powder containing rare earth atoms but not having uneven distribution on the surface layer of rare earth atoms tended to have a significantly lower ⁇ s than the hexagonal strontium ferrite powder containing no rare earth atoms.
  • hexagonal strontium ferrite powder having uneven distribution on the surface layer of rare earth atoms is considered to be preferable in order to suppress such a large decrease in ⁇ s.
  • the ⁇ s of the hexagonal strontium ferrite powder can be 45 A ⁇ m 2 / kg or more, and can also be 47 A ⁇ m 2 / kg or more.
  • [sigma] s from the viewpoint of noise reduction is preferably not more than 80A ⁇ m 2 / kg, more preferably not more than 60A ⁇ m 2 / kg.
  • ⁇ s can be measured using a known measuring device capable of measuring magnetic characteristics such as a vibrating sample magnetometer.
  • the anisotropic magnetic field Hk of the magnetic layer is preferably 14 kOe or more, more preferably 16 kOe or more, and further preferably 18 kOe or more. preferable. Further, the anisotropic magnetic field Hk of the magnetic layer is preferably 90 kOe or less, more preferably 80 kOe or less, and further preferably 70 kOe or less.
  • the anisotropic magnetic field Hk in the present disclosure and the present specification refers to a magnetic field in which magnetization is saturated when a magnetic field is applied in the axial direction of difficulty in magnetization.
  • the anisotropic magnetic field Hk can be measured using a known measuring device capable of measuring magnetic characteristics such as a vibrating sample magnetometer.
  • the axial direction in which the magnetic layer is difficult to magnetize is the in-plane direction.
  • a metal powder can be mentioned as a preferable specific example of the ferromagnetic powder.
  • paragraphs 0137 to 0141 of JP2011-216149A and paragraphs 0009 to 0023 of JP2005-251351 can be referred to.
  • a preferable specific example of the ferromagnetic powder is ⁇ -iron oxide powder.
  • a method for producing ⁇ -iron oxide powder a method for producing from goethite, a reverse micelle method, and the like are known. All of the above manufacturing methods are known.
  • a substituted atom such as Ga, Co, Ti, Al, Rh, for example, "J. Jpn. Soc. Powder Metallurgy Vol. 61" Supplement, No. S1, pp. S280-S284, J. Mater. Chem. C, 2013, 1, pp.5200-5206 ”etc.
  • the method for producing ⁇ -iron oxide powder that can be used as the ferromagnetic powder in the magnetic layer is not limited.
  • the preferred embodiment when ⁇ -iron oxide powder is used as the ferromagnetic powder is as follows.
  • the activated volume of the ⁇ -iron oxide powder is preferably in the range of 300 to 1500 nm 3 .
  • the finely divided ⁇ -iron oxide powder exhibiting an activated volume in the above range is suitable for producing a magnetic tape exhibiting excellent electromagnetic conversion characteristics.
  • the activated volume of the ⁇ -iron oxide powder is preferably 300 nm 3 or more, and can be, for example, 500 nm 3 or more. From the viewpoint of further improvement of the electromagnetic conversion characteristics, .epsilon.
  • activation volume of the iron oxide powder is more preferably 1400 nm 3 or less, still more preferably 1300 nm 3 or less, that is 1200 nm 3 or less More preferably, it is 1100 nm 3 or less, even more preferably.
  • Anisotropy constant Ku can be mentioned as an index for reducing thermal fluctuation, in other words, improving thermal stability.
  • the ⁇ -iron oxide powder can preferably have Ku of 3.0 ⁇ 10 4 J / m 3 or more, and more preferably 8.0 ⁇ 10 4 J / m 3 or more. Further, .epsilon. Ku iron oxide powder can be, for example, not 3.0 ⁇ 10 5 J / m 3 or less. However, the higher the Ku, the higher the thermal stability, which is preferable, and therefore, the value is not limited to the above-exemplified value.
  • the mass magnetization ⁇ s of the ferromagnetic powder contained in the magnetic tape is high.
  • the ⁇ s of the ⁇ -iron oxide powder can be 8 A ⁇ m 2 / kg or more, and can also be 12 A ⁇ m 2 / kg or more.
  • the ⁇ s of the ⁇ -iron oxide powder is preferably 40 A ⁇ m 2 / kg or less, and more preferably 35 A ⁇ m 2 / kg or less, from the viewpoint of noise reduction.
  • the anisotropic magnetic field Hk of the magnetic layer is preferably 18 kOe or more, more preferably 30 kOe or more, and further preferably 38 kOe or more. preferable. Further, the anisotropic magnetic field Hk of the magnetic layer is preferably 100 kOe or less, more preferably 90 kOe or less, and further preferably 75 kOe or less.
  • the axial direction in which the magnetic layer is difficult to magnetize is the in-plane direction.
  • the average particle size of various powders such as ferromagnetic powder shall be a value measured by the following method using a transmission electron microscope.
  • the powder is photographed using a transmission electron microscope at an imaging magnification of 100,000 times, and printed on photographic paper so as to have a total magnification of 500,000 times to obtain a photograph of the particles constituting the powder.
  • Primary particles are independent particles without agglomeration.
  • the above measurement is performed on 500 randomly selected particles.
  • the arithmetic mean of the particle sizes of the 500 particles thus obtained is taken as the average particle size of the powder.
  • the transmission electron microscope for example, Hitachi's transmission electron microscope H-9000 can be used.
  • the particle size can be measured by using known image analysis software, for example, image analysis software KS-400 manufactured by Carl Zeiss. Unless otherwise specified, the average particle size shown in the examples described later was measured using a transmission electron microscope H-9000 manufactured by Hitachi as a transmission electron microscope and a Carl Zeiss image analysis software KS-400 as an image analysis software. The value.
  • the powder means an aggregate of a plurality of particles.
  • a ferromagnetic powder means a collection of a plurality of ferromagnetic particles.
  • the set of a plurality of particles is not limited to a mode in which the particles constituting the set are in direct contact with each other, and also includes a mode in which a binder, an additive, etc., which will be described later, are interposed between the particles.
  • particle is sometimes used to describe powder.
  • the size of the particles (particle size) constituting the powder is the shape of the particles observed in the above particle photograph.
  • the shape is spherical, polyhedral, unspecified, etc., and the long axis constituting the particles cannot be specified from the shape, it is represented by the diameter equivalent to a circle.
  • the equivalent diameter of a circle is the one obtained by the circular projection method.
  • the length of the minor axis of the particles is measured in the above measurement, and the value of (major axis length / minor axis length) of each particle is obtained.
  • the minor axis length is the length of the minor axis constituting the particle in the case of (1) in the above definition of the particle size, and the thickness or height in the case of the same (2).
  • the major axis and the minor axis there is no distinction between the major axis and the minor axis, so (major axis length / minor axis length) is regarded as 1 for convenience.
  • the average particle size is the average major axis length, and in the case of the same definition (2), the average particle size is Average plate diameter. In the case of the same definition (3), the average particle size is an average diameter (also referred to as an average particle size or an average particle size).
  • the content (filling rate) of the ferromagnetic powder in the magnetic layer is preferably in the range of 50 to 90% by mass, and more preferably in the range of 60 to 90% by mass.
  • the components of the magnetic layer other than the ferromagnetic powder are at least a binder and may optionally include one or more additional additives.
  • a high filling rate of the ferromagnetic powder in the magnetic layer is preferable from the viewpoint of improving the recording density.
  • the magnetic recording medium is a coating type magnetic recording medium, and the magnetic layer contains a binder.
  • a binder is one or more resins.
  • various resins usually used as a binder for a coating type magnetic recording medium can be used.
  • the binder polyurethane resin, polyester resin, polyamide resin, vinyl chloride resin, styrene, acrylonitrile, acrylic resin obtained by copolymerizing methyl methacrylate and the like, cellulose resin such as nitrocellulose, epoxy resin, phenoxy resin, polyvinyl acetal, etc.
  • a resin selected from a polyvinyl alkyral resin such as polyvinyl butyral can be used alone, or a plurality of resins can be mixed and used.
  • polyurethane resins, acrylic resins, cellulose resins, and vinyl chloride resins are preferred.
  • These resins may be homopolymers or copolymers.
  • These resins can also be used as a binder in the non-magnetic layer and / or the backcoat layer described later.
  • the binder may be a radiation curable resin such as an electron beam curable resin.
  • paragraphs 0044 to 0045 of JP2011-048878A can be referred to.
  • the average molecular weight of the resin used as the binder can be, for example, 10,000 or more and 200,000 or less as the weight average molecular weight.
  • the weight average molecular weight in the present disclosure and the present specification is a value obtained by converting a value measured by gel permeation chromatography (GPC) under the following measurement conditions into polystyrene.
  • the weight average molecular weight of the binder shown in Examples described later is a value obtained by converting a value measured under the following measurement conditions into polystyrene.
  • GPC device HLC-8120 (manufactured by Tosoh) Column: TSK gel Multipore HXL-M (manufactured by Tosoh, 7.8 mm ID (Inner Diameter) x 30.0 cm) Eluent: tetrahydrofuran (THF)
  • a curing agent can be used together with the binder.
  • the curing agent can be a thermosetting compound, which is a compound in which a curing reaction (crosslinking reaction) proceeds by heating in one aspect, and a photocuring agent in which a curing reaction (crosslinking reaction) proceeds by light irradiation in another aspect. It can be a sex compound.
  • the curing agent can be contained in the magnetic layer in a state of reacting (crosslinking) with other components such as a binder as a result of the curing reaction proceeding in the manufacturing process of the magnetic recording medium.
  • Preferred curing agents are thermosetting compounds, with polyisocyanates being preferred.
  • the curing agent is preferably 0 to 80.0 parts by mass with respect to 100.0 parts by mass of the binder in the composition for forming the magnetic layer, and preferably 50.0 to 50.0 parts by mass from the viewpoint of improving the strength of each layer such as the magnetic layer. It can be used in an amount of 80.0 parts by mass.
  • the magnetic layer may contain one or more additives, if necessary, in addition to the above-mentioned various components.
  • the additive a commercially available product can be appropriately selected and used according to the desired properties.
  • a compound synthesized by a known method can also be used as an additive.
  • An example of the additive is the above-mentioned curing agent.
  • additives that can be contained in the magnetic layer include non-magnetic fillers, lubricants, dispersants, dispersion aids, fungicides, antistatic agents, antioxidants and the like.
  • Non-magnetic filler is synonymous with non-magnetic particles or non-magnetic powder.
  • non-magnetic filler examples include a protrusion forming agent and a non-magnetic filler capable of functioning as an abrasive (hereinafter, referred to as “abrasive”).
  • abrasive a non-magnetic filler capable of functioning as an abrasive
  • known additives such as various polymers described in paragraphs 0030 to 0080 of JP-A-2016-051493 can also be used.
  • the protrusion forming agent which is one aspect of the non-magnetic filler
  • particles of an inorganic substance can be used, particles of an organic substance can be used, or composite particles of an inorganic substance and an organic substance can be used.
  • the inorganic substance include inorganic oxides such as metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides, and inorganic oxides are preferable.
  • the protrusion forming agent can be inorganic oxide-based particles.
  • “system” is used to mean "including”.
  • One aspect of the inorganic oxide-based particles is particles made of an inorganic oxide.
  • inorganic oxide-based particles is a composite particle of an inorganic oxide and an organic substance, and specific examples thereof include a composite particle of an inorganic oxide and a polymer. Examples of such particles include particles in which a polymer is bonded to the surface of inorganic oxide particles.
  • the above S0.5 can be controlled mainly by the particle size of the protrusion forming agent.
  • the average particle size of the protrusion forming agent is, for example, 30 to 300 nm, preferably 40 to 200 nm. Further, S0.5 can be mainly controlled by the manufacturing conditions of the magnetic recording medium.
  • S13.5 can be controlled by the shape of the protrusion forming agent in addition to the particle size of the protrusion forming agent. The closer the particle shape is to a true sphere, the smaller the pushing resistance that acts when a large pressure is applied, so that it is easier to be pushed into the magnetic layer, and S13.5 tends to be smaller.
  • the difference (S0.5-S13.5) can be set to 3.0 nm or less.
  • the abrasive which is another aspect of the non-magnetic filler, is preferably a non-magnetic powder having a Mohs hardness of more than 8, and more preferably a non-magnetic powder having a Mohs hardness of 9 or more.
  • the Mohs hardness of the protrusion forming agent can be, for example, 8 or less or 7 or less.
  • the maximum value of Mohs hardness is 10 for diamond.
  • Specific examples include powders of alumina (Al2O3), silicon carbide, boron carbide (B4C), SiO2, TiC, chromium oxide (Cr2O3), cerium oxide, zirconium oxide (ZrO2), iron oxide, and diamond.
  • Alumina powder such as ⁇ -alumina and silicon carbide powder are preferable.
  • the average particle size of the abrasive is, for example, in the range of 30 to 300 nm, preferably in the range of 50 to 200 nm.
  • the content of the protrusion-forming agent in the magnetic layer is preferably 100.0 parts by mass of the ferromagnetic powder. , 1.0 to 4.0 parts by mass, more preferably 1.5 to 3.5 parts by mass.
  • the content in the magnetic layer is preferably 1.0 to 20.0 parts by mass, more preferably 3.0 to 15.0 parts by mass with respect to 100.0 parts by mass of the ferromagnetic powder. It is a part, more preferably 4.0 to 10.0 parts by mass.
  • the dispersant described in paragraphs 0012 to 0022 of JP2013-131285 can be used to improve the dispersibility of the abrasive in the composition for forming a magnetic layer. It can be mentioned as a dispersant for making it.
  • paragraphs 0061 and 0071 of JP2012-133387A can be referred to.
  • the dispersant may be contained in the non-magnetic layer.
  • paragraph 0061 of JP2012-133837A can be referred to.
  • Examples of the lubricant which is one aspect of the additive that can be contained in the magnetic layer, include one or more lubricants selected from the group consisting of fatty acids, fatty acid esters and fatty acid amides.
  • the above S0.5 and S13.5 are values measured after washing with n-hexane. If a liquid film of the lubricant is present on the surface of the magnetic layer pressed during the spacing measurement, the measured spacing becomes narrower by the thickness of the liquid film. On the other hand, it is presumed that the lubricant that may exist as a liquid film at the time of pressing can be removed by washing with n-hexane.
  • the measured value of the spacing can be obtained as a value that corresponds well with the existence state (height of the protrusions) of the protrusions on the surface of the magnetic layer.
  • fatty acids examples include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, bechenic acid, erucic acid, eric acid and the like, and stearic acid, myristic acid, and Palmitic acid is preferred, and stearic acid is more preferred.
  • the fatty acid may be contained in the magnetic layer in the form of a salt such as a metal salt.
  • fatty acid ester examples include esters of lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, erucic acid, and elaidic acid.
  • Examples thereof include, for example, butyl myristate, butyl palmitate, butyl stearate (butyl stearate), neopentyl glycol dioleate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, oleyl oleate, Examples thereof include isocetyl stearate, isotridecyl stearate, octyl stearate, isooctyl stearate, amyl stearate, and butoxyethyl stearate.
  • fatty acid amide examples include amides of the above-mentioned various fatty acids, such as lauric acid amide, myristic acid amide, palmitate amide, and stearic acid amide.
  • the fatty acid-derived sites of the fatty acid derivatives have the same or similar structure as the fatty acids used in combination.
  • stearic acid when used as the fatty acid, it is preferable to use stearic acid ester and / or stearic acid amide.
  • the fatty acid content of the composition for forming a magnetic layer is, for example, 0 to 10.0 parts by mass, preferably 0.1 to 10.0 parts by mass, and more preferably 0.1 to 10.0 parts by mass, per 100.0 parts by mass of the ferromagnetic powder. It is 1.0 to 7.0 parts by mass.
  • the fatty acid ester content of the composition for forming a magnetic layer is, for example, 0 to 10.0 parts by mass, preferably 0.1 to 10.0 parts by mass, and more preferably per 100.0 parts by mass of the ferromagnetic powder. Is 1.0 to 7.0 parts by mass.
  • the fatty acid amide content of the composition for forming a magnetic layer is, for example, 0 to 3.0 parts by mass, preferably 0 to 2.0 parts by mass, and more preferably 0, per 100.0 parts by mass of the ferromagnetic powder. ⁇ 1.0 parts by mass.
  • the fatty acid content of the composition for forming the non-magnetic layer is, for example, 0 per 100.0 parts by mass of the non-magnetic powder. It is ⁇ 10.0 parts by mass, preferably 1.0 to 10.0 parts by mass, and more preferably 1.0 to 7.0 parts by mass.
  • the fatty acid ester content of the composition for forming a non-magnetic layer is, for example, 0 to 15.0 parts by mass, preferably 0.1 to 10.0 parts by mass, per 100.0 parts by mass of the non-magnetic powder.
  • the fatty acid amide content of the composition for forming a non-magnetic layer is, for example, 0 to 3.0 parts by mass, preferably 0 to 1.0 parts by mass, per 100.0 parts by mass of the non-magnetic powder.
  • the magnetic recording medium may have a magnetic layer directly on the non-magnetic support, and may have a non-magnetic layer containing a non-magnetic powder and a binder between the non-magnetic support and the magnetic layer. May be good.
  • the non-magnetic powder used for the non-magnetic layer may be an inorganic substance powder (inorganic powder) or an organic substance powder (organic powder). In addition, carbon black or the like can also be used. Examples of the inorganic substance include metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides and the like.
  • non-magnetic powders are commercially available and can also be produced by known methods. For details thereof, refer to paragraphs 0146 to 0150 of JP2011-216149A.
  • paragraphs 0040 to 0041 of JP2010-24113A can also be referred to.
  • the content (filling rate) of the non-magnetic powder in the non-magnetic layer is preferably in the range of 50 to 90% by mass, and more preferably in the range of 60 to 90% by mass.
  • binders and additives for the non-magnetic layer can be applied to known techniques for the non-magnetic layer. Further, for example, with respect to the type and content of the binder, the type and content of the additive, and the like, known techniques relating to the magnetic layer can also be applied.
  • the non-magnetic layer of the magnetic recording medium includes not only the non-magnetic powder but also a substantially non-magnetic layer containing a small amount of ferromagnetic powder, for example, as an impurity or intentionally.
  • the substantially non-magnetic layer means that the residual magnetic flux density of this layer is 10 mT or less, the coercive force is 7.96 kA / m (100 Oe) or less, or the residual magnetic flux density is 10 mT or less. It refers to a layer having a coercive force of 7.96 kA / m (100 Oe) or less.
  • the non-magnetic layer preferably has no residual magnetic flux density and coercive force.
  • Non-magnetic support examples include known ones such as biaxially stretched polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamideimide, and aromatic polyamide. .. Of these, polyethylene terephthalate, polyethylene naphthalate, and polyamide are preferable. These supports may be subjected to corona discharge, plasma treatment, easy adhesion treatment, heat treatment and the like in advance.
  • the magnetic recording medium may also have a backcoat layer containing a non-magnetic powder and a binder on the surface side opposite to the surface side having the magnetic layer of the non-magnetic support.
  • the backcoat layer preferably contains one or both of carbon black and inorganic powder.
  • the known technique relating to the backcoat layer can be applied, and the known technique relating to the formulation of the magnetic layer and / or the non-magnetic layer shall be applied. You can also. For example, paragraphs 0018 to 0020 of JP-A-2006-331625 and the description of US Pat. No. 7,029,774, column 4, lines 65 to 5, line 38 can be referred to for the backcoat layer. ..
  • the thickness of the non-magnetic support is, for example, in the range of 3.0 to 80.0 ⁇ m, preferably in the range of 3.0 to 50.0 ⁇ m, and more preferably in the range of 3.0 to 10.0 ⁇ m.
  • the thickness of the magnetic layer is preferably 100 nm or less from the viewpoint of high-density recording that has been demanded in recent years.
  • the thickness of the magnetic layer is more preferably in the range of 10 nm to 100 nm, and even more preferably in the range of 20 to 90 nm.
  • the magnetic layer may be at least one layer, and the magnetic layer may be separated into two or more layers having different magnetic characteristics, and a known configuration relating to a multi-layer magnetic layer can be applied.
  • the thickness of the magnetic layer when separated into two or more layers is the total thickness of these layers.
  • the thickness of the non-magnetic layer is, for example, 0.1 to 1.5 ⁇ m, preferably 0.1 to 1.0 ⁇ m.
  • the thickness of the backcoat layer is preferably 0.9 ⁇ m or less, and more preferably 0.1 to 0.7 ⁇ m.
  • the thickness of each layer of the magnetic recording medium and the non-magnetic support can be determined by a known film thickness measurement method.
  • a cross section in the thickness direction of a magnetic recording medium is exposed by a known method such as an ion beam or a microtome, and then the cross section is observed using a scanning electron microscope in the exposed cross section.
  • Various thicknesses can be obtained as the arithmetic mean of the thickness obtained at one location in the cross-sectional observation or at two or more randomly selected locations, for example, two locations.
  • the thickness of each layer may be obtained as a design thickness calculated from the manufacturing conditions.
  • each layer-forming composition includes ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, isophorone, and tetrahydrofuran. It preferably contains one or more of the solvents.
  • each layer-forming composition is not particularly limited, and can be the same as that of each layer-forming composition of a normal coating type magnetic recording medium.
  • the step of preparing each layer-forming composition can usually include at least a kneading step, a dispersion step, and a mixing step provided before and after these steps as necessary.
  • Each step may be divided into two or more steps.
  • the components used in the preparation of each layer-forming composition may be added at the beginning or in the middle of any step. Further, each component may be added separately in two or more steps.
  • the binder may be divided and added in a kneading step, a dispersion step, and a mixing step for adjusting the viscosity after dispersion.
  • a kneader having a strong kneading force such as an open kneader, a continuous kneader, a pressurized kneader, and an extruder. Details of these kneading treatments are described in JP-A-1-106338 and JP-A-1-79274.
  • glass beads and / or other beads can be used to disperse each layer-forming composition.
  • dispersed beads zirconia beads, titania beads, and steel beads, which are dispersed beads having a high specific gravity, are suitable. It is preferable to use these dispersed beads by optimizing the particle size (bead diameter) and the filling rate.
  • a known disperser can be used.
  • Each layer-forming composition may be filtered by a known method before being subjected to the coating step. Filtration can be performed, for example, by filter filtration.
  • a filter having a pore size of 0.01 to 3 ⁇ m for example, a glass fiber filter, a polypropylene filter, etc.
  • the magnetic layer can be formed by, for example, directly applying the composition for forming a magnetic layer onto a non-magnetic support, or by applying multiple layers sequentially or simultaneously with the composition for forming a non-magnetic layer.
  • the coating layer is subjected to the orientation treatment in the alignment zone while the coating layer of the composition for forming the magnetic layer is in a wet state.
  • various known techniques such as the description in paragraph 0052 of JP-A-2010-24113 can be applied.
  • the vertical alignment treatment can be performed by a known method such as a method using a magnet opposite to the opposite pole.
  • the drying rate of the coating layer can be controlled by the temperature of the drying air, the air volume and / or the transport rate in the alignment zone.
  • the coating layer may also be pre-dried before being transported to the alignment zone.
  • the backcoat layer can be formed by applying the backcoat layer forming composition to the side opposite to the side having the magnetic layer of the non-magnetic support (or the magnetic layer is provided later).
  • the coating for forming each layer refer to paragraph 0066 of JP-A-2010-231843.
  • a calendar treatment is usually performed to improve the surface smoothness of the magnetic recording medium.
  • the calendar conditions are strengthened, the height of the protrusions on the surface of the magnetic layer formed by the protrusion-forming agent tends to decrease in the manufactured magnetic recording medium. Thereby, for example, S0.5 can be reduced.
  • the calendar conditions include the type and number of stages of the calendar roll, the calendar pressure, the calendar temperature (surface temperature of the calendar roll), the calendar speed, and the like.
  • the calendar pressure is, for example, 200 to 500 kN / m, preferably 250 to 350 kN / m
  • the calendar temperature is, for example, 70 to 120 ° C, preferably 80 to 100 ° C
  • the calendar rate is, for example, 50 to 300 m / min. , Preferably 80-200 m / min.
  • the surface of the roll is harder and the number of steps is increased, the surface of the magnetic layer tends to be smoothed. Therefore, the height of the protrusions on the surface of the magnetic layer should be adjusted according to the combination of calendar rolls and the number of steps. You can also.
  • paragraphs 0067 to 0070 of JP-A-2010-231843 can be referred to.
  • a servo pattern can be formed on the magnetic tape manufactured as described above by a known method in order to enable tracking control of the magnetic head in the magnetic recording / playback device, control of the traveling speed of the magnetic tape, and the like. .. "Formation of servo pattern” can also be referred to as "recording of servo signal”. The formation of the servo pattern will be described below.
  • the servo pattern is usually formed along the longitudinal direction of the magnetic tape.
  • Examples of the control (servo control) method using a servo signal include timing-based servo (TBS), amplitude servo, frequency servo, and the like.
  • the timing-based servo method is adopted for magnetic tapes (generally called "LTO tapes") that comply with the LTO (Linear Tape-Open) standard.
  • LTO tapes Magnetic Tape-Open
  • the servo pattern is composed of a pair of magnetic stripes (also referred to as “servo stripes”) that are non-parallel to each other and are continuously arranged in the longitudinal direction of the magnetic tape.
  • the "timing-based servo pattern” refers to a servo pattern that enables head tracking in a timing-based servo system servo system.
  • the reason why the servo pattern is composed of a pair of magnetic stripes that are non-parallel to each other is to teach the passing position of the servo signal reading element passing on the servo pattern.
  • the pair of magnetic stripes are formed so that their intervals change continuously along the width direction of the magnetic tape, and the servo signal reading element reads the intervals to obtain a servo pattern.
  • the relative position of the servo signal reading element can be known. This relative position information allows tracking of the data track. Therefore, a plurality of servo tracks are usually set on the servo pattern along the width direction of the magnetic tape.
  • the servo band is composed of servo signals that are continuous in the longitudinal direction of the magnetic tape.
  • a plurality of these servo bands are usually provided on the magnetic tape. For example, in LTO tape, the number is five.
  • the area sandwiched between two adjacent servo bands is called a data band.
  • the data band is composed of a plurality of data tracks, and each data track corresponds to each servo track.
  • each servo band has information indicating the servo band number (“servo band ID (identification)” or “UDIM (Unique Data Band Identification)”. Method) Also called "information") is embedded.
  • the servo band ID is recorded by shifting a specific one of a plurality of pairs of servo stripes in the servo band so that the position thereof is displaced relative to the longitudinal direction of the magnetic tape. Specifically, the method of shifting a specific one of a plurality of pairs of servo stripes is changed for each servo band. As a result, the recorded servo band ID is unique for each servo band, so that the servo band can be uniquely identified by simply reading one servo band with the servo signal reading element.
  • a method for uniquely identifying the servo band there is also a method using a staggered method as shown in ECMA-319.
  • a staggered method a group of a pair of magnetic stripes (servo stripes) that are continuously arranged in the longitudinal direction of the magnetic tape and are not parallel to each other are recorded so as to be shifted in the longitudinal direction of the magnetic tape for each servo band.
  • This combination of shifting methods between adjacent servo bands is unique to the entire magnetic tape, it is possible to uniquely identify the servo band when reading the servo pattern by the two servo signal reading elements. It is possible.
  • LPOS Longitudinal Position
  • the embedded information may be different for each servo band such as UDIM information, or may be common to all servo bands such as LPOS information.
  • a method of embedding information in the servo band a method other than the above can be adopted. For example, a predetermined code may be recorded by thinning out a predetermined pair from a group of a pair of servo stripes.
  • the servo pattern forming head is called a servo light head.
  • the servo light head has a pair of gaps corresponding to the pair of magnetic stripes as many as the number of servo bands.
  • a core and a coil are connected to each pair of gaps, and by supplying a current pulse to the coil, a magnetic field generated in the core can generate a leakage magnetic field in the pair of gaps.
  • the magnetic pattern corresponding to the pair of gaps is transferred to the magnetic tape by inputting a current pulse while running the magnetic tape on the servo light head to form the servo pattern. Can be done.
  • the width of each gap can be appropriately set according to the density of the formed servo pattern.
  • the width of each gap can be set to, for example, 1 ⁇ m or less, 1 to 10 ⁇ m, 10 ⁇ m or more, and the like.
  • the magnetic tape is usually demagnetized (erase).
  • This erasing process can be performed by applying a uniform magnetic field to the magnetic tape using a DC magnet or an AC magnet.
  • the erase processing includes DC (Direct Current) erase and AC (Alternating Current) erase.
  • AC erasing is performed by gradually reducing the strength of the magnetic field while reversing the direction of the magnetic field applied to the magnetic tape.
  • DC erasing is performed by applying a unidirectional magnetic field to the magnetic tape.
  • the first method is horizontal DC erase, which applies a unidirectional magnetic field along the longitudinal direction of the magnetic tape.
  • the second method is vertical DC erase, which applies a unidirectional magnetic field along the thickness direction of the magnetic tape.
  • the erasing process may be performed on the entire magnetic tape, or may be performed on each servo band of the magnetic tape.
  • the direction of the magnetic field of the formed servo pattern is determined according to the direction of erase. For example, when the magnetic tape is horizontally DC erased, the servo pattern is formed so that the direction of the magnetic field is opposite to the direction of the erase. As a result, the output of the servo signal obtained by reading the servo pattern can be increased. As shown in Japanese Patent Application Laid-Open No. 2012-53940, when the magnetic pattern is transferred to the vertically DC-erased magnetic tape using the gap, the formed servo pattern is read and obtained. The servo signal has a unipolar pulse shape. On the other hand, when the magnetic pattern is transferred to the horizontally DC-erased magnetic tape using the gap, the servo signal obtained by reading the formed servo pattern has a bipolar pulse shape.
  • the operation when the object is recorded on the magnetic tape T of the information processing apparatus 12 according to the present embodiment will be described.
  • the recording process shown in FIG. 10 is executed.
  • the recording process shown in FIG. 10 is executed after, for example, the reception unit 40 receives the data and the metadata transmitted from the terminal 16 and stores the data and the metadata in the data cache 44 and the metadata DB 46, respectively.
  • the magnetic tape T to be recorded is loaded in the tape drive 18.
  • step S10 of FIG. 10 the recording unit 42 acquires the data stored in the data cache 44 and the corresponding metadata stored in the metadata DB 46.
  • the recording unit 42 acquires data and metadata that have not been acquired so far.
  • step S12 the recording unit 42 records whether or not the second set data is recorded immediately before the recording position of the object on the data partition DP of the magnetic tape T, and the size of the second set data is equal to or less than a predetermined size. Is determined. If this determination is affirmative, the process proceeds to step S16, and if the determination is negative, the process proceeds to step S14.
  • step S14 the recording unit 42 records the object including the data and the metadata acquired by the process of step S10 without deleting the second set data of the data partition DP.
  • step S16 the recording unit 42 overwrites the object including the data and the metadata acquired by the process of step S10 with the second set data of a predetermined size or less and records the data.
  • step S18 the recording unit 42 determines whether or not the total size of the objects recorded in the data partition DP by the iterative process from step S10 to step S16 exceeds a predetermined size. If this determination is a negative determination, the process returns to step S10, and if the determination is affirmative, the process proceeds to step S20.
  • step S20 the recording unit 42 uses the first set data, which is a set of the metadata of the objects recorded after the first set data immediately before recorded in the previous step S20, into the data partition DP. Record.
  • step S22 the recording unit 42 transmits the second set data, which is a set of the first set data recorded in the data partition DP after the second set data immediately before recorded in the previous step S22. Record in the data partition DP.
  • step S24 the recording unit 42 determines whether or not the size of the second set data recorded by the process of step S22 exceeds a predetermined size. If this determination is a negative determination, the process proceeds to step S28, and if this determination is affirmative, the process proceeds to step S26. In step S26, the recording unit 42 records (copies) the second set data recorded by the process of step S22 in the reference partition RP.
  • step S28 the recording unit 42 determines whether or not all the data stored in the data cache 44 has been recorded in the data partition DP. If this determination is a negative determination, the process returns to step S10, and if the determination is affirmative, the process proceeds to step S30.
  • step S30 the recording unit 42 records the first set data and the second set data in the data partition DP, and records the second set data in the reference partition RP.
  • step S32 the recording unit 42 controls the tape library 14 and unloads the magnetic tape T from the tape drive 18.
  • step S32 the recording process is completed.
  • the information processing device 12 includes a reading unit 50, a receiving unit 52, a specific unit 54, and a transmitting unit 56.
  • the CPU 20 executes the reading program 32, it functions as a reading unit 50, a receiving unit 52, a specific unit 54, and a transmitting unit 56.
  • the administrator of the information processing device 12 loads the magnetic tape T into the tape drive 18.
  • the reading unit 50 stores the metadata in the metadata DB 46 as shown below. That is, in this case, the reading unit 50 has the second set data recorded in the reference partition RP of the loaded magnetic tape T, the second set data recorded in the data partition DP, and the first set recorded in the data partition DP.
  • the metadata is stored in the metadata DB 46 by referring to the aggregate data and the metadata recorded in the data partition DP in this order.
  • the reading unit 50 reads the second set data recorded in the reference partition RP, and stores the metadata included in the read second set data in the metadata DB 46. Further, when the second set data does not exist in the reference partition RP, the reading unit 50 reads the second set data recorded in the data partition DP and uses the metadata included in the read second set data as the metadata DB 46.
  • the second set data does not exist in the reference partition RP
  • the reading unit 50 reads the second set data recorded in the data partition DP and uses the metadata included in the read second set data as the metadata DB 46.
  • the reading unit 50 reads the first set data recorded in the data partition DP, and the metadata included in the read first set data. Is stored in the metadata DB 46.
  • the reading unit 50 reads the metadata recorded in the data partition DP and reads the read metadata into the metadata DB 46.
  • the reading unit 50 does not have to read the metadata already existing in the metadata DB 46 by comparing hash values and the like.
  • the reading unit 50 reads the object recorded at the position on the magnetic tape T specified by the specific unit 54 described later.
  • the reception unit 52 receives an object reading instruction transmitted from the terminal 16 via the network N via the network I / F25.
  • This read instruction contains object-specific identification information.
  • the identification unit 54 refers to the metadata DB 46 and uses the metadata including the identification information received by the reception unit 52 to specify the position of the object indicated by the identification information on the magnetic tape T.
  • the transmission unit 56 transmits the object read by the reading unit 50 to the terminal 16 via the network I / F25.
  • the operation when the object is read from the magnetic tape T of the information processing apparatus 12 according to the present embodiment will be described.
  • the CPU 20 executes the reading program 32
  • the metadata storage process shown in FIG. 12 and the object reading process shown in FIG. 13 are executed.
  • the metadata storage process shown in FIG. 12 is executed, for example, when the magnetic tape T is loaded into the tape drive 18.
  • the object reading process shown in FIG. 13 is executed, for example, when the information processing apparatus 12 receives a reading instruction for an object transmitted from the terminal 16 via the network N.
  • step S40 of FIG. 12 the reading unit 50 determines whether or not the second set data exists in the reference partition RP of the loaded magnetic tape T. If this determination is a negative determination, the process proceeds to step S44, and if this determination is affirmative, the process proceeds to step S42. In step S42, the reading unit 50 reads the second set data recorded in the reference partition RP, and stores the metadata included in the read second set data in the metadata DB 46.
  • step S44 the reading unit 50 determines whether or not the second set data exists in the data partition DP of the loaded magnetic tape T. If this determination is a negative determination, the process proceeds to step S48, and if this determination is affirmative, the process proceeds to step S46.
  • step S46 the reading unit 50 reads the second set data recorded in the data partition DP, and stores the metadata included in the read second set data in the metadata DB 46.
  • step S48 the reading unit 50 determines whether or not the first set data exists in the data partition DP of the loaded magnetic tape T. If this determination is a negative determination, the process proceeds to step S52, and if this determination is affirmative, the process proceeds to step S50.
  • step S50 the reading unit 50 reads the first set data recorded in the data partition DP, and stores the metadata included in the read first set data in the metadata DB 46.
  • step S52 the reading unit 50 reads the metadata recorded in the data partition DP and stores the read metadata in the metadata DB 46.
  • the processing of step S42, step S46, step S50, or step S52 is completed, the metadata storage processing is completed.
  • step S60 of FIG. 13 the reception unit 52 receives the reading instruction of the object transmitted from the terminal 16 via the network N via the network I / F25.
  • the identification unit 54 refers to the metadata DB 46 and identifies the position of the object indicated by the identification information on the magnetic tape T by using the metadata including the identification information received by the process of step S60. ..
  • step S64 the reading unit 50 reads the object recorded at the position on the magnetic tape T specified by the process of step S62.
  • the transmission unit 56 transmits the object read by the process of step S64 to the terminal 16 via the network I / F25.
  • step S68 the reading unit 50 controls the tape library 14 and unloads the magnetic tape T from the tape drive 18. When the process of step S68 is completed, the object reading process is completed.
  • the metadata is recorded in the second set data in the reference partition RP and the second set data, the first set data, and the metadata in the data partition DP. Fault tolerance can be improved. Further, according to the present embodiment, by avoiding duplication of metadata between the first set data and duplication of metadata between the second set data in each partition, the first set data and the second set data can be overlapped. It suppresses the increase in size. Therefore, it is possible to suppress an increase in the time spent for recording the first set data and the second set data on the magnetic tape T, and as a result, it is possible to suppress a decrease in the effective recording speed.
  • the second set data is divided so as not to exceed a predetermined size. Therefore, as a result of suppressing an increase in the size of the first set data and the second set data recorded at one time, it is possible to suppress a decrease in the effective recording speed.
  • the effective recording speed referred to here means the recording speed from the start to the end of recording the data to be recorded on the magnetic tape T by the user (that is, the recording speed including the recording of metadata). .. Further, this effective recording speed is a speed obtained by dividing the size of the data to be recorded by the user by the time from the start to the end of recording on the magnetic tape T.
  • the magnetic tape T on which the object is recorded is transported by the information processing device 12 and used in another system.
  • the identification information unique to the object is included in the metadata. In this case, if the identification information is unique in the system, it is conceivable that the same identification information is used in other systems.
  • the object-specific identification information is referred to as "ObjectID”.
  • the information processing apparatus 12 when the information processing apparatus 12 generates an object including data and metadata transmitted from the terminal 16, the information processing device 12 is system-specific in addition to the object-specific identification information. Include the identification information of the in the metadata.
  • the object-specific identification information is referred to as “ObjectID”, and the system-specific identification information is referred to as “SystemID”.
  • the object is displayed as shown below. Can be identified. That is, in this case, even if the object identification information is duplicated, the object can be identified by using the system-specific identification information in addition to the object-specific identification information.
  • the first set data which is a set of the metadata of the recorded objects
  • the data partition DP every time the total size of the recorded objects exceeds a predetermined size.
  • the first set data which is a set of metadata of the recorded objects
  • the first set data may be recorded in the data partition DP.
  • the first set data may be recorded in the data partition DP at the timing when a predetermined time has elapsed since the last object was recorded.
  • a magnetic recording medium other than the magnetic tape may be applied as the magnetic recording medium.
  • the magnetic recording medium of this embodiment is suitable as various magnetic recording media (magnetic tape, disk-shaped magnetic recording medium (magnetic disk), etc.) used in the sliding magnetic recording / reproducing device.
  • the above-mentioned sliding type device refers to a device in which the surface of the magnetic layer and the magnetic head slide in contact with each other when recording information on a magnetic recording medium and reading the recorded information.
  • the information processing device 12 and the tape library 14 are described as separate bodies, but the present invention is not limited to this. It can also be provided as a magnetic recording / reading device including an information processing device 12 and a tape library 14.
  • various processors other than the CPU may execute various processes executed by the CPU executing software (program) in the above embodiment.
  • a processor in order to execute a specific process such as PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing FPGA (Field-Programmable Gate Array) and ASIC (Application Specific Integrated Circuit).
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • An example is a dedicated electric circuit or the like, which is a processor having a circuit configuration designed exclusively for it.
  • the above-mentioned various processes may be executed by one of these various processors, or a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs and a combination of a CPU and an FPGA). Etc.).
  • the hardware structure of these various processors is, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined.
  • the recording program 30 and the reading program 32 are recorded in a recording medium such as a CD-ROM (CompactDiskReadOnlyMemory), a DVD-ROM (DigitalVersatileDiskReadOnlyMemory), and a USB (UniversalSerialBus) memory. May be provided. Further, the recording program 30 and the reading program 32 may be downloaded from an external device via a network.
  • a recording medium such as a CD-ROM (CompactDiskReadOnlyMemory), a DVD-ROM (DigitalVersatileDiskReadOnlyMemory), and a USB (UniversalSerialBus) memory. May be provided.
  • the recording program 30 and the reading program 32 may be downloaded from an external device via a network.
  • the present disclosure will be described below based on examples. However, the present disclosure is not limited to the embodiment shown in the examples.
  • the "part” described below indicates a “part by mass”. Further, unless otherwise specified, the steps and evaluations described below were carried out in an environment with an ambient temperature of 23 ° C. ⁇ 1 ° C.
  • the “eq” described below is an equivalent and is a unit that cannot be converted into SI units. First, an example of a magnetic recording medium will be described.
  • the protrusion forming agents used for producing the magnetic recording media of Examples and Comparative Examples are as follows.
  • the protrusion forming agent 1 and the protrusion forming agent 3 are particles having low surface smoothness on the particle surface.
  • the particle shape of the protrusion forming agent 2 is a cocoon-like shape.
  • the particle shape of the protrusion forming agent 4 is a so-called amorphous shape.
  • the particle shape of the protrusion forming agent 5 is close to a true sphere.
  • Protrusion forming agent 1 ATLAS (composite particle of silica and polymer) manufactured by Cabot Corporation, average particle size 100 nm
  • Protrusion forming agent 2 TGC6020N (silica particles) manufactured by Cabot Corporation, average particle size 140 nm
  • Protrusion-forming agent 3 Cataloid manufactured by Nikki Catalyst Kasei Co., Ltd. (Aqueous dispersion sol of silica particles; obtained by heating the above-mentioned aqueous dispersion sol as a protrusion-forming agent for preparing a protrusion-forming agent solution described later to remove a solvent.
  • Example 1 ⁇ Composition for forming a magnetic layer> (Magnetic liquid) Ferromagnetic powder (hexagonal barium ferrite powder): 100.0 parts (coercive force Hc: 196 kA / m, average particle size (average plate diameter) 24 nm) Oleic acid: 2.0 parts Vinyl chloride copolymer (MR-104 manufactured by Kaneka Corporation): 10.0 parts SO3Na group-containing polyurethane resin: 4.0 parts (weight average molecular weight 70000, SO3Na group: 0.07 meq / g) Additive A: 10.0 parts Methyl ethyl ketone: 150.0 parts Cyclohexanone: 150.0 parts (abrasive solution) ⁇ -Alumina (average particle size: 110 nm): 6.0 parts Vinyl chloride copolymer (MR110 manufactured by Kaneka Corporation): 0.7 parts Cyclohexanone: 20.0 parts (projection forming agent solution) Protrusion forming agent (see
  • the above-mentioned additive A is a polymer synthesized by the method described in paragraphs 0115 to 0123 of JP-A-2016-051493.
  • Non-magnetic inorganic powder ⁇ -iron oxide: 80.0 parts (average particle size: 0.15 ⁇ m, average needle-like ratio: 7, BET (Brunauer-Emmett-Teller) specific surface area: 52 m 2 / g) Carbon black (average particle size: 20 nm): 20.0 parts electron beam-curable vinyl chloride copolymer: 13.0 parts electron beam-curable polyurethane resin: 6.0 parts phenylphosphonic acid: 3.0 parts cyclohexanone: 140 parts .0 parts Methyl ethyl ketone: 170.0 parts Butyl stearate: 2.0 parts Stearic acid: 1.0 parts
  • Non-magnetic inorganic powder ( ⁇ -iron oxide): 80.0 parts (average particle size: 0.15 ⁇ m, average needle-like ratio: 7, BET specific surface area: 52 m 2 / g) Carbon black (average particle size: 20 nm): 20.0 parts Carbon black (average particle size: 100 nm): 3.0 parts Vinyl chloride copolymer: 13.0 parts Sulfonic acid group-containing polyurethane resin: 6.0 parts phenyl Phosphonate: 3.0 parts Cyclohexanone: 140.0 parts Methyl ethyl ketone: 170.0 parts Stealic acid: 3.0 parts Polyisocyanate (Coronate manufactured by Tosoh Corporation): 5.0 parts Methyl ethyl ketone: 400.0 parts
  • composition for forming a magnetic layer was prepared by the following method. After kneading and diluting the components of the magnetic liquid with an open kneader, zirconia (ZrO2) beads having a particle size of 0.5 mm (hereinafter referred to as "Zr beads”) are used by a horizontal bead mill disperser to fill the beads. At 80% by volume and a rotor tip peripheral speed of 10 m / sec, the residence time per pass was set to 2 minutes, and 12 passes were dispersed.
  • ZrO2 zirconia
  • the abrasive solution After mixing the components of the abrasive solution, the abrasive solution is placed in a vertical sand mill disperser together with Zr beads having a particle size of 1 mm so that the bead volume / (abrasive solution volume + bead volume) becomes 60%.
  • the mixture was adjusted, sandmill dispersion treatment was performed for 180 minutes, the treated liquid was taken out, and ultrasonic dispersion filtration treatment was performed using a flow-type ultrasonic dispersion filtration device.
  • the magnetic liquid, the abrasive liquid, the protrusion forming agent liquid, and the lubricant and the curing agent liquid were introduced into the dissolver stirrer, stirred at a peripheral speed of 10 m / sec for 30 minutes, and then the flow rate was 7. After 3 passes treatment at 5 kg / min, a composition for forming a magnetic layer was prepared by filtering with a filter having a pore size of 1 ⁇ m.
  • composition for forming a non-magnetic layer was prepared by the following method.
  • the above components excluding the lubricant (butyl stearate and stearic acid) were kneaded and diluted with an open kneader, and then dispersed with a horizontal bead mill disperser. Then, a lubricant (butyl stearate and stearic acid) was added, and the mixture was stirred with a dissolver stirrer and mixed to prepare a composition for forming a non-magnetic layer.
  • composition for forming the backcoat layer was prepared by the following method.
  • the above components excluding the lubricant (stearic acid), polyisocyanate and methyl ethyl ketone (400.0 parts) were kneaded and diluted with an open kneader, and then dispersed with a horizontal bead mill disperser. Then, a lubricant (stearic acid), polyisocyanate and methyl ethyl ketone (400.0 parts) were added, and the mixture was stirred with a dissolver stirrer and mixed to prepare a composition for forming a backcoat layer.
  • a composition for forming a non-magnetic layer is applied onto a polyethylene naphthalate support having a thickness of 6.0 ⁇ m so that the thickness after drying becomes 1.0 ⁇ m, and after drying, the energy becomes 40 kGy at an accelerating voltage of 125 kV.
  • the electron beam was irradiated as described above.
  • a composition for forming a magnetic layer is applied thereto so that the thickness after drying is 50 nm, and a magnetic field having a magnetic field strength of 0.3 T is applied to the surface of the coating layer while the coating layer is in a wet (undried) state.
  • it was subjected to a vertical orientation treatment applied in the vertical direction and dried.
  • the backcoat layer forming composition was applied to the surface of the support opposite to the surface on which the non-magnetic layer and the magnetic layer were formed so that the thickness after drying was 0.5 ⁇ m, and dried.
  • Examples 2 to 7, Comparative Examples 1 to 9 A magnetic tape was obtained by the same method as in Example 1 except that the type and / or calendar temperature of the protrusion forming agent was changed as shown in FIG. In addition, in FIG. 17, when the protrusion forming agent is "none", it means that the protrusion forming agent is not used. Also. In FIG. 17, “recording control” indicates the presence or absence of control of data recording according to the present disclosure.
  • a glass plate (thorlabs, Inc. glass plate (model number: WG10530)) provided on the TSA is provided on the surface of the magnetic layer of the magnetic tape (that is, the sample piece) as a pressing member.
  • the hemisphere made of urethane was pressed against the surface of the backcoat layer of the magnetic tape at a pressure of 0.5 atm.
  • white light is irradiated from the stroboscope provided in the TSA to a certain region (150,000 to 200,000 ⁇ m 2 ) on the surface of the magnetic layer of the magnetic tape through a glass plate, and the obtained reflected light is applied to an interference filter (wavelength 633 nm).
  • an interference filter wavelength 633 nm
  • This image is divided into 300,000 points, the distance (spacing) from the surface of the glass plate on the magnetic tape side of each point to the surface of the magnetic layer of the magnetic tape is obtained, and this is used as a histogram, and the mode of the histogram is the spacing S0. Obtained as .5.
  • Friction coefficient ( ⁇ value) In an environment with an ambient temperature of 23 ° C and a relative humidity of 50%, the magnetic head removed from the IBM LTO (registered trademark) G5 (Linear Tape-Open Generation 5) drive was attached to the tape running system, and a tension of 0.6N (Newton) was attached. The data read-out was evaluated as described later, and a magnetic tape having a tape length of 20 m was cut out from the evaluated magnetic tape. Then, the cut-out magnetic tape having a tape length of 20 m is sent out from the sending roll and wound on the winding roll, and the traveling speed is 4.0 m / s while the magnetic layer surface and the magnetic head are brought into contact with each other and slid. I ran it with.
  • IBM LTO registered trademark
  • G5 Linear Tape-Open Generation 5
  • the frictional force of the magnetic head was measured during the running using a strain gauge, and the friction coefficient ⁇ value was obtained from the measured frictional force. Since the value in FIG. 17 is the ⁇ value obtained for the running of the first pass, it is indicated as “ ⁇ value (1p)”.
  • a magnetic tape was prepared for data read-out evaluation.
  • Example 1 of the magnetic recording medium was used.
  • indexes were recorded on magnetic tape by the following two methods R1 and R2.
  • Method R2 is the recording method of the present disclosure. Method R1: Every time 10 data are recorded, the index of all the data up to that point is recorded. Method R2: Every time 10 pieces of data are recorded, 10 indexes are recorded. The mode of recording data and indexes is shown in FIG.
  • the index of all data was recorded at the end of the data. Further, one data and an index for one data shall have one unit size. Then, for each of the methods R1 and R2, the total data size on the tape was obtained for each number of data to be written.
  • the result of the total data size with respect to the number of data is shown in FIG. From the results shown in FIG. 17, it can be confirmed that the magnetic tape of the example has a smaller ⁇ value than the magnetic tape of the comparative example, that is, the increase in the friction coefficient is small even if the sliding with the magnetic head is repeated. Further, from the result shown in FIG. 19, it can be confirmed that when the number of data is 100, the total data size of the method R2 with respect to the method R1 is about 46%. In this case, the total amount of movement of the head when sequentially read out is reduced by about 54%. It can also be confirmed that the reduction rate increases as the number of data increases.
  • hexagonal barium ferrite powder is used as the strong magnetic powder, but even when hexagonal strontium ferrite powder and ⁇ -iron oxide powder are used as the strong magnetic powder. It was confirmed that good results were obtained as in the case of using the hexagonal barium ferrite powder.
  • the average particle size of the hexagonal strontium ferrite powder used here is 19 nm, the activated volume is 1102 nm 3 , the anisotropic constant Ku is 2.0 ⁇ 10 5 J / m 3 , and the mass magnetization ⁇ s is 50 A ⁇ m 2 / kg. Met.
  • the anisotropic magnetic field Hk of the magnetic layer containing the hexagonal strontium ferrite powder was 25 kOe.
  • the average particle size of ⁇ -iron oxide powder is 12 nm
  • the activated volume is 746 nm 3
  • the anisotropy constant Ku is 1.2 ⁇ 10 5 J / m 3
  • the mass magnetization ⁇ s is 16 A ⁇ m 2 / kg. there were.
  • the anisotropic magnetic field Hk of the magnetic layer containing ⁇ -iron oxide powder was 30 kOe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Management Or Editing Of Information On Record Carriers (AREA)

Abstract

情報処理装置は、データおよびデータに関するメタデータを含む複数のオブジェクトを磁気記録媒体に記録し、かつ少なくとも1つのオブジェクトを記録した後に、オブジェクトに含まれるメタデータの集合である第1集合データを記録する処理を、実行する記録部を備える。第1集合データは、直前の済みの第1集合データの記録後に記録されたオブジェクトに含まれるメタデータの集合である。磁気記録媒体は、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmおよび13.5atmの押圧下で測定されるスペーシングS0.5、S13.5の差分が3.0nm以下である

Description

記録装置、読取装置、記録方法、記録プログラム、読取方法、読取プログラム、および磁気テープ
 本開示は、記録装置、読取装置、記録方法、記録プログラム、読取方法、読取プログラム、および磁気テープに関する。
 従来、磁性層の表面に突起を形成することにより、磁性層表面の形状を制御することが提案されている(特開2011-28826号公報および特開2017-168178号公報参照)。
 一方、磁気テープ等の磁気記録媒体を用いるファイルシステムとして、LTFS(Linear Tape File System)が知られている。このファイルシステムに関する技術として、特開2016-4413号公報には、複数のファイルを、1つの結合ファイルとなるように連続してテープに書き込む技術が開示されている。この技術では、テープ上の結合ファイルの開始位置およびサイズを含む第1のインデックスをテープに書き込んだ後、テープ上の結合ファイル中の複数のファイルの各々についての開始位置およびサイズを含む第2のインデックスをテープに書き込む。
 摺動型の磁気記録再生装置では、磁気記録媒体への情報の記録および記録された情報の再生は、磁気記録媒体の磁性層表面と磁気ヘッドとを接触させ摺動させることにより行われる。磁性層表面と磁気ヘッドとの摺動時の摩擦係数が高いことは、走行安定性の低下等の原因となる。これに対し、磁性層表面の形状を制御することは、上記の摩擦係数を下げることに寄与し得る。
 磁気記録媒体への情報の記録および記録された情報の再生のためには、磁性層表面と磁気ヘッドとの摺動が繰り返される。この点に関し、従来提案されていたように磁性層表面の形状を制御することによって摺動初期に低摩擦係数を実現できたとしても、摺動を繰り返すうちに摩擦係数が上昇してしまう現象が発生する場合がある。
 ところで、図20に示すように、前述したLTFSでは、磁気テープの記録領域は、インデックスパーティションおよびデータパーティションに分割される。文書データおよび画像データ等のユーザが保存対象とするデータは、磁気テープのデータパーティションの先頭から記録される。そして、例えば、記録されたデータのサイズの合計が所定のサイズを超えた場合に、記録されたデータ各々の磁気テープ上の位置を表す情報を含むインデックス(図20中のindex1)がデータパーティションに記録される。
 また、インデックスが記録された後にデータが所定のサイズを超えて記録されると、新たなインデックス(図20中のindex2)が記録される。このインデックスには、磁気テープの先頭から記録されたすべてのデータ各々の磁気テープ上の位置を表す情報が含まれる。
 したがって、磁気テープに多数のデータが記録されるほどインデックスのサイズも大きくなり、磁気テープの実効容量が低下してしまう、という問題点がある。なお、ここでは、実効容量とは、磁気テープにおけるユーザが保存対象とするデータを記録できる容量を意味する。
 上記特開2016-4413号公報に記載の技術では、多数の小サイズのデータを磁気テープに記録する場合のデータ転送速度については考慮されているものの、前述したインデックスのサイズの増大に伴う磁気テープの実効容量の低下については考慮されていない。
 また、上記のようにインデックスのサイズが増大すると、磁気記録媒体からのデータを読み出しする際の、磁気ヘッドと磁気記録媒体との繰り返し摺動回数が増えてしまう。さらに、近年の磁気記録媒体の大容量化に伴い、記録可能なデータ量も多くなる。このため、このような大容量の磁気記録媒体からデータを読み出す際には、繰り返し往復回数がさらに増え、その結果、磁気記録媒体の走行安定性が大きく低下してしまう。
 本開示は上記事情に鑑みなされたものであり、摩擦係数の上昇を抑制して、磁気記録媒体の走行安定性の低下を改善することを目的とする。
 上記目的を達成するために、本開示の記録装置は、データおよびデータに関するメタデータを含む複数のオブジェクトを磁気記録媒体に記録し、かつ少なくとも1つのオブジェクトを記録した後に、オブジェクトに含まれるメタデータの集合である第1集合データを記録する処理を、所定のタイミング毎に実行する記録部を備え、第1集合データのそれぞれは、直前の記録済みの第1集合データの記録後に記録されたオブジェクトに含まれるメタデータの集合であり、
 磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、が3.0nm以下である。
 なお、本開示の記録装置は、差分が1.5nm以上3.0nm以下であってもよい。
 また、本開示の記録装置は、S0.5が、5.0~50.0nmの範囲であってもよい。
 ここで、本明細書において、数値の範囲を示す「~」は、数値の上限および下限を含むものとする。すなわち、5.0~50.0nmとは、5.0nm以上50.0nm以下を意味するものとする。
 また、本開示の記録装置は、磁性層が、無機酸化物系粒子を含むものであってもよい。
 また、本開示の記録装置は、無機酸化物系粒子が、無機酸化物とポリマーとの複合粒子であってもよい。
 また、本開示の記録装置は、磁性層が、脂肪酸、脂肪酸エステルおよび脂肪酸アミドからなる群から選択される一種以上の潤滑剤を含むものであってもよい。
 また、本開示の記録装置は、非磁性支持体と磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有するものであってもよい。
 また、本開示の記録装置は、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有するものであってもよい。
 また、本開示の記録装置は、磁気記録媒体が磁気テープであってもよい。
 また、本開示の記録装置は、記録部は、少なくとも1つの第1集合データを記録した後に、記録済みの第1集合データの集合である第2集合データを磁気記録媒体に記録してもよい。
 また、本開示の記録装置は、記録部が、磁気記録媒体に記録済みの第2集合データのサイズが所定のサイズ以下の場合で、かつオブジェクトを磁気記録媒体に記録する場合に、第2集合データに上書きして記録してもよい。
 また、本開示の記録装置は、磁気記録媒体が、リファレンスパーティションおよびオブジェクトが記録されるデータパーティションを含み、記録部が、第1集合データおよび第2集合データをデータパーティションに記録し、かつデータパーティションに記録された第2集合データのサイズが所定のサイズを超える場合は、データパーティションに記録された第2集合データを、リファレンスパーティションに記録してもよい。
 また、本開示の記録装置は、記録部が、データパーティションに記録された第2集合データをリファレンスパーティションに記録する場合、データパーティションに記録された第2集合データを削除せずにリファレンスパーティションに記録してもよい。
 また、本開示の記録装置は、メタデータが、システム固有の識別情報、およびメタデータが含まれるオブジェクト固有の識別情報を含んでもよい。
 また、本開示の記録装置は、磁気記録媒体が、磁気テープであってもよい。
 一方、上記目的を達成するために、本開示の読取装置は、リファレンスパーティションと、データおよびデータに関するメタデータを含むオブジェクトが記録されるデータパーティションとを含む磁気記録媒体のデータパーティションに記録されたオブジェクトの磁気記録媒体上の位置を、リファレンスパーティションに記録された第2集合データ、データパーティションに記録された第2集合データ、データパーティションに記録された第1集合データ、およびデータパーティションに記録されたメタデータの少なくとも1つを用いて特定する特定部と、特定部により特定された位置に記録されたオブジェクトを読み取る読取部とを備え、
 磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、が3.0nm以下である。
 なお、本開示の読取装置は、特定部が、リファレンスパーティションに記録された第2集合データ、データパーティションに記録された第2集合データ、データパーティションに記録された第1集合データ、およびデータパーティションに記録されたメタデータの順番で参照して上記位置を特定してもよい。
 また、上記目的を達成するために、本開示の記録方法は、データおよびデータに関するメタデータを含む複数のオブジェクトを磁気記録媒体に記録し、かつ少なくとも1つのオブジェクトを記録した後に、オブジェクトに含まれるメタデータの集合である第1集合データを記録する処理を、所定のタイミング毎に実行する処理であって、第1集合データのそれぞれは、直前の記録済みの第1集合データの記録後に記録されたオブジェクトに含まれるメタデータの集合である処理をコンピュータが実行する記録方法であって、
 磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、が3.0nm以下である。
 また、上記目的を達成するために、本開示の記録プログラムは、データおよびデータに関するメタデータを含む複数のオブジェクトを磁気記録媒体に記録し、かつ少なくとも1つのオブジェクトを記録した後に、オブジェクトに含まれるメタデータの集合である第1集合データを記録する処理を、所定のタイミング毎に実行する処理であって、第1集合データのそれぞれは、直前の記録済みの第1集合データの記録後に記録されたオブジェクトに含まれるメタデータの集合である処理をコンピュータに実行させる記録プログラムであって、
 磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、が3.0nm以下である。
 また、上記目的を達成するために、本開示の読取方法は、リファレンスパーティションと、データおよびデータに関するメタデータを含むオブジェクトが記録されるデータパーティションとを含む磁気記録媒体のデータパーティションに記録されたオブジェクトの磁気記録媒体上の位置を、リファレンスパーティションに記録された第2集合データ、データパーティションに記録された第2集合データ、データパーティションに記録された第1集合データ、およびデータパーティションに記録されたメタデータの少なくとも1つを用いて特定し、特定した位置に記録されたオブジェクトを読み取る処理をコンピュータが実行する読取方法であって、
 磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、が3.0nm以下である。
 また、上記目的を達成するために、本開示の読取プログラムは、リファレンスパーティションと、データおよびデータに関するメタデータを含むオブジェクトが記録されるデータパーティションとを含む磁気記録媒体のデータパーティションに記録されたオブジェクトの磁気記録媒体上の位置を、リファレンスパーティションに記録された第2集合データ、データパーティションに記録された第2集合データ、データパーティションに記録された第1集合データ、およびデータパーティションに記録されたメタデータの少なくとも1つを用いて特定し、特定した位置に記録されたオブジェクトを読み取る処理をコンピュータに実行させる読取プログラムであって、
 磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、が3.0nm以下である。
 また、上記目的を達成するために、本開示の磁気テープは、データおよびデータに関するメタデータを含む複数のオブジェクトが記録され、少なくとも1つのオブジェクトが記録された後に、オブジェクトに含まれるメタデータの集合である第1集合データが記録される処理が、所定のタイミング毎に実行される磁気テープであって、第1集合データのそれぞれは、直前の記録済みの第1集合データの記録後に記録されたオブジェクトに含まれるメタデータの集合である磁気テープであって、
 非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、が3.0nm以下である。
 また、本開示の他の記録装置は、コンピュータに実行させるための命令を記憶するメモリと、
 記憶された命令を実行するよう構成されたプロセッサとを備え、
 プロセッサは、データおよびデータに関するメタデータを含む複数のオブジェクトを磁気記録媒体に記録し、かつ少なくとも1つのオブジェクトを記録した後に、オブジェクトに含まれるメタデータの集合である第1集合データを記録する処理を、所定のタイミング毎に実行する処理であって、第1集合データのそれぞれは、直前の記録済みの第1集合データの記録後に記録されたオブジェクトに含まれるメタデータの集合である処理を行うものであって、
 磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、が3.0nm以下である。
 また、本開示の他の読取装置は、コンピュータに実行させるための命令を記憶するメモリと、
 記憶された命令を実行するよう構成されたプロセッサとを備え、
 プロセッサは、リファレンスパーティションと、データおよびデータに関するメタデータを含むオブジェクトが記録されるデータパーティションとを含む磁気記録媒体のデータパーティションに記録されたオブジェクトの磁気記録媒体上の位置を、リファレンスパーティションに記録された第2集合データ、データパーティションに記録された第2集合データ、データパーティションに記録された第1集合データ、およびデータパーティションに記録されたメタデータの少なくとも1つを用いて特定し、特定した位置に記録されたオブジェクトを読み取る処理を行うものであって、
 磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、が3.0nm以下である。
 本開示によれば、摩擦係数の上昇を抑制して、磁気記録媒体の走行安定性の低下を改善できる。
各実施形態に係る記録読取システムの構成の一例を示すブロック図である。 各実施形態に係る情報処理装置のハードウェア構成の一例を示すブロック図である。 各実施形態に係る情報処理装置のオブジェクトを記録する場合の機能的な構成の一例を示すブロック図である。 各実施形態に係る磁気テープの初期状態の一例を示す図である。 各実施形態に係る磁気テープの記録状態の一例を示す図である。 各実施形態に係る磁気テープの記録状態の一例を示す図である。 各実施形態に係る磁気テープの記録状態の一例を示す図である。 各実施形態に係る磁気テープの記録状態の一例を示す図である。 各実施形態に係る磁気テープの記録状態の一例を示す図である。 各実施形態に係る記録処理の一例を示すフローチャートである。 各実施形態に係る情報処理装置のオブジェクトを読み取る場合の機能的な構成の一例を示すブロック図である。 各実施形態に係るメタデータ記憶処理の一例を示すフローチャートである。 各実施形態に係るオブジェクト読取処理の一例を示すフローチャートである。 第2実施形態に係る磁気テープを他のシステムで使用する場合の一例を示す模式図である。 第2実施形態に係るメタデータに含める識別情報を説明するための図である。 第2実施形態に係るオブジェクト固有の識別情報が重複した場合を説明するための図である。 本開示の実施例の結果を示す図である。 各磁気テープのデータの記録の態様を模式的に示す図である。 本開示の実施例の結果を示す図である。 LTFSにおけるインデックスの記録処理を説明するための図である。
 以下、図面を参照して、本開示の技術を実施するための形態例を詳細に説明する。
 [第1実施形態]
 まず、図1を参照して、本実施形態に係る記録読取システム10の構成を説明する。図1に示すように、記録読取システム10は、情報処理装置12およびテープライブラリ14を含む。テープライブラリ14は、情報処理装置12に接続される。また、情報処理装置12と複数台の端末16とは、ネットワークNに接続され、ネットワークNを介して通信が可能とされる。
 テープライブラリ14は、複数のスロット(図示省略)および複数のテープドライブ18を備え、各スロットには磁気テープTが格納される。磁気テープTは、シーケンシャルアクセスによりデータの書き込みまたは読み取りが行われる磁気記録媒体の一例である。なお、磁気テープTの例としては、LTO(Linear Tape-Open)テープが挙げられる。
 情報処理装置12により磁気テープTに対するデータの書き込みまたは読み取りを行う場合、書き込みまたは読み取り対象の磁気テープTがスロットから所定のテープドライブ18にロードされる。テープドライブ18にロードされた磁気テープTに対する情報処理装置12による書き込みまたは読み取りが完了すると、磁気テープTは、テープドライブ18から元々格納されていたスロットにアンロードされる。
 本実施形態では、磁気テープTに記録するデータのフォーマットとして、文書データおよび画像データ等のユーザが保存対象とするデータと、そのデータに関するメタデータとを含むオブジェクトを適用した形態例を説明する。なお、このオブジェクトを取り扱うストレージシステムは、オブジェクトストレージシステムと称される。
 次に、図2を参照して、本実施形態に係る情報処理装置12のハードウェア構成を説明する。図2に示すように、情報処理装置12は、CPU(Central Processing Unit)20、一時記憶領域としてのメモリ21、および不揮発性の記憶部22を含む。また、情報処理装置12は、液晶ディスプレイ等の表示部23、キーボードとマウス等の入力部24、ネットワークNに接続されるネットワークI/F(InterFace)25、およびテープライブラリ14が接続される外部I/F26を含む。CPU20、メモリ21、記憶部22、表示部23、入力部24、ネットワークI/F25、および外部I/F26は、バス27に接続される。
 記憶部22は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、およびフラッシュメモリ等によって実現される。記憶媒体としての記憶部22には、記録プログラム30および読取プログラム32が記憶される。CPU20は、記憶部22から記録プログラム30を読み出してからメモリ21に展開し、展開した記録プログラム30を実行する。また、CPU20は、記憶部22から読取プログラム32を読み出してからメモリ21に展開し、展開した読取プログラム32を実行する。なお、情報処理装置12の例としては、サーバコンピュータ等が挙げられる。また、情報処理装置12が、磁気テープTにオブジェクトを記録する記録装置の一例である。また、情報処理装置12は、磁気テープTに記録されたオブジェクトを読み取る読取装置の一例でもある。
 次に、図3を参照して、本実施形態に係る情報処理装置12の磁気テープTにオブジェクトを記録する場合の機能的な構成について説明する。図3に示すように、情報処理装置12は、受付部40および記録部42を含む。CPU20が記録プログラム30を実行することにより、受付部40および記録部42として機能する。また、記憶部22の所定の記憶領域には、データキャッシュ44およびメタデータデータベース(DB)46が記憶される。データキャッシュ44およびメタデータDB46は磁気テープT毎に用意される。
 受付部40は、オブジェクトを取り扱うためのAPI(Application Programming Interface)を用いて端末16から送信されたデータおよびそのデータに関するメタデータを、ネットワークI/F25を介して受け付ける。そして、受付部40は、受け付けたデータをデータキャッシュ44に記憶し、メタデータをメタデータDB46に記憶する。なお、端末16から送信されたメタデータには、対応するデータのデータ名等の識別情報、データのサイズ、およびタイムスタンプ等のデータの属性を示す属性情報が含まれる。また、受付部40は、受け付けたデータおよびメタデータを含むオブジェクト固有の識別情報をメタデータに追加する。
 図4に、データキャッシュ44にデータが記憶され、メタデータDB46にメタデータが記憶された状態の一例を示す。また、図4では、磁気テープTはフォーマットされた直後で、まだオブジェクトが記録されていない状態である。
 図4に示すように、データキャッシュ44にはデータが記憶され、メタデータDB46にはデータに対応付けてメタデータが記憶される。また、本実施形態に係る磁気テープTは、フォーマットされる際に、リファレンスパーティションRPと、オブジェクトが記録されるデータパーティションDPとの2つのパーティションに分割される。また、リファレンスパーティションRPおよびデータパーティションDPは、複数本のラップを含んで構成されるガードラップスGWによって区分される。また、リファレンスパーティションRPおよびデータパーティションDPそれぞれの先頭には、ラベルが記録される。このラベルには、磁気テープTの識別情報、および磁気テープTへのデータの書き込み形式に関するフォーマット情報等が含まれる。
 記録部42は、テープライブラリ14を制御し、オブジェクトの記録対象の磁気テープTを所定のテープドライブ18にロードする。また、記録部42は、データキャッシュ44に記憶されたデータ、およびメタデータDB46に記憶された対応するメタデータを含むオブジェクトを、ロードした磁気テープTのデータパーティションDPに記録する。この際、記録部42は、メタデータに、対応するオブジェクトが記録される磁気テープTの識別情報、および磁気テープT上の記録位置を表す情報等のオブジェクトを管理するための管理情報を追加する。図5に、2つのオブジェクトがデータパーティションDPに記録された状態の一例を示す。
 また、記録部42は、所定のタイミング毎に、記録したオブジェクトのメタデータの集合をデータパーティションDPに記録する。なお、以下では、このメタデータの集合を「第1集合データ」という。本実施形態では、記録部42は、記録したオブジェクトのサイズの合計が所定のサイズを超える毎に、記録したオブジェクトのメタデータの集合である第1集合データをデータパーティションDPに記録する。この際、記録部42は、すでにデータパーティションDPに記録済みの第1集合データが存在する場合は、直前の第1集合データの後に記録されたオブジェクトのメタデータの集合である第1集合データをデータパーティションDPに記録する。すなわち、記録部42は、少なくとも1つのオブジェクトを記録した後に、オブジェクトに含まれるメタデータの集合である第1集合データを記録する処理を、所定のタイミング毎に実行する。そして、記録部42は、第1集合データのそれぞれが、直前の記録済みの第1集合データの記録後に記録されたすべてのオブジェクトに含まれるメタデータの集合となるように上記処理を実行する。したがって、第1集合データのそれぞれは、直前の第1集合データと自身との間に記録されたすべてのオブジェクトのメタデータの集合となる。以上の処理は、この第1集合データよりも前に記録されたオブジェクトは正常に書き込まれたことを保証するコミット処理に相当する。なお、この場合における上記所定のサイズは、例えば、このコミット処理が長時間行われないことを防止するための値として予め定められている。また、例えば、この場合における上記所定のサイズは、磁気テープTの記録容量に所定の割合を乗算して得られたサイズ等、磁気テープTの記録容量、磁気テープTの使用環境または使用条件等に応じて実験的に決めたり変更したりしてもよい。
 また、例えば、この場合における上記所定のサイズは、一度の記録指示によってオブジェクトをまとめてデータパーティションDPに記録する場合にかかる時間(以下、「記録時間」という)の上限値に応じて定められてもよい。例えば、システムの要求性能としての記録時間の上限値が35秒の場合で、かつ磁気テープTへのデータの記録速度が300MB/secの場合、記録対象のオブジェクトのサイズの合計値が10GB以下であれば、記録時間が35秒以下になる。したがって、この場合、上記所定のサイズを10GBとすればよい。
 また、記録部42は、少なくとも1つの第1集合データをデータパーティションDPに記録した後に、データパーティションDPに記録済みの第1集合データの集合をデータパーティションDPに記録する。なお、以下では、この第1集合データの集合を「第2集合データ」という。この際、記録部42は、すでにデータパーティションDPに第2集合データが存在する場合は、直前の第1集合データの集合の後に記録された第1集合データの集合である第2集合データをデータパーティションDPに記録する。したがって、第2集合データのそれぞれは、直前の第2集合データと自身との間に記録されたすべての第1集合データの集合となる。
 データパーティションDPに第1集合データが記録されていない場合、図6に示すように、データパーティションDPの先頭から記録済みのメタデータの集合である第1集合データがデータパーティションDPに記録される。また、データパーティションDPに第2集合データが記録されていない場合、データパーティションDPの先頭から記録済みの第1集合データの集合である第2集合データがデータパーティションDPに記録される。なお、図6では、第1集合データを「第1集合」と表記し、第2集合データを「第2集合」と表記している。また、この表記は、後述する図7~図9でも同様である。
 また、図6に示すように、記録部42は、第1集合データおよび第2集合データをデータパーティションDPに記録する場合、第1集合データの前後および第2集合データの前後にファイルマークを記録する。このファイルマークを用いることによって、データパーティションDPに記録済みの第1集合データおよび第2集合データを探索することができる。
 また、データパーティションDPに第1集合データが記録されている場合、図7に示すように、直前の第1集合データの後に記録されたオブジェクトのメタデータの集合である第1集合データがデータパーティションDPに記録される。また、データパーティションDPに第2集合データが記録されている場合、直前の第2集合データの後に記録された第1集合データの集合である第2集合データがデータパーティションDPに記録される。すなわち、本実施形態では、データパーティションDPに記録された複数の第1集合データにメタデータが重複して含まれないため、磁気テープTの実効容量の低下を抑制することができる。また、本実施形態では、データパーティションDPに記録された複数の第2集合データに第1集合データが重複して含まれないため、磁気テープTの実効容量の低下を抑制することができる。
 また、記録部42は、オブジェクトをデータパーティションDPに記録する場合、直前の第2集合データのサイズが所定のサイズ以下の場合は、その第2集合データにオブジェクトを上書きして記録する。図7では、図6の第2集合データが上書きされた例を示している。なお、この場合における上記所定のサイズは、例えば、磁気テープTの記録速度に応じて予め定められている。また、例えば、この場合における上記所定のサイズは、磁気テープTの記録容量に所定の割合を乗算して得られたサイズ等、磁気テープTの記録容量、磁気テープTの使用環境または使用条件等に応じて実験的に決めたり変更したりしてもよい。
 また、図8に示すように、記録部42は、データパーティションDPに記録した第2集合データのサイズが所定のサイズを超える場合は、その第2集合データを削除せずにリファレンスパーティションRPに記録(コピー)する。この際、記録部42は、リファレンスパーティションRPの第2集合データの前後にもファイルマークを記録する。
 また、図9に示すように、記録部42は、データキャッシュ44に記憶されたデータのデータパーティションDPへの記録が完了し、磁気テープTをアンロードする場合も、同様に第1集合データおよび第2集合データをデータパーティションDPに記録する。この場合、記録部42は、第2集合データをリファレンスパーティションRPにも記録する。
 次いで、本実施形態の磁気テープTとして使用される磁気記録媒体について説明する。
[磁気記録媒体]
 本実施形態において使用される磁気記録媒体の一態様は、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気記録媒体であって、上記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、上記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分(S0.5-S13.5)は3.0nm以下である磁気記録媒体に関する。
 本実施形態において、「n-ヘキサン洗浄」とは、磁気記録媒体から切り出した試料片を液温20~25℃のフレッシュなn-ヘキサン(200g)に浸漬して100秒間超音波洗浄(超音波出力:40kHz)することをいうものとする。洗浄対象の磁気記録媒体が磁気テープの場合には、長さ5cmの試料片を切り出してn-ヘキサン洗浄に付す。磁気テープの幅および磁気テープから切り出される試料片の幅は、通常、1/2インチである。1インチ=0.0254メートルである。1/2インチ幅以外の磁気テープについても、長さ5cmの試料片を切り出してn-ヘキサン洗浄に付せばよい。洗浄対象の磁気記録媒体が磁気ディスクの場合には、5cm×1.27cmのサイズの試料片を切り出してn-ヘキサン洗浄に付す。以下に詳述するスペーシングの測定は、n-ヘキサン洗浄後の試料片を、温度23℃相対湿度50%の環境下に24時間放置した後に行うものとする。
 本実施形態において、磁気記録媒体の「磁性層(の)表面」とは、磁気記録媒体の磁性層側表面と同義である。
 本実施形態において、磁気記録媒体の磁性層表面において光学干渉法により測定されるスペーシングとは、以下の方法により測定される値とする。
 磁気記録媒体(詳しくは上記の試料片。以下同様。)と透明な板状部材(例えばガラス板等)を、磁気記録媒体の磁性層表面が透明な板状部材と対向するように重ね合わせた状態で、磁気記録媒体の磁性層側とは反対側から、0.5atmまたは13.5atmの圧力で押圧部材を押し付ける。この状態で、透明な板状部材を介して磁気記録媒体の磁性層表面に光を照射し(照射領域:150000~200000μm2)、磁気記録媒体の磁性層表面からの反射光と透明な板状部材の磁気記録媒体側表面からの反射光との光路差によって発生する干渉光の強度(例えば干渉縞画像のコントラスト)に基づき、磁気記録媒体の磁性層表面と透明な板状部材の磁気記録媒体側表面との間のスペーシング(距離)を求める。ここで照射される光は特に限定されるものではない。照射される光が、複数波長の光を含む白色光のように、比較的広範な波長範囲に亘り発光波長を有する光の場合には、透明な板状部材と反射光を受光する受光部との間に、干渉フィルタ等の特定波長の光または特定波長域以外の光を選択的にカットする機能を有する部材を配置し、反射光の中の一部の波長の光または一部の波長域の光を選択的に受光部に入射させる。照射させる光が単一の発光ピークを有する光(いわゆる単色光)の場合には、上記の部材は用いなくてもよい。受光部に入射させる光の波長は、一例として、例えば500~700nmの範囲にあることができる。但し、受光部に入射させる光の波長は、上記範囲に限定されるものではない。また、透明な板状部材は、この部材を介して磁気記録媒体に光を照射し干渉光が得られる程度に、照射される光を透過する透明性を有する部材であればよい。
 上記スペーシングの測定により得られる干渉縞画像を300000ポイントに分割して各ポイントのスペーシング(磁気記録媒体の磁性層表面と透明な板状部材の磁気記録媒体側表面との間の距離)を求め、これをヒストグラムとし、このヒストグラムにおける最頻値を、スペーシングとする。
 同じ磁気記録媒体から試料片を5つ切り出し、各試料片について、n-ヘキサン洗浄後に0.5atmの圧力で押圧部材を押し付けてスペーシングS0.5を求め、さらに13.5atmの圧力で押圧部材を押し付けてスペーシングS13.5を求める。そして求められたS0.5とS13.5との差分(S0.5-S13.5)を算出する。5つの試料片について算出された差分(S0.5-S13.5)の算術平均を、その磁気記録媒体についての差分(S0.5-S13.5)とする。
 以上の測定は、例えばMicro Physics社製Tape Spacing Analyzer等の市販のテープスペーシングアナライザー(TSA;Tape Spacing Analyzer)を用いて行うことができる。実施例におけるスペーシング測定は、Micro Physics社製Tape Spacing Analyzerを用いて実施した。
 磁性層表面と磁気ヘッドとの摺動時の摩擦係数は、磁性層表面に突起を形成して、磁性層表面において磁気ヘッドと接触(いわゆる真実接触)する部分を少なくすることにより低下させることができる。但し、磁気ヘッドとの摺動が繰り返されることにより磁性層表面の突起の高さが低くなってしまうと、磁性層表面において磁気ヘッドと真実接触する部分が増え、摩擦係数は上昇してしまう。
 上記の点に関して、本開示の発明者らは、鋭意検討を重ねる中で、磁気ヘッドとの摺動が繰り返される際に磁性層表面に加わる圧力は一定ではなく、大きな圧力が加わる場合もあり、大きな圧力が加わった際に突起が変形したり磁性層内部に沈み込むことによって突起の高さが低くなることが、磁気ヘッドとの摺動を繰り返すと摩擦係数が上昇することの原因になるのではないかと考えるに至った。上記の大きな圧力が加わる場合とは、例えば磁気ヘッドのエッジ部との接触時が考えられる。これに対し、上記方法により求められるS0.5とS13.5との差分(S0.5-S13.5)が3.0nm以下と小さいことは、大きな圧力が加えられても磁性層表面の突起の高さの大きな変化が生じ難いことを示している。そのため、上記差分が3.0nm以下の上記磁気記録媒体は、磁気ヘッドとの摺動を繰り返しても磁性層表面の突起の高さの変化が少ないと考えられる。このことが、上記磁気記録媒体によれば、磁気ヘッドとの摺動が繰り返されても摩擦係数の上昇を抑制できる理由であると、本開示の発明者らは推察している。但し、上記推察に本開示は限定されない。
 ところで、上記スペーシングの測定における押圧時の圧力に関して、本実施形態では、磁気ヘッドとの摺動時に磁性層表面に主に加わる圧力の例示的な値として0.5atmを採用し、磁気ヘッドとの摺動時に磁性層表面に加わる大きな圧力の例示的な値として13.5atmを採用したものであって、磁気ヘッドとの摺動時に上記磁気記録媒体に加わる圧力は上記圧力に限定されない。上記圧力を採用して求められた上記差分を制御することにより、磁気ヘッドとの摺動が繰り返されても摩擦係数の上昇を抑制できることは、本開示の発明者らの鋭意検討の結果、新たに見出されたことである。上記差分の制御方法については後述する。
 以下、上記磁気記録媒体について、さらに詳細に説明する。以下において、磁性層表面と磁気ヘッドとの摺動を繰り返して摩擦係数が上昇することを、単に「摩擦係数の上昇」とも記載する。
<磁性層>
(差分(S0.5-S13.5))
 上記磁気記録媒体の差分(S0.5-S13.5)は、3.0nm以下であり、摩擦係数の上昇をより一層抑制する観点から、2.9nm以下であることが好ましく、2.8nm以下であることがより好ましく、2.7nm以下であることがさらに好ましく、2.6nm以下であることが一層好ましく、2.5nm以下であることがより一層好ましい。また、上記差分は、例えば、1.0nm以上、1.5nm以上、1.8nm以上または2.0nm以上であることができる。但し、上記差分は、摩擦係数の上昇を抑制する観点からは小さいほど好ましいため、上記例示した下限を下回ることも、もちろん可能である。上記差分は、磁性層表面に突起を形成することができる非磁性フィラー(以下、「突起形成剤」と記載する。)の種類および磁気記録媒体の製造条件によって制御することができる。この点の詳細は後述する。
 上記磁気記録媒体のS0.5およびS13.5は、差分(S0.5-S13.5)が3.0nm以下であれば特に限定されるものではない。電磁変換特性の向上の観点からは、S0.5は、50.0nm以下であることが好ましく40.0nm以下であることがより好ましく、30.0nm以下であることがさらに好ましく、20.0nm以下であることが一層好ましく、16.0nm以下であることがより一層好ましく、15.5nm以下であることがさらに一層好ましく、14.5nm以下であることがさらにより一層好ましい。また、主に磁気ヘッドとの摺動初期の摩擦係数を低く抑える観点からは、S0.5は、5.0nm以上であることが好ましく、8.0nm以上であることがより好ましく、10.0nm以上であることがさらに好ましく、12.0nm以上であることが一層好ましい。また、S13.5は、磁気ヘッドとの摺動を繰り返しても走行安定性を良好に維持する観点からは、5.0nm以上であることが好ましく、8.0nm以上であることがより好ましく、10.0nm以上であることがさらに好ましい。また、磁気ヘッドとの摺動を繰り返しても優れた電磁変換特性を発揮する観点からは、S13.5は、15.0nm以下であることが好ましく、14.0nm以下であることがより好ましく、13.5nm以下であることがさらに好ましく、13.0nm以下であることが一層好ましく、12.0nm以下であることがより一層好ましい。
(強磁性粉末)
 磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において通常用いられる強磁性粉末を使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは、磁気記録媒体の記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることがさらに好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることがさらに一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることがさらに好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
 強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。六方晶フェライト粉末としては、六方晶バリウムフェライト粉末および六方晶ストロンチウムフェライト粉末が特に好ましい。
 強磁性粉末として六方晶ストロンチウムフェライト粉末を用いる場合の好適な態様は以下の通りである。
 六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性のさらなる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることがさらに好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
 「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本開示および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。 Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
 熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
 磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一態様では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本開示および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。
 上記磁気テープが磁性層に六方晶ストロンチウムフェライト粉末を含む場合、磁性層の異方性磁界Hkは、14kOe以上であることが好ましく、16kOe以上であることがより好ましく、18kOe以上であることがさらに好ましい。また、上記磁性層の異方性磁界Hkは、90kOe以下であることが好ましく、80kOe以下であることがより好ましく、70kOe以下であることがさらに好ましい。
 本開示および本明細書における異方性磁界Hkとは、磁化困難軸方向に磁界を印加したときに、磁化が飽和する磁界をいう。異方性磁界Hkは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。六方晶ストロンチウムフェライト粉末を含む磁性層において、磁性層の磁化困難軸方向は、面内方向である。
 強磁性粉末の好ましい具体例としては、金属粉末を挙げることもできる。金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
 強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。ε-酸化鉄粉末の製造方法としては、ゲータイト(goethite)から作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、「J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284, J. Mater. Chem. C, 2013, 1, pp.5200-5206」等を参照できる。但し、上記磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は限定されない。
 強磁性粉末としてε-酸化鉄粉末を用いる場合の好適な態様は以下の通りである。
 ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性のさらなる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることがさらに好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
 熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
 磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一態様では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
 上記磁気テープが磁性層にε-酸化鉄粉末を含む場合、磁性層の異方性磁界Hkは、18kOe以上であることが好ましく、30kOe以上であることがより好ましく、38kOe以上であることがさらに好ましい。また、磁性層の異方性磁界Hkは、100kOe以下であることが好ましく、90kOe以下であることがより好ましく、75kOe以下であることがさらに好ましい。ε-酸化鉄粉末を含む磁性層において、磁性層の磁化困難軸方向は、面内方向である。
 本実施形態において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
 粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
 以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本開示および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している態様に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している態様も包含される。粒子との語が、粉末を表すために用いられることもある。
 粒子サイズ測定のために磁気記録媒体から試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
 本実施形態において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(但し、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、すなわち長軸長で表され、
(2)板状または柱状(但し、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものをいう。
 また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、すなわち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
 そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
 磁性層における強磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層の強磁性粉末以外の成分は、少なくとも結合剤であり、任意に一種以上のさらなる添加剤が含まれ得る。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
(結合剤、硬化剤)
 上記磁気記録媒体は塗布型の磁気記録媒体であって、磁性層に結合剤を含む。結合剤とは、一種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、およびポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。また、結合剤は、電子線硬化型樹脂等の放射線硬化型樹脂であってもよい。放射線硬化型樹脂については、特開2011-048878号公報の段落0044~0045を参照できる。
 結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本開示および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
 GPC装置:HLC-8120(東ソー社製)
 カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
 溶離液:テトラヒドロフラン(THF)
 また、結合剤とともに硬化剤を使用することもできる。硬化剤は、一態様では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一態様では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁気記録媒体の製造工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層等の各層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
(その他の成分)
 磁性層には、上記の各種成分とともに、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。または、公知の方法で合成された化合物を添加剤として使用することもできる。添加剤の一例としては、上記の硬化剤が挙げられる。また、磁性層に含まれ得る添加剤としては、非磁性フィラー、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、および酸化防止剤等を挙げることができる。非磁性フィラーとは、非磁性粒子または非磁性粉末と同義である。非磁性フィラーとしては、突起形成剤、および研磨剤として機能することができる非磁性フィラー(以下、「研磨剤」と記載する)を挙げることができる。また、添加剤としては、特開2016-051493号公報の段落0030~0080に記載されている各種ポリマー等の公知の添加剤を用いることもできる。
 非磁性フィラーの一態様である突起形成剤としては、無機物質の粒子を用いることができ、有機物質の粒子を用いることもでき、無機物質と有機物質との複合粒子を用いることもできる。無機物質としては、金属酸化物等の無機酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、および金属硫化物等を挙げることができ、無機酸化物が好ましい。一態様では、突起形成剤は、無機酸化物系粒子であることができる。ここで「系」とは、「含む」との意味で用いられる。無機酸化物系粒子の一態様は、無機酸化物からなる粒子である。また、無機酸化物系粒子の他の一態様は、無機酸化物と有機物質との複合粒子であり、具体例としては、無機酸化物とポリマーとの複合粒子を挙げることができる。そのような粒子としては、例えば、無機酸化物粒子の表面にポリマーが結合した粒子を挙げることができる。
 上記のS0.5は、主に突起形成剤の粒子サイズにより制御することができる。突起形成剤の平均粒子サイズは、例えば30~300nmであり、好ましくは40~200nmである。また、磁気記録媒体の製造条件によって、主にS0.5を制御することができる。一方、S13.5については、突起形成剤の粒子サイズに加えて、突起形成剤の形状によって制御することができる。粒子の形状が真球に近い粒子ほど、大きな圧力が加えられた際に働く押し込み抵抗が小さいため、磁性層内部に押し込まれやすくなり、S13.5は小さくなりやすい。これに対し、粒子の形状が真球から離れた形状、例えばいわゆる異形と呼ばれる形状であると、大きな圧力が加えられた際に大きな押し込み抵抗が働きやすいため、磁性層内部に押し込まれ難くなり、S13.5は大きくなりやすい。また、粒子表面が不均質であり表面平滑性が低い粒子も、大きな圧力が加えられた際に大きな押し込み抵抗が働きやすいため、磁性層内部に押し込まれ難くなり、S13.5は大きくなりやすい。そしてS0.5およびS13.5を制御することにより、差分(S0.5-S13.5)を3.0nm以下にすることができる。
 非磁性フィラーの他の一態様である研磨剤は、好ましくはモース硬度8超の非磁性粉末であり、モース硬度9以上の非磁性粉末であることがより好ましい。これに対し、突起形成剤のモース硬度は、例えば8以下または7以下であることができる。なおモース硬度の最大値は、ダイヤモンドの10である。具体的には、アルミナ(Al2O3)、炭化ケイ素、ボロンカーバイド(B4C)、SiO2、TiC、酸化クロム(Cr2O3)、酸化セリウム、酸化ジルコニウム(ZrO2)、酸化鉄、およびダイヤモンド等の粉末を挙げることができ、中でもα-アルミナ等のアルミナ粉末および炭化ケイ素粉末が好ましい。また、研磨剤の平均粒子サイズは、例えば30~300nmの範囲であり、好ましくは50~200nmの範囲である。
 また、突起形成剤および研磨剤が、それらの機能をより良好に発揮することができるという観点から、磁性層における突起形成剤の含有量は、好ましくは強磁性粉末100.0質量部に対して、1.0~4.0質量部であり、より好ましくは1.5~3.5質量部である。一方、研磨剤については、磁性層における含有量は、好ましくは強磁性粉末100.0質量部に対して1.0~20.0質量部であり、より好ましくは3.0~15.0質量部であり、さらに好ましくは4.0~10.0質量部である。
 研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を、磁性層形成用組成物における研磨剤の分散性を向上させるための分散剤として挙げることができる。また、分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012-133837号公報の段落0061を参照できる。
 磁性層に含まれ得る添加剤の一態様である潤滑剤としては、脂肪酸、脂肪酸エステルおよび脂肪酸アミドからなる群から選択される一種以上の潤滑剤を挙げることができる。上記のS0.5およびS13.5は、n-ヘキサン洗浄後に測定される値である。スペーシング測定時に押圧される磁性層の表面に潤滑剤の液膜が存在すると、この液膜の厚み分、測定されるスペーシングは狭くなってしまう。これに対し、押圧時に液膜として存在し得る潤滑剤は、n-ヘキサン洗浄によって除去できると推察される。したがって、n-ヘキサン洗浄後にスペーシングを測定することにより、磁性層表面の突起の存在状態(突起の高さ)と良好に対応する値としてスペーシングの測定値を得ることができると考えられる。
 脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、およびエライジン酸等を挙げることができ、ステアリン酸、ミリスチン酸、およびパルミチン酸が好ましく、ステアリン酸がより好ましい。脂肪酸は、金属塩等の塩の形態で磁性層に含まれていてもよい。
 脂肪酸エステルとしては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、およびエライジン酸等のエステルを挙げることができる。具体例としては、例えば、ミリスチン酸ブチル、パルミチン酸ブチル、ステアリン酸ブチル(ブチルステアレート)、ネオペンチルグリコールジオレエート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、オレイン酸オレイル、ステアリン酸イソセチル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸アミル、およびステアリン酸ブトキシエチル等を挙げることができる。
 脂肪酸アミドとしては、上記の各種脂肪酸のアミド、例えば、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、およびステアリン酸アミド等を挙げることができる。
 脂肪酸と脂肪酸の誘導体(アミドおよびエステル等)については、脂肪酸誘導体の脂肪酸由来部位は、併用される脂肪酸と同様または類似の構造を有することが好ましい。例えば、一例として、脂肪酸としてステアリン酸を用いる場合にステアリン酸エステルおよび/またはステアリン酸アミドを使用することが好ましい。
 磁性層形成用組成物の脂肪酸含有量は、強磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは0.1~10.0質量部であり、より好ましくは1.0~7.0質量部である。磁性層形成用組成物の脂肪酸エステル含有量は、強磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは0.1~10.0質量部であり、より好ましくは1.0~7.0質量部である。磁性層形成用組成物の脂肪酸アミド含有量は、強磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~2.0質量部であり、より好ましくは0~1.0質量部である。
 また、上記磁気記録媒体が非磁性支持体と磁性層との間に非磁性層を有する場合、非磁性層形成用組成物の脂肪酸含有量は、非磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは1.0~10.0質量部であり、より好ましくは1.0~7.0質量部である。非磁性層形成用組成物の脂肪酸エステル含有量は、非磁性粉末100.0質量部あたり、例えば0~15.0質量部であり、好ましくは0.1~10.0質量部である。非磁性層形成用組成物の脂肪酸アミド含有量は、非磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~1.0質量部である。
<非磁性層>
 次に非磁性層について説明する。上記磁気記録媒体は、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末および結合剤を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末(無機粉末)でも有機物質の粉末(有機粉末)でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、および金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
 非磁性層の結合剤、添加剤等のその他詳細は、非磁性層に関する公知技術が適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
 上記磁気記録媒体の非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
<非磁性支持体>
 次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、および芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、およびポリアミドが好ましい。これらの支持体には、予めコロナ放電、プラズマ処理、易接着処理、および加熱処理等を行ってもよい。
<バックコート層>
 上記磁気記録媒体は、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することもできる。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層に含まれる結合剤、任意に含まれ得る各種添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
<各種厚み>
 非磁性支持体の厚みは、例えば3.0~80.0μmの範囲であり、好ましくは3.0~50.0μmの範囲であり、より好ましくは3.0~10.0μmの範囲である。
 磁性層の厚みは、近年求められている高密度記録化の観点からは、100nm以下であることが好ましい。磁性層の厚みは、より好ましくは10nm~100nmの範囲であり、さらに好ましくは20~90nmの範囲である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
 非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
 バックコート層の厚みは、0.9μm以下であることが好ましく、0.1~0.7μmの範囲であることがさらに好ましい。
 磁気記録媒体の各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、例えば、磁気記録媒体の厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型電子顕微鏡を用いて断面観察を行う。断面観察において1箇所において求められた厚み、または無作為に抽出した2箇所以上の複数箇所、例えば2箇所、において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。
<製造方法>
(各層形成用組成物の調製)
 磁性層、非磁性層またはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体を製造するために一般に使用される各種有機溶媒を用いることができる。中でも、塗布型磁気記録媒体に通常使用される結合剤の溶解性の観点からは、各層形成用組成物には、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、およびテトラヒドロフラン等のケトン溶媒の一種以上が含まれることが好ましい。各層形成用組成物における溶媒量は特に限定されるものではなく、通常の塗布型磁気記録媒体の各層形成用組成物と同様にすることができる。また、各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。また、個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程、および分散後の粘度調整のための混合工程で分割して投入してもよい。磁気記録媒体の製造工程では、従来の公知の製造技術を一部または全部の工程において用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報および特開平1-79274号公報に記載されている。また、各層形成用組成物を分散させるために、ガラスビーズおよび/またはその他のビーズを用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズは、粒径(ビーズ径)と充填率を最適化して用いることが好ましい。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
(塗布工程)
 磁性層は、磁性層形成用組成物を、例えば、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。配向処理を行う態様では、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、配向ゾーンにおいて塗布層に対して配向処理が行われる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
 バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。
(その他の工程)
 上記塗布工程を行った後、通常、磁気記録媒体の表面平滑性を高めるためにカレンダ処理が施される。カレンダ条件を強化するほど、製造された磁気記録媒体において突起形成剤により形成される磁性層表面の突起の高さは低くなる傾向がある。これにより、例えばS0.5を小さくすることができる。カレンダ条件としては、カレンダロールの種類および段数、カレンダ圧力、カレンダ温度(カレンダロールの表面温度)、カレンダ速度等を挙げることができる。カレンダ圧力は、例えば200~500kN/m、好ましくは250~350kN/mであり、カレンダ温度は、例えば70~120℃、好ましくは80~100℃であり、カレンダ速度は、例えば50~300m/min、好ましくは80~200m/minである。また、カレンダロールとして表面が硬いロールを使用するほど、また段数を増やすほど、磁性層表面は平滑化する傾向があるためカレンダロールの組み合わせおよび段数によって磁性層表面の突起の高さを調整することもできる。
 磁気記録媒体製造のためのその他の各種工程については、特開2010-231843号公報の段落0067~0070を参照できる。
(サーボパターンの形成)
 上記のように製造された磁気テープには、磁気記録再生装置における磁気ヘッドのトラッキング制御、磁気テープの走行速度の制御等を可能とするために、公知の方法によってサーボパターンを形成することができる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。以下に、サーボパターンの形成について説明する。
 サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
 ECMA(European Computer Manufacturers Association)―319に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。本開示および本明細書において、「タイミングベースサーボパターン」とは、タイミングベースサーボ方式のサーボシステムにおけるヘッドトラッキングを可能とするサーボパターンをいう。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
 サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
 また、一態様では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
 なお、サーボバンドを一意に特定する方法には、ECMA―319に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
 また、各サーボバンドには、ECMA―319に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
 上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
 サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。
 磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、さらに2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
 形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
 次に、図10を参照して、本実施形態に係る情報処理装置12の磁気テープTにオブジェクトを記録する場合の作用を説明する。CPU20が記録プログラム30を実行することによって、図10に示す記録処理が実行される。図10に示す記録処理は、例えば、受付部40により端末16から送信されたデータおよびメタデータが受け付けられ、データおよびメタデータがそれぞれデータキャッシュ44およびメタデータDB46に記憶された後に実行される。なお、ここでは、記録対象の磁気テープTは、テープドライブ18にロードされているものとする。
 図10のステップS10で、記録部42は、データキャッシュ44に記憶されたデータ、およびメタデータDB46に記憶された対応するメタデータを取得する。本ステップS10が繰り返し実行される際は、記録部42は、それまでに取得していないデータおよびメタデータを取得する。
 ステップS12で、記録部42は、磁気テープTのデータパーティションDP上のオブジェクトの記録位置の直前に第2集合データが記録され、かつその第2集合データのサイズが所定のサイズ以下であるか否かを判定する。この判定が肯定判定となった場合は、処理はステップS16に移行し、否定判定となった場合は、処理はステップS14に移行する。
 ステップS14で、記録部42は、ステップS10の処理により取得されたデータおよびメタデータを含むオブジェクトをデータパーティションDPの第2集合データを削除せずに記録する。一方、ステップS16で、記録部42は、ステップS10の処理により取得されたデータおよびメタデータを含むオブジェクトを、所定のサイズ以下の第2集合データに上書きして記録する。
 ステップS18で、記録部42は、ステップS10からステップS16までの繰り返し処理によりデータパーティションDPに記録されたオブジェクトのサイズの合計が所定のサイズを超えたか否かを判定する。この判定が否定判定となった場合は、処理はステップS10に戻り、肯定判定となった場合は、処理はステップS20に移行する。
 ステップS20で、記録部42は、前述したように、前回のステップS20で記録された直前の第1集合データの後に記録されたオブジェクトのメタデータの集合である第1集合データをデータパーティションDPに記録する。ステップS22で、記録部42は、前述したように、前回のステップS22で記録された直前の第2集合データの後にデータパーティションDPに記録された第1集合データの集合である第2集合データをデータパーティションDPに記録する。
 ステップS24で、記録部42は、ステップS22の処理により記録された第2集合データのサイズが所定のサイズを超えているか否かを判定する。この判定が否定判定となった場合は、処理はステップS28に移行し、肯定判定となった場合は、処理はステップS26に移行する。ステップS26で、記録部42は、ステップS22の処理により記録された第2集合データをリファレンスパーティションRPに記録(コピー)する。
 ステップS28で、記録部42は、データキャッシュ44に記憶されたすべてのデータをデータパーティションDPに記録したか否かを判定する。この判定が否定判定となった場合は、処理はステップS10に戻り、肯定判定となった場合は、処理はステップS30に移行する。ステップS30で、記録部42は、第1集合データおよび第2集合データをデータパーティションDPに記録し、かつ第2集合データをリファレンスパーティションRPに記録する。
 ステップS32で、記録部42は、テープライブラリ14を制御し、磁気テープTをテープドライブ18からアンロードする。ステップS32の処理が終了すると、記録処理が終了する。
 次に、図11を参照して、以上説明したようにオブジェクトが記録された磁気テープTからオブジェクトを読み取る場合の情報処理装置12の機能的な構成について説明する。図11に示すように、情報処理装置12は、読取部50、受付部52、特定部54、および送信部56を含む。CPU20が読取プログラム32を実行することにより、読取部50、受付部52、特定部54、および送信部56として機能する。
 障害からの復旧時等に、情報処理装置12の管理者は、磁気テープTをテープドライブ18にロードさせる。磁気テープTがテープドライブ18にロードされると、読取部50は、以下に示すように、メタデータをメタデータDB46に記憶する。すなわち、この場合、読取部50は、ロードされた磁気テープTのリファレンスパーティションRPに記録された第2集合データ、データパーティションDPに記録された第2集合データ、データパーティションDPに記録された第1集合データ、およびデータパーティションDPに記録されたメタデータの順番で参照してメタデータをメタデータDB46に記憶する。
 具体的には、読取部50は、リファレンスパーティションRPに記録された第2集合データを読み取り、読み取った第2集合データに含まれるメタデータをメタデータDB46に記憶する。また、読取部50は、リファレンスパーティションRPに第2集合データが存在しない場合は、データパーティションDPに記録された第2集合データを読み取り、読み取った第2集合データに含まれるメタデータをメタデータDB46に記憶する。
 また、読取部50は、リファレンスパーティションRPおよびデータパーティションDPに第2集合データが存在しない場合は、データパーティションDPに記録された第1集合データを読み取り、読み取った第1集合データに含まれるメタデータをメタデータDB46に記憶する。
 また、読取部50は、リファレンスパーティションRPおよびデータパーティションDPに第2集合データおよび第1集合データが存在しない場合は、データパーティションDPに記録されたメタデータを読み取り、読み取ったメタデータをメタデータDB46に記憶する。なお、読取部50は、磁気テープT上に記録されているメタデータを読み取る際に、ハッシュ値等の比較によりすでにメタデータDB46に存在するメタデータは読み取らなくてもよい。
 また、読取部50は、後述する特定部54により特定された磁気テープT上の位置に記録されたオブジェクトを読み取る。
 受付部52は、端末16からネットワークNを介して送信されたオブジェクトの読み取り指示を、ネットワークI/F25を介して受け付ける。この読み取り指示には、オブジェクト固有の識別情報が含まれる。
 特定部54は、メタデータDB46を参照し、受付部52により受け付けられた識別情報を含むメタデータを用いて、その識別情報が示すオブジェクトの磁気テープT上の位置を特定する。
 送信部56は、読取部50により読み取られたオブジェクトを、ネットワークI/F25を介して端末16に送信する。
 次に、図12および図13を参照して、本実施形態に係る情報処理装置12の磁気テープTからオブジェクトを読み取る場合の作用を説明する。CPU20が読取プログラム32を実行することによって、図12に示すメタデータ記憶処理、および図13に示すオブジェクト読取処理が実行される。図12に示すメタデータ記憶処理は、例えば、磁気テープTがテープドライブ18にロードされた場合に実行される。また、図13に示すオブジェクト読取処理は、例えば、端末16からネットワークNを介して送信されたオブジェクトの読み取り指示を情報処理装置12が受信した場合に実行される。
 図12のステップS40で、読取部50は、ロードされた磁気テープTのリファレンスパーティションRPに、第2集合データが存在するか否かを判定する。この判定が否定判定となった場合は、処理はステップS44に移行し、肯定判定となった場合は、処理はステップS42に移行する。ステップS42で、読取部50は、リファレンスパーティションRPに記録された第2集合データを読み取り、読み取った第2集合データに含まれるメタデータをメタデータDB46に記憶する。
 ステップS44で、読取部50は、ロードされた磁気テープTのデータパーティションDPに、第2集合データが存在するか否かを判定する。この判定が否定判定となった場合は、処理はステップS48に移行し、肯定判定となった場合は、処理はステップS46に移行する。ステップS46で、読取部50は、データパーティションDPに記録された第2集合データを読み取り、読み取った第2集合データに含まれるメタデータをメタデータDB46に記憶する。
 ステップS48で、読取部50は、ロードされた磁気テープTのデータパーティションDPに、第1集合データが存在するか否かを判定する。この判定が否定判定となった場合は、処理はステップS52に移行し、肯定判定となった場合は、処理はステップS50に移行する。ステップS50で、読取部50は、データパーティションDPに記録された第1集合データを読み取り、読み取った第1集合データに含まれるメタデータをメタデータDB46に記憶する。
 ステップS52で、読取部50は、データパーティションDPに記録されたメタデータを読み取り、読み取ったメタデータをメタデータDB46に記憶する。ステップS42、ステップS46、ステップS50、またはステップS52の処理が終了すると、メタデータ記憶処理が終了する。
 図13のステップS60で、受付部52は、前述したように、端末16からネットワークNを介して送信されたオブジェクトの読み取り指示を、ネットワークI/F25を介して受け付ける。ステップS62で、特定部54は、メタデータDB46を参照し、ステップS60の処理により受け付けられた識別情報を含むメタデータを用いて、その識別情報が示すオブジェクトの磁気テープT上の位置を特定する。
 ステップS64で、読取部50は、ステップS62の処理により特定された磁気テープT上の位置に記録されたオブジェクトを読み取る。ステップS66で、送信部56は、ステップS64の処理により読み取られたオブジェクトを、ネットワークI/F25を介して端末16に送信する。ステップS68で、読取部50は、テープライブラリ14を制御し、磁気テープTをテープドライブ18からアンロードする。ステップS68の処理が終了すると、オブジェクト読取処理が終了する。
 以上説明したように、本実施形態によれば、磁気テープTの実効容量の低下を抑制することができる。また、本実施形態によれば、メタデータが、リファレンスパーティションRP内の第2集合データと、データパーティションDP内の第2集合データ、第1集合データ、およびメタデータとに記録されているため、耐障害性を高めることができる。また、本実施形態によれば、第1集合データ間のメタデータの重複、および各パーティション内の第2集合データ間のメタデータの重複を避けることによって、第1集合データおよび第2集合データのサイズの増大を抑制している。したがって、磁気テープTへの第1集合データおよび第2集合データの記録に費やされる時間の増大を抑制することができる結果、実効記録速度の低下を抑制することができる。さらに、本実施形態によれば、第2集合データが所定のサイズを超えないように分割している。このため、一回に記録される第1集合データおよび第2集合データのサイズの増大が抑制される結果、実効記録速度の低下を抑制することができる。なお、ここでいう実効記録速度とは、ユーザが記録対象とするデータを磁気テープTに記録を開始してから終了するまでの記録速度(すなわち、メタデータの記録も含む記録速度)を意味する。また、この実効記録速度は、ユーザが記録対象とするデータのサイズを、そのデータを磁気テープTに記録を開始してから終了するまでの時間で除算することにより求められる速度である。
 [第2実施形態]
 本開示の技術の第2実施形態を説明する。なお、本実施形態に係る記録読取システム10および情報処理装置12の構成は、第1実施形態と同様であるため、説明を省略する。また、本実施形態に係る情報処理装置12の作用も、第1実施形態と同様であるため、説明を省略する。
 本実施形態では、図14に示すように、情報処理装置12によりオブジェクトが記録された磁気テープTを輸送し、他のシステムで使用することを想定する。第1実施形態では、メタデータにオブジェクト固有の識別情報を含めたが、この場合、システム内で固有の識別情報だと、他のシステムでも同一の識別情報を使用していることが考えられる。なお、図14では、オブジェクト固有の識別情報を「ObjectID」と表記している。
 そこで、本実施形態では、図15に示すように、情報処理装置12は、端末16から送信されたデータおよびメタデータを含むオブジェクトを生成する際に、オブジェクト固有の識別情報に加えて、システム固有の識別情報をメタデータに含める。なお、図15では、オブジェクト固有の識別情報を「ObjectID」と表記し、システム固有の識別情報を「SystemID」と表記している。
 図16に示すように、メタデータにシステム固有の識別情報も含めることにより、情報処理装置12によりオブジェクトが記録された磁気テープTを他のシステムで使用する場合に、以下に示すようにオブジェクトを識別することができる。すなわち、この場合、オブジェクトの識別情報が重複している場合でも、オブジェクト固有の識別情報に加えて、システム固有の識別情報も用いることにより、オブジェクトを識別することができる。
 なお、上記各実施形態では、記録したオブジェクトのサイズの合計が所定のサイズを超える毎に、記録したオブジェクトのメタデータの集合である第1集合データをデータパーティションDPに記録する場合について説明したが、これに限定されない。例えば、記録したオブジェクトの数が所定数を超える毎に、記録したオブジェクトのメタデータの集合である第1集合データをデータパーティションDPに記録する形態としてもよい。また、例えば、最後にオブジェクトを記録してから所定の時間が経過したタイミングで、第1集合データをデータパーティションDPに記録する形態としてもよい。
 また、上記各実施形態では、磁気記録媒体として磁気テープを適用した場合について説明したが、これに限定されない。磁気記録媒体として磁気テープ以外の磁気記録媒体を適用する形態としてもよい。摺動型の磁気記録再生装置において使用される各種磁気記録媒体(磁気テープ、ディスク状の磁気記録媒体(磁気ディスク)等)として、本実施形態の磁気記録媒体は好適である。上記の摺動型の装置とは、磁気記録媒体への情報の記録および記録された情報の読み取りを行う際に磁性層表面と磁気ヘッドとが接触し摺動する装置をいう。
 また、上記実施形態においては、情報処理装置12とテープライブラリ14とを別体として説明しているが、これに限定されるものではない。情報処理装置12とテープライブラリ14とを備えた磁気記録読取装置として、提供することも可能である。
 また、上記実施形態でCPUがソフトウェア(プログラム)を実行することにより実行した各種処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、およびASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、上記各種処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、およびCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
 また、上記実施形態では、記録プログラム30および読取プログラム32が記憶部22に予め記憶(インストール)されている態様を説明したが、これに限定されない。記録プログラム30および読取プログラム32は、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、およびUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、記録プログラム30および読取プログラム32は、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
 以下に、本開示を実施例に基づき説明する。但し、本開示は実施例に示す態様に限定されるものではない。以下に記載の「部」は、「質量部」を示す。また、以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。以下に記載の「eq」は、当量(equivalent)であり、SI単位に換算不可の単位である。まず、磁気記録媒体の実施例について説明する。
 実施例および比較例の磁気記録媒体の製造のために使用した突起形成剤は、以下の通りである。突起形成剤1および突起形成剤3は、粒子表面の表面平滑性が低い粒子である。突起形成剤2の粒子形状は繭状の形状である。突起形成剤4の粒子形状はいわゆる不定形である。突起形成剤5の粒子形状は真球に近い形状である。
 突起形成剤1:キャボット社製ATLAS(シリカとポリマーとの複合粒子)、平均粒子サイズ100nm
 突起形成剤2:キャボット社製TGC6020N(シリカ粒子)、平均粒子サイズ  140nm
 突起形成剤3:日揮触媒化成社製Cataloid(シリカ粒子の水分散ゾル;後述の突起形成剤液調製のための突起形成剤として、上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ120nm
 突起形成剤4:旭カーボン社製旭#50(カーボンブラック)、平均粒子サイズ300nm
 突起形成剤5:扶桑化学工業社製PL-10L(シリカ粒子の水分散ゾル;後述の突起形成剤液調製のための突起形成剤として、上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ130nm
[実施例1]
<磁性層形成用組成物>
(磁性液)
 強磁性粉末(六方晶バリウムフェライト粉末):100.0部
 (保磁力Hc:196kA/m、平均粒子サイズ(平均板径)24nm)
 オレイン酸:2.0部
 塩化ビニル共重合体(カネカ社製MR-104):10.0部
 SO3Na基含有ポリウレタン樹脂:4.0部
 (重量平均分子量70000、SO3Na基:0.07meq/g)
 添加剤A:10.0部
 メチルエチルケトン:150.0部
 シクロヘキサノン:150.0部
(研磨剤液)
α-アルミナ(平均粒子サイズ:110nm):6.0部
塩化ビニル共重合体(カネカ社製MR110):0.7部
シクロヘキサノン:20.0部
(突起形成剤液)
 突起形成剤(図17参照):1.3部
 メチルエチルケトン:9.0部
 シクロヘキサノン:6.0部
(潤滑剤および硬化剤液)
 ステアリン酸:3.0部
 ステアリン酸アミド:0.3部
 ステアリン酸ブチル:6.0部
 メチルエチルケトン:110.0部
 シクロヘキサノン:110.0部
 ポリイソシアネート(東ソー社製コロネート(登録商標)L):3.0部
 上記の添加剤Aは、特開2016-051493号公報の段落0115~0123に記載の方法により合成されたポリマーである。
<非磁性層形成用組成物>
 非磁性無機粉末(α-酸化鉄):80.0部
 (平均粒子サイズ:0.15μm、平均針状比:7、BET(Brunauer-Emmett-Teller)比表面積:52m2/g)
 カーボンブラック(平均粒子サイズ:20nm):20.0部
 電子線硬化型塩化ビニル共重合体:13.0部
電子線硬化型ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:140.0部
メチルエチルケトン:170.0部
ブチルステアレート:2.0部
ステアリン酸:1.0部
<バックコート層形成用組成物>
非磁性無機粉末(α-酸化鉄):80.0部
(平均粒子サイズ:0.15μm、平均針状比:7、BET比表面積:52m2/g)
カーボンブラック(平均粒子サイズ:20nm):20.0部
カーボンブラック(平均粒子サイズ:100nm):3.0部
塩化ビニル共重合体:13.0部
スルホン酸基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:140.0部
メチルエチルケトン:170.0部
ステアリン酸:3.0部
ポリイソシアネート(東ソー社製コロネート):5.0部
メチルエチルケトン:400.0部
<各層形成用組成物の調製>
磁性層形成用組成物は、以下の方法によって調製した。
 上記磁性液の成分をオープンニーダにより混練および希釈処理した後、横型ビーズミル分散機により、粒径0.5mmのジルコニア(ZrO2)ビーズ(以下、「Zrビーズ」と記載する)を用い、ビーズ充填率80体積%およびローター先端周速10m/秒で、1パスあたりの滞留時間を2分間とし、12パスの分散処理を行った。
研磨剤液は、上記研磨剤液の成分を混合した後、粒径1mmのZrビーズとともに縦型サンドミル分散機に入れ、ビーズ体積/(研磨剤液体積+ビーズ体積)が60%になるように調整し、180分間サンドミル分散処理を行い、処理後の液を取り出し、フロー式の超音波分散ろ過装置を用いて、超音波分散ろ過処理を施した。
磁性液、研磨剤液、突起形成剤液、ならびに潤滑剤および硬化剤液を、ディゾルバー撹拌機に導入し、周速10m/秒で30分間撹拌した後、フロー式超音波分散機により流量7.5kg/分で3パス処理した後に、孔径1μmのフィルタでろ過して磁性層形成用組成物を調製した。
非磁性層形成用組成物は以下の方法によって調製した。
潤滑剤(ブチルステアレートおよびステアリン酸)を除く上記成分をオープンニーダにより混練および希釈処理して、その後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ブチルステアレートおよびステアリン酸)を添加して、ディゾルバー撹拌機にて撹拌して混合処理を施して非磁性層形成用組成物を調製した。
バックコート層形成用組成物は以下の方法によって調製した。
潤滑剤(ステアリン酸)、ポリイソシアネートおよびメチルエチルケトン(400.0部)を除く上記成分をオープンニーダにより混練および希釈処理して、その後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ステアリン酸)、ポリイソシアネートおよびメチルエチルケトン(400.0部)を添加して、ディゾルバー撹拌機にて撹拌して混合処理を施し、バックコート層形成用組成物を調製した。
<磁気テープの作製>
厚み6.0μmのポリエチレンナフタレート支持体上に、乾燥後の厚みが1.0μmになるように非磁性層形成用組成物を塗布し乾燥させた後、125kVの加速電圧で40kGyのエネルギーとなるように電子線を照射した。その上に乾燥後の厚みが50nmになるように磁性層形成用組成物を塗布し、塗布層が湿潤(未乾燥)状態にあるうちに、磁場強度0.3Tの磁場を塗布層の表面に対し垂直方向に印加する垂直配向処理を施し、乾燥させた。さらにバックコート層形成用組成物を支持体の非磁性層と磁性層を形成した表面とは反対側の表面に乾燥後の厚みが0.5μmになるように塗布し乾燥させた。
その後、金属ロールのみから構成される7段のカレンダロールを用いて、カレンダ速度80m/min、線圧294kN/m、および図17に示すカレンダ温度でカレンダ処理を行った。その後、雰囲気温度70℃の環境で36時間加熱処理を行った。加熱処理後、1/2インチ(1インチ=0.0254メートル)幅にスリットし、スリット品の送り出し、巻き取り装置を持った装置に不織布とカミソリブレードが磁性層表面に押し当たるように取り付けたテープクリーニング装置で磁性層の表面のクリーニングを行い、磁気テープを得た。
[実施例2~7、比較例1~9]
 突起形成剤の種類および/またはカレンダ温度を図17に示すように変更した点以外、実施例1と同じ方法により磁気テープを得た。なお、図17において、突起形成剤が「無」は、突起形成剤を使用していないことを表す。また。図17において、「記録制御」とは、本開示によるデータの記録の制御の有無を表す。
[評価方法]
(1)差分(S0.5-S13.5)
 TSA(Tape Spacing Analyzer(Micro Physics社製))を用いて、以下の方法により、n-ヘキサン洗浄後のスペーシングS0.5およびS13.5を測定し、測定された値から差分(S0.5-S13.5)を算出した。
 実施例および比較例の各磁気テープから長さ5cmの試料片を5つ切り出し、各試料片を先に記載した方法によりn-ヘキサン洗浄を行った後、以下の方法によりS0.5およびS13.5を測定した。
 磁気テープ(すなわち上記試料片)の磁性層表面上に、TSAに備えられたガラス板(Thorlabs,Inc.社製ガラス板(型番:WG10530))を配置した状態で、押圧部材としてTSAに備えられているウレタン製の半球を用いて、この半球を磁気テープのバックコート層表面に0.5atmの圧力で押し付けた。この状態で、TSAに備えられているストロボスコープから白色光を、ガラス板を通して磁気テープの磁性層表面の一定領域(150000~200000μm2)に照射し、得られる反射光を、干渉フィルタ(波長633nmの光を選択的に透過するフィルタ)を通してCCD(Charge-Coupled Device)で受光することで、この領域の凹凸で生じた干渉縞画像を得た。
 この画像を300000ポイントに分割して各ポイントのガラス板の磁気テープ側の表面から磁気テープの磁性層表面までの距離(スペーシング)を求めこれをヒストグラムとし、ヒストグラムの最頻値をスペーシングS0.5として求めた。
 同じ試料片をさらに押圧し、13.5atmの押圧下で上記と同じ方法によりスペーシングS13.5を求めた。
 以上により求められたS0.5とS13.5との差分(S0.5-S13.5)を上記の5つの試料片について算出し、算出された値の算術平均を差分(S0.5-S13.5)として図17に示した。
(2)摩擦係数(μ値)
 雰囲気温度23℃相対湿度50%の環境において、IBM社製LTO(登録商標)G5(Linear Tape-Open Generation 5)ドライブから取り外した磁気ヘッドをテープ走行系に取り付け、0.6N(ニュートン)のテンションをかけながら、後述するデータ読み出しの評価を行い、評価後の磁気テープから20mのテープ長の磁気テープを切り出した。そして、切り出したテープ長20mの磁気テープを、送り出しロールからの送り出しおよび巻き取りロールへの巻き取りを行いつつ、磁性層表面と磁気ヘッドとを接触させ摺動させながら走行速度4.0m/sで走行させた。1パス目の走行において、走行中に磁気ヘッドに係る摩擦力をひずみゲージを用いて測定し、測定された摩擦力から摩擦係数μ値を求めた。図17における値は1パス目の走行について求められたμ値であるため、「μ値(1p)」と示す。
[データ読み出しの評価]
 データ読み出し評価のための磁気テープを用意した。磁気テープとしては、上記磁気記録媒体の実施例1を用いた。
 評価のために、以下の2つの方式R1、R2により、磁気テープにインデックスを記録した。方式R2が本開示の記録方式である。
 方式R1:データを10個記録する毎にそれまでの全データのインデックスを記録する。
 方式R2:データを10個記録する毎に10個分のインデックスを記録する。データおよびインデックスの記録の態様を図18に示す。
 なお、方式R1,R2のいずれもデータの末尾に全データのインデックスを記録した。また、1つのデータおよびデータ1つ分のインデックスは、1単位サイズを有するものとする。そして、方式R1,R2のそれぞれについて、書き込むデータ数毎に、テープ上の総データサイズを求めた。
 データ数をdとした場合の総データサイズは、以下である。但し、d mod 10=bとおくものとする。
 方式R1=(1/20)*(d2+30*d+b2-2*b*d+10*b)
 方式R2=3*d-b
 データ数に対する総データサイズの結果を図19に示す。
 図17に示す結果から、実施例の磁気テープは、比較例の磁気テープと比べてμ値が小さいこと、すなわち磁気ヘッドとの摺動を繰り返しても摩擦係数の上昇が少ないことが確認できる。また、図19に示す結果から、データ数100個の場合、方式R1に対する方式R2の総データサイズは約46%ほどになることが確認できる。この場合において、シーケンシャルに読み出した場合の、ヘッドの総移動量は54%ほど削減されることとなる。また、データ数が増えるに従い削減率は高くなることが確認できる。また、本開示の実施例は、強磁粉末として六方晶バリウムフェライト粉末を使用したものであるが、強磁粉末として六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末を使用した場合であっても、六方晶バリウムフェライト粉末を使用した場合と同様に、良好な結果が得られることが確認された。
 ここで用いた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。また、六方晶ストロンチウムフェライト粉末を含む磁性層の異方性磁界Hkは、25kOeであった。同様に、ε-酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。ε-酸化鉄粉末含む磁性層の異方性磁界Hkは、30kOeであった。
10 記録読取システム
12 情報処理装置
14 テープライブラリ
16 端末
18 テープドライブ
20 CPU
21 メモリ
22 記憶部
23 表示部
24 入力部
25 ネットワークI/F
26 外部I/F
27 バス
30 記録プログラム
32 読取プログラム
40、52 受付部
42 記録部
44 データキャッシュ
46 メタデータDB
50 読取部
54 特定部
56 送信部
DP データパーティション
GW ガードラップス
N ネットワーク
RP リファレンスパーティション
T 磁気テープ
R1  方式1
R2  方式2

Claims (21)

  1.  データおよび前記データに関するメタデータを含む複数のオブジェクトを磁気記録媒体に記録し、かつ
     少なくとも1つの前記オブジェクトを記録した後に、前記オブジェクトに含まれる前記メタデータの集合である第1集合データを記録する処理を、所定のタイミング毎に実行する記録部を備え、
     前記第1集合データのそれぞれは、直前の記録済みの前記第1集合データの記録後に記録された前記オブジェクトに含まれる前記メタデータの集合であり、
     前記磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、は3.0nm以下である記録装置。
  2.  前記差分は1.5nm以上3.0nm以下である、請求項1に記載の記録装置。
  3.  前記S0.5は、5.0~50.0nmの範囲である、請求項1または2に記載の記録装置。
  4.  前記磁性層は、無機酸化物系粒子を含む、請求項1から3のいずれか1項に記載の記録装置。
  5.  前記無機酸化物系粒子は、無機酸化物とポリマーとの複合粒子である、請求項4に記載の記録装置。
  6.  前記磁性層は、脂肪酸、脂肪酸エステルおよび脂肪酸アミドからなる群から選択される一種以上の潤滑剤を含む、請求項1から5のいずれか1項に記載の記録装置。
  7.  前記非磁性支持体と前記磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有する、請求項1から6のいずれか1項に記載の記録装置。
  8.  前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有する、請求項1から7のいずれか1項に記載の記録装置。
  9.  前記磁気記録媒体が磁気テープである、請求項1から8のいずれか1項に記載の記録装置。
  10.  前記記録部は、少なくとも1つの前記第1集合データを記録した後に、記録済みの前記第1集合データの集合である第2集合データを前記磁気記録媒体に記録する請求項1から9のいずれか1項に記載の記録装置。
  11.  前記記録部は、前記磁気記録媒体に記録済みの前記第2集合データのサイズが所定のサイズ以下の場合で、かつ前記オブジェクトを前記磁気記録媒体に記録する場合に、前記第2集合データに上書きして記録する請求項10に記載の記録装置。
  12.  前記磁気記録媒体は、リファレンスパーティションおよび前記オブジェクトが記録されるデータパーティションを含み、
     前記記録部は、前記第1集合データおよび前記第2集合データを前記データパーティションに記録し、かつ前記データパーティションに記録された前記第2集合データのサイズが所定のサイズを超える場合は、前記データパーティションに記録された前記第2集合データを、前記リファレンスパーティションに記録する請求項10または11に記載の記録装置。
  13.  前記記録部は、前記データパーティションに記録された前記第2集合データを前記リファレンスパーティションに記録する場合、前記データパーティションに記録された前記第2集合データを削除せずに前記リファレンスパーティションに記録する請求項12に記載の記録装置。
  14.  前記メタデータは、システム固有の識別情報、および前記メタデータが含まれるオブジェクト固有の識別情報を含む請求項1から13のいずれか1項に記載の記録装置。
  15.  リファレンスパーティションと、データおよび前記データに関するメタデータを含むオブジェクトが記録されるデータパーティションとを含む磁気記録媒体の前記データパーティションに記録されたオブジェクトの前記磁気記録媒体上の位置を、前記リファレンスパーティションに記録された第2集合データ、前記データパーティションに記録された前記第2集合データ、前記データパーティションに記録された第1集合データ、および前記データパーティションに記録されたメタデータの少なくとも1つを用いて特定する特定部と、
     前記特定部により特定された位置に記録されたオブジェクトを読み取る読取部とを備え、
     前記磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、は3.0nm以下である読取装置。
  16.  前記特定部は、前記リファレンスパーティションに記録された第2集合データ、前記データパーティションに記録された前記第2集合データ、前記データパーティションに記録された第1集合データ、および前記データパーティションに記録されたメタデータの順番で参照して前記位置を特定する請求項15に記載の読取装置。
  17.  データおよび前記データに関するメタデータを含む複数のオブジェクトを磁気記録媒体に記録し、かつ
     少なくとも1つの前記オブジェクトを記録した後に、前記オブジェクトに含まれる前記メタデータの集合である第1集合データを記録する処理を、所定のタイミング毎に実行する処理であって、前記第1集合データのそれぞれは、直前の記録済みの前記第1集合データの記録後に記録された前記オブジェクトに含まれる前記メタデータの集合である処理をコンピュータが実行する記録方法であって、
     前記磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、は3.0nm以下である記録方法。
  18.  データおよび前記データに関するメタデータを含む複数のオブジェクトを磁気記録媒体に記録し、かつ
     少なくとも1つの前記オブジェクトを記録した後に、前記オブジェクトに含まれる前記メタデータの集合である第1集合データを記録する処理を、所定のタイミング毎に実行する処理であって、前記第1集合データのそれぞれは、直前の記録済みの前記第1集合データの記録後に記録された前記オブジェクトに含まれる前記メタデータの集合である処理をコンピュータに実行させるための記録プログラムであって、
     前記磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、は3.0nm以下である記録プログラム。
  19.  リファレンスパーティションと、データおよび前記データに関するメタデータを含むオブジェクトが記録されるデータパーティションとを含む磁気記録媒体の前記データパーティションに記録されたオブジェクトの前記磁気記録媒体上の位置を、前記リファレンスパーティションに記録された第2集合データ、前記データパーティションに記録された前記第2集合データ、前記データパーティションに記録された第1集合データ、および前記データパーティションに記録されたメタデータの少なくとも1つを用いて特定し、
     特定した位置に記録されたオブジェクトを読み取る処理をコンピュータが実行する読取方法であって、
     前記磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、は3.0nm以下である読取方法。
  20.  リファレンスパーティションと、データおよび前記データに関するメタデータを含むオブジェクトが記録されるデータパーティションとを含む磁気記録媒体の前記データパーティションに記録されたオブジェクトの前記磁気記録媒体上の位置を、前記リファレンスパーティションに記録された第2集合データ、前記データパーティションに記録された前記第2集合データ、前記データパーティションに記録された第1集合データ、および前記データパーティションに記録されたメタデータの少なくとも1つを用いて特定し、
     特定した位置に記録されたオブジェクトを読み取る処理をコンピュータに実行させるための読取プログラムであって、
     前記磁気記録媒体が、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、は3.0nm以下である読取プログラム。
  21.  データおよび前記データに関するメタデータを含む複数のオブジェクトが記録され、
     少なくとも1つの前記オブジェクトが記録された後に、前記オブジェクトに含まれる前記メタデータの集合である第1集合データが記録される処理が、所定のタイミング毎に実行される磁気テープであって、前記第1集合データのそれぞれは、直前の記録済みの前記第1集合データの記録後に記録された前記オブジェクトに含まれる前記メタデータの集合である磁気テープであって、
     非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、前記磁性層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、は3.0nm以下である磁気テープ。
PCT/JP2020/001096 2019-03-13 2020-01-15 記録装置、読取装置、記録方法、記録プログラム、読取方法、読取プログラム、および磁気テープ WO2020183899A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021505550A JP7154380B2 (ja) 2019-03-13 2020-01-15 記録装置、読取装置、記録方法、記録プログラム、読取方法、読取プログラム、および磁気テープ
CN202080017785.7A CN113498539B (zh) 2019-03-13 2020-01-15 记录装置、读取装置、记录方法、记录程序、读取方法、读取程序及磁带
EP20770268.9A EP3940700A4 (en) 2019-03-13 2020-01-15 RECORDING DEVICE, READING DEVICE, RECORDING METHOD, RECORDING PROGRAM, READING METHOD, READING PROGRAM AND MAGNETIC TAPE
US17/393,415 US11495247B2 (en) 2019-03-13 2021-08-04 Recording device, reading device, recording method, recording program, reading method, reading program, and magnetic tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019045625 2019-03-13
JP2019-045625 2019-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/393,415 Continuation US11495247B2 (en) 2019-03-13 2021-08-04 Recording device, reading device, recording method, recording program, reading method, reading program, and magnetic tape

Publications (1)

Publication Number Publication Date
WO2020183899A1 true WO2020183899A1 (ja) 2020-09-17

Family

ID=72427247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001096 WO2020183899A1 (ja) 2019-03-13 2020-01-15 記録装置、読取装置、記録方法、記録プログラム、読取方法、読取プログラム、および磁気テープ

Country Status (6)

Country Link
US (1) US11495247B2 (ja)
EP (1) EP3940700A4 (ja)
JP (1) JP7154380B2 (ja)
CN (1) CN113498539B (ja)
TW (1) TW202040564A (ja)
WO (1) WO2020183899A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009752A (ja) * 2020-10-29 2021-01-28 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054243A1 (ja) * 2019-09-17 2021-03-25 富士フイルム株式会社 記録装置、記録方法、記録プログラム、及び磁気テープ

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479274A (en) 1987-09-21 1989-03-24 Fuji Photo Film Co Ltd Production of magnetic paint
JPH01106338A (ja) 1987-10-19 1989-04-24 Fuji Photo Film Co Ltd 磁性塗料用混練物の製造方法
JPH1196690A (ja) * 1997-09-19 1999-04-09 Nippon Columbia Co Ltd 記録装置、記録再生装置及び記録媒体
JP2004318983A (ja) 2003-04-15 2004-11-11 Fuji Photo Film Co Ltd 磁気テープおよびその製造方法、サーボライタ、ならびにサーボバンドの識別方法および装置
JP2005251351A (ja) 2004-03-08 2005-09-15 Fuji Photo Film Co Ltd 磁気記録媒体および強磁性金属粉末の製造方法
JP2006059494A (ja) * 2004-08-23 2006-03-02 Sony Corp テープ再生装置
US7029774B1 (en) 2005-05-23 2006-04-18 Imation Corp. Magnetic recording medium with backside to decrease recording surface embossment
JP2006331625A (ja) 2005-05-23 2006-12-07 Imation Corp 記録面のエンボスメントを減少する裏側を備えた磁気記録媒体
JP2010024113A (ja) 2008-07-23 2010-02-04 Fujifilm Corp 六方晶フェライト磁性粉末の製造方法ならびに磁気記録媒体およびその製造方法
JP2010231843A (ja) 2009-03-27 2010-10-14 Fujifilm Corp 磁気記録媒体、磁気信号再生システムおよび磁気信号再生方法
JP2011028826A (ja) 2009-06-23 2011-02-10 Sony Corp 磁気記録媒体およびその製造方法
JP2011048878A (ja) 2009-08-27 2011-03-10 Fujifilm Corp 磁気記録媒体およびその製造方法
JP2011216149A (ja) 2010-03-31 2011-10-27 Fujifilm Corp 磁気記録媒体用結合剤、磁気記録媒体用組成物、および磁気記録媒体
JP2011225417A (ja) 2010-03-31 2011-11-10 Fujifilm Corp 六方晶フェライト磁性粒子およびその製造方法、磁気記録媒体用磁性粉、ならびに磁気記録媒体
JP2012053940A (ja) 2010-08-31 2012-03-15 Fujifilm Corp サーボ信号が書き込まれた磁気テープの製造方法、サーボ信号が書き込まれた磁気テープおよびサーボライタ
JP2012133837A (ja) 2010-12-20 2012-07-12 Hitachi Maxell Ltd 磁気記録媒体
JP2012204726A (ja) 2011-03-28 2012-10-22 Fujifilm Corp 磁気記録用磁性粉およびその製造方法、ならびに磁気記録媒体
JP2013131285A (ja) 2011-11-21 2013-07-04 Fujifilm Corp 塗布型磁気記録媒体製造用アルミナ分散物、これを用いる塗布型磁気記録媒体の製造方法、および塗布型磁気記録媒体
JP2015041389A (ja) * 2013-08-20 2015-03-02 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 高速に読み出し可能なテープメディアにファイルを書込む方法
JP2015127985A (ja) 2013-12-27 2015-07-09 富士フイルム株式会社 磁気記録用磁性粉、磁気記録媒体、および磁気記録用磁性粉の製造方法
JP2015179560A (ja) * 2015-06-10 2015-10-08 日立マクセル株式会社 磁気記録媒体
JP2016004413A (ja) 2014-06-17 2016-01-12 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation テープ上へのファイル書き込み方法
JP2016051493A (ja) 2014-08-29 2016-04-11 富士フイルム株式会社 磁気記録媒体
JP2017168178A (ja) 2016-03-14 2017-09-21 日立マクセル株式会社 磁気記録媒体
JP2018181396A (ja) * 2017-04-20 2018-11-15 マクセルホールディングス株式会社 高記録密度用磁気記録媒体及びその記録再生機構

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6643452B1 (en) 1998-06-09 2003-11-04 Sony Corporation Recorded medium, reproducing apparatus, recording apparatus, and reproducing method and recording method
US9720627B2 (en) 2013-01-17 2017-08-01 Western Digital Technologies, Inc. Data management for a data storage device
JP6041839B2 (ja) * 2014-09-04 2016-12-14 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation メタ情報を保管する方法、プログラム、及びそのテープ記録システム
JP6334640B2 (ja) * 2015-09-30 2018-05-30 富士フイルム株式会社 磁気テープおよびその製造方法
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
JP7130032B2 (ja) * 2018-03-22 2022-09-02 富士フイルム株式会社 記録装置、読取装置、記録方法、記録プログラム、読取方法、読取プログラム、及び磁気テープ
US11514940B2 (en) * 2018-09-14 2022-11-29 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
US10811048B2 (en) * 2019-01-31 2020-10-20 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479274A (en) 1987-09-21 1989-03-24 Fuji Photo Film Co Ltd Production of magnetic paint
JPH01106338A (ja) 1987-10-19 1989-04-24 Fuji Photo Film Co Ltd 磁性塗料用混練物の製造方法
JPH1196690A (ja) * 1997-09-19 1999-04-09 Nippon Columbia Co Ltd 記録装置、記録再生装置及び記録媒体
JP2004318983A (ja) 2003-04-15 2004-11-11 Fuji Photo Film Co Ltd 磁気テープおよびその製造方法、サーボライタ、ならびにサーボバンドの識別方法および装置
JP2005251351A (ja) 2004-03-08 2005-09-15 Fuji Photo Film Co Ltd 磁気記録媒体および強磁性金属粉末の製造方法
JP2006059494A (ja) * 2004-08-23 2006-03-02 Sony Corp テープ再生装置
US7029774B1 (en) 2005-05-23 2006-04-18 Imation Corp. Magnetic recording medium with backside to decrease recording surface embossment
JP2006331625A (ja) 2005-05-23 2006-12-07 Imation Corp 記録面のエンボスメントを減少する裏側を備えた磁気記録媒体
JP2010024113A (ja) 2008-07-23 2010-02-04 Fujifilm Corp 六方晶フェライト磁性粉末の製造方法ならびに磁気記録媒体およびその製造方法
JP2010231843A (ja) 2009-03-27 2010-10-14 Fujifilm Corp 磁気記録媒体、磁気信号再生システムおよび磁気信号再生方法
JP2011028826A (ja) 2009-06-23 2011-02-10 Sony Corp 磁気記録媒体およびその製造方法
JP2011048878A (ja) 2009-08-27 2011-03-10 Fujifilm Corp 磁気記録媒体およびその製造方法
JP2011216149A (ja) 2010-03-31 2011-10-27 Fujifilm Corp 磁気記録媒体用結合剤、磁気記録媒体用組成物、および磁気記録媒体
JP2011225417A (ja) 2010-03-31 2011-11-10 Fujifilm Corp 六方晶フェライト磁性粒子およびその製造方法、磁気記録媒体用磁性粉、ならびに磁気記録媒体
JP2012053940A (ja) 2010-08-31 2012-03-15 Fujifilm Corp サーボ信号が書き込まれた磁気テープの製造方法、サーボ信号が書き込まれた磁気テープおよびサーボライタ
JP2012133837A (ja) 2010-12-20 2012-07-12 Hitachi Maxell Ltd 磁気記録媒体
JP2012204726A (ja) 2011-03-28 2012-10-22 Fujifilm Corp 磁気記録用磁性粉およびその製造方法、ならびに磁気記録媒体
JP2013131285A (ja) 2011-11-21 2013-07-04 Fujifilm Corp 塗布型磁気記録媒体製造用アルミナ分散物、これを用いる塗布型磁気記録媒体の製造方法、および塗布型磁気記録媒体
JP2015041389A (ja) * 2013-08-20 2015-03-02 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 高速に読み出し可能なテープメディアにファイルを書込む方法
JP2015127985A (ja) 2013-12-27 2015-07-09 富士フイルム株式会社 磁気記録用磁性粉、磁気記録媒体、および磁気記録用磁性粉の製造方法
JP2016004413A (ja) 2014-06-17 2016-01-12 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation テープ上へのファイル書き込み方法
JP2016051493A (ja) 2014-08-29 2016-04-11 富士フイルム株式会社 磁気記録媒体
JP2015179560A (ja) * 2015-06-10 2015-10-08 日立マクセル株式会社 磁気記録媒体
JP2017168178A (ja) 2016-03-14 2017-09-21 日立マクセル株式会社 磁気記録媒体
JP2018181396A (ja) * 2017-04-20 2018-11-15 マクセルホールディングス株式会社 高記録密度用磁気記録媒体及びその記録再生機構

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. JPN. SOC. POWDER METALLURGY, vol. 61, pages 280 - 284
J. MATER. CHEM. C, vol. 1, 2013
See also references of EP3940700A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009752A (ja) * 2020-10-29 2021-01-28 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP7266016B2 (ja) 2020-10-29 2023-04-27 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置

Also Published As

Publication number Publication date
TW202040564A (zh) 2020-11-01
CN113498539B (zh) 2022-10-21
EP3940700A4 (en) 2022-10-05
US11495247B2 (en) 2022-11-08
JP7154380B2 (ja) 2022-10-17
EP3940700A1 (en) 2022-01-19
CN113498539A (zh) 2021-10-12
US20210366509A1 (en) 2021-11-25
JPWO2020183899A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6717786B2 (ja) 磁気テープおよび磁気テープ装置
JP6717787B2 (ja) 磁気テープおよび磁気テープ装置
JP6615816B2 (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
US9779772B1 (en) Magnetic tape and magnetic tape device
JP6723198B2 (ja) 磁気テープおよび磁気テープ装置
JP6632561B2 (ja) 磁気テープ装置および磁気再生方法
JP6615815B2 (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6649312B2 (ja) 磁気テープ装置および磁気再生方法
JP6626031B2 (ja) 磁気テープ装置および磁気再生方法
JP6684237B2 (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
JP2018170053A (ja) 磁気テープ装置および磁気再生方法
JP2018170059A (ja) 磁気テープ装置およびヘッドトラッキングサーボ方法
US11373674B2 (en) Recording device, reading device, recording method, recording program, reading method, reading program, and magnetic tape
JP7091264B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US11495247B2 (en) Recording device, reading device, recording method, recording program, reading method, reading program, and magnetic tape
JP7012064B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2020009522A (ja) 磁気テープ装置
JP2022019370A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2021144775A (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP2021144778A (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7277408B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7271466B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7232207B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7406647B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7406648B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505550

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020770268

Country of ref document: EP

Effective date: 20211013