WO2020183648A1 - Diagnostic system, diagnostic device, diagnostic program, and diagnostic method - Google Patents

Diagnostic system, diagnostic device, diagnostic program, and diagnostic method Download PDF

Info

Publication number
WO2020183648A1
WO2020183648A1 PCT/JP2019/010253 JP2019010253W WO2020183648A1 WO 2020183648 A1 WO2020183648 A1 WO 2020183648A1 JP 2019010253 W JP2019010253 W JP 2019010253W WO 2020183648 A1 WO2020183648 A1 WO 2020183648A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
pipe
valve
pipes
piping
Prior art date
Application number
PCT/JP2019/010253
Other languages
French (fr)
Japanese (ja)
Inventor
貴則 京屋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/010253 priority Critical patent/WO2020183648A1/en
Publication of WO2020183648A1 publication Critical patent/WO2020183648A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds

Definitions

  • the present invention relates to a diagnostic system, a diagnostic device, a diagnostic program and a diagnostic method.
  • Patent Documents 1 and 2 there is a technique of automatically identifying a leak using a pressure sensor (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 the supply path of compressed air cannot be flexibly changed, and when the occurrence of a leak is identified, it becomes necessary to stop the equipment.
  • An object of the present invention is to provide a diagnostic system capable of setting a plurality of supply routes and diagnosing leaks of each of the plurality of supply routes.
  • the diagnostic device of the present invention A plurality of valves including a plurality of electromagnetic valves that can be opened and closed by control, a plurality of pipes through which a fluid flows, and a pressure sensor arranged in at least one of the plurality of pipes to detect the pressure of the fluid.
  • a plurality of supply routes can be set, and leak diagnosis of a plurality of each supply route can be performed.
  • FIG. 5 is a diagram showing a functional block of the routing device 100 in the figure of the first embodiment.
  • FIG. 5 is a diagram showing a hardware configuration of the routing device 100 in the figure of the first embodiment.
  • FIG. 5 is a diagram for explaining a supply path in the mesh piping circuit 800 in the figure of the first embodiment.
  • FIG. 5 is a diagram showing a production input command 221 generated by the input command unit 220 in the figure of the first embodiment.
  • the figure which shows the processing content of the calculation instruction part 111 In the figure of Embodiment 1, the figure which shows the process of the facility calculation unit 112A.
  • FIG. 5 is a diagram showing a process of the piping calculation unit 113A in the figure of the first embodiment.
  • FIG. 5 is a diagram illustrating the formation of a supply path in the mesh piping circuit 800 in the figure of the first embodiment.
  • FIG. 5 is a diagram showing a hardware configuration of a routing device 100 in a modified example of the first embodiment.
  • FIG. 1 is a diagram showing valve state information 131 stored in the valve state storage unit 130 in the figure of the first embodiment.
  • FIG. 5 is a diagram illustrating that the piping calculation unit 113A determines a supply path with reference to the valve state information 131 in the figure of the first embodiment.
  • FIG. 5 is a diagram showing a configuration in which the function of the routing device 100 is realized by hardware in the figure of the first embodiment.
  • FIG. 2 is a sequence diagram showing a diagnostic operation of the diagnostic device 901 in the figure of the second embodiment.
  • FIG. 2 is a diagram showing an operation in which the pipe calculation unit 113A records the consumption amount of the pipe B4 in the pipe DB 113B in the figure of the second embodiment.
  • FIG. 2 is a diagram showing an operation in which the piping calculation unit 113A of the modified example creates valve state information 131 in the figure of the second embodiment.
  • production equipment may be referred to as equipment.
  • the production equipment is a utilization equipment that uses fluid.
  • the fluid supply system 1000 will be described using compressed air as the fluid.
  • the fluid is not limited to compressed air, and may be an inert gas gas other than compressed air or a gas such as carbon dioxide.
  • the fluid may be a liquid.
  • the fluid may be a powder.
  • the equipment database 112B and the piping database 113B will appear, which are referred to as the equipment DB 112B and the piping DB 113B.
  • the database is referred to as DB.
  • the pressure data measured by the pressure sensor will be referred to as sensor data.
  • valve when the term "valve” is used, it is a solenoid valve whose opening and closing can be controlled unless otherwise specified.
  • the solenoid valve is an on-off valve.
  • IF the interface will be referred to as IF.
  • Embodiment 1 The routing device 100 of the first embodiment will be described with reference to FIGS. 1 to 19.
  • FIG. 1 shows the configuration of the fluid supply system 1000.
  • the solid line shows the flow of compressed air
  • the broken line shows the flow of data.
  • the fluid supply system 1000 includes a routing device 100, a planning unit 210, an input command unit 220, a production execution system 230, a compressor control device 240, and a factory 700.
  • the factory 700 has a plurality of compressors 710, a plurality of valves 720, a receiver tank 730, a valve 740 and a mesh piping circuit 800.
  • the mesh piping circuit 800 has a plurality of valves 801 that can be opened and closed by control, and a plurality of piping 802.
  • the plurality of valves 801 of the mesh piping circuit 800 of FIG. 1 will be described as solenoid valves.
  • the mesh piping circuit 800 may include all of the plurality of solenoid valves as solenoid valves, or may include one or a plurality of manual valves and a plurality of solenoid valves.
  • the solenoid valve has a plurality of sub-valves as shown in valve A of FIG. Opening and closing control is possible for each sub valve. In the valve A, each of the sub-valves 1 and 2 and the sub-valve 3 can be controlled independently.
  • the mesh piping circuit 800 a plurality of pipes are arranged in a mesh shape by connecting valves to each other, and fluid flows into the mesh piping circuit 800.
  • a plurality of utilization facilities using a fluid are connected to each of different pipes among the plurality of pipes.
  • the piping management unit 113 which is a route determining unit, is a route for supplying fluid to at least one of a plurality of utilization facilities for the mesh piping circuit 800, and is a path forming a part of the mesh piping circuit. Determine a supply route.
  • the valve control unit 120 forms a supply path by controlling at least one of a plurality of valves included in the mesh piping circuit 800 for the mesh piping circuit 800.
  • the routing device 100 will be specifically described below.
  • FIG. 2 is a diagram illustrating a node 811 and a branch 812 in the mesh piping circuit 800.
  • the branch of the pipe is called a node 811 and the other routes are called a branch 812.
  • Branch 812 is connected by node 811.
  • a valve is installed at the branching node 811. The valve may be a solenoid valve or a manual on-off valve.
  • a pressure sensor 803 is arranged in the branch 812. As mentioned above, there may be a branch 812 where the pressure sensor is not located.
  • the substance of branch 812 is pipe 802.
  • FIG. 3 shows a functional block of the routing device 100.
  • the routing device 100 includes an analysis unit 110 and a valve control unit 120.
  • the analysis unit 110 includes a calculation instruction unit 111, an equipment management unit 112, and a piping management unit 113.
  • the equipment management unit 112 includes an equipment calculation unit 112A and equipment DB 112B.
  • the piping management unit 113 includes a piping calculation unit 113A and a piping DB 113B.
  • the calculation instruction unit 111 communicates with the input control unit 220 and the production execution system 230.
  • the valve control unit 120 communicates with the valve 801 and the production execution system 230.
  • the equipment calculation unit 112A and the piping calculation unit 113A communicate with the pressure sensor 803. (1)
  • the analysis unit 110 analyzes the supply of compressed air.
  • the calculation instruction unit 111 instructs the equipment management unit 112 and the piping management unit 113 to perform the calculation.
  • the equipment management unit 112 manages the compressed air consumed by the equipment.
  • the equipment calculation unit 112A calculates the consumption of compressed air used by the equipment.
  • the piping management unit 113 manages the consumption of compressed air in the piping. "Consumption of compressed air in piping” is the amount of leakage of compressed air (fluid) in piping.
  • the piping calculation unit 113A executes processing such as determination of the piping route and calculation of the amount of compressed air leak in the piping route.
  • the valve control unit 120 controls the valve and stores the open / closed state of the valve.
  • the planning department 210 formulates a production plan.
  • the input command unit 220 outputs the production input command 221 described later in FIG. (3)
  • the production execution system 230 executes the production of the product.
  • the compressor control device 240 controls the compressor 710.
  • Production equipment 810 produces products.
  • the valve 801 is a valve that opens and closes under control.
  • Compressed air flows through the pipe 802.
  • the pressure sensor 803 detects the pressure of the compressed air existing in the pipe.
  • FIG. 4 shows the hardware configuration of the routing device 100.
  • the routing device 100 is a computer.
  • the routing device 100 includes a processor 10 and other hardware such as a main storage device 20, an auxiliary storage device 30, an input IF 40, an output IF 50, and a communication IF 60.
  • the processor 10 is connected to other hardware via the signal line 70 and controls these other hardware.
  • the route determination device 100 includes a calculation instruction unit 111, an equipment management unit 112, a piping management unit 113, and a valve control unit 120 as functional elements.
  • the calculation instruction unit 111 is a route transmission unit that instructs the calculation required for the route determination and transmits the route determined by the calculation.
  • the piping management unit 113 is a routing unit. The functions of the calculation instruction unit 111, the equipment management unit 112, the piping management unit 113, and the valve control unit 120 are realized by the route determination program 101.
  • the processor 10 is a device that executes the routing program 101.
  • the route determination program 101 is a program that realizes the functions of the calculation instruction unit 111, the equipment management unit 112, the piping management unit 113, and the valve control unit 120.
  • the processor 10 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 10 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (GraphicsS Processing Unit).
  • the main storage device 20 is a storage device. Specific examples of the main storage device 20 are SRAM (Static Random Access SS Memory) and DRAM (Dynamic Random Access SS Memory). The main storage device 20 holds the calculation result of the processor 10.
  • the auxiliary storage device 30 is a storage device that stores data non-volatilely.
  • a specific example of the auxiliary storage device 30 is an HDD (Hard DiSk Drive).
  • the auxiliary storage device 30 is a portable recording medium such as an SD (registered trademark) (Secure Digital) memory card, a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD (Digital VerSail DiSk). There may be.
  • the auxiliary storage device 30 stores the equipment DB 112B, the piping DB 113B, and the routing program 101. Data such as the equipment DB 112B and the piping DB 113B are stored in another device such as a cloud server, and the routing device 100 may acquire the data from the other device.
  • the input IF40 is a port to which an input device such as a mouse or a keyboard is connected and data is input from each device.
  • the output IF 50 is a port to which various devices are connected and data is output to the various devices by the processor 10.
  • Communication IF60 is a communication port for the processor to communicate with other devices.
  • the pressure sensor 803, the input control unit 220, the production execution system 230, and the valve 801 are connected to the communication IF60.
  • the processor 10 loads the route determination program 101 from the auxiliary storage device 30 into the main storage device 20, and reads and executes the route determination program 101 from the main storage device 20.
  • the main storage device 20 stores not only the routing program 101 but also an OS (Operating System).
  • the processor 10 executes the routing program 101 while executing the OS.
  • the routing device 100 may include a plurality of processors that replace the processor 10. These plurality of processors share the execution of the routing program 101.
  • Each processor is a device that executes the routing program 101 in the same manner as the processor 10. Data, information, signal values and variable values used, processed or output by the routing program 101 are stored in the main storage device 20, the auxiliary storage device 30, or a register or cache memory in the processor 10.
  • the route determination method is a method performed by the route determination device 100, which is a computer, executing the route determination program 101.
  • the routing program 101 may be stored in a computer-readable recording medium and provided, or may be provided as a program product.
  • FIG. 5 is a diagram illustrating a supply path in the mesh piping circuit 800 included in the fluid supply system 1000.
  • the upper left figure of FIG. 5 is a loop type pipe of a comparative example of the mesh piping circuit 800.
  • the loop type piping it is necessary to supply compressed air to the entire area of the loop type piping even when only the facility C of the facilities A to D is operating (ON) and the facilities A, B, and D are stopped (OFF). is there. Therefore, the compressed air also flows through the paths for the stopped facilities A, B, and D, so that the compressed air leaks in this portion.
  • the mesh piping circuit 800 of the first embodiment it is as follows.
  • the lower left figure of FIG. 5 schematically shows the mesh piping circuit 800.
  • valves V are connected by piping 802.
  • all of equipment A to equipment D are stopped.
  • the upper right figure of FIG. 5 shows a state in which the facility C has started operation.
  • the valve V2 direction of the valve V1 is open
  • the valve V3 direction of the valve V2 is open
  • the valve V4 direction of the valve V3 is open, and a supply path shown by a solid line is formed.
  • the compressed air is not supplied to the portion indicated by the broken line with respect to the loop type pipe on the upper left of FIG. 5, the leakage of the compressed air is small with respect to the loop type pipe.
  • FIG. 5 shows a state in which facilities B, C, and D are in operation.
  • the valve V5 direction of the valve V4 is open
  • the valve V6 direction of the valve V5 is open
  • the valve V10 direction of the valve V5 is open
  • the valve V7 direction of the valve V6 is open
  • the valve V7 is open
  • the valve V7 Since the valve V8 direction of the valve V8 was opened and the valve V9 direction of the valve V8 was opened, the supply path of the compressed air shown by the solid line was formed.
  • the broken line pipe in the mesh piping circuit 800 is not used. Therefore, there is less leakage of compressed air with respect to the loop type piping.
  • *** Explanation of operation *** 6 and 7 are sequences for explaining the operation of the routing device 100.
  • the operation of the routing device 100 will be described with reference to FIGS. 6 and 7.
  • the operation of the route determination device 100 corresponds to the route determination method. Further, the operation of the route determination device 100 corresponds to the processing of the route determination program.
  • the system supplier or the DB administrator initially sets the equipment DB 112B and the piping DB 113B. If necessary, the system supplier or DB administrator updates the equipment DB 112B. If necessary, the system supplier or DB administrator updates the piping DB 113B.
  • the equipment DB 112B and the piping DB 113B will be described.
  • FIG. 8 shows an example of the equipment DB 112B.
  • FIG. 9 shows an example of the pipe DB 113B. This will be described from the equipment DB 112B.
  • the equipment DB 112B will be described with reference to FIG.
  • the equipment DB 112B is a DB having data on the consumption of compressed air used by the equipment.
  • the equipment DB 112B is software.
  • the table above FIG. 8 will be described.
  • the left column shows the equipment.
  • the equipment is a dryer.
  • the middle column shows the operating mode of the dryer.
  • the middle column shows the operation modes: weak, medium, and strong stop, start, and dry operations, and when the dryer is inactive.
  • the right column shows the amount of compressed air consumed by the dryer in each mode of operation.
  • the equipment is a partition switch. Since each column of the table is the same as the above table, the description is omitted.
  • the piping DB 113B will be described with reference to FIG.
  • the pipe DB 113B stores data on the amount of compressed air consumed (leakage) at the pipe location.
  • the piping DB 113B is software.
  • the amount of compressed air consumed in the pipe DB 113B is the amount of compressed air leaked.
  • the pipe DB 113B shows the consumption amount of the pipe, the consumption power of the joint, the consumption amount of the manual on-off valve, and the consumption amount of the automatic on-off valve for each diameter of the pipe.
  • the piping DB 113B has mesh piping information 880 of the mesh piping circuit 800.
  • FIG. 9 schematically shows mesh piping information. Since the mesh piping information shown in FIG. 9 schematically shows the mesh piping circuit 800 shown in FIG.
  • the mesh piping circuit shown in the mesh piping information of FIG. 9 does not match the mesh piping circuit 800.
  • the mesh piping information is configuration information of the mesh piping circuit 800.
  • the mesh piping information 880 is a mesh-shaped piping in which the mesh piping circuit 800 has 25 valves 801 and 40 piping 802 and 28 pressure sensors 803. It is information that it is a circuit.
  • the table above FIG. 9 will be described.
  • the left column shows a pipe with a diameter of 3 cm.
  • the middle row shows types such as pipes, fittings, and valves.
  • the right column shows the amount of compressed air consumed in pipes, fittings, and valves, that is, the amount of compressed air leaked.
  • the lower table of FIG. 9 shows a pipe having a diameter of 2 cm, and since each column of the table is the same as the upper table, the description thereof will be omitted.
  • step S21 the planning unit 210 plans the production input 211.
  • the planning unit 210 transmits the planned production input 211 to the input command unit 220.
  • FIG. 10 shows an example of the production input 211. From the left column, the part number of the product to be produced, the number of production of the large schedule, the number of production of the medium schedule and the number of production (quantity) of the small schedule are shown.
  • the big schedule indicates that 1000 products with product number "AA001M" should be produced in January.
  • the medium schedule indicates that 250 products with product number "AA001M” should be produced in the first week of January.
  • the small schedule is that 30 products with product number "AA001M” should be produced from 9:00 to 10:00 on January 4, and 33 products with product number "AA001M” should be produced from 10:00 to 11:00 on January 4. This indicates that 33 products with the product number "AA001M” should be produced from 11:00 to 12:00 on January 4th.
  • step S22 the input command unit 220 generates the production input command 221 from the production input 211 received from the planning unit 210, and transmits the generated production input command 221 to the calculation instruction unit 111 and the production execution system 230.
  • FIG. 11 shows an example of the production input command 221 generated by the input command unit 220.
  • the production input 211 shown in FIG. 10 is information on when, in what process, and how many products are processed.
  • the production input command 221 shown in FIG. 11 is information on when, which device performs what processing.
  • the production input command 221 includes equipment operation information and process information. Explain the equipment operation information.
  • the left column shows the date and time when the equipment is in operation.
  • the middle column shows the equipment in operation.
  • the right column shows the recipe.
  • a recipe is a specific content of a process. Process information will be explained.
  • the process information indicates the product part number and the process 1 to 4 in order from the left.
  • Each process is a concrete content of the recipe.
  • step S22-1 the calculation instruction unit 111 generates the calculation instruction 1.
  • step S22-1 the calculation instruction unit 111 generates the calculation instruction 1 based on the production input command 221 and transmits the calculation instruction 1 to the equipment management unit 112.
  • step S23-1 the calculation instruction unit 111 receives the calculation result 1 from the equipment management unit 112.
  • step S22-2 the calculation instruction unit 111 generates the calculation instruction 2 using the calculation result 1, and transmits the calculation instruction 2 to the piping management unit 113.
  • step S23-2 the calculation instruction unit 111 receives the calculation result 2 from the piping management unit 113.
  • the piping management unit 113 is a routing unit.
  • the routing unit determines the consumption information indicating the estimated consumption amount of the fluid by the equipment using the fluid, the amount of fluid leakage in each pipe of multiple pipes, and the amount of fluid leak in each valve of multiple valves.
  • the supply route is determined by referring to the leakage amount information included.
  • the valve in the amount of fluid leakage in each valve of the plurality of valves includes both a solenoid valve and a manual valve.
  • the consumption information is the calculation result 1.
  • the leakage amount information is the data possessed by the piping DB 113B.
  • FIG. 12 shows the processing contents of the calculation instruction unit 111.
  • the processing of the calculation instruction unit 111 will be described with reference to FIG. (1)
  • the calculation instruction unit 111 uses the production input command 221 received from the input command unit 220 as input data, and gives the equipment management unit 112 information on the operation corresponding to the time of the equipment as the calculation instruction 1.
  • the calculation instruction unit 111 generates the calculation instruction 1 by using the production input command 221 shown in FIG.
  • the calculation instruction unit 111 interprets from the production input command 221 that the washing machine No. 1 cleans the pure water at 9:00 and the washing machine No. 2 cleans the pure water at 9:00. Based on the interpretation, the calculation instruction unit 111 generates an instruction to calculate the compressed air consumption of the washing machine No.
  • the calculation instruction unit 111 receives the equipment consumption information corresponding to the time as the calculation result 1 from the equipment management unit 112 (step S23-1). Specifically, the calculation instruction unit 111 receives the compressed air consumption of the washing machine No. 1 and the washing machine No. 2 from the equipment management unit 112 as the calculation result 1. This calculation result 1 is also used as control information for the compressor group. (3) The calculation instruction unit 111 uses the production input command 221 received from the input control unit 220 and the calculation result 1 of the equipment management unit 112 to give the piping management unit 113 the time for compressed air as the calculation instruction 2. The corresponding required amount of information is given (step S22-2).
  • the calculation instruction unit 111 instructs the calculation instruction 2 to determine the candidates for the supply path of the compressed air to the washing machine No. 1 and the washing machine No. 2, and the consumption amount (leakage amount) of each candidate. ) Is generated with an instruction to calculate.
  • the calculation instruction unit 111 has a plurality of supply paths for operating the washing machine No. 1 and the washing machine 2 from the piping management unit 113, and compressed air in each supply path. Receive the consumption (step S23-2). This amount of compressed air consumption is also used as control information for the compressor group.
  • step S23-1 the equipment calculation unit 112A generates the calculation result 1.
  • step S23-1 the equipment calculation unit 112A executes the calculation in response to the calculation instruction 1 from the calculation instruction unit 111.
  • FIG. 13 shows a specific process in which the equipment calculation unit 112A generates the calculation result 1.
  • the calculation instruction 1 includes an instruction [calculate the compressed air consumption of the equipment] and a production input command 221.
  • the equipment calculation unit 112A receives the calculation instruction 1, the washing machine No. 1 performs pure water cleaning at 9:00 and the washing machine No. 2 performs pure water cleaning at 9:00 from the production input command 221. Then interpret it.
  • the equipment calculation unit 112A can calculate the consumption of compressed air of each equipment 810 with reference to the equipment DB 112B. That is, when the equipment calculation unit 112A receives the calculation instruction 1 including the production input command 221 from the calculation instruction unit 111, the equipment calculation unit 112A uses the data such as the consumption amount described in the equipment DB 112B to compress the equipment, as shown in FIG. Calculate air consumption. In FIG. 13, the equipment calculation unit 112A calculates the following as the consumption amount of compressed air of the washing machine No. 1 and the washing machine No. 2. From 9:00 to 2 minutes, the first washing machine consumes 2.0 m 3 . From 9:00 to 2 minutes, the washing machine No. 2 consumes 2.0 m 3 . The equipment calculation unit 112A transmits these consumption amounts to the calculation instruction unit 111 as the calculation result 1.
  • FIG. 14 shows a specific process in which the piping calculation unit 113A generates the calculation result 2.
  • the calculation instruction unit 111 generates the calculation instruction 2 and transmits it to the piping calculation unit 113A by using the production input command 221 described in FIG. 12 and the calculation result 1 described in FIG.
  • the calculation instruction 2 includes an instruction [calculate a candidate for a compressed air supply path to the facility and a consumption amount (leakage amount)], and a calculation result 1.
  • the piping calculation unit 113A refers to the calculation result 1 and the data of the piping DB 113B to generate the calculation result 2.
  • FIG. 14 shows a specific process in which the piping calculation unit 113A generates the calculation result 2.
  • the calculation instruction unit 111 generates the calculation instruction 2 and transmits it to the piping calculation unit 113A by using the production input command 221 described in FIG. 12 and the calculation result 1 described in FIG.
  • the calculation instruction 2 includes an instruction [calculate a candidate for a compressed air supply path to the facility and a
  • the piping calculation unit 113A consumes 2.0 m 3 of compressed air from 9:00 to 2 minutes, and the washing machine No. 2 consumes 2.0 m 3 from 9:00 to 2 minutes. It is interpreted as consuming 2.0 m 3 of air. That is, the piping calculation unit 113A interprets that from 9:00 to 9:02, the washing machine No. 1 and the washing machine No. 2 each consume 2.0 m 3 of compressed air.
  • the piping calculation unit 113A refers to the mesh piping information 880, and from 9:00 to 9:02, a plurality of paths for supplying compressed air to the washing machine No. 1 and the compressed air for the washing machine 2 Calculate multiple routes to supply to Unit.
  • the route can be calculated mathematically from the data of the mesh piping circuit 800 included in the mesh piping information 880.
  • the pipe calculation unit 113A targets a plurality of routes of the washing machine No. 1, and is included in the calculation result 1 in the column of the amount of compressed air used by the washing machine No. 1 and the consumption of the pipe DB 113B, and the washing machine No. 2 is used.
  • the amount of compressed air consumed in each route is calculated as follows, using the data of the amount of consumption of the "types" constituting the plurality of routes calculated for.
  • the piping calculation unit 113A determines the amount of compressed air in each path of the washing machine No.
  • the piping calculation unit 113A targets a plurality of routes of the cleaning machine No. 2 and cleans the columns of the amount of compressed air used by the washing machine No. 2 and the consumption amount of the piping DB 113B included in the calculation result 1.
  • the amount of compressed air consumed in each route is calculated as follows, using the data of the amount of consumption of "types" constituting the plurality of routes calculated for Unit 2.
  • the piping calculation unit 113A determines the amount of compressed air in each path of the washing machine No.
  • the piping calculation unit 113A determines the route A ⁇ B ⁇ C for the washing machine No. 1 and the route A ⁇ B ⁇ D ⁇ E ⁇ C for the washing machine No. 2 based on the calculation result of (b). It shall be decided.
  • the route A ⁇ B ⁇ C shown below is, for example, the route A ⁇ B ⁇ C in FIG. 1, and the washing machine No. 1 is the equipment 810a in FIG.
  • the route A ⁇ B ⁇ D ⁇ E ⁇ C shown below is, for example, the route A ⁇ B ⁇ D ⁇ E ⁇ C in FIG. 1, and the washing machine No. 2 is the equipment 810b in FIG.
  • the sub valve 1 of the valve A is open
  • the sub valves 1, 2 and 3 of the valve B are open
  • the valves The sub-valve 4 of C is open
  • the sub-valves 1 and 2 of valve D are open
  • the sub-valves 2 and 3 of valve E are open.
  • the calculation result 2 includes the following (1) and (2). (1) Supply compressed air to the washing machine No.
  • Piping consumption is 0.1 m 3 / sec.
  • step S24 the calculation instruction unit 111 sets the compressed air supply path 781, the compressed air consumption amount 782, and the compressed air consumption amount 782 based on the calculation result of the equipment management unit 112, the calculation result 2 of the piping management unit 113, and the production input command 221.
  • Information including the number 783 of compressors 710 to be operated is generated as a determination result 780.
  • the supply path 781 of the compressed air can be found from the calculation result 2.
  • the compressed air consumption amount 782 is the sum of the amount of compressed air consumed by the equipment and the amount of compressed air consumed by the piping.
  • the amount of compressed air consumed by the equipment can be found from the calculation result 1, and the amount of compressed air consumed by the piping can be found from the calculation result 2.
  • the number of compressors 710 to be operated 783 is as follows.
  • the calculation instruction unit 111 can obtain the number of units 783 from the calculation result 1 and the calculation result 2 by referring to the specification data of the compressor 710.
  • the specification data of the compressor 710 is stored in the auxiliary storage device 30.
  • the calculation instruction unit 111 transmits the supply path 781.
  • the calculation instruction unit 111 is a route transmission unit that instructs the calculation required for the route determination and transmits the route determined by the calculation. Specifically, in step S25-1, the calculation instruction unit 111 transmits the determination result 780 of step S24 to the production execution system 230.
  • the production execution system 230 has a control command based on the "production input command 221" (step S22) received from the input command unit 220 and the "decision result 780" (step S25-1) received from the calculation instruction unit 111. 711 is generated and transmitted to the compressor control device 240 (step S25-2). The production execution system 230 can generate the control command 711 from the compressed air consumption amount 782 included in the determination result 780 and the production input command 221 transmitted from the input command unit 220.
  • the control command 711 is information for controlling the operating rate of the corresponding compressor.
  • Step S25-3 the compressor control device 240 receives the control command 711 from the production execution system 230, and controls the operating rate of the corresponding compressor in accordance with the control command 711.
  • step S26-1 the production execution system 230 transmits the valve control command 401 to the valve control unit 120 based on the determination result 780 received from the calculation instruction unit 111.
  • the valve control command 401 may be the supply path 781 itself. That is, when the data format of the supply path 781 is the opening / closing information of a plurality of valves forming the supply path 781 in the mesh piping circuit 800, the valve control command 401 may be the data of the supply path 781.
  • Step S26-2 the valve control unit 120 controls the opening and closing of the corresponding valve based on the valve control command 401.
  • step S27 the valve control unit 120 stores the open / closed state of the valve.
  • the valve control unit 120 stores the open / closed state of the valve in the auxiliary storage device 30.
  • Step S28 Step S28 and subsequent steps will be described below with reference to FIG. 7.
  • each pressure sensor transmits sensor data to the compressor control device 240, the equipment management unit 112, and the piping management unit 113.
  • step S29 the production execution system 230 controls the corresponding production equipment 810.
  • Step S30 the production equipment 810 controlled from the production execution system 230 transmits the state data to the production execution system 230, the equipment management unit 112, and the piping management unit 113.
  • the state data is response data indicating that the operation was performed according to the command.
  • step S31 the equipment management unit 112 and the piping management unit 113 can collect sensor data and status data of each equipment and use them for updating the equipment DB 112B and the piping DB 113B.
  • valve control unit 120 controls the opening and closing of the valve to form a compressed air supply path.
  • the valve control unit 120 opens from the valve close to the receiver tank 730 when the supply of compressed air starts, and is far from the receiver tank 730 when the supply of compressed air is stopped. Close from the valve.
  • FIG. 15 is a diagram illustrating the formation of a supply path in the mesh piping circuit 800.
  • all the valves V are all closed and all the compressors are stopped.
  • the compressor control device 240 operates the compressor A.
  • the valve control unit 120 opens the valve V50.
  • the valve control unit 120 opens the valve V99 supplied to the pipe B in accordance with the operation of the equipment A.
  • the valve control unit 120 opens the valve V2 supplied to the pipe B4 and opens the valve V5 supplied to the pipe B6 in accordance with the operation of the equipment C.
  • the compressor control device 240 operates the compressor B in accordance with the operation of the equipment E.
  • the valve control unit 120 opens the valve V60, opens the valve V4 supplied to the pipe B8, and opens the valve V7 supplied to the pipe B11.
  • valve control unit 120 When the equipment C is stopped, the valve control unit 120 opens the valve V5 supplied to the pipe B9, opens the valve V8 supplied to the pipe B11, and closes the valve V4 and the valve V5 supplied to the pipe B6. (6) The valve control unit 120 opens the valve V8 supplied to the pipe B12 in accordance with the operation of the equipment F. (7) The valve control unit 120 closes the valve V8, closes the valve V5, closes the valve V2, closes the valve V99, closes the valve V50, and closes the valve V60 when all the equipment is stopped. The compressor control device 240 stops the compressor A and the compressor B.
  • Embodiment 1 *** Explanation of the effect of Embodiment 1 *** (1)
  • energy saving is performed by controlling the operation of the compressor while allowing leakage of compressed air in the supply path in the loop piping.
  • the supply path as a part of the mesh piping circuit 800 is formed by controlling the opening and closing of the valve provided in the mesh piping circuit 800. Therefore, it is possible to reduce the supply of compressed air to the volume of the piping that is not originally used and to reduce the leakage by minimizing the supply path of the compressed air.
  • the supply path can be minimized by the mesh piping circuit 800, and the required compressed air amount can be reduced as compared with the conventional case, so that the operating rate of the compressor is reduced. This makes it possible to save energy, which was not possible in the past.
  • FIG. 16 shows the hardware configuration of the routing device 100 in the modified example.
  • the routing device 100 of the modified example includes a valve state storage unit 130 that stores valve state information 131 that is the state of the valve 801.
  • the valve state storage unit 130 is realized by the auxiliary storage device 30.
  • FIG. 17 shows valve state information 131 stored in the valve state storage unit 130.
  • the valve state information 131 will be described with reference to FIG.
  • the area surrounded by the broken line shows a part of the mesh piping circuit 800.
  • the valves are described as V (1), V (2) and V (3)
  • the piping is described as P (1), P (2)
  • the pressure sensor is described as S (1) and S (1). It is written as S (2).
  • V (1) has V (1) 1 and V (1) 2 which are sub-valves
  • V (2) is V (2) 1, V (2) 2 and V (2) which are sub-valves.
  • V (3) has subvalves V (3) 1, V (3) 2 and V (3) 3.
  • the valve state information 131 of FIG. 17 indicates that V (1) 2 and V (2) 3 are recorded as a closed and fixed state.
  • 1 indicates closed-fixed and 0 indicates not closed-fixed.
  • the subvalve is considered closed.
  • the contents of the valve state information 131 may be manually registered in the valve state storage unit 130 by the administrator, or the piping calculation unit 113A automatically stores the valve state as described later in the modified example of the second embodiment. It may be registered in the unit 130.
  • the method of storing the valve state information 131 does not matter.
  • FIG. 18 is a diagram for explaining that the piping calculation unit 113A determines the supply path with reference to the valve state information 131, and corresponds to FIG.
  • FIG. 18 In the valve state information 131 shown in FIG. 18, A1, A2, in the valve row. .. .. Shows the sub-valves of the valves at the positions A, B, C, D, and E of the mesh piping circuit 800 of FIG. In FIG. 1, 1, 2 and 3 showing sub valves are shown.
  • the sub valve B1 and the sub valve D2 are closed and fixed.
  • the piping calculation unit 113A does not adopt the supply path that uses the sub valve B1 and the sub valve D2 when determining the supply path. Therefore, the piping calculation unit 113A does not adopt the route A ⁇ B ⁇ D ⁇ E ⁇ C described in FIG. In the example of FIG. 18, the piping calculation unit 113A adopts the route A ⁇ B ⁇ C ⁇ E as the route of the washing machine No. 2.
  • FIG. 19 shows a configuration in which the function of the routing device 100 is realized by hardware.
  • the electronic circuit 90 of FIG. 19 is a dedicated electronic circuit that realizes the functions of the calculation instruction unit 111, the equipment management unit 112, the piping management unit 113, the main storage device 20, the auxiliary storage device 30, the input IF40, the output IF50, and the communication IF60. Is.
  • the electronic circuit 90 is connected to the signal line 91.
  • the electronic circuit 90 is specifically a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA.
  • GA is an abbreviation for Gate Array.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • FPGA is an abbreviation for Field-Programmable Gate Array.
  • the functions of the components of the routing device 100 may be realized by one electronic circuit, or may be distributed and realized by a plurality of electronic circuits. Further, some functions of the components of the routing device 100 may be realized by an electronic circuit, and the remaining functions may be realized by software.
  • Each of the processor 10 and the electronic circuit 90 is also referred to as a processing circuit.
  • the functions of the calculation instruction unit 111, the equipment management unit 112, and the piping management unit 113 may be realized by the processing circuit.
  • the functions of the calculation instruction unit 111, the equipment management unit 112, the piping management unit 113, the main storage device 20, the auxiliary storage device 30, the input IF40, the output IF50, and the communication IF60 may be realized by the processing circuit.
  • Embodiment 2 The second embodiment will be described with reference to FIGS. 20 to 22.
  • the routing device 100 described in the first embodiment functions as a diagnostic device for diagnosing the leakage of compressed air in the piping.
  • the configuration of the diagnostic system of the second embodiment is the same as that of the fluid supply system 1000 of the first embodiment.
  • the functional block diagram and hardware configuration of the diagnostic device of the second embodiment are the same as those of the routing device 100 of the first embodiment.
  • the fluid supply system 1000 replaces the diagnostic system 900
  • the routing device 100 replaces the diagnostic device 901, and the routing program replaces the diagnostic program 902.
  • the reference numerals of the diagnostic system 900, the diagnostic device 901, and the diagnostic program 902 are shown in FIGS. 1 to 4.
  • the valve control unit 120 controls at least one of the plurality of valves of the mesh piping circuit 800 with respect to the mesh piping circuit 800 to allow the fluid to flow into the piping in which the pressure sensor is arranged and to supply the fluid to the piping. Stagnate.
  • the piping calculation unit 113A which is a diagnostic unit, acquires sensor data from a pressure sensor placed in the piping in which the fluid is confined, and compares the acquired sensor data with the reference data to confine the fluid in the piping. Diagnose fluid leaks. This will be described in detail below.
  • FIG. 20 is a sequence diagram showing a diagnostic operation of the routing device 100. This sequence will be described with reference to FIG. 15 used in Embodiment 1. In the initial state, compressed air is not supplied to the mesh piping circuit 800 of FIG.
  • the mesh piping circuit 800 of FIG. 15 includes a plurality of valves that can be opened and closed by control, a plurality of piping through which a fluid flows, and a pressure sensor that is arranged in at least one of the plurality of piping to detect the pressure of the fluid. have.
  • a plurality of pipes are arranged in a mesh shape by connecting valves to each other of the plurality of pipes, and a fluid flows in.
  • the mesh piping circuit 800 is as follows.
  • valves V1 to V9 are arranged at positions from node N1 to node N9. Each valve is connected from pipe B1 to pipe B12.
  • a pressure sensor is arranged for each pipe.
  • the pressure sensor S1 to the pressure sensor S12 are arranged from the pipe B1 to the pipe B12.
  • Equipment A is connected to pipe B1
  • equipment B is connected to pipe B2
  • equipment C is connected to pipe B6
  • equipment D is connected to pipe B7
  • equipment E is connected to pipe B11.
  • Equipment F is connected to the pipe B12.
  • pressure sensors are arranged in all the pipes. It is desirable that pressure sensors be placed on all pipes, but pressure sensors may be placed on at least one of the pipes.
  • the valve control unit 120 controls the opening and closing of each valve.
  • the diagnostic operation of the diagnostic apparatus 901 will be described with reference to FIG.
  • the operation of the diagnostic device 901 corresponds to the diagnostic method.
  • the operation of the diagnostic device 901 corresponds to the processing of the diagnostic program.
  • the valve control unit 120 opens from the valve close to the receiver tank 730 when the supply of compressed air starts, and is far from the receiver tank 730 when the supply of compressed air is stopped. Close from the valve.
  • step S42 the valve control unit 120 opens the valve V2 in the directions of the valve V50, the valve V99, and the branch 4.
  • step S43 the pressure sensor S4 arranged in the pipe B4 transmits the sensor data to the pipe calculation unit 113A.
  • the valve control unit 120 controls at least one of the plurality of valves with respect to the mesh piping circuit 800, so that a pressure sensor is arranged and the fluid flows into the piping to which the solenoid valves are connected at both ends.
  • the solenoid valves at both ends of the pipe are kept closed to confine the fluid in the pipe. Specifically, it is as follows.
  • step S44 the valve control unit 120 closes the valve V2.
  • the pipe B4 is isolated.
  • step S45 the pressure sensor S4 transmits the sensor data of the pipe B4 in the isolated state to the pipe calculation unit 113A.
  • the piping calculation unit 113A which is a diagnostic unit, acquires sensor data from a pressure sensor arranged in a pipe in which the fluid is confined, and compares the acquired sensor data with the reference data to confine the fluid. Diagnose fluid leaks in pipes. Specifically, it is as follows.
  • step S46 the pipe calculation unit 113A compares the sensor data of the sensor S4 in the isolated state with the reference data for determining the leak, and performs the leak diagnosis of the pipe B4.
  • the data is, for example, the consumption shown in FIG.
  • the pipe calculation unit 113A converts the sensor data into the consumption amount of the pipe shown in FIG. 9, and diagnoses using the consumption amount of FIG. 9 as the reference data.
  • the pipe calculation unit 113A records the consumption amount of the pipe B4 as 99 m 3 / sec in the pipe DB 113B.
  • FIG. 21 shows an operation in which the pipe calculation unit 113A records the consumption amount of the pipe B4 in the pipe DB 113B. If no leak occurs in the pipe B4, the consumption of compressed air in the pipe B4 is 0.01 m 3 / sec.
  • the pipe calculation unit 113A determines that a leak has occurred in the pipe B4
  • the pipe calculation unit 113A updates the consumption of compressed air in the pipe B4 from 0.01 m 3 / sec to 99 m 3 / sec, as shown in FIG.
  • the meaning of 99 m 3 / sec is an extremely large value that is actually equal to infinity with respect to the consumption of 0.01 m 3 / sec when no leak occurs. Any value may be used as long as it is extremely large with respect to 0.01 m 3 / sec.
  • the piping calculation unit 113A which is a diagnostic unit, does not adopt a supply route including a pipe diagnosed as having a merry-kick. Specifically, it is as follows. The following operations are the same for the routing device 100 of the first embodiment.
  • step S48 the piping calculation unit 113A of the route determination device 100 determines the adoption of the supply route as described in the first embodiment.
  • the piping calculation unit 113A selects the supply route to be adopted.
  • the pipe calculation unit 113A calculates the total consumption of compressed air of the plurality of pipes included in the selected supply path with reference to the consumption of compressed air of the pipe DB 113B.
  • the selected supply path includes three pipes, each of which consumes 0.01 m 3 / sec of compressed air. In that case, the total consumption of compressed air in the three pipes is 0.03 m 3 / sec. Further, even though it contains if 1,000 pipes the feed path, the consumption of total is 10 m 3 / sec 1000 times 0.01 m 3 / sec.
  • the piping calculation unit 113A does not adopt the supply path. That is, the piping calculation unit 113A does not include the supply route in the calculation result 2.
  • the routing device 100 of the modified example of the second embodiment will be described with reference to FIG.
  • the hardware configuration of the routing device 100 of the modified example is the same as that of FIG. 16 of the first embodiment.
  • the route determination device 100 of the modified example is characterized in that the piping calculation unit 113A automatically creates the valve state information 131.
  • the route determination device 100 of the modified example of the first embodiment can calculate the supply route by using the automatically created valve state information 131.
  • FIG. 22 shows an operation in which the piping calculation unit 113A of the modified example creates the valve state information 131.
  • the creation of the valve state information 131 by the piping calculation unit 113A will be described.
  • the closed / fixed values of V2-2 and V5-1 which are subvalves at both ends of the piping B4, are set to 1.
  • the closed / fixed values of the sub valves V2-2 and V5-1 are set to 0.
  • the diagnostic apparatus 901 can automatically update the valve state information 131.
  • Embodiment 2 *** Explanation of the effect of Embodiment 2 *** (1)
  • a leak location in a fixed compressed air supply path is specified by a pressure sensor, but a leak determination error cannot be avoided depending on the operating status of equipment that consumes compressed air.
  • the diagnostic system 900 of the second embodiment in the mesh piping circuit 800, the pressure change of the newly isolated or newly expanded node can be specified by comparing with the normal pressure data. .. (2)
  • the diagnostic system 900 since the supply path of the compressed air can be dynamically changed in the mesh piping circuit 800, it is possible to provide a supply path with less leakage that bypasses the piping in which the leak is found by the diagnosis. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pipeline Systems (AREA)

Abstract

A diagnostic system (900) is provided with a mesh piping circuit (800) and a diagnostic device (901). The mesh piping circuit (800) comprises valves (801), pipes (802), and pressure sensors (803) disposed in the pipes (802). In the mesh piping circuit (800), the pipes (802) are arranged in a mesh shape by connecting the valves (801) to each other. The diagnostic device (901): controls the valves (801) so that a fluid flows into the pipes (802) in which the pressure sensors (803) are disposed and stays in the pipes (802); and acquires pressure data from the pressure sensors (803) disposed in the pipes (802) where the fluid is stagnant. The diagnostic device (901) diagnoses fluid leakage in the pipes (802) where the fluid is stagnant by comparing the acquired pressure data and reference data.

Description

診断システム、診断装置、診断プログラム及び診断方法Diagnostic system, diagnostic device, diagnostic program and diagnostic method
 この発明は、診断システム、診断装置、診断プログラム及び診断方法に関する。 The present invention relates to a diagnostic system, a diagnostic device, a diagnostic program and a diagnostic method.
 従来技術では、圧縮空気の供給経路における圧縮空気のリークは許容していため、常に圧縮空気のリークが発生していた。また、リーク箇所の特定は人手による配管検査を実施していたため、検査の負荷が大きかった。また、リーク修理時には、設備の稼働を停止する場合があった。 In the prior art, a leak of compressed air was allowed in the supply path of compressed air, so that a leak of compressed air always occurred. In addition, since the piping inspection was performed manually to identify the leak location, the inspection load was heavy. In addition, when repairing a leak, the operation of the equipment may be stopped.
 このため従来技術では、圧力センサを用いて自動でリークを特定する技術がある(特許文献1、2)。
 しかし、従来技術では、圧縮空気の供給経路を柔軟に変更することはできず、リーク発生を特定した場合、設備を停止する必要も生じる。
Therefore, in the prior art, there is a technique of automatically identifying a leak using a pressure sensor (Patent Documents 1 and 2).
However, in the prior art, the supply path of compressed air cannot be flexibly changed, and when the occurrence of a leak is identified, it becomes necessary to stop the equipment.
特開2016-170638号公報Japanese Unexamined Patent Publication No. 2016-170638 特開2017-198098号公報Japanese Unexamined Patent Publication No. 2017-198098
 本発明は、複数の供給経路を設定でき、かつ、複数のそれぞれの供給経路のリーク診断ができる診断システムの提供を目的とする。 An object of the present invention is to provide a diagnostic system capable of setting a plurality of supply routes and diagnosing leaks of each of the plurality of supply routes.
 この発明の診断装置は、
 制御によって開閉可能な複数の電磁弁を含む複数の弁と、流体が流れる複数の配管と、前記複数の配管のうち少なくともいずれかの配管に配置されて前記流体の圧力を検出する圧力センサとを有し、前記複数の配管の各配管が弁どうしを接続することで前記複数の配管がメッシュ状に配置され、流体が流入するメッシュ配管回路と、
 前記複数の電磁弁の少なくともいずれかの電磁弁を制御することで、前記圧力センサが配置された前記配管に前記流体を流入させると共に前記配管に前記流体を停滞させ、前記流体が停滞している前記配管に配置された前記圧力センサから圧力データを取得し、取得した前記圧力データと、基準データとを比較することにより前記流体が停滞している前記配管の流体漏れを診断する診断装置と
を備える。
The diagnostic device of the present invention
A plurality of valves including a plurality of electromagnetic valves that can be opened and closed by control, a plurality of pipes through which a fluid flows, and a pressure sensor arranged in at least one of the plurality of pipes to detect the pressure of the fluid. A mesh piping circuit in which the plurality of pipes are arranged in a mesh shape by connecting valves to each other and fluid flows into the plurality of pipes.
By controlling at least one of the plurality of electromagnetic valves, the fluid flows into the pipe in which the pressure sensor is arranged, and the fluid is stagnated in the pipe, so that the fluid is stagnant. A diagnostic device that acquires pressure data from the pressure sensor arranged in the pipe and diagnoses fluid leakage in the pipe in which the fluid is stagnant by comparing the acquired pressure data with the reference data. Be prepared.
 本発明の診断システムによれば、複数の供給経路を設定でき、かつ、複数のそれぞれの供給経路のリーク診断ができる。 According to the diagnostic system of the present invention, a plurality of supply routes can be set, and leak diagnosis of a plurality of each supply route can be performed.
実施の形態1の図で、流体供給システム1000の構成を示す図。The figure which shows the structure of the fluid supply system 1000 in the figure of Embodiment 1. FIG. 実施の形態1の図で、ノード及びブランチを説明する図。The figure explaining the node and the branch in the figure of Embodiment 1. FIG. 実施の形態1の図で、経路決定装置100の機能ブロックを示す図。FIG. 5 is a diagram showing a functional block of the routing device 100 in the figure of the first embodiment. 実施の形態1の図で、経路決定装置100のハードウェア構成を示す図。FIG. 5 is a diagram showing a hardware configuration of the routing device 100 in the figure of the first embodiment. 実施の形態1の図で、メッシュ配管回路800における供給経路を説明する図。FIG. 5 is a diagram for explaining a supply path in the mesh piping circuit 800 in the figure of the first embodiment. 実施の形態1の図で、経路決定装置100の動作を説明するシーケンス。A sequence illustrating the operation of the routing device 100 in the figure of the first embodiment. 実施の形態1の図で、経路決定装置100の動作を説明するシーケンス。A sequence illustrating the operation of the routing device 100 in the figure of the first embodiment. 実施の形態1の図で、設備DB112Bを示す図。The figure which shows the equipment DB 112B in the figure of Embodiment 1. FIG. 実施の形態1の図で、配管DB113Bを示す図。The figure which shows the piping DB 113B in the figure of Embodiment 1. FIG. 実施の形態1の図で、生産投入211を示す図。The figure which shows the production input 211 in the figure of Embodiment 1. FIG. 実施の形態1の図で、投入司令部220が生成する生産投入司令221を示す図。FIG. 5 is a diagram showing a production input command 221 generated by the input command unit 220 in the figure of the first embodiment. 実施の形態1の図で、計算指示部111の処理内容を示す図。In the figure of Embodiment 1, the figure which shows the processing content of the calculation instruction part 111. 実施の形態1の図で、設備計算部112Aの処理を示す図。In the figure of Embodiment 1, the figure which shows the process of the facility calculation unit 112A. 実施の形態1の図で、配管計算部113Aの処理を示す図。FIG. 5 is a diagram showing a process of the piping calculation unit 113A in the figure of the first embodiment. 実施の形態1の図で、メッシュ配管回路800における供給経路の形成を説明する図。FIG. 5 is a diagram illustrating the formation of a supply path in the mesh piping circuit 800 in the figure of the first embodiment. 実施の形態1の図で、変形例における経路決定装置100のハードウェア構成を示す図。FIG. 5 is a diagram showing a hardware configuration of a routing device 100 in a modified example of the first embodiment. 実施の形態1の図で、弁状態記憶部130が格納する弁状態情報131を示す図。FIG. 1 is a diagram showing valve state information 131 stored in the valve state storage unit 130 in the figure of the first embodiment. 実施の形態1の図で、配管計算部113Aが、弁状態情報131も参照して供給経路を決定することを説明する図。FIG. 5 is a diagram illustrating that the piping calculation unit 113A determines a supply path with reference to the valve state information 131 in the figure of the first embodiment. 実施の形態1の図で、経路決定装置100の機能がハードウェアで実現される構成を示す図。FIG. 5 is a diagram showing a configuration in which the function of the routing device 100 is realized by hardware in the figure of the first embodiment. 実施の形態2の図で、診断装置901の診断動作を示すシーケンス図。FIG. 2 is a sequence diagram showing a diagnostic operation of the diagnostic device 901 in the figure of the second embodiment. 実施の形態2の図で、配管計算部113Aが、配管DB113Bに配管B4の消費量を記録する動作を示す図。FIG. 2 is a diagram showing an operation in which the pipe calculation unit 113A records the consumption amount of the pipe B4 in the pipe DB 113B in the figure of the second embodiment. 実施の形態2の図で、変形例の配管計算部113Aが弁状態情報131を作成する動作を示す図。FIG. 2 is a diagram showing an operation in which the piping calculation unit 113A of the modified example creates valve state information 131 in the figure of the second embodiment.
 以下、本発明の実施の形態について、図を用いて説明する。なお、各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, the same or corresponding parts are designated by the same reference numerals. In the description of the embodiment, the description will be omitted or simplified as appropriate for the same or corresponding parts.
(1)以下では、生産設備を設備と表記する場合がある。生産設備は、流体を利用する利用設備である。
(2)以下では流体として圧縮空気を用いて、流体供給システム1000を説明する。しかし、流体は圧縮空気に限らず、圧縮空気以外の不活性ガス気体または二酸化炭素のような気体でもよい。また流体は液体でもよい。また、流体は紛体でもよい。
(3)以下では設備データベース112B及び配管データベース113Bが登場するが、これらは設備DB112B、配管DB113Bと表記する。またデータベースはDBと表記する。
(4)以下では圧力センサの計測した圧力データをセンサデータと表記する。
(5)以下では弁と記載したときは、特に断らない限り開閉の制御可能な電磁弁である。電磁弁は開閉弁である。
(6)以下では、インタフェースはIFと表記する。
(1) In the following, production equipment may be referred to as equipment. The production equipment is a utilization equipment that uses fluid.
(2) Hereinafter, the fluid supply system 1000 will be described using compressed air as the fluid. However, the fluid is not limited to compressed air, and may be an inert gas gas other than compressed air or a gas such as carbon dioxide. Further, the fluid may be a liquid. Further, the fluid may be a powder.
(3) In the following, the equipment database 112B and the piping database 113B will appear, which are referred to as the equipment DB 112B and the piping DB 113B. The database is referred to as DB.
(4) In the following, the pressure data measured by the pressure sensor will be referred to as sensor data.
(5) In the following, when the term "valve" is used, it is a solenoid valve whose opening and closing can be controlled unless otherwise specified. The solenoid valve is an on-off valve.
(6) In the following, the interface will be referred to as IF.
 実施の形態1.
 図1から図19を参照して、実施の形態1の経路決定装置100を説明する。
Embodiment 1.
The routing device 100 of the first embodiment will be described with reference to FIGS. 1 to 19.
***構成の説明***
 図1は、流体供給システム1000の構成を示す。図1で実線は圧縮空気の流れを示し、破線はデータの流れを示す。流体供給システム1000は、経路決定装置100、立案部210、投入司令部220、生産実行システム230、圧縮機制御装置240、工場700を備えている。工場700は、複数の圧縮機710、複数の弁720、レシーバータンク730、弁740及びメッシュ配管回路800を有する。
*** Explanation of configuration ***
FIG. 1 shows the configuration of the fluid supply system 1000. In FIG. 1, the solid line shows the flow of compressed air, and the broken line shows the flow of data. The fluid supply system 1000 includes a routing device 100, a planning unit 210, an input command unit 220, a production execution system 230, a compressor control device 240, and a factory 700. The factory 700 has a plurality of compressors 710, a plurality of valves 720, a receiver tank 730, a valve 740 and a mesh piping circuit 800.
 メッシュ配管回路800は、制御によって開閉可能な複数の弁801と、複数の配管802とを有している。図1のメッシュ配管回路800の複数の弁801は電磁弁として説明をする。メッシュ配管回路800は複数の電磁弁の全部が電磁弁でも良いし、一つまたは複数の手動弁と、複数の電磁弁とを備えてもよい。
 電磁弁は、図1の弁Aのように、複数のサブバルブを有する。開閉の制御は、サブバルブごとに可能である。弁Aではサブバルブ1,2及びサブバルブ3のそれぞれが、独立して制御可能である。
 メッシュ配管回路800は、複数の配管の各配管が弁どうしを接続することで複数の配管がメッシュ状に配置され、流体が流入する。流体を利用する複数の利用設備が、複数の配管のうちの異なる配管のそれぞれに接続されている。
 経路決定部である配管管理部113は、メッシュ配管回路800を対象として、複数の利用設備の少なくともいずれかの利用設備へ流体を供給するための経路でありメッシュ配管回路の一部をなす経路である供給経路を決定する。弁制御部120は、メッシュ配管回路800を対象として、メッシュ配管回路800の有する複数の弁の少なくともいずれかの弁を制御することにより、供給経路を形成する。以下に経路決定装置100を具体的に説明する。
The mesh piping circuit 800 has a plurality of valves 801 that can be opened and closed by control, and a plurality of piping 802. The plurality of valves 801 of the mesh piping circuit 800 of FIG. 1 will be described as solenoid valves. The mesh piping circuit 800 may include all of the plurality of solenoid valves as solenoid valves, or may include one or a plurality of manual valves and a plurality of solenoid valves.
The solenoid valve has a plurality of sub-valves as shown in valve A of FIG. Opening and closing control is possible for each sub valve. In the valve A, each of the sub-valves 1 and 2 and the sub-valve 3 can be controlled independently.
In the mesh piping circuit 800, a plurality of pipes are arranged in a mesh shape by connecting valves to each other, and fluid flows into the mesh piping circuit 800. A plurality of utilization facilities using a fluid are connected to each of different pipes among the plurality of pipes.
The piping management unit 113, which is a route determining unit, is a route for supplying fluid to at least one of a plurality of utilization facilities for the mesh piping circuit 800, and is a path forming a part of the mesh piping circuit. Determine a supply route. The valve control unit 120 forms a supply path by controlling at least one of a plurality of valves included in the mesh piping circuit 800 for the mesh piping circuit 800. The routing device 100 will be specifically described below.
 図2は、メッシュ配管回路800におけるノード811及びブランチ812を説明する図である。メッシュ配管回路800では、配管の分岐をノード811、それ以外の経路をブランチ812と呼ぶ。ノード811によりブランチ812が接続される。枝分かれのノード811に弁が設置される。弁は電磁弁でも良いし、手動の開閉弁でもよい。ブランチ812には圧力センサ803を配置される。上記のように、圧力センサの配置されないブランチ812があってもよい。ブランチ812の実体は配管802である。 FIG. 2 is a diagram illustrating a node 811 and a branch 812 in the mesh piping circuit 800. In the mesh piping circuit 800, the branch of the pipe is called a node 811 and the other routes are called a branch 812. Branch 812 is connected by node 811. A valve is installed at the branching node 811. The valve may be a solenoid valve or a manual on-off valve. A pressure sensor 803 is arranged in the branch 812. As mentioned above, there may be a branch 812 where the pressure sensor is not located. The substance of branch 812 is pipe 802.
 図3は、経路決定装置100の機能ブロックを示す。経路決定装置100は、解析部110と弁制御部120を備えている。解析部110は、計算指示部111,設備管理部112及び配管管理部113を備える。設備管理部112は設備計算部112Aと設備DB112Bを備えている。配管管理部113は配管計算部113Aと配管DB113Bを備えている。計算指示部111は投入司令部220、生産実行システム230と通信する。弁制御部120は弁801、生産実行システム230と通信する。設備計算部112A及び配管計算部113Aは圧力センサ803と通信する。
(1)解析部110は、圧縮空気の供給に関する解析を行う。
(2)計算指示部111は、設備管理部112と配管管理部113に、計算を指示する。
(3)設備管理部112は、設備の消費する圧縮空気を管理する。
(4)設備計算部112Aは、設備の使用する圧縮空気の消費量を計算する。
(5)配管管理部113は、配管における圧縮空気の消費量を管理する。
「配管における圧縮空気の消費量」とは、配管における圧縮空気(流体)の漏れ量である。
(6)配管計算部113Aは、配管経路の決定、配管経路における圧縮空気の漏れ量の計算のような処理を実行する。
(7)弁制御部120は、弁を制御すると共に、弁の開閉状態を記憶する。
FIG. 3 shows a functional block of the routing device 100. The routing device 100 includes an analysis unit 110 and a valve control unit 120. The analysis unit 110 includes a calculation instruction unit 111, an equipment management unit 112, and a piping management unit 113. The equipment management unit 112 includes an equipment calculation unit 112A and equipment DB 112B. The piping management unit 113 includes a piping calculation unit 113A and a piping DB 113B. The calculation instruction unit 111 communicates with the input control unit 220 and the production execution system 230. The valve control unit 120 communicates with the valve 801 and the production execution system 230. The equipment calculation unit 112A and the piping calculation unit 113A communicate with the pressure sensor 803.
(1) The analysis unit 110 analyzes the supply of compressed air.
(2) The calculation instruction unit 111 instructs the equipment management unit 112 and the piping management unit 113 to perform the calculation.
(3) The equipment management unit 112 manages the compressed air consumed by the equipment.
(4) The equipment calculation unit 112A calculates the consumption of compressed air used by the equipment.
(5) The piping management unit 113 manages the consumption of compressed air in the piping.
"Consumption of compressed air in piping" is the amount of leakage of compressed air (fluid) in piping.
(6) The piping calculation unit 113A executes processing such as determination of the piping route and calculation of the amount of compressed air leak in the piping route.
(7) The valve control unit 120 controls the valve and stores the open / closed state of the valve.
(1)立案部210は、生産計画を立案する。
(2)投入司令部220は、図11で後述する生産投入司令221を出力する。
(3)生産実行システム230は、製品の生産を実行する
(4)圧縮機制御装置240は、圧縮機710を制御する。
(5)生産設備810は、製品を生産する。
(6)弁801は、制御を受けて開閉する弁である。
(7)配管802には、圧縮空気が流れる。
(8)圧力センサ803は、配管に存在する圧縮空気の圧力を検出する。
(1) The planning department 210 formulates a production plan.
(2) The input command unit 220 outputs the production input command 221 described later in FIG.
(3) The production execution system 230 executes the production of the product. (4) The compressor control device 240 controls the compressor 710.
(5) Production equipment 810 produces products.
(6) The valve 801 is a valve that opens and closes under control.
(7) Compressed air flows through the pipe 802.
(8) The pressure sensor 803 detects the pressure of the compressed air existing in the pipe.
 図4は、経路決定装置100のハードウェア構成を示す。経路決定装置100は、コンピュータである。経路決定装置100は、プロセッサ10を備えるとともに、主記憶装置20、補助記憶装置30、入力IF40、出力IF50及び通信IF60といった他のハードウェアを備える。プロセッサ10は、信号線70を介して他のハードウェアと接続され、これら他のハードウェアを制御する。 FIG. 4 shows the hardware configuration of the routing device 100. The routing device 100 is a computer. The routing device 100 includes a processor 10 and other hardware such as a main storage device 20, an auxiliary storage device 30, an input IF 40, an output IF 50, and a communication IF 60. The processor 10 is connected to other hardware via the signal line 70 and controls these other hardware.
 経路決定装置100は、機能要素として、計算指示部111、設備管理部112、配管管理部113及び弁制御部120を備える。計算指示部111は経路決定に必要な計算を指示し、計算により決定した経路を送信する経路送信部である。
配管管理部113は経路決定部である。計算指示部111、設備管理部112、配管管理部113及び弁制御部120の機能は、経路決定プログラム101により実現される。
The route determination device 100 includes a calculation instruction unit 111, an equipment management unit 112, a piping management unit 113, and a valve control unit 120 as functional elements. The calculation instruction unit 111 is a route transmission unit that instructs the calculation required for the route determination and transmits the route determined by the calculation.
The piping management unit 113 is a routing unit. The functions of the calculation instruction unit 111, the equipment management unit 112, the piping management unit 113, and the valve control unit 120 are realized by the route determination program 101.
 プロセッサ10は、経路決定プログラム101を実行する装置である。経路決定プログラム101は、計算指示部111、設備管理部112、配管管理部113及び弁制御部120の機能を実現するプログラムである。プロセッサ10は、演算処理を行うIC(Integrated Circuit)である。プロセッサ10の具体例は、CPU(Central ProceSSing Unit)、DSP(Digital Signal ProceSSor)、GPU(GraphicS ProceSSing Unit)である。 The processor 10 is a device that executes the routing program 101. The route determination program 101 is a program that realizes the functions of the calculation instruction unit 111, the equipment management unit 112, the piping management unit 113, and the valve control unit 120. The processor 10 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 10 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (GraphicsS Processing Unit).
 主記憶装置20は、記憶装置である。主記憶装置20の具体例は、SRAM(Static Random AcceSS Memory)、DRAM(Dynamic Random AcceSS Memory)である。主記憶装置20は、プロセッサ10の演算結果を保持する。 The main storage device 20 is a storage device. Specific examples of the main storage device 20 are SRAM (Static Random Access SS Memory) and DRAM (Dynamic Random Access SS Memory). The main storage device 20 holds the calculation result of the processor 10.
 補助記憶装置30は、データを不揮発的に保管する記憶装置である。補助記憶装置30の具体例は、HDD(Hard DiSk Drive)である。また、補助記憶装置30は、SD(登録商標)(Secure Digital)メモリカード、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital VerSatile DiSk)といった可搬記録媒体であってもよい。補助記憶装置30は、設備DB112B、配管DB113B、経路決定プログラム101を記憶している。設備DB112B、配管DB113Bのようなデータは、クラウドサーバのような他の装置に格納されており、経路決定装置100が他の装置から取得してもよい。 The auxiliary storage device 30 is a storage device that stores data non-volatilely. A specific example of the auxiliary storage device 30 is an HDD (Hard DiSk Drive). The auxiliary storage device 30 is a portable recording medium such as an SD (registered trademark) (Secure Digital) memory card, a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD (Digital VerSail DiSk). There may be. The auxiliary storage device 30 stores the equipment DB 112B, the piping DB 113B, and the routing program 101. Data such as the equipment DB 112B and the piping DB 113B are stored in another device such as a cloud server, and the routing device 100 may acquire the data from the other device.
 入力IF40は、マウスあるいはキーボーのような入力装置が接続され、各装置からデータが入力されるポートである。出力IF50は、各種機器が接続され、各種機器にプロセッサ10によりデータが出力されるポートである。 The input IF40 is a port to which an input device such as a mouse or a keyboard is connected and data is input from each device. The output IF 50 is a port to which various devices are connected and data is output to the various devices by the processor 10.
 通信IF60はプロセッサが他の装置と通信するための通信ポートである。図4では、通信IF60には、圧力センサ803、投入司令部220、生産実行システム230、弁801が接続されている。 Communication IF60 is a communication port for the processor to communicate with other devices. In FIG. 4, the pressure sensor 803, the input control unit 220, the production execution system 230, and the valve 801 are connected to the communication IF60.
 プロセッサ10は補助記憶装置30から経路決定プログラム101を主記憶装置20にロードし、主記憶装置20から経路決定プログラム101を読み込み実行する。主記憶装置20には、経路決定プログラム101だけでなく、OS(Operating SyStem)も記憶されている。プロセッサ10は、OSを実行しながら、経路決定プログラム101を実行する。経路決定装置100は、プロセッサ10を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、経路決定プログラム101の実行を分担する。それぞれのプロセッサは、プロセッサ10と同じように、経路決定プログラム101を実行する装置である。経路決定プログラム101により利用、処理または出力されるデータ、情報、信号値及び変数値は、主記憶装置20、補助記憶装置30、または、プロセッサ10内のレジスタあるいはキャッシュメモリに記憶される。 The processor 10 loads the route determination program 101 from the auxiliary storage device 30 into the main storage device 20, and reads and executes the route determination program 101 from the main storage device 20. The main storage device 20 stores not only the routing program 101 but also an OS (Operating System). The processor 10 executes the routing program 101 while executing the OS. The routing device 100 may include a plurality of processors that replace the processor 10. These plurality of processors share the execution of the routing program 101. Each processor is a device that executes the routing program 101 in the same manner as the processor 10. Data, information, signal values and variable values used, processed or output by the routing program 101 are stored in the main storage device 20, the auxiliary storage device 30, or a register or cache memory in the processor 10.
 経路決定プログラム101は、計算指示部111、設備管理部112、配管管理部113及び弁制御部120の「部」を「処理」、「手順」あるいは「工程」に読み替えた各処理、各手順あるいは各工程をコンピュータに実行させるプログラムである。 In the route determination program 101, each process, each procedure, or each process in which the "unit" of the calculation instruction unit 111, the equipment management unit 112, the piping management unit 113, and the valve control unit 120 is read as "process", "procedure", or "process" It is a program that causes a computer to execute each process.
 また、経路決定方法は、コンピュータである経路決定装置100が経路決定プログラム101を実行することにより行われる方法である。経路決定プログラム101はコンピュータ読取可能な記録媒体に格納されて提供されてもよいし、プログラムプロダクトとして提供されてもよい。 Further, the route determination method is a method performed by the route determination device 100, which is a computer, executing the route determination program 101. The routing program 101 may be stored in a computer-readable recording medium and provided, or may be provided as a program product.
 図5は、流体供給システム1000の有するメッシュ配管回路800における供給経路を説明する図である。
 図5の左上の図は、メッシュ配管回路800の比較例の、ループ型配管である。ループ型の配管では、設備Aから設備Dのうち設備Cのみ稼働(ON)し、設備A,B,Dが停止(OFF)の場合でも、ループ型配管の全域に圧縮空気を供給する必要がある。このため、停止している設備A,B,Dのための経路にも圧縮空気が流れるため、この部分の圧縮空気の漏れが生じる。
 一方、実施の形態1のメッシュ配管回路800では以下のようである。
 図5の左下の図は、メッシュ配管回路800を模式的に示す。メッシュ配管回路800は16箇所の弁Vが配管802で接続されている。図5の左下の図は設備Aから設備Dのすべてが停止している。
 図5の右上の図は、設備Cが稼働を開始した状態を示している。図5の右上の図では、弁V1の弁V2方向が開、弁V2の弁V3方向が開、弁V3の弁V4方向が開とされて、実線で示す供給経路が形成されている。この場合、図5の左上のループ型配管に対して、破線で示す部分には圧縮空気が供給されないため、ループ型配管に対して圧縮空気の漏れが少ない。
 図5の右下の図は、設備B、C、Dが稼働している状態を示す。右下の図では、右上の状態に加え、弁V4の弁V5方向が開、弁V5の弁V6方向が開、弁V5の弁V10方向が開、弁V6の弁V7方向が開、弁V7の弁V8方向が開、弁V8の弁V9方向が開となったため、実線で示す圧縮空気の供給経路が形成された。図5の右下の図でも、メッシュ配管回路800のうち破線の配管は使用されない。よって、ループ型配管に対して圧縮空気の漏れが少ない。
FIG. 5 is a diagram illustrating a supply path in the mesh piping circuit 800 included in the fluid supply system 1000.
The upper left figure of FIG. 5 is a loop type pipe of a comparative example of the mesh piping circuit 800. In the loop type piping, it is necessary to supply compressed air to the entire area of the loop type piping even when only the facility C of the facilities A to D is operating (ON) and the facilities A, B, and D are stopped (OFF). is there. Therefore, the compressed air also flows through the paths for the stopped facilities A, B, and D, so that the compressed air leaks in this portion.
On the other hand, in the mesh piping circuit 800 of the first embodiment, it is as follows.
The lower left figure of FIG. 5 schematically shows the mesh piping circuit 800. In the mesh piping circuit 800, 16 valves V are connected by piping 802. In the lower left figure of FIG. 5, all of equipment A to equipment D are stopped.
The upper right figure of FIG. 5 shows a state in which the facility C has started operation. In the upper right figure of FIG. 5, the valve V2 direction of the valve V1 is open, the valve V3 direction of the valve V2 is open, and the valve V4 direction of the valve V3 is open, and a supply path shown by a solid line is formed. In this case, since the compressed air is not supplied to the portion indicated by the broken line with respect to the loop type pipe on the upper left of FIG. 5, the leakage of the compressed air is small with respect to the loop type pipe.
The lower right figure of FIG. 5 shows a state in which facilities B, C, and D are in operation. In the lower right figure, in addition to the upper right state, the valve V5 direction of the valve V4 is open, the valve V6 direction of the valve V5 is open, the valve V10 direction of the valve V5 is open, the valve V7 direction of the valve V6 is open, and the valve V7. Since the valve V8 direction of the valve V8 was opened and the valve V9 direction of the valve V8 was opened, the supply path of the compressed air shown by the solid line was formed. Also in the lower right figure of FIG. 5, the broken line pipe in the mesh piping circuit 800 is not used. Therefore, there is less leakage of compressed air with respect to the loop type piping.
***動作の説明***
 図6、図7は、経路決定装置100の動作を説明するシーケンスである。図6、図7を参照して、経路決定装置100の動作を説明する。経路決定装置100の動作は、経路決定方法に相当する。また、経路決定装置100の動作は、経路決定プログラムの処理に相当する。
*** Explanation of operation ***
6 and 7 are sequences for explaining the operation of the routing device 100. The operation of the routing device 100 will be described with reference to FIGS. 6 and 7. The operation of the route determination device 100 corresponds to the route determination method. Further, the operation of the route determination device 100 corresponds to the processing of the route determination program.
 経路決定装置100の動作の前段階として、システム納入業者またはDB管理者が、設備DB112B及び配管DB113Bを初期設定する。必要があれば、システム納入業者またはDB管理者は、設備DB112Bを更新する。必要があれば、システム納入業者またはDB管理者は、配管DB113Bを更新する。設備DB112B及び配管DB113Bを説明する。
図8は、設備DB112Bの一例を示す。
図9は、配管DB113Bの一例を示す。設備DB112Bから説明する。
As a preliminary step to the operation of the routing device 100, the system supplier or the DB administrator initially sets the equipment DB 112B and the piping DB 113B. If necessary, the system supplier or DB administrator updates the equipment DB 112B. If necessary, the system supplier or DB administrator updates the piping DB 113B. The equipment DB 112B and the piping DB 113B will be described.
FIG. 8 shows an example of the equipment DB 112B.
FIG. 9 shows an example of the pipe DB 113B. This will be described from the equipment DB 112B.
 図8を参照して設備DB112Bを説明する。設備DB112Bは、設備の使用する圧縮空気の消費量に関するデータを持っているDBである。設備DB112Bはソフトウェアである。図8の上の表を説明する。左の列は設備を示す。設備は乾燥機である。中央の列は乾燥機の動作モードを示す。中央の列は動作モードとして、停止、起動、乾燥動作が弱、中、強の場合、及び乾燥機が休止の場合を示している。右側の列は、各動作モードにおける乾燥機の圧縮空気の消費量を示す。図8の下の表は、設備が仕切り開閉機である。
表の各列は上の表と同じであるので説明は省略する。
The equipment DB 112B will be described with reference to FIG. The equipment DB 112B is a DB having data on the consumption of compressed air used by the equipment. The equipment DB 112B is software. The table above FIG. 8 will be described. The left column shows the equipment. The equipment is a dryer. The middle column shows the operating mode of the dryer. The middle column shows the operation modes: weak, medium, and strong stop, start, and dry operations, and when the dryer is inactive. The right column shows the amount of compressed air consumed by the dryer in each mode of operation. In the table below FIG. 8, the equipment is a partition switch.
Since each column of the table is the same as the above table, the description is omitted.
 図9を参照して配管DB113Bを説明する。配管DB113Bは、配管箇所における圧縮空気の消費量(漏れ量)に関するデータを格納している。配管DB113Bはソフトウェアである。配管DB113Bにおける圧縮空気の消費量とは、圧縮空気の漏れ量である。配管DB113Bは、配管の径ごとに、配管の消費量、継手の消費力、手動開閉弁の消費量、自動開閉弁の消費量を示す。また、配管DB113Bはメッシュ配管回路800のメッシュ配管情報880を持つ。図9ではメッシュ配管情報を模式的に示している。図9に示すメッシュ配管情報は図1に示すメッシュ配管回路800を模式的に示すため、図9のメッシュ配管情報の示すメッシュ配管回路はメッシュ配管回路800に一致はしていない。メッシュ配管情報とは、メッシュ配管回路800の構成情報である。図1のメッシュ配管回路800を例とすれば、メッシュ配管情報880は、メッシュ配管回路800が、25個の弁801、40本の配管802及び28個の圧力センサ803を有する、メッシュ形状の配管回路であるという情報である。 The piping DB 113B will be described with reference to FIG. The pipe DB 113B stores data on the amount of compressed air consumed (leakage) at the pipe location. The piping DB 113B is software. The amount of compressed air consumed in the pipe DB 113B is the amount of compressed air leaked. The pipe DB 113B shows the consumption amount of the pipe, the consumption power of the joint, the consumption amount of the manual on-off valve, and the consumption amount of the automatic on-off valve for each diameter of the pipe. Further, the piping DB 113B has mesh piping information 880 of the mesh piping circuit 800. FIG. 9 schematically shows mesh piping information. Since the mesh piping information shown in FIG. 9 schematically shows the mesh piping circuit 800 shown in FIG. 1, the mesh piping circuit shown in the mesh piping information of FIG. 9 does not match the mesh piping circuit 800. The mesh piping information is configuration information of the mesh piping circuit 800. Taking the mesh piping circuit 800 of FIG. 1 as an example, the mesh piping information 880 is a mesh-shaped piping in which the mesh piping circuit 800 has 25 valves 801 and 40 piping 802 and 28 pressure sensors 803. It is information that it is a circuit.
 図9の上の表を説明する。左の列は、径3cmの配管を示す。中央の列は、配管、継手、及び弁のような種類を示す。右側の列は、配管、継手、及び弁の圧縮空気の消費量、つまり、圧縮空気の漏れ量を示す。図9の下の表は、径2cmの配管を示しており、表の各列は上の表と同じであるので説明は省略する。 The table above FIG. 9 will be described. The left column shows a pipe with a diameter of 3 cm. The middle row shows types such as pipes, fittings, and valves. The right column shows the amount of compressed air consumed in pipes, fittings, and valves, that is, the amount of compressed air leaked. The lower table of FIG. 9 shows a pipe having a diameter of 2 cm, and since each column of the table is the same as the upper table, the description thereof will be omitted.
<ステップS21>
 ステップS21において、立案部210が、生産投入211を立案する。立案部210は立案した生産投入211を投入司令部220へ送信する。
 図10は、生産投入211の一例を示す。左の列から順に、生産される製品の品番、大日程の生産数、中日程の生産数及び小日程の生産数(個数)を示す。大日程は、1月に、品番「AA001M」の製品が1000個生産されるべきことを示す。中日程は、1月の第1週に、品番「AA001M」の製品が250個生産されるべきことを示す。小日程は、1月4日9時から10時に品番「AA001M」の製品が30個生産されるべきこと、1月4日10時から11時に品番「AA001M」の製品が33個生産されるべきこと、1月4日11時から12時に品番「AA001M」の製品が33個生産されるべきことを示す。
<Step S21>
In step S21, the planning unit 210 plans the production input 211. The planning unit 210 transmits the planned production input 211 to the input command unit 220.
FIG. 10 shows an example of the production input 211. From the left column, the part number of the product to be produced, the number of production of the large schedule, the number of production of the medium schedule and the number of production (quantity) of the small schedule are shown. The big schedule indicates that 1000 products with product number "AA001M" should be produced in January. The medium schedule indicates that 250 products with product number "AA001M" should be produced in the first week of January. The small schedule is that 30 products with product number "AA001M" should be produced from 9:00 to 10:00 on January 4, and 33 products with product number "AA001M" should be produced from 10:00 to 11:00 on January 4. This indicates that 33 products with the product number "AA001M" should be produced from 11:00 to 12:00 on January 4th.
<ステップS22>
 ステップS22において、投入司令部220は、立案部210から受信した生産投入211から生産投入司令221を生成し、生成した生産投入司令221を、計算指示部111と生産実行システム230へ送信する。
 図11は、投入司令部220が生成する生産投入司令221の一例を示す。
 なお、図10に示す生産投入211とは、いつ、どの行程で、製品を何個処理するかという情報である。
 図11に示す生産投入司令221とは、いつ、どの装置が、何の処理をするかという情報である。生産投入司令221は、設備稼働情報と工程情報を含む。設備稼働情報を説明する。
左の列は、設備が稼働する日時を示す。中央の列は、稼働する設備を示す。右側の列は、レシピを示す。レシピとは工程の具体的な内容である。
 工程情報を説明する。工程情報は、左から順に、製品の品番、工程1から工程4を示す。各工程はレシピを具体化した内容である。
<Step S22>
In step S22, the input command unit 220 generates the production input command 221 from the production input 211 received from the planning unit 210, and transmits the generated production input command 221 to the calculation instruction unit 111 and the production execution system 230.
FIG. 11 shows an example of the production input command 221 generated by the input command unit 220.
The production input 211 shown in FIG. 10 is information on when, in what process, and how many products are processed.
The production input command 221 shown in FIG. 11 is information on when, which device performs what processing. The production input command 221 includes equipment operation information and process information. Explain the equipment operation information.
The left column shows the date and time when the equipment is in operation. The middle column shows the equipment in operation. The right column shows the recipe. A recipe is a specific content of a process.
Process information will be explained. The process information indicates the product part number and the process 1 to 4 in order from the left. Each process is a concrete content of the recipe.
<ステップS22-1>
 ステップS22-1では、計算指示部111が計算指示1を生成する。ステップS22-1において、計算指示部111は、生産投入司令221に基づき計算指示1を生成し、計算指示1を設備管理部112に送信する。
 ステップS23-1において、計算指示部111は、設備管理部112から計算結果1を受信する。
 ステップS22-2において、計算指示部111は、計算結果1を用いて計算指示2を生成し、計算指示2を配管管理部113に送信する。
 ステップS23-2において、計算指示部111は、計算結果2を配管管理部113から受信する。
<Step S22-1>
In step S22-1, the calculation instruction unit 111 generates the calculation instruction 1. In step S22-1, the calculation instruction unit 111 generates the calculation instruction 1 based on the production input command 221 and transmits the calculation instruction 1 to the equipment management unit 112.
In step S23-1, the calculation instruction unit 111 receives the calculation result 1 from the equipment management unit 112.
In step S22-2, the calculation instruction unit 111 generates the calculation instruction 2 using the calculation result 1, and transmits the calculation instruction 2 to the piping management unit 113.
In step S23-2, the calculation instruction unit 111 receives the calculation result 2 from the piping management unit 113.
 配管管理部113は、経路決定部である。経路決定部は、流体を利用する利用設備が流体を消費する予測消費量を示す消費量情報と、複数の配管の各配管における流体の漏れ量及び複数の弁の各弁における流体の漏れ量を含む漏れ量情報とを参照することにより、供給経路を決定する。ここで、複数の弁の各弁における流体の漏れ量における弁は、電磁弁と手動弁の両者を含む。
 消費量情報は計算結果1である。漏れ量情報は配管DB113Bの持つデータである。
The piping management unit 113 is a routing unit. The routing unit determines the consumption information indicating the estimated consumption amount of the fluid by the equipment using the fluid, the amount of fluid leakage in each pipe of multiple pipes, and the amount of fluid leak in each valve of multiple valves. The supply route is determined by referring to the leakage amount information included. Here, the valve in the amount of fluid leakage in each valve of the plurality of valves includes both a solenoid valve and a manual valve.
The consumption information is the calculation result 1. The leakage amount information is the data possessed by the piping DB 113B.
 動作は具体的には以下のようである。
 図12は、計算指示部111の処理内容を示す。図12を参照して計算指示部111の処理を説明する。
(1)計算指示部111は、投入司令部220から受け取った生産投入司令221を入力データとして使って、設備管理部112に、計算指示1として、設備の時間に対応する動作の情報を与える(ステップS22-1)。
計算指示部111は、図12に示す生産投入司令221を使用して、計算指示1を生成する。
計算指示部111は、生産投入司令221から、9:00に洗浄機1号機が純水洗浄を行い、9:00に洗浄機2号機が純水洗浄を行うと解釈する。
計算指示部111は、解釈に基づき、計算指示1として、洗浄機1号機及び洗浄機2号機の圧縮空気消費量を計算せよという指示を生成し、計算指示1を設備管理部112に送信する。
(2)計算指示部111は、設備管理部112から、計算結果1として、時間に対応した、設備の消費量情報を受け取る(ステップS23-1)。具体的には、計算指示部111は、計算結果1として、設備管理部112から、洗浄機1号機及び洗浄機2号機の圧縮空気消費量を受信する。この計算結果1は、圧縮機群の制御情報としても使用される。
(3)計算指示部111は、投入司令部220から受け取った生産投入司令221と、設備管理部112の計算結果1とを使って、計算指示2として、配管管理部113に圧縮空気の時間に対応する必要量の情報を与える(ステップS22-2)。
 図12の例では、計算指示部111は、計算指示2として、洗浄機1号機及び洗浄機2号機への圧縮空気の供給経路の候補を決定せよという指示と、各候補の消費量(漏れ量)を計算せよという指示とを生成する。
(4)この例では、計算指示部111は、計算結果2として、配管管理部113から、洗浄機1号機及び洗浄機2を稼働させる際の複数の供給経路と、それぞれの供給経路の圧縮空気消費量を受け取る(ステップS23-2)。
この圧縮空気の消費量は圧縮機群の制御情報としても使用される。
The operation is specifically as follows.
FIG. 12 shows the processing contents of the calculation instruction unit 111. The processing of the calculation instruction unit 111 will be described with reference to FIG.
(1) The calculation instruction unit 111 uses the production input command 221 received from the input command unit 220 as input data, and gives the equipment management unit 112 information on the operation corresponding to the time of the equipment as the calculation instruction 1. Step S22-1).
The calculation instruction unit 111 generates the calculation instruction 1 by using the production input command 221 shown in FIG.
The calculation instruction unit 111 interprets from the production input command 221 that the washing machine No. 1 cleans the pure water at 9:00 and the washing machine No. 2 cleans the pure water at 9:00.
Based on the interpretation, the calculation instruction unit 111 generates an instruction to calculate the compressed air consumption of the washing machine No. 1 and the washing machine No. 2 as the calculation instruction 1, and transmits the calculation instruction 1 to the facility management unit 112.
(2) The calculation instruction unit 111 receives the equipment consumption information corresponding to the time as the calculation result 1 from the equipment management unit 112 (step S23-1). Specifically, the calculation instruction unit 111 receives the compressed air consumption of the washing machine No. 1 and the washing machine No. 2 from the equipment management unit 112 as the calculation result 1. This calculation result 1 is also used as control information for the compressor group.
(3) The calculation instruction unit 111 uses the production input command 221 received from the input control unit 220 and the calculation result 1 of the equipment management unit 112 to give the piping management unit 113 the time for compressed air as the calculation instruction 2. The corresponding required amount of information is given (step S22-2).
In the example of FIG. 12, the calculation instruction unit 111 instructs the calculation instruction 2 to determine the candidates for the supply path of the compressed air to the washing machine No. 1 and the washing machine No. 2, and the consumption amount (leakage amount) of each candidate. ) Is generated with an instruction to calculate.
(4) In this example, as the calculation result 2, the calculation instruction unit 111 has a plurality of supply paths for operating the washing machine No. 1 and the washing machine 2 from the piping management unit 113, and compressed air in each supply path. Receive the consumption (step S23-2).
This amount of compressed air consumption is also used as control information for the compressor group.
<ステップS23-1>
 ステップS23-1では、設備計算部112Aが、計算結果1を生成する。ステップS23-1では、設備計算部112Aが、計算指示部111からの計算指示1に応答した計算を実行する。
 図13は、設備計算部112Aが計算結果1を生成する具体的な処理を示す。図13に示すように、計算指示1は、[設備の圧縮空気消費量を計算せよ]という指示と、生産投入司令221とを含む。設備計算部112Aは、計算指示1を受信した場合、生産投入司令221から、9:00に洗浄機1号機が純水洗浄を実施し、9:00に洗浄機2号機が純水洗浄を実施すると解釈する。設備計算部112Aは、設備DB112Bを参照して、各設備810の圧縮空気の消費量を計算することができる。
 つまり設備計算部112Aは、計算指示部111から生産投入司令221を含む計算指示1を受信した場合、図13に示すように、設備DB112Bに記載の消費量等のデータを用いて、設備の圧縮空気の消費量を計算する。図13では、設備計算部112Aは、洗浄機1号機及び洗浄機2号機の圧縮空気の消費量として以下を計算する。9:00から2分、洗浄機1号機が2.0mを消費する。9:00から2分、洗浄機2号機が2.0mを消費する。設備計算部112Aは、これらの消費量を計算結果1として計算指示部111へ送信する。
<Step S23-1>
In step S23-1, the equipment calculation unit 112A generates the calculation result 1. In step S23-1, the equipment calculation unit 112A executes the calculation in response to the calculation instruction 1 from the calculation instruction unit 111.
FIG. 13 shows a specific process in which the equipment calculation unit 112A generates the calculation result 1. As shown in FIG. 13, the calculation instruction 1 includes an instruction [calculate the compressed air consumption of the equipment] and a production input command 221. When the equipment calculation unit 112A receives the calculation instruction 1, the washing machine No. 1 performs pure water cleaning at 9:00 and the washing machine No. 2 performs pure water cleaning at 9:00 from the production input command 221. Then interpret it. The equipment calculation unit 112A can calculate the consumption of compressed air of each equipment 810 with reference to the equipment DB 112B.
That is, when the equipment calculation unit 112A receives the calculation instruction 1 including the production input command 221 from the calculation instruction unit 111, the equipment calculation unit 112A uses the data such as the consumption amount described in the equipment DB 112B to compress the equipment, as shown in FIG. Calculate air consumption. In FIG. 13, the equipment calculation unit 112A calculates the following as the consumption amount of compressed air of the washing machine No. 1 and the washing machine No. 2. From 9:00 to 2 minutes, the first washing machine consumes 2.0 m 3 . From 9:00 to 2 minutes, the washing machine No. 2 consumes 2.0 m 3 . The equipment calculation unit 112A transmits these consumption amounts to the calculation instruction unit 111 as the calculation result 1.
<ステップS23-2>
 図14は、配管計算部113Aが、計算結果2を生成する具体的な処理を示す。計算指示部111は、図12で述べた生産投入司令221及び図13で述べた計算結果1を用いて、計算指示2を生成して配管計算部113Aへ送信する。図14に示すように、計算指示2は、[設備への圧縮空気供給経路の候補と、消費量(漏れ量)を計算せよ]という指示と、計算結果1とを含む。
 ステップS23-2において、配管計算部113Aは、計算結果1と配管DB113Bのデータとを参照して、計算結果2を生成する。
 図14では、
(a)配管計算部113Aは、計算指示2に基づき、9:00から2分、洗浄機1号機が圧縮空気を2.0m消費し、9:00から2分、洗浄機2号機が圧縮空気を2.0m消費すると解釈する。つまり、配管計算部113Aは、9:00から9:02まで、洗浄機1号機及び洗浄機2号機が、それぞれ、圧縮空気を2.0m消費すると解釈する。
(b)次に、配管計算部113Aは、メッシュ配管情報880を参照し、9:00から9:02において、圧縮空気を洗浄機1号機に供給する複数の経路と、圧縮空気を洗浄機2号機に供給する複数の経路を計算する。経路の計算は、メッシュ配管情報880の有するメッシュ配管回路800のデータから数学的に計算できる。
 配管計算部113Aは、洗浄機1号機の複数の経路を対象として、計算結果1に含まれる洗浄機1号機の圧縮空気の使用量と、配管DB113Bの消費量の列のうち、洗浄機2号機について計算した複数の経路を構成する「種類」の消費量のデータとを用いて、以下のように、各径路における圧縮空気の消費量を計算する。配管計算部113Aは、洗浄機1号機の各径路の圧縮空気の消費量として、ブランチ、ノード、弁のような、経路を構成する「種類」の消費量から、各経路の圧縮空気の漏れ量を計算する。
同様に、配管計算部113Aは、洗浄機2号機の複数の経路を対象として、計算結果1に含まれる洗浄機2号機の圧縮空気の使用量と、配管DB113Bの消費量の列のうち、洗浄機2号機について計算した複数の経路を構成する「種類」の消費量のデータとを用いて、以下のように、各径路における圧縮空気の消費量を計算する。配管計算部113Aは、洗浄機2号機の各径路の圧縮空気の消費量として、ブランチ、ノード、弁のような、経路を構成する「種類」の消費量から、各経路の圧縮空気の漏れ量を計算する。
(c)配管計算部113Aは、(b)の計算結果により、洗浄機1号機については経路A→B→Cを決定し、洗浄機2号機については経路A→B→D→E→Cを決定したものとする。なお、以下に示す経路A→B→Cは、例えば図1でのA→B→Cの経路であり、洗浄機1号機は図1の設備810aである。また、以下に示す経路A→B→D→E→Cは、例えば図1でのA→B→D→E→Cの経路であり、洗浄機2号機は図1の設備810bである。経路A→B→C及び経路A→B→D→E→Cの経路が形成される場合、弁Aのサブバルブ1が開であり、弁Bのサブバルブ1,2,3が開であり、弁Cのサブバルブ4が開であり、弁Dのサブバルブ1,2が開であり及び弁Eのサブバルブ2,3が開である。計算結果2は、図14に示すように、以下の(1)(2)を含む。
(1)9:00から2分間、経路A→B→Cで、洗浄機1号機に圧縮空気を供給しなさい。配管消費量は0.1m/秒である。
(2)9:00から2分間、経路A→B→D→E→Cで、洗浄機2号機に圧縮空気を供給しなさい。配管消費量は0.1m/秒である。
<Step S23-2>
FIG. 14 shows a specific process in which the piping calculation unit 113A generates the calculation result 2. The calculation instruction unit 111 generates the calculation instruction 2 and transmits it to the piping calculation unit 113A by using the production input command 221 described in FIG. 12 and the calculation result 1 described in FIG. As shown in FIG. 14, the calculation instruction 2 includes an instruction [calculate a candidate for a compressed air supply path to the facility and a consumption amount (leakage amount)], and a calculation result 1.
In step S23-2, the piping calculation unit 113A refers to the calculation result 1 and the data of the piping DB 113B to generate the calculation result 2.
In FIG. 14,
(A) Based on the calculation instruction 2, the piping calculation unit 113A consumes 2.0 m 3 of compressed air from 9:00 to 2 minutes, and the washing machine No. 2 consumes 2.0 m 3 from 9:00 to 2 minutes. It is interpreted as consuming 2.0 m 3 of air. That is, the piping calculation unit 113A interprets that from 9:00 to 9:02, the washing machine No. 1 and the washing machine No. 2 each consume 2.0 m 3 of compressed air.
(B) Next, the piping calculation unit 113A refers to the mesh piping information 880, and from 9:00 to 9:02, a plurality of paths for supplying compressed air to the washing machine No. 1 and the compressed air for the washing machine 2 Calculate multiple routes to supply to Unit. The route can be calculated mathematically from the data of the mesh piping circuit 800 included in the mesh piping information 880.
The pipe calculation unit 113A targets a plurality of routes of the washing machine No. 1, and is included in the calculation result 1 in the column of the amount of compressed air used by the washing machine No. 1 and the consumption of the pipe DB 113B, and the washing machine No. 2 is used. The amount of compressed air consumed in each route is calculated as follows, using the data of the amount of consumption of the "types" constituting the plurality of routes calculated for. The piping calculation unit 113A determines the amount of compressed air in each path of the washing machine No. 1 from the amount of consumption of "types" that make up the path, such as branches, nodes, and valves, as the amount of compressed air in each path. To calculate.
Similarly, the piping calculation unit 113A targets a plurality of routes of the cleaning machine No. 2 and cleans the columns of the amount of compressed air used by the washing machine No. 2 and the consumption amount of the piping DB 113B included in the calculation result 1. The amount of compressed air consumed in each route is calculated as follows, using the data of the amount of consumption of "types" constituting the plurality of routes calculated for Unit 2. The piping calculation unit 113A determines the amount of compressed air in each path of the washing machine No. 2 from the consumption of "types" that make up the path, such as branches, nodes, and valves, as the amount of compressed air in each path. To calculate.
(C) The piping calculation unit 113A determines the route A → B → C for the washing machine No. 1 and the route A → B → D → E → C for the washing machine No. 2 based on the calculation result of (b). It shall be decided. The route A → B → C shown below is, for example, the route A → B → C in FIG. 1, and the washing machine No. 1 is the equipment 810a in FIG. Further, the route A → B → D → E → C shown below is, for example, the route A → B → D → E → C in FIG. 1, and the washing machine No. 2 is the equipment 810b in FIG. When the path A → B → C and the path A → B → D → E → C are formed, the sub valve 1 of the valve A is open, the sub valves 1, 2 and 3 of the valve B are open, and the valves The sub-valve 4 of C is open, the sub-valves 1 and 2 of valve D are open, and the sub-valves 2 and 3 of valve E are open. As shown in FIG. 14, the calculation result 2 includes the following (1) and (2).
(1) Supply compressed air to the washing machine No. 1 in the route A → B → C for 2 minutes from 9:00. Piping consumption is 0.1 m 3 / sec.
(2) Supply compressed air to the washing machine No. 2 in the route A → B → D → E → C for 2 minutes from 9:00. Piping consumption is 0.1 m 3 / sec.
<ステップS24>
 ステップS24において、計算指示部111は、設備管理部112の計算結果1,配管管理部113の計算結果2、及び生産投入司令221に基づき、圧縮空気の供給経路781、圧縮空気消費量782、及び運転するべき圧縮機710の台数783を含む情報を、決定結果780として生成する。
 圧縮空気の供給経路781は、計算結果2からわかる。圧縮空気消費量782は、設備による圧縮空気の消費量と、配管による圧縮空気の消費量との和である。設備による圧縮空気の消費量は計算結果1からわかり、配管による圧縮空気の消費量は計算結果2からわかる。
圧縮空気のリーク量であるので計算結果2からわかる。運転するべき圧縮機710の台数783は、以下のようである。計算指示部111は、圧縮機710の仕様データを参照し、計算結果1及び計算結果2から台数783を求めることができる。圧縮機710の仕様データは補助記憶装置30に格納されている。
<Step S24>
In step S24, the calculation instruction unit 111 sets the compressed air supply path 781, the compressed air consumption amount 782, and the compressed air consumption amount 782 based on the calculation result of the equipment management unit 112, the calculation result 2 of the piping management unit 113, and the production input command 221. Information including the number 783 of compressors 710 to be operated is generated as a determination result 780.
The supply path 781 of the compressed air can be found from the calculation result 2. The compressed air consumption amount 782 is the sum of the amount of compressed air consumed by the equipment and the amount of compressed air consumed by the piping. The amount of compressed air consumed by the equipment can be found from the calculation result 1, and the amount of compressed air consumed by the piping can be found from the calculation result 2.
Since it is the amount of leakage of compressed air, it can be understood from the calculation result 2. The number of compressors 710 to be operated 783 is as follows. The calculation instruction unit 111 can obtain the number of units 783 from the calculation result 1 and the calculation result 2 by referring to the specification data of the compressor 710. The specification data of the compressor 710 is stored in the auxiliary storage device 30.
<ステップS25-1>
 計算指示部111は、供給経路781を送信する。計算指示部111は、経路決定に必要な計算を指示し、計算により決定した経路を送信する経路送信部である。具体的には、ステップS25-1において、計算指示部111は、ステップS24の決定結果780を、生産実行システム230に送信する。
<Step S25-1>
The calculation instruction unit 111 transmits the supply path 781. The calculation instruction unit 111 is a route transmission unit that instructs the calculation required for the route determination and transmits the route determined by the calculation. Specifically, in step S25-1, the calculation instruction unit 111 transmits the determination result 780 of step S24 to the production execution system 230.
<ステップS25-2>
 生産実行システム230は、投入司令部220から受信した「生産投入司令221」(ステップS22)と、計算指示部111から受信した「決定結果780」(ステップS25-1)とに基づいて、制御指令711生成し、圧縮機制御装置240に送信する(ステップS25-2)。生産実行システム230は、決定結果780に含まれる圧縮空気消費量782と、投入司令部220から送信される生産投入司令221とから、制御指令711を生成できる。制御指令711は、該当する圧縮機の稼働率を制御する情報である。
<Step S25-2>
The production execution system 230 has a control command based on the "production input command 221" (step S22) received from the input command unit 220 and the "decision result 780" (step S25-1) received from the calculation instruction unit 111. 711 is generated and transmitted to the compressor control device 240 (step S25-2). The production execution system 230 can generate the control command 711 from the compressed air consumption amount 782 included in the determination result 780 and the production input command 221 transmitted from the input command unit 220. The control command 711 is information for controlling the operating rate of the corresponding compressor.
<ステップS25-3>
 ステップS25-3において、圧縮機制御装置240は、生産実行システム230から制御指令711を受信し、制御指令711に従って、該当する圧縮機の稼働率を制御する。
<Step S25-3>
In step S25-3, the compressor control device 240 receives the control command 711 from the production execution system 230, and controls the operating rate of the corresponding compressor in accordance with the control command 711.
<ステップS26-1>
 ステップS26-1において、生産実行システム230は、計算指示部111から受信した決定結果780に基づいて、弁制御指令401を弁制御部120に送信する。弁制御指令401は、供給経路781そのものでも良い。
 つまり、供給経路781のデータフォーマットが、メッシュ配管回路800において供給経路781を形成する複数の弁の開閉情報である場合、弁制御指令401は供給経路781のデータでよい。
<Step S26-1>
In step S26-1, the production execution system 230 transmits the valve control command 401 to the valve control unit 120 based on the determination result 780 received from the calculation instruction unit 111. The valve control command 401 may be the supply path 781 itself.
That is, when the data format of the supply path 781 is the opening / closing information of a plurality of valves forming the supply path 781 in the mesh piping circuit 800, the valve control command 401 may be the data of the supply path 781.
<ステップS26-2>
 ステップS26-2において、弁制御部120は、弁制御指令401に基づき、該当する弁の開閉を制御する。
<Step S26-2>
In step S26-2, the valve control unit 120 controls the opening and closing of the corresponding valve based on the valve control command 401.
<ステップS27>
 ステップS27において、弁制御部120は、弁の開閉状態を記憶する。弁制御部120は弁の開閉状態を補助記憶装置30に格納する。
<Step S27>
In step S27, the valve control unit 120 stores the open / closed state of the valve. The valve control unit 120 stores the open / closed state of the valve in the auxiliary storage device 30.
<ステップS28>
 以下図7を参照して、ステップS28以降を説明する。図7に示すように、各圧力センサが、センサデータを、圧縮機制御装置240、設備管理部112、配管管理部113へ送信する。
<Step S28>
Step S28 and subsequent steps will be described below with reference to FIG. 7. As shown in FIG. 7, each pressure sensor transmits sensor data to the compressor control device 240, the equipment management unit 112, and the piping management unit 113.
<ステップS29>
 ステップS29において、生産実行システム230が、該当する生産設備810を制御する。
<Step S29>
In step S29, the production execution system 230 controls the corresponding production equipment 810.
<ステップS30>
 ステップS30において、生産実行システム230から制御された生産設備810は、状態データを、生産実行システム230、設備管理部112、配管管理部113へ送信する。状態データとは、指令のとおりに動作したという応答データである。
<Step S30>
In step S30, the production equipment 810 controlled from the production execution system 230 transmits the state data to the production execution system 230, the equipment management unit 112, and the piping management unit 113. The state data is response data indicating that the operation was performed according to the command.
<ステップS31>
 ステップS31において、設備管理部112,配管管理部113は、センサデータ、各設備の状態データを収集し、設備DB112B、配管DB113Bの更新に利用することができる。
<Step S31>
In step S31, the equipment management unit 112 and the piping management unit 113 can collect sensor data and status data of each equipment and use them for updating the equipment DB 112B and the piping DB 113B.
 以下に、弁制御部120が弁の開閉を制御して、圧縮空気の供給経路を形成する手順を説明する。配管802の内部の圧力変動を緩和するため、弁制御部120は、圧縮空気の供給開始の際はレシーバータンク730に近い弁から開き、圧縮空気の供給停止時の際は、レシーバータンク730から遠い弁から閉じる。 The procedure in which the valve control unit 120 controls the opening and closing of the valve to form a compressed air supply path will be described below. In order to alleviate the pressure fluctuation inside the pipe 802, the valve control unit 120 opens from the valve close to the receiver tank 730 when the supply of compressed air starts, and is far from the receiver tank 730 when the supply of compressed air is stopped. Close from the valve.
 図15は、メッシュ配管回路800における供給経路の形成を説明する図である。
図15において、初期状態は、すべての弁Vは全て閉であり圧縮機は全て停止である。
FIG. 15 is a diagram illustrating the formation of a supply path in the mesh piping circuit 800.
In FIG. 15, in the initial state, all the valves V are all closed and all the compressors are stopped.
(1)操業開始で圧縮機制御装置240は圧縮機Aを稼働する。
弁制御部120は弁V50を開にする。
(2)設備Aの稼働に合わせ、弁制御部120は、配管Bへ供給する弁V99を開にする。
(3)設備Cの稼働に合わせ、弁制御部120は配管B4へ供給する弁V2を開にし、配管B6へ供給する弁V5を開にする。
(4)設備Eの稼働に合わせ、圧縮機制御装置240が圧縮機Bを稼働させる。
弁制御部120は、弁V60を開にし、配管B8へ供給する弁V4を開にし、配管B11へ供給する弁V7を開にする。
(5)設備Cの停止に合わせ、弁制御部120は配管B9へ供給する弁V5を開、配管B11へ供給する弁V8を開、弁V4、配管B6へ供給する弁V5を閉にする。
(6)設備Fの稼働に合わせ、弁制御部120は配管B12へ供給する弁V8を開にする。
(7)全設備の停止に合わせ、弁制御部120は弁V8を閉、弁V5を閉、弁V2を閉、弁V99を閉、弁V50を閉、弁V60を閉とする。圧縮機制御装置240は、圧縮機Aと圧縮機Bを停止する。
(1) At the start of operation, the compressor control device 240 operates the compressor A.
The valve control unit 120 opens the valve V50.
(2) The valve control unit 120 opens the valve V99 supplied to the pipe B in accordance with the operation of the equipment A.
(3) The valve control unit 120 opens the valve V2 supplied to the pipe B4 and opens the valve V5 supplied to the pipe B6 in accordance with the operation of the equipment C.
(4) The compressor control device 240 operates the compressor B in accordance with the operation of the equipment E.
The valve control unit 120 opens the valve V60, opens the valve V4 supplied to the pipe B8, and opens the valve V7 supplied to the pipe B11.
(5) When the equipment C is stopped, the valve control unit 120 opens the valve V5 supplied to the pipe B9, opens the valve V8 supplied to the pipe B11, and closes the valve V4 and the valve V5 supplied to the pipe B6.
(6) The valve control unit 120 opens the valve V8 supplied to the pipe B12 in accordance with the operation of the equipment F.
(7) The valve control unit 120 closes the valve V8, closes the valve V5, closes the valve V2, closes the valve V99, closes the valve V50, and closes the valve V60 when all the equipment is stopped. The compressor control device 240 stops the compressor A and the compressor B.
***実施の形態1の効果の説明***
(1)従来技術では、ループ配管における供給経路での圧縮空気のリークを許容しつつ、圧縮機の稼働制御により省エネルギー化を行っていた。しかし流体供給システム1000では、メッシュ配管回路800の備える弁の開閉を制御することで、メッシュ配管回路800の一部分としての供給経路を形成する。
よって、本来使用しない配管の体積分への圧縮空気供給の削減及び圧縮空気の供給経路の最小化によるリーク削減が可能になる。
(2)流体供給システム1000によれば、メッシュ配管回路800により供給経路を最小化することができ、要求される圧縮空気量を従来よりも削減することができるため、圧縮機の稼働率を低減することが可能となるので、従来は達成できなかった省エネルギー化を図ることができる。
*** Explanation of the effect of Embodiment 1 ***
(1) In the prior art, energy saving is performed by controlling the operation of the compressor while allowing leakage of compressed air in the supply path in the loop piping. However, in the fluid supply system 1000, the supply path as a part of the mesh piping circuit 800 is formed by controlling the opening and closing of the valve provided in the mesh piping circuit 800.
Therefore, it is possible to reduce the supply of compressed air to the volume of the piping that is not originally used and to reduce the leakage by minimizing the supply path of the compressed air.
(2) According to the fluid supply system 1000, the supply path can be minimized by the mesh piping circuit 800, and the required compressed air amount can be reduced as compared with the conventional case, so that the operating rate of the compressor is reduced. This makes it possible to save energy, which was not possible in the past.
<変形例>
 図16、図17を参照して、実施の形態1の変形例を説明する。
図16は、変形例における経路決定装置100のハードウェア構成を示す。変形例の経路決定装置100は、弁801の状態である弁状態情報131を記憶している弁状態記憶部130を備えている。弁状態記憶部130は、補助記憶装置30で実現される。
図17は、弁状態記憶部130が格納する弁状態情報131を示す。
<Modification example>
A modified example of the first embodiment will be described with reference to FIGS. 16 and 17.
FIG. 16 shows the hardware configuration of the routing device 100 in the modified example. The routing device 100 of the modified example includes a valve state storage unit 130 that stores valve state information 131 that is the state of the valve 801. The valve state storage unit 130 is realized by the auxiliary storage device 30.
FIG. 17 shows valve state information 131 stored in the valve state storage unit 130.
 図17を参照して、弁状態情報131を説明する。破線で囲む範囲は、メッシュ配管回路800の一部を示している。図17では、弁は、V(1)、V(2)及びV(3)と表記し、配管は、P(1)、P(2)と表記し、圧力センサは、S(1)及びS(2)と表記している。
 また、V(1)は、サブバルブであるV(1)1及びV(1)2を有し、V(2)は、サブバルブであるV(2)1、V(2)2及びV(2)3を有し、V(3)は、サブバルブであるV(3)1、V(3)2及びV(3)3を有する。
The valve state information 131 will be described with reference to FIG. The area surrounded by the broken line shows a part of the mesh piping circuit 800. In FIG. 17, the valves are described as V (1), V (2) and V (3), the piping is described as P (1), P (2), and the pressure sensor is described as S (1) and S (1). It is written as S (2).
Further, V (1) has V (1) 1 and V (1) 2 which are sub-valves, and V (2) is V (2) 1, V (2) 2 and V (2) which are sub-valves. ) 3, V (3) has subvalves V (3) 1, V (3) 2 and V (3) 3.
 図17の弁状態情報131は、V(1)2及びV(2)3が、閉固定の状態として記録されていることを示す。閉固定の列において、1は閉固定であることを示し、0は閉固定ではないことを示す。閉固定の場合、サブバルブは、閉じた状態としてみなされる。弁状態情報131の内容は、管理者が手動で弁状態記憶部130に登録してもよいし、実施の形態2の変形例で後述するように、配管計算部113Aが、自動で弁状態記憶部130に登録してもよい。実施の形態1の変形例では、弁状態記憶部130に弁状態情報131が記憶されていれば、その記憶の方法は問わない。 The valve state information 131 of FIG. 17 indicates that V (1) 2 and V (2) 3 are recorded as a closed and fixed state. In the closed-fixed column, 1 indicates closed-fixed and 0 indicates not closed-fixed. When closed and fixed, the subvalve is considered closed. The contents of the valve state information 131 may be manually registered in the valve state storage unit 130 by the administrator, or the piping calculation unit 113A automatically stores the valve state as described later in the modified example of the second embodiment. It may be registered in the unit 130. In the modified example of the first embodiment, as long as the valve state information 131 is stored in the valve state storage unit 130, the method of storing the valve state information 131 does not matter.
 この変形例では、配管計算部113Aは、ステップS23-2で計算結果2として供給経路を決定する際に、弁状態情報131も参照して、供給経路を決定する。
 図18は、配管計算部113Aが、弁状態情報131も参照して、供給経路を決定することを説明する図であり図14に対応する。図18に示す弁状態情報131では、弁の列におけるA1,A2,...は、図1のメッシュ配管回路800のA,B,C,D,Eの位置の弁のサブバルブを示す。図1にはサブバルブを示す1,2,3を記載している。
 図18の弁状態情報131では、サブバルブB1とサブバルブD2が閉固定である。この場合は、配管計算部113Aは、供給経路を決定する際に、サブバルブB1とサブバルブD2とを使用する供給経路を採用しない。よって、配管計算部113Aは、図14で述べた経路A→B→D→E→Cは採用しない。図18の例では、配管計算部113Aは、洗浄機2号機の経路として経路A→B→C→Eを採用する。
In this modification, when the piping calculation unit 113A determines the supply path as the calculation result 2 in step S23-2, the piping calculation unit 113A also refers to the valve state information 131 to determine the supply path.
FIG. 18 is a diagram for explaining that the piping calculation unit 113A determines the supply path with reference to the valve state information 131, and corresponds to FIG. In the valve state information 131 shown in FIG. 18, A1, A2, in the valve row. .. .. Shows the sub-valves of the valves at the positions A, B, C, D, and E of the mesh piping circuit 800 of FIG. In FIG. 1, 1, 2 and 3 showing sub valves are shown.
In the valve state information 131 of FIG. 18, the sub valve B1 and the sub valve D2 are closed and fixed. In this case, the piping calculation unit 113A does not adopt the supply path that uses the sub valve B1 and the sub valve D2 when determining the supply path. Therefore, the piping calculation unit 113A does not adopt the route A → B → D → E → C described in FIG. In the example of FIG. 18, the piping calculation unit 113A adopts the route A → B → C → E as the route of the washing machine No. 2.
***変形例の効果***
 実施の形態1の変形例では、供給経路の決定の際に弁状態情報131を使用することで、配管計算部113Aは、弁が閉固定のため採用できない供給経路をすぐに判定できる。よって、配管計算部113Aは迅速に供給経路を決定することができる。
*** Effect of modified example ***
In the modified example of the first embodiment, by using the valve state information 131 when determining the supply path, the piping calculation unit 113A can immediately determine the supply path that cannot be adopted because the valve is closed and fixed. Therefore, the piping calculation unit 113A can quickly determine the supply route.
<ハードウェア構成の補足>
 図4の経路決定装置100では、経路決定装置100の機能がソフトウェアで実現されるが、経路決定装置100の機能がハードウェアで実現されてもよい。
 図19は、経路決定装置100の機能がハードウェアで実現される構成を示す。図19の電子回路90は、計算指示部111、設備管理部112及び配管管理部113、主記憶装置20、補助記憶装置30、入力IF40、出力IF50及び通信IF60の機能を実現する専用の電子回路である。
電子回路90は、信号線91に接続している。電子回路90は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。ASICは、Application Specific Integrated Circuitの略語である。FPGAは、Field-Programmable Gate Arrayの略語である。経路決定装置100の構成要素の機能は、1つの電子回路で実現されてもよいし、複数の電子回路に分散して実現されてもよい。また、経路決定装置100の構成要素の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されてもよい。
 プロセッサ10と電子回路90の各々は、プロセッシングサーキットリとも呼ばれる。経路決定装置100において、計算指示部111、設備管理部112及び配管管理部113の機能がプロセッシングサーキットリにより実現されてもよい。あるいは、計算指示部111、設備管理部112及び配管管理部113、主記憶装置20、補助記憶装置30、入力IF40、出力IF50及び通信IF60の機能が、プロセッシングサーキットリにより実現されてもよい。
<Supplement of hardware configuration>
In the route determination device 100 of FIG. 4, the function of the route determination device 100 is realized by software, but the function of the route determination device 100 may be realized by hardware.
FIG. 19 shows a configuration in which the function of the routing device 100 is realized by hardware. The electronic circuit 90 of FIG. 19 is a dedicated electronic circuit that realizes the functions of the calculation instruction unit 111, the equipment management unit 112, the piping management unit 113, the main storage device 20, the auxiliary storage device 30, the input IF40, the output IF50, and the communication IF60. Is.
The electronic circuit 90 is connected to the signal line 91. The electronic circuit 90 is specifically a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA. GA is an abbreviation for Gate Array. ASIC is an abbreviation for Application Specific Integrated Circuit. FPGA is an abbreviation for Field-Programmable Gate Array. The functions of the components of the routing device 100 may be realized by one electronic circuit, or may be distributed and realized by a plurality of electronic circuits. Further, some functions of the components of the routing device 100 may be realized by an electronic circuit, and the remaining functions may be realized by software.
Each of the processor 10 and the electronic circuit 90 is also referred to as a processing circuit. In the route determination device 100, the functions of the calculation instruction unit 111, the equipment management unit 112, and the piping management unit 113 may be realized by the processing circuit. Alternatively, the functions of the calculation instruction unit 111, the equipment management unit 112, the piping management unit 113, the main storage device 20, the auxiliary storage device 30, the input IF40, the output IF50, and the communication IF60 may be realized by the processing circuit.
 実施の形態2.
 図20から図22を参照して実施の形態2を説明する。実施の形態2では、実施の形態1で説明した経路決定装置100が、配管における圧縮空気の漏れを診断する診断装置として機能する実施形態である。実施の形態2の診断システムの構成は、実施の形態1の流体供給システム1000と同じである。
 実施の形態2の診断装置の機能ブロック図及びハードウェア構成は、実施の形態1の経路決定装置100と同じである。
 実施の形態2では、流体供給システム1000が診断システム900に代わり、経路決定装置100が診断装置901に代わり、経路決定プログラムが診断プログラム902に代わる。診断システム900、診断装置901及び診断プログラム902の符号を図1から図4に記載している。
Embodiment 2.
The second embodiment will be described with reference to FIGS. 20 to 22. In the second embodiment, the routing device 100 described in the first embodiment functions as a diagnostic device for diagnosing the leakage of compressed air in the piping. The configuration of the diagnostic system of the second embodiment is the same as that of the fluid supply system 1000 of the first embodiment.
The functional block diagram and hardware configuration of the diagnostic device of the second embodiment are the same as those of the routing device 100 of the first embodiment.
In the second embodiment, the fluid supply system 1000 replaces the diagnostic system 900, the routing device 100 replaces the diagnostic device 901, and the routing program replaces the diagnostic program 902. The reference numerals of the diagnostic system 900, the diagnostic device 901, and the diagnostic program 902 are shown in FIGS. 1 to 4.
 弁制御部120は、メッシュ配管回路800に対してメッシュ配管回路800の複数の弁の少なくともいずれかの弁を制御することで、圧力センサが配置された配管に流体を流入させると共に配管に流体を停滞させる。
 診断部である配管計算部113Aは、流体が閉じ込められた配管に配置された圧力センサからセンサデータを取得し、取得したセンサデータと、基準データとを比較することにより、流体が閉じ込められた配管の流体漏れを診断する。以下に具体的に説明する。
The valve control unit 120 controls at least one of the plurality of valves of the mesh piping circuit 800 with respect to the mesh piping circuit 800 to allow the fluid to flow into the piping in which the pressure sensor is arranged and to supply the fluid to the piping. Stagnate.
The piping calculation unit 113A, which is a diagnostic unit, acquires sensor data from a pressure sensor placed in the piping in which the fluid is confined, and compares the acquired sensor data with the reference data to confine the fluid in the piping. Diagnose fluid leaks. This will be described in detail below.
 図20は、経路決定装置100の診断動作を示すシーケンス図である。実施の形態1で使用した図15を参照して、このシーケンスを説明する。初期状態では図15のメッシュ配管回路800には圧縮空気は供給されていない。 FIG. 20 is a sequence diagram showing a diagnostic operation of the routing device 100. This sequence will be described with reference to FIG. 15 used in Embodiment 1. In the initial state, compressed air is not supplied to the mesh piping circuit 800 of FIG.
 図15のメッシュ配管回路800は、制御によって開閉可能な複数の弁と、流体が流れる複数の配管と、複数の配管のうち少なくともいずれかの配管に配置されて流体の圧力を検出する圧力センサとを有している。メッシュ配管回路800は複数の配管の各配管が弁どうしを接続することで複数の配管がメッシュ状に配置され、流体が流入する。
 具体的にはメッシュ配管回路800は以下のようである。メッシュ配管回路800は、ノードN1からノードN9の位置に、弁V1から弁V9が配置されている。各弁は配管B1から配管B12で接続されている。配管ごとに圧力センサが配置されている。配管B1から配管B12に、圧力センサS1から圧力センサS12が配置されている。配管B1には設備Aが接続し、配管B2には設備Bが接続し、配管B6には設備Cが接続し、配管B7には設備Dが接続し、配管B11には設備Eが接続し、配管B12には設備Fが接続している。
 図15ではすべての配管に圧力センサが配置されている。すべての配管に圧力センサが配置されることが望ましいが、圧力センサは少なくともいずれかの配管に配置されればよい。
The mesh piping circuit 800 of FIG. 15 includes a plurality of valves that can be opened and closed by control, a plurality of piping through which a fluid flows, and a pressure sensor that is arranged in at least one of the plurality of piping to detect the pressure of the fluid. have. In the mesh piping circuit 800, a plurality of pipes are arranged in a mesh shape by connecting valves to each other of the plurality of pipes, and a fluid flows in.
Specifically, the mesh piping circuit 800 is as follows. In the mesh piping circuit 800, valves V1 to V9 are arranged at positions from node N1 to node N9. Each valve is connected from pipe B1 to pipe B12. A pressure sensor is arranged for each pipe. The pressure sensor S1 to the pressure sensor S12 are arranged from the pipe B1 to the pipe B12. Equipment A is connected to pipe B1, equipment B is connected to pipe B2, equipment C is connected to pipe B6, equipment D is connected to pipe B7, and equipment E is connected to pipe B11. Equipment F is connected to the pipe B12.
In FIG. 15, pressure sensors are arranged in all the pipes. It is desirable that pressure sensors be placed on all pipes, but pressure sensors may be placed on at least one of the pipes.
 弁制御部120は、それぞれの弁の開閉を制御する。 The valve control unit 120 controls the opening and closing of each valve.
 図15を参照して診断装置901の診断動作を説明する。診断装置901の動作は、診断方法に相当する。診断装置901の動作は、診断プログラムの処理に相当する。 The diagnostic operation of the diagnostic apparatus 901 will be described with reference to FIG. The operation of the diagnostic device 901 corresponds to the diagnostic method. The operation of the diagnostic device 901 corresponds to the processing of the diagnostic program.
 配管802の内部の圧力変動を緩和するため、弁制御部120は、圧縮空気の供給開始の際はレシーバータンク730に近い弁から開き、圧縮空気の供給停止時の際は、レシーバータンク730から遠い弁から閉じる。 In order to alleviate the pressure fluctuation inside the pipe 802, the valve control unit 120 opens from the valve close to the receiver tank 730 when the supply of compressed air starts, and is far from the receiver tank 730 when the supply of compressed air is stopped. Close from the valve.
 図15において、初期状態は、すべての弁Vは全て閉であり圧縮機は全て停止である(ステップS41)。 In FIG. 15, in the initial state, all the valves V are all closed and all the compressors are stopped (step S41).
(1)ステップS42の診断開始において、弁制御部120は、弁V50、弁V99及びブランチ4の方向へバルブV2を開く。
(2)ステップS43において、配管B4に配置された圧力センサS4は、センサデータを配管計算部113Aに送信する。
(3)弁制御部120は、メッシュ配管回路800に対して複数の弁の少なくともいずれかの弁を制御することで、圧力センサが配置され両端に電磁弁の接続された配管に流体を流入させると共に配管の両端の電磁弁を閉に維持して配管に流体を閉じ込める。具体的には以下のようである。ステップS44において、弁制御部120は弁V2を閉じる。
配管B4が孤立する。
(4)ステップS45において、圧力センサS4は、孤立状態にある配管B4のセンサデータを配管計算部113Aに送信する。
(5)診断部である配管計算部113Aは、流体が閉じ込められた配管に配置された圧力センサからセンサデータを取得し、取得したセンサデータと、基準データとを比較することにより流体が閉じ込められた配管の流体漏れを診断する。具体的には以下のようである。ステップS46において、配管計算部113Aは、孤立状態のセンサS4のセンサデータを、リークを判定するための基準データと比較し、配管B4のリーク診断を行う。データは例えば図9に示す消費量である。リーク診断として、配管計算部113Aは、センサデータを図9に示す配管の消費量に換算し、図9の消費量を基準データとして用いて診断する。
(6)ステップS47において、配管計算部113Aは、診断の結果、配管B4でリーク発生と判定した場合、配管DB113Bに配管B4の消費量を99m/秒と記録する。
 図21は、配管計算部113Aが、配管DB113Bに配管B4の消費量を記録する動作を示す。
 配管B4でリーク発生が発生しない場合、配管B4の圧縮空気の消費量は、0.01m/秒である。配管計算部113Aは、配管B4でリーク発生と判定した場合、図21に示すように、配管B4の圧縮空気の消費量を、0.01m/秒から99m/秒へ更新する。
99m/秒の意味は、リーク発生が発生しない場合の消費量である0.01m/秒に対して、実際には無限大に等しい極端に大きい値の意味である。0.01m/秒に対して極端に大きい値であれば、どのような値でもよい。
(7)診断部である配管計算部113Aは、メリーク発生と診断した配管を含む供給経路を採用しない。
 具体的には以下のようである。以下の動作は、実施の形態1の経路決定装置100も同様の動作である。
 ステップS48において、経路決定装置100の配管計算部113Aは、実施の形態1で述べたように供給経路の採用を決定する。配管計算部113Aは、採用しようとする供給経路を選択する。その際、配管計算部113Aは、選択された供給経路に含まれる複数の配管の合計の圧縮空気の消費量を、配管DB113Bの有する圧縮空気の消費量を参照して計算する。例えば、選択された供給経路に3本の配管が含まれ、どの配管も圧縮空気の消費量が0.01m/秒とする。その場合、3本の配管の合計の圧縮空気の消費量は、0.03m/秒である。また、仮に供給経路に1000本の配管が含まれているとしても、合計の消費量は、0.01m/秒の1000倍の10m/秒である。
 一方、選択された供給経路に、リーク発生と判定された配管が1つでも含まれる場合、供給経路の圧縮空気の消費量の合計は、99m/秒を超える。配管計算部113Aは、供給経路の圧縮空気の消費量の合計が99m/秒を超える場合、その供給経路を採用しない。つまり、配管計算部113Aは、その供給経路を計算結果2に含めない。
(1) At the start of the diagnosis in step S42, the valve control unit 120 opens the valve V2 in the directions of the valve V50, the valve V99, and the branch 4.
(2) In step S43, the pressure sensor S4 arranged in the pipe B4 transmits the sensor data to the pipe calculation unit 113A.
(3) The valve control unit 120 controls at least one of the plurality of valves with respect to the mesh piping circuit 800, so that a pressure sensor is arranged and the fluid flows into the piping to which the solenoid valves are connected at both ends. At the same time, the solenoid valves at both ends of the pipe are kept closed to confine the fluid in the pipe. Specifically, it is as follows. In step S44, the valve control unit 120 closes the valve V2.
The pipe B4 is isolated.
(4) In step S45, the pressure sensor S4 transmits the sensor data of the pipe B4 in the isolated state to the pipe calculation unit 113A.
(5) The piping calculation unit 113A, which is a diagnostic unit, acquires sensor data from a pressure sensor arranged in a pipe in which the fluid is confined, and compares the acquired sensor data with the reference data to confine the fluid. Diagnose fluid leaks in pipes. Specifically, it is as follows. In step S46, the pipe calculation unit 113A compares the sensor data of the sensor S4 in the isolated state with the reference data for determining the leak, and performs the leak diagnosis of the pipe B4. The data is, for example, the consumption shown in FIG. As a leak diagnosis, the pipe calculation unit 113A converts the sensor data into the consumption amount of the pipe shown in FIG. 9, and diagnoses using the consumption amount of FIG. 9 as the reference data.
(6) In step S47, when it is determined that a leak has occurred in the pipe B4 as a result of the diagnosis, the pipe calculation unit 113A records the consumption amount of the pipe B4 as 99 m 3 / sec in the pipe DB 113B.
FIG. 21 shows an operation in which the pipe calculation unit 113A records the consumption amount of the pipe B4 in the pipe DB 113B.
If no leak occurs in the pipe B4, the consumption of compressed air in the pipe B4 is 0.01 m 3 / sec. When the pipe calculation unit 113A determines that a leak has occurred in the pipe B4, the pipe calculation unit 113A updates the consumption of compressed air in the pipe B4 from 0.01 m 3 / sec to 99 m 3 / sec, as shown in FIG.
The meaning of 99 m 3 / sec is an extremely large value that is actually equal to infinity with respect to the consumption of 0.01 m 3 / sec when no leak occurs. Any value may be used as long as it is extremely large with respect to 0.01 m 3 / sec.
(7) The piping calculation unit 113A, which is a diagnostic unit, does not adopt a supply route including a pipe diagnosed as having a merry-kick.
Specifically, it is as follows. The following operations are the same for the routing device 100 of the first embodiment.
In step S48, the piping calculation unit 113A of the route determination device 100 determines the adoption of the supply route as described in the first embodiment. The piping calculation unit 113A selects the supply route to be adopted. At that time, the pipe calculation unit 113A calculates the total consumption of compressed air of the plurality of pipes included in the selected supply path with reference to the consumption of compressed air of the pipe DB 113B. For example, the selected supply path includes three pipes, each of which consumes 0.01 m 3 / sec of compressed air. In that case, the total consumption of compressed air in the three pipes is 0.03 m 3 / sec. Further, even though it contains if 1,000 pipes the feed path, the consumption of total is 10 m 3 / sec 1000 times 0.01 m 3 / sec.
On the other hand, if the selected supply path includes at least one pipe determined to have leaked, the total consumption of compressed air in the supply path exceeds 99 m 3 / sec. If the total consumption of compressed air in the supply path exceeds 99 m 3 / sec, the piping calculation unit 113A does not adopt the supply path. That is, the piping calculation unit 113A does not include the supply route in the calculation result 2.
<変形例>
 図22を参照して、実施の形態2の変形例の経路決定装置100を説明する。変形例の経路決定装置100のハードウェア構成は、実施の形態1の図16と同一である。変形例の経路決定装置100は、配管計算部113Aが弁状態情報131を自動作成する点が特徴である。実施の形態1の変形例の経路決定装置100は、自動作成された弁状態情報131を使用して供給経路を計算することができる。
 図22は、変形例の配管計算部113Aが弁状態情報131を作成する動作を示す。
<Modification example>
The routing device 100 of the modified example of the second embodiment will be described with reference to FIG. The hardware configuration of the routing device 100 of the modified example is the same as that of FIG. 16 of the first embodiment. The route determination device 100 of the modified example is characterized in that the piping calculation unit 113A automatically creates the valve state information 131. The route determination device 100 of the modified example of the first embodiment can calculate the supply route by using the automatically created valve state information 131.
FIG. 22 shows an operation in which the piping calculation unit 113A of the modified example creates the valve state information 131.
 図22を参照して、配管計算部113Aによる弁状態情報131の作成を説明する。配管計算部113Aは、ステップS46で、配管B4でリーク発生と判定した場合、図22に示すように、配管B4の両端のサブバルブであるV2-2と、V5-1の閉固定の値を1に設定する。
 一方、配管計算部113Aは、ステップS46で、配管B4でリーク発生なしと判定した場合、サブバルブであるV2-2と、V5-1の閉固定の値を0に設定する。
 以上により、弁状態情報131が自動的に生成される。また、上記の動作を適宜実施することで、診断装置901は弁状態情報131を自動で更新することができる。
With reference to FIG. 22, the creation of the valve state information 131 by the piping calculation unit 113A will be described. When the piping calculation unit 113A determines in step S46 that a leak has occurred in the piping B4, as shown in FIG. 22, the closed / fixed values of V2-2 and V5-1, which are subvalves at both ends of the piping B4, are set to 1. Set to.
On the other hand, when the piping calculation unit 113A determines in step S46 that no leak has occurred in the piping B4, the closed / fixed values of the sub valves V2-2 and V5-1 are set to 0.
As a result, the valve state information 131 is automatically generated. Further, by appropriately performing the above operation, the diagnostic apparatus 901 can automatically update the valve state information 131.
***実施の形態2の効果の説明***
(1)従来技術では、圧力センサにより、固定された圧縮空気の供給経路におけるリーク箇所を特定していたが、圧縮空気を消費する設備の稼働状況により、リーク判定誤差が避けられなかった。
しかし、実施の形態2の診断システム900によれば、メッシュ配管回路800において、新たに隔離もしくは新たに拡張されたノードの圧力変化を、正常時の圧力データと比較することで特定することができる。
(2)また、診断システム900によれば、メッシュ配管回路800において、圧縮空気の供給経路を動的に変更できるので、診断によってリークが発見された配管を迂回したリークの少ない供給経路を提供できる。
*** Explanation of the effect of Embodiment 2 ***
(1) In the conventional technique, a leak location in a fixed compressed air supply path is specified by a pressure sensor, but a leak determination error cannot be avoided depending on the operating status of equipment that consumes compressed air.
However, according to the diagnostic system 900 of the second embodiment, in the mesh piping circuit 800, the pressure change of the newly isolated or newly expanded node can be specified by comparing with the normal pressure data. ..
(2) Further, according to the diagnostic system 900, since the supply path of the compressed air can be dynamically changed in the mesh piping circuit 800, it is possible to provide a supply path with less leakage that bypasses the piping in which the leak is found by the diagnosis. ..
 以上、変形例を含む実施の形態1及び変形例を含む実施の形態2について説明したが、これらの変形例を含む実施の形態のうち、2つ以上を組み合わせて実施しても構わない。あるいは、これらの変形例を含む実施の形態のうち、1つを部分的に実施しても構わない。あるいは、これらの変形例を含む実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。なお、本発明は、これらの変形例を含む実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。 Although the first embodiment including the modified example and the second embodiment including the modified example have been described above, two or more of the embodiments including these modified examples may be combined and implemented. Alternatively, one of the embodiments including these modifications may be partially implemented. Alternatively, two or more of the embodiments including these modifications may be partially combined and carried out. The present invention is not limited to the embodiments including these modifications, and various modifications can be made as needed.
 100 経路決定装置、101 経路決定プログラム、110 解析部、111 計算指示部、112 設備管理部、112A 設備計算部、112B 設備DB、113 配管管理部、113A 配管計算部、113B 配管DB、120 弁制御部、130 弁状態記憶部、131 弁状態情報、141 診断範囲、210 立案部、211 生産投入、220 投入司令部、221 生産投入司令、230 生産実行システム、240 圧縮機制御装置、401 弁制御指令、700 工場、710 圧縮機、711 制御指令、720 弁、730 レシーバータンク、740 弁、750 生産現場、780 決定結果、781 供給経路、782 圧縮空気消費量、783 台数、800 メッシュ配管回路、801 弁、802 配管、803 圧力センサ、810 生産設備、811 ノード、812 ブランチ、880 メッシュ配管情報、900 診断システム、901 診断装置、902 診断プログラム、1000 流体供給システム。 100 route determination device, 101 route determination program, 110 analysis unit, 111 calculation instruction unit, 112 equipment management unit, 112A equipment calculation unit, 112B equipment DB, 113 piping management unit, 113A piping calculation unit, 113B piping DB, 120 valve control Unit, 130 valve status storage unit, 131 valve status information, 141 diagnostic range, 210 planning unit, 211 production input, 220 input control unit, 221 production input command, 230 production execution system, 240 compressor control device, 401 valve control command , 700 factory, 710 compressor, 711 control command, 720 valve, 730 receiver tank, 740 valve, 750 production site, 780 decision result, 781 supply path, 782 compressed air consumption, 783 number of units, 800 mesh piping circuit, 801 valve , 802 piping, 803 pressure sensor, 810 production equipment, 811 node, 812 branch, 880 mesh piping information, 900 diagnostic system, 901 diagnostic device, 902 diagnostic program, 1000 fluid supply system.

Claims (10)

  1.  制御によって開閉可能な複数の電磁弁を含む複数の弁と、流体が流れる複数の配管と、前記複数の配管のうち少なくともいずれかの配管に配置されて前記流体の圧力を検出する圧力センサとを有し、前記複数の配管の各配管が弁どうしを接続することで前記複数の配管がメッシュ状に配置され、流体が流入するメッシュ配管回路と、
     前記複数の電磁弁の少なくともいずれかの電磁弁を制御することで、前記圧力センサが配置された前記配管に前記流体を流入させると共に前記配管に前記流体を停滞させ、前記流体が停滞している前記配管に配置された前記圧力センサから圧力データを取得し、取得した前記圧力データと、基準データとを比較することにより前記流体が停滞している前記配管の流体漏れを診断する診断装置と
    を備える診断システム。
    A plurality of valves including a plurality of electromagnetic valves that can be opened and closed by control, a plurality of pipes through which a fluid flows, and a pressure sensor arranged in at least one of the plurality of pipes to detect the pressure of the fluid. A mesh piping circuit in which the plurality of pipes are arranged in a mesh shape by connecting valves to each other and fluid flows into the plurality of pipes.
    By controlling at least one of the plurality of electromagnetic valves, the fluid flows into the pipe in which the pressure sensor is arranged, and the fluid is stagnated in the pipe, so that the fluid is stagnant. A diagnostic device that acquires pressure data from the pressure sensor arranged in the pipe and diagnoses a fluid leak in the pipe in which the fluid is stagnant by comparing the acquired pressure data with the reference data. Diagnostic system to prepare.
  2.  前記診断装置は、
     前記複数の電磁弁の少なくともいずれかの電磁弁を制御することで、前記圧力センサが配置され両端に前記電磁弁の接続された前記配管に前記流体を流入させると共に、前記配管の両端の前記電磁弁を閉に維持して前記配管に前記流体を閉じ込め、前記流体が閉じ込められた前記配管に配置された前記圧力センサから圧力データを取得し、取得した前記圧力データと、前記基準データとを比較することにより、前記流体が閉じ込められた前記配管の流体漏れを診断する請求項1に記載の診断システム。
    The diagnostic device is
    By controlling at least one of the plurality of electromagnetic valves, the pressure sensor is arranged to allow the fluid to flow into the pipe to which the electromagnetic valves are connected at both ends, and the electromagnetic waves at both ends of the pipe. The valve is kept closed to confine the fluid in the pipe, pressure data is acquired from the pressure sensor arranged in the pipe in which the fluid is confined, and the acquired pressure data is compared with the reference data. The diagnostic system according to claim 1, wherein the fluid leakage of the pipe in which the fluid is confined is diagnosed.
  3.  前記診断装置は、
     前記メッシュ配管回路から連続する2以上の前記配管を選択することにより前記流体が流れる供給経路を決定すると共に、前記流体が漏れていると診断した前記配管を、前記供給経路に使用しない請求項1または請求項2に記載の診断システム。
    The diagnostic device is
    Claim 1 in which the supply path through which the fluid flows is determined by selecting two or more continuous pipes from the mesh piping circuit, and the pipe diagnosed as leaking is not used for the supply path. Alternatively, the diagnostic system according to claim 2.
  4.  前記流体は、
     液体と気体とのいずれかである請求項1から請求項3のいずれか一項に記載の診断システム。
    The fluid is
    The diagnostic system according to any one of claims 1 to 3, which is either a liquid or a gas.
  5.  前記流体は圧縮空気である請求項4に記載の診断システム。 The diagnostic system according to claim 4, wherein the fluid is compressed air.
  6.  制御によって開閉可能な複数の電磁弁を含む複数の弁と、流体が流れる複数の配管と、前記複数の配管のうち少なくともいずれかの配管に配置されて前記流体の圧力を検出する圧力センサとを有し、前記複数の配管の各配管が弁どうしを接続することで前記複数の配管がメッシュ状に配置され、流体が流入するメッシュ配管回路に対して前記複数の電磁弁の少なくともいずれかの電磁弁を制御することで、前記圧力センサが配置された前記配管に前記流体を流入させると共に前記配管に前記流体を停滞させる弁制御部と、
     前記流体が停滞している前記配管に配置された前記圧力センサから圧力データを取得し、取得した前記圧力データと、基準データとを比較することにより前記流体が停滞している前記配管の流体漏れを診断する診断部と
    を備える診断装置。
    A plurality of valves including a plurality of electromagnetic valves that can be opened and closed by control, a plurality of pipes through which a fluid flows, and a pressure sensor arranged in at least one of the plurality of pipes to detect the pressure of the fluid. The plurality of pipes are arranged in a mesh shape by connecting the valves to each other of the plurality of pipes, and at least one of the plurality of electromagnetic valves is electromagnetically applied to the mesh piping circuit into which the fluid flows. By controlling the valve, the valve control unit that causes the fluid to flow into the pipe in which the pressure sensor is arranged and stagnates the fluid in the pipe.
    Pressure data is acquired from the pressure sensor arranged in the pipe in which the fluid is stagnant, and the acquired pressure data is compared with the reference data to cause a fluid leak in the pipe in which the fluid is stagnant. A diagnostic device including a diagnostic unit for diagnosing a fluid.
  7.  前記弁制御部は、
     前記複数の電磁弁の少なくともいずれかの電磁弁を制御することで、前記圧力センサが配置され両端に前記電磁弁の接続された前記配管に前記流体を流入させると共に、前記配管の両端の前記電磁弁を閉に維持して前記配管に前記流体を閉じ込め、
     前記診断部は、
     前記流体が閉じ込められた前記配管に配置された前記圧力センサから圧力データを取得し、取得した前記圧力データと、前記基準データとを比較することにより前記流体が閉じ込められた前記配管の流体漏れを診断する請求項6に記載の診断装置。
    The valve control unit
    By controlling at least one of the plurality of solenoid valves, the pressure sensor is arranged to allow the fluid to flow into the pipe to which the solenoid valve is connected at both ends, and the electromagnetic waves at both ends of the pipe. Keep the valve closed and trap the fluid in the pipe.
    The diagnostic unit
    Pressure data is acquired from the pressure sensor arranged in the pipe in which the fluid is confined, and the fluid leakage of the pipe in which the fluid is confined is detected by comparing the acquired pressure data with the reference data. The diagnostic apparatus according to claim 6, wherein the diagnosis is performed.
  8.  前記診断部は、
     前記メッシュ配管回路から連続する2以上の前記配管を選択することにより前記流体が流れる供給経路を決定すると共に、前記流体が漏れていると診断した前記配管を、前記供給経路に使用しない請求項6から請求項7のいずれか一項に記載の診断装置。
    The diagnostic unit
    6. The supply path through which the fluid flows is determined by selecting two or more continuous pipes from the mesh piping circuit, and the pipe diagnosed as leaking is not used for the supply path. The diagnostic apparatus according to any one of claims 7.
  9.  コンピュータに、
     制御によって開閉可能な複数の電磁弁を含む複数の弁と、流体が流れる複数の配管と、前記複数の配管のうち少なくともいずれかの配管に配置されて前記流体の圧力を検出する圧力センサとを有し、前記複数の配管の各配管が弁どうしを接続することで前記複数の配管がメッシュ状に配置され、流体が流入するメッシュ配管回路に対して前記複数の電磁弁の少なくともいずれかの電磁弁を制御することで、前記圧力センサが配置された前記配管に前記流体を流入させると共に前記配管に前記流体を停滞させる弁制御処理、
     前記流体が停滞している前記配管に配置された前記圧力センサから圧力データを取得し、取得した前記圧力データと、基準データとを比較することにより前記流体が停滞している前記配管の流体漏れを診断する処理
    を実行させる診断プログラム。
    On the computer
    A plurality of valves including a plurality of electromagnetic valves that can be opened and closed by control, a plurality of pipes through which a fluid flows, and a pressure sensor arranged in at least one of the plurality of pipes to detect the pressure of the fluid. The plurality of pipes are arranged in a mesh shape by connecting the valves to each other of the plurality of pipes, and at least one of the plurality of electromagnetic valves is electromagnetically applied to the mesh piping circuit into which the fluid flows. A valve control process in which the fluid is allowed to flow into the pipe in which the pressure sensor is arranged and the fluid is stagnant in the pipe by controlling the valve.
    Pressure data is acquired from the pressure sensor arranged in the pipe in which the fluid is stagnant, and the acquired pressure data is compared with the reference data to cause fluid leakage in the pipe in which the fluid is stagnant. A diagnostic program that executes the process of diagnosing.
  10.  コンピュータが、
     制御によって開閉可能な複数の電磁弁を含む複数の弁と、流体が流れる複数の配管と、前記複数の配管のうち少なくともいずれかの配管に配置されて前記流体の圧力を検出する圧力センサとを有し、前記複数の配管の各配管が弁どうしを接続することで前記複数の配管がメッシュ状に配置され、流体が流入するメッシュ配管回路に対して前記複数の電磁弁の少なくともいずれかの電磁弁を制御することで、前記圧力センサが配置された前記配管に前記流体を流入させると共に前記配管に前記流体を停滞させ、
     前記流体が停滞している前記配管に配置された前記圧力センサから圧力データを取得し、取得した前記圧力データと、基準データとを比較することにより前記流体が停滞している前記配管の流体漏れを診断する
    診断方法。
    The computer
    A plurality of valves including a plurality of electromagnetic valves that can be opened and closed by control, a plurality of pipes through which a fluid flows, and a pressure sensor arranged in at least one of the plurality of pipes to detect the pressure of the fluid. The plurality of pipes are arranged in a mesh shape by connecting the valves to each other of the plurality of pipes, and at least one of the plurality of electromagnetic valves is electromagnetically applied to the mesh piping circuit into which the fluid flows. By controlling the valve, the fluid is allowed to flow into the pipe in which the pressure sensor is arranged, and the fluid is stagnated in the pipe.
    Pressure data is acquired from the pressure sensor arranged in the pipe in which the fluid is stagnant, and the acquired pressure data is compared with the reference data to cause a fluid leak in the pipe in which the fluid is stagnant. Diagnosis method to diagnose.
PCT/JP2019/010253 2019-03-13 2019-03-13 Diagnostic system, diagnostic device, diagnostic program, and diagnostic method WO2020183648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010253 WO2020183648A1 (en) 2019-03-13 2019-03-13 Diagnostic system, diagnostic device, diagnostic program, and diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010253 WO2020183648A1 (en) 2019-03-13 2019-03-13 Diagnostic system, diagnostic device, diagnostic program, and diagnostic method

Publications (1)

Publication Number Publication Date
WO2020183648A1 true WO2020183648A1 (en) 2020-09-17

Family

ID=72427215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010253 WO2020183648A1 (en) 2019-03-13 2019-03-13 Diagnostic system, diagnostic device, diagnostic program, and diagnostic method

Country Status (1)

Country Link
WO (1) WO2020183648A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191500U (en) * 1982-06-16 1983-12-20 三菱鉱業セメント株式会社 Compressed air transport pipeline management device
JPH04266699A (en) * 1990-11-26 1992-09-22 Union Carbide Ind Gases Technol Corp Gas flow distributor
EP1586808A2 (en) * 2004-04-13 2005-10-19 Pluggit International Sarl Pipeline network and distribution system
WO2015189921A1 (en) * 2014-06-11 2015-12-17 株式会社日立製作所 Water leak corrective measure assistance device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191500U (en) * 1982-06-16 1983-12-20 三菱鉱業セメント株式会社 Compressed air transport pipeline management device
JPH04266699A (en) * 1990-11-26 1992-09-22 Union Carbide Ind Gases Technol Corp Gas flow distributor
EP1586808A2 (en) * 2004-04-13 2005-10-19 Pluggit International Sarl Pipeline network and distribution system
WO2015189921A1 (en) * 2014-06-11 2015-12-17 株式会社日立製作所 Water leak corrective measure assistance device and method

Similar Documents

Publication Publication Date Title
US7203575B2 (en) Decentralized autonomous control for complex fluid distribution systems
EP1603064A1 (en) Autonomous control unit-based control system capable of active diagnostics
JPH06508949A (en) Parallel processing qualitative inference system
EP3153773B1 (en) Fluid utilization facility management method and fluid utilization facility management system
EP3944043A1 (en) Maintenance work assistance device, maintenance work assistance method, and maintenance work assistance program
Giustolisi et al. Optimal water distribution network design accounting for valve shutdowns
WO2020183648A1 (en) Diagnostic system, diagnostic device, diagnostic program, and diagnostic method
JP6906727B2 (en) Fluid supply system, routing device, routing program and routing method
Ribot et al. HPPN-based prognosis for hybrid systems
JPH06303677A (en) Pipe network management method and system utilizing the same
JP3784408B2 (en) Method and apparatus for diagnosis and prediction of operating characteristics of turbine equipment
JPH05225152A (en) Process controller
JP2619561B2 (en) Knowledge processing system and construction method thereof
Askari et al. Controller reconfiguration based on a qualitative model: A solution of three-tanks benchmark problem
US8225244B2 (en) Large scale integration device and large scale integration design method including both a normal system and diagnostic system
JP2002268734A (en) Method for supporting operation of plant and its program
US20050113956A1 (en) Method for automatically recording an intervention in a production facility
JP3611274B2 (en) Automatic cargo handling control method for cargo ships
CN118088516A (en) Flushing system, method and computer equipment for steam turbine system
WO2024047859A1 (en) Abnormality detecting device, abnormality detecting method, and abnormality detecting program
JP4748253B2 (en) Driving information support system, driving support providing system and program thereof
Kelly et al. Aircraft fuel rig system fault diagnostics based on the application of digraphs
JPH0312592A (en) Plant operation guidance device
Khanbaghi et al. Modeling and control of an industrial pressure screen
Saeidi et al. Discrete-Event Modeling and Supervisory Control Synthesis to Maintain the Safety in a Gas Transmission System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP