WO2020183110A1 - Module de refroidissement pour véhicule automobile - Google Patents

Module de refroidissement pour véhicule automobile Download PDF

Info

Publication number
WO2020183110A1
WO2020183110A1 PCT/FR2020/050507 FR2020050507W WO2020183110A1 WO 2020183110 A1 WO2020183110 A1 WO 2020183110A1 FR 2020050507 W FR2020050507 W FR 2020050507W WO 2020183110 A1 WO2020183110 A1 WO 2020183110A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling module
heat exchanger
air flow
tangential
cooling
Prior art date
Application number
PCT/FR2020/050507
Other languages
English (en)
Inventor
Kamel Azzouz
Amrid MAMMERI
Benjamin Ferlay
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to EP20726178.5A priority Critical patent/EP3938232A1/fr
Publication of WO2020183110A1 publication Critical patent/WO2020183110A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/08Air inlets for cooling; Shutters or blinds therefor
    • B60K11/085Air inlets for cooling; Shutters or blinds therefor with adjustable shutters or blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/10Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the invention relates to the field of automobiles, and more particularly to the field of air circulation for cooling the engine and its equipment.
  • a motor vehicle heat exchanger generally comprises tubes, in which a heat transfer fluid is intended to circulate, in particular a liquid such as water, and heat exchange elements connected to these tubes, often designated by the term “ fins ”or“ spacers ”.
  • the fins increase the exchange surface between the tubes and the ambient air.
  • a ventilation device in order to further increase the heat exchange between the coolant and the ambient air, it is common for a ventilation device to be used in addition, to generate or increase an air flow directed towards tubes and fins.
  • such a ventilation device comprises a propeller fan.
  • the blades when switching on the fan is not necessary (typically when the heat exchange with unaccelerated ambient air is sufficient to cool the heat transfer fluid circulating in the exchanger), the blades partially obstruct the flow of ambient air to the tubes and fins, which interferes with air circulation to the exchanger and thus limits heat exchange with the heat transfer fluid.
  • Such a fan is also relatively bulky, in particular because of the dimensions of the propeller necessary to obtain effective engine cooling, which makes its integration into a motor vehicle long and difficult.
  • the aim of the invention is to at least partially remedy these drawbacks.
  • the invention relates to a cooling module for a motor vehicle, comprising at least one heat exchanger, at least one tangential turbomachine capable of creating an air flow intended to cool said at least one heat exchanger , said at least one tangential turbomachine being disposed behind said at least one heat exchanger relative to a direction of flow of said air flow in the cooling module, at least one flap disposed behind said at least one heat exchanger relative to the direction of 'flow of said air flow, and mounted to move between a first position, called the cooling module open position and a second position, called the cooling module closed position.
  • the tangential turbomachine makes it possible to create an air flow through all the heat exchangers with a much better efficiency than if a propeller fan were implemented.
  • the cooling module comprises one or more of the following characteristics, taken alone or in combination:
  • the cooling module is configured to position said at least one flap in the open position when said at least one tangential turbomachine is stopped;
  • said at least one turbomachine is configured to be stopped when an air flow rate in said at least one heat exchanger is greater than or equal to one maximum air flow that can be drawn in by said at least one tangential turbomachine;
  • said at least one shutter is of the passive type
  • the module comprises a plurality of shutters parallel to each other and configured to be positioned according to one of the open or closed positions simultaneously to each other;
  • the module comprises two tangential turbomachines arranged parallel to one another so as to define an air outlet surface outside the cooling module, the flaps being placed between the two tangential turbomachines;
  • the flaps are mounted parallel to an axis of rotation of the tangential turbomachines.
  • the invention also relates to a motor vehicle comprising a body, a bumper and a cooling module as described above, the body defining at least one cooling bay arranged under the bumper, the cooling module. cooling being disposed opposite the at least one cooling bay.
  • FIG. 1 schematically represents the front part of a motor vehicle, seen from the side;
  • FIG. 2 illustrates a schematic perspective view of a ventilation device according to the present invention
  • FIG. 3 illustrates a schematic perspective view of another ventilation device according to the present invention
  • FIG. 4 is a schematic side view of a shutter of FIG. 2 or of FIG. 3 in the closed position; [0019] [Fig. 5] is a schematic side view of the shutter of Figure 4 in an open position.
  • FIG. 1 schematically illustrates the front part of a motor vehicle 10 comprising a motor 12.
  • This motor 12 may be thermal or electric.
  • the vehicle 10 comprises in particular a body 14 and a bumper 16 carried by a chassis (not shown) of the motor vehicle 10.
  • the body 14 defines a cooling bay 18, that is to say an opening through the body. 14.
  • the cooling bay 18 is unique here.
  • This cooling bay 18 is located in the lower part of the front face 14a of the body 14. In the example illustrated, the cooling bay 18 is located under the bumper 16.
  • a grid 20 can be placed in the cooling bay. Cool 18 to prevent projectiles from passing through the cooling bay 18.
  • a cooling module 22 is placed opposite the cooling bay 18.
  • the grid 20 makes it possible in particular to protect this cooling module 22.
  • the cooling module 22 comprises a ventilation device 24 associated with at least one heat exchanger 26.
  • the ventilation device 1 comprises at least one tangential fan, also called tangential turbomachine below, referenced 2, which sucks an air flow F intended for the heat exchanger or heat exchangers.
  • the ventilation device 24 comprises two turbomachines 28-1, 28-2, arranged parallel to one another.
  • parallel is meant that an axis of rotation A32-1 of the turbine of the turbomachine 28-1 is parallel to an axis of rotation A32-2 of the turbine of the turbomachine 28-2.
  • the two turbomachines 28-1, 28-2 define an air outlet surface S out of the cooling module 22.
  • the surface S is disposed opposite the heat exchanger (s) 26 and constitutes a rear face of the device.
  • the ventilation device 24 comprises at least one flap 30 movably mounted between a first position, called the open position of the cooling module ( Figure 5) and a second position, called the closed position of the cooling module (illustrated on Figures 2, 3, 4).
  • the ventilation device 24 comprises several flaps 30 distributed over eight rows and arranged parallel to the axes of rotation A32-1, A32-2. All of the flaps 30 occupy the rear face S of the cooling module.
  • each of the flaps 30 comprises a wall 32 pivotally mounted about an axis of rotation parallel to the axes of rotation A32-1, A32-2.
  • each wall 32 covers part of the surface S.
  • the walls 32 of the flaps 30 are contiguous to each other, which obstructs the entire surface S.
  • each wall 32 locally forms a non-zero angle with the surface S, which allows the air flow F to pass through the cooling module 22, as shown in Figure 5.
  • the cooling module 22 is configured to position the flaps 30 in the open position when the tangential turbomachines 28-1, 28-2 are stopped.
  • the turbomachines are stopped when an air flow passing through the heat exchanger (s) of the cooling module 22 is greater than or equal to a maximum air flow that can be sucked in by the tangential turbomachines 28-1, 28-2.
  • This condition is achieved in particular at high speed, for example when the vehicle is traveling on a motorway.
  • the flaps 30 are of the passive type, that is to say they are not electrically powered.
  • the turbomachines 28-1, 28-2 operate and draw in the air flow F which passes through the heat exchanger (s) and opens the shutters 30.
  • the turbomachines 28-1, 28-2 are stopped and the air flow directly generated by the movement of the vehicle passes through the heat exchanger (s) and opens the shutters 30.
  • the flaps are made of PA6 or PA66 plastic material.
  • the flaps 30 are controlled by an actuator.
  • the turbomachines 28-1, 28-2 operate and suck in the air flow F which passes through the heat exchanger (s) and opens the shutters 30.
  • turbomachines operate by suction, that is to say that they suck the ambient air in order to bring it into contact with the various heat exchangers.
  • turbomachines operate by blowing.
  • the flaps 30 may extend orthogonally to the axes of rotation A32-1, A32-2.
  • the flaps 30 can partially occupy only the surface S. This is the case, for example, if the flaps 30 are arranged every other row.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

L'invention a pour objet un module de refroidissement (22) pour véhicule automobile, comprenant : - au moins un échangeur thermique, - au moins une turbomachine tangentielle (28-1, 28-2) apte à créer un flux d'air (F) destiné à refroidir ledit au moins un échangeur thermique, ladite au moins une turbomachine tangentielle étant disposée derrière ledit au moins un échangeur thermique relativement à un sens d'écoulement dudit flux d'air (F) dans le module de refroidissement (22), - au moins un volet (30) disposé derrière ledit au moins un échangeur thermique relativement au sens d'écoulement dudit flux d'air (F) dans le module de refroidissement (22), et monté mobile entre une première position, dite position d'ouverture du module de refroidissement (22) et une deuxième position, dite position de fermeture du module de refroidissement (22).

Description

MODULE DE REFROIDISSEMENT POUR VÉHICULE
AUTOMOBILE
Domaine technique
[0001] L'invention se rapporte au domaine de l’automobile, et plus particulièrement au domaine de la circulation d’air pour le refroidissement du moteur et de ses équipements.
Technique antérieure
[0002] Les véhicules à moteur, qu’ils soient à combustion ou électriques, ont besoin d'évacuer les calories que génère leur fonctionnement et sont pour cela équipés d'échangeurs de chaleur. Un échangeur de chaleur de véhicule automobile comprend généralement des tubes, dans lesquels un fluide caloporteur est destiné à circuler, notamment un liquide tel que l’eau, et des éléments d’échange de chaleur reliés à ces tubes, souvent désignés par le terme « ailettes » ou « intercalaires ». Les ailettes permettent d’augmenter la surface d’échange entre les tubes et l’air ambiant.
[0003] Toutefois, afin d’augmenter encore l’échange de chaleur entre le fluide caloporteur et l’air ambiant, il est fréquent qu’un dispositif de ventilation soit utilisé en sus, pour générer ou accroître un flux d’air dirigé vers les tubes et les ailettes.
[0004] De façon connue, un tel dispositif de ventilation comprend un ventilateur à hélice.
[0005] Le flux d’air généré par les pales d’un tel ventilateur est turbulent, notamment en raison de la géométrie circulaire de l’hélice, et n’atteint en général qu’une partie seulement de la surface de l’échangeur de chaleur (zone circulaire de l’échangeur faisant face à l’hélice du ventilateur). L’échange de chaleur ne se fait donc pas de façon homogène sur toute la surface des tubes et des ailettes.
[0006] En outre, lorsque la mise en marche du ventilateur ne s’avère pas nécessaire (typiquement lorsque l’échange de chaleur avec de l’air ambiant non accéléré suffit à refroidir le fluide caloporteur circulant dans l’échangeur), les pales obstruent en partie l’écoulement de l’air ambiant vers les tubes et les ailettes, ce qui gêne la circulation d’air vers l’échangeur et limite ainsi l’échange de chaleur avec le fluide caloporteur.
[0007] Un tel ventilateur est en outre relativement encombrant, à cause notamment des dimensions nécessaires de l’hélice pour obtenir un refroidissement moteur effectif, ce qui rend long et délicat son intégration dans un véhicule automobile.
[0008] Cette intégration est d’autant plus compliquée dans un véhicule électrique, dont la face avant laisse peu de place pour y loger les éléments de refroidissement du véhicule.
[0009] Le but de l’invention est de remédier au moins partiellement à ces inconvénients.
Exposé de l’invention
[0010] À cet effet, l’invention a pour objet un module de refroidissement pour véhicule automobile, comprenant au moins un échangeur thermique, au moins une turbomachine tangentielle apte à créer un flux d’air destiné à refroidir ledit au moins un échangeur thermique, ladite au moins une turbomachine tangentielle étant disposée derrière ledit au moins un échangeur thermique relativement à un sens d’écoulement dudit flux d’air dans le module de refroidissement, au moins un volet disposé derrière ledit au moins un échangeur thermique relativement au sens d’écoulement dudit flux d’air, et monté mobile entre une première position, dite position d’ouverture du module de refroidissement et une deuxième position, dite position de fermeture du module de refroidissement.
[0011] Ainsi, avantageusement, la turbomachine tangentielle permet de créer un flux d’air à travers tous les échangeurs thermiques avec un bien meilleur rendement que si un ventilateur à hélice était mis en œuvre.
[0012] De préférence, le module de refroidissement comporte une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison :
- le module de refroidissement est configuré pour positionner ledit au moins un volet en position d’ouverture quand ladite au moins une turbomachine tangentielle est à l’arrêt ;
- ladite au moins une turbomachine est configurée pour être mise à l’arrêt quand un débit d’air dans ledit au moins un échangeur de chaleur est supérieur ou égal à un débit d’air maximal pouvant être aspiré par ladite au moins une turbomachine tangentielle ;
- ledit au moins un volet est de type passif ;
- ledit au moins un volet est monté piloté par un actionneur ;
- le module comprend une pluralité de volets parallèles les uns aux autres et configurés pour être positionnés selon l’une des positions d’ouverture ou de fermeture simultanément les uns aux autres ;
- le module comprend deux turbomachines tangentielles disposées parallèlement l’une à l’autre de sorte à délimiter une surface de sortie d’air hors du module de refroidissement, les volets étant placés entre les deux turbomachines tangentielles ;
- les volets sont montés parallèlement à un axe de rotation des turbomachines tangentielles.
[0013] L’invention a également pour objet un véhicule automobile comprenant une carrosserie, un pare-chocs et un module de refroidissement tel que décrit précédemment, la carrosserie définissant au moins une baie de refroidissement disposée sous le pare-chocs, le module de refroidissement étant disposé en regard de la au moins une baie de refroidissement.
Brève description des dessins
[0014] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
[0015] [Fig. 1 ] représente schématiquement la partie avant d’un véhicule automobile, vu de côté ;
[0016] [Fig. 2] illustre une vue schématique en perspective d’un dispositif de ventilation selon la présente invention ;
[0017] [Fig. 3] illustre une vue schématique en perspective d’un autre dispositif de ventilation selon la présente invention ;
[0018] [Fig. 4] est une vue schématique de côté d’un volet de la figure 2 ou de la figure 3 en position de fermeture ; [0019] [Fig. 5] est une vue schématique de côté du volet de la figure 4 dans une position d’ouverture.
Description de modes de réalisation
[0020] La figure 1 illustre de manière schématique la partie avant d’un véhicule automobile 10 comportant un moteur 12. Ce moteur 12 pouvant être thermique ou électrique. Le véhicule 10 comporte notamment une carrosserie 14 et un pare-chocs 16 portés par un châssis (non représenté) du véhicule automobile 10. La carrosserie 14 définit une baie de refroidissement 18, c'est-à-dire une ouverture à travers la carrosserie 14. La baie de refroidissement 18 est ici unique. Cette baie de refroidissement 18 se trouve en partie basse de la face avant 14a de la carrosserie 14. Dans l’exemple illustré, la baie de refroidissement 18 est située sous le pare- chocs 16. Une grille 20 peut être disposée dans la baie de refroidissement 18 pour éviter que des projectiles puissent traverser la baie de refroidissement 18. Un module de refroidissement 22 est disposé en vis-à-vis de la baie de refroidissement 18. La grille 20 permet notamment de protéger ce module de refroidissement 22.
[0021] Le module de refroidissement 22 comprend un dispositif de ventilation 24 associé à au moins un échangeur thermique 26.
[0022] Comme il ressort des figures, le dispositif de ventilation 1 comprend au moins un ventilateur tangentiel, aussi nommé turbomachine tangentielle ci-après, référencée 2, qui aspire un flux d’air F à destination de l’échangeur de chaleur ou des échangeurs de chaleur.
[0023] Selon les deux modes de réalisation illustrés sur ces figures, le dispositif de ventilation 24 comprend deux turbomachines 28-1 , 28-2, disposées parallèlement l’une à l’autre.
[0024] Par parallèle, on entend qu’un axe de rotation A32-1 de la turbine de la turbomachine 28-1 est parallèle à un axe de rotation A32-2 de la turbine de la turbomachine 28-2.
[0025] Les deux turbomachines 28-1 , 28-2 délimitent une surface S de sortie d’air hors du module de refroidissement 22. La surface S est disposée en regard du ou des échangeurs de chaleur 26 et constitue une face arrière du dispositif de ventilation 24. [0026] Le dispositif de ventilation 24 comprend au moins un volet 30 monté mobile entre une première position, dite position d’ouverture du module de refroidissement (figure 5) et une deuxième position, dite position de fermeture du module de refroidissement (illustrée sur les figures 2, 3, 4).
[0027] Sur les figures 2 et 3, le dispositif de ventilation 24 comprend plusieurs volets 30 répartis sur huit rangées et disposés parallèlement aux axes de rotation A32-1 , A32-2. L’ensemble des volets 30 occupe la face arrière S du module de refroidissement.
[0028] Comme il ressort de ces figures, chacun des volets 30 comprend une paroi 32 montée pivotante autour d’un axe de rotation parallèle aux axes de rotations A32- 1, A32-2.
[0029] En position de fermeture, chaque paroi 32 couvre une partie de la surface S. Sur les figures 2 et 3, en position de fermeture, les parois 32 des volets 30 sont jointives les uns des autres, ce qui obstrue toute la surface S.
[0030] Dans chaque position d’ouverture, chaque paroi 32 forme localement un angle non nul avec la surface S, ce qui permet au flux d’air F de traverser le module de refroidissement 22, comme visible sur la figure 5.
[0031] Le module de refroidissement 22 est configuré pour positionner les volets 30 en position d’ouverture quand les turbomachines tangentielles 28-1 , 28-2 sont à l’arrêt.
[0032] De préférence, les turbomachines sont à l’arrêt quand un débit d’air traversant le ou les échangeur(s) de chaleur du module de refroidissement 22 est supérieur ou égal à un débit d’air maximal pouvant être aspiré par les turbomachines tangentielles 28-1 , 28-2. Cette condition est notamment réalisée à haute vitesse, par exemple quand le véhicule roule sur autoroute.
[0033] Une telle configuration, parce qu’elle permet de mettre à l’arrêt les turbomachines dès que le flux d’air généré par la vitesse du véhicule est suffisante. Une telle propriété permet par exemple pour les véhicules électriques, à assurer une réelle économie de courant et ainsi une autonomie plus longue du véhicule électrique. [0034] Selon le mode de réalisation illustré à la figure 2, les volets 30 sont de type passif, c’est-à-dire qu’ils ne sont pas alimentés électriquement.
[0035] Ainsi, à faible vitesse du véhicule, les turbomachines 28-1 , 28-2 fonctionnent et aspirent le flux d’air F qui traverse le(s) échangeur(s) thermique(s) et ouvre les volets 30.
[0036] A vitesse élevée du véhicule, les turbomachines 28-1 , 28-2 sont mises à l’arrêt et le flux d’air directement généré par le mouvement du véhicule traverse le(s) échangeur(s) thermique(s) et ouvre les volets 30.
[0037] Avantageusement, les volets sont réalisés en matériau plastique PA6 ou PA66.
[0038] Selon le mode de réalisation illustré à la figure 3, les volets 30 sont pilotés par un actionneur.
[0039] Ainsi, à faible vitesse du véhicule, les turbomachines 28-1 , 28-2 fonctionnent et aspirent le flux d’air F qui traverse le(s) échangeur(s) thermique(s) et ouvre les volets 30.
[0040] A vitesse élevée du véhicule, les turbomachines 28-1 , 28-2 sont mises à l’arrêt et l’actionneur déplace les volets 30 en position d’ouverture.
[0041] L’invention n’est pas limitée aux modes de réalisation illustrés. Par exemple, il a été décrit que les turbomachines fonctionnent en aspiration, c'est-à-dire qu’elle aspire l’air ambiant pour le conduire au contact des différents échangeurs thermiques. Alternativement, cependant, les turbomachines fonctionnent par soufflage.
[0042] De plus, les volets 30 peuvent s’étendre orthogonalement aux axes de rotation A32-1 , A32-2.
[0043] Par ailleurs, les volets 30 peuvent occuper partiellement uniquement la surface S. C’est le cas par exemple si les volets 30 sont disposés une rangée sur deux.

Claims

Revendications
[Revendication 1] Module de refroidissement (22) pour véhicule automobile (10), comprenant :
- au moins un échangeur thermique (26),
- au moins une turbomachine tangentielle (28) apte à créer un flux d’air (F) destiné à refroidir ledit au moins un échangeur thermique, ladite au moins une turbomachine tangentielle étant disposée derrière ledit au moins un échangeur thermique relativement à un sens d’écoulement dudit flux d’air (F) dans le module de refroidissement (22),
- au moins un volet (30) disposé derrière ledit au moins un échangeur thermique relativement au sens d’écoulement dudit flux d’air (F) dans le module de refroidissement (22), et monté mobile entre une première position, dite position d’ouverture du module de refroidissement (22) et une deuxième position, dite position de fermeture du module de refroidissement (22).
[Revendication 2] Module de refroidissement selon la revendication 1 , configuré pour positionner ledit au moins un volet (30) en position d’ouverture quand ladite au moins une turbomachine tangentielle (28) est à l’arrêt.
[Revendication 3] Module de refroidissement selon l’une quelconque des revendications précédentes, dans lequel ladite au moins une turbomachine (28) est configurée pour être mise à l’arrêt quand un débit d’air dans ledit au moins un échangeur de chaleur est supérieur ou égal à un débit d’air maximal pouvant être aspiré par ladite au moins une turbomachine tangentielle.
[Revendication 4] Module de refroidissement selon l’une quelconque des revendications précédentes, dans lequel ledit au moins un volet (30) est de type passif.
[Revendication 5] Module de refroidissement selon l’une quelconque des revendications 1 à 3, dans lequel ledit au moins un volet (30) est monté piloté par un actionneur.
[Revendication 6] Module de refroidissement selon l’une des revendications précédentes, comprenant une pluralité de volets (30) parallèles les uns aux autres et configurés pour être positionnés selon l’une des positions d’ouverture ou de fermeture simultanément les uns aux autres.
[Revendication 7] Module de refroidissement selon la revendication précédente, comprenant deux turbomachines tangentielles (28-1 , 28-2) disposées parallèlement l’une à l’autre de sorte à délimiter une surface de sortie (S) d’air hors du module de refroidissement (22), les volets (30) étant placés entre les deux turbomachines tangentielles (28-1 , 28-2).
[Revendication 8] Module de refroidissement selon la revendication précédente, dans laquelle les volets (30) sont montés parallèlement à un axe de rotation (A32-1 , A32-2) des turbomachines tangentielles (28-1 , 28-2).
[Revendication 9] Véhicule automobile comprenant une carrosserie (14), un pare- chocs (16) et un module de refroidissement (22) selon l’une quelconque des revendications précédentes, la carrosserie (14) définissant au moins une baie de refroidissement (18) disposée sous le pare-chocs, le module de refroidissement (22) étant disposé en regard de la au moins une baie de refroidissement (18).
PCT/FR2020/050507 2019-03-14 2020-03-12 Module de refroidissement pour véhicule automobile WO2020183110A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20726178.5A EP3938232A1 (fr) 2019-03-14 2020-03-12 Module de refroidissement pour véhicule automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1902616 2019-03-14
FR1902616A FR3093792B1 (fr) 2019-03-14 2019-03-14 Module de refroidissement pour véhicule automobile

Publications (1)

Publication Number Publication Date
WO2020183110A1 true WO2020183110A1 (fr) 2020-09-17

Family

ID=67107852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/050507 WO2020183110A1 (fr) 2019-03-14 2020-03-12 Module de refroidissement pour véhicule automobile

Country Status (3)

Country Link
EP (1) EP3938232A1 (fr)
FR (1) FR3093792B1 (fr)
WO (1) WO2020183110A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139437U (fr) * 1977-04-11 1978-11-04
US4519343A (en) * 1982-11-08 1985-05-28 Aisin Seiki Kabushiki Kaisha Engine cooling system
JPS61153426A (ja) * 1984-12-27 1986-07-12 Matsushita Electric Ind Co Ltd 空気調和装置
EP1715157A1 (fr) * 2005-04-21 2006-10-25 Nissan Motor Co., Ltd. Dispositif et procédé de refroidissement pour un véhicule automobile
DE102017203858A1 (de) * 2017-03-09 2018-09-13 Bayerische Motoren Werke Aktiengesellschaft Kühlvorrichtung für ein Kraftfahrzeug, Lüfterzarge sowie eine die Kühlvorrichtung aufweisende Brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139437U (fr) * 1977-04-11 1978-11-04
US4519343A (en) * 1982-11-08 1985-05-28 Aisin Seiki Kabushiki Kaisha Engine cooling system
JPS61153426A (ja) * 1984-12-27 1986-07-12 Matsushita Electric Ind Co Ltd 空気調和装置
EP1715157A1 (fr) * 2005-04-21 2006-10-25 Nissan Motor Co., Ltd. Dispositif et procédé de refroidissement pour un véhicule automobile
DE102017203858A1 (de) * 2017-03-09 2018-09-13 Bayerische Motoren Werke Aktiengesellschaft Kühlvorrichtung für ein Kraftfahrzeug, Lüfterzarge sowie eine die Kühlvorrichtung aufweisende Brennkraftmaschine

Also Published As

Publication number Publication date
FR3093792A1 (fr) 2020-09-18
EP3938232A1 (fr) 2022-01-19
FR3093792B1 (fr) 2021-05-14

Similar Documents

Publication Publication Date Title
FR3093760A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
FR3093761A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
WO2020183110A1 (fr) Module de refroidissement pour véhicule automobile
EP4240604A1 (fr) Module de refroidissement pour vehicule automobile electrique ou hybride a turbomachine tangentielle
WO2020239486A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
WO2022106147A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle avec échangeur de chaleur supplémentaire
FR3073563B1 (fr) Dispositif de ventilation pour vehicule automobile
WO2022023014A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle
FR3105371A1 (fr) Module de refroidissement pour véhicule automobile à turbomachine tangentielle
WO2020002809A1 (fr) Dispositif de ventilation pour vehicule automobile
EP3976408A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
EP4204669B1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
FR3075264A1 (fr) Dispositif de ventilation pour vehicule automobile
FR3073564B1 (fr) Dispositif de ventilation pour vehicule automobile
FR3105373A1 (fr) Module de refroidissement pour véhicule automobile à turbomachine tangentielle
WO2021123553A1 (fr) Dispositif de ventilation pour module de refroidissement de véhicule automobile
WO2022058214A1 (fr) Ensemble de modules de refroidissement à turbomachine tangentielle pour face avant de véhicule automobile électrique ou hybride
FR3121075A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle
WO2021123557A1 (fr) Module de refroidissement pour véhicule automobile à turbomachine tangentielle
FR3100487A1 (fr) Module de refroidissement pour véhicule automobile à turbomachine tangentielle
WO2021123556A1 (fr) Dispositif de ventilation pour module de refroidissement de véhicule automobile
FR3093762A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
FR3121076A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle avec refroidissement de l’électronique de puissance
FR3093757A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
FR3105366A1 (fr) Dispositif de ventilation pour module de refroidissement de véhicule automobile et module de refroidissement pour véhicule automobile comprenant un tel dispositif de ventilation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20726178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020726178

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020726178

Country of ref document: EP

Effective date: 20211014