WO2020179731A1 - Vibration sensor - Google Patents

Vibration sensor Download PDF

Info

Publication number
WO2020179731A1
WO2020179731A1 PCT/JP2020/008672 JP2020008672W WO2020179731A1 WO 2020179731 A1 WO2020179731 A1 WO 2020179731A1 JP 2020008672 W JP2020008672 W JP 2020008672W WO 2020179731 A1 WO2020179731 A1 WO 2020179731A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
vibration sensor
positive electrode
laminated
vibration
Prior art date
Application number
PCT/JP2020/008672
Other languages
French (fr)
Japanese (ja)
Inventor
央隆 佐藤
Original Assignee
株式会社バルカー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バルカー filed Critical 株式会社バルカー
Publication of WO2020179731A1 publication Critical patent/WO2020179731A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings

Definitions

  • the present disclosure relates to a vibration sensor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-234244
  • the space in which the acceleration detection element and the electronic circuit are housed is surrounded by the ceramic substrate and the ceramic cover. Since the housing is made of a ceramic material that has a large Young's modulus and is not easily deformed, the sensor body is not flexible and it is difficult to attach the sensor to the curved surface of the measurement target.
  • a vibration sensor that can be attached to a measurement target surface having a curved surface is provided.
  • a vibration sensor including a thin-film organic piezoelectric element, a positive electrode layer, a first insulating layer, a first shield layer, a cathode layer, a second insulating layer, and a second shield layer.
  • the organic piezoelectric element has a first surface and a second surface opposite to the first surface, and is polarized so that positive charges are unevenly distributed on the first surface and negative charges are unevenly distributed on the second surface.
  • the positive electrode layer is made of a metal material and is laminated on the first surface.
  • the first insulating layer is made of an insulating material and is laminated on the positive electrode layer.
  • the first shield layer is made of a metal material and is laminated on the first insulating layer.
  • the cathode layer is made of a metal material and is laminated on the second surface.
  • the second insulating layer is made of an insulating material and is laminated on the cathode layer.
  • the second shield layer is made of a metal material and is laminated on the second insulating layer.
  • the above vibration sensor further includes a first cover layer and a second cover layer.
  • the first cover layer is made of an insulating material and is laminated on the first shield layer.
  • the second cover layer is made of an insulating material and is laminated on the second shield layer.
  • the above vibration sensor further includes an intervening member.
  • the intervening member is laminated on at least a part of the peripheral edge of the second cover layer.
  • the intervening member is interposed between the vibration measurement object and the second cover layer in a state where the vibration sensor is attached to the vibration measurement object whose vibration is measured by the vibration sensor.
  • the above vibration sensor includes a mounting member and a connecting member.
  • the mounting member is laminated on the first cover layer.
  • the connecting member is attached to the mounting member and is electrically connected to the positive electrode layer.
  • the connecting member is attached to the attachment member by screwing.
  • the above vibration sensor is further equipped with a lead wire.
  • the lead wire has one end connected to the connecting member and the other end connected to the positive electrode layer.
  • the other end of the lead wire is connected to the positive electrode layer by soldering.
  • the vibration sensor described above further includes a bolt member that bolts the intervening member and the mounting member.
  • the bolt member is arranged so as to penetrate the cathode layer.
  • the cathode layer and the connecting member are electrically connected via a bolt member.
  • FIG. 3 is an exploded perspective view of the vibration sensor shown in FIG. 1 viewed from different angles.
  • FIG. 1 is a perspective view of a vibration sensor 1 according to the embodiment.
  • FIG. 2 is a partial cross-sectional view of the vibration sensor 1 shown in FIG.
  • FIG. 3 is a side view of the vibration sensor 1 shown in FIG.
  • FIG. 4 is an exploded perspective view of the vibration sensor 1 shown in FIG.
  • FIG. 5 is an exploded perspective view of the vibration sensor 1 shown in FIG. 1 as viewed from different angles. Note that FIG. 2 illustrates the vibration sensor 1 viewed from the direction of arrow II in FIG. 1, and FIG. 3 illustrates the vibration sensor 1 viewed from the direction of arrow III in FIG. 1.
  • the vibration sensor 1 includes a sensor unit 10.
  • the sensor unit 10 includes an organic piezoelectric element 20, a positive electrode layer 30, a cathode layer 40, a first insulating layer 50, a second insulating layer 60, and a first shield layer 70.
  • the second shield layer 80, the first cover layer 90, and the second cover layer 100 are provided.
  • the sensor unit 10 includes a second cover layer 100, a second shield layer 80, a second insulating layer 60, a cathode layer 40, an organic piezoelectric element 20, a positive electrode layer 30, a first insulating layer 50, a first shield layer 70, and a first.
  • the 1-cover layer 90 is formed by being laminated in this order and integrally joined.
  • the organic piezoelectric element 20 has a rectangular thin film shape as shown in FIGS.
  • the organic piezoelectric element 20 has a pair of long edge portions forming long sides of the rectangle and a pair of short edge portions forming short sides of the rectangle.
  • FIG. 6 is a schematic view showing the polarization of the organic piezoelectric element 20.
  • the organic piezoelectric element 20 has a first surface 21 and a second surface 23 opposite to the first surface 21.
  • the organic piezoelectric element 20 is polarized so that the positive charges are unevenly distributed on the first surface 21 and the negative charges are unevenly distributed on the second surface 23.
  • the organic piezoelectric element 20 is polarized by subjecting an arbitrary polarization treatment such as a known corona treatment in advance before assembling the sensor unit 10.
  • the positive electrode layer 30 has a thin film shape.
  • the positive electrode layer 30 is laminated on the first surface 21 of the organic piezoelectric element 20.
  • the positive electrode layer 30 is made of a conductive material, for example, a metal material typified by copper or SUS.
  • the positive electrode layer 30 has a substantially rectangular main body 31 and a connecting portion 32 that projects outward from the central portion of the rectangular short side of the main body 31.
  • the connection portion 32 is formed with a connection hole 33 that penetrates the positive electrode layer 30 in the thickness direction.
  • the connection hole 33 has a circular shape.
  • the cathode layer 40 has a thin film shape.
  • the cathode layer 40 is laminated on the second surface 23 of the organic piezoelectric element 20.
  • the cathode layer 40 is made of a conductive material, for example, a metal material typified by copper or SUS.
  • the cathode layer 40 has a substantially rectangular main body portion 41 and two connecting portions 42 protruding outward from both end portions of the rectangular short sides of the main body portion 41. ..
  • a coupling hole 44 that penetrates the cathode layer 40 in the thickness direction is formed in each connection portion 42.
  • the coupling hole 44 has a circular shape.
  • the first insulating layer 50 has a rectangular thin film shape as shown in FIGS.
  • the first insulating layer 50 is laminated on the positive electrode layer 30.
  • the first insulating layer 50 is formed of an electrically insulating material, for example, a resin material typified by polyimide.
  • the 1st insulating layer 50 has a pair of long edge part which comprises the long side of a rectangle, and a pair of short edge part which comprises the short side of a rectangle.
  • connection hole 53 and two coupling holes 54 that penetrate the first insulating layer 50 in the thickness direction are formed in the vicinity of one short edge portion.
  • the connection hole 53 and the coupling hole 54 each have a circular shape.
  • the connection hole 53 is formed in the central portion of the short edge portion.
  • the coupling holes 54 are formed at both ends of the short edge portion.
  • the coupling hole 54 is formed at a corner portion of a rectangle.
  • the connection hole 53 and the connection hole 54 are arranged along the short side of the rectangle of the first insulating layer 50.
  • the center of the connecting hole 53 and the center of the two connecting holes 54 are in a straight line.
  • the diameter of the connection hole 53 of the first insulating layer 50 is less than or equal to the diameter of the connection hole 33 of the positive electrode layer 30.
  • the connection holes 33 of the positive electrode layer 30 and the connection holes 53 of the first insulating layer 50 are arranged concentrically. With the positive electrode layer 30 and the first insulating layer 50 stacked, the center of the connection hole 33 of the positive electrode layer 30 and the center of the connection hole 53 of the first insulating layer 50 are aligned. All of the connection holes 53 of the first insulating layer 50 overlap with the connection holes 33 of the positive electrode layer 30.
  • FIG. 7 is a schematic view of a laminate of the organic piezoelectric element 20, the positive electrode layer 30, and the first insulating layer 50.
  • the organic piezoelectric element 20 overlaps with the main body 31 of the positive electrode layer 30.
  • the connecting portion 32 of the positive electrode layer 30 does not overlap with the organic piezoelectric element 20, and protrudes from the short edge portion of the organic piezoelectric element 20.
  • the connection hole 33 of the positive electrode layer 30 overlaps with the connection hole 53 of the first insulating layer 50, and the connection holes 33, 53 are arranged concentrically.
  • the connection holes 33 and 53 are arranged between the pair of coupling holes 54.
  • the pair of coupling holes 54 sandwich the connection holes 33 and 53.
  • the two coupling holes 54 and the connection holes 33, 53 are the rectangular short sides of the first insulating layer 50 so that the distances between the centers of the two coupling holes 54 and the centers of the connection holes 33, 53 are equal. Are lined up alongside.
  • the positive electrode layer 30 and the first insulating layer 50 are formed by preparing a commercially available copper-clad laminate in which a copper foil is bonded to a polyimide film by thermal pressure bonding or the like, and appropriately etching the polyimide film and the copper foil to form a pattern. , May be produced.
  • the second insulating layer 60 has a rectangular thin film shape as shown in FIGS.
  • the second insulating layer 60 is laminated on the cathode layer 40.
  • the second insulating layer 60 is formed of an electrically insulating material, for example, a resin material typified by polyimide.
  • the 2nd insulating layer 60 has a pair of long edge part which comprises the long side of a rectangle, and a pair of short edge part which comprises the short side of a rectangle.
  • connection hole 63 and two coupling holes 64 that penetrate the second insulating layer 60 in the thickness direction are formed in the vicinity of one short edge portion.
  • the connection hole 63 and the connection hole 64 each have a circular shape.
  • the connection hole 63 is formed in the central portion of the short edge portion. Bonding holes 64 are formed at both ends of the short edge portion.
  • the coupling hole 64 is formed at a corner portion of a rectangle.
  • the connection hole 63 and the connection hole 64 are arranged along the short side of the rectangle of the second insulating layer 60.
  • the center of the connecting hole 63 and the center of the two connecting holes 64 are in a straight line.
  • the diameter of the coupling hole 64 of the second insulating layer 60 is less than or equal to the diameter of the coupling hole 44 of the cathode layer 40.
  • the coupling hole 44 of the cathode layer 40 and the coupling hole 64 of the second insulating layer 60 are arranged concentrically.
  • the center of the coupling hole 44 of the cathode layer 40 and the center of the coupling hole 64 of the second insulating layer 60 are aligned. All of the coupling holes 64 of the second insulating layer 60 overlap with the coupling holes 44 of the cathode layer 40.
  • FIG. 8 is a schematic view of a laminated body of the organic piezoelectric element 20, the cathode layer 40, and the second insulating layer 60.
  • the organic piezoelectric element 20 overlaps with the main body 41 of the cathode layer 40.
  • the connecting portion 42 of the cathode layer 40 does not overlap with the organic piezoelectric element 20, and protrudes from the short edge portion of the organic piezoelectric element 20.
  • the coupling hole 44 of the cathode layer 40 overlaps with the coupling hole 64 of the second insulating layer 60, and the coupling holes 44 and 64 are arranged concentrically.
  • the connection hole 63 is arranged between the pair of coupling holes 44 and 64.
  • connection hole 63 is sandwiched between the pair of coupling holes 44 and 64.
  • the two coupling holes 44, 64 and the connection hole 63 are the rectangular short sides of the second insulating layer 60 so that the distances between the centers of the two coupling holes 44 and 64 and the center of the connection hole 63 are equal to each other. Are lined up alongside.
  • a commercially available copper-clad laminate in which a copper foil is bonded to a polyimide film by hot pressure bonding or the like is prepared, and the polyimide film and the copper foil are appropriately etched to form a pattern. , May be produced.
  • the first shield layer 70 has a rectangular thin film shape.
  • the first shield layer 70 is laminated on the first insulating layer 50.
  • the first shield layer 70 is made of a conductive material, for example, a metal material typified by copper or SUS.
  • the first shield layer 70 has a pair of long edge portions forming the long sides of the rectangle and a pair of short edge portions forming the short sides of the rectangle.
  • connection hole 73 and two coupling holes 74 that penetrate the first shield layer 70 in the thickness direction are formed in the vicinity of one short edge portion.
  • the connection hole 73 and the connection hole 74 each have a circular shape.
  • the connection hole 73 is formed in the central portion of the short edge portion.
  • the coupling holes 74 are formed at both ends of the short edge portion.
  • the coupling hole 74 is formed at a corner portion of a rectangle.
  • the connection hole 73 and the connection hole 74 are arranged along the short side of the rectangle of the first shield layer 70.
  • the center of the connecting hole 73 and the center of the two connecting holes 74 are in a straight line.
  • the second shield layer 80 has a rectangular thin film shape.
  • the second shield layer 80 is laminated on the second insulating layer 60.
  • the second shield layer 80 is formed of a conductive material, for example, a metal material represented by copper or SUS.
  • the second shield layer 80 has a pair of long edges that form the long sides of the rectangle and a pair of short edges that form the short sides of the rectangle.
  • connection hole 83 and two connection holes 84 that penetrate the second shield layer 80 in the thickness direction are formed in the vicinity of the pair of short edge portions.
  • the connection hole 83 and the connection hole 84 each have a circular shape.
  • the connection hole 83 is formed in the central portion of the short edge portion.
  • the coupling holes 84 are formed at both ends of the short edge portion.
  • the coupling hole 84 is formed at a corner portion of a rectangle.
  • the connection hole 83 and the connection hole 84 are arranged along the short side of the rectangle of the second shield layer 80.
  • the center of the connection hole 83 and the center of the two coupling holes 84 are on a straight line.
  • the first cover layer 90 has a rectangular thin film shape, as shown in FIGS.
  • the first cover layer 90 is laminated on the first shield layer 70.
  • the first cover layer 90 is formed of an electrically insulating material, for example, a resin material typified by polyimide.
  • the 1st cover layer 90 has a pair of long edge parts which make up the long side of a rectangle, and a pair of short edge parts which make up the short side of a rectangle.
  • connection hole 93 and two connection holes 94 that penetrate the first cover layer 90 in the thickness direction are formed in the vicinity of one short edge portion.
  • the connection hole 93 and the coupling hole 94 each have a circular shape.
  • the connection hole 93 is formed in the central portion of the short edge portion.
  • the coupling holes 94 are formed at both ends of the short edge portion.
  • the coupling hole 94 is formed at a corner portion of a rectangle.
  • the connection hole 93 and the coupling hole 94 are arranged along the short side of the rectangle of the first cover layer 90.
  • the center of the connecting hole 93 and the center of the two connecting holes 94 are in a straight line.
  • connection hole 93 of the first cover layer 90 has the same diameter as the connection hole 73 of the first shield layer 70.
  • the connection hole 73 of the first shield layer 70 and the connection hole 93 of the first cover layer 90 are arranged concentrically.
  • the center of the connection hole 73 of the first shield layer 70 and the center of the connection hole 93 of the first cover layer 90 are aligned. All of the connection holes 93 of the first cover layer 90 overlap the connection holes 73 of the first shield layer 70.
  • connection holes 73 and 93 are arranged between the pair of connection holes 74 and 94.
  • the pair of coupling holes 74 and 94 sandwich the connection holes 73 and 93.
  • the two coupling holes 74, 94 and the connection holes 73, 93 are the first shield layer 70 and so that the distances between the centers of the two coupling holes 74, 94 and the centers of the connection holes 73, 93 are equal to each other.
  • the first cover layers 90 are arranged along the short sides of the rectangle.
  • the first shield layer 70 and the first cover layer 90 are manufactured by sticking a polyimide film on a copper foil having a conductive adhesive on one side and appropriately etching the polyimide film and the copper foil to form a pattern. May be done.
  • the second cover layer 100 has a rectangular thin film shape as shown in FIGS.
  • the second cover layer 100 is laminated on the second shield layer 80.
  • the second cover layer 100 is made of an electrically insulating material, for example, a resin material typified by polyimide.
  • the second cover layer 100 has a pair of long edges that form the long sides of the rectangle and a pair of short edges that form the short sides of the rectangle.
  • connection hole 103 and two coupling holes 104 that penetrate the second cover layer 100 in the thickness direction are formed in the vicinity of one short edge portion.
  • the connection hole 103 and the connection hole 104 each have a circular shape.
  • the connection hole 103 is formed in the central portion of the short edge portion.
  • the coupling holes 104 are formed at both ends of the short edge portion.
  • the coupling hole 104 is formed at a corner portion of a rectangle.
  • the connection hole 103 and the coupling hole 104 are arranged along the short side of the rectangle of the second cover layer 100.
  • the center of the connection hole 103 and the center of the two connection holes 104 are in a straight line.
  • connection hole 103 of the second cover layer 100 has the same diameter as the connection hole 83 of the second shield layer 80.
  • the connection hole 83 of the second shield layer 80 and the connection hole 103 of the second cover layer 100 are arranged concentrically.
  • the center of the connection hole 83 of the second shield layer 80 and the center of the connection hole 103 of the second cover layer 100 are aligned.
  • the entire connection hole 103 of the second cover layer 100 overlaps the connection hole 83 of the second shield layer 80.
  • connection holes 83 and 103 are arranged between the pair of connection holes 84 and 104.
  • the pair of coupling holes 84 and 104 sandwich the connection holes 83 and 103.
  • the two coupling holes 84 and 104 and the connection holes 83 and 103 are arranged so that the distance between the center of each of the two coupling holes 84 and 104 and the center of each of the connection holes 83 and 103 becomes equal.
  • the second cover layers 100 are arranged along the short sides of the rectangle.
  • the second shield layer 80 and the second cover layer 100 are manufactured by attaching a polyimide film to a copper foil having a conductive adhesive on one side thereof and appropriately etching the polyimide film and the copper foil to form a pattern. May be done.
  • the sensor unit 10 has a thin-film second cover layer 100, a second shield layer 80, a second insulating layer 60, a cathode layer 40, an organic piezoelectric element 20, a positive electrode layer 30, a first insulating layer 50, and a first shield.
  • the layer 70 and the first cover layer 90 are laminated to each other to be formed into a flexible thin plate shape as a whole.
  • the vibration sensor 1 further includes an interposition member 110, a mounting member 120, a connecting member 130, a lead wire 140, and a bolt member 150.
  • the intervening member 110 is laminated on the second cover layer 100 as shown in FIGS. 4 and 5.
  • the interposition member 110 has a first member 111 laminated on one short edge of the second cover layer 100 and a second member 112 laminated on the other short edge of the second cover layer 100. doing.
  • the first member 111 and the second member 112 have a substantially rectangular box-shaped outer shape.
  • the interposition member 110 is disposed between the vibration measurement target 200 and the sensor unit 10. Intervenes in.
  • the first member 111 is interposed between the vibration measurement object 200 and the second cover layer 100.
  • the second member 112 is interposed between the vibration measurement object 200 and the second cover layer 100.
  • the intervening member 110 is made of an electrically insulating material typified by a resin material. Since the sensor unit 10 is arranged away from the vibration measurement object 200 due to the intervention of the intervening member 110 and the intervening member 110 is electrically insulating, the electricity between the sensor unit 10 and the vibration measurement object 200 Electrical insulation is maintained. Therefore, the influence of noise from the vibration measurement object 200 on the sensor unit 10 is suppressed.
  • two coupling holes 114 and a receiving hole 116 are formed in the first member 111.
  • the coupling hole 114 and the receiving hole 116 each have a circular shape in a plan view.
  • the receiving hole 116 is formed in the central portion of the first member 111.
  • the coupling holes 114 are formed at both end portions of the first member 111.
  • the coupling hole 114 and the receiving hole 116 are arranged along the longitudinal direction of the first member 111.
  • the centers of the two coupling holes 114 and the centers of the receiving holes 116 are in a straight line.
  • the two coupling holes 114 penetrate the first member 111 in the thickness direction.
  • the receiving hole 116 is formed by recessing the facing surface of the outer surface of the first member 111 facing the sensor portion 10.
  • the receiving hole 116 is a bottomed hole. The receiving hole 116 does not penetrate the first member 111.
  • the mounting member 120 is made of a conductive material.
  • the mounting member 120 is laminated on the first cover layer 90 as shown in FIGS. 4 and 5.
  • the attachment member 120 may be adhered to the first cover layer 90.
  • a hollow accommodation space 121 is formed inside the mounting member 120.
  • a female screw is formed on the engaging surface 122 forming the inner peripheral surface of the accommodation space 121.
  • the mounting member 120 is formed with a connection hole 123 that opens to the engaging surface 122 and also opens to the outer surface of the mounting member 120.
  • the connection hole 123 communicates the accommodation space 121 with the outside of the mounting member 120.
  • the mounting member 120 is further formed with two coupling holes 124.
  • the connecting member 130 has a core portion 131, an insulating cylinder portion 132, and an outer sheath portion 133.
  • the core portion 131 is made of a conductive material and penetrates the connecting member 130.
  • the insulating tubular portion 132 is made of an insulating material typified by resin.
  • the insulating cylinder portion 132 is interposed between the core portion 131 and the outer sheath portion 133, and electrically insulates the core portion 131 and the outer sheath portion 133.
  • the outer sheath portion 133 is made of a conductive material.
  • the outer sheath portion 133 has an engagement surface 134.
  • a male screw is formed on the engaging surface 134.
  • the engagement surface 134 is engaged with the engagement surface 122 of the mounting member 120.
  • the connecting member 130 is attached to the mounting member 120 by screwing. By rotating the connecting member 130 with respect to the mounting member 120, the connecting member 130 is fitted to the mounting member 120. With the connecting member 130 attached to the mounting member 120, one end of the core portion 131 is exposed to the outside, and the other end of the core portion 131 is arranged in the accommodation space 121 inside the mounting member 120.
  • the conductor 140 is made of a conductive material. As shown in FIG. 2, the lead wire 140 has one end 141 and the other end 142. One end 141 of the conducting wire 140 is connected to the connecting member 130. More specifically, one end 141 is connected to the core 131 of the connecting member 130. One end 141 is connected to the core 131 by soldering. A soldering portion is interposed between the core portion 131 of the connecting member 130 and the one end 141 of the conducting wire 140.
  • the other end 142 of the lead wire 140 is connected to the positive electrode layer 30 as shown in FIG. More specifically, the other end 142 is connected to the connecting portion 32 of the positive electrode layer 30. The other end 142 is connected to the connecting portion 32 by soldering. A soldered portion is interposed between the connecting portion 32 of the positive electrode layer 30 and the other end 142 of the conducting wire 140. The core portion 131 of the connecting member 130 is electrically connected to the positive electrode layer 30 via the conducting wire 140.
  • the bolt member 150 is made of a conductive material.
  • the bolt member 150 has a head portion 151 and a shaft portion 152. As shown in FIG. 3, the bolt member 150 bolts the intervening member 110 and the mounting member 120.
  • the shaft portion 152 of the bolt member 150 penetrates the sensor portion 10 and is screwed into both the coupling hole 114 of the intervening member 110 and the coupling hole 124 of the mounting member 120.
  • the entire head 151 is arranged in the coupling hole 114 of the interposition member 110. Therefore, when the vibration sensor 1 is attached to the vibration measurement object 200, the bolt member 150 does not interfere with the attachment.
  • the shaft portion 152 of the bolt member 150 penetrates the sensor portion 10.
  • the shaft portion 152 penetrates the coupling holes 44, 54, 64, 74, 84, 94, 104 of the layers forming the sensor unit 10.
  • the shaft portion 152 penetrates the cathode layer 40.
  • the shaft portion 152 penetrates the coupling hole 44 formed in the cathode layer 40.
  • the diameter of the coupling hole 44 is set to be equal to or smaller than the diameter of the shaft portion 152.
  • the cathode layer 40 is electrically connected to the mounting member 120 via a bolt member 150 that is coupled to the mounting member 120.
  • the outer sheath portion 133 of the connecting member 130 is electrically connected to the cathode layer 40 via the mounting member 120 and the bolt member 150.
  • the characteristic configurations of this embodiment are listed below.
  • the positive electrode layer 30, the first insulating layer 50, and the first shield layer 70 are sequentially laminated on the first surface 21 of the thin-film organic piezoelectric element 20.
  • the sensor unit 10 is provided with a cathode layer 40, a second insulating layer 60, and a second shield layer 80 laminated in this order on the second surface 23 of the organic piezoelectric element 20.
  • the sensor unit 10 is formed in a flexible thin plate shape as a whole.
  • the sensor portion 10 is formed into a thin plate shape, and the sensor portion 10 is bendable and deformable.
  • the vibration sensor 1 can be configured to be attached to the measurement target surface having a curved surface. Since the vibration sensor 1 has a thin shape, the vibration sensor 1 can be arranged in a narrow space such as between adjacent devices or between a device and a wall surface. Therefore, the vibration sensor 1 of the embodiment can be attached to a place where it was difficult to attach the conventional vibration sensor, and the versatility of the vibration sensor 1 is enhanced.
  • the vibration sensor 1 Since the vibration sensor 1 is lightened, the influence of the own weight of the vibration sensor 1 on the vibration of the vibration measurement target 200 is reduced, and therefore the vibration can be detected more accurately.
  • the positive electrode layer 30 and the cathode layer 40 form positive and negative electrodes
  • the first shield layer 70 made of a metal material is laminated on the positive electrode layer 30
  • the second shield layer made of a metal material is laminated on the cathode layer 40.
  • the 80s By configuring the 80s to be stacked, the influence of noise on the vibration sensor 1 can be reduced. Therefore, the vibration detection accuracy of the vibration sensor 1 of the embodiment can be improved.
  • the first insulating layer 50 between the positive electrode layer 30 and the first shield layer 70 the positive electrode layer 30 and the first shield layer 70 can be reliably electrically insulated.
  • the second insulating layer 60 is interposed between the cathode layer 40 and the second shield layer 80, the cathode layer 40 and the second shield layer 80 can be reliably electrically insulated.
  • the vibration sensor 1 further includes a first cover layer 90 laminated on the first shield layer 70 and a second cover layer 100 laminated on the second shield layer 80. ing.
  • a first cover layer 90 and a second cover layer 100 made of a resin material such as polyimide are laminated on the first shield layer 70 and the second shield layer 80 made of a metal material, respectively, and the outermost layer of the sensor unit 10 is made of a resin material.
  • the vibration sensor 1 further includes an intervening member 110.
  • the interposition member 110 is interposed between the second cover layer 100 of the sensor unit 10 and the vibration measurement object 200.
  • the intervening member 110 By interposing the intervening member 110, the sensor unit 10 is arranged away from the vibration measurement object 200. Therefore, the electrical insulation between the sensor unit 10 and the vibration measurement object 200 can be maintained, and the influence of noise from the vibration measurement object 200 on the vibration sensor 1 can be reduced.
  • the magnet plate is fixed to the intervening member 110 and the intervening member 110 is magnetically attached to the vibration measurement object 200, the intervening member 110 and the vibration measurement object 200 are attached with a joining tape such as double-sided tape, or the intervening member 110 is attached.
  • the vibration sensor 1 can be easily attached to the vibration measurement target 200 without affecting the sensor unit 10 by adhering it to the vibration measurement target 200.
  • connection member 130 electrically connected to the positive electrode layer 30 is attached to the attachment member 120 laminated on the first cover layer 90.
  • the vibration detection result of the vibration measurement object by the vibration sensor 1 can be output to the outside via the connecting member 130. If the core 131 of the connecting member 130 is configured to be connected to the charge converter, the charge signal can be converted into a voltage signal by the charge converter, and the vibration detection result can be output as a voltage.
  • the connection member 130 a commercially available product such as a 10-32 connector that can be obtained at low cost can be used, and in this case, the manufacturing cost of the vibration sensor 1 can be reduced.
  • the connecting member 130 is attached to the attachment member 120 by screwing. Since the connecting member 130 can be easily attached to the mounting member 120 only by rotating the connecting member 130, no special tool is required and no soldering is required, so that the assembly work of the vibration sensor 1 can be shortened.
  • one end 141 of the conductor wire 140 is electrically connected to the connection member 130, and the other end 142 of the conductor wire 140 is connected to the positive electrode layer 30.
  • the positive electrode layer 30 and the connecting member 130 can be reliably and electrically connected via the lead wire 140.
  • the other end 142 of the lead wire 140 is connected to the positive electrode layer 30 by soldering.
  • the conductive wire 140 can be reliably fixed to the positive electrode layer 30 by soldering, and electrical connection between the positive electrode layer 30 and the connection member 130 via the conductive wire 140 can be secured.
  • the bolt member 150 bolts the intervening member 110 and the mounting member 120.
  • the vibration sensor 1 By mounting the bolt member 150 in the coupling hole 114 of the interposition member 110, penetrating the sensor portion 10 and screwing it into the coupling hole 124 of the mounting member 120, the vibration sensor 1 can be easily assembled integrally.
  • the bolt member 150 is arranged so as to penetrate the cathode layer 40, and the cathode layer 40 and the connection member 130 are electrically connected via the bolt member 150.
  • the shaft portion 152 of the bolt member 150 comes into contact with the cathode layer 40, so that the cathode layer 40 and the connecting member 130 are electrically connected to each other via the bolt member 150. Connected to. Since it is not necessary to provide a dedicated process for electrically connecting the cathode layer 40 and the connection member 130, the assembly work of the vibration sensor 1 can be shortened and the productivity can be improved.
  • the vibration sensor according to the present disclosure is suitable for use in predictive maintenance by attaching a large number of vibration sensors to a vibration measurement object such as a machine or a factory and verifying the vibration tendency of the vibration measurement object in chronological order. Can be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Provided is a vibration sensor which can be attached to a curved surface subjected to measurement. An organic piezoelectric element (20) has a first surface and a second surface on the side opposite to the first surface, the organic piezoelectric element being polarized such that a positive charge is distributed on the first surface and a negative charge is distributed on the second surface. A positive electrode layer is made of a metal material and layered on the first surface. A first insulating layer (50) is made of an insulating material and layered on the positive electrode layer. A first shield layer is made of a metal layer and layered on the first insulating layer (50). A cathode layer (40) is made of a metal material and layered on the second surface. A second insulating layer (60) is made of an insulating material and layered on the cathode layer. A second shield layer (80) is made of a metal material and layered on the second insulating layer (60).

Description

振動センサーVibration sensor
 本開示は、振動センサーに関する。 The present disclosure relates to a vibration sensor.
 従来、加速度センサに関し、加速度検出素子および電子回路をセラミック基板に実装し、セラミックカバーをセラミック基板に接着する技術が提案されている(たとえば、特開平7-234244号公報(特許文献1)参照)。 Conventionally, regarding an acceleration sensor, a technique of mounting an acceleration detection element and an electronic circuit on a ceramic substrate and adhering a ceramic cover to the ceramic substrate has been proposed (see, for example, Japanese Patent Application Laid-Open No. 7-234244 (Patent Document 1)). ..
特開平7-234244号公報Japanese Patent Laid-Open No. 7-234244
 上記文献に記載の構成では、加速度検出素子および電子回路が収容される空間が、セラミック基板およびセラミックカバーによって取り囲まれて形成されている。ヤング率が大きく変形しにくいセラミック材料が筐体を形成しているため、センサ本体に屈曲性がなく、曲面形状の計測対象面にセンサを取り付けることが困難である。 In the configuration described in the above document, the space in which the acceleration detection element and the electronic circuit are housed is surrounded by the ceramic substrate and the ceramic cover. Since the housing is made of a ceramic material that has a large Young's modulus and is not easily deformed, the sensor body is not flexible and it is difficult to attach the sensor to the curved surface of the measurement target.
 本開示では、曲面を持つ計測対象面にも取り付け可能な振動センサーが提供される。 In the present disclosure, a vibration sensor that can be attached to a measurement target surface having a curved surface is provided.
 本開示に従うと、薄膜状の有機圧電素子と、正極層と、第1絶縁層と、第1シールド層と、陰極層と、第2絶縁層と、第2シールド層と、を備える、振動センサーが提供される。有機圧電素子は、第1面と、第1面の反対側の第2面とを有しており、第1面に正電荷が偏在し第2面に負電荷が偏在するように分極されている。正極層は、金属材料製であり、第1面に積層されている。第1絶縁層は、絶縁材料製であり、正極層に積層されている。第1シールド層は、金属材料製であり、第1絶縁層に積層されている。陰極層は、金属材料製であり、第2面に積層されている。第2絶縁層は、絶縁材料製であり、陰極層に積層されている。第2シールド層は、金属材料製であり、第2絶縁層に積層されている。 According to the present disclosure, a vibration sensor including a thin-film organic piezoelectric element, a positive electrode layer, a first insulating layer, a first shield layer, a cathode layer, a second insulating layer, and a second shield layer. Is provided. The organic piezoelectric element has a first surface and a second surface opposite to the first surface, and is polarized so that positive charges are unevenly distributed on the first surface and negative charges are unevenly distributed on the second surface. There is. The positive electrode layer is made of a metal material and is laminated on the first surface. The first insulating layer is made of an insulating material and is laminated on the positive electrode layer. The first shield layer is made of a metal material and is laminated on the first insulating layer. The cathode layer is made of a metal material and is laminated on the second surface. The second insulating layer is made of an insulating material and is laminated on the cathode layer. The second shield layer is made of a metal material and is laminated on the second insulating layer.
 上記の振動センサーは、第1カバー層と、第2カバー層とをさらに備えている。第1カバー層は、絶縁材料製であり、第1シールド層に積層されている。第2カバー層は、絶縁材料製であり、第2シールド層に積層されている。 The above vibration sensor further includes a first cover layer and a second cover layer. The first cover layer is made of an insulating material and is laminated on the first shield layer. The second cover layer is made of an insulating material and is laminated on the second shield layer.
 上記の振動センサーは、介在部材をさらに備えている。介在部材は、第2カバー層の周縁部の少なくとも一部に積層されている。介在部材は、振動センサーにより振動を計測される振動計測対象物に振動センサーが取り付けられた状態で、振動計測対象物と第2カバー層との間に介在している。 The above vibration sensor further includes an intervening member. The intervening member is laminated on at least a part of the peripheral edge of the second cover layer. The intervening member is interposed between the vibration measurement object and the second cover layer in a state where the vibration sensor is attached to the vibration measurement object whose vibration is measured by the vibration sensor.
 上記の振動センサーは、取付部材と、接続部材とを備えている。取付部材は、第1カバー層に積層されている。接続部材は、取付部材に取り付けられており、正極層に電気的に接続している。 The above vibration sensor includes a mounting member and a connecting member. The mounting member is laminated on the first cover layer. The connecting member is attached to the mounting member and is electrically connected to the positive electrode layer.
 上記の振動センサーにおいて、接続部材は、取付部材にねじ込みにより取り付けられている。 In the above vibration sensor, the connecting member is attached to the attachment member by screwing.
 上記の振動センサーは、導線をさらに備えている。導線は、接続部材に接続される一端と、正極層に接続される他端とを有している。 The above vibration sensor is further equipped with a lead wire. The lead wire has one end connected to the connecting member and the other end connected to the positive electrode layer.
 上記の振動センサーにおいて、導線の他端は、正極層に半田付けにより接続されている。 In the above vibration sensor, the other end of the lead wire is connected to the positive electrode layer by soldering.
 上記の振動センサーは、介在部材と取付部材とをボルト結合するボルト部材をさらに備えている。 The vibration sensor described above further includes a bolt member that bolts the intervening member and the mounting member.
 上記の振動センサーにおいて、ボルト部材は、陰極層を貫通して配置されている。陰極層と接続部材とは、ボルト部材を介して電気的に接続されている。 In the above vibration sensor, the bolt member is arranged so as to penetrate the cathode layer. The cathode layer and the connecting member are electrically connected via a bolt member.
 本開示に従うと、曲面を持つ計測対象面に取り付け可能な振動センサーを実現することができる。 According to the present disclosure, it is possible to realize a vibration sensor that can be attached to a measurement target surface having a curved surface.
実施形態に基づく振動センサーの斜視図である。It is a perspective view of the vibration sensor based on embodiment. 図1に示す振動センサーの部分断面図である。It is a partial cross section figure of the vibration sensor shown in FIG. 図1に示す振動センサーの側面図である。It is a side view of the vibration sensor shown in FIG. 図1に示す振動センサーの分解斜視図である。It is a disassembled perspective view of the vibration sensor shown in FIG. 図1に示す振動センサーを異なる角度から見た分解斜視図である。FIG. 3 is an exploded perspective view of the vibration sensor shown in FIG. 1 viewed from different angles. 有機圧電素子の分極を示す模式図である。It is a schematic diagram which shows the polarization of an organic piezoelectric element. 有機圧電素子、正極層および第1絶縁層の積層体の模式図である。It is a schematic diagram of the laminated body of an organic piezoelectric element, a positive electrode layer and a first insulating layer. 有機圧電素子、陰極層および第2絶縁層の積層体の模式図である。It is a schematic diagram of the laminated body of an organic piezoelectric element, a cathode layer and a second insulating layer.
 以下、実施形態について図面に基づいて説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Embodiments will be described below with reference to the drawings. In the following description, the same parts are designated by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図1は、実施形態に基づく振動センサー1の斜視図である。図2は、図1に示す振動センサー1の部分断面図である。図3は、図1に示す振動センサー1の側面図である。図4は、図1に示す振動センサー1の分解斜視図である。図5は、図1に示す振動センサー1を異なる角度から見た分解斜視図である。なお図2には、図1中の矢印II方向から見た振動センサー1が図示されており、図3には、図1中の矢印III方向から見た振動センサー1が図示されている。 FIG. 1 is a perspective view of a vibration sensor 1 according to the embodiment. FIG. 2 is a partial cross-sectional view of the vibration sensor 1 shown in FIG. FIG. 3 is a side view of the vibration sensor 1 shown in FIG. FIG. 4 is an exploded perspective view of the vibration sensor 1 shown in FIG. FIG. 5 is an exploded perspective view of the vibration sensor 1 shown in FIG. 1 as viewed from different angles. Note that FIG. 2 illustrates the vibration sensor 1 viewed from the direction of arrow II in FIG. 1, and FIG. 3 illustrates the vibration sensor 1 viewed from the direction of arrow III in FIG. 1.
 図1,2に示されるように、振動センサー1は、センサー部10を備えている。センサー部10は、図4,5に示されるように、有機圧電素子20と、正極層30と、陰極層40と、第1絶縁層50と、第2絶縁層60と、第1シールド層70と、第2シールド層80と、第1カバー層90と、第2カバー層100とを有している。センサー部10は、第2カバー層100、第2シールド層80、第2絶縁層60、陰極層40、有機圧電素子20、正極層30、第1絶縁層50、第1シールド層70、および第1カバー層90が、この順に積層されて一体に接合されることにより、形成されている。 As shown in FIGS. 1 and 2, the vibration sensor 1 includes a sensor unit 10. As shown in FIGS. 4 and 5, the sensor unit 10 includes an organic piezoelectric element 20, a positive electrode layer 30, a cathode layer 40, a first insulating layer 50, a second insulating layer 60, and a first shield layer 70. The second shield layer 80, the first cover layer 90, and the second cover layer 100 are provided. The sensor unit 10 includes a second cover layer 100, a second shield layer 80, a second insulating layer 60, a cathode layer 40, an organic piezoelectric element 20, a positive electrode layer 30, a first insulating layer 50, a first shield layer 70, and a first. The 1-cover layer 90 is formed by being laminated in this order and integrally joined.
 有機圧電素子20は、図4,5に示されるように、矩形薄膜状の形状を有している。有機圧電素子20は、矩形の長辺を成す一対の長縁部と、矩形の短辺を成す一対の短縁部とを有している。図6は、有機圧電素子20の分極を示す模式図である。図6に示されるように、有機圧電素子20は、第1面21と、第1面21の反対側の第2面23とを有している。有機圧電素子20は、第1面21に正電荷が偏在し、第2面23に負電荷が偏在するように、分極されている。有機圧電素子20は、センサー部10を組み立てる前に、公知のコロナ処理などの任意の分極処理を予め施すことにより、分極されている。 The organic piezoelectric element 20 has a rectangular thin film shape as shown in FIGS. The organic piezoelectric element 20 has a pair of long edge portions forming long sides of the rectangle and a pair of short edge portions forming short sides of the rectangle. FIG. 6 is a schematic view showing the polarization of the organic piezoelectric element 20. As shown in FIG. 6, the organic piezoelectric element 20 has a first surface 21 and a second surface 23 opposite to the first surface 21. The organic piezoelectric element 20 is polarized so that the positive charges are unevenly distributed on the first surface 21 and the negative charges are unevenly distributed on the second surface 23. The organic piezoelectric element 20 is polarized by subjecting an arbitrary polarization treatment such as a known corona treatment in advance before assembling the sensor unit 10.
 正極層30は、図5に示されるように、薄膜状の形状を有している。正極層30は、有機圧電素子20の第1面21に積層されている。正極層30は、導電性の材料、たとえば銅またはSUSに代表される金属材料で形成されている。正極層30は、図5に示されるように、略矩形状の本体部31と、本体部31の矩形の短辺の中央部分から外側へ突出している接続部32とを有している。接続部32には、正極層30を厚み方向に貫通する接続孔33が形成されている。接続孔33は、円形状を有している。 As shown in FIG. 5, the positive electrode layer 30 has a thin film shape. The positive electrode layer 30 is laminated on the first surface 21 of the organic piezoelectric element 20. The positive electrode layer 30 is made of a conductive material, for example, a metal material typified by copper or SUS. As shown in FIG. 5, the positive electrode layer 30 has a substantially rectangular main body 31 and a connecting portion 32 that projects outward from the central portion of the rectangular short side of the main body 31. The connection portion 32 is formed with a connection hole 33 that penetrates the positive electrode layer 30 in the thickness direction. The connection hole 33 has a circular shape.
 陰極層40は、図4に示されるように、薄膜状の形状を有している。陰極層40は、有機圧電素子20の第2面23に積層されている。陰極層40は、導電性の材料、たとえば銅またはSUSに代表される金属材料で形成されている。陰極層40は、図4に示されるように、略矩形状の本体部41と、本体部41の矩形の短辺の両端部分から外側へ突出している2つの接続部42とを有している。各々の接続部42には、陰極層40を厚み方向に貫通する結合孔44が形成されている。結合孔44は、円形状を有している。 As shown in FIG. 4, the cathode layer 40 has a thin film shape. The cathode layer 40 is laminated on the second surface 23 of the organic piezoelectric element 20. The cathode layer 40 is made of a conductive material, for example, a metal material typified by copper or SUS. As shown in FIG. 4, the cathode layer 40 has a substantially rectangular main body portion 41 and two connecting portions 42 protruding outward from both end portions of the rectangular short sides of the main body portion 41. .. A coupling hole 44 that penetrates the cathode layer 40 in the thickness direction is formed in each connection portion 42. The coupling hole 44 has a circular shape.
 第1絶縁層50は、図4,5に示されるように、矩形薄膜状の形状を有している。第1絶縁層50は、正極層30に積層されている。第1絶縁層50は、電気絶縁性の材料、たとえばポリイミドに代表される樹脂材料で形成されている。第1絶縁層50は、矩形の長辺を成す一対の長縁部と、矩形の短辺を成す一対の短縁部とを有している。 The first insulating layer 50 has a rectangular thin film shape as shown in FIGS. The first insulating layer 50 is laminated on the positive electrode layer 30. The first insulating layer 50 is formed of an electrically insulating material, for example, a resin material typified by polyimide. The 1st insulating layer 50 has a pair of long edge part which comprises the long side of a rectangle, and a pair of short edge part which comprises the short side of a rectangle.
 一方の短縁部の近傍に、第1絶縁層50を厚み方向に貫通する1つの接続孔53と2つの結合孔54とが形成されている。接続孔53と結合孔54とは、各々円形状を有している。接続孔53は、短縁部の中央部分に形成されている。結合孔54は、短縁部の両端部分に形成されている。結合孔54は、矩形の角部分に形成されている。接続孔53と結合孔54とは、第1絶縁層50の矩形の短辺に沿って並べられている。接続孔53の中心と2つの結合孔54の中心とは、一直線上にある。 One connection hole 53 and two coupling holes 54 that penetrate the first insulating layer 50 in the thickness direction are formed in the vicinity of one short edge portion. The connection hole 53 and the coupling hole 54 each have a circular shape. The connection hole 53 is formed in the central portion of the short edge portion. The coupling holes 54 are formed at both ends of the short edge portion. The coupling hole 54 is formed at a corner portion of a rectangle. The connection hole 53 and the connection hole 54 are arranged along the short side of the rectangle of the first insulating layer 50. The center of the connecting hole 53 and the center of the two connecting holes 54 are in a straight line.
 第1絶縁層50の接続孔53の直径は、正極層30の接続孔33の直径以下である。正極層30と第1絶縁層50とが積層された状態で、正極層30の接続孔33と第1絶縁層50の接続孔53とは、同心に配置されている。正極層30と第1絶縁層50とが積層された状態で、正極層30の接続孔33の中心と第1絶縁層50の接続孔53の中心とが一致している。第1絶縁層50の接続孔53の全部が、正極層30の接続孔33と重なっている。 The diameter of the connection hole 53 of the first insulating layer 50 is less than or equal to the diameter of the connection hole 33 of the positive electrode layer 30. In a state where the positive electrode layer 30 and the first insulating layer 50 are laminated, the connection holes 33 of the positive electrode layer 30 and the connection holes 53 of the first insulating layer 50 are arranged concentrically. With the positive electrode layer 30 and the first insulating layer 50 stacked, the center of the connection hole 33 of the positive electrode layer 30 and the center of the connection hole 53 of the first insulating layer 50 are aligned. All of the connection holes 53 of the first insulating layer 50 overlap with the connection holes 33 of the positive electrode layer 30.
 図7は、有機圧電素子20、正極層30および第1絶縁層50の積層体の模式図である。図7に示されるように、有機圧電素子20は、正極層30の本体部31と重なっている。正極層30の接続部32は、有機圧電素子20と重なっておらず、有機圧電素子20の短縁部から突出している。正極層30の接続孔33は、第1絶縁層50の接続孔53と重なっており、接続孔33,53は同心に配置されている。接続孔33,53は、一対の結合孔54の間に配置されている。一対の結合孔54は、接続孔33,53を挟んでいる。2つの結合孔54の各々の中心と接続孔33,53の中心との距離が相等しくなるように、2つの結合孔54と接続孔33,53とは第1絶縁層50の矩形の短辺に沿って並べられている。 FIG. 7 is a schematic view of a laminate of the organic piezoelectric element 20, the positive electrode layer 30, and the first insulating layer 50. As shown in FIG. 7, the organic piezoelectric element 20 overlaps with the main body 31 of the positive electrode layer 30. The connecting portion 32 of the positive electrode layer 30 does not overlap with the organic piezoelectric element 20, and protrudes from the short edge portion of the organic piezoelectric element 20. The connection hole 33 of the positive electrode layer 30 overlaps with the connection hole 53 of the first insulating layer 50, and the connection holes 33, 53 are arranged concentrically. The connection holes 33 and 53 are arranged between the pair of coupling holes 54. The pair of coupling holes 54 sandwich the connection holes 33 and 53. The two coupling holes 54 and the connection holes 33, 53 are the rectangular short sides of the first insulating layer 50 so that the distances between the centers of the two coupling holes 54 and the centers of the connection holes 33, 53 are equal. Are lined up alongside.
 正極層30と第1絶縁層50とは、ポリイミドフィルムに銅箔を熱圧着などにより接合した市販の銅張積層板を準備し、ポリイミドフィルムおよび銅箔を適宜エッチングしてパターンを形成することにより、作製されてもよい。 The positive electrode layer 30 and the first insulating layer 50 are formed by preparing a commercially available copper-clad laminate in which a copper foil is bonded to a polyimide film by thermal pressure bonding or the like, and appropriately etching the polyimide film and the copper foil to form a pattern. , May be produced.
 第2絶縁層60は、図4,5に示されるように、矩形薄膜状の形状を有している。第2絶縁層60は、陰極層40に積層されている。第2絶縁層60は、電気絶縁性の材料、たとえばポリイミドに代表される樹脂材料で形成されている。第2絶縁層60は、矩形の長辺を成す一対の長縁部と、矩形の短辺を成す一対の短縁部とを有している。 The second insulating layer 60 has a rectangular thin film shape as shown in FIGS. The second insulating layer 60 is laminated on the cathode layer 40. The second insulating layer 60 is formed of an electrically insulating material, for example, a resin material typified by polyimide. The 2nd insulating layer 60 has a pair of long edge part which comprises the long side of a rectangle, and a pair of short edge part which comprises the short side of a rectangle.
 一方の短縁部の近傍に、第2絶縁層60を厚み方向に貫通する1つの接続孔63と2つの結合孔64とが形成されている。接続孔63と結合孔64とは、各々円形状を有している。接続孔63は、短縁部の中央部分に形成されている。結合孔64は、短縁部の両端部分に形成されている。結合孔64は、矩形の角部分に形成されている。接続孔63と結合孔64とは、第2絶縁層60の矩形の短辺に沿って並べられている。接続孔63の中心と2つの結合孔64の中心とは、一直線上にある。 One connection hole 63 and two coupling holes 64 that penetrate the second insulating layer 60 in the thickness direction are formed in the vicinity of one short edge portion. The connection hole 63 and the connection hole 64 each have a circular shape. The connection hole 63 is formed in the central portion of the short edge portion. Bonding holes 64 are formed at both ends of the short edge portion. The coupling hole 64 is formed at a corner portion of a rectangle. The connection hole 63 and the connection hole 64 are arranged along the short side of the rectangle of the second insulating layer 60. The center of the connecting hole 63 and the center of the two connecting holes 64 are in a straight line.
 第2絶縁層60の結合孔64の直径は、陰極層40の結合孔44の直径以下である。陰極層40と第2絶縁層60とが積層された状態で、陰極層40の結合孔44と第2絶縁層60の結合孔64とは、同心に配置されている。陰極層40と第2絶縁層60とが積層された状態で、陰極層40の結合孔44の中心と第2絶縁層60の結合孔64の中心とが一致している。第2絶縁層60の結合孔64の全部が、陰極層40の結合孔44と重なっている。 The diameter of the coupling hole 64 of the second insulating layer 60 is less than or equal to the diameter of the coupling hole 44 of the cathode layer 40. In the state where the cathode layer 40 and the second insulating layer 60 are laminated, the coupling hole 44 of the cathode layer 40 and the coupling hole 64 of the second insulating layer 60 are arranged concentrically. In the state where the cathode layer 40 and the second insulating layer 60 are stacked, the center of the coupling hole 44 of the cathode layer 40 and the center of the coupling hole 64 of the second insulating layer 60 are aligned. All of the coupling holes 64 of the second insulating layer 60 overlap with the coupling holes 44 of the cathode layer 40.
 図8は、有機圧電素子20、陰極層40および第2絶縁層60の積層体の模式図である。図8に示されるように、有機圧電素子20は、陰極層40の本体部41と重なっている。陰極層40の接続部42は、有機圧電素子20と重なっておらず、有機圧電素子20の短縁部から突出している。陰極層40の結合孔44は、第2絶縁層60の結合孔64と重なっており、結合孔44,64は同心に配置されている。接続孔63は、一対の結合孔44,64の間に配置されている。一対の結合孔44,64は、接続孔63を挟んでいる。2つの結合孔44,64の各々の中心と接続孔63の中心との距離が相等しくなるように、2つの結合孔44,64と接続孔63とは第2絶縁層60の矩形の短辺に沿って並べられている。 FIG. 8 is a schematic view of a laminated body of the organic piezoelectric element 20, the cathode layer 40, and the second insulating layer 60. As shown in FIG. 8, the organic piezoelectric element 20 overlaps with the main body 41 of the cathode layer 40. The connecting portion 42 of the cathode layer 40 does not overlap with the organic piezoelectric element 20, and protrudes from the short edge portion of the organic piezoelectric element 20. The coupling hole 44 of the cathode layer 40 overlaps with the coupling hole 64 of the second insulating layer 60, and the coupling holes 44 and 64 are arranged concentrically. The connection hole 63 is arranged between the pair of coupling holes 44 and 64. The connection hole 63 is sandwiched between the pair of coupling holes 44 and 64. The two coupling holes 44, 64 and the connection hole 63 are the rectangular short sides of the second insulating layer 60 so that the distances between the centers of the two coupling holes 44 and 64 and the center of the connection hole 63 are equal to each other. Are lined up alongside.
 陰極層40と第2絶縁層60とは、ポリイミドフィルムに銅箔を熱圧着などにより接合した市販の銅張積層板を準備し、ポリイミドフィルムおよび銅箔を適宜エッチングしてパターンを形成することにより、作製されてもよい。 For the cathode layer 40 and the second insulating layer 60, a commercially available copper-clad laminate in which a copper foil is bonded to a polyimide film by hot pressure bonding or the like is prepared, and the polyimide film and the copper foil are appropriately etched to form a pattern. , May be produced.
 第1シールド層70は、図5に示されるように、矩形薄膜状の形状を有している。第1シールド層70は、第1絶縁層50に積層されている。第1シールド層70は、導電性の材料、たとえば銅またはSUSに代表される金属材料で形成されている。第1シールド層70は、矩形の長辺を成す一対の長縁部と、矩形の短辺を成す一対の短縁部とを有している。 As shown in FIG. 5, the first shield layer 70 has a rectangular thin film shape. The first shield layer 70 is laminated on the first insulating layer 50. The first shield layer 70 is made of a conductive material, for example, a metal material typified by copper or SUS. The first shield layer 70 has a pair of long edge portions forming the long sides of the rectangle and a pair of short edge portions forming the short sides of the rectangle.
 一方の短縁部の近傍に、第1シールド層70を厚み方向に貫通する1つの接続孔73と2つの結合孔74とが形成されている。接続孔73と結合孔74とは、各々円形状を有している。接続孔73は、短縁部の中央部分に形成されている。結合孔74は、短縁部の両端部分に形成されている。結合孔74は、矩形の角部分に形成されている。接続孔73と結合孔74とは、第1シールド層70の矩形の短辺に沿って並べられている。接続孔73の中心と2つの結合孔74の中心とは、一直線上にある。 One connection hole 73 and two coupling holes 74 that penetrate the first shield layer 70 in the thickness direction are formed in the vicinity of one short edge portion. The connection hole 73 and the connection hole 74 each have a circular shape. The connection hole 73 is formed in the central portion of the short edge portion. The coupling holes 74 are formed at both ends of the short edge portion. The coupling hole 74 is formed at a corner portion of a rectangle. The connection hole 73 and the connection hole 74 are arranged along the short side of the rectangle of the first shield layer 70. The center of the connecting hole 73 and the center of the two connecting holes 74 are in a straight line.
 第2シールド層80は、図4に示されるように、矩形薄膜状の形状を有している。第2シールド層80は、第2絶縁層60に積層されている。第2シールド層80は、導電性の材料、たとえば銅またはSUSに代表される金属材料で形成されている。第2シールド層80は、矩形の長辺を成す一対の長縁部と、矩形の短辺を成す一対の短縁部とを有している。 As shown in FIG. 4, the second shield layer 80 has a rectangular thin film shape. The second shield layer 80 is laminated on the second insulating layer 60. The second shield layer 80 is formed of a conductive material, for example, a metal material represented by copper or SUS. The second shield layer 80 has a pair of long edges that form the long sides of the rectangle and a pair of short edges that form the short sides of the rectangle.
 一対の短縁部の近傍に、第2シールド層80を厚み方向に貫通する1つの接続孔83と2つの結合孔84とが形成されている。接続孔83と結合孔84とは、各々円形状を有している。接続孔83は、短縁部の中央部分に形成されている。結合孔84は、短縁部の両端部分に形成されている。結合孔84は、矩形の角部分に形成されている。接続孔83と結合孔84とは、第2シールド層80の矩形の短辺に沿って並べられている。接続孔83の中心と2つの結合孔84の中心とは、一直線上にある。 One connection hole 83 and two connection holes 84 that penetrate the second shield layer 80 in the thickness direction are formed in the vicinity of the pair of short edge portions. The connection hole 83 and the connection hole 84 each have a circular shape. The connection hole 83 is formed in the central portion of the short edge portion. The coupling holes 84 are formed at both ends of the short edge portion. The coupling hole 84 is formed at a corner portion of a rectangle. The connection hole 83 and the connection hole 84 are arranged along the short side of the rectangle of the second shield layer 80. The center of the connection hole 83 and the center of the two coupling holes 84 are on a straight line.
 第1カバー層90は、図4,5に示されるように、矩形薄膜状の形状を有している。第1カバー層90は、第1シールド層70に積層されている。第1カバー層90は、電気絶縁性の材料、たとえばポリイミドに代表される樹脂材料で形成されている。第1カバー層90は、矩形の長辺を成す一対の長縁部と、矩形の短辺を成す一対の短縁部とを有している。 The first cover layer 90 has a rectangular thin film shape, as shown in FIGS. The first cover layer 90 is laminated on the first shield layer 70. The first cover layer 90 is formed of an electrically insulating material, for example, a resin material typified by polyimide. The 1st cover layer 90 has a pair of long edge parts which make up the long side of a rectangle, and a pair of short edge parts which make up the short side of a rectangle.
 一方の短縁部の近傍に、第1カバー層90を厚み方向に貫通する1つの接続孔93と2つの結合孔94とが形成されている。接続孔93と結合孔94とは、各々円形状を有している。接続孔93は、短縁部の中央部分に形成されている。結合孔94は、短縁部の両端部分に形成されている。結合孔94は、矩形の角部分に形成されている。接続孔93と結合孔94とは、第1カバー層90の矩形の短辺に沿って並べられている。接続孔93の中心と2つの結合孔94の中心とは、一直線上にある。 One connection hole 93 and two connection holes 94 that penetrate the first cover layer 90 in the thickness direction are formed in the vicinity of one short edge portion. The connection hole 93 and the coupling hole 94 each have a circular shape. The connection hole 93 is formed in the central portion of the short edge portion. The coupling holes 94 are formed at both ends of the short edge portion. The coupling hole 94 is formed at a corner portion of a rectangle. The connection hole 93 and the coupling hole 94 are arranged along the short side of the rectangle of the first cover layer 90. The center of the connecting hole 93 and the center of the two connecting holes 94 are in a straight line.
 第1カバー層90の接続孔93は、第1シールド層70の接続孔73と同じ直径を有している。第1シールド層70と第1カバー層90とが積層された状態で、第1シールド層70の接続孔73と第1カバー層90の接続孔93とは、同心に配置されている。第1シールド層70と第1カバー層90とが積層された状態で、第1シールド層70の接続孔73の中心と第1カバー層90の接続孔93の中心とが一致している。第1カバー層90の接続孔93の全部が、第1シールド層70の接続孔73と重なっている。 The connection hole 93 of the first cover layer 90 has the same diameter as the connection hole 73 of the first shield layer 70. In the state where the first shield layer 70 and the first cover layer 90 are laminated, the connection hole 73 of the first shield layer 70 and the connection hole 93 of the first cover layer 90 are arranged concentrically. With the first shield layer 70 and the first cover layer 90 stacked, the center of the connection hole 73 of the first shield layer 70 and the center of the connection hole 93 of the first cover layer 90 are aligned. All of the connection holes 93 of the first cover layer 90 overlap the connection holes 73 of the first shield layer 70.
 接続孔73,93は、一対の結合孔74,94の間に配置されている。一対の結合孔74,94は、接続孔73,93を挟んでいる。2つの結合孔74,94の各々の中心と接続孔73,93の中心との距離が相等しくなるように、2つの結合孔74,94と接続孔73,93とは第1シールド層70および第1カバー層90の矩形の短辺に沿って並べられている。 The connection holes 73 and 93 are arranged between the pair of connection holes 74 and 94. The pair of coupling holes 74 and 94 sandwich the connection holes 73 and 93. The two coupling holes 74, 94 and the connection holes 73, 93 are the first shield layer 70 and so that the distances between the centers of the two coupling holes 74, 94 and the centers of the connection holes 73, 93 are equal to each other. The first cover layers 90 are arranged along the short sides of the rectangle.
 第1シールド層70と第1カバー層90とは、片面に導電性粘着剤が付着した銅箔にポリイミドフィルムを貼付し、ポリイミドフィルムおよび銅箔を適宜エッチングしてパターンを形成することにより、作製されてもよい。 The first shield layer 70 and the first cover layer 90 are manufactured by sticking a polyimide film on a copper foil having a conductive adhesive on one side and appropriately etching the polyimide film and the copper foil to form a pattern. May be done.
 第2カバー層100は、図4,5に示されるように、矩形薄膜状の形状を有している。第2カバー層100は、第2シールド層80に積層されている。第2カバー層100は、電気絶縁性の材料、たとえばポリイミドに代表される樹脂材料で形成されている。第2カバー層100は、矩形の長辺を成す一対の長縁部と、矩形の短辺を成す一対の短縁部とを有している。 The second cover layer 100 has a rectangular thin film shape as shown in FIGS. The second cover layer 100 is laminated on the second shield layer 80. The second cover layer 100 is made of an electrically insulating material, for example, a resin material typified by polyimide. The second cover layer 100 has a pair of long edges that form the long sides of the rectangle and a pair of short edges that form the short sides of the rectangle.
 一方の短縁部の近傍に、第2カバー層100を厚み方向に貫通する1つの接続孔103と2つの結合孔104とが形成されている。接続孔103と結合孔104とは、各々円形状を有している。接続孔103は、短縁部の中央部分に形成されている。結合孔104は、短縁部の両端部分に形成されている。結合孔104は、矩形の角部分に形成されている。接続孔103と結合孔104とは、第2カバー層100の矩形の短辺に沿って並べられている。接続孔103の中心と2つの結合孔104の中心とは、一直線上にある。 One connection hole 103 and two coupling holes 104 that penetrate the second cover layer 100 in the thickness direction are formed in the vicinity of one short edge portion. The connection hole 103 and the connection hole 104 each have a circular shape. The connection hole 103 is formed in the central portion of the short edge portion. The coupling holes 104 are formed at both ends of the short edge portion. The coupling hole 104 is formed at a corner portion of a rectangle. The connection hole 103 and the coupling hole 104 are arranged along the short side of the rectangle of the second cover layer 100. The center of the connection hole 103 and the center of the two connection holes 104 are in a straight line.
 第2カバー層100の接続孔103は、第2シールド層80の接続孔83と同じ直径を有している。第2シールド層80と第2カバー層100とが積層された状態で、第2シールド層80の接続孔83と第2カバー層100の接続孔103とは、同心に配置されている。第2シールド層80と第2カバー層100とが積層された状態で、第2シールド層80の接続孔83の中心と第2カバー層100の接続孔103の中心とが一致している。第2カバー層100の接続孔103の全部が、第2シールド層80の接続孔83と重なっている。 The connection hole 103 of the second cover layer 100 has the same diameter as the connection hole 83 of the second shield layer 80. In the state where the second shield layer 80 and the second cover layer 100 are laminated, the connection hole 83 of the second shield layer 80 and the connection hole 103 of the second cover layer 100 are arranged concentrically. In the state where the second shield layer 80 and the second cover layer 100 are laminated, the center of the connection hole 83 of the second shield layer 80 and the center of the connection hole 103 of the second cover layer 100 are aligned. The entire connection hole 103 of the second cover layer 100 overlaps the connection hole 83 of the second shield layer 80.
 接続孔83,103は、一対の結合孔84,104の間に配置されている。一対の結合孔84,104は、接続孔83,103を挟んでいる。2つの結合孔84,104の各々の中心と接続孔83,103の中心との距離が相等しくなるように、2つの結合孔84,104と接続孔83,103とは第2シールド層80および第2カバー層100の矩形の短辺に沿って並べられている。 The connection holes 83 and 103 are arranged between the pair of connection holes 84 and 104. The pair of coupling holes 84 and 104 sandwich the connection holes 83 and 103. The two coupling holes 84 and 104 and the connection holes 83 and 103 are arranged so that the distance between the center of each of the two coupling holes 84 and 104 and the center of each of the connection holes 83 and 103 becomes equal. The second cover layers 100 are arranged along the short sides of the rectangle.
 第2シールド層80と第2カバー層100とは、片面に導電性粘着剤が付着した銅箔にポリイミドフィルムを貼付し、ポリイミドフィルムおよび銅箔を適宜エッチングしてパターンを形成することにより、作製されてもよい。 The second shield layer 80 and the second cover layer 100 are manufactured by attaching a polyimide film to a copper foil having a conductive adhesive on one side thereof and appropriately etching the polyimide film and the copper foil to form a pattern. May be done.
 センサー部10は、各々が薄膜状の第2カバー層100、第2シールド層80、第2絶縁層60、陰極層40、有機圧電素子20、正極層30、第1絶縁層50、第1シールド層70および第1カバー層90が積層されて、全体として可撓性を有する薄板状に形成されている。 The sensor unit 10 has a thin-film second cover layer 100, a second shield layer 80, a second insulating layer 60, a cathode layer 40, an organic piezoelectric element 20, a positive electrode layer 30, a first insulating layer 50, and a first shield. The layer 70 and the first cover layer 90 are laminated to each other to be formed into a flexible thin plate shape as a whole.
 図1~5に示されるように、振動センサー1はさらに、介在部材110と、取付部材120と、接続部材130と、導線140と、ボルト部材150とを備えている。 As shown in FIGS. 1 to 5, the vibration sensor 1 further includes an interposition member 110, a mounting member 120, a connecting member 130, a lead wire 140, and a bolt member 150.
 介在部材110は、図4,5に示されるように、第2カバー層100に積層されている。介在部材110は、第2カバー層100の一方の短縁部に積層されている第1部材111と、第2カバー層100の他方の短縁部に積層されている第2部材112とを有している。第1部材111と第2部材112とは、略矩形箱状の外形を有している。 The intervening member 110 is laminated on the second cover layer 100 as shown in FIGS. 4 and 5. The interposition member 110 has a first member 111 laminated on one short edge of the second cover layer 100 and a second member 112 laminated on the other short edge of the second cover layer 100. doing. The first member 111 and the second member 112 have a substantially rectangular box-shaped outer shape.
 図2に示されるように、振動センサー1により振動を計測される振動計測対象物200に振動センサー1が取り付けられた状態で、介在部材110は、振動計測対象物200とセンサー部10との間に介在している。第1部材111は、振動計測対象物200と第2カバー層100との間に介在している。第2部材112は、振動計測対象物200と第2カバー層100との間に介在している。 As shown in FIG. 2, in a state where the vibration sensor 1 is attached to the vibration measurement target 200 whose vibration is measured by the vibration sensor 1, the interposition member 110 is disposed between the vibration measurement target 200 and the sensor unit 10. Intervenes in. The first member 111 is interposed between the vibration measurement object 200 and the second cover layer 100. The second member 112 is interposed between the vibration measurement object 200 and the second cover layer 100.
 介在部材110は、樹脂材料に代表される電気絶縁性の材料で形成されている。介在部材110の介在のためセンサー部10が振動計測対象物200から離隔して配置されており、また介在部材110が電気絶縁性であることから、センサー部10と振動計測対象物200との電気的絶縁が保たれている。そのため、振動計測対象物200からのノイズがセンサー部10に及ぼす影響が、抑制されている。 The intervening member 110 is made of an electrically insulating material typified by a resin material. Since the sensor unit 10 is arranged away from the vibration measurement object 200 due to the intervention of the intervening member 110 and the intervening member 110 is electrically insulating, the electricity between the sensor unit 10 and the vibration measurement object 200 Electrical insulation is maintained. Therefore, the influence of noise from the vibration measurement object 200 on the sensor unit 10 is suppressed.
 図3~5に示されるように、第1部材111には、2つの結合孔114と、受け穴116とが形成されている。結合孔114と受け穴116とは、平面視において各々円形状を有している。受け穴116は、第1部材111の中央部分に形成されている。結合孔114は、第1部材111の両端部分に形成されている。結合孔114と受け穴116とは、第1部材111の長手方向に沿って並べられている。2つの結合孔114の中心と受け穴116の中心とは、一直線上にある。 As shown in FIGS. 3 to 5, two coupling holes 114 and a receiving hole 116 are formed in the first member 111. The coupling hole 114 and the receiving hole 116 each have a circular shape in a plan view. The receiving hole 116 is formed in the central portion of the first member 111. The coupling holes 114 are formed at both end portions of the first member 111. The coupling hole 114 and the receiving hole 116 are arranged along the longitudinal direction of the first member 111. The centers of the two coupling holes 114 and the centers of the receiving holes 116 are in a straight line.
 2つの結合孔114は、第1部材111を厚み方向に貫通している。受け穴116は、第1部材111の外表面のうちセンサー部10に対向する対向面が窪んで形成されている。受け穴116は有底の穴である。受け穴116は第1部材111を貫通していない。 The two coupling holes 114 penetrate the first member 111 in the thickness direction. The receiving hole 116 is formed by recessing the facing surface of the outer surface of the first member 111 facing the sensor portion 10. The receiving hole 116 is a bottomed hole. The receiving hole 116 does not penetrate the first member 111.
 取付部材120は、導電材料製である。取付部材120は、図4,5に示されるように、第1カバー層90に積層されている。取付部材120は、第1カバー層90に接着されていてもよい。取付部材120の内部には、中空の収容空間121が形成されている。収容空間121の内周面をなす係合面122には、雌ねじが形成されている。取付部材120には、係合面122に開口するとともに取付部材120の外表面に開口する接続孔123が形成されている。接続孔123は、収容空間121と取付部材120の外部とを連通している。取付部材120にはさらに、2つの結合孔124が形成されている。 The mounting member 120 is made of a conductive material. The mounting member 120 is laminated on the first cover layer 90 as shown in FIGS. 4 and 5. The attachment member 120 may be adhered to the first cover layer 90. A hollow accommodation space 121 is formed inside the mounting member 120. A female screw is formed on the engaging surface 122 forming the inner peripheral surface of the accommodation space 121. The mounting member 120 is formed with a connection hole 123 that opens to the engaging surface 122 and also opens to the outer surface of the mounting member 120. The connection hole 123 communicates the accommodation space 121 with the outside of the mounting member 120. The mounting member 120 is further formed with two coupling holes 124.
 接続部材130は、図2,4に示されるように、芯部131と、絶縁筒部132と、外鞘部133とを有している。芯部131は、導電材料製であり、接続部材130を貫通している。絶縁筒部132は、樹脂に代表される絶縁材料で形成されている。絶縁筒部132は、芯部131と外鞘部133との間に介在しており、芯部131と外鞘部133とを電気的に絶縁している。 As shown in FIGS. 2 and 4, the connecting member 130 has a core portion 131, an insulating cylinder portion 132, and an outer sheath portion 133. The core portion 131 is made of a conductive material and penetrates the connecting member 130. The insulating tubular portion 132 is made of an insulating material typified by resin. The insulating cylinder portion 132 is interposed between the core portion 131 and the outer sheath portion 133, and electrically insulates the core portion 131 and the outer sheath portion 133.
 外鞘部133は、導電材料製である。外鞘部133は、係合面134を有している。係合面134には、雄ねじが形成されている。係合面134は、取付部材120の係合面122に係合している。接続部材130は、取付部材120にねじ込みにより取り付けられている。接続部材130を取付部材120に対して回転させることにより、接続部材130は取付部材120に嵌合している。接続部材130が取付部材120に取り付けられた状態で、芯部131の一端は外部に露出しており、芯部131の他端は取付部材120の内部の収容空間121内に配置されている。 The outer sheath portion 133 is made of a conductive material. The outer sheath portion 133 has an engagement surface 134. A male screw is formed on the engaging surface 134. The engagement surface 134 is engaged with the engagement surface 122 of the mounting member 120. The connecting member 130 is attached to the mounting member 120 by screwing. By rotating the connecting member 130 with respect to the mounting member 120, the connecting member 130 is fitted to the mounting member 120. With the connecting member 130 attached to the mounting member 120, one end of the core portion 131 is exposed to the outside, and the other end of the core portion 131 is arranged in the accommodation space 121 inside the mounting member 120.
 導線140は、導電材料製である。図2に示されるように、導線140は、一端141と他端142とを有している。導線140の一端141は、接続部材130に接続されている。より詳細には、一端141は、接続部材130の芯部131に接続されている。一端141は、芯部131に半田付けにより接続されている。接続部材130の芯部131と導線140の一端141との間に、半田付け部が介在している。 The conductor 140 is made of a conductive material. As shown in FIG. 2, the lead wire 140 has one end 141 and the other end 142. One end 141 of the conducting wire 140 is connected to the connecting member 130. More specifically, one end 141 is connected to the core 131 of the connecting member 130. One end 141 is connected to the core 131 by soldering. A soldering portion is interposed between the core portion 131 of the connecting member 130 and the one end 141 of the conducting wire 140.
 導線140の他端142は、図5に示されるように、正極層30に接続されている。より詳細には、他端142は、正極層30の接続部32に接続されている。他端142は、接続部32に半田付けにより接続されている。正極層30の接続部32と導線140の他端142との間に、半田付け部が介在している。接続部材130の芯部131は、導線140を介して、正極層30と電気的に接続されている。 The other end 142 of the lead wire 140 is connected to the positive electrode layer 30 as shown in FIG. More specifically, the other end 142 is connected to the connecting portion 32 of the positive electrode layer 30. The other end 142 is connected to the connecting portion 32 by soldering. A soldered portion is interposed between the connecting portion 32 of the positive electrode layer 30 and the other end 142 of the conducting wire 140. The core portion 131 of the connecting member 130 is electrically connected to the positive electrode layer 30 via the conducting wire 140.
 図1~3に示す振動センサー1が組み立てられた状態で、導線140は、取付部材120の収容空間121から、取付部材120の接続孔123およびセンサー部10を構成する各層の接続孔33,53,63,73,83,93,103を貫通して、第1部材111の受け穴116にまで亘って、配置されている。 In the state where the vibration sensor 1 shown in FIGS. , 63, 73, 83, 93, 103 so as to extend through the receiving hole 116 of the first member 111.
 ボルト部材150は、導電材料製である。ボルト部材150は、頭部151と軸部152とを有している。図3に示されるように、ボルト部材150は、介在部材110と取付部材120とをボルト結合している。ボルト部材150の軸部152は、センサー部10を貫通して、介在部材110の結合孔114と取付部材120の結合孔124との両方に螺合している。ボルト部材150を介在部材110と取付部材120とにねじ込んで取り付けることにより、センサー部10が介在部材110および取付部材120によって上下から加締められて、振動センサー1の組立が完了する。 The bolt member 150 is made of a conductive material. The bolt member 150 has a head portion 151 and a shaft portion 152. As shown in FIG. 3, the bolt member 150 bolts the intervening member 110 and the mounting member 120. The shaft portion 152 of the bolt member 150 penetrates the sensor portion 10 and is screwed into both the coupling hole 114 of the intervening member 110 and the coupling hole 124 of the mounting member 120. By screwing and mounting the bolt member 150 on the interposition member 110 and the mounting member 120, the sensor unit 10 is crimped from above and below by the interposition member 110 and the mounting member 120, and the assembly of the vibration sensor 1 is completed.
 図3に示されるように、ボルト部材150が介在部材110と取付部材120とをボルト結合している状態で、頭部151の全部が介在部材110の結合孔114内に配置されている。そのため、振動センサー1を振動計測対象物200に取り付けるときにボルト部材150が取り付けの妨げとなることがない。 As shown in FIG. 3, with the bolt member 150 bolting the interposition member 110 and the mounting member 120 together, the entire head 151 is arranged in the coupling hole 114 of the interposition member 110. Therefore, when the vibration sensor 1 is attached to the vibration measurement object 200, the bolt member 150 does not interfere with the attachment.
 ボルト部材150の軸部152は、センサー部10を貫通している。軸部152は、センサー部10を構成する各層の結合孔44,54,64,74,84,94,104を貫通している。軸部152は、陰極層40を貫通している。軸部152は、陰極層40に形成された結合孔44を貫通している。結合孔44の直径は、軸部152の直径以下とされている。軸部152が結合孔44を貫通するとき、結合孔44の縁部分が軸部152に接触する。陰極層40は、取付部材120に結合されているボルト部材150を介して、取付部材120に電気的に接続されている。接続部材130の外鞘部133は、取付部材120およびボルト部材150を介して、陰極層40に電気的に接続されている。 The shaft portion 152 of the bolt member 150 penetrates the sensor portion 10. The shaft portion 152 penetrates the coupling holes 44, 54, 64, 74, 84, 94, 104 of the layers forming the sensor unit 10. The shaft portion 152 penetrates the cathode layer 40. The shaft portion 152 penetrates the coupling hole 44 formed in the cathode layer 40. The diameter of the coupling hole 44 is set to be equal to or smaller than the diameter of the shaft portion 152. When the shaft portion 152 penetrates the coupling hole 44, the edge portion of the coupling hole 44 contacts the shaft portion 152. The cathode layer 40 is electrically connected to the mounting member 120 via a bolt member 150 that is coupled to the mounting member 120. The outer sheath portion 133 of the connecting member 130 is electrically connected to the cathode layer 40 via the mounting member 120 and the bolt member 150.
 上述した説明と一部重複する部分もあるが、本実施形態の特徴的な構成を列挙すると以下のようになる。実施形態の振動センサー1は、図4,5に示されるように、薄膜状の有機圧電素子20の第1面21に正極層30、第1絶縁層50および第1シールド層70が順に積層され、有機圧電素子20の第2面23に陰極層40、第2絶縁層60および第2シールド層80が順に積層された、センサー部10を備えている。図1~3に示されるように、センサー部10は全体として、柔軟性のある薄板形状に形成されている。 Although there is a part that overlaps with the above description, the characteristic configurations of this embodiment are listed below. In the vibration sensor 1 of the embodiment, as shown in FIGS. 4 and 5, the positive electrode layer 30, the first insulating layer 50, and the first shield layer 70 are sequentially laminated on the first surface 21 of the thin-film organic piezoelectric element 20. The sensor unit 10 is provided with a cathode layer 40, a second insulating layer 60, and a second shield layer 80 laminated in this order on the second surface 23 of the organic piezoelectric element 20. As shown in FIGS. 1 to 3, the sensor unit 10 is formed in a flexible thin plate shape as a whole.
 有機圧電素子20の薄型形状および柔らかさを活かしてセンサー部10が薄板形状に成形されており、センサー部10は曲げ変形可能とされている。これにより、振動センサー1を、曲面を持つ計測対象面にも取り付け可能に構成することができる。振動センサー1が薄型の形状を有しているので、隣り合う機器の間または機器と壁面との間などの、狭隘な空間に振動センサー1を配置することもできる。したがって、実施形態の振動センサー1は、従来の振動センサーを取り付けが困難であった箇所にも取り付けが可能とされており、振動センサー1の汎用性が高められている。 Taking advantage of the thin shape and softness of the organic piezoelectric element 20, the sensor portion 10 is formed into a thin plate shape, and the sensor portion 10 is bendable and deformable. As a result, the vibration sensor 1 can be configured to be attached to the measurement target surface having a curved surface. Since the vibration sensor 1 has a thin shape, the vibration sensor 1 can be arranged in a narrow space such as between adjacent devices or between a device and a wall surface. Therefore, the vibration sensor 1 of the embodiment can be attached to a place where it was difficult to attach the conventional vibration sensor, and the versatility of the vibration sensor 1 is enhanced.
 振動センサー1が軽量化されているので、振動センサー1の自重が振動計測対象物200の振動に及ぼす影響が低減されており、したがって振動をより精度よく検出することができる。 Since the vibration sensor 1 is lightened, the influence of the own weight of the vibration sensor 1 on the vibration of the vibration measurement target 200 is reduced, and therefore the vibration can be detected more accurately.
 センサー部10において、正極層30および陰極層40が正負の電極を成し、正極層30に金属材料製の第1シールド層70が積層され、かつ陰極層40に金属材料製の第2シールド層80が積層される構成とすることで、振動センサー1に及ぼすノイズの影響を低減できる。したがって、実施形態の振動センサー1による振動の検出精度を高めることができる。正極層30と第1シールド層70との間に第1絶縁層50が介在することで、正極層30と第1シールド層70とを確実に電気的に絶縁することができる。同様に、陰極層40と第2シールド層80との間に第2絶縁層60が介在することで、陰極層40と第2シールド層80とを確実に電気的に絶縁することができる。 In the sensor unit 10, the positive electrode layer 30 and the cathode layer 40 form positive and negative electrodes, the first shield layer 70 made of a metal material is laminated on the positive electrode layer 30, and the second shield layer made of a metal material is laminated on the cathode layer 40. By configuring the 80s to be stacked, the influence of noise on the vibration sensor 1 can be reduced. Therefore, the vibration detection accuracy of the vibration sensor 1 of the embodiment can be improved. By interposing the first insulating layer 50 between the positive electrode layer 30 and the first shield layer 70, the positive electrode layer 30 and the first shield layer 70 can be reliably electrically insulated. Similarly, since the second insulating layer 60 is interposed between the cathode layer 40 and the second shield layer 80, the cathode layer 40 and the second shield layer 80 can be reliably electrically insulated.
 また図4,5に示されるように、振動センサー1は、第1シールド層70に積層された第1カバー層90と、第2シールド層80に積層された第2カバー層100とをさらに備えている。金属材料製の第1シールド層70および第2シールド層80に、ポリイミドなどの樹脂材料製の第1カバー層90および第2カバー層100をそれぞれ積層して、センサー部10の最外層を樹脂材料で形成することで、センサー部10の防錆性および耐薬品性を向上することができる。 Further, as shown in FIGS. 4 and 5, the vibration sensor 1 further includes a first cover layer 90 laminated on the first shield layer 70 and a second cover layer 100 laminated on the second shield layer 80. ing. A first cover layer 90 and a second cover layer 100 made of a resin material such as polyimide are laminated on the first shield layer 70 and the second shield layer 80 made of a metal material, respectively, and the outermost layer of the sensor unit 10 is made of a resin material. By forming the sensor unit 10, the rust resistance and chemical resistance of the sensor unit 10 can be improved.
 また図1~5に示されるように、振動センサー1は、介在部材110をさらに備えている。図2に示されるように、介在部材110は、センサー部10の第2カバー層100と振動計測対象物200との間に介在している。介在部材110を介在させることで、センサー部10が振動計測対象物200から離れて配置されている。そのため、センサー部10と振動計測対象物200との電気的絶縁を保つことができ、振動計測対象物200からのノイズが振動センサー1に及ぼす影響を低減することができる。 Further, as shown in FIGS. 1 to 5, the vibration sensor 1 further includes an intervening member 110. As shown in FIG. 2, the interposition member 110 is interposed between the second cover layer 100 of the sensor unit 10 and the vibration measurement object 200. By interposing the intervening member 110, the sensor unit 10 is arranged away from the vibration measurement object 200. Therefore, the electrical insulation between the sensor unit 10 and the vibration measurement object 200 can be maintained, and the influence of noise from the vibration measurement object 200 on the vibration sensor 1 can be reduced.
 介在部材110にマグネットプレートを固定して磁力で介在部材110を振動計測対象物200に取り付ける、介在部材110と振動計測対象物200とを両面テープなどの接合テープで貼り付ける、または介在部材110を振動計測対象物200に接着するなどによって、センサー部10に影響を与えることなく、振動センサー1を振動計測対象物200に容易に取り付けることができる。 The magnet plate is fixed to the intervening member 110 and the intervening member 110 is magnetically attached to the vibration measurement object 200, the intervening member 110 and the vibration measurement object 200 are attached with a joining tape such as double-sided tape, or the intervening member 110 is attached. The vibration sensor 1 can be easily attached to the vibration measurement target 200 without affecting the sensor unit 10 by adhering it to the vibration measurement target 200.
 また図1~5に示されるように、第1カバー層90に積層されている取付部材120に、正極層30に電気的に接続する接続部材130が取り付けられている。接続部材130を介して、振動センサー1による振動計測対象物の振動の検出結果を外部に出力することができる。接続部材130の芯部131をチャージコンバータに接続するように構成すれば、チャージコンバータで電荷信号を電圧信号に変換して、振動の検出結果を電圧として出力することができる。接続部材130として、10-32コネクタなどの安価に入手可能な市販品を使用することができ、この場合、振動センサー1の製造コストを低減することができる。 Further, as shown in FIGS. 1 to 5, the connection member 130 electrically connected to the positive electrode layer 30 is attached to the attachment member 120 laminated on the first cover layer 90. The vibration detection result of the vibration measurement object by the vibration sensor 1 can be output to the outside via the connecting member 130. If the core 131 of the connecting member 130 is configured to be connected to the charge converter, the charge signal can be converted into a voltage signal by the charge converter, and the vibration detection result can be output as a voltage. As the connection member 130, a commercially available product such as a 10-32 connector that can be obtained at low cost can be used, and in this case, the manufacturing cost of the vibration sensor 1 can be reduced.
 また接続部材130は、取付部材120にねじ込みにより取り付けられている。接続部材130を回転させる動作だけで接続部材130を取付部材120に容易に取り付けることができ、特殊工具が必要なく半田付けの必要もないので、振動センサー1の組み立て作業を短縮することができる。 Further, the connecting member 130 is attached to the attachment member 120 by screwing. Since the connecting member 130 can be easily attached to the mounting member 120 only by rotating the connecting member 130, no special tool is required and no soldering is required, so that the assembly work of the vibration sensor 1 can be shortened.
 また図2,5に示されるように、導線140の一端141は接続部材130に電気的に接続されており、導線140の他端142は正極層30に接続されている。係る構成により、導線140を介して正極層30と接続部材130とを確実に電気的に接続することができる。 Further, as shown in FIGS. 2 and 5, one end 141 of the conductor wire 140 is electrically connected to the connection member 130, and the other end 142 of the conductor wire 140 is connected to the positive electrode layer 30. With such a configuration, the positive electrode layer 30 and the connecting member 130 can be reliably and electrically connected via the lead wire 140.
 また導線140の他端142は、正極層30に半田付けにより接続されている。係る構成により、半田付けによって導線140を正極層30に確実に固定でき、導線140を介した正極層30と接続部材130との電気的接続を確保することができる。 Further, the other end 142 of the lead wire 140 is connected to the positive electrode layer 30 by soldering. With such a configuration, the conductive wire 140 can be reliably fixed to the positive electrode layer 30 by soldering, and electrical connection between the positive electrode layer 30 and the connection member 130 via the conductive wire 140 can be secured.
 また図3に示されるように、ボルト部材150は、介在部材110と取付部材120とをボルト結合している。ボルト部材150を介在部材110の結合孔114に取り付けてセンサー部10を貫通させて取付部材120の結合孔124にねじ込むことにより、振動センサー1を容易に一体に組み立てることができる。 Further, as shown in FIG. 3, the bolt member 150 bolts the intervening member 110 and the mounting member 120. By mounting the bolt member 150 in the coupling hole 114 of the interposition member 110, penetrating the sensor portion 10 and screwing it into the coupling hole 124 of the mounting member 120, the vibration sensor 1 can be easily assembled integrally.
 またボルト部材150は、陰極層40を貫通して配置されており、陰極層40と接続部材130とはボルト部材150を介して電気的に接続されている。ボルト部材150を用いて振動センサー1をボルト結合するときに、ボルト部材150の軸部152が陰極層40に接触することで、ボルト部材150を介して陰極層40と接続部材130とが電気的に接続される。陰極層40と接続部材130との電気的接続のための専用の工程を設ける必要がないので、振動センサー1の組み立て作業を短縮でき、生産性を向上することができる。 Further, the bolt member 150 is arranged so as to penetrate the cathode layer 40, and the cathode layer 40 and the connection member 130 are electrically connected via the bolt member 150. When the vibration sensor 1 is bolted using the bolt member 150, the shaft portion 152 of the bolt member 150 comes into contact with the cathode layer 40, so that the cathode layer 40 and the connecting member 130 are electrically connected to each other via the bolt member 150. Connected to. Since it is not necessary to provide a dedicated process for electrically connecting the cathode layer 40 and the connection member 130, the assembly work of the vibration sensor 1 can be shortened and the productivity can be improved.
 以上、実施形態について説明を行なったが、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments have been described above, but the embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
 本開示に係る振動センサーは、機械または工場などの振動計測対象物に多数の振動センサーを取り付けて、振動計測対象物の振動の傾向を時系列で検証して予知保全に使う用途に、好適に適用され得る。 The vibration sensor according to the present disclosure is suitable for use in predictive maintenance by attaching a large number of vibration sensors to a vibration measurement object such as a machine or a factory and verifying the vibration tendency of the vibration measurement object in chronological order. Can be applied.
 1 振動センサー、10 センサー部、20 有機圧電素子、21 第1面、23 第2面、30 正極層、31,41 本体部、32,42 接続部、33,53,63,73,83,93,103,123 接続孔、40 陰極層、44,54,64,74,84,94,104,114,124 結合孔、50 第1絶縁層、60 第2絶縁層、70 第1シールド層、80 第2シールド層、90 第1カバー層、100 第2カバー層、110 介在部材、111 第1部材、112 第2部材、116 受け穴、120 取付部材、121 取付空間、122,134 係合面、130 接続部材、131 芯部、132 絶縁筒部、133 外鞘部、140 導線、141 一端、142 他端、150 ボルト部材、151 頭部、152 軸部、200 振動計測対象物。 1 Vibration sensor, 10 Sensor part, 20 Organic piezoelectric element, 21 1st surface, 23 2nd surface, 30 Positive electrode layer, 31,41 Main body part, 32,42 Connection part, 33,53,63,73,83,93 , 103, 123 Connection hole, 40 Cathode layer, 44, 54, 64, 74, 84, 94, 104, 114, 124 Bond hole, 50 1st insulation layer, 60 2nd insulation layer, 70 1st shield layer, 80 2nd shield layer, 90 1st cover layer, 100 2nd cover layer, 110 intervening member, 111 1st member, 112 2nd member, 116 receiving hole, 120 mounting member, 121 mounting space, 122, 134 engaging surface, 130 connection member, 131 core part, 132 insulation cylinder part, 133 outer sheath part, 140 lead wire, 141 one end, 142 other end, 150 bolt member, 151 head, 152 shaft part, 200 vibration measurement target.

Claims (9)

  1.  第1面と、前記第1面の反対側の第2面とを有し、前記第1面に正電荷が偏在し前記第2面に負電荷が偏在するように分極された、薄膜状の有機圧電素子と、
     前記第1面に積層された、金属材料製の正極層と、
     前記正極層に積層された、絶縁材料製の第1絶縁層と、
     前記第1絶縁層に積層された、金属材料製の第1シールド層と、
     前記第2面に積層された、金属材料製の陰極層と、
     前記陰極層に積層された、絶縁材料製の第2絶縁層と、
     前記第2絶縁層に積層された、金属材料製の第2シールド層と、を備える、振動センサー。
    A thin film having a first surface and a second surface opposite to the first surface, and polarized so that positive charges are unevenly distributed on the first surface and negative charges are unevenly distributed on the second surface. Organic piezoelectric element and
    A positive electrode layer made of a metal material laminated on the first surface and
    A first insulating layer made of an insulating material laminated on the positive electrode layer and
    A first shield layer made of a metal material laminated on the first insulating layer,
    A cathode layer made of a metal material laminated on the second surface and
    A second insulating layer made of an insulating material laminated on the cathode layer and
    A vibration sensor including a second shield layer made of a metal material laminated on the second insulating layer.
  2.  前記第1シールド層に積層された、絶縁材料製の第1カバー層と、
     前記第2シールド層に積層された、絶縁材料製の第2カバー層とをさらに備える、請求項1に記載の振動センサー。
    A first cover layer made of an insulating material laminated on the first shield layer,
    The vibration sensor according to claim 1, further comprising a second cover layer made of an insulating material laminated on the second shield layer.
  3.  前記第2カバー層の周縁部の少なくとも一部に積層され、前記振動センサーにより振動を計測される振動計測対象物に前記振動センサーが取り付けられた状態で前記振動計測対象物と前記第2カバー層との間に介在する、介在部材をさらに備える、請求項2に記載の振動センサー。 The vibration measurement target and the second cover layer are laminated on at least a part of the peripheral portion of the second cover layer, and the vibration sensor is attached to the vibration measurement target whose vibration is measured by the vibration sensor. The vibration sensor according to claim 2, further comprising an intervening member.
  4.  前記第1カバー層に積層された取付部材と、
     前記取付部材に取り付けられ、前記正極層に電気的に接続する接続部材を備える、請求項3に記載の振動センサー。
    The mounting member laminated on the first cover layer and
    The vibration sensor according to claim 3, further comprising a connecting member that is attached to the mounting member and electrically connected to the positive electrode layer.
  5.  前記接続部材は、前記取付部材にねじ込みにより取り付けられている、請求項4に記載の振動センサー。 The vibration sensor according to claim 4, wherein the connection member is attached to the attachment member by screwing.
  6.  前記接続部材に接続される一端と、前記正極層に接続される他端とを有する導線をさらに備える、請求項4または5に記載の振動センサー。 The vibration sensor according to claim 4 or 5, further comprising a conductive wire having one end connected to the connecting member and the other end connected to the positive electrode layer.
  7.  前記他端は、前記正極層に半田付けにより接続されている、請求項6に記載の振動センサー。 The vibration sensor according to claim 6, wherein the other end is connected to the positive electrode layer by soldering.
  8.  前記介在部材と前記取付部材とをボルト結合するボルト部材をさらに備える、請求項4~7のいずれか1項に記載の振動センサー。 The vibration sensor according to any one of claims 4 to 7, further comprising a bolt member that bolts the intervening member and the mounting member together.
  9.  前記ボルト部材は、前記陰極層を貫通して配置されており、
     前記陰極層と前記接続部材とは、前記ボルト部材を介して電気的に接続されている、請求項8に記載の振動センサー。
    The bolt member is arranged so as to penetrate the cathode layer.
    The vibration sensor according to claim 8, wherein the cathode layer and the connecting member are electrically connected via the bolt member.
PCT/JP2020/008672 2019-03-05 2020-03-02 Vibration sensor WO2020179731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019039850 2019-03-05
JP2019-039850 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020179731A1 true WO2020179731A1 (en) 2020-09-10

Family

ID=72337771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008672 WO2020179731A1 (en) 2019-03-05 2020-03-02 Vibration sensor

Country Status (2)

Country Link
TW (1) TW202040105A (en)
WO (1) WO2020179731A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183708A1 (en) * 2016-04-22 2017-10-26 日本バルカー工業株式会社 Vibration detecting method, vibration sensor, vibration detecting device, vibration detecting program, and vibration detecting system
JP2018081020A (en) * 2016-11-17 2018-05-24 日本バルカー工業株式会社 Vibration sensor and vibration detection system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183708A1 (en) * 2016-04-22 2017-10-26 日本バルカー工業株式会社 Vibration detecting method, vibration sensor, vibration detecting device, vibration detecting program, and vibration detecting system
JP2018081020A (en) * 2016-11-17 2018-05-24 日本バルカー工業株式会社 Vibration sensor and vibration detection system

Also Published As

Publication number Publication date
TW202040105A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
JP5605433B2 (en) Piezoelectric vibration device
KR20130016647A (en) Ultrasonic sensor
JP5194584B2 (en) Wiring substrate and stacked power storage device
US4638468A (en) Polymer hydrophone array with multilayer printed circuit wiring
US7898151B2 (en) Ultrasonic sensor having a piezoelectric element
JP4318286B2 (en) Electronic components
US6671230B1 (en) Piezoelectric volumetric array
WO2020179731A1 (en) Vibration sensor
CN109494294B (en) Piezoelectric device and electronic apparatus
JP4302857B2 (en) Piezoelectric sounder
JP3805644B2 (en) Piezoelectric actuator
JPH11142273A (en) Pressure detecting device
JP5187687B2 (en) Piezoelectric element, piezoelectric sensor, and method for manufacturing piezoelectric element
JPS61103399A (en) Ultrasonic probe and its manufacture
JP5031153B2 (en) Laminated electro-mechanical energy conversion element and vibration wave drive device
JP2022506331A (en) Layered electromechanical transducer
JP7343048B2 (en) Acceleration detection device
JPH08251954A (en) Ultrasonic oscillator
US20130026884A1 (en) Ultrasonic sensor
JPH0870496A (en) Ultrasonic transducer and its manufacture
US9288916B2 (en) Electronic device, cable coupling structure, and method of fabricating electronic device
JP2945980B2 (en) Ultrasonic probe
JP2020020596A (en) Vibration sensor
JPH0479154B2 (en)
JP2589541B2 (en) Array type ultrasonic probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP