WO2020179409A1 - Sioc structure and composition for negative electrode using same, negative electrode, and secondary battery - Google Patents

Sioc structure and composition for negative electrode using same, negative electrode, and secondary battery Download PDF

Info

Publication number
WO2020179409A1
WO2020179409A1 PCT/JP2020/005738 JP2020005738W WO2020179409A1 WO 2020179409 A1 WO2020179409 A1 WO 2020179409A1 JP 2020005738 W JP2020005738 W JP 2020005738W WO 2020179409 A1 WO2020179409 A1 WO 2020179409A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
sioc
negative electrode
based fine
substituted
Prior art date
Application number
PCT/JP2020/005738
Other languages
French (fr)
Japanese (ja)
Inventor
浩綱 山田
三和子 西村
正一 近藤
創一朗 佐藤
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to JP2021503511A priority Critical patent/JPWO2020179409A1/ja
Publication of WO2020179409A1 publication Critical patent/WO2020179409A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a SiOC structure, and a negative electrode composition, a negative electrode, and a secondary battery used therein.
  • This application is based on the Japanese Patent Application No. submitted to the Japan Patent Office on March 1, 2019. The priority is claimed based on JP2019-038011 (Japanese Patent Application No. 2019-038011), and the contents of the above-mentioned Japanese patent application are incorporated herein for all purposes.
  • Secondary batteries are used as a drive power source in various electronic devices, communication devices, and eco-cars such as hybrid vehicles.
  • a lithium intercalation compound that releases lithium ions from the layers is mainly used as the positive electrode material, and a carbonaceous material capable of storing and releasing lithium ions between the crystal planes during charging and discharging (for example,).
  • Various lithium-ion batteries using graphite or the like as the negative electrode material have been developed and put into practical use.
  • Patent Document 1 describes a SiOC composite material obtained by physically mixing various polysilsesquioxane and silicon particles and heat-treating the resulting mixture under predetermined conditions, and the same.
  • a negative electrode and a lithium-ion battery using a SiOC composite material as a negative electrode active material are disclosed.
  • Patent Document 1 shows that the use of the negative electrode active material can improve the battery capacity and cycle durability in a battery cycle test.
  • Patent Document 1 describes that in the disclosed SiOC composite material, silicon particles are embedded in a SiOC matrix derived from polysilsesquioxane, but silicon in the SiOC matrix is described.
  • Embedding of particles refers to a structure realized by physical mixing of polysilsesquioxane and silicon particles as described above, that is, a structure in which silicon particles are simply dispersed in a SiOC matrix. Understood to do.
  • Patent Document 2 discloses a negative electrode material composed of composite particles in which all or a part of inorganic particles capable of occluding/desorbing lithium ions are coated with ceramics. More specifically, the negative electrode material disclosed in Patent Document 2 contains at least one of the inorganic particles selected from the group consisting of Si, Sn and Zn as a constituent element, and the ceramics include Si, Ti, Al and A negative electrode material for a non-aqueous electrolyte secondary battery, which is composed of an oxide, a nitride or a carbide containing at least one element selected from the group consisting of Zr.
  • Patent Document 2 according to the negative electrode material having such a configuration, the volume change of the negative electrode material that may occur due to intercalation / deintercalation of lithium ions or the like can be reduced, and the battery characteristics such as charge / discharge cycle characteristics can be improved. Is suggested.
  • Patent Document 2 discloses some examples in which inorganic fine particles made of Si or the like are coated with SiOC ceramics. In view of these examples, Patent Document 2 discloses it. The obtained negative electrode material is manufactured through the following manufacturing steps.
  • phenyltrimethoxysilane is solized as a precursor organic molecule
  • the above-mentioned inorganic fine particles are added to the sol obtained thereby, and the hydrolysis reaction and the polycondensation reaction are further promoted to gelle to form a bulk gel.
  • the hydrolysis reaction and the polycondensation reaction are further promoted to gelle to form a bulk gel.
  • the negative electrode material disclosed in Patent Document 2 it is considered that the inorganic fine particles are held in a state of being dispersed in the SiOC ceramics derived from the bulk gel.
  • Patent Document 3 describes silicon composite particles obtained by sintering fine particles of silicon, a silicon alloy or silicon oxide together with an organosilicon compound or a mixture thereof, and a non-aqueous electrolyte using the silicon composite particles.
  • a negative electrode material for a secondary battery is disclosed.
  • a silicon-based inorganic compound formed by sintering the organosilicon compound or a mixture thereof serves as a binder, and silicon or silicon alloy fine particles are dispersed therein. It is characterized by having a structure in which voids are present in the particles.
  • Patent Document 3 shows that good cycle characteristics can be obtained by using such silicon composite particles as a negative electrode material.
  • the silicon composite particles disclosed in Patent Document 3 are obtained by curing a mixture of silicon fine particles and a curable siloxane composition composed of various organosilicon compounds such as a siloxane compound, and obtaining a mass obtained by curing the mixture. It is a crushed silicon composite obtained by heat treatment. Therefore, also in the negative electrode material disclosed in Patent Document 3, it is recognized that fine particles such as silicon exist in a state as if they were dispersed in the silicon composite.
  • Patent Document 4 discloses a negative electrode active material for a non-aqueous electrolyte secondary battery made of a ceramic composite material in which metallic silicon and SiC are dispersed in SiOC ceramics. More specifically, the ceramic composite material disclosed in Patent Document 4 has a peak intensity of the (111) plane diffraction line of the metallic silicon in b1 and (111) of the SiC in the X-ray diffraction using CuK ⁇ characteristic X-ray. ) When the peak intensity of the surface diffraction line is b2, the ratio represented by b1 / b2 and the density when compressed at 30 MPa are each within a predetermined numerical range.
  • Patent Document 4 suggests that a secondary battery using such a negative electrode active material made of a ceramic composite material exhibits excellent initial efficiency, charge / discharge capacity, and cycle characteristics.
  • the ceramic composite material disclosed in Patent Document 4 is manufactured through the following manufacturing steps. That is, the polymer obtained by adding metallic silicon particles to a carbon precursor solution in which a novolak type phenol resin as a carbon source is dissolved, then adding tetraethoxysilane, and polymerizing the silane compound is heat-cured and subjected to heat curing.
  • the ceramic composite material obtained by firing through the step of desolvation treatment is used as the negative electrode active material. Therefore, the ceramic composite material disclosed in Patent Document 4 is also one in which particles of metallic silicon and SiC are dispersed in SiOC ceramics.
  • Patent Document 5 which is a publication of a Chinese patent application, is considered to disclose a nanosilicon energy storage material having a core-shell structure as shown in each figure and a lithium ion battery containing the storage material.
  • the nanosilicon energy occlusion material disclosed in Patent Document 5 is obtained by subjecting Si nanoparticles to a surface treatment with a silane coupling agent and then subjecting the hydrolyzate of various organic silane compounds to the surface treatment. It is considered that the polycondensate obtained by uniformly dispersing Si nanoparticles and further polycondensing the hydrolyzate is coated with petroleum pitch and then fired to obtain a composite material.
  • the composite material has an intermediate layer derived from a core of silicon nanoparticles and a polymerizable organic siloxane, and an outer shell derived from petroleum pitch located outside the intermediate layer.
  • Patent Document 5 contains an SEM photograph showing the appearance of the actually obtained composite material (Fig. 5 of the document), but the result of examining the internal structure thereof. Is not shown at all, and there are many unclear points as to whether the core-shell structure as shown in the schematic views of FIGS. 3 and 4 of the relevant document is actually formed.
  • the present inventors have developed various negative electrode active materials including the negative electrode active material described in Patent Document 1, and in particular, the negative electrode active material using the SiOC composite material is industrially used.
  • the inventors of the present invention are developing various SiOC composite materials obtained by firing a composite material of silicon nanoparticles and polysilsesquioxane for use as a negative electrode active material.
  • the present inventors hydrolyzed a functional silane compound as a starting material for polysilsesquioxane synthesis, and then hydrolyzed the hydrolyzed product in the presence of silicon-based nanoparticles.
  • the silicon-based nanoparticles When the step of polycondensing polysilsesquioxane by polycondensation of polysilsesquioxane is performed under standing conditions instead of stirring conditions, the silicon-based nanoparticles have a polysilsesquioxane coat layer having a relatively smooth outer surface. A silicon-based nanoparticle/polysilsesquioxane complex uniformly coated with is produced, and the uniform coating structure of the silicon-based nanoparticle by such a coating layer is converted into a SiOC structure by heat treatment. Also found that it will be maintained.
  • the present inventors produced a lithium ion secondary battery using a SiOC structure having such a structure as a negative electrode active material, the battery characteristics such as cycle capacity retention rate and average Coulombic efficiency were improved to a certain extent. I have discovered that this can happen. That is, the present invention has been completed by the above discovery, and one of the main objects of the present disclosure is to provide a material for a negative electrode active material capable of realizing a good capacity retention rate and Coulomb efficiency, and a method for producing the material. , And a composition for a negative electrode using the material as a negative electrode active material, a negative electrode, and a secondary battery.
  • BET specific surface area is 20 m 2 / g or less,
  • the cumulative 10% particle size (D10), cumulative 50% particle size (D50), and cumulative 90% particle size (D90) obtained by the laser diffraction scattering particle size distribution measurement method are 1 nm ⁇ D50 ⁇ 990 ⁇ m and D90/D10. Satisfy the condition of ⁇ 13.0, SiOC structure.
  • a plurality of secondary particles are formed by completely covering the at least one silicon-based fine particle with the SiOC coat layer, and the plurality of secondary particles are connected to each other via the SiOC coat layer.
  • the secondary battery according to [16] which is a lithium ion secondary battery.
  • R 1 is a hydrogen, a hydroxyl group, or a substituted or unsubstituted hydrocarbon having 1 to 45 carbon atoms, and in the hydrocarbon having 1 to 45 carbon atoms, any hydrogen may be replaced with a halogen.
  • Any —CH 2 — may be replaced with —O—, —CH ⁇ CH—, cycloalkylene or cycloalkenylene
  • X 1 is a halogen, an alkyloxy having 1 to 6 carbon atoms, or an acetoxy.
  • n is an integer from 0 to 3.
  • the silane compound represented by the general formula (I) has the following general formula (II): R 10 Si (R 7 ) (R 8 ) (R 9 ) ⁇ ⁇ ⁇ (II) (In the formula, R 7 , R 8 and R 9 are each independently hydrogen, halogen, a hydroxyl group or alkyloxy having 1 to 4 carbons, and R 10 is substituted or unsubstituted alkyl having 1 to 45 carbons.
  • the silicon-containing polymer has the following general formulas (III), (IV), (V), and (VI).
  • R 1 and R 4 are each independently selected from the group consisting of substituted or unsubstituted alkyl having 1 to 45 carbon atoms, substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl; In the number 1 to 45 alkyl, any hydrogen may be replaced with a halogen and any —CH 2 — may be replaced with —O—, —CH ⁇ CH—, cycloalkylene or cycloalkenylene.
  • any hydrogen in the alkylene in the substituted or unsubstituted arylalkyl may be replaced by halogen, and any —CH 2 — may be replaced by —O—, —CH ⁇ CH— or cycloalkylene.
  • R 2 , R 3 , R 5 and R 6 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted alkyl having 1 to 45 carbon atoms, substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl.
  • any hydrogen may be replaced by halogen, and any —CH 2 — is —O—, —CH ⁇ CH—, cycloalkylene, cycloalkenylene or — SiR 1 2 — may be replaced, and in the alkylene in the substituted or unsubstituted arylalkyl, any hydrogen may be replaced by halogen, and any —CH 2 — may be —O—, —CH ⁇ . It may be replaced with CH-, cycloalkylene, cycloalkenylene or -SiR 1 2- , and n represents an integer of 1 or more.
  • the method according to [18] or [19] comprising at least one selected from the group consisting of polysilsesquioxanes each having a polysilsesquioxane structure represented by
  • (P-3′) The pH of the mixed solution is adjusted to 2 or less by adding a predetermined amount of acid or a solution thereof to the mixed solution obtained in the step (p-2′), and then the mixed solution is mixed. By allowing the solution to stand for a predetermined time and at a predetermined temperature, polycondensation of the silane compound is allowed to proceed, and the silicon-based fine particle / silicon-containing polymer composite is produced.
  • the silane compound represented by the general formula (I) contains at least one silane compound selected from the group consisting of methyltrimethoxysilane and phenyltrimethoxysilane, [18] to The method according to any one of [24].
  • the non-oxidizing gas atmosphere in the step (q) is an atmosphere containing an inert gas.
  • the non-oxidizing gas atmosphere in the step (q) is an atmosphere containing nitrogen gas and/or argon gas.
  • the silicon-based fine particles/silicon-containing polymer composite is heated to a temperature in the range of 400° C. to 1800° C., and is heated at the temperature for 30 minutes to 10 hours.
  • a method for producing a negative electrode composition which comprises using the SiOC structure according to any one of [1] to [12] as a negative electrode active material to obtain the negative electrode composition.
  • a good cycle capacity retention rate and Coulombic efficiency can be realized in the secondary battery.
  • FIG. 7 is a view showing an SEM photograph (10,000 times) of the SiOC material obtained in Comparative Example 1.
  • FIG. 6 is a view showing a SEM photograph (20,000 times) of a silicon nanoparticle/methylpolysilsesquioxane complex obtained in Comparative Example 2. It is a figure which shows the SEM photograph (50,000 times) of the SiOC structure acquired in Example 1.
  • FIG. 6 is a diagram showing the results of measuring the particle size distributions of the SiOC structures obtained in Examples 1 and 2 and the SiOC material obtained in Comparative Example 1.
  • FIG. It is a figure which shows the result of having measured each particle size distribution of each SiOC structure acquired in Example 3 and 4, respectively.
  • FIG. 6 is a diagram showing the results of measuring the battery capacity by a charge/discharge cycle test for each lithium ion secondary battery produced in Examples 1 to 4 and Comparative Example 1.
  • FIG. 5 is a diagram showing the results of measuring Coulombic efficiency by a charge/discharge cycle test for each lithium ion secondary battery produced in Examples 1 to 4 and Comparative Example 1. It is a figure which shows the structural example of a coin type lithium ion battery.
  • SiOC structure According to the first aspect of the present invention, (A) With at least one silicon-based fine particle, (B) A SiOC coat layer containing at least Si (silicon), O (oxygen) and C (carbon) as constituent elements, and Including, The at least one silicon-based fine particle is coated with the SiOC coat layer. BET specific surface area is 20 m 2 / g or less, The cumulative 10% particle size (D10), cumulative 50% particle size (D50), and cumulative 90% particle size (D90) obtained by the laser diffraction scattering particle size distribution measurement method are 1 nm ⁇ D50 ⁇ 990 ⁇ m and D90/D10. Satisfy the condition of ⁇ 13.0, A SiOC structure is provided.
  • the SiOC structure according to the first aspect of the present invention will be described in detail.
  • SiOC structure contains at least one silicon-based fine particle.
  • silicon-based fine particles is a concept that includes silicon fine particles substantially consisting of only silicon, and fine particles consisting of a compound containing silicon (silicon) in the atomic composition (for example, silica, a silicon-containing metal compound). is there.
  • the particle size (volume-based average particle size) of silicon-based particles can be used as long as it is in the range of nanometer scale to micrometer scale.
  • silicon-based fine particles having a volume-based average particle diameter in the range of 1 nm to 2 ⁇ m can be used.
  • the volume-based average particle diameter (average particle diameter) of the silicon-based fine particles is, for example, 10 nm to 500 nm, preferably 10 nm to 200 nm, and more preferably 20 nm to 20 nm. It is preferably in the range of 100 nm.
  • the SiOC structure according to the first aspect of the present invention includes a SiOC coating layer that covers the at least one silicon-based fine particle.
  • the SiOC coating layer contains at least Si (silicon), O (oxygen), and C (carbon) as constituent elements, but in addition to these, the inclusion of other elements It is not excluded.
  • the SiOC coat layer is not particularly limited, but specifically, as described below, the coat layer containing at least one silicon-containing polymer and coating the silicon-based fine particles has a predetermined thickness. Anything may be ceramicized by the heat treatment of.
  • the SiOC structure according to the first aspect of the present invention is characterized in that "the at least one silicon-based fine particle is completely covered by the SiOC coating layer".
  • the SiOC structure has a structural portion in which at least one silicon-based fine particle is completely covered by the SiOC coating layer, and the SiOC structure is not necessarily required. It is not necessary that all of the silicon-based fine particles contained in the above are completely covered with the SiOC coat layer. That is, in some embodiments of the present invention, specific examples of the mode of coating the silicon-based fine particles with the SiOC coated layer include the following embodiments. (I) An embodiment in which all of the silicon-based fine particles contained in the SiOC structure are completely covered with a SiOC coating layer; and (ii) At least one of the silicon-based fine particles contained in the SiOC structure is covered with a SiOC coating layer.
  • the form of coating the silicon-based fine particles with the SiOC coat layer can be confirmed by observing with an electron microscope such as SEM.
  • Specific examples of the form of the SiOC structure observed in this way include the form observed in the SEM photographs shown in FIGS. 2A and 3. More specifically, in the SiOC structure according to the first aspect of the present invention, at least one silicon-based fine particle is coated with the SiOC coat layer, as observed in the SEM photographs of FIGS. 2A and 3. It is preferable that a plurality of secondary particles are formed by the method, and the plurality of secondary particles are connected to each other via the SiOC coat layer.
  • the SiOC structure When the SiOC structure exhibits a form in which silicon-based fine particles are covered with the SiOC coating layer and connected to each other through the SiOC coating layer, the SiOC structure has excellent performance as an active material for negative electrode. This is because it can be expected to improve the capacity retention rate and the Coulomb efficiency in the secondary battery.
  • the silicon-based fine particles and the SiOC coating layer are preferably chemically bonded to each other.
  • the SiOC structure in which the silicon-based fine particles and the SiOC coat layer are chemically bonded to each other can be produced by the method described later. More specifically, a predetermined functional silane compound is hydrolyzed using an acidic catalyst and polycondensed in the presence of silicon-based fine particles to form a coating layer containing a silicon-containing polymer around the silicon-based fine particles. By doing so, a composite of silicon-based fine particles / silicon-containing polymer is obtained.
  • the surface of the silicon-based fine particles and the silicon-containing fine particles produced by the polycondensation reaction are contained.
  • a state in which the polymer is chemically bonded is developed.
  • the silicon-based fine particles/silicon-containing polymer composite is heat-treated under a predetermined condition to convert the coating layer into a ceramic to be converted into a SiOC structure.
  • the structure in which the surface and the silicon-containing polymer are chemically bonded can be maintained even after the silicon-based fine particle / silicon-containing polymer composite is converted into the SiOC structure.
  • the silicon-based fine particles and the SiOC coat layer are connected by a chemical skeleton generated by the formation of the silicon-containing polymer.
  • a chemical skeleton include chemical skeletons containing Si—O—C, Si—O, Si—O—Si and the like.
  • the BET specific surface area of the SiOC structure needs to be 20 m 2 /g or less.
  • the lower limit of the BET specific surface area of the SiOC structure is not particularly limited, but may be, for example, 1 m 2 /g, that is, the BET specific surface area may be in the range of 1 to 20 m 2 /g. Good.
  • the SiOC structure has a structural portion in which at least one silicon-based fine particle is completely covered with the SiOC coat layer.
  • the SiOC structure according to the first aspect of the present invention has a smooth and uniform surface as a whole without being roughened even after being subjected to a physical treatment such as a crushing treatment. It leads to being able to hold.
  • the BET specific surface area of the SiOC structure is preferably 15 m 2 /g or less, more preferably 10 m 2 /g or less.
  • the range of the surface area is preferably 1 to 15 m 2 /g, more preferably 1 to 10 m 2 /g.
  • the BET specific surface area means a specific surface area according to the Brunauer-Emmett-Teller (BET) method which is well known to those skilled in the art.
  • the cumulative 10% particle size (D10), the cumulative 50% particle size (D50), and the cumulative value obtained by the laser diffraction/scattering particle size distribution measurement method are used.
  • the 90% particle size (D90) satisfies the conditions of 1 nm ⁇ D50 ⁇ 990 ⁇ m and D90/D10 ⁇ 13.0.
  • the cumulative 10% particle size (D10), the cumulative 50% particle size (D50, so-called median diameter), and the cumulative 90% particle size (D90) are laser diffraction scattering techniques that are well known in the field of particle size distribution measurement technology. It is a particle size that can be measured and calculated by the formula particle size distribution measurement method. These particle sizes are not particularly limited, but can be measured using a commercially available laser diffraction / scattering type particle size distribution measuring device (for example, MT-3300EX II manufactured by Microtrac Bell).
  • the cumulative 50% particle size (D50) is preferably 500 nm ⁇ D50 ⁇ 100 ⁇ m, more preferably 500 nm ⁇ D50 ⁇ 50 ⁇ m, and even more preferably 500 nm ⁇ D50 ⁇ .
  • the conditions of 20 ⁇ m, and in some cases 1 ⁇ m ⁇ D50 ⁇ 20 ⁇ m, 2 ⁇ m ⁇ D50 ⁇ 18 ⁇ m, 2 ⁇ m ⁇ D50 ⁇ 17 ⁇ m, 3 ⁇ m ⁇ D50 ⁇ 16 ⁇ m, 4 ⁇ m ⁇ D50 ⁇ 16 ⁇ m may be satisfied.
  • the cumulative 50% particle size (D50) and the cumulative 90% particle size (D90) are preferably 2.0 ⁇ D90 / D10 ⁇ 12.0. More preferably 2.0 ⁇ D90/D10 ⁇ 11.0, even more preferably 2.0 ⁇ D90/D10 ⁇ 10.0, particularly preferably 2.0 ⁇ D90/D10 ⁇ 9.5, for example, 2. 0 ⁇ D90 / D10 ⁇ 9.0, 2.0 ⁇ D90 / D10 ⁇ 8.5, 2.5 ⁇ D90 / D10 ⁇ 8.0, 2.5 ⁇ D90 / D10 ⁇ 7.0, 3.0 ⁇
  • the condition of D90/D10 ⁇ 7.0 and 3.0 ⁇ D90/D10 ⁇ 6.0 may be satisfied in some cases.
  • the cumulative 10% particle size (D10), the cumulative 50% particle size (D50, so-called median diameter), and the cumulative 90% particle size (D90) are as described above. When these conditions are satisfied, a relatively uniform particle size distribution is exhibited, and when the SiOC structure is used as a negative electrode material, good battery characteristics can be realized.
  • the cumulative 10% particle diameter (D10), the cumulative 50% particle diameter (D50, so-called median diameter), and the cumulative 90% particle diameter (D90) are as described above.
  • the volume-based average particle diameter in the particle size distribution represented by the frequency (%) may be in the range of 1 nm to 990 ⁇ m, although it is not particularly limited as long as the condition (1) is satisfied.
  • the average particle size is preferably in the range of 500 nm to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, even more preferably 1 ⁇ m to 20 ⁇ m, and particularly preferably 1 ⁇ m to 15 ⁇ m. It may be.
  • the average particle size is the same as the cumulative 10% particle size (D10), the cumulative 50% particle size (D50, so-called median size), and the cumulative 90% particle size (D90). It can be measured by a laser diffraction / scattering method using a measuring device.
  • the elemental composition of the SiOC structure according to the first aspect of the present invention is not particularly limited, but the SiOC structure is based on the total mass of the SiOC structure, for example, in the range of 50% by mass to 90% by mass. Si, O in the range of 5% by mass to 35% by mass, and C in the range of 2% by mass to 35% by mass may be contained as main constituent elements. Further, in some embodiments, the SiOC structure according to the first aspect of the present invention is Si in the range of 60% by mass to 90% by mass and 10% by mass to 10% by mass based on the total mass of the SiOC structure.
  • the SiOC structure according to the first aspect of the present invention may contain other elements as constituent elements in addition to Si, O and C.
  • R 1 is a hydrogen, a hydroxyl group, or a substituted or unsubstituted hydrocarbon having 1 to 45 carbon atoms, and in the hydrocarbon having 1 to 45 carbon atoms, any hydrogen may be replaced with a halogen.
  • Any —CH 2 — may be replaced with —O—, —CH ⁇ CH—, cycloalkylene or cycloalkenylene
  • X 1 is a halogen, an alkyloxy having 1 to 6 carbon atoms, or an acetoxy group.
  • n is an integer from 0 to 3.
  • a method for producing a SiOC structure hereinafter, sometimes referred to as “a method for producing a SiOC structure”
  • a method for producing a SiOC structure which includes converting into a SiOC structure.
  • the silane compound represented by the general formula (I) is hydrolyzed as the hydrolyzable silane compound. Then, the obtained hydrolyzate is polycondensed in the presence of the silicon-based fine particles to coat at least one silicon-based fine particle with a coating layer containing at least one silicon-containing polymer. / Silicon-containing polymer composite is produced.
  • R 1 is a hydrocarbon having 1 to 10 carbon atoms, and there are three. It is possible to adopt a mode in which X 1 is independently halogen, alkyloxy having 1 to 6 carbons, or acetoxy.
  • the silane compound represented by the following general formula (II) may be adopted as the silane compound represented by the general formula (I).
  • the substituent of the substituted alkyl group is halogen, alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons, alkoxy having 1 to 5 carbons, phenyl or naphthyl.
  • Aromatic groups such as
  • examples of the silane compound represented by the general formula (I) include organotrichlorosilane and organotrialkoxysilane. More specifically, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, trimethoxy(propyl)silane, n-butyltriethoxysilane, isobutyltrimethoxysilane, n-pentyltriethoxysilane, n-hexyltrimethoxysilane, isooctyltriethoxysilane, decyltrimethoxysilane, methyldimethoxyethoxysilane, methyldiethoxymethoxysilane, 2-chloroethyltriethoxysilane, methoxymethyltriethoxysilane, methylthiomethyltriethoxysilane, methoxy Substi
  • the silane compound represented by the general formula (I) preferably contains at least one silane compound selected from the group consisting of methyltrimethoxysilane and phenyltrimethoxysilane.
  • other types of silane compounds such as dialkoxydialkylsilane may be used in addition to or in place of the above-mentioned organotrichlorosilane or organotrialkoxysilane.
  • the solvent constituting the reaction liquid in step (p) is not particularly limited as long as it promotes hydrolysis/polycondensation of the silane compound. Specifically, it may contain water to assist the hydrolysis of the silane compound, but in addition to water, alcohols such as methanol, ethanol and 2-propanol, ethers such as diethyl ether, acetone and methyl ethyl ketone, etc. Examples thereof include organic solvents containing aromatic hydrocarbon solvents such as ketones, hexane, DMF and toluene. These may be used alone or in combination of two or more.
  • the acidic catalyst is not an essential component, but can be used in some cases in order to preferably control the hydrolysis and / or polycondensation reaction.
  • the acidic catalyst either an organic acid or an inorganic acid can be used.
  • organic acids include formic acid, acetic acid, propionic acid, oxalic acid, and citric acid
  • inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid.
  • hydrochloric acid and / or acetic acid is preferably used because the hydrolysis reaction and the subsequent polycondensation reaction can be easily controlled, the cost is low, and the treatment after the reaction is easy.
  • a halogenated silane such as trichlorosilane
  • an acidic aqueous solution is formed in the presence of water, and "acidic conditions" in which hydrolysis and polycondensation of the silane compound can proceed are realized.
  • the halogenated silane is used as described above, the hydrolysis and the polycondensation reaction proceed without adding an acidic catalyst to the reaction system, so that it is not necessary to add a catalyst separately. That is, in such a case, the acidic catalyst is not an essential element in the step (p) as described above.
  • silicon-based fine particles As for the silicon-based fine particles, as described above, it is a concept that includes silicon fine particles consisting essentially of only silicon, and fine particles consisting of a compound containing silicon (silicon) in the atomic composition (for example, silica, a silicon-containing metal compound), It can be used without particular limitation within the scope of this concept.
  • silicon-based fine particles silicon fine particles substantially composed of only silicon can be preferably used, and in particular, since various silicon powders are commercially available, it is convenient to use them.
  • the conditions such as the average particle size are as described above.
  • step (p) (Conditions for hydrolysis and polycondensation reaction) Next, the reaction conditions for hydrolysis and polycondensation in step (p) will be described.
  • the ratio of the silane compound in the reaction solution is not particularly limited, but is, for example, about 0.1 part by mass to about 30 parts by mass, preferably about 0.1 part by mass with respect to 100 parts by mass of the reaction solution. To about 25 parts by weight, more preferably about 0.5 to about 20 parts by weight. With such a range as a guide, it may be appropriately set together with the addition ratio of the silicon-based fine particles in view of the atomic composition ratio to be realized in the finally formed SiOC structure.
  • the addition ratio of the silicon-based fine particles is not particularly limited, and may be appropriately set together with the silane compound in consideration of the elemental composition ratio desired to be realized in the finally produced SiOC structure and the desired battery characteristics. ..
  • the addition ratio of the silicon-based fine particles is, for example, about 0.1 part by mass to about 70 parts by mass, preferably about 1.0 part by mass to about 60.0 parts by mass, more preferably about 100 parts by mass of the silane compound. It is about 5.0 parts by mass to about 55 parts by mass, particularly preferably about 10 parts by mass to about 50 parts by mass.
  • the ratio of the solvent contained in the reaction solution at the time of the hydrolysis or polycondensation is not particularly limited as long as the hydrolysis or polycondensation reaction suitably proceeds, but 100 parts by mass of the silane compound.
  • about 50 parts by mass to about 2500 parts by mass preferably about 100 parts by mass to about 2400 parts by mass, more preferably about 100 parts by mass to about 2300 parts by mass, particularly preferably about 150 parts by mass to about 2200 parts by mass.
  • the range of parts by mass can be mentioned.
  • the ratio of the solvent contained in the reaction liquid during the hydrolysis reaction is, for example, about 50 parts by mass to about 1500 parts by mass, preferably about 100 parts by mass, relative to 100 parts by mass of the silane compound.
  • Parts to about 1000 parts by mass, more preferably about 150 parts by mass to about 800 parts by mass, particularly preferably about 150 parts by mass to about 600 parts by mass, and the ratio of the solvent contained in the reaction solution at the polycondensation reaction is the above.
  • 100 parts by mass of the silane compound for example, about 400 parts by mass to about 2500 parts by mass, preferably about 500 parts by mass to about 2400 parts by mass, more preferably about 550 parts by mass to about 2300 parts by mass, particularly preferably about 600 parts by mass. It may be about 2200 parts by mass, and in some cases, about 700 parts by mass to about 2000 parts by mass.
  • water may be used as the solvent as described above, or a mixed solvent of water and another solvent (alcohol, organic solvent, etc.) may be used.
  • the ratio thereof may be appropriately adjusted so as to obtain a desired hydrolysis or polycondensation reaction, and the ratio is not particularly limited, but is not particularly limited, but the above-mentioned silane compound 100
  • parts by mass for example, about 0.02 parts to about 15 parts by mass, preferably about 0.02 parts to about 10 parts by mass, more preferably about 0.02 to about 8 parts by mass, and in some cases about 0 parts. It is about 7 parts by mass from .04 parts by mass and about 6 parts by mass from about 0.08 parts by mass.
  • each component and the method of addition are not particularly limited, but generally, for example, a solvent (catalyst solution in which a solvent and a catalyst are mixed) is charged into a reaction vessel, and the atmosphere in the reaction vessel is set to a predetermined value in some cases. Gas atmosphere (for example, inert gas such as nitrogen, argon, helium, etc.), and then add (drop) the above silane compound to the solution in the reaction vessel under stirring, and stir the reaction solution or In the stationary state, the hydrolysis and / or polycondensation reaction can be carried out at a predetermined reaction temperature and reaction time. Preferred embodiments are described in detail below for the order of addition of each component and the method of hydrolysis / polycondensation reaction.
  • reaction temperature of hydrolysis and / or polycondensation is not particularly limited, but is, for example, about -20 ° C to about 80 ° C, preferably about 0 ° C to about 70 ° C, and in some cases about 0 ° C to about. 40° C., about 10° C. to about 30° C., for example, room temperature (eg room temperature; about 20° C. to 25° C.).
  • the reaction time is also not particularly limited, and examples thereof include about 0.5 hours to about 100 hours, and in some cases, about 1 hour to about 80 hours, and about 1 hour to about 6 hours.
  • the pH of the reaction solution may be appropriately adjusted so that the hydrolysis and polycondensation reaction of the silane compound can proceed favorably, and is not particularly limited, but is usually in the range of 0.8 to 12 It may be selected according to the shape and properties of a specific silane compound or a desired organosilicon compound (polysilsesquioxane) product.
  • the pH of the reaction solution can be adjusted by using an acid containing the above-mentioned acidic catalyst.
  • step (p) first, the hydrolysis reaction of the silane compound is allowed to proceed under predetermined conditions, and then the polycondensation reaction is carried out in the presence of the silicon-based fine particles to obtain some of the present invention.
  • a predetermined silicon-based fine particle / silicon-containing polymer composite according to the embodiment can be synthesized. More specifically, in some embodiments, the following (p-1) to (p-3) may be performed in the step (p).
  • step (P-1) adding a silane compound represented by the general formula (I) to an acidic solution having a pH of 3 to 6 to hydrolyze the silane compound;
  • P-2) Add silicon-based fine particles or a dispersion thereof to the reaction solution obtained in step (p-1);
  • step (P-3) By adding a predetermined amount of an acid or a solution thereof to the mixed solution obtained in the step (p-2), the pH of the mixed solution is 2 or less (in some cases, 1.5 or less, for example, 0 or less). .9 to 2.0, 0.9 to 1.5), and allowing the mixed solution to stand for a predetermined time at a predetermined temperature to promote polycondensation of the silane compound and To produce a silicon-containing polymer composite.
  • (P-1') A silane compound represented by the general formula (I) is added stepwise to an acidic solution having a pH of 3 to 6 under stirring conditions, and the mixture is stirred under stirring conditions for a predetermined time at a predetermined temperature. Hydrolyzing the silane compound; (P-2′) Silicon fine particles or a dispersion thereof is added to the reaction liquid obtained in the step (p-1′) to uniformly disperse the silicon fine particles or a dispersion thereof in the reaction liquid.
  • the pH of the mixed solution is 2 or less (and 1.5 or less in some cases, For example, it is adjusted to 0.9 to 2.0, 0.9 to 1.5), and then the mixed solution is allowed to stand for a predetermined time at a predetermined temperature to promote polycondensation of the silane compound, To generate a silicon-based fine particle / silicon-containing polymer composite.
  • an acetic acid solution having a predetermined concentration (preferably an aqueous acetic acid solution) is used as the “acidic solution having a pH of 3 to 6” in the step (p-1) or (p-1′).
  • the acetic acid concentration range may be, for example, about 0.001M to about 0.1M concentration, preferably about 0.005M to about 0.09M concentration.
  • a hydrochloric acid solution of a predetermined concentration preferably a hydrochloric acid aqueous solution
  • the concentration range of hydrochloric acid is not particularly limited, but may be, for example, about 10% by mass to about 40% by mass, preferably about 20% by mass to about 40% by mass.
  • a hydrolyzate can be produced by hydrolyzing the silane compound in an acidic aqueous medium, and the hydrolyzate of the silane compound can be produced.
  • the decomposition reaction can be carried out, for example, by dropping the silane compound into an acidic aqueous medium.
  • the hydrolysis reaction rate is higher than the polycondensation reaction rate so that the desired hydrolysis sufficiently proceeds, and the hydrolysis reaction predominantly proceeds. It employs acidic conditions.
  • the pH range for realizing such acidic conditions varies depending on the type of the silane compound used as the raw material, but can be adjusted to pH 3 to 6, preferably pH 4 to 6, normally.
  • the degree of acidity affects the equilibrium of hydrolyzate formation, the reaction time, the amount of partial condensate, the number of condensations, etc., but does not significantly affect the particle size.
  • the above-mentioned acidic catalyst may be used, but the hydrolysis reaction and the subsequent polycondensation reaction can be easily performed by controlling, Acetic acid is most preferably used because it is easy to obtain and adjust the pH.
  • the pH value is about 5.0 to 5.8.
  • silicon-based fine particles (preferably) with respect to the reaction solution containing the hydrolyzate obtained in the step (p-1).
  • a dispersion liquid of silicon-based fine particles prepared in advance) is added, and the obtained mixed solution is stirred, for example, for 10 seconds to 2 hours, preferably for 1 minute to 1.5 hours.
  • step (p-3) or (p-3') a predetermined amount of acid or acid solution is added to the mixed solution obtained in step (p-2) or (p-2'). After stirring the mixed solution for, for example, 1 to 30 seconds, preferably about 1 to 15 seconds, for example, 2 hours to 36 hours, preferably 4 hours to 24 hours, more preferably about 4 hours to 12 hours, without stirring.
  • the hydrolyzate produced in the step (p-1) is polycondensed in the presence of the silicon-based fine particles, and the silicon-based fine particles having a predetermined structure according to some embodiments of the present invention / Obtain a silicon-containing polymer composite.
  • the reaction solution is polycondensed with the hydrolyzate of the silane compound in the presence of silicon-based fine particles in a stationary state without stirring.
  • the reaction proceeds, at least one silicon-based fine particle is uniformly coated with a coat layer containing a silicon-containing polymer, and a silicon-based fine particle / silicon-containing polymer composite (more specifically, shown in FIG. 1). Structure) is produced, which ensures the production of a SiOC structure with a defined structure according to some embodiments of the invention as a final product.
  • the silicon-based fine particle / silicon-containing polymer composite produced in the step (p) contains a coat layer containing the silicon-containing polymer as a constituent element.
  • the silicon-containing polymer is produced through hydrolysis and polycondensation of the above predetermined hydrolyzable silane compound.
  • the silicon-containing polymer may more specifically include at least one polymer selected from the group consisting of polycarbosilanes, polysilanes, polysiloxanes, and polysilsesquioxanes. ..
  • the polycarbosilane contains at least one of the structural units represented by the following (1) to (3).
  • R 1 R 2 SiC 2 (2) (R 1 Si (CH 2 ) 1.5 ) (3) (R 1 R 2 R 3 Si (CH 2 ) 0.5 )
  • R 1 , R 2 and R 3 are each independently hydrogen or a hydrocarbon having 1 to 20 carbon atoms (preferably 1 to 6 carbon atoms).
  • hydrocarbons include alkyl such as methyl, ethyl, propyl and butyl; alkenyl such as vinyl and allyl; aryl such as phenyl.
  • the hydrocarbon may be optionally substituted with a heteroatom such as silicon, nitrogen or boron.
  • the polycarbosilane may be optionally substituted with various metal groups such as aluminum, chromium and titanium. Since various kinds of polycarbosilane substituted with such a metal group are known in the prior art together with the synthesis process thereof, in the method for producing a SiOC structure according to the second aspect of the present invention, Known synthesis processes may be combined.
  • examples of the polysilane that can be used as the silicon-containing polymer include various polysilanes containing at least one of the structural units shown in (4) to (6) below.
  • the polysilane of the silicon-containing polymer may include a that (PhViSi), and (Me 3 Si) at least one structural unit selected from the group consisting of.
  • Me represents methyl
  • Ph represents phenyl
  • Vi represents vinyl.
  • the polysilane may be substituted by any metal group, that is, it may contain a predetermined number of any metal-Si repeating units. Examples of suitable metal groups include aluminum, chromium and titanium. ..
  • examples of the polysiloxane that can be adopted as the silicon-containing polymer include various polysiloxanes containing the structural units shown in (7) below.
  • (7) (R 1 R 2 R 3 SiO 0.5 ) w (R 4 R 5 SiO) x (R 6 SiO 1.5 ) y (SiO 4/2 ) z
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently hydrogen or a carbon number of 1 to 20 (preferably 1 to 20) as described for R 1 , R 2 and R 3. It is a hydrocarbon having 1 to 6 carbon atoms.
  • siloxane units that may be employed in some embodiments of the present invention include (MeSiO 1.5 ), (PhSiO 1.5 ), (ViSiO 1.5 ), (HSiO 1.5 ), (PhMeSiO ). ), (MeHSiO), (PhViSiO ), (MeViSiO), (Ph 2 SiO), (Me 2 SiO), (Me 3 SiO 0.5), (Ph 2 ViSiO 0.5), (Ph 2 HSiO 0. 5 ), (H 2 ViSiO 0.5 ), (Me 2 ViSiO 0.5 ), (SiO 4/2 ) and the like.
  • Me indicates methyl
  • Ph indicates phenyl
  • Vi indicates vinyl.
  • polysilsesquioxanes that can be employed as the silicon-containing polymer mainly include polysilsesquioxanes containing (RSiO 3/2 ) X units.
  • R is a saturated or unsaturated, straight-chain, branched or cyclic hydrocarbon group, for example, —C n H 2n+1 (n is an integer in the range of 1 to 20), and more specifically.
  • R can contain therein heteroatoms, in particular nitrogen or halogen, preferably R is methyl, ethyl, propyl or phenyl. R may be a combination of two or more different groups.
  • x is the number of repeating units, is an integer of 1 or more, and can be any integer selected from the range of 4 to 10,000, for example.
  • the silicon-containing polymer which is the main component of the coating layer that coats the silicon-based fine particles, contains polysilsesquioxane.
  • the silicon-containing polymer is substantially made of polysilsesquioxane and at least one silicon-based by a coat layer thus composed of the silicon-containing polymer composed of polysilsesquioxane. It is preferable that a silicon-based fine particle / silicon-containing polymer composite coated with fine particles is produced in the step (p).
  • the silicon-based fine particle / silicon-containing polymer composite having such a structure can be subjected to any trifunctional organosilane (organotrialkoxysilane, organotrichlorosilane, etc.) within the above-mentioned conditions and procedures. It can be obtained by hydrolysis and polycondensation.
  • organosilane organotrialkoxysilane, organotrichlorosilane, etc.
  • polysilsesquioxane examples include ladder-type polysilsesquioxane, cage-type polysilsesquioxane such as POSS (T R 8 ), incomplete cage-type polysilsesquioxane, and other types of polysilsesquioxane. It may contain at least one selected from the group consisting of. Since various types of polysilsesquioxanes are known along with their methods of synthesis, those methods of synthesis can be utilized in some embodiments of the present invention (chemistry and applications of silsesquioxane materials). Development, CMC Publishing, 2013 popular edition, etc.).
  • the silicon-containing polymer has a polysilsesquioxane structure represented by the following general formulas (III), (IV), (V), and (VI), respectively. It may contain at least one selected from the group consisting of polysilsesquioxane having.
  • R 1 and R 4 are each independently selected from the group consisting of substituted or unsubstituted alkyl having 1 to 45 carbon atoms, substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl,
  • any hydrogen may be replaced by halogen
  • any —CH 2 — may be replaced by —O—, —CH ⁇ CH—, cycloalkylene or cycloalkenylene.
  • R 2 , R 3 , R 5, and R 6 are each independently a group consisting of a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 45 carbon atoms, a substituted or unsubstituted aryl group, and a substituted or unsubstituted arylalkyl group.
  • halogen is understood literally and indicates fluorine, chlorine, bromine, iodine and the like, but among them, fluorine or chlorine is preferable.
  • the method for producing a SiOC structure according to the second aspect of the present invention may further include at least one of the following steps.
  • the liquid fraction is separated and removed by a method such as the above, and the obtained solid fraction is subjected to the step (q) as an object to be heat treated.
  • filtration separation for example, pressure filtration
  • solid-liquid separation solvent distillation
  • centrifugation or decantation e.g., solvent distillation, centrifugation or decantation.
  • the liquid fraction is separated and removed by a method such as the above, and the obtained solid fraction is subjected to the step (q) as an object to be heat treated.
  • Various general-purpose techniques are known to those skilled in the art for such a method of separating a solid
  • the heat treatment conditions in the embodiment of the step (q) may be appropriately set in consideration of the type and capacity of the heat treatment apparatus used, but for example, in a non-oxidizing atmosphere, 0.5°C/min to 200°C/ Min, preferably 0.5°C/min to 100°C/min, more preferably 1°C/min to 50°C/min, even more preferably 1°C/min to 30°C/min, particularly preferably 2°C/min. It is heated to a temperature in the range of 400 ° C. to 1800 ° C., preferably 600 ° C. to 1400 ° C., more preferably 900 ° C. to 1300 ° C. at a heating rate of about 10 ° C./min, and the temperature is 5 minutes to 20 hours.
  • the heat treatment may be carried out in the range of preferably 30 minutes to 10 hours, more preferably 1 hour to 8 hours.
  • the heat treatment conditions such as the heating rate, the heat treatment temperature, and the heating time, the properties of the polysilsesquioxane used as a raw material, the physical properties and other properties of the desired SiOC structure, and the productivity and economy are taken into consideration. There is no particular limitation as long as the minimum necessary heat treatment conditions are appropriately selected.
  • the “non-oxidizing gas atmosphere” in the present disclosure includes an inert gas atmosphere, a reducing atmosphere, and a mixed atmosphere in which these atmospheres are used in combination.
  • the inert gas atmosphere include inert gases such as nitrogen, argon, and helium, and these inert gases may be used alone or in combination of two or more.
  • the inert gas may be any commonly used gas, but a high-purity standard gas is preferable.
  • the reducing atmosphere also includes an atmosphere containing a reducing gas such as hydrogen.
  • a mixed gas atmosphere of 2 volume% or more of hydrogen gas and an inert gas can be mentioned.
  • the hydrogen gas atmosphere itself may be used as the reducing atmosphere in some cases.
  • the environment of the non-oxidizing atmosphere can be created by replacing the atmosphere in the heat treatment furnace or supplying the predetermined gas into the furnace.
  • the gas flow rate may be appropriately adjusted to an appropriate range according to the specifications of the heat treatment furnace to be used (for example, the shape and size of the furnace), and is not particularly limited.
  • the capacity of the furnace can be about 5% to 100% / min, preferably about 5 to 30% / min.
  • the gas flow rate (purge amount) is, for example, about 50 mL to 1 L/min, preferably about 100 mL to 500 mL/min. can do.
  • the SiOC structure according to the embodiment of the present invention is manufactured by using the heat treatment furnace having an inner volume of about 40 L, the gas flow rate (purge amount) is, for example, about 10 to 15 L/min. can do.
  • Examples of the heat treatment furnace that can be used in the step (q) include a rotary kiln type, a roller harsher kiln type, a batch kiln type, a pusher kiln type, a mesh belt kiln type, a carbon furnace, a tunnel kiln type, and a shuttle.
  • Various types of heat treatment furnaces such as a kiln type and a trolley lifting type kiln type can be used. These heat treatment furnaces may be used alone or in combination of two or more. When two or more types are combined, each heat treatment furnace may be connected in series or in parallel.
  • the method for producing a SiOC structure according to the second aspect of the present invention may further include additional steps such as crushing and / or classifying the SiOC structure obtained by the heat treatment in the above step (q). Good.
  • the crushing method and the classification method that can be used in these steps are not particularly limited, and for example, various known methods may be adopted, and a mortar, various crushers, a sieve, a cyclone classification device, and the like can be used.
  • a composition for a negative electrode contains the SiOC structure as a negative electrode active material.
  • a method for producing a composition for a negative electrode is also disclosed. The method for producing the negative electrode composition includes obtaining the negative electrode composition by using the SiOC structure as a negative electrode active material.
  • the negative electrode composition may further include additional components such as a carbon-based conductive additive and/or a binder described below.
  • carbon-based substances that function as carbon-based conductive aids include carbon-based substances such as graphite, carbon black, fullerene, carbon nanotubes, carbon nanoforms, pitch-based carbon fibers, polyacrylonitrile-based carbon fibers, and amorphous carbon. Are preferred. These carbon-based substances may be used alone or as a mixture of two or more kinds.
  • any binder that can be used in a secondary battery is sufficient, for example, carboxymethyl cellulose, polyacrylic acid, alkaline acid, glucomannan, amylose, saccharose and derivatives thereof. , Polymers, and each alkali metal salt, as well as polyimide resin and polyimide amide resin. These binders may be used alone or as a mixture of two or more kinds.
  • the binder for example, by improving the binding property between the current collector and the negative electrode active material, improving the dispersibility of the negative electrode active material, and improving the conductivity of the binder itself.
  • An additive capable of imparting a function can be added if necessary. Specific examples of such additives include styrene-butadiene/rubber-based polymers and styrene-isoprene/rubber-based polymers.
  • the method for producing the negative electrode composition is as follows. It may include step (r). Step (r): mixing the SiOC structure according to the embodiment of the present invention with the additional component, or compounding or coating the SiOC structure with the additional component.
  • the SiOC structure and the carbon-based material are subjected to a mechanical mixing method using various stirrers, stirring blades, mechanofusions, ball mills, vibration mills, and the like.
  • a dispersion treatment by a thin film rotation method that can be realized by using a thin film rotation type high-speed mixer [Filmix (registered trademark) series] manufactured by PRIMIX Corporation is preferably used.
  • a thin film rotation type high-speed mixer [Filmix (registered trademark) series] manufactured by PRIMIX Corporation is preferably used.
  • one of these mechanical mixing methods and dispersion methods may be used alone to obtain a negative electrode composition, or stepwise.
  • the negative electrode composition may be obtained by combining a plurality of methods.
  • step (r) the SiOC structure according to the embodiment of the present invention and optionally a carbon-based conductive auxiliary agent are added in predetermined amounts to an aqueous solution of a binder having a concentration of about 1 to 5% by mass, and a stirrer is used. Or other mixers may be used for mixing. Further, water may be further added to the obtained mixture as necessary so as to have a predetermined solid content concentration, and further stirring may be continued to obtain a slurry-like composition, which may be used as a negative electrode composition. Further, a composition obtained by subjecting the slurry-like composition to a dispersion treatment by the above-mentioned thin film swirling method may be used as a negative electrode composition.
  • the SiOC structure and the carbonaceous material may be mixed in an arbitrary ratio depending on the purpose and in order to obtain desired battery characteristics.
  • the method for producing the composition for a negative electrode according to the fourth aspect of the present invention may optionally include, prior to the above steps, each step that can be included in the method for producing the SiOC structure. Embodiments including the above steps are also expressly disclosed herein.
  • the negative electrode is disclosed. Furthermore, according to a sixth aspect of the present invention, a method for producing a negative electrode is also disclosed, and in some embodiments of the present invention, the negative electrode is the method for producing a negative electrode according to the sixth aspect of the present invention. It can be acquired. The method includes obtaining a negative electrode using the SiOC structure or the composition for a negative electrode. An example of a specific manufacturing process is shown below.
  • the negative electrode in some embodiments of the present invention is specifically manufactured by using the SiOC structure as the negative electrode active material or the negative electrode composition containing the SiOC structure as the negative electrode active material.
  • the negative electrode may be manufactured based on a method of molding the above-mentioned SiOC structure or the composition for a negative electrode into a certain shape, or a method of applying it to a current collector such as a copper foil.
  • the method for molding the negative electrode is not particularly limited, and any method may be used, and various known methods may be used.
  • a negative electrode composition prepared in advance, a doctor blade method, a slurry on a current collector such as a rod-shaped body, a plate-shaped body, a foil-shaped body, a reticulated body mainly composed of copper, nickel, stainless steel, or the like.
  • Direct coating may be performed by a method such as a casting method or a screen printing method.
  • the negative electrode composition is separately cast on a support, the negative electrode composition film formed on the support is peeled off, and the peeled negative electrode composition film is laminated on the current collector to form a negative electrode.
  • An electrode plate may be formed.
  • the negative electrode composition coated on the current collector or the support is subjected to an air-drying treatment or a drying treatment step at a predetermined temperature, and / or, if necessary, a pressing treatment or a punching treatment or the like.
  • the final negative electrode body may be obtained by performing the processing step according to.
  • the method for producing the negative electrode according to the sixth aspect of the present invention includes each step that can be included in the above-mentioned method for producing a SiOC structure and the method for producing a negative electrode composition prior to the above-mentioned step. It may optionally be included, and those embodiments are also expressly disclosed herein. In addition, it is needless to say that the form of the negative electrode is merely an example, and the form of the negative electrode is not limited to these and may be provided in other forms.
  • a secondary battery is provided. Furthermore, according to the eighth aspect of the present invention, a method for manufacturing a secondary battery is also provided. The method includes manufacturing a secondary battery by using the above negative electrode.
  • the secondary battery according to the seventh aspect of the present invention is provided with at least one negative electrode according to the embodiment of the present invention.
  • the secondary battery includes at least one negative electrode according to the embodiment of the present invention and functions as a secondary battery, other components and structures are not particularly limited, but more specifically. Includes at least one positive electrode and at least one separator in addition to the above negative electrode.
  • the secondary battery of the present invention has a laminated structure in which the negative electrode of the present invention and, when a plurality of positive electrodes and separators are provided, the constituent elements are alternately laminated in the order of positive electrode / separator / negative electrode / separator. May be adopted. Alternatively, a laminated structure in which the positive electrode and the negative electrode are wound in a coil shape via a separator may be adopted.
  • the secondary battery of the present invention may include an electrolytic solution or a solid electrolyte.
  • the secondary battery can be specifically a secondary battery obtained by the method for manufacturing a secondary battery according to an eighth aspect of the present invention.
  • the secondary battery may be appropriately designed in consideration of a desired application, function, etc., and its configuration is not particularly limited, but the present invention can be implemented by referring to the configuration of an existing secondary battery.
  • a secondary battery can be constructed by using the negative electrode according to the embodiment.
  • the type of the secondary battery of the present invention is not particularly limited as long as the above negative electrode can be applied, and examples thereof include a lithium ion secondary battery and a lithium ion polymer secondary battery. As demonstrated in the following examples, these batteries can be said to be a particularly preferable embodiment because they can exhibit desired effects.
  • an embodiment in which the secondary battery and the method for manufacturing the secondary battery are particularly a lithium ion secondary battery will be illustrated.
  • a positive electrode active material composition capable of reversibly occluding and releasing lithium ions, a conductive auxiliary agent, a binder and a solvent are mixed to prepare a positive electrode active material composition.
  • the positive electrode active material composition is directly coated on the metal current collector and dried by various methods to prepare a positive electrode plate. It is also possible to separately cast the positive electrode active material composition on a support, peel off the film formed on the support, and laminate the film on a metal current collector to produce a positive electrode. ..
  • the method for forming the positive electrode is not particularly limited, but it can be formed by using various known methods.
  • a lithium metal composite oxide generally used in the field of the secondary battery can be used.
  • compounds capable of de-inserting lithium ions such as V 2 O 5 , TiS and MoS can also be used.
  • a conductive auxiliary agent may be added, and those generally used in lithium ion batteries can be used. It is preferably an electron conductive material that does not decompose or deteriorate in the manufactured battery. Specific examples include carbon black (acetylene black and the like), graphite fine particles, vapor-grown carbon fibers, and a combination of two or more of these.
  • the binder include vinylidene fluoride/propylene hexafluoride copolymer, polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polytetrafluoroethylene and mixtures thereof, styrene butadiene rubber type. Examples include, but are not limited to, polymers.
  • the solvent examples include, but are not limited to, N-methylpyrrolidone, acetone, water and the like.
  • the contents of the positive electrode active material, the conductive additive, the binder and the solvent are not particularly limited, but can be appropriately selected with the amounts generally used in lithium ion batteries as a guide. ..
  • the separator interposed between the positive electrode and the negative electrode those generally used in lithium ion batteries may be used, but are not particularly limited, and in consideration of the desired application and function, etc., appropriate Just select it. Those having low resistance to ion transfer of the electrolyte or having excellent electrolyte impregnation ability are preferable. Specifically, it is a material selected from glass fiber, polyester, polyethylene, polypropylene, polytetrafluoride ethylene, polyimide, or a compound thereof, and may be in the form of a non-woven fabric or a woven fabric.
  • a rollable separator made of a material such as polyethylene or polypropylene is used, and in the case of a lithium-ion polymer battery, a separator excellent in organic electrolyte impregnation ability. Is preferably used.
  • Electrolytes include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methylpropyl carbonate, butylene carbonate, dibutyl carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyl tetrahydrofuran, ⁇ -butyrolactone, dioxolane, 4 -Methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethylsulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, or a mixed solvent thereof, and hexafluoride Lithium phosphate, lithium borate tetrafluoride, antimonium hexafluoride, lithium arsenide hexafluoride, lithium perchlorate, lithium trifluoromethan
  • various non-aqueous electrolytes and solid electrolytes can be used instead of the electrolyte.
  • various ionic liquids to which lithium ions are added can be used, pseudo solid electrolytes in which ionic liquids and fine powders are mixed, lithium ion conductive solid electrolytes, and the like can be used.
  • the above-mentioned electrolytic solution may appropriately contain a compound that promotes stable film formation on the surface of the negative electrode active material.
  • a compound that promotes stable film formation on the surface of the negative electrode active material For example, vinylene carbonate (VC), fluorobenzene, cyclic fluorinated carbonate [fluoroethylene carbonate (FEC), trifluoropropylene carbonate (TFPC), etc.], or chain fluorinated carbonate [trifluorodimethyl carbonate (TFDMC), etc.], Fluorinated carbonates such as trifluorodiethyl carbonate (TFDEC) and trifluoroethylmethyl carbonate (TFEMC) are effective.
  • the cyclic fluorinated carbonate and the chain fluorinated carbonate can also be used as a solvent, such as ethylene carbonate.
  • a separator is arranged between the positive electrode plate and the negative electrode plate as described above to form a battery structure, and the battery structure is wound or folded into a cylindrical battery case or a square battery case.
  • a lithium ion battery may be completed by injecting an electrolytic solution.
  • the battery structure is laminated on a bicell structure, impregnated with an organic electrolytic solution, and the obtained product is placed in a pouch and sealed to form a lithium ion as a secondary battery according to an embodiment of the present invention.
  • a polymer battery may be obtained.
  • the method for manufacturing a secondary battery according to the embodiment of the present invention precedes each step included in the above-mentioned method for manufacturing a SiOC structure, the method for manufacturing a composition for a negative electrode, and the method for manufacturing a negative electrode. It may further include.
  • SEM observation was performed for each material produced in Examples and Comparative Examples.
  • Ultra-high resolution analytical scanning electron microscope SU-70 manufactured by Hitachi High-Technologies Corporation
  • 3D real surface view microscope VE-9800 manufactured by Keyence Corporation were used as SEMs and measured at a predetermined acceleration voltage.
  • the particle size distribution was measured for each SiOC structure and SiOC material produced in Examples 1 to 4 and Comparative Example 1 below, and 10%, 50% and 90% cumulative mass particle size distribution diameters (D10, D50 and D90) was calculated.
  • the method for measuring the particle size distribution is as follows. A small amount of the prepared hydrogenated polysilsesquioxane containing silicon nanoparticles was placed in a beaker, a few drops of water and 0.5% Triton X-100 aqueous solution were added, and an ultrasonic homogenizer US-150 manufactured by Nippon Seiki Co., Ltd. was used. A sample for measurement was prepared by dispersion treatment for 3 minutes. This measurement sample was measured using a laser diffraction/scattering type particle size distribution measuring device MT3300II manufactured by Microtrac Bell Co., Ltd.
  • Negative electrode active materials containing the materials produced in the examples and comparative examples were prepared, and a negative electrode and a lithium ion secondary battery using the negative electrode active materials were subjected to a charge/discharge cycle test as described below to evaluate battery characteristics.
  • the procedure is shown below. Hokuto Denko HJR-110mSM, HJ1001SM8A or HJ1010mSM8A was used, and both charging and discharging were measured at a constant current. At that time, a current value of 0.05 C was adopted so as to be 1/20 of the theoretical capacity per 1 g of the negative electrode active material (SiOC particles).
  • the charge was the capacity until the battery voltage dropped to 0V
  • the discharge was the capacity until the battery voltage reached 1.5V. At the time of switching between charge and discharge, the battery was discharged after being paused in the open circuit for 30 minutes.
  • the reversible capacity is the initial discharge capacity
  • the initial charge/discharge rate is the ratio of the discharge capacity to the charge capacity in the first cycle
  • the capacity maintenance rate after the cycle test is the charge after the cycle for the initial charge amount. Displayed by capacity.
  • Example 1 (MeSiO 0.5 ) (Manufacture of silicon nanoparticles / methylpolysilsesquioxane complex)
  • 100 g of 0.01 M acetic acid aqueous solution and 10 g of silicon nanopowder (manufactured by Sigma-Aldrich Co.; volume-based average particle size is less than 100 nm; particle size is more than 10 nm) are put, and an ultrasonic cleaner is used.
  • a silicon nanoparticle dispersion was prepared.
  • a fired product of the silicon nanoparticles / methylpolysilsesquioxane complex (1) was obtained. Then, the obtained fired product is crushed and pulverized in a mortar for 5 minutes and classified using a stainless steel sieve having openings of 32 ⁇ m to obtain silicon nanoparticles having a maximum particle diameter of 32 ⁇ m/methyl polysilsesquioxy. 18.9 g of a fired product [SiOC structure (1)] powder of the sun composite (1) was obtained. A part of the SiOC structure (1) powder was subjected to SEM observation, particle size distribution measurement, elemental analysis, and BET specific surface area measurement by the above-mentioned method.
  • composition for negative electrode and negative electrode body To 20 g of a 2% by weight aqueous solution of carboxymethyl cellulose, 3.2 g of SiOC particles (3) and 0.4 g of acetylene black manufactured by Denka Co., Ltd. were added and mixed in a flask for 15 minutes using a stirrer, and then the solid content concentration was increased. Distilled water was added so that the concentration was 15% by weight, and the mixture was further stirred for 15 minutes to prepare a slurry composition. This slurry composition was transferred to a thin film swirl type high speed mixer (Filmix 40-40 type) manufactured by Primix Co., Ltd., and stirred and dispersed at a rotation speed of 20 m/s for 30 seconds. The slurry after the dispersion treatment was applied onto a copper foil roll by a doctor blade method so as to have a thickness of 150 ⁇ m.
  • the negative electrode sheet was pressed with a 2t small precision roll press (manufactured by Thunk Metal Co., Ltd.). After pressing, the electrodes were punched with an electrode punching punch HSNG-EP having a diameter of 14.50 mm, and dried under reduced pressure at 80 ° C. for 12 hours or more in a glass tube oven GTO-200 (SIBATA) to prepare a negative electrode body.
  • a 2t small precision roll press manufactured by Thunk Metal Co., Ltd.
  • the electrodes were punched with an electrode punching punch HSNG-EP having a diameter of 14.50 mm, and dried under reduced pressure at 80 ° C. for 12 hours or more in a glass tube oven GTO-200 (SIBATA) to prepare a negative electrode body.
  • a 2032 type coin battery (lithium ion secondary battery) 300 having the structure shown in FIG. 6 was produced.
  • Lithium was used as the positive electrode (lithium counter electrode) 303, a microporous polypropylene film was used as the separator 302, and the negative electrode body was used as the negative electrode (negative electrode material) 301.
  • LiPF6 was dissolved at a ratio of 1 mol/L as the electrolytic solution.
  • a mixed solvent of ethylene carbonate and diethyl carbonate 1: 1 (volume ratio) was used.
  • the battery characteristics of the lithium ion secondary battery were evaluated.
  • As the charge / discharge tester HJ1001SM8A manufactured by Hokuto Denko was used.
  • As charging/discharging conditions both charging and discharging were performed at a constant current of 0.05 C, and the discharge end voltage was 1 mV and the charge end voltage was 1500 mV.
  • Example 2 (MePhSiO 0.5 ) In the production of the silicon nanoparticles / methylpolysilsesquioxane complex (1) in Example 1, 14.4 g (142 mmol) of methyltrimethoxysilane and phenyltrimethoxysilane 7 were used instead of 24.3 g of methyltrimethoxysilane. . Silicon nanoparticles / methylpolysilsesquioxane complex (2) and its calcined product [SiOC structure (2)] powder in the same procedure as in Example 1 except that a mixture of 1 g (36 mmol) was used. Manufactured the body.
  • Example 2 a part of the silicon nanoparticle/methylpolysilsesquioxane composite (2) was subjected to SEM observation, and a part of the SiOC structure (2) powder was added. It was used for SEM observation, particle size distribution measurement, elemental analysis and BET specific surface area measurement by the above method. Further, in the same manner as in Example 1 except that the SiOC structure (1) obtained in Example 1 was replaced by the SiOC structure (2) obtained in this example, the composition for a negative electrode and A negative electrode body and a lithium ion secondary battery were produced and the battery characteristics were evaluated.
  • Example 3 (MeSiO 0.7 )
  • silicon was prepared by the same procedure as in Example 1 except that the dropping amount of methyltrimethoxysilane was changed to 42.5 g.
  • a nanoparticle/methylpolysilsesquioxane composite (3) and its fired product [SiOC structure (3)] powder were produced.
  • a part of the silicon nanoparticles/methylpolysilsesquioxane composite (3) was subjected to a SEM observation test, and a part of the SiOC structure (3) powder was added.
  • Example 2 The test was performed by the above-mentioned method for SEM observation, particle size distribution measurement, and BET specific surface area measurement. Further, in the same manner as in Example 1 except that the SiOC structure (1) obtained in Example 1 was replaced by the SiOC structure (3) obtained in this example, the composition for a negative electrode and A negative electrode body and a lithium ion secondary battery were prepared, and the battery characteristics were evaluated.
  • Example 4 (MePhSiO 0.7 )
  • SiPhSiO 0.7 silicon nanoparticles/methylpolysilsesquioxane composite (1) in Example 1
  • 34.0 g of methyltrimethoxysilane and 12.4 g of phenyltrimethoxysilane were used instead of 24.3 g of methyltrimethoxysilane.
  • Silicon nanoparticles/methylpolysilsesquioxane composite (4) and its fired product [SiOC structure (4)] powder were produced by the same procedure as in Example 1 except that the mixture was used.
  • Example 2 In addition, in the same manner as in Example 1, a part of the silicon nanoparticles/methylpolysilsesquioxane composite (4) was subjected to SEM observation, and a part of the SiOC structure (4) powder was added. The test was performed by the above-mentioned method for SEM observation, particle size distribution measurement, and BET specific surface area measurement. Further, in the same manner as in Example 1 except that the SiOC structure (1) obtained in Example 1 was replaced by the SiOC structure (4) obtained in this example, the composition for a negative electrode and A negative electrode body and a lithium ion secondary battery were produced and the battery characteristics were evaluated.
  • the boat After placing the obtained silicon nanoparticles / methylpolysilsesquioxane complex (5) on an SSA-S grade alumina boat, the boat is placed in a vacuum purge type tube furnace KTF43N1-VPS (manufactured by Koyo Thermo System).
  • the heat treatment condition is as follows: under an argon gas atmosphere (high-purity argon gas 99.999%), while supplying argon gas at a flow rate of 250 ml/min, the temperature is raised at a rate of 4° C./min. By calcining at 5° C. for 5 hours, a calcined product of the silicon nanoparticles/methylpolysilsesquioxane composite (5) was prepared.
  • the calcined product of the silicon nanoparticles / methylpolysilsesquioxane composite (5) obtained as described above was pulverized in a mortar and classified using a stainless sieve having an opening of 32 ⁇ m to obtain the largest particles. 7.2 g of a powder of the SiOC composite material (5) having a diameter of 32 ⁇ m was obtained.
  • Example 1 For a part of the SiOC composite material thus obtained, SEM observation, particle size distribution measurement, and BET specific surface area measurement were performed in the same manner as in Example 1. Furthermore, the composition for a negative electrode, the negative electrode body, and the lithium ion dioxin were prepared in the same manner as in Example 1 except that the SiOC composite material obtained in this Comparative Example was used instead of the SiOC structure obtained in Example 1. The next battery was prepared and the battery characteristics were evaluated.
  • FIG. 1 shows SEM photographs of the respective silicon nanoparticles/methylpolysilsesquioxane composites (1) to (4) produced in Examples 1 to 4.
  • FIGS. 2A and 2B SEM photographs (10, 10) of the SiOC structures (1) to (4) manufactured in Examples 1 to 4 and the SiOC composite material (5) manufactured in Comparative Example 1 are shown. 000 times) are shown respectively.
  • FIG. 2C shows a SEM photograph (20,000 times) of the silicon nanoparticle/methylpolysilsesquioxane composite (6) produced in Comparative Example 2. Further, for each SiOC structure manufactured in Example 1, an SEM photograph (50,000 times) obtained by increasing the magnification is shown in FIG.
  • the compound is coated with polysilsesquioxane produced by the hydrolysis and polycondensation reaction of the compound, and that a plurality of silicon nanoparticles are linked through the polysilsesquioxane coat layer. It was In other words, the SiOC coating layers in the SiOC structures (1) to (4) obtained by the heat treatment are converted into the SiOC coating layers by the heat treatment of the polysilsesquioxane coating layers into ceramics, It is considered that the coating structure of the silicon nanoparticles by the coat layer was maintained without undergoing a large morphological change.
  • the SiOC portion derived from polysilsesquioxane is silicon nanoparticles.
  • the state in which the particles were covered was not observable, and many silicon nanoparticles in which many parts were exposed to the outside were confirmed. That is, in the SiOC composite material manufactured in Comparative Example 1, it was confirmed that the silicon nanoparticles were not uniformly coated with the SiOC portions, but that the both were randomly aggregated with each other.
  • Comparative Example 1 the expression of such an aggregation-like structure was achieved by uniformly adding methyltrimethoxysilane and hydrochloric acid to the silicon nanoparticle dispersion and proceeding with hydrolysis and polycondensation of methyltrimethoxysilane. This is due to the synthesis of a silicon nanoparticles / methylpolysilsesquioxane complex having the form of a bulk gel.
  • the silicon nanoparticles are uniformly coated on the SiOC coating layer derived from polysilsesquioxane, and a plurality of silicon nanoparticles are connected via the SiOC coating layer. It was possible to manufacture a SiOC structure having the structure shown in FIG. Here, the SiOC coat layer had a relatively smooth surface without surface roughness or the like.
  • FIGS. 4A and 4B show graphs of particle size distributions obtained by particle size distribution measurement for each of the SiOC structures manufactured in Examples 1 to 4 and the SiOC composite material manufactured in Comparative Example 1.
  • Table 1 shows the measured volume-based average particle diameter ( ⁇ m), BET specific surface area (m 2 /g) and elemental analysis (mass %) of these SiOC structures and SiOC composite materials.
  • the BET specific surface area shows a value of 23.2 m 2 /g, although the average particle diameter is relatively large. It was confirmed that it was remarkably large compared to the SiOC structure of. The reason for such a result is that, as observed in the SEM photograph (FIG. 2B), since the composite material was crushed to be finely divided, fine powder and surface roughness were generated. Seem. This is because in the particle size distribution graphs shown in FIGS. 4A and 4B, in the particle size distribution of Comparative Example 1, the peak shifts in the direction of larger particle size, while sandwiching the peak on the left side (that is, in the region where the particle size is small). ) Also shows a distribution at a predetermined level, which is considered to be consistent with the result of a broad distribution.
  • the SiOC structures manufactured in Examples 1 to 4 all have a BET specific surface area of less than 10 m 2 /g, which is a relatively low value.
  • the SiOC structures according to Examples 1 to 4 have sharp particle size distribution peaks and are provided as a more uniform particle size morphology.
  • the silicon nanoparticles are uniformly coated with the polysilsesquioxane moiety produced by polycondensation to form a uniform structure without surface roughness. This is consistent with the fact that such a uniform and surface-free structure is maintained even after firing.
  • Example 4 has a relatively large average particle diameter than the SiOC structures manufactured in Examples 1 to 3, and a value larger than that of Comparative Example 1 (17.71 ⁇ m). showed that.
  • Example 4 has a BET specific surface area of 1.3 m 2 /g, which is a remarkably small value (Table 1), and it is understood that the peak of the particle size distribution is also sharp ( FIG. 4B). That is, it is understood that, in Example 4, a structure having a uniform particle size and a uniform surface without roughness is formed as a whole as in Examples 1 to 3, although the particle size is relatively large. This is clear from the SEM photograph shown in FIG. 2A.
  • the capacity retention rate in 5 to 50 cycles was a value of 65% or more in the charge / discharge cycle test. And showed a very good capacity retention rate.
  • the average coulombic efficiencies of these lithium-ion batteries in the 5 to 50 cycles all showed values of around 99%, and maintained extremely good averaged coulombic efficiencies (Table 2 and FIG. 5B).
  • the capacity retention ratio in 5 to 50 cycles was higher than that in Examples 1 to 4 in which the predetermined SiOC structure of the present invention was used as the negative electrode material. It showed only a value of 32.9% and was extremely inferior (Table 2 and FIG. 5A). Furthermore, the lithium-ion battery of Comparative Example 1 also showed a coulombic efficiency of only 97.2% in 5 to 50 cycles, which was inferior to that of the lithium-ion batteries of Examples 1 to 4 (Table 2 and). FIG. 5B).
  • the present invention has high industrial applicability in the field of materials / chemicals for producing SiOC materials, negative electrode active materials, negative electrode materials, etc., and in the field of electrical and electronic equipment such as secondary batteries and various electronic devices.
  • Lithium-ion secondary battery (coin battery 300) 301 Negative electrode material 302 Separator 303 Lithium counter electrode

Abstract

The present disclosure relates to an SiOC structure that includes (A) at least one silicon-based fine particle and (B) an SiOC coating layer containing at least Si (silicon), O (oxygen), and C (carbon) as constituent elements. The at least one silicon-based fine particle is covered by the SiOC coating layer, the BET specific surface area is 20 m2/g or less, and the cumulative 10% particle size (D10), cumulative 50% particle size (D50), and cumulative 90% particle size (D90) obtained by a laser diffraction/scattering particle size distribution measurement method satisfy the conditions 1 nm ≦ D50 ≦ 990 μm and D90/D10 ≦ 13.0.

Description

SiOC構造体並びにこれを用いた負極用組成物、負極及び二次電池SiOC structure, negative electrode composition using the same, negative electrode, and secondary battery
 本開示は、SiOC構造体、並びにこれ用いた負極用組成物、負極及び二次電池に関する。
 なお、本願は、2019年3月1日付けで日本国特許庁に提出された日本国特許出願No.JP2019-038011(特願2019-038011)に基いて優先権を主張するものであり、上記日本国特許出願の内容は、あらゆる目的において本明細書で援用される。
The present disclosure relates to a SiOC structure, and a negative electrode composition, a negative electrode, and a secondary battery used therein.
This application is based on the Japanese Patent Application No. submitted to the Japan Patent Office on March 1, 2019. The priority is claimed based on JP2019-038011 (Japanese Patent Application No. 2019-038011), and the contents of the above-mentioned Japanese patent application are incorporated herein for all purposes.
 各種電子機器や通信機器並びにハイブリッド自動車等のエコカーにおいては駆動電源として二次電池が利用されている。このような二次電池としては、主に、リチウムイオンを層間から放出するリチウムインターカレーション化合物を正極物質に用い、充放電時にリチウムイオンを結晶面間の層間に吸蔵放出できる炭素質材料(例えば黒鉛等)を負極物質に用いた、各種リチウムイオン電池の開発が進み、実用化もされている。 Secondary batteries are used as a drive power source in various electronic devices, communication devices, and eco-cars such as hybrid vehicles. As such a secondary battery, a lithium intercalation compound that releases lithium ions from the layers is mainly used as the positive electrode material, and a carbonaceous material capable of storing and releasing lithium ions between the crystal planes during charging and discharging (for example,). Various lithium-ion batteries using graphite or the like as the negative electrode material have been developed and put into practical use.
 上記のような背景の下、近年、各種電子機器・通信機器の小型化、ハイブリッド自動車等の急速な普及に伴い、これら機器等の駆動電源として、より高容量であり、かつサイクル特性や放電レート特性等の各種電池特性が更に向上した二次電池の開発が強く求められている。このような高性能な二次電池を実現するために、特に負極活物質に注目した研究開発は継続的に行われており、例えば、以下のような技術が知られている。 Against the above background, with the recent miniaturization of various electronic devices/communication devices and the rapid spread of hybrid vehicles, etc., they have higher capacity as a driving power source for these devices, and have a higher cycle characteristic and discharge rate. There is a strong demand for the development of secondary batteries with further improved various battery characteristics such as characteristics. In order to realize such a high-performance secondary battery, research and development focusing on the negative electrode active material have been continuously conducted, and for example, the following techniques are known.
 例えば、特許文献1には、各種ポリシルセスキオキサンとシリコン粒子とを物理的に混合し、これにより得られた混合物を所定の条件下で加熱処理することにより得られるSiOC複合材料、並びに該SiOC複合材料を負極活物質として利用した負極及びリチウムイオン電池が開示されている。特許文献1には、上記負極活物質を利用すると、電池サイクル試験において電池容量及びサイクル耐久性を向上できたことが示されている。なお、特許文献1には、開示するSiOC複合材料において、シリコン粒子が、ポリシルセスキオキサンに由来するSiOCマトリックスの中に埋め込まれていると記載されているが、このSiOCマトリックス中へのシリコン粒子の「埋め込み」とは、上述のとおりポリシルセスキオキサンとシリコン粒子との物理的な混合により実現される構造を指しており、つまり、SiOCマトリックス中にシリコン粒子が単に分散した構造を意味するものと理解される。 For example, Patent Document 1 describes a SiOC composite material obtained by physically mixing various polysilsesquioxane and silicon particles and heat-treating the resulting mixture under predetermined conditions, and the same. A negative electrode and a lithium-ion battery using a SiOC composite material as a negative electrode active material are disclosed. Patent Document 1 shows that the use of the negative electrode active material can improve the battery capacity and cycle durability in a battery cycle test. In addition, Patent Document 1 describes that in the disclosed SiOC composite material, silicon particles are embedded in a SiOC matrix derived from polysilsesquioxane, but silicon in the SiOC matrix is described. “Embedding” of particles refers to a structure realized by physical mixing of polysilsesquioxane and silicon particles as described above, that is, a structure in which silicon particles are simply dispersed in a SiOC matrix. Understood to do.
 さらに、特許文献2には、リチウムイオンを吸蔵・脱離可能な無機質粒子の全面又は一部をセラミックスによって被覆した複合粒子からなる負極材料が開示されている。より詳細には、特許文献2に開示される負極材料は、上記無機質粒子がSi、Sn及びZnからなる群より選ばれた少なくとも1種を構成元素として含み、上記セラミックスがSi、Ti、Al及びZrからなる群より選ばれた少なくとも1種の元素を含む酸化物、窒化物又は炭化物から構成されたことを特徴とする非水電解液二次電池用負極材料である。特許文献2では、係る構成を有する負極材料によれば、リチウムイオン等のインターカレーション/脱インターカレーションにより生じ得る負極材の体積変化を低減でき、充放電サイクル特性等の電池特性を向上できることが示唆されている。特許文献2には、上記負極材料の具体的な態様として、Si等からなる無機微粒子をSiOCセラミックスにより被覆した例が幾つか記載されているが、これらの例に鑑みれば、特許文献2に開示される負極材料は、以下のような製造工程を経て製造されるものである。即ち、前駆体有機分子としてフェニルトリメトキシシランをゾル化し、これにより得たゾルに上記無機微粒子を添加し、さらに加水分解反応及び重縮合反応を進行させてゲル化させ、バルクゲルを形成する。このバルクゲルを加熱処理することにより、SiOCセラミックスに変換させたものを負極材料として利用するものである。したがって、特許文献2に開示される負極材料においては、無機微粒子は、バルクゲルに由来するSiOCセラミックス中に分散した状態で保持されているものと考えられる。 Further, Patent Document 2 discloses a negative electrode material composed of composite particles in which all or a part of inorganic particles capable of occluding/desorbing lithium ions are coated with ceramics. More specifically, the negative electrode material disclosed in Patent Document 2 contains at least one of the inorganic particles selected from the group consisting of Si, Sn and Zn as a constituent element, and the ceramics include Si, Ti, Al and A negative electrode material for a non-aqueous electrolyte secondary battery, which is composed of an oxide, a nitride or a carbide containing at least one element selected from the group consisting of Zr. In Patent Document 2, according to the negative electrode material having such a configuration, the volume change of the negative electrode material that may occur due to intercalation / deintercalation of lithium ions or the like can be reduced, and the battery characteristics such as charge / discharge cycle characteristics can be improved. Is suggested. As a specific embodiment of the above-mentioned negative electrode material, Patent Document 2 discloses some examples in which inorganic fine particles made of Si or the like are coated with SiOC ceramics. In view of these examples, Patent Document 2 discloses it. The obtained negative electrode material is manufactured through the following manufacturing steps. That is, phenyltrimethoxysilane is solized as a precursor organic molecule, the above-mentioned inorganic fine particles are added to the sol obtained thereby, and the hydrolysis reaction and the polycondensation reaction are further promoted to gelle to form a bulk gel. By heat-treating this bulk gel, it is converted into SiOC ceramics and used as a negative electrode material. Therefore, in the negative electrode material disclosed in Patent Document 2, it is considered that the inorganic fine particles are held in a state of being dispersed in the SiOC ceramics derived from the bulk gel.
 さらに、特許文献3には、ケイ素、ケイ素合金又は酸化ケイ素の微粒子を有機ケイ素化合物又はその混合物と共に焼結することによって得られるケイ素複合体粒子、並びに該ケイ素複合体粒子を用いた非水電解質二次電池用負極材が開示されている。特許文献3に開示されるケイ素複合体粒子は、上記有機ケイ素化合物又はその混合物が焼結されることによって形成されるケイ素系無機化合物が、バインダーとなり、この中にケイ素又はケイ素合金微粒子が分散されてなると共に、該粒子内に空隙が存在する構造を有することを特徴とするものである。特許文献3には、このようなケイ素複合体粒子を負極材として用いると、良好なサイクル特性が得られることが示されている。特許文献3に開示されるケイ素複合体粒子は、具体的には、ケイ素微粒子と、シロキサン化合物等の各種有機ケイ素化合物からなる硬化性シロキサン組成物との混合物を硬化させ、得られた塊状物を熱処理して得られるケイ素複合体を破砕処理したものである。したがって、特許文献3に開示される負極材においても、ケイ素等の微粒子は、ケイ素複合体中に分散しているかの如き状態で存在しているものと認められる。 Further, Patent Document 3 describes silicon composite particles obtained by sintering fine particles of silicon, a silicon alloy or silicon oxide together with an organosilicon compound or a mixture thereof, and a non-aqueous electrolyte using the silicon composite particles. A negative electrode material for a secondary battery is disclosed. In the silicon composite particles disclosed in Patent Document 3, a silicon-based inorganic compound formed by sintering the organosilicon compound or a mixture thereof serves as a binder, and silicon or silicon alloy fine particles are dispersed therein. It is characterized by having a structure in which voids are present in the particles. Patent Document 3 shows that good cycle characteristics can be obtained by using such silicon composite particles as a negative electrode material. Specifically, the silicon composite particles disclosed in Patent Document 3 are obtained by curing a mixture of silicon fine particles and a curable siloxane composition composed of various organosilicon compounds such as a siloxane compound, and obtaining a mass obtained by curing the mixture. It is a crushed silicon composite obtained by heat treatment. Therefore, also in the negative electrode material disclosed in Patent Document 3, it is recognized that fine particles such as silicon exist in a state as if they were dispersed in the silicon composite.
 さらに、特許文献4には、SiOCセラミックス中に金属ケイ素およびSiCが分散してなるセラミックス複合材料からなる非水電解質二次電池用負極活物質が開示されている。特許文献4に開示されるセラミックス複合材料は、より詳細には、CuKα特性X線を用いたX線回折における、上記金属ケイ素の(111)面回折線のピーク強度をb1、上記SiCの(111)面回折線のピーク強度をb2としたときに、b1/b2で表される比と、30MPaで圧縮したときの密度とがそれぞれ、所定の数値範囲にあることを特徴とするものでる。特許文献4では、このようなセラミックス複合材料からなる負極活物質を用いた二次電池によれば、優れた初期効率、充放電容量及びサイクル特性が発揮されることが示唆されている。特許文献4に開示されるセラミックス複合材料は、具体的には、以下のような製造工程を経て製造されるものである。即ち、炭素源としてのノボラック型フェノール樹脂が溶解した炭素前駆体溶液に、金属ケイ素粒子を添加し、次いでテトラエトキシシランを加え、該シラン化合物を重合させることにより得た重合物を、加熱硬化及び脱溶媒処理の工程を経て、焼成することにより得たセラミックス複合材料を負極活物質として利用するものである。したがって、特許文献4に開示されるセラミックス複合材料も、SiOCセラミックス中に金属ケイ素及びSiCの粒子が分散してなるものである。 Further, Patent Document 4 discloses a negative electrode active material for a non-aqueous electrolyte secondary battery made of a ceramic composite material in which metallic silicon and SiC are dispersed in SiOC ceramics. More specifically, the ceramic composite material disclosed in Patent Document 4 has a peak intensity of the (111) plane diffraction line of the metallic silicon in b1 and (111) of the SiC in the X-ray diffraction using CuKα characteristic X-ray. ) When the peak intensity of the surface diffraction line is b2, the ratio represented by b1 / b2 and the density when compressed at 30 MPa are each within a predetermined numerical range. Patent Document 4 suggests that a secondary battery using such a negative electrode active material made of a ceramic composite material exhibits excellent initial efficiency, charge / discharge capacity, and cycle characteristics. Specifically, the ceramic composite material disclosed in Patent Document 4 is manufactured through the following manufacturing steps. That is, the polymer obtained by adding metallic silicon particles to a carbon precursor solution in which a novolak type phenol resin as a carbon source is dissolved, then adding tetraethoxysilane, and polymerizing the silane compound is heat-cured and subjected to heat curing. The ceramic composite material obtained by firing through the step of desolvation treatment is used as the negative electrode active material. Therefore, the ceramic composite material disclosed in Patent Document 4 is also one in which particles of metallic silicon and SiC are dispersed in SiOC ceramics.
 さらに、特許文献5は、中国特許出願公開公報であるが、各図に示される如きコア-シェル構造のナノシリコンエネルギー吸蔵材料、及び該吸蔵材料を含むリチウムイオン電池を開示するものであると思料される。特許文献5に開示されるナノシリコンエネルギー吸蔵材料とは、具体的には、Siナノ粒子に対してシランカップリング剤による表面処理を行い、各種有機シラン化合物の加水分解物に、上記表面処理したSiナノ粒子を均一に分散し、さらに該加水分解物を重縮合させることにより取得した重縮合物を、石油ピッチで被覆処理した後、焼成することにより取得した複合材料と思料される。該複合材料は、各図に示されるコア-シェル構造によれば、シリコンナノ粒子であるコアと重合性有機シロキサンに由来する中間層と、該中間層の外側に位置する石油ピッチ由来の外殻とから構成されるものとも思われるが、特許文献5には、実際に取得した複合材料の外観を示すSEM写真は掲載されているものの(当該文献の図5)、その内部構造を調べた結果は何ら示されておらず、当該文献の図3や図4の模式図に示されるようなコア-シェル構造が実際に形成されているのかについては不明な点が多い。 Further, Patent Document 5, which is a publication of a Chinese patent application, is considered to disclose a nanosilicon energy storage material having a core-shell structure as shown in each figure and a lithium ion battery containing the storage material. To be done. Specifically, the nanosilicon energy occlusion material disclosed in Patent Document 5 is obtained by subjecting Si nanoparticles to a surface treatment with a silane coupling agent and then subjecting the hydrolyzate of various organic silane compounds to the surface treatment. It is considered that the polycondensate obtained by uniformly dispersing Si nanoparticles and further polycondensing the hydrolyzate is coated with petroleum pitch and then fired to obtain a composite material. According to the core-shell structure shown in each figure, the composite material has an intermediate layer derived from a core of silicon nanoparticles and a polymerizable organic siloxane, and an outer shell derived from petroleum pitch located outside the intermediate layer. Although it seems that the composition is composed of the above, Patent Document 5 contains an SEM photograph showing the appearance of the actually obtained composite material (Fig. 5 of the document), but the result of examining the internal structure thereof. Is not shown at all, and there are many unclear points as to whether the core-shell structure as shown in the schematic views of FIGS. 3 and 4 of the relevant document is actually formed.
特表2018-502029号公報Japanese Patent Publication No. 2018-502029 特開2004-335335号公報JP, 2004-335335, A 特開2005-310759号公報JP, 2005-310759, A 特開2017-62974号公報JP, 2017-62974, A 中国特許出願公開第107464926号公報Chinese Patent Application Publication No. 1074649926
 上述のとおり、各種電子機器・通信機器の小型化、ハイブリッド自動車等の急速な普及に伴い、これら機器等の駆動電源として採用される二次電池においては、容量維持率やクーロン効率等の各種サイクル特性を含む各種電池特性の更なる向上が常に求められており、とりわけ負極活物質に注目した研究開発は活発である。 As mentioned above, with the miniaturization of various electronic devices and communication devices and the rapid spread of hybrid vehicles, various cycles such as capacity retention rate and coulomb efficiency are used in secondary batteries used as drive power sources for these devices. Further improvement of various battery characteristics including characteristics is always required, and research and development focusing on the negative electrode active material are particularly active.
 このような状況の下、本発明者らも、特許文献1に記載される負極活物質をはじめとして、各種負極活物質を開発しており、特にSiOC複合材料を用いた負極活物質については産業規模の量産に向け、種々の製造工程に注目した検討も重ねている。なかでも、本発明者らは、負極活物質の用途に、シリコンナノ粒子とポリシルセスキオキサンとの複合材料を焼成させることにより得られる各種SiOC複合材料の開発を進めている。このようなSiOC複合材料の開発において、本発明者らは、ポリシルセスキオキサン合成の出発材料となる官能性シラン化合物を加水分解し、次いで、シリコン系ナノ粒子の存在下で該加水分解物を重縮合させてポリシルセスキオキサンを合成する工程を、撹拌条件下ではなく静置条件下で行うと、シリコン系ナノ粒子が、比較的平滑な外表面を有するポリシルセスキオキサンコート層で均一に被覆されてなるシリコン系ナノ粒子/ポリシルセスキオキサン複合体が生成され、このようなコート層によるシリコン系ナノ粒子の均一な被覆構造は、加熱処理によりSiOC構造体に変換した後も維持されることを発見した。さらに、本発明者らは、このような構造を有するSiOC構造体を負極活物質として用いてリチウムイオン二次電池を作製すると、サイクル容量維持率や平均クーロン効率等の電池特性に一定の向上が生じ得ることを発見した。
 即ち、本発明は、上述の発見により完成されたものであり、本開示における主要な目的の1つは、良好な容量維持率及びクーロン効率を実現できる負極活物質用材料及び該材料の製造方法、並びに該材料を負極活物質として用いた負極用組成物、負極及び二次電池を提供することにある。
Under such circumstances, the present inventors have developed various negative electrode active materials including the negative electrode active material described in Patent Document 1, and in particular, the negative electrode active material using the SiOC composite material is industrially used. For large-scale mass production, we are also studying focusing on various manufacturing processes. In particular, the inventors of the present invention are developing various SiOC composite materials obtained by firing a composite material of silicon nanoparticles and polysilsesquioxane for use as a negative electrode active material. In developing such a SiOC composite material, the present inventors hydrolyzed a functional silane compound as a starting material for polysilsesquioxane synthesis, and then hydrolyzed the hydrolyzed product in the presence of silicon-based nanoparticles. When the step of polycondensing polysilsesquioxane by polycondensation of polysilsesquioxane is performed under standing conditions instead of stirring conditions, the silicon-based nanoparticles have a polysilsesquioxane coat layer having a relatively smooth outer surface. A silicon-based nanoparticle/polysilsesquioxane complex uniformly coated with is produced, and the uniform coating structure of the silicon-based nanoparticle by such a coating layer is converted into a SiOC structure by heat treatment. Also found that it will be maintained. Furthermore, when the present inventors produced a lithium ion secondary battery using a SiOC structure having such a structure as a negative electrode active material, the battery characteristics such as cycle capacity retention rate and average Coulombic efficiency were improved to a certain extent. I have discovered that this can happen.
That is, the present invention has been completed by the above discovery, and one of the main objects of the present disclosure is to provide a material for a negative electrode active material capable of realizing a good capacity retention rate and Coulomb efficiency, and a method for producing the material. , And a composition for a negative electrode using the material as a negative electrode active material, a negative electrode, and a secondary battery.
 本開示によれば、以下が提供される。 According to the present disclosure, the following is provided.
[1](A)少なくとも1つのシリコン系微粒子と、
(B)少なくともSi(ケイ素)とO(酸素)とC(炭素)とを構成元素として含有するSiOCコート層と、
を含み、
上記少なくとも1つのシリコン系微粒子は、上記SiOCコート層によって被覆されており、
BET比表面積が20m/g以下であり、
レーザー回折散乱式粒度分布測定法により得られる累積10%粒径(D10)、累積50%粒径(D50)、及び累積90%粒径(D90)が、1nm≦D50≦990μm、かつD90/D10≦13.0の条件を満たす、
SiOC構造体。
[1] (A) With at least one silicon-based fine particle,
(B) a SiOC coating layer containing at least Si (silicon), O (oxygen), and C (carbon) as constituent elements;
Including,
The at least one silicon-based fine particle is coated with the SiOC coat layer.
BET specific surface area is 20 m 2 / g or less,
The cumulative 10% particle size (D10), cumulative 50% particle size (D50), and cumulative 90% particle size (D90) obtained by the laser diffraction scattering particle size distribution measurement method are 1 nm≦D50≦990 μm and D90/D10. Satisfy the condition of ≤13.0,
SiOC structure.
[2]上記少なくとも1つシリコン系微粒子と上記SiOCコート層とが互いに化学的に結合している、[1]に記載のSiOC構造体。
[3]上記BET比表面積が15m/g以下である、[1]又は[2]に記載のSiOC構造体。
[4]上記BET比表面積が10m/g以下である、[1]~[3]の何れか1つに記載のSiOC構造体。
[5]上記累積50%粒径(D50)が、500nm≦D50≦100μmの条件を満たす、[1]~[4]の何れか1つに記載のSiOC構造体。
[2] The SiOC structure according to [1], wherein the at least one silicon-based fine particle and the SiOC coating layer are chemically bonded to each other.
[3] The SiOC structure according to [1] or [2], wherein the BET specific surface area is 15 m 2 /g or less.
[4] The SiOC structure according to any one of [1] to [3], wherein the BET specific surface area is 10 m 2 / g or less.
[5] The SiOC structure according to any one of [1] to [4], wherein the cumulative 50% particle diameter (D50) satisfies the condition of 500 nm≦D50≦100 μm.
[6]上記累積50%粒径(D50)が、1μm≦D50≦20μmの条件を満たす、[1]~[5]の何れか1つに記載のSiOC構造体。
[7]上記累積10%粒径(D10)及び上記累積90%粒径(D90)が、2.0≦D90/D10≦12.0の条件を満たす、[1]~[6]の何れか1つに記載のSiOC構造体。
[8]上記累積10%粒径(D10)及び上記累積90%粒径(D90)が、2.5≦D90/D10≦8.0の条件を満たす、[1]~[7]の何れか1つに記載のSiOC構造体。
[9]上記少なくとも1つシリコン系微粒子は、1nm~2μmの範囲の体積基準平均粒子径を有する、[1]~[8]の何れか1つに記載のSiOC構造体。
[6] The SiOC structure according to any one of [1] to [5], wherein the cumulative 50% particle size (D50) satisfies the condition of 1 μm≦D50≦20 μm.
[7] Any of [1] to [6], wherein the cumulative 10% particle size (D10) and the cumulative 90% particle size (D90) satisfy the condition of 2.0≦D90/D10≦12.0. The SiOC structure according to one.
[8] Any of [1] to [7], wherein the cumulative 10% particle size (D10) and the cumulative 90% particle size (D90) satisfy the condition of 2.5≦D90/D10≦8.0. The SiOC structure according to one.
[9] The SiOC structure according to any one of [1] to [8], wherein the at least one silicon-based fine particle has a volume-based average particle diameter in the range of 1 nm to 2 μm.
[10]上記少なくとも1つシリコン系微粒子は、10nm~500nmの範囲の体積基準平均粒子径を有する、[1]~[9]の何れか1つに記載のSiOC構造体。
[11]上記少なくとも1つのシリコン系微粒子が上記SiOCコート層で完全に被覆されることにより複数の二次粒子が形成されており、該複数の二次粒子が上記SiOCコート層を介して互いに連結されている、[1]~[10]の何れか1つに記載のSiOC構造体。
[12]SiOC構造体の総質量に基づき、50質量%~90質量%の範囲のSiと、5質量%~35質量%の範囲のOと、2質量%~35質量%の範囲のCとを主な構成元素として含む、[1]~[11]の何れか1つに記載のSiOC構造体。
[13][1]~[12]の何れか1つに記載のSiOC構造体を負極活物質として含む、負極用組成物。
[14]炭素系導電助剤及び/又は結着剤を更に含む、[13]に記載の負極用組成物。
[10] The SiOC structure according to any one of [1] to [9], wherein the at least one silicon-based fine particle has a volume-based average particle diameter in the range of 10 nm to 500 nm.
[11] A plurality of secondary particles are formed by completely covering the at least one silicon-based fine particle with the SiOC coat layer, and the plurality of secondary particles are connected to each other via the SiOC coat layer. The SiOC structure according to any one of [1] to [10].
[12] Based on the total mass of the SiOC structure, Si in the range of 50% by mass to 90% by mass, O in the range of 5% by mass to 35% by mass, and C in the range of 2% by mass to 35% by mass. The SiOC structure according to any one of [1] to [11], which contains as a main constituent element.
[13] A negative electrode composition containing the SiOC structure according to any one of [1] to [12] as a negative electrode active material.
[14] The negative electrode composition according to [13], further including a carbon-based conductive additive and/or a binder.
[15][13]又は[14]に記載の負極用組成物を含む、負極。
[16][15]に記載の負極を少なくとも1つ備えた、二次電池。
[17]リチウムイオン二次電池である、[16]に記載の二次電池。
[15] A negative electrode containing the composition for negative electrodes according to [13] or [14].
[16] A secondary battery provided with at least one negative electrode according to [15].
[17] The secondary battery according to [16], which is a lithium ion secondary battery.
[18](p)一般式(I):
SiX 4-n  ・・・ (I)
(式中、Rは、水素、水酸基、又は炭素数1~45の置換若しくは非置換の炭化水素であり、炭素数1~45の炭化水素において、任意の水素はハロゲンで置き換えられてもよく、任意の-CH2-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよく、
は、ハロゲン、炭素数1~6のアルキルオキシ、又はアセトキシであり、
及びXが、それぞれ複数存在する場合は、それぞれ互いに独立しており、
nは0~3の整数である。)で表されるシラン化合物を加水分解し、次いで、シリコン系微粒子の存在下で重縮合させることにより、少なくとも1つのシリコン系微粒子が、少なくとも1種のシリコン含有ポリマーを含むコート層により被覆されてなる、シリコン系微粒子/シリコン含有ポリマー複合体を生成すること;並びに
(q)非酸化性ガス雰囲気下において、上記シリコン系微粒子/シリコン含有ポリマー複合体に対して加熱処理を施すことにより、[1]~[10]の何れか1つに記載のSiOC構造体に変換すること、
を含む、SiOC構造体を製造する方法。
[18] (p) General formula (I):
R 1 n SiX 1 4-n ... (I)
(In the formula, R 1 is a hydrogen, a hydroxyl group, or a substituted or unsubstituted hydrocarbon having 1 to 45 carbon atoms, and in the hydrocarbon having 1 to 45 carbon atoms, any hydrogen may be replaced with a halogen. , Any —CH 2 — may be replaced with —O—, —CH═CH—, cycloalkylene or cycloalkenylene,
X 1 is a halogen, an alkyloxy having 1 to 6 carbon atoms, or an acetoxy.
When a plurality of R 1 and X 1 are present, they are independent of each other,
n is an integer from 0 to 3. ) Is hydrolyzed and then polycondensed in the presence of silicon-based fine particles, so that at least one silicon-based fine particle is coated with a coat layer containing at least one silicon-containing polymer. By producing a silicon-based fine particle/silicon-containing polymer composite, and (q) subjecting the silicon-based fine particle/silicon-containing polymer composite to a heat treatment in a non-oxidizing gas atmosphere, [1. ] To [10], converting to the SiOC structure according to any one of [10].
A method for producing a SiOC structure, which comprises.
[19]一般式(I)で表されるシラン化合物が、下記一般式(II):
10Si(R)(R)(R)  ・・・ (II)
(式中、R、R及びRはそれぞれ独立に、水素、ハロゲン、水酸基又は炭素数1~4のアルキルオキシであり、R10は、炭素数1~45の置換又は非置換のアルキル、置換又は非置換のアリール、及び置換又は非置換のアリールアルキルからなる群から選択され、炭素数の1~45のアルキルにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよく、置換又は非置換のアリールアルキル中のアルキレンにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよい。)
で表されるシラン化合物である、
[18]に記載の方法。
[19] The silane compound represented by the general formula (I) has the following general formula (II):
R 10 Si (R 7 ) (R 8 ) (R 9 ) ・ ・ ・ (II)
(In the formula, R 7 , R 8 and R 9 are each independently hydrogen, halogen, a hydroxyl group or alkyloxy having 1 to 4 carbons, and R 10 is substituted or unsubstituted alkyl having 1 to 45 carbons. , Substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl, in an alkyl having 1-45 carbon atoms, any hydrogen may be replaced with a halogen and any -CH 2 -May be replaced by -O-, -CH=CH-, cycloalkylene or cycloalkenylene, and in the alkylene in the substituted or unsubstituted arylalkyl, any hydrogen may be replaced by halogen; -CH 2-of may be replaced by -O-, -CH=CH-, cycloalkylene or cycloalkenylene.)
Is a silane compound represented by
The method according to [18].
[20]前記シリコン含有ポリマーは、下記の一般式(III)、(IV)、(V)、及び(VI)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(式中、R及びRはそれぞれ独立に、炭素数1から45の置換又は非置換のアルキル、置換または非置換のアリール、及び置換又は非置換のアリールアルキルからなる群から選択され、炭素数の1から45のアルキルにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよいものとし、置換又は非置換のアリールアルキル中のアルキレンにおいて任意の水素はハロゲンで置換えられてもよく、任意の-CH-は、-O-、-CH=CH-又はシクロアルキレンで置き換えられてもよく、
、R、R及びRはそれぞれ独立に、水素、炭素数1~45の置換又は非置換のアルキル、置換又は非置換のアリール、及び置換又は非置換のアリールアルキルからなる群から選択され、炭素数の1~45のアルキルにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン、シクロアルケニレン又は-SiR -で置き換えられてもよく、置換又は非置換のアリールアルキル中のアルキレンにおいて、任意の水素はハロゲンで置換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン、シクロアルケニレン又は-SiR -で置き換えられてもよく、nは1以上の整数を示す。)
でそれぞれ表されるポリシルセスキオキサン構造をそれぞれ有するポリシルセスキオキサンからなる群から選択される少なくとも1つを含む、[18]又は[19]に記載の方法。
[20] The silicon-containing polymer has the following general formulas (III), (IV), (V), and (VI).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 1 and R 4 are each independently selected from the group consisting of substituted or unsubstituted alkyl having 1 to 45 carbon atoms, substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl; In the number 1 to 45 alkyl, any hydrogen may be replaced with a halogen and any —CH 2 — may be replaced with —O—, —CH═CH—, cycloalkylene or cycloalkenylene. Provided that any hydrogen in the alkylene in the substituted or unsubstituted arylalkyl may be replaced by halogen, and any —CH 2 — may be replaced by —O—, —CH═CH— or cycloalkylene. Well,
R 2 , R 3 , R 5 and R 6 are each independently selected from the group consisting of hydrogen, substituted or unsubstituted alkyl having 1 to 45 carbon atoms, substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl. In the selected alkyl having 1 to 45 carbon atoms, any hydrogen may be replaced by halogen, and any —CH 2 — is —O—, —CH═CH—, cycloalkylene, cycloalkenylene or — SiR 1 2 — may be replaced, and in the alkylene in the substituted or unsubstituted arylalkyl, any hydrogen may be replaced by halogen, and any —CH 2 — may be —O—, —CH═. It may be replaced with CH-, cycloalkylene, cycloalkenylene or -SiR 1 2- , and n represents an integer of 1 or more. )
The method according to [18] or [19], comprising at least one selected from the group consisting of polysilsesquioxanes each having a polysilsesquioxane structure represented by
[21]工程(p)において、下記(p-1)ないし(p-3)を行う、[18]~[20]の何れか1つに記載の方法:
(p-1)pHが3~6の酸性溶液に、一般式(I)で表されるシラン化合物を添加し、該シラン化合物を加水分解させること;
(p-2)工程(p-1)により得られた反応液に、シリコン系微粒子又はその分散液を添加すること;
(p-3)工程(p-2)により得られた混合液に、所定量の酸又はその溶液を添加することにより、上記混合液のpHを2以下に調整し、該混合液を所定時間かつ所定温度で静置させることにより、上記シラン化合物の重縮合を進行させ、上記シリコン系微粒子/シリコン含有ポリマー複合体を生成させること。
[21] The method according to any one of [18] to [20], wherein the following (p-1) to (p-3) are performed in the step (p):
(P-1) To add a silane compound represented by the general formula (I) to an acidic solution having a pH of 3 to 6 to hydrolyze the silane compound;
(P-2) Add silicon-based fine particles or a dispersion thereof to the reaction solution obtained in step (p-1);
(P-3) The pH of the mixed solution is adjusted to 2 or less by adding a predetermined amount of acid or a solution thereof to the mixed solution obtained in the step (p-2), and the mixed solution is kept for a predetermined time. And, by allowing it to stand at a predetermined temperature, the polycondensation of the silane compound is promoted to produce the silicon-based fine particles/silicon-containing polymer composite.
[22]工程(p)において、下記(p-1’)ないし(p-3’)を行う、[18]~[21]の何れか1つに記載の方法:
(p-1’)pHが3~6の酸性溶液に、撹拌条件下、一般式(I)で表されるシラン化合物を段階的に添加し、撹拌条件下に、所定時間かつ所定温度で該シラン化合物を加水分解させること;
(p-2’)工程(p-1’)により得られた反応液に、シリコン系微粒子又はその分散液を添加し、該シリコン系微粒子又はその分散液を上記反応液中に均一に分散させること;
(p-3’)工程(p-2’)により得られた混合液に、所定量の酸又はその溶液を添加することにより、上記混合液のpHを2以下に調整し、次いで、該混合液を所定時間かつ所定温度で静置させることにより、上記シラン化合物の重縮合を進行させ、上記シリコン系微粒子/シリコン含有ポリマー複合体を生成させること。
[22] The method according to any one of [18] to [21], wherein the following (p-1′) to (p-3′) are performed in the step (p):
(P-1') A silane compound represented by the general formula (I) is added stepwise to an acidic solution having a pH of 3 to 6 under stirring conditions, and the mixture is stirred under stirring conditions for a predetermined time at a predetermined temperature. Hydrolyzing the silane compound;
(P-2′) Silicon fine particles or a dispersion thereof is added to the reaction liquid obtained in the step (p-1′) to uniformly disperse the silicon fine particles or a dispersion thereof in the reaction liquid. thing;
(P-3′) The pH of the mixed solution is adjusted to 2 or less by adding a predetermined amount of acid or a solution thereof to the mixed solution obtained in the step (p-2′), and then the mixed solution is mixed. By allowing the solution to stand for a predetermined time and at a predetermined temperature, polycondensation of the silane compound is allowed to proceed, and the silicon-based fine particle / silicon-containing polymer composite is produced.
[23]工程(p)において、酸触媒として、酸又はその水溶液を用いる、[18]~[22]の何れか1つに記載の方法。
[24]一般式(I)において、n=1であり、Rが炭素数1~10の炭化水素であり、3つ存在するXが、それぞれ独立に、ハロゲン、炭素数1~6のアルキルオキシ、又はアセトキシである、[18]~[23]の何れか1つに記載の方法。
[25]工程(p)において、一般式(I)で表されるシラン化合物が、メチルトリメトキシシラン及びフェニルトリメトキシシランからなる群から選択される少なくとも1つのシラン化合物を含む、[18]~[24]の何れか1つに記載の方法。
[26]工程(q)における上記非酸化性ガス雰囲気が、不活性ガスを含む雰囲気である、[18]~[25]の何れか1つに記載の方法。
[27]工程(q)における上記非酸化性ガス雰囲気が、窒素ガス及び/又はアルゴンガスを含む雰囲気である、[18]~[26]の何れか1つに記載の方法。
[23] The method according to any one of [18] to [22], wherein an acid or an aqueous solution thereof is used as an acid catalyst in step (p).
[24] In the general formula (I), n=1, R 1 is a hydrocarbon having 1 to 10 carbon atoms, and three X 1 's each independently represent a halogen atom or a carbon atom having 1 to 6 carbon atoms. The method according to any one of [18] to [23], which is an alkyloxy or an acetoxy.
[25] In the step (p), the silane compound represented by the general formula (I) contains at least one silane compound selected from the group consisting of methyltrimethoxysilane and phenyltrimethoxysilane, [18] to The method according to any one of [24].
[26] The method according to any one of [18] to [25], wherein the non-oxidizing gas atmosphere in the step (q) is an atmosphere containing an inert gas.
[27] The method according to any one of [18] to [26], wherein the non-oxidizing gas atmosphere in the step (q) is an atmosphere containing nitrogen gas and/or argon gas.
[28]工程(q)において、上記シリコン系微粒子/シリコン含有ポリマー複合体を、400℃~1800℃の範囲にある温度に加熱し、該温度で30分~10時間の範囲の時間加熱する、[18]~[27]の何れか1つに記載の方法。
[29][1]~[12]の何れか1つに記載のSiOC構造体を負極活物質として用いることにより負極用組成物を取得することを含む、負極用組成物を製造する方法。
[28] In the step (q), the silicon-based fine particles/silicon-containing polymer composite is heated to a temperature in the range of 400° C. to 1800° C., and is heated at the temperature for 30 minutes to 10 hours. The method according to any one of [18] to [27].
[29] A method for producing a negative electrode composition, which comprises using the SiOC structure according to any one of [1] to [12] as a negative electrode active material to obtain the negative electrode composition.
 本発明の特定の実施形態によれば、二次電池において良好なサイクル容量維持率及びクーロン効率を実現できる。 According to the specific embodiment of the present invention, a good cycle capacity retention rate and Coulombic efficiency can be realized in the secondary battery.
実施例1~4でそれぞれ合成したシリコンナノ粒子/メチルポリシルセスキオキサン複合体の走査型電子顕微鏡(SEM)写真(1,000倍)を示す図である。It is a figure which shows the scanning electron microscope (SEM) photograph (1,000 times) of the silicon nanoparticle / methyl polysilsesquioxane complex synthesized in Examples 1 to 4, respectively. 実施例1~4でそれぞれ取得したSiOC構造体のSEM写真(10,000倍)を示す図である。It is a figure which shows the SEM photograph (10,000 times) of the SiOC structure acquired in each of Examples 1 to 4. 比較例1で取得したSiOC材料のSEM写真(10,000倍)を示す図である。FIG. 7 is a view showing an SEM photograph (10,000 times) of the SiOC material obtained in Comparative Example 1. 比較例2で取得したシリコンナノ粒子/メチルポリシルセスキオキサン複合体SEM写真(20,000倍)を示す図である。FIG. 6 is a view showing a SEM photograph (20,000 times) of a silicon nanoparticle/methylpolysilsesquioxane complex obtained in Comparative Example 2. 実施例1で取得したSiOC構造体のSEM写真(50,000倍)を示す図である。It is a figure which shows the SEM photograph (50,000 times) of the SiOC structure acquired in Example 1. FIG. 実施例1及び2でそれぞれ取得した各SiOC構造体並びに比較例1で取得したSiOC材料の各粒度分布を測定した結果を示す図である。6 is a diagram showing the results of measuring the particle size distributions of the SiOC structures obtained in Examples 1 and 2 and the SiOC material obtained in Comparative Example 1. FIG. 実施例3及び4でそれぞれ取得した各SiOC構造体の各粒度分布を測定した結果を示す図である。It is a figure which shows the result of having measured each particle size distribution of each SiOC structure acquired in Example 3 and 4, respectively. 実施例1~4及び比較例1で作製した各リチウムイオン二次電池について充放電サイクル試験により電池容量を測定した結果を示す図である。FIG. 6 is a diagram showing the results of measuring the battery capacity by a charge/discharge cycle test for each lithium ion secondary battery produced in Examples 1 to 4 and Comparative Example 1. 実施例1~4及び比較例1で作製した各リチウムイオン二次電池について充放電サイクル試験によりクーロン効率を測定した結果を示す図である。FIG. 5 is a diagram showing the results of measuring Coulombic efficiency by a charge/discharge cycle test for each lithium ion secondary battery produced in Examples 1 to 4 and Comparative Example 1. コイン型のリチウムイオン電池の構成例を示す図である。It is a figure which shows the structural example of a coin type lithium ion battery.
以下、本発明の実施形態について、より詳細に説明する。
<SiOC構造体>
 本発明の第一の態様によれば、
(A)少なくとも1つのシリコン系微粒子と、
(B)少なくともSi(ケイ素)とO(酸素)とC(炭素)とを構成元素として含有するSiOCコート層と、
を含み、
上記少なくとも1つのシリコン系微粒子は、上記SiOCコート層によって被覆されており、
BET比表面積が20m/g以下であり、
レーザー回折散乱式粒度分布測定法により得られる累積10%粒径(D10)、累積50%粒径(D50)、及び累積90%粒径(D90)が、1nm≦D50≦990μm、かつD90/D10≦13.0の条件を満たす、
SiOC構造体が提供される。
 以下、本発明の第一の態様に係るSiOC構造体について詳述する。
Hereinafter, embodiments of the present invention will be described in more detail.
<SiOC structure>
According to the first aspect of the present invention,
(A) With at least one silicon-based fine particle,
(B) A SiOC coat layer containing at least Si (silicon), O (oxygen) and C (carbon) as constituent elements, and
Including,
The at least one silicon-based fine particle is coated with the SiOC coat layer.
BET specific surface area is 20 m 2 / g or less,
The cumulative 10% particle size (D10), cumulative 50% particle size (D50), and cumulative 90% particle size (D90) obtained by the laser diffraction scattering particle size distribution measurement method are 1 nm≦D50≦990 μm and D90/D10. Satisfy the condition of ≤13.0,
A SiOC structure is provided.
Hereinafter, the SiOC structure according to the first aspect of the present invention will be described in detail.
(シリコン系微粒子)
 本発明の第一の態様に係るSiOC構造体は、少なくとも1つシリコン系微粒子を含む。
 本開示において「シリコン系微粒子」とは、実質的にシリコンのみからなるシリコン微粒子、並びに原子組成にケイ素(シリコン)を含む化合物(例えば、シリカ、シリコン含有金属化合物)からなる微粒子を包含する概念である。
(Silicon particles)
The SiOC structure according to the first aspect of the present invention contains at least one silicon-based fine particle.
In the present disclosure, “silicon-based fine particles” is a concept that includes silicon fine particles substantially consisting of only silicon, and fine particles consisting of a compound containing silicon (silicon) in the atomic composition (for example, silica, a silicon-containing metal compound). is there.
 シリコン系微粒子の粒子径(体積基準平均粒子径)は、ナノメートルスケールないしマイクロメートルスケールの範囲にあるものであれば使用可能である。特に限定されるものでもないないが、例えば体積基準平均粒子径が1nm~2μmの範囲にあるシリコン系微粒子を用いることができる。SiOC構造体が二次電池の負極材料として用いられることを考慮すると、シリコン系微粒子の体積基準平均粒子径(平均粒径)は、例えば10nm~500nm、好ましくは10nm~200nm、より好ましくは20nm~100nmの範囲にあることが好ましい。 The particle size (volume-based average particle size) of silicon-based particles can be used as long as it is in the range of nanometer scale to micrometer scale. Although not particularly limited, for example, silicon-based fine particles having a volume-based average particle diameter in the range of 1 nm to 2 μm can be used. Considering that the SiOC structure is used as the negative electrode material of the secondary battery, the volume-based average particle diameter (average particle diameter) of the silicon-based fine particles is, for example, 10 nm to 500 nm, preferably 10 nm to 200 nm, and more preferably 20 nm to 20 nm. It is preferably in the range of 100 nm.
(SiOCコート層)
 更に、本発明の第一の態様に係るSiOC構造体は、上記少なくとも1つのシリコン系微粒子を被覆するSiOCコート層を含む。
 ここで、上述のとおり、SiOCコート層は、少なくともSi(ケイ素)とO(酸素)とC(炭素)とを構成元素として含有するものであるが、これらに加えて、その他の元素の含有が排除されるものではない。
 本開示において、SiOCコート層とは、特に限定されるものではないが、具体的には、後述のとおり、少なくとも1種のシリコン含有ポリマーを含み、かつシリコン系微粒子を被覆するコート層が、所定の加熱処理によってセラミック化したものであればよい。
(SiOC coat layer)
Furthermore, the SiOC structure according to the first aspect of the present invention includes a SiOC coating layer that covers the at least one silicon-based fine particle.
Here, as described above, the SiOC coating layer contains at least Si (silicon), O (oxygen), and C (carbon) as constituent elements, but in addition to these, the inclusion of other elements It is not excluded.
In the present disclosure, the SiOC coat layer is not particularly limited, but specifically, as described below, the coat layer containing at least one silicon-containing polymer and coating the silicon-based fine particles has a predetermined thickness. Anything may be ceramicized by the heat treatment of.
(SiOCコート層によるシリコン系微粒子の被覆)
 加えて、本発明の第一の態様に係るSiOC構造体は、「上記少なくとも1つのシリコン系微粒子が上記SiOCコート層によって完全に被覆されている」ことを特徴の1つとする。
(Coating of silicon-based fine particles with SiOC coat layer)
In addition, the SiOC structure according to the first aspect of the present invention is characterized in that "the at least one silicon-based fine particle is completely covered by the SiOC coating layer".
 ここで、このような「被覆」の態様としては、SiOC構造体が、少なくとも1つのシリコン系微粒子がSiOCコート層によって完全に被覆されてなる構造部分を有していれば足り、必ずしもSiOC構造体に含まれるシリコン系微粒子の全てがSiOCコート層によって完全に被覆されている必要はない。即ち、本発明の幾つかの実施形態において、SiOCコート層によるシリコン系微粒子の被覆の態様としては、具体的には、以下の実施形態が挙げられる。
(i)SiOC構造体に含まれるシリコン系微粒子の全てがSiOCコート層によって完全に被覆されている実施形態;並びに
(ii)SiOC構造体に含まれるシリコン系微粒子のうち少なくとも1つがSiOCコート層によって完全に被覆されているが、残りのシリコン系微粒子はSiOCコート層によって部分的に被覆され、当該残りのシリコン系微粒子表面の一部がSiOCコート層から露出している実施形態。
 加えて、本発明の第一の態様に係るSiOC構造体においては、複数のシリコン系微粒子を含む場合において、該複数のシリコン系微粒子の2つ以上が互いに直接かつ物理的に接しており、このように接している2つ以上のシリコン系微粒子がSiOCコート層によって完全に被覆されている実施形態も想定される。
Here, as an aspect of such “coating”, it is sufficient that the SiOC structure has a structural portion in which at least one silicon-based fine particle is completely covered by the SiOC coating layer, and the SiOC structure is not necessarily required. It is not necessary that all of the silicon-based fine particles contained in the above are completely covered with the SiOC coat layer. That is, in some embodiments of the present invention, specific examples of the mode of coating the silicon-based fine particles with the SiOC coated layer include the following embodiments.
(I) An embodiment in which all of the silicon-based fine particles contained in the SiOC structure are completely covered with a SiOC coating layer; and (ii) At least one of the silicon-based fine particles contained in the SiOC structure is covered with a SiOC coating layer. An embodiment in which the remaining silicon-based particles are completely covered, but the remaining silicon-based particles are partially covered by the SiOC coating layer, and a part of the surface of the remaining silicon-based particles is exposed from the SiOC coating layer.
In addition, in the SiOC structure according to the first aspect of the present invention, when a plurality of silicon-based fine particles are included, two or more of the plurality of silicon-based fine particles are in direct and physical contact with each other. An embodiment in which two or more silicon-based fine particles in contact with each other are completely covered with a SiOC coat layer is also envisioned.
 さらに、SiOCコート層によるシリコン系微粒子の被覆の形態は、SEM等の電子顕微鏡観察により確認することができる。
 このようにして観察されるSiOC構造体の形態としては、具体的には図2A及び図3に示すSEM写真で観察されるような形態が挙げられる。より詳細には、本発明の第一の態様に係るSiOC構造体においては、図2A及び図3のSEM写真で観察されるように、少なくとも1つのシリコン系微粒子がSiOCコート層で被覆されることにより複数の二次粒子が形成されており、該複数の二次粒子が上記SiOCコート層を介して互いに連結されてなる形態であることが好ましい。SiOC構造体において、シリコン系微粒子がSiOCコート層で被覆され、かつSiOCコート層を介して互いに連結されてなる形態が発現している場合、該SiOC構造体は、負極用活物質として優れた性能を発揮し、二次電池において容量維持率やクーロン効率の向上が期待できるからである。
Further, the form of coating the silicon-based fine particles with the SiOC coat layer can be confirmed by observing with an electron microscope such as SEM.
Specific examples of the form of the SiOC structure observed in this way include the form observed in the SEM photographs shown in FIGS. 2A and 3. More specifically, in the SiOC structure according to the first aspect of the present invention, at least one silicon-based fine particle is coated with the SiOC coat layer, as observed in the SEM photographs of FIGS. 2A and 3. It is preferable that a plurality of secondary particles are formed by the method, and the plurality of secondary particles are connected to each other via the SiOC coat layer. When the SiOC structure exhibits a form in which silicon-based fine particles are covered with the SiOC coating layer and connected to each other through the SiOC coating layer, the SiOC structure has excellent performance as an active material for negative electrode. This is because it can be expected to improve the capacity retention rate and the Coulomb efficiency in the secondary battery.
 さらに加えて、本発明の幾つかの実施形態においては、シリコン系微粒子とSiOCコート層とは、互いに化学的に結合していることが好ましい。
 このようにシリコン系微粒子とSiOCコート層とが互いに化学的に結合したSiOC構造体は、具体的には、後述の方法で製造することができる。
 より詳細には、酸性触媒を用いて所定の官能性シラン化合物を加水分解させ、シリコン系微粒子の存在下に重縮合させることにより、該シリコン系微粒子の周囲にシリコン含有ポリマーを含むコート層を生成することで、シリコン系微粒子/シリコン含有ポリマーの複合体を取得する。このようなシリコン系微粒子の存在下におけるシラン化合物の重縮合反応によれば、生成されたシリコン系微粒子/シリコン含有ポリマー複合体においては、シリコン系微粒子表面と、重縮合反応により生成されるシリコン含有ポリマーとが化学的に結合された状態が発現する。次いで、このシリコン系微粒子/シリコン含有ポリマー複合体を、所定の条件下に加熱処理することにより、当該コート層がセラミック化されることで、SiOC構造体に変換されるが、上述のシリコン系微粒子表面とシリコン含有ポリマーとが化学的に結合した構造が、シリコン系微粒子/シリコン含有ポリマー複合体がSiOC構造体に変換された後においても維持され得る。即ち、当該SiOC構造体においては、シリコン系微粒子とSiOCコート層とは、シリコン含有ポリマーの生成に伴い生じた化学骨格で連結されている。このような化学骨格としては、Si-O-C、Si-O、Si-O-Si等を含む化学骨格が挙げられる。
In addition, in some embodiments of the present invention, the silicon-based fine particles and the SiOC coating layer are preferably chemically bonded to each other.
Specifically, the SiOC structure in which the silicon-based fine particles and the SiOC coat layer are chemically bonded to each other can be produced by the method described later.
More specifically, a predetermined functional silane compound is hydrolyzed using an acidic catalyst and polycondensed in the presence of silicon-based fine particles to form a coating layer containing a silicon-containing polymer around the silicon-based fine particles. By doing so, a composite of silicon-based fine particles / silicon-containing polymer is obtained. According to the polycondensation reaction of the silane compound in the presence of such silicon-based fine particles, in the silicon-based fine particle/silicon-containing polymer composite produced, the surface of the silicon-based fine particles and the silicon-containing fine particles produced by the polycondensation reaction are contained. A state in which the polymer is chemically bonded is developed. Then, the silicon-based fine particles/silicon-containing polymer composite is heat-treated under a predetermined condition to convert the coating layer into a ceramic to be converted into a SiOC structure. The structure in which the surface and the silicon-containing polymer are chemically bonded can be maintained even after the silicon-based fine particle / silicon-containing polymer composite is converted into the SiOC structure. That is, in the SiOC structure, the silicon-based fine particles and the SiOC coat layer are connected by a chemical skeleton generated by the formation of the silicon-containing polymer. Examples of such a chemical skeleton include chemical skeletons containing Si—O—C, Si—O, Si—O—Si and the like.
(SiOC構造体のBET比表面積)
 上述のとおり、本発明の第一の態様に係るSiOC構造体のBET比表面積は、20m/g以下であることを要する。
 SiOC構造体のBET比表面積の下限は、特に限定されるものでもないが、例えば、1m/gとしてもよく、即ち、当該BET比表面積は、1~20m/gの範囲にあってもよい。上述のとおり、本発明の第一の態様SiOC構造体においては、少なくとも1つのシリコン系微粒子がSiOCコート層によって完全に被覆されてなる構造部分を有する。この特徴は、より具体的には、本発明の第一の態様SiOC構造体は、破砕処理などの物理的処理を受けた後にも、全体的に、表面荒れすることなく、滑らかで均一な表面を保持し得ることに繋がる。このような滑らかで均一な表面の保持をより確実とする観点では、SiOC構造体のBET比表面積は、好ましくは15m/g以下、より好ましくは10m/g以下であり、更に当該BET比表面積の範囲としては、好ましくは1~15m/g、より好ましくは1~10m/gである。
 なお、BET比表面積とは、当業者において周知であるブルナウアー・エメット・テラー(BET)法による比表面積を言う。
(BET specific surface area of SiOC structure)
As described above, the BET specific surface area of the SiOC structure according to the first aspect of the present invention needs to be 20 m 2 /g or less.
The lower limit of the BET specific surface area of the SiOC structure is not particularly limited, but may be, for example, 1 m 2 /g, that is, the BET specific surface area may be in the range of 1 to 20 m 2 /g. Good. As described above, the first aspect of the present invention, the SiOC structure, has a structural portion in which at least one silicon-based fine particle is completely covered with the SiOC coat layer. This characteristic is more specifically that the SiOC structure according to the first aspect of the present invention has a smooth and uniform surface as a whole without being roughened even after being subjected to a physical treatment such as a crushing treatment. It leads to being able to hold. From the viewpoint of more reliably maintaining such a smooth and uniform surface, the BET specific surface area of the SiOC structure is preferably 15 m 2 /g or less, more preferably 10 m 2 /g or less. The range of the surface area is preferably 1 to 15 m 2 /g, more preferably 1 to 10 m 2 /g.
The BET specific surface area means a specific surface area according to the Brunauer-Emmett-Teller (BET) method which is well known to those skilled in the art.
(SiOC構造体の粒子径)
 本発明の第一の態様に係るSiOC構造体においては、上述のとおり、レーザー回折散乱式粒度分布測定法により得られる累積10%粒径(D10)、累積50%粒径(D50)、及び累積90%粒径(D90)が、1nm≦D50≦990μm、かつD90/D10≦13.0の条件を満たす。
(Particle size of SiOC structure)
In the SiOC structure according to the first aspect of the present invention, as described above, the cumulative 10% particle size (D10), the cumulative 50% particle size (D50), and the cumulative value obtained by the laser diffraction/scattering particle size distribution measurement method are used. The 90% particle size (D90) satisfies the conditions of 1 nm≦D50≦990 μm and D90/D10≦13.0.
 ここで、累積10%粒径(D10)、累積50%粒径(D50、いわゆるメディアン径)、及び累積90%粒径(D90)は、粒度分布測定技術の分野において周知技術であるレーザー回折散乱式粒度分布測定法により測定及び算出され得る粒径である。これら粒径は、特に限定されるものでもないが、市販のレーザー回折/散乱式粒度分布測定装置(例えば、マイクロトラック・ベル社製MT-3300EX II)を用いて測定することができる。 Here, the cumulative 10% particle size (D10), the cumulative 50% particle size (D50, so-called median diameter), and the cumulative 90% particle size (D90) are laser diffraction scattering techniques that are well known in the field of particle size distribution measurement technology. It is a particle size that can be measured and calculated by the formula particle size distribution measurement method. These particle sizes are not particularly limited, but can be measured using a commercially available laser diffraction / scattering type particle size distribution measuring device (for example, MT-3300EX II manufactured by Microtrac Bell).
 本発明の第一の態様に係るSiOC構造体において、上記累積50%粒径(D50)は、好ましくは500nm≦D50≦100μm、より好ましくは500nm≦D50≦50μm、更により好ましくは500nm≦D50≦20μm、場合により1μm≦D50≦20μm、2μm≦D50≦18μm、2μm≦D50≦17μm、3μm≦D50≦16μm、4μm≦D50≦16μmの条件を満たしてもよい。 In the SiOC structure according to the first aspect of the present invention, the cumulative 50% particle size (D50) is preferably 500 nm ≦ D50 ≦ 100 μm, more preferably 500 nm ≦ D50 ≦ 50 μm, and even more preferably 500 nm ≦ D50 ≦. The conditions of 20 μm, and in some cases 1 μm ≦ D50 ≦ 20 μm, 2 μm ≦ D50 ≦ 18 μm, 2 μm ≦ D50 ≦ 17 μm, 3 μm ≦ D50 ≦ 16 μm, 4 μm ≦ D50 ≦ 16 μm may be satisfied.
 加えて、本発明の第一の態様に係るSiOC構造体において、累積50%粒径(D50)及び累積90%粒径(D90)は、好ましくは2.0≦D90/D10≦12.0、より好ましくは2.0≦D90/D10≦11.0、更により好ましくは2.0≦D90/D10≦10.0、特に好ましくは2.0≦D90/D10≦9.5、例えば、2.0≦D90/D10≦9.0、2.0≦D90/D10≦8.5、2.5≦D90/D10≦8.0、2.5≦D90/D10≦7.0、3.0≦D90/D10≦7.0、場合により3.0≦D90/D10≦6.0の条件を満たしてもよい。 In addition, in the SiOC structure according to the first aspect of the present invention, the cumulative 50% particle size (D50) and the cumulative 90% particle size (D90) are preferably 2.0 ≦ D90 / D10 ≦ 12.0. More preferably 2.0≦D90/D10≦11.0, even more preferably 2.0≦D90/D10≦10.0, particularly preferably 2.0≦D90/D10≦9.5, for example, 2. 0 ≦ D90 / D10 ≦ 9.0, 2.0 ≦ D90 / D10 ≦ 8.5, 2.5 ≦ D90 / D10 ≦ 8.0, 2.5 ≦ D90 / D10 ≦ 7.0, 3.0 ≦ The condition of D90/D10≦7.0 and 3.0≦D90/D10≦6.0 may be satisfied in some cases.
 本発明の第一の態様に係るSiOC構造体において、累積10%粒径(D10)、累積50%粒径(D50、いわゆるメディアン径)、及び累積90%粒径(D90)が、上記のような条件を満たしている場合、比較的均一な粒度の分布を示し、当該SiOC構造体を負極材料として用いた場合には、良好な電池特性を実現することができる。 In the SiOC structure according to the first aspect of the present invention, the cumulative 10% particle size (D10), the cumulative 50% particle size (D50, so-called median diameter), and the cumulative 90% particle size (D90) are as described above. When these conditions are satisfied, a relatively uniform particle size distribution is exhibited, and when the SiOC structure is used as a negative electrode material, good battery characteristics can be realized.
 なお、本発明の第一の態様に係るSiOC構造体においては、累積10%粒径(D10)、累積50%粒径(D50、いわゆるメディアン径)、及び累積90%粒径(D90)が上記の条件を満たしている限り、特に限定されるものではないが、頻度(%)で表した粒度分布における体積基準平均粒子径が、1nm~990μmの範囲にあってもよい。二次電池において負極活物質として利用する場合には、該平均粒子径は、好ましくは500nm~100μm、より好ましくは1μm~50μm、更により好ましくは1μm~20μm、特に好ましくは1μm~15μmの範囲にあってもよい。
 なお、この平均粒子径は、累積10%粒径(D10)、累積50%粒径(D50、いわゆるメディアン径)、及び累積90%粒径(D90)と同様に、レーザー回折/散乱式粒度分布測定装置を用いたレーザー回折散乱法によって測定することができる。
In the SiOC structure according to the first aspect of the present invention, the cumulative 10% particle diameter (D10), the cumulative 50% particle diameter (D50, so-called median diameter), and the cumulative 90% particle diameter (D90) are as described above. The volume-based average particle diameter in the particle size distribution represented by the frequency (%) may be in the range of 1 nm to 990 μm, although it is not particularly limited as long as the condition (1) is satisfied. When used as a negative electrode active material in a secondary battery, the average particle size is preferably in the range of 500 nm to 100 μm, more preferably 1 μm to 50 μm, even more preferably 1 μm to 20 μm, and particularly preferably 1 μm to 15 μm. It may be.
The average particle size is the same as the cumulative 10% particle size (D10), the cumulative 50% particle size (D50, so-called median size), and the cumulative 90% particle size (D90). It can be measured by a laser diffraction / scattering method using a measuring device.
(SiOC構造体の元素組成)
 本発明の第一の態様に係るSiOC構造体の元素組成は、特に限定されるものでもないが、SiOC構造体は、SiOC構造体の総質量に基き、例えば50質量%~90質量%の範囲のSiと、5質量%~35質量%の範囲のOと、2質量%~35質量%の範囲のCとを主な構成元素として含むものであってもよい。さらに、いくつかの実施形態においては、本発明の第一の態様に係るSiOC構造体は、SiOC構造体の総質量に基き、60質量%~90質量%の範囲のSiと、10質量%~35質量%の範囲のOと、2質量%~20質量%の範囲のCとを主な構成元素として含むものであってもよく、別の実施形態においては、65質量%~82質量%の範囲のSiと、15質量%~35質量%の範囲のOと、3質量%~15質量%の範囲のCとを主な構成元素として含む。なお、本発明の第一の態様に係るSiOC構造体は、Si、O及びCに加え、その他の元素を構成元素として含んでもよいことは言うまでもない。
(Elemental composition of SiOC structure)
The elemental composition of the SiOC structure according to the first aspect of the present invention is not particularly limited, but the SiOC structure is based on the total mass of the SiOC structure, for example, in the range of 50% by mass to 90% by mass. Si, O in the range of 5% by mass to 35% by mass, and C in the range of 2% by mass to 35% by mass may be contained as main constituent elements. Further, in some embodiments, the SiOC structure according to the first aspect of the present invention is Si in the range of 60% by mass to 90% by mass and 10% by mass to 10% by mass based on the total mass of the SiOC structure. It may contain O in the range of 35 mass% and C in the range of 2 mass% to 20 mass% as main constituent elements, and in another embodiment, 65 mass% to 82 mass%. It contains Si in the range, O in the range of 15% by mass to 35% by mass, and C in the range of 3% by mass to 15% by mass as main constituent elements. Needless to say, the SiOC structure according to the first aspect of the present invention may contain other elements as constituent elements in addition to Si, O and C.
<SiOC構造体の製造方法>
 本発明の第二の態様によれば、
(p)一般式(I):
SiX 4-n  ・・・ (I)
(式中、Rは、水素、水酸基、又は炭素数1~45の置換若しくは非置換の炭化水素であり、炭素数1~45の炭化水素において、任意の水素はハロゲンで置き換えられてもよく、任意の-CH2-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよく、
は、ハロゲン、炭素数1~6のアルキルオキシ、又はアセトキシ基であり、
及びXが、それぞれ複数存在する場合は、それぞれ互いに独立しており、
nは0~3の整数である。)で表されるシラン化合物を加水分解し、次いで、シリコン系微粒子の存在下で重縮合させることにより、少なくとも1つのシリコン系微粒子が、少なくとも1種のシリコン含有ポリマーを含むコート層により被覆されてなる、シリコン系微粒子/シリコン含有ポリマー複合体を生成すること;並びに
(q)非酸化性ガス雰囲気下において、上記シリコン系微粒子/シリコン含有ポリマー複合体に対して加熱処理を施すことにより、上述のSiOC構造体に変換すること、を含む、SiOC構造体を製造する方法(以下、「SiOC構造体の製造方法」と言うことがある。)が提供される。
 以下、本発明の第二の態様に係るSiOC構造体の製造方法について詳述する。
<Method of manufacturing SiOC structure>
According to a second aspect of the invention,
(P) General formula (I):
R 1 n SiX 1 4-n ... (I)
(In the formula, R 1 is a hydrogen, a hydroxyl group, or a substituted or unsubstituted hydrocarbon having 1 to 45 carbon atoms, and in the hydrocarbon having 1 to 45 carbon atoms, any hydrogen may be replaced with a halogen. , Any —CH 2 — may be replaced with —O—, —CH═CH—, cycloalkylene or cycloalkenylene,
X 1 is a halogen, an alkyloxy having 1 to 6 carbon atoms, or an acetoxy group.
When a plurality of R 1 and X 1 are present, they are independent of each other,
n is an integer from 0 to 3. ) Is hydrolyzed and then polycondensed in the presence of silicon-based fine particles, so that at least one silicon-based fine particle is coated with a coat layer containing at least one silicon-containing polymer. And (q) subjecting the silicon-based fine particles/silicon-containing polymer composite to heat treatment in a non-oxidizing gas atmosphere to obtain the above-mentioned silicon-based fine particles/silicon-containing polymer composite. There is provided a method for producing a SiOC structure (hereinafter, sometimes referred to as “a method for producing a SiOC structure”), which includes converting into a SiOC structure.
Hereinafter, a method for producing a SiOC structure according to the second aspect of the present invention will be described in detail.
(加水分解性シラン化合物)
 本発明の第二の態様に係るSiOC構造体の製造方法では、まず、上述のとおり、工程(p)において、加水分解性シラン化合物として、一般式(I)で表されるシラン化合物を加水分解させ、得られた加水分解物をシリコン系微粒子の存在下で重縮合させることにより、少なくとも1つのシリコン系微粒子が、少なくとも1種のシリコン含有ポリマーを含むコート層により被覆されてなる、シリコン系微粒子/シリコン含有ポリマー複合体を生成される。
(Hydrolytic silane compound)
In the method for producing a SiOC structure according to the second aspect of the present invention, first, as described above, in the step (p), the silane compound represented by the general formula (I) is hydrolyzed as the hydrolyzable silane compound. Then, the obtained hydrolyzate is polycondensed in the presence of the silicon-based fine particles to coat at least one silicon-based fine particle with a coating layer containing at least one silicon-containing polymer. / Silicon-containing polymer composite is produced.
 好ましい実施形態として、一般式(I)において、一般式(I)において、一般式(I)において、n=1であり、Rが炭素数1~10の炭化水素であり、3つ存在するXが、それぞれ独立に、ハロゲン、炭素数1~6のアルキルオキシ、又はアセトキシである態様を採用することができる。 As a preferred embodiment, in the general formula (I), in the general formula (I), in the general formula (I), n=1, R 1 is a hydrocarbon having 1 to 10 carbon atoms, and there are three. It is possible to adopt a mode in which X 1 is independently halogen, alkyloxy having 1 to 6 carbons, or acetoxy.
 更に、いくつかの実施形態では、一般式(I)で表されるシラン化合物として、以下の一般式(II)で表されるシラン化合物を採用してもよい。
10Si(R)(R)(R)  ・・・ (II)
(式中、R、R及びRはそれぞれ独立に、水素、ハロゲン、水酸基又は炭素数1~4のアルキルオキシであり、R10は、炭素数1~45の置換又は非置換のアルキル、置換又は非置換のアリール、及び置換又は非置換のアリールアルキルからなる群から選択され、炭素数の1~45のアルキルにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよく、置換又は非置換のアリールアルキル中のアルキレンにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよい。)
 ここで、一般式(II)において、上記置換されたアルキル基の置換基としては、ハロゲン、炭素数1~10のアルキル、炭素数2~10アルケニル、炭素数1~5のアルコキシ、フェニルやナフチル等の芳香族基が好ましい。
Further, in some embodiments, the silane compound represented by the following general formula (II) may be adopted as the silane compound represented by the general formula (I).
R 10 Si (R 7 ) (R 8 ) (R 9 ) ・ ・ ・ (II)
(In the formula, R 7 , R 8 and R 9 are each independently hydrogen, halogen, a hydroxyl group or alkyloxy having 1 to 4 carbons, and R 10 is substituted or unsubstituted alkyl having 1 to 45 carbons. , Substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl, in an alkyl having 1-45 carbon atoms, any hydrogen may be replaced with a halogen and any -CH 2 -May be replaced by -O-, -CH=CH-, cycloalkylene or cycloalkenylene, and in the alkylene in the substituted or unsubstituted arylalkyl, any hydrogen may be replaced by halogen; -CH 2-of may be replaced by -O-, -CH=CH-, cycloalkylene or cycloalkenylene.)
Here, in the general formula (II), the substituent of the substituted alkyl group is halogen, alkyl having 1 to 10 carbons, alkenyl having 2 to 10 carbons, alkoxy having 1 to 5 carbons, phenyl or naphthyl. Aromatic groups such as
 一般式(I)で表されるシラン化合物としては、より具体的には、主にオルガノトリクロロシランやオルガノトリアルコキシシランの類が挙げられる。
 より詳細には、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、トリメトキシ(プロピル)シラン、n-ブチルトリエトキシシラン、イソブチルトリメトキシシラン、n-ペンチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、イソオクチルトリエトキシシラン、デシルトリメトキシシラン、メチルジメトキシエトキシシラン、メチルジエトキシメトキシシラン、2-クロロエチルトリエトキシシラン、メトキシメチルトリエトキシシラン、メチルチオメチルトリエトキシシラン、メトキシカルボニルメチルトリエトキシシラン、2-アクリロイルオキシエチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン等の置換又は非置換のアルキルトリアルコキシシラン化合物類;フェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、2-クロロフェニルトリメトキシシラン、フェニルトリエトキシシラン、2-メトキシフェニルトリエトキシシラン、フェニルジメトキシエトキシシラン、フェニルジエトキシメトキシシラン等の置換又は非置換のアリールトリアルコキシシラン化合物類等が挙げられる。
 とりわけ、一般式(I)で表されるシラン化合物は、メチルトリメトキシシラン及びフェニルトリメトキシシランからなる群から選択される少なくとも1つのシラン化合物を含むことが好ましい。
 さらに、上記の如きオルガノトリクロロシランやオルガノトリアルコキシシランに加え/替えて、ジアルコキシジアルキルシランなど他のタイプのシラン化合物を用いてもよい。
More specifically, examples of the silane compound represented by the general formula (I) include organotrichlorosilane and organotrialkoxysilane.
More specifically, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, trimethoxy(propyl)silane, n-butyltriethoxysilane, isobutyltrimethoxysilane, n-pentyltriethoxysilane, n-hexyltrimethoxysilane, isooctyltriethoxysilane, decyltrimethoxysilane, methyldimethoxyethoxysilane, methyldiethoxymethoxysilane, 2-chloroethyltriethoxysilane, methoxymethyltriethoxysilane, methylthiomethyltriethoxysilane, methoxy Substituted or unsubstituted alkyltrialkoxysilane compounds such as carbonylmethyltriethoxysilane, 2-acryloyloxyethyltrimethoxysilane, 3-methacryloyloxypropyltriethoxysilane; phenyltrimethoxysilane, 4-methoxyphenyltrimethoxysilane, Examples thereof include substituted or unsubstituted aryltrialkoxysilane compounds such as 2-chlorophenyltrimethoxysilane, phenyltriethoxysilane, 2-methoxyphenyltriethoxysilane, phenyldimethoxyethoxysilane, and phenyldiethoxymethoxysilane.
In particular, the silane compound represented by the general formula (I) preferably contains at least one silane compound selected from the group consisting of methyltrimethoxysilane and phenyltrimethoxysilane.
Further, other types of silane compounds such as dialkoxydialkylsilane may be used in addition to or in place of the above-mentioned organotrichlorosilane or organotrialkoxysilane.
 次に、工程(p)における上記シラン化合物の加水分解及び重縮合の条件について詳述する。
(溶媒)
 工程(p)における反応液を構成する溶媒は、上記シラン化合物の加水分解/重縮合を進行させるものであれば特に限定されるものでもない。具体的には、上記シラン化合物の加水分解を補助するために水を含み得るが、水に加えてメタノール、エタノール、2-プロパノール等のアルコール類、ジエチルエーテル等のエーテル類、アセトンやメチルエチルケトン等のケトン類、ヘキサン、DMF、トルエンな等の芳香族炭化水素溶剤を含む有機溶媒が挙げられる。これらは、一種を単独で用いてもよいし又は二種以上を混合して用いてもよい。
Next, the conditions for the hydrolysis and polycondensation of the silane compound in step (p) will be described in detail.
(solvent)
The solvent constituting the reaction liquid in step (p) is not particularly limited as long as it promotes hydrolysis/polycondensation of the silane compound. Specifically, it may contain water to assist the hydrolysis of the silane compound, but in addition to water, alcohols such as methanol, ethanol and 2-propanol, ethers such as diethyl ether, acetone and methyl ethyl ketone, etc. Examples thereof include organic solvents containing aromatic hydrocarbon solvents such as ketones, hexane, DMF and toluene. These may be used alone or in combination of two or more.
(酸性触媒)
 本発明において、酸性触媒は、必須の成分ではないが、加水分解及び/又は重縮合反応を好適に制御するために、場合により使用することができる。酸性触媒としては、有機酸、無機酸のいずれも使用可能である。
 具体的には、有機酸としてはギ酸、酢酸、プロピオン酸、シュウ酸、クエン酸などが例示され、無機酸としては塩酸、硫酸、硝酸、リン酸などが例示される。これらの中でも、加水分解反応およびその後の重縮合反応の制御が容易にでき、コスト安であり、かつ反応後の処理も容易であることから、塩酸及び/又は酢酸を用いることが好ましい。
(Acid catalyst)
In the present invention, the acidic catalyst is not an essential component, but can be used in some cases in order to preferably control the hydrolysis and / or polycondensation reaction. As the acidic catalyst, either an organic acid or an inorganic acid can be used.
Specifically, examples of organic acids include formic acid, acetic acid, propionic acid, oxalic acid, and citric acid, and examples of inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid. Among these, hydrochloric acid and / or acetic acid is preferably used because the hydrolysis reaction and the subsequent polycondensation reaction can be easily controlled, the cost is low, and the treatment after the reaction is easy.
 また、上記シラン化合物としてトリクロロシラン等のハロゲン化シランを用いた場合には、水の存在下で酸性水溶液が形成され、当該シラン化合物の加水分解及び重縮合が進行し得る「酸性条件」が実現される。したがって、このようにハロゲン化シランを用いる場合には、酸性触媒を反応系に別途加えずとも、加水分解及び重縮合反応は進むため、触媒を別途加える必要もない。つまり、このような場合、工程(p)において、酸性触媒は、上述のとおり必須の要素ではない。 Further, when a halogenated silane such as trichlorosilane is used as the silane compound, an acidic aqueous solution is formed in the presence of water, and "acidic conditions" in which hydrolysis and polycondensation of the silane compound can proceed are realized. To be done. Therefore, when the halogenated silane is used as described above, the hydrolysis and the polycondensation reaction proceed without adding an acidic catalyst to the reaction system, so that it is not necessary to add a catalyst separately. That is, in such a case, the acidic catalyst is not an essential element in the step (p) as described above.
(シリコン系微粒子)
 シリコン系微粒子については、上述の通り実質的にシリコンのみからなるシリコン微粒子、並びに原子組成にケイ素(シリコン)を含む化合物(例えば、シリカ、シリコン含有金属化合物)からなる微粒子を包含する概念であり、この概念の範囲において特に制限なく利用できる。シリコン系微粒子としては、実質的にシリコンのみからなるシリコン微粒子が好ましく利用でき、とりわけ各種シリコンパウダーが市販されていることから、それらを利用すると好都合である。なお、その平均粒子径等の条件は、上記のとおりである。
(Silicon fine particles)
As for the silicon-based fine particles, as described above, it is a concept that includes silicon fine particles consisting essentially of only silicon, and fine particles consisting of a compound containing silicon (silicon) in the atomic composition (for example, silica, a silicon-containing metal compound), It can be used without particular limitation within the scope of this concept. As the silicon-based fine particles, silicon fine particles substantially composed of only silicon can be preferably used, and in particular, since various silicon powders are commercially available, it is convenient to use them. The conditions such as the average particle size are as described above.
(加水分解及び重縮合反応の条件)
 次に、工程(p)における加水分解および重縮合の反応条件について説明する。
(Conditions for hydrolysis and polycondensation reaction)
Next, the reaction conditions for hydrolysis and polycondensation in step (p) will be described.
 反応液中、上記シラン化合物の割合は、特に限定されるものでもないが、反応液100質量部に対して、例えば約0.1質量部~約30質量部、好ましくは約0.1質量部から約25質量部、より好ましくは約0.5質量部から約20質量部である。このような範囲を目安に、最終的に生成するSiOC構造体において実現したい原子組成比に鑑みて、シリコン系微粒子の添加割合と共に適宜設定すればよい。 The ratio of the silane compound in the reaction solution is not particularly limited, but is, for example, about 0.1 part by mass to about 30 parts by mass, preferably about 0.1 part by mass with respect to 100 parts by mass of the reaction solution. To about 25 parts by weight, more preferably about 0.5 to about 20 parts by weight. With such a range as a guide, it may be appropriately set together with the addition ratio of the silicon-based fine particles in view of the atomic composition ratio to be realized in the finally formed SiOC structure.
 シリコン系微粒子の添加割合についても、特に限定されるものでもなく、最終的に生成するSiOC構造体において実現したい元素組成比や、所望の電池特性を考慮して、シラン化合物と共に適宜設定すればよい。シリコン系微粒子の添加割合は、上記シラン化合物100質量部に対して、例えば約0.1質量部~約70質量部、好ましくは約1.0質量部~約60.0質量部、より好ましくは約5.0質量部~約55質量部、特に好ましくは約10質量部~約50質量部である。 The addition ratio of the silicon-based fine particles is not particularly limited, and may be appropriately set together with the silane compound in consideration of the elemental composition ratio desired to be realized in the finally produced SiOC structure and the desired battery characteristics. .. The addition ratio of the silicon-based fine particles is, for example, about 0.1 part by mass to about 70 parts by mass, preferably about 1.0 part by mass to about 60.0 parts by mass, more preferably about 100 parts by mass of the silane compound. It is about 5.0 parts by mass to about 55 parts by mass, particularly preferably about 10 parts by mass to about 50 parts by mass.
 上記加水分解又は重縮合の際の反応液に含まれる溶媒の割合は、加水分解又は重縮合反応が好適に進行するものであれば、特に限定されるものでもないが、上記シラン化合物100質量部に対して、例えば約50質量部~約2500質量部、好ましくは約100質量部~約2400質量部、より好ましくは約100質量部~約2300質量部、特に好ましくは約150質量部~約2200質量部の範囲が挙げられる。
 更に、特定の実施形態においては、加水分解反応時の反応液に含まれる溶媒の割合を、上記シラン化合物100質量部に対して、例えば約50質量部~約1500質量部、好ましくは約100質量部~約1000質量部、より好ましくは約150質量部~約800質量部、特に好ましくは約150質量部~約600質量部とし、重縮合反応時の反応液に含まれる溶媒の割合を、上記シラン化合物100質量部に対して、例えば約400質量部~約2500質量部、好ましくは約500質量部~約2400質量部、より好ましくは約550質量部~約2300質量部、特に好ましくは約600質量部~約2200質量部、場合により約700質量部~約2000質量部としてもよい。
 なお、これらの割合範囲を採用した場合において、上述のとおり溶媒として水のみを用いてもよい、又は水とその他溶媒(アルコールや有機溶媒等)との混合溶媒を用いてもよい。
The ratio of the solvent contained in the reaction solution at the time of the hydrolysis or polycondensation is not particularly limited as long as the hydrolysis or polycondensation reaction suitably proceeds, but 100 parts by mass of the silane compound. In contrast, for example, about 50 parts by mass to about 2500 parts by mass, preferably about 100 parts by mass to about 2400 parts by mass, more preferably about 100 parts by mass to about 2300 parts by mass, particularly preferably about 150 parts by mass to about 2200 parts by mass. The range of parts by mass can be mentioned.
Furthermore, in a particular embodiment, the ratio of the solvent contained in the reaction liquid during the hydrolysis reaction is, for example, about 50 parts by mass to about 1500 parts by mass, preferably about 100 parts by mass, relative to 100 parts by mass of the silane compound. Parts to about 1000 parts by mass, more preferably about 150 parts by mass to about 800 parts by mass, particularly preferably about 150 parts by mass to about 600 parts by mass, and the ratio of the solvent contained in the reaction solution at the polycondensation reaction is the above. With respect to 100 parts by mass of the silane compound, for example, about 400 parts by mass to about 2500 parts by mass, preferably about 500 parts by mass to about 2400 parts by mass, more preferably about 550 parts by mass to about 2300 parts by mass, particularly preferably about 600 parts by mass. It may be about 2200 parts by mass, and in some cases, about 700 parts by mass to about 2000 parts by mass.
When these ratio ranges are adopted, only water may be used as the solvent as described above, or a mixed solvent of water and another solvent (alcohol, organic solvent, etc.) may be used.
 加水分解又は重縮合反応時に酸触媒を添加する場合、その割合は、所望の加水分解又は重縮合反応が得られるように適宜調整すればよく、特に限定されるものでもないが、上記シラン化合物100質量部に対して、例えば約0.02質量部から約15質量部、好ましくは約0.02質量部から約10質量部、より好ましくは約0.02から約8質量部、場合により約0.04質量部から約7質量部、約0.08質量部から約6質量部である。 When an acid catalyst is added during the hydrolysis or polycondensation reaction, the ratio thereof may be appropriately adjusted so as to obtain a desired hydrolysis or polycondensation reaction, and the ratio is not particularly limited, but is not particularly limited, but the above-mentioned silane compound 100 With respect to parts by mass, for example, about 0.02 parts to about 15 parts by mass, preferably about 0.02 parts to about 10 parts by mass, more preferably about 0.02 to about 8 parts by mass, and in some cases about 0 parts. It is about 7 parts by mass from .04 parts by mass and about 6 parts by mass from about 0.08 parts by mass.
 各成分の添加順序や添加方法は、特に限定されるものでもないが、一般に、例えば、反応容器に溶媒(溶媒と触媒を混合した触媒溶液)を投入し、場合により反応容器内の雰囲気を所定のガス雰囲気(例えば、窒素、アルゴン、ヘリウム等の不活性ガス)に置換した後、反応容器内の溶液に撹拌下で上記シラン化合物を添加(滴下)し、反応液を攪拌しながら、又は静置状態にて、所定の反応温度及び反応時間で加水分解及び/又は重縮合反応を行うことができる。
 なお、各成分の添加順序ないし加水分解/重縮合反応の方法については、好ましい実施形態が、以下に詳述されている。
The order of addition of each component and the method of addition are not particularly limited, but generally, for example, a solvent (catalyst solution in which a solvent and a catalyst are mixed) is charged into a reaction vessel, and the atmosphere in the reaction vessel is set to a predetermined value in some cases. Gas atmosphere (for example, inert gas such as nitrogen, argon, helium, etc.), and then add (drop) the above silane compound to the solution in the reaction vessel under stirring, and stir the reaction solution or In the stationary state, the hydrolysis and / or polycondensation reaction can be carried out at a predetermined reaction temperature and reaction time.
Preferred embodiments are described in detail below for the order of addition of each component and the method of hydrolysis / polycondensation reaction.
 更に、加水分解及び/又は重縮合の反応温度は、特に限定されるものでもないが、例えば約-20℃から約80℃、好ましくは約0℃から約70℃、場合により約0℃から約40℃、約10℃から約30℃、例えば常温(e.g.室温;20℃~25℃程度)が挙げられる。反応時間についても、特に限定されるものでもないが、例えば約0.5時間から約100時間、場合によっては約1時間~約80時間、約1時間から約6時間が挙げられる。 Further, the reaction temperature of hydrolysis and / or polycondensation is not particularly limited, but is, for example, about -20 ° C to about 80 ° C, preferably about 0 ° C to about 70 ° C, and in some cases about 0 ° C to about. 40° C., about 10° C. to about 30° C., for example, room temperature (eg room temperature; about 20° C. to 25° C.). The reaction time is also not particularly limited, and examples thereof include about 0.5 hours to about 100 hours, and in some cases, about 1 hour to about 80 hours, and about 1 hour to about 6 hours.
 反応液のpHは、上記シラン化合物の加水分解及び重縮合反応が良好に進行するよう適宜調整すればよく、特に限定されるものでもないが、通常0.8~12の範囲で、使用する具体的なシラン化合物や所望される有機ケイ素化合物(ポリシルセスキオキサン)生成物の形状や性質に応じて選択すればよい。ここで、反応液pHの調整は、上述の酸性触媒を含む酸を利用できる。 The pH of the reaction solution may be appropriately adjusted so that the hydrolysis and polycondensation reaction of the silane compound can proceed favorably, and is not particularly limited, but is usually in the range of 0.8 to 12 It may be selected according to the shape and properties of a specific silane compound or a desired organosilicon compound (polysilsesquioxane) product. Here, the pH of the reaction solution can be adjusted by using an acid containing the above-mentioned acidic catalyst.
 さらに詳細には、工程(p)において、まず上記シラン化合物の加水分解反応を所定の条件下に進行させ、その後に、シリコン系微粒子の存在下に重縮合反応を行うことにより、本発明の幾つかの実施形態に係る所定のシリコン系微粒子/シリコン含有ポリマー複合体を合成することができる。
 より詳細には、いくつかの実施形態においては、工程(p)において、下記(p-1)ないし(p-3)を行うこととしてもよい。
More specifically, in the step (p), first, the hydrolysis reaction of the silane compound is allowed to proceed under predetermined conditions, and then the polycondensation reaction is carried out in the presence of the silicon-based fine particles to obtain some of the present invention. A predetermined silicon-based fine particle / silicon-containing polymer composite according to the embodiment can be synthesized.
More specifically, in some embodiments, the following (p-1) to (p-3) may be performed in the step (p).
(p-1)pHが3~6の酸性溶液に、一般式(I)で表されるシラン化合物を添加し、該シラン化合物を加水分解させること;
(p-2)工程(p-1)により得られた反応液に、シリコン系微粒子又はその分散液を添加すること;
(p-3)工程(p-2)により得られた混合液に、所定量の酸又はその溶液を添加することにより、上記混合液のpHを2以下(場合により1.5以下、例えば0.9~2.0、0.9~1.5)に調整し、該混合液を所定時間かつ所定温度で静置させることにより、上記シラン化合物の重縮合を進行させ、上記シリコン系微粒子/シリコン含有ポリマー複合体を生成させること。
(P-1) adding a silane compound represented by the general formula (I) to an acidic solution having a pH of 3 to 6 to hydrolyze the silane compound;
(P-2) Add silicon-based fine particles or a dispersion thereof to the reaction solution obtained in step (p-1);
(P-3) By adding a predetermined amount of an acid or a solution thereof to the mixed solution obtained in the step (p-2), the pH of the mixed solution is 2 or less (in some cases, 1.5 or less, for example, 0 or less). .9 to 2.0, 0.9 to 1.5), and allowing the mixed solution to stand for a predetermined time at a predetermined temperature to promote polycondensation of the silane compound and To produce a silicon-containing polymer composite.
 更に加えて、特定の実施形態においては、工程(p)において、下記(p-1’)ないし(p-3’)を行うこととしてもよい。 In addition, in a specific embodiment, the following (p-1') to (p-3') may be performed in the step (p).
(p-1’)pHが3~6の酸性溶液に、撹拌条件下、一般式(I)で表されるシラン化合物を段階的に添加し、撹拌条件下に、所定時間かつ所定温度で該シラン化合物を加水分解させること;
(p-2’)工程(p-1’)により得られた反応液に、シリコン系微粒子又はその分散液を添加し、該シリコン系微粒子又はその分散液を上記反応液中に均一に分散させること;
(p-3’)工程(p-2’)により得られた混合液に、所定量の酸又はその溶液を添加することにより、上記混合液のpHを2以下(場合により1.5以下、例えば0.9~2.0、0.9~1.5)に調整し、次いで、該混合液を所定時間かつ所定温度で静置させることにより、上記シラン化合物の重縮合を進行させ、上記シリコン系微粒子/シリコン含有ポリマー複合体を生成させること。
(P-1') A silane compound represented by the general formula (I) is added stepwise to an acidic solution having a pH of 3 to 6 under stirring conditions, and the mixture is stirred under stirring conditions for a predetermined time at a predetermined temperature. Hydrolyzing the silane compound;
(P-2′) Silicon fine particles or a dispersion thereof is added to the reaction liquid obtained in the step (p-1′) to uniformly disperse the silicon fine particles or a dispersion thereof in the reaction liquid. thing;
(P-3′) By adding a predetermined amount of acid or a solution thereof to the mixed solution obtained in the step (p-2′), the pH of the mixed solution is 2 or less (and 1.5 or less in some cases, For example, it is adjusted to 0.9 to 2.0, 0.9 to 1.5), and then the mixed solution is allowed to stand for a predetermined time at a predetermined temperature to promote polycondensation of the silane compound, To generate a silicon-based fine particle / silicon-containing polymer composite.
 ここで、特定の実施形態においては、工程(p-1)又は(p-1’)における「pHが3~6の酸性溶液」として、例えば所定濃度の酢酸溶液(好ましくは酢酸水溶液)を用いることができ、酢酸濃度の範囲としては、例えば約0.001M~約0.1M濃度、好ましくは約0.005M~約0.09M濃度が挙げられる。更に、特定の実施形態においては、工程(p-3)又は(p-3’)における「所定量の酸又はその溶液」としては、例えば、所定濃度の塩酸溶液(好ましくは塩酸水溶液)を用いることができ、塩酸の濃度範囲については、特に限定されるものでもないが、例えば約10質量%~約40質量%、好ましくは約20質量%~約40質量%の範囲が挙げられる。 Here, in a specific embodiment, for example, an acetic acid solution having a predetermined concentration (preferably an aqueous acetic acid solution) is used as the “acidic solution having a pH of 3 to 6” in the step (p-1) or (p-1′). The acetic acid concentration range may be, for example, about 0.001M to about 0.1M concentration, preferably about 0.005M to about 0.09M concentration. Further, in a particular embodiment, as the “predetermined amount of acid or solution thereof” in the step (p-3) or (p-3′), for example, a hydrochloric acid solution of a predetermined concentration (preferably a hydrochloric acid aqueous solution) is used. The concentration range of hydrochloric acid is not particularly limited, but may be, for example, about 10% by mass to about 40% by mass, preferably about 20% by mass to about 40% by mass.
 以下、工程(p-1)ないし(p-3)並びに工程(p-1’)ないし(p-3’)について、詳述すると共に、より好ましい実施形態を示す。 Hereinafter, the steps (p-1) to (p-3) and the steps (p-1') to (p-3') will be described in detail, and more preferable embodiments will be shown.
 工程(p-1)又は(p-1’)において、より具体的には、酸性水性媒体中において上記シラン化合物を加水分解させることにより加水分解物を生成させることができ、該シラン化合物の加水分解反応は、例えば、酸性水性媒体中に上記シラン化合物を滴下することにより進行させることができる。
 ここで、工程(p-1)又は(p-1’)では、所望の加水分解が十分に進行するよう、加水分解反応速度が重縮合反応速度よりも高く、加水分解反応が優位に進行する酸性条件を採用するものである。このような酸性条件を実現するpH領域は、原料とするシラン化合物の種類により異なるが、通常は、pH3~6、好ましくはpH4~6に調整することができる。反応液のpHが、このような範囲にあると、生成する重合物が反応液中で析出することなく、良好な加水分解反応を実現し得るからである。なお、この酸性の程度は、加水分解物生成の平衡、反応時間や部分縮合物の量・縮合数などに影響するが、粒子径に大きく影響するものではない。
In the step (p-1) or (p-1'), more specifically, a hydrolyzate can be produced by hydrolyzing the silane compound in an acidic aqueous medium, and the hydrolyzate of the silane compound can be produced. The decomposition reaction can be carried out, for example, by dropping the silane compound into an acidic aqueous medium.
Here, in the step (p-1) or (p-1′), the hydrolysis reaction rate is higher than the polycondensation reaction rate so that the desired hydrolysis sufficiently proceeds, and the hydrolysis reaction predominantly proceeds. It employs acidic conditions. The pH range for realizing such acidic conditions varies depending on the type of the silane compound used as the raw material, but can be adjusted to pH 3 to 6, preferably pH 4 to 6, normally. This is because when the pH of the reaction solution is in such a range, a good hydrolysis reaction can be realized without the polymer produced being precipitated in the reaction solution. The degree of acidity affects the equilibrium of hydrolyzate formation, the reaction time, the amount of partial condensate, the number of condensations, etc., but does not significantly affect the particle size.
 なお、この酸性pH領域の媒体を調製する上で用いられ得る酸としては、上述の酸性触媒を用いればよいが、加水分解反応及びその後の重縮合反応を制御して行うことが容易にでき、入手やpH調整も容易であることから、酢酸が最も好ましく用いられる。例えば、酸性水性媒体として希酢酸水溶液を用いる場合、pH値は5.0~5.8程度となる。 As the acid that can be used in preparing the medium in the acidic pH range, the above-mentioned acidic catalyst may be used, but the hydrolysis reaction and the subsequent polycondensation reaction can be easily performed by controlling, Acetic acid is most preferably used because it is easy to obtain and adjust the pH. For example, when a dilute acetic acid aqueous solution is used as the acidic aqueous medium, the pH value is about 5.0 to 5.8.
 次いで、工程(p-2)又は(p-2’)においては、より具体的には、工程(p-1)において得られる加水分解物を含む反応液に対して、シリコン系微粒子(好ましくは予め調製したシリコン系微粒子の分散液)を添加し、得られた混合溶液を、例えば10秒~2時間、好ましくは1分~1.5時間程度撹拌する。 Next, in the step (p-2) or (p-2'), more specifically, silicon-based fine particles (preferably) with respect to the reaction solution containing the hydrolyzate obtained in the step (p-1). A dispersion liquid of silicon-based fine particles prepared in advance) is added, and the obtained mixed solution is stirred, for example, for 10 seconds to 2 hours, preferably for 1 minute to 1.5 hours.
 次いで、工程(p-3)又は(p-3’)において、工程(p-2)又は(p-2’)で得られた混合溶液に、所定量の酸又は酸溶液を添加し、当該混合溶液を、例えば1~30秒、好ましくは1~15秒程度撹拌した後、例えば2時間~36時間、好ましくは4時間~24時間、より好ましくは4時間~12時間程度、撹拌はせずに静置することにより、工程(p-1)で生成した加水分解物を、シリコン系微粒子の存在下で重縮合させ、本発明の幾つかの実施形態における所定の構造を有するシリコン系微粒子/シリコン含有ポリマー複合体を取得する。 Then, in step (p-3) or (p-3'), a predetermined amount of acid or acid solution is added to the mixed solution obtained in step (p-2) or (p-2'). After stirring the mixed solution for, for example, 1 to 30 seconds, preferably about 1 to 15 seconds, for example, 2 hours to 36 hours, preferably 4 hours to 24 hours, more preferably about 4 hours to 12 hours, without stirring. The hydrolyzate produced in the step (p-1) is polycondensed in the presence of the silicon-based fine particles, and the silicon-based fine particles having a predetermined structure according to some embodiments of the present invention / Obtain a silicon-containing polymer composite.
 このように、工程(p-3)又は(p-3’)において、反応液を撹拌することなく、静置状態で、シリコン系微粒子の存在下に、上記シラン化合物の加水分解物の重縮合反応を進行させると、少なくとも1つのシリコン系微粒子が、シリコン含有ポリマーを含むコート層により均一に被覆されてなる、シリコン系微粒子/シリコン含有ポリマー複合体(より具体的には、図1に示される構造体)が生成し、最終プロダクトとして、本発明の幾つかの実施形態に係る所定の構造を有するSiOC構造体の製造が確実になる。 As described above, in the step (p-3) or (p-3'), the reaction solution is polycondensed with the hydrolyzate of the silane compound in the presence of silicon-based fine particles in a stationary state without stirring. As the reaction proceeds, at least one silicon-based fine particle is uniformly coated with a coat layer containing a silicon-containing polymer, and a silicon-based fine particle / silicon-containing polymer composite (more specifically, shown in FIG. 1). Structure) is produced, which ensures the production of a SiOC structure with a defined structure according to some embodiments of the invention as a final product.
 上述のとおり、工程(p)において生成されるシリコン系微粒子/シリコン含有ポリマー複合体は、シリコン含有ポリマーを含むコート層を構成要素として含むものである。
 ここで、シリコン含有ポリマーは、上記所定の加水分解性シラン化合物の加水分解及び重縮合を介して生成されるものである。本発明の幾つかの実施形態において、シリコン含有ポリマーは、より具体的には、ポリカルボシラン、ポリシラン、ポリシロキサン、及びポリシルセスキオキサンからなる群から選択される少なくとも一種のポリマーを含み得る。
As described above, the silicon-based fine particle / silicon-containing polymer composite produced in the step (p) contains a coat layer containing the silicon-containing polymer as a constituent element.
Here, the silicon-containing polymer is produced through hydrolysis and polycondensation of the above predetermined hydrolyzable silane compound. In some embodiments of the present invention, the silicon-containing polymer may more specifically include at least one polymer selected from the group consisting of polycarbosilanes, polysilanes, polysiloxanes, and polysilsesquioxanes. ..
 一般に、 ポリカルボシランは、以下の(1)~(3)で表される各構造単位の少なくとも1つを含む。
(1)(RSiCH
(2)(RSi(CH1.5
(3)(RSi(CH0.5
 ここで、R、R及びRは、それぞれ独立に、水素又は炭素数1~20(好ましくは炭素数1~6)の炭化水素である。炭化水素の例としては、メチル、エチル、プロピル及びブチル等のアルキル;ビニル及びアリル等のアルケニル;フェニル等のアリールが挙げられる。 加えて、 炭化水素は、任意の箇所がシリコン、窒素又はホウ素等のヘテロ原子で置換されたものであってもよい。
 さらに加えて、ポリカルボシランは、 例えばアルミニウム、クロミウム及びチタンなどの各種金属基によって、任意の箇所が置換されていてもよい。このような金属基で置換されたポリカルボシランは、従来技術において各種のものが、その合成プロセスと共に知られているので、本発明の第二の態様に係るSiOC構造体の製造方法において、それら公知の合成プロセスを組合せてもよい。
Generally, the polycarbosilane contains at least one of the structural units represented by the following (1) to (3).
(1) (R 1 R 2 SiC 2 )
(2) (R 1 Si (CH 2 ) 1.5 )
(3) (R 1 R 2 R 3 Si (CH 2 ) 0.5 )
Here, R 1 , R 2 and R 3 are each independently hydrogen or a hydrocarbon having 1 to 20 carbon atoms (preferably 1 to 6 carbon atoms). Examples of hydrocarbons include alkyl such as methyl, ethyl, propyl and butyl; alkenyl such as vinyl and allyl; aryl such as phenyl. In addition, the hydrocarbon may be optionally substituted with a heteroatom such as silicon, nitrogen or boron.
In addition, the polycarbosilane may be optionally substituted with various metal groups such as aluminum, chromium and titanium. Since various kinds of polycarbosilane substituted with such a metal group are known in the prior art together with the synthesis process thereof, in the method for producing a SiOC structure according to the second aspect of the present invention, Known synthesis processes may be combined.
 本発明の幾つかの実施形態において、シリコン含有ポリマーとして採用し得るポリシランとしては、例えば、以下(4)~(6)に示す構造単位を少なくとも1つ含む、各種ポリシランが挙げられる。 In some embodiments of the present invention, examples of the polysilane that can be used as the silicon-containing polymer include various polysilanes containing at least one of the structural units shown in (4) to (6) below.
(4)(RSi)
(5)(RSi)
(6)(RSi)
 ここで、R、R、及び Rは、上述のとおりである。特定の実施形態においては、シリコン含有ポリマーとしてのポリシランは、(MeSi)、(PhMeSi)、(MeSi)、(PhSi)、(ViSi)、(PhHSi)、(MeHSi)、(MeViSi)、(Ph2 Si)、(PhViSi)、及び(MeSi)からなる群から選択される少なくとも1つの構造単位を含むものであってもよい。なお、Meは メチル、 Phはフェニル、Viはビニルを示す。
 加えて、ポリシランは、任意の金属基によって置換されてもよく、即ち、任意の金属-Siの繰り返し単位を所定数含むものであってもよい。好適な金属基の例としては、アルミニウム、クロミウム及びチタンが挙げられる。。
(4) (R 1 R 2 R 3 Si)
(5) (R 1 R 2 Si)
(6) (R 3 Si)
Here, R 1 , R 2 , and R 3 are as described above. In certain embodiments, the polysilane of the silicon-containing polymer, (Me 2 Si), ( PhMeSi), (MeSi), (PhSi), (ViSi), (PhHSi), (MeHSi), (MeViSi), ( ph2 Si), may include a that (PhViSi), and (Me 3 Si) at least one structural unit selected from the group consisting of. In addition, Me represents methyl, Ph represents phenyl, and Vi represents vinyl.
In addition, the polysilane may be substituted by any metal group, that is, it may contain a predetermined number of any metal-Si repeating units. Examples of suitable metal groups include aluminum, chromium and titanium. ..
 本発明の幾つかの実施形態において、シリコン含有ポリマーとして採用し得るポリシロキサンとしては、例えば、以下(7)に示す構造単位を含む、各種ポリシロキサンが挙げられる。
(7)(RSiO0.5(RSiO)(RSiO1.5(SiO4/2
 ここで、R、R、R、R、R及びRは、 それぞれ独立に、R、R、及び Rについて記載したとおり、水素又は炭素数1~20(好ましくは炭素数1~6)の炭化水素である。加えて、w、x、y及びzは、それぞれが指し示す各構成要素のモル比率であり、w=0~0.8、x=0.3~1、y=0~0.9、z=0~0.9であり、かつw+x+y+z=1である。
In some embodiments of the present invention, examples of the polysiloxane that can be adopted as the silicon-containing polymer include various polysiloxanes containing the structural units shown in (7) below.
(7) (R 1 R 2 R 3 SiO 0.5 ) w (R 4 R 5 SiO) x (R 6 SiO 1.5 ) y (SiO 4/2 ) z
Here, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently hydrogen or a carbon number of 1 to 20 (preferably 1 to 20) as described for R 1 , R 2 and R 3. It is a hydrocarbon having 1 to 6 carbon atoms. In addition, w, x, y, and z are the molar ratios of the respective constituents pointed to by each, and w=0 to 0.8, x=0.3-1, y=0-0.9, z= It is 0 to 0.9, and w + x + y + z = 1.
 本発明の幾つかの実施形態において採用し得るシロキサン単位の具体例としては、(MeSiO1.5)、(PhSiO1.5)、(ViSiO1.5)、(HSiO1.5)、(PhMeSiO)、(MeHSiO)、(PhViSiO)、(MeViSiO)、(PhSiO)、(MeSiO)、(MeSiO0.5)、(PhViSiO0.5)、(PhHSiO0.5)、(HViSiO0.5)、(MeViSiO0.5)、(SiO4/2)等が挙げられる。なお、Meはメチルを示し、Phはフェニルを示し、Viはビニルを示す。 Specific examples of siloxane units that may be employed in some embodiments of the present invention include (MeSiO 1.5 ), (PhSiO 1.5 ), (ViSiO 1.5 ), (HSiO 1.5 ), (PhMeSiO ). ), (MeHSiO), (PhViSiO ), (MeViSiO), (Ph 2 SiO), (Me 2 SiO), (Me 3 SiO 0.5), (Ph 2 ViSiO 0.5), (Ph 2 HSiO 0. 5 ), (H 2 ViSiO 0.5 ), (Me 2 ViSiO 0.5 ), (SiO 4/2 ) and the like. In addition, Me indicates methyl, Ph indicates phenyl, and Vi indicates vinyl.
 本発明の幾つかの実施形態において、シリコン含有ポリマーとして採用し得るポリシルセスキオキサンとしては、(RSiO3/2の単位を含むポリシルセスキオキサンを主に含む。ここで、Rは、飽和若しくは不飽和、直鎖、分岐若しくは環状の炭化水素基であり、例えば、-C2n+1(nは1~20の範囲にある整数。)であり、より具体的には、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ドデシル、トリデシル、テトラデシル、ヘキサデシル、オクタデシル及びエイコシルであってもよく、アリール基、特にフェニル若しくはトリル基であってもよく、シクロアルキル、詳細にはシクロブチル、シクロペンチル若しくはシクロヘキシルであってもよく、アルケニル、特にビニル又はアリルであってもよく、あるいは2-フェニルエチル若しくはベンジルを含むアラルキルであってもよい。Rはこの中にヘテロ原子、特には窒素又はハロゲンを含むことができ、好ましくは、Rはメチル、エチル、プロピル又はフェニルである。Rは2種類以上の異なる基の組合せであってもよい。xは繰り返し単位の数であり、1以上の整数であり、例えば4から10,000の範囲から選択される任意の整数とすることができる。 In some embodiments of the present invention, polysilsesquioxanes that can be employed as the silicon-containing polymer mainly include polysilsesquioxanes containing (RSiO 3/2 ) X units. Here, R is a saturated or unsaturated, straight-chain, branched or cyclic hydrocarbon group, for example, —C n H 2n+1 (n is an integer in the range of 1 to 20), and more specifically. May be methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tridecyl, tetradecyl, hexadecyl, octadecyl and eicosyl, and are aryl groups, especially phenyl or trill groups. It may be cycloalkyl, in particular cyclobutyl, cyclopentyl or cyclohexyl, alkenyl, especially vinyl or allyl, or aralkyl including 2-phenylethyl or benzyl. R can contain therein heteroatoms, in particular nitrogen or halogen, preferably R is methyl, ethyl, propyl or phenyl. R may be a combination of two or more different groups. x is the number of repeating units, is an integer of 1 or more, and can be any integer selected from the range of 4 to 10,000, for example.
 好ましい実施形態においては、シリコン系微粒子を被覆するコート層の主要成分であるシリコン含有ポリマーは、ポリシルセスキオキサンを含む。より好ましい実施形態においては、当該シリコン含有ポリマーは、ポリシルセスキオキサンから実質的になり、このようにポリシルセスキオキサンからなるシリコン含有ポリマーにより構成されたコート層によって、少なくとも1つのシリコン系微粒子が被覆されたシリコン系微粒子/シリコン含有ポリマー複合体が、工程(p)において、生成されることが好ましい。このような構造のシリコン系微粒子/シリコン含有ポリマー複合体は、工程(p)において、上述の条件及び手順の範囲において、任意の三官能性オルガノシラン(オルガノトリアルコキシシラン、オルガノトリクロロシラン等)を加水分解及び重縮合させることにより取得することができる。 In a preferred embodiment, the silicon-containing polymer, which is the main component of the coating layer that coats the silicon-based fine particles, contains polysilsesquioxane. In a more preferred embodiment, the silicon-containing polymer is substantially made of polysilsesquioxane and at least one silicon-based by a coat layer thus composed of the silicon-containing polymer composed of polysilsesquioxane. It is preferable that a silicon-based fine particle / silicon-containing polymer composite coated with fine particles is produced in the step (p). In step (p), the silicon-based fine particle / silicon-containing polymer composite having such a structure can be subjected to any trifunctional organosilane (organotrialkoxysilane, organotrichlorosilane, etc.) within the above-mentioned conditions and procedures. It can be obtained by hydrolysis and polycondensation.
 ポリシルセスキオキサンとしては、ラダー型ポリシルセスキオキサン、POSS(T )等のかご型ポリシルセスキオキサン、不完全かご型ポリシルセスキオキサン及びその他タイプのポリシルセスキオキサンからなる群から選択される少なくとも一種を含んでいてもよい。各種タイプのポリシルセスキオキサンが、それらの合成方法と共に知られているので、それらの合成方法を本発明の幾つかの実施形態において利用することができる(シルセスキオキサン材料の化学と応用展開、シーエムシー出版、2013年普及版等)。 Examples of the polysilsesquioxane include ladder-type polysilsesquioxane, cage-type polysilsesquioxane such as POSS (T R 8 ), incomplete cage-type polysilsesquioxane, and other types of polysilsesquioxane. It may contain at least one selected from the group consisting of. Since various types of polysilsesquioxanes are known along with their methods of synthesis, those methods of synthesis can be utilized in some embodiments of the present invention (chemistry and applications of silsesquioxane materials). Development, CMC Publishing, 2013 popular edition, etc.).
 より詳細には、特定の実施形態では、当該シリコン含有ポリマーは、下記の一般式(III)、(IV)、(V)、及び(VI)でそれぞれ表されるポリシルセスキオキサン構造をそれぞれ有するポリシルセスキオキサンからなる群から選択される少なくとも1つを含むものであってもよい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
More specifically, in a particular embodiment, the silicon-containing polymer has a polysilsesquioxane structure represented by the following general formulas (III), (IV), (V), and (VI), respectively. It may contain at least one selected from the group consisting of polysilsesquioxane having.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 式中、R及びRはそれぞれ独立に、炭素数1から45の置換又は非置換のアルキル、置換または非置換のアリール、及び置換又は非置換のアリールアルキルからなる群から選択され、炭素数の1から45のアルキルにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよいものとし、置換又は非置換のアリールアルキル中のアルキレンにおいて任意の水素はハロゲンで置換えられてもよく、任意の-CH-は、-O-、-CH=CH-又はシクロアルキレンで置き換えられてもよく、
 R、R、R及びRはそれぞれ独立に、水素原子、炭素数1~45の置換又は非置換のアルキル、置換又は非置換のアリール、及び置換又は非置換のアリールアルキルからなる群から選択され、炭素数の1~45のアルキルにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン、シクロアルケニレン又は-SiR -で置き換えられてもよく、置換又は非置換のアリールアルキル中のアルキレンにおいて、任意の水素はハロゲンで置換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン、シクロアルケニレン又は-SiR -で置き換えられてもよく、
nは1以上の整数を示す。
 本開示において、「ハロゲン」は、字義通りに理解され、フッ素、塩素、臭素、ヨウ素などを示すが、中でもフッ素または塩素が好ましい。
In the formula, R 1 and R 4 are each independently selected from the group consisting of substituted or unsubstituted alkyl having 1 to 45 carbon atoms, substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl, In 1 to 45 alkyl of, any hydrogen may be replaced by halogen, and any —CH 2 — may be replaced by —O—, —CH═CH—, cycloalkylene or cycloalkenylene. Any hydrogen may be substituted with halogen in the alkylene in the substituted or unsubstituted arylalkyl, and any -CH 2- may be substituted with -O-, -CH = CH- or cycloalkylene. Often,
R 2 , R 3 , R 5, and R 6 are each independently a group consisting of a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 45 carbon atoms, a substituted or unsubstituted aryl group, and a substituted or unsubstituted arylalkyl group. In alkyl having 1 to 45 carbon atoms, any hydrogen may be replaced by halogen, and any —CH 2 — is —O—, —CH═CH—, cycloalkylene, cycloalkenylene or —SiR 1 2 — may be replaced, and in the alkylene in the substituted or unsubstituted arylalkyl, any hydrogen may be replaced by halogen, and any —CH 2 — may be —O—, —CH. = CH-, cycloalkylene, cycloalkenylene or -SiR 1 2 - may be replaced by,
n represents an integer of 1 or more.
In the present disclosure, “halogen” is understood literally and indicates fluorine, chlorine, bromine, iodine and the like, but among them, fluorine or chlorine is preferable.
 本発明の第二の態様に係るSiOC構造体の製造方法は、更に以下のような工程の少なくとも1つを任意に含んでもよい。
(a)加水分解反応および重縮合反応を経てシリコン系微粒子/シリコン含有ポリマー複合体を生成した後、任意に、濾過分離(例えば加圧濾過)、固液分離、溶媒留去、遠心分離或いは傾斜等の方法により、液体画分を分離及び除去し、得られた固形画分を被熱処理対象として工程(q)に供試すること。このような固形分と液体との分離方法は、各種汎用技術が当業者に知られているので、適宜それらを用いることができる。
(b)さらに、上記取得した固形画分を水洗浄あるいは有機溶剤洗浄し、有機溶媒の留去、乾燥(減圧乾燥及び/又は加熱乾燥)等すること。
The method for producing a SiOC structure according to the second aspect of the present invention may further include at least one of the following steps.
(A) After producing a silicon-based fine particle/silicon-containing polymer complex through a hydrolysis reaction and a polycondensation reaction, optionally filtration separation (for example, pressure filtration), solid-liquid separation, solvent distillation, centrifugation or decantation. The liquid fraction is separated and removed by a method such as the above, and the obtained solid fraction is subjected to the step (q) as an object to be heat treated. Various general-purpose techniques are known to those skilled in the art for such a method of separating a solid content and a liquid, and thus they can be appropriately used.
(B) Further, the obtained solid fraction is washed with water or an organic solvent, and the organic solvent is distilled off and dried (dried under reduced pressure and / or dried by heating).
 工程(q)の態様における熱処理条件については、用いる熱処理装置の種類や容量などを考慮して適宜設定すればよいが、例えば、非酸化性雰囲気下で、0.5℃/分~200℃/分、好ましくは0.5℃/分~100℃/分、より好ましくは1℃/分~50℃/分、更により好ましくは1℃/分~30℃/分、特に好ましくは2℃/分~10℃/分の昇温速度で、400℃~1800℃、好ましくは600℃~1400℃、より好ましくは900℃~1300℃の範囲にある温度に加熱され、当該温度で5分~20時間、好ましくは30分~10時間、より好ましくは、1時間~8時間の範囲で加熱処理を行ってもよい。しかしながら、昇温速度、熱処理温度、加熱時間等の熱処理条件については、原料として用いるポリシルセスキオキサンの性質、所望のSiOC構造体の物性やその他性状、生産性や経済性を考慮の上、必要最小限の熱処理条件を適宜選択すれば足り、特に限定されるものではない。 The heat treatment conditions in the embodiment of the step (q) may be appropriately set in consideration of the type and capacity of the heat treatment apparatus used, but for example, in a non-oxidizing atmosphere, 0.5°C/min to 200°C/ Min, preferably 0.5°C/min to 100°C/min, more preferably 1°C/min to 50°C/min, even more preferably 1°C/min to 30°C/min, particularly preferably 2°C/min. It is heated to a temperature in the range of 400 ° C. to 1800 ° C., preferably 600 ° C. to 1400 ° C., more preferably 900 ° C. to 1300 ° C. at a heating rate of about 10 ° C./min, and the temperature is 5 minutes to 20 hours. The heat treatment may be carried out in the range of preferably 30 minutes to 10 hours, more preferably 1 hour to 8 hours. However, regarding the heat treatment conditions such as the heating rate, the heat treatment temperature, and the heating time, the properties of the polysilsesquioxane used as a raw material, the physical properties and other properties of the desired SiOC structure, and the productivity and economy are taken into consideration. There is no particular limitation as long as the minimum necessary heat treatment conditions are appropriately selected.
 なお、本開示における「非酸化性ガス雰囲気」には、不活性ガス雰囲気、還元性雰囲気、これら雰囲気を併用した混合雰囲気が包含される。不活性ガス雰囲気としては、窒素、アルゴン、ヘリウム等不活性ガスが挙げられ、これら不活性ガスは一種を単独で用いてもよいし又は二種以上を混合して用いてもよい。加えて、不活性ガスは、一般に使用されているものであれば足りるが、高純度規格のものが好ましい。還元性雰囲気としては、水素などの還元性ガスを含む雰囲気も包含される。例えば、2容積%以上の水素ガスと不活性ガスとの混合ガス雰囲気が挙げられる。加えて、還元性雰囲気として、場合により水素ガス雰囲気そのものを使用してもよい。 The “non-oxidizing gas atmosphere” in the present disclosure includes an inert gas atmosphere, a reducing atmosphere, and a mixed atmosphere in which these atmospheres are used in combination. Examples of the inert gas atmosphere include inert gases such as nitrogen, argon, and helium, and these inert gases may be used alone or in combination of two or more. In addition, the inert gas may be any commonly used gas, but a high-purity standard gas is preferable. The reducing atmosphere also includes an atmosphere containing a reducing gas such as hydrogen. For example, a mixed gas atmosphere of 2 volume% or more of hydrogen gas and an inert gas can be mentioned. In addition, the hydrogen gas atmosphere itself may be used as the reducing atmosphere in some cases.
 加えて、非酸化性雰囲気の環境は、上記所定のガスを熱処理炉内の雰囲気を置換又は該炉内に供給することで作り出せる。
 熱処理炉内に上記ガスを供給する場合、そのガス流量は、採用する熱処理炉の仕様(例えば炉の形状やサイズ)に応じて適正な範囲に適宜調整すればよく、特に限定されるものではないが、炉内容量の5%~100%/分程度、好ましくは5~30%/分程度とすることができる。より具体的には、実験室規模で一般に使用される真空パージ式チューブ炉を用いる場合には、ガス流量(パージ量)は、例えば50mL~1L/分程度、好ましくは100mL~500mL/分程度とすることができる。加えて、炉内容積が40L程度の熱処理炉を用いることにより、本発明の実施形態に係るSiOC構造体を製造する場合には、ガス流量(パージ量)は、例えば10~15L/分程度とすることができる。
In addition, the environment of the non-oxidizing atmosphere can be created by replacing the atmosphere in the heat treatment furnace or supplying the predetermined gas into the furnace.
When the above gas is supplied into the heat treatment furnace, the gas flow rate may be appropriately adjusted to an appropriate range according to the specifications of the heat treatment furnace to be used (for example, the shape and size of the furnace), and is not particularly limited. However, the capacity of the furnace can be about 5% to 100% / min, preferably about 5 to 30% / min. More specifically, when using a vacuum purge type tube furnace generally used in a laboratory scale, the gas flow rate (purge amount) is, for example, about 50 mL to 1 L/min, preferably about 100 mL to 500 mL/min. can do. In addition, when the SiOC structure according to the embodiment of the present invention is manufactured by using the heat treatment furnace having an inner volume of about 40 L, the gas flow rate (purge amount) is, for example, about 10 to 15 L/min. can do.
 工程(q)において使用可能な熱処理炉としては、真空パージ式チューブ炉の他、例えばロータリーキルン型、ローラーハースキルン型、バッチキルン型、プッシャーキルン型、メッシュベルトキルン型、カーボン炉、トンネルキルン型、シャトルキルン型、台車昇降式キルン型等の各種熱処理炉が挙げられる。これら熱処理炉は、一種のみ用いてもよく、又は2種以上を組合せてもよい。なお、2種以上を組み合わせる場合、各熱処理炉は直列若しくは並列に連結されてもよい。 Examples of the heat treatment furnace that can be used in the step (q) include a rotary kiln type, a roller harsher kiln type, a batch kiln type, a pusher kiln type, a mesh belt kiln type, a carbon furnace, a tunnel kiln type, and a shuttle. Various types of heat treatment furnaces such as a kiln type and a trolley lifting type kiln type can be used. These heat treatment furnaces may be used alone or in combination of two or more. When two or more types are combined, each heat treatment furnace may be connected in series or in parallel.
 本発明の第二の態様に係るSiOC構造体の製造方法は、更に、上記工程(q)の熱処理により得られたSiOC構造体を、破砕し及び/又は分級する等の追加の工程を含んでもよい。これら工程において利用可能な破砕方法や分級方法は、特に限定されるものでなく、例えば公知の各種方法を採用してもよく、乳鉢や各種破砕機、篩やサイクロン分級装置等が利用できる。 The method for producing a SiOC structure according to the second aspect of the present invention may further include additional steps such as crushing and / or classifying the SiOC structure obtained by the heat treatment in the above step (q). Good. The crushing method and the classification method that can be used in these steps are not particularly limited, and for example, various known methods may be adopted, and a mortar, various crushers, a sieve, a cyclone classification device, and the like can be used.
<負極用組成物及びの製造方法>
 本発明の第三の態様によれば、負極用組成物が開示される。該負極用組成物は、上記SiOC構造体を負極活物質として含むものである。
 更に加えて、本発明の第四の態様によれば、負極用組成物の製造方法も開示される。該負極用組成物の製造方法は、上記SiOC構造体を負極活物質として用いることにより負極用組成物を取得することを含むものである。
<Negative electrode composition and method for producing the same>
According to the third aspect of the present invention, a composition for a negative electrode is disclosed. The negative electrode composition contains the SiOC structure as a negative electrode active material.
Furthermore, according to the fourth aspect of the present invention, a method for producing a composition for a negative electrode is also disclosed. The method for producing the negative electrode composition includes obtaining the negative electrode composition by using the SiOC structure as a negative electrode active material.
 幾つかの実施形態において、負極用組成物は、後述の炭素系導電助剤及び/又は結着剤等の追加成分を更に含んでもよい。 In some embodiments, the negative electrode composition may further include additional components such as a carbon-based conductive additive and/or a binder described below.
 炭素系導電助剤として機能する炭素系物質の具体例としては、黒鉛、カーボンブラック、フラーレン、カーボンナノチューブ、カーボンナノフォーム、ピッチ系炭素繊維、ポリアクリロニトリル系炭素繊維および無定形炭素などの炭素系物質が好ましく挙げられる。これら炭素系物質は、単独で使用してもよいし、又は二種以上の混合物を使用してもよい。 Specific examples of carbon-based substances that function as carbon-based conductive aids include carbon-based substances such as graphite, carbon black, fullerene, carbon nanotubes, carbon nanoforms, pitch-based carbon fibers, polyacrylonitrile-based carbon fibers, and amorphous carbon. Are preferred. These carbon-based substances may be used alone or as a mixture of two or more kinds.
 本発明の幾つかの実施形態において用いられる結着剤としては、二次電池において使用可能なものであれば足り、例えば、カルボキシメチルセルロース、ポリアクリル酸、アルギン酸、グルコマンナン、アミロース、サッカロース及びその誘導体や重合物、さらに夫々のアルカリ金属塩の他、ポリイミド樹脂やポリイミドアミド樹脂が挙げられる。これら結着剤は単独で使用してもよいし、二種以上の混合物を使用してもよい。 As the binder used in some embodiments of the present invention, any binder that can be used in a secondary battery is sufficient, for example, carboxymethyl cellulose, polyacrylic acid, alkaline acid, glucomannan, amylose, saccharose and derivatives thereof. , Polymers, and each alkali metal salt, as well as polyimide resin and polyimide amide resin. These binders may be used alone or as a mixture of two or more kinds.
 さらに、結着剤に加えて、例えば、集電体と負極活物質との結着性を向上させ、負極活物質の分散性を改善し、結着剤自体の導電性を向上させる等の別機能を付与し得る添加剤を必要に応じて添加することもできる。このような添加剤の具体例としては、スチレン-ブタジエン・ゴム系ポリマー、スチレン-イソプレン・ゴム系ポリマー等が挙げられる。 Furthermore, in addition to the binder, for example, by improving the binding property between the current collector and the negative electrode active material, improving the dispersibility of the negative electrode active material, and improving the conductivity of the binder itself. An additive capable of imparting a function can be added if necessary. Specific examples of such additives include styrene-butadiene/rubber-based polymers and styrene-isoprene/rubber-based polymers.
 上述のように本発明の第三の態様に係る負極用組成物が炭素系導電助剤及び/又は結着剤等の追加成分を更に含むものである場合、負極用組成物の製造方法は、以下の工程(r)を含み得る。
工程(r):本発明の実施形態に係るSiOC構造体と上記追加成分とを混合し、又は該SiOC構造体に対して上記追加成分を複合化させ若しくは被覆させること。
As described above, when the negative electrode composition according to the third aspect of the present invention further contains an additional component such as a carbon-based conductive auxiliary agent and / or a binder, the method for producing the negative electrode composition is as follows. It may include step (r).
Step (r): mixing the SiOC structure according to the embodiment of the present invention with the additional component, or compounding or coating the SiOC structure with the additional component.
 工程(r)を達成する上で利用できる具体的手法としては、各種撹拌子や撹拌ブレード、メカノフュージョン、ボールミル、振動ミル等を用いた機械的混合法等により、上記SiOC構造体と炭素系物質を分散させる方法が挙げられ、中でもプライミクス株式会社製の薄膜旋回型高速ミキサー〔フィルミックス(登録商標)シリーズ〕等を用いて実現できる薄膜旋回方式による分散処理が好ましく用いられる。本発明の第三の態様に係る負極用組成物の製造方法において、これらの機械的混合法や分散方法は、一種を単独で用いて負極用組成物を取得してもよいし、段階的に複数の手法を組合せて負極用組成物を取得してもよい。 As a specific method that can be used to achieve the step (r), the SiOC structure and the carbon-based material are subjected to a mechanical mixing method using various stirrers, stirring blades, mechanofusions, ball mills, vibration mills, and the like. Among these, a dispersion treatment by a thin film rotation method that can be realized by using a thin film rotation type high-speed mixer [Filmix (registered trademark) series] manufactured by PRIMIX Corporation is preferably used. In the method for producing a negative electrode composition according to a third aspect of the present invention, one of these mechanical mixing methods and dispersion methods may be used alone to obtain a negative electrode composition, or stepwise. The negative electrode composition may be obtained by combining a plurality of methods.
 例えば、工程(r)において、約1~5重量%濃度の結着剤水溶液に、本発明の実施形態に係るSiOC構造体及び任意に炭素系導電助剤をそれぞれ所定量で添加し、撹拌子やその他ミキサー等を用いて混合してもよい。更に、得られた混合物に、所定の固形分濃度となるよう必要に応じて更に水を添加し、さらに撹拌を続けてスラリー状組成物とし、これを負極用組成物をとしてもよい。更に加えて、該スラリー状組成物に対して上述の薄膜旋回方式による分散処理を加えたものを負極用組成物としてもよい。 For example, in step (r), the SiOC structure according to the embodiment of the present invention and optionally a carbon-based conductive auxiliary agent are added in predetermined amounts to an aqueous solution of a binder having a concentration of about 1 to 5% by mass, and a stirrer is used. Or other mixers may be used for mixing. Further, water may be further added to the obtained mixture as necessary so as to have a predetermined solid content concentration, and further stirring may be continued to obtain a slurry-like composition, which may be used as a negative electrode composition. Further, a composition obtained by subjecting the slurry-like composition to a dispersion treatment by the above-mentioned thin film swirling method may be used as a negative electrode composition.
 更に、上記任意選択の工程(r)において、適宜目的に応じて、また所望の電池特性が得られるように上記SiOC構造体と炭素系物質とは任意の割合で混合すればよい。
 なお、本発明の第四の態様に係る負極用組成物の製造方法は、上記工程に先行して、上記SiOC構造体を製造する方法に含まれ得る各工程を任意に含んでもよく、それら任意の工程を含む実施形態も本明細書に明確に開示されるものである。
Further, in the optional step (r), the SiOC structure and the carbonaceous material may be mixed in an arbitrary ratio depending on the purpose and in order to obtain desired battery characteristics.
The method for producing the composition for a negative electrode according to the fourth aspect of the present invention may optionally include, prior to the above steps, each step that can be included in the method for producing the SiOC structure. Embodiments including the above steps are also expressly disclosed herein.
<負極及びその製造方法>
 本発明の第五の態様によれば、負極が開示される。
 更に、本発明の第六の態様によれば、負極を製造する方法も開示され、本発明の幾つかの実施形態において、負極は、本発明の第六の態様に係る負極を製造する方法により取得され得るものである。当該方法は、上記SiOC構造体又は負極用組成物を用いて負極を取得することを含む。
 以下に具体的な製造工程の例を示す。
<Negative electrode and its manufacturing method>
According to the fifth aspect of the present invention, the negative electrode is disclosed.
Furthermore, according to a sixth aspect of the present invention, a method for producing a negative electrode is also disclosed, and in some embodiments of the present invention, the negative electrode is the method for producing a negative electrode according to the sixth aspect of the present invention. It can be acquired. The method includes obtaining a negative electrode using the SiOC structure or the composition for a negative electrode.
An example of a specific manufacturing process is shown below.
 本発明の幾つかの実施形態おける負極は、具体的には、上記負極活物質としてのSiOC構造体、又は該SiOC構造体を負極活物質として含む上記負極用組成物を用いて製造されるものである。
 より詳細には、例えば、負極は、上記SiOC構造体又は負極用組成物を、一定の形状に成形する方法、又は銅箔などの集電体に塗布させる方法に基づいて製造してもよい。負極の成形方法は、特に限定なく任意の方法を用いればよく、各種公知の方法を用いてもよい。
The negative electrode in some embodiments of the present invention is specifically manufactured by using the SiOC structure as the negative electrode active material or the negative electrode composition containing the SiOC structure as the negative electrode active material. Is.
More specifically, for example, the negative electrode may be manufactured based on a method of molding the above-mentioned SiOC structure or the composition for a negative electrode into a certain shape, or a method of applying it to a current collector such as a copper foil. The method for molding the negative electrode is not particularly limited, and any method may be used, and various known methods may be used.
 より詳細には、例えば、予め調製した負極用組成物を、銅、ニッケル、ステンレスなどを主体とする棒状体、板状体、箔状体、網状体などの集電体にドクターブレード法、スラリーキャスト法、スクリーン印刷法等の手法により直接コーティングしてもよい。あるいは、上記負極用組成物を別途、支持体上にキャスティングし、その支持体上に形成された負極用組成物フィルムを剥離し、剥離した負極用組成物フィルムを集電体にラミネートして負極極板を形成してもよい。
 加えて、上記集電体や支持体上に塗工した負極用組成物に対して、風乾処理や所定の温度による乾燥処理工程を行い、及び/又は更に必要に応じてプレス処理や打ち抜き処理等による加工処理工程を行うことにより、最終的な負極体を取得することとしてもよい。
More specifically, for example, a negative electrode composition prepared in advance, a doctor blade method, a slurry on a current collector such as a rod-shaped body, a plate-shaped body, a foil-shaped body, a reticulated body mainly composed of copper, nickel, stainless steel, or the like. Direct coating may be performed by a method such as a casting method or a screen printing method. Alternatively, the negative electrode composition is separately cast on a support, the negative electrode composition film formed on the support is peeled off, and the peeled negative electrode composition film is laminated on the current collector to form a negative electrode. An electrode plate may be formed.
In addition, the negative electrode composition coated on the current collector or the support is subjected to an air-drying treatment or a drying treatment step at a predetermined temperature, and / or, if necessary, a pressing treatment or a punching treatment or the like. The final negative electrode body may be obtained by performing the processing step according to.
 なお、本発明の第六の態様に係る負極を製造する方法は、上記工程に先行して、上述のSiOC構造体を製造する方法並びに負極用組成物を製造する方法に含まれ得る各工程を任意に含んでもよく、それら実施形態も本明細書に明確に開示されるものである。加えて、上記負極の形態はあくまでも例示であり、負極の形態は、これらに限定されるものではなく、その他の形態として提供され得ることは言うまでもない。 The method for producing the negative electrode according to the sixth aspect of the present invention includes each step that can be included in the above-mentioned method for producing a SiOC structure and the method for producing a negative electrode composition prior to the above-mentioned step. It may optionally be included, and those embodiments are also expressly disclosed herein. In addition, it is needless to say that the form of the negative electrode is merely an example, and the form of the negative electrode is not limited to these and may be provided in other forms.
<二次電池及びその製造方法>
 本発明の第七の態様によれば、二次電池が提供される。
 更に、本発明の第八の態様によれば、二次電池の製造方法も提供される。当該方法は、上述の負極を用いることにより二次電池を製造することを含む。
<Secondary battery and manufacturing method thereof>
According to a seventh aspect of the present invention, a secondary battery is provided.
Furthermore, according to the eighth aspect of the present invention, a method for manufacturing a secondary battery is also provided. The method includes manufacturing a secondary battery by using the above negative electrode.
 本発明の第七の態様に係る二次電池は、本発明の実施形態に係る負極を少なくとも1つ備えたものである。当該二次電池は、本発明の実施形態に係る負極を少なくとも1つ備え、かつ二次電池として機能するのである限り、その他構成要素や構造は特に限定されるものでもないが、より具体的には、上記負極に加えて、正極及びセパレータをそれぞれ少なくとも1つ備える。本発明の二次電池は、本発明の負極、並びに正極とセパレータとがそれぞれ複数備える場合においては、正極/セパレータ/負極/セパレータの順序でこれら構成要素を交互に積層したラミネート型の積層構造を採用してもよい。あるいは、正極と負極とをセパレータを介してコイル状に捲回させた積層構造を採用してもよい。さらに加えて、本発明の二次電池は、電解液又は固体電解質を含み得る。 The secondary battery according to the seventh aspect of the present invention is provided with at least one negative electrode according to the embodiment of the present invention. As long as the secondary battery includes at least one negative electrode according to the embodiment of the present invention and functions as a secondary battery, other components and structures are not particularly limited, but more specifically. Includes at least one positive electrode and at least one separator in addition to the above negative electrode. The secondary battery of the present invention has a laminated structure in which the negative electrode of the present invention and, when a plurality of positive electrodes and separators are provided, the constituent elements are alternately laminated in the order of positive electrode / separator / negative electrode / separator. May be adopted. Alternatively, a laminated structure in which the positive electrode and the negative electrode are wound in a coil shape via a separator may be adopted. Furthermore, the secondary battery of the present invention may include an electrolytic solution or a solid electrolyte.
 幾つかの実施形態において、二次電池は、具体的には、本発明の第八の態様に係る二次電池の製造方法により取得される二次電池であり得る。該二次電池は、所望の用途や機能等を考慮し、適宜に設計すればよく、その構成は特に限定されるものでもないが、既存の二次電池の構成を参考に、本発明の実施形態に係る負極を用いて二次電池を構成することができる。加えて、本発明の二次電池のタイプとしては、上記負極が適用できるものであれば特に限定されるものでもないが、例えば、リチウムイオン二次電池、リチウムイオンポリマー二次電池が挙げられる。これら電池は、以下の実施例において実証されるとおり、所望の効果が発揮され得ることから、特に好ましい実施形態と言える。
 以下、二次電池及びその製造方法が特にリチウムイオン二次電池である実施形態を例示する。
In some embodiments, the secondary battery can be specifically a secondary battery obtained by the method for manufacturing a secondary battery according to an eighth aspect of the present invention. The secondary battery may be appropriately designed in consideration of a desired application, function, etc., and its configuration is not particularly limited, but the present invention can be implemented by referring to the configuration of an existing secondary battery. A secondary battery can be constructed by using the negative electrode according to the embodiment. In addition, the type of the secondary battery of the present invention is not particularly limited as long as the above negative electrode can be applied, and examples thereof include a lithium ion secondary battery and a lithium ion polymer secondary battery. As demonstrated in the following examples, these batteries can be said to be a particularly preferable embodiment because they can exhibit desired effects.
Hereinafter, an embodiment in which the secondary battery and the method for manufacturing the secondary battery are particularly a lithium ion secondary battery will be illustrated.
 まず、リチウムイオンを可逆的に吸蔵及び放出可能な正極活物質、導電助剤、結着剤及び溶媒を混合して正極活物質組成物を準備する。上記正極活物質組成物を負極と同様、各種手法を用いて金属集電体上に直接コーティング及び乾燥し、正極板を準備する。
 上記正極活物質組成物を別途、支持体上にキャスティングし、この支持体上に形成されたフィルムを剥離し、同フィルムを金属集電体上にラミネートして正極を製造することも可能である。正極の成形方法は、特に限定されるものではないが、各種公知の手法を用いて形成することができる。
First, a positive electrode active material composition capable of reversibly occluding and releasing lithium ions, a conductive auxiliary agent, a binder and a solvent are mixed to prepare a positive electrode active material composition. Similarly to the case of the negative electrode, the positive electrode active material composition is directly coated on the metal current collector and dried by various methods to prepare a positive electrode plate.
It is also possible to separately cast the positive electrode active material composition on a support, peel off the film formed on the support, and laminate the film on a metal current collector to produce a positive electrode. .. The method for forming the positive electrode is not particularly limited, but it can be formed by using various known methods.
 上記正極活物質としては、当該二次電池の分野で一般的に使われるリチウム金属複合酸化物を用いることができる。例えば、コバルト酸リチウム、ニッケル酸リチウム、スピネル構造を持ったマンガン酸リチウム、コバルトマンガン酸リチウム、オリビン構造を持ったリン酸鉄、いわゆる三元系リチウム金属複合酸化物、ニッケル系リチウム金属複合酸化物など挙げられる。また、リチウムイオンの脱-挿入が可能な化合物であるV、TiS及びMoSなども使用することができる。 As the positive electrode active material, a lithium metal composite oxide generally used in the field of the secondary battery can be used. For example, lithium cobalt oxide, lithium nickel oxide, lithium manganate having a spinel structure, lithium cobalt manganate, iron phosphate having an olivine structure, so-called ternary lithium metal composite oxide, nickel-based lithium metal composite oxide. Etc. Further, compounds capable of de-inserting lithium ions such as V 2 O 5 , TiS and MoS can also be used.
 導電助剤を添加してもよく、リチウムイオン電池で一般的に使用されるものを利用することができる。製造された電池において分解又は変質を起こさない電子伝導性材料であることが好ましい。具体例としては、カーボンブラック(アセチレンブラック等)、黒鉛微粒子、気相成長炭素繊維、及びこれらの二種以上の組み合わせなどが挙げられる。また、結着剤としては、例えば、フッ化ビニリデン/六フッ化プロピレン共重合体、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル、ポリメチルメタクリレート、ポリ四フッ化エチレン及びその混合物、スチレンブタジエン・ゴム系ポリマーなどが挙げられるが、これらに限定されるものでない。また、溶媒としては、例えば、N-メチルピロリドン、アセトン、水などが挙げられるが、これらに限定されるものではない。
 この時、正極活物質、導電助剤、結着剤及び溶媒の含有量は、特に限定されるものでもないが、リチウムイオン電池で一般的に使用される量を目安に適宜選択することができる。
A conductive auxiliary agent may be added, and those generally used in lithium ion batteries can be used. It is preferably an electron conductive material that does not decompose or deteriorate in the manufactured battery. Specific examples include carbon black (acetylene black and the like), graphite fine particles, vapor-grown carbon fibers, and a combination of two or more of these. Examples of the binder include vinylidene fluoride/propylene hexafluoride copolymer, polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polytetrafluoroethylene and mixtures thereof, styrene butadiene rubber type. Examples include, but are not limited to, polymers. Examples of the solvent include, but are not limited to, N-methylpyrrolidone, acetone, water and the like.
At this time, the contents of the positive electrode active material, the conductive additive, the binder and the solvent are not particularly limited, but can be appropriately selected with the amounts generally used in lithium ion batteries as a guide. ..
 正極と負極との間に介在するセパレータとしては、リチウムイオン電池で一般的に使われるものを利用すればよいが、特に限定されるものでもなく、所望の用途や機能等を勘案の上、適宜選択すればよい。電解質のイオン移動に対して低抵抗であるか、又は電解液含浸能に優れるものが好ましい。具体的には、ガラスファイバー、ポリエステル、ポリエチレン、ポリプロピレン、ポリ四フッ化エチレン、ポリイミド、あるいはその化合物のうちから選択された材質であって、不織布または織布の形態でもよい。
 より具体的には、リチウムイオン電池の場合には、ポリエチレン、ポリプロピレンのような材料からなる巻き取り可能なセパレータを使用し、リチウムイオンポリマー電池の場合には、有機電解液含浸能に優れたセパレータを使用する事が好ましい。
As the separator interposed between the positive electrode and the negative electrode, those generally used in lithium ion batteries may be used, but are not particularly limited, and in consideration of the desired application and function, etc., appropriate Just select it. Those having low resistance to ion transfer of the electrolyte or having excellent electrolyte impregnation ability are preferable. Specifically, it is a material selected from glass fiber, polyester, polyethylene, polypropylene, polytetrafluoride ethylene, polyimide, or a compound thereof, and may be in the form of a non-woven fabric or a woven fabric.
More specifically, in the case of a lithium-ion battery, a rollable separator made of a material such as polyethylene or polypropylene is used, and in the case of a lithium-ion polymer battery, a separator excellent in organic electrolyte impregnation ability. Is preferably used.
 電解液としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチレンカーボネート、ジブチルカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ-ブチロラクトン、ジオキソラン、4-メチルジオキソラン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2-ジメトキシエタン、スルフォラン、ジクロロエタン、クロロベンゼン、ニトロベンゼンまたは、ジエチルエーテルなどの溶媒またはそれらの混合溶媒に、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、六フッ化アンチモンリチウム、六フッ化ヒ素酸リチウム、過塩素酸リチウム、トリフルオロメタンスルホン酸リチウム、Li(CFSON、LiCSO、LiSbF、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y+1SO)(ただし、xおよびyは自然数)、LiCl、LiIのようなリチウム塩からなる電解質のうち一種またはそれらを二種以上混合したものを溶解したものを使用できる。 Electrolytes include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methylpropyl carbonate, butylene carbonate, dibutyl carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyl tetrahydrofuran, γ-butyrolactone, dioxolane, 4 -Methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethylsulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, or a mixed solvent thereof, and hexafluoride Lithium phosphate, lithium borate tetrafluoride, antimonium hexafluoride, lithium arsenide hexafluoride, lithium perchlorate, lithium trifluoromethanesulfonate, Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3, LiSbF 6, LiAlO 4, LiAlCl 4, LiN (C x F 2x + 1 sO 2) (C y F 2y + 1 sO 2) ( here, x and y are natural numbers), LiCl, the electrolyte comprising a lithium salt such as LiI One of them or a mixture of two or more thereof dissolved therein can be used.
 また、電解液に替えて種々の非水系電解質や固体電解質も使用できる。例えば、リチウムイオンを添加した各種イオン液体、イオン液体と微粉末を混合した擬似固体電解質、リチウムイオン導電性固体電解質などが使用可能である。 Also, various non-aqueous electrolytes and solid electrolytes can be used instead of the electrolyte. For example, various ionic liquids to which lithium ions are added, pseudo solid electrolytes in which ionic liquids and fine powders are mixed, lithium ion conductive solid electrolytes, and the like can be used.
 更にまた、充放電サイクル特性を向上させる目的で、上記電解液に、負極活物質表面に安定な被膜形成を促進する化合物を適宜含有させることもできる。例えば、ビニレンカーボネート(VC)、フルオロベンゼン、環状フッ素化カーボネート〔フルオロエチレンカーボネート(FEC)、トリフルオロプロピレンカーボネート(TFPC)、など〕、または、鎖状フッ素化カーボネート〔トリフルオロジメチルカーボネート(TFDMC)、トリフルオロジエチルカーボネート(TFDEC)、トリフルオロエチルメチルカーボネート(TFEMC)など〕などのフッ素化カーボネートが効果的である。なお、上記環状フッ素化カーボネートおよび鎖状フッ素化カーボネートは、エチレンカーボネートなどのように、溶媒として用いることもできる。 Furthermore, for the purpose of improving charge/discharge cycle characteristics, the above-mentioned electrolytic solution may appropriately contain a compound that promotes stable film formation on the surface of the negative electrode active material. For example, vinylene carbonate (VC), fluorobenzene, cyclic fluorinated carbonate [fluoroethylene carbonate (FEC), trifluoropropylene carbonate (TFPC), etc.], or chain fluorinated carbonate [trifluorodimethyl carbonate (TFDMC), etc.], Fluorinated carbonates such as trifluorodiethyl carbonate (TFDEC) and trifluoroethylmethyl carbonate (TFEMC) are effective. The cyclic fluorinated carbonate and the chain fluorinated carbonate can also be used as a solvent, such as ethylene carbonate.
 上述のような正極極板と負極極板との間にセパレータを配して電池構造体を形成し、係る電池構造体をワインディングするか、または折りたたんで円筒形電池ケース、または角型電池ケースに入れた後、電解液を注入することによりリチウムイオン電池を完成させてもよい。あるいは、上記電池構造体をバイセル構造に積層した後、これを有機電解液に含浸させ、得られた物をパウチに入れて密封することにより、本発明の実施形態に係る二次電池としてリチウムイオンポリマー電池を取得してもよい。 A separator is arranged between the positive electrode plate and the negative electrode plate as described above to form a battery structure, and the battery structure is wound or folded into a cylindrical battery case or a square battery case. After the charging, a lithium ion battery may be completed by injecting an electrolytic solution. Alternatively, the battery structure is laminated on a bicell structure, impregnated with an organic electrolytic solution, and the obtained product is placed in a pouch and sealed to form a lithium ion as a secondary battery according to an embodiment of the present invention. A polymer battery may be obtained.
 なお、本発明の実施形態による二次電池の製造方法は、上記工程に加え、上記SiOC構造体の製造方法、負極用組成物の製造方法並びに負極の製造方法に含まれる各工程を先行して更に含んでもよい。 In addition to the above steps, the method for manufacturing a secondary battery according to the embodiment of the present invention precedes each step included in the above-mentioned method for manufacturing a SiOC structure, the method for manufacturing a composition for a negative electrode, and the method for manufacturing a negative electrode. It may further include.
 以下、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明は、これら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically by showing Examples and Comparative Examples, but the present invention is not limited to these Examples.
 各実施例及び各比較例において製造した材料について各種分析・評価を行った。
 まず、各種分析・評価の方法を以下に示す。
 なお、以下、Phはフェニル基を示し、Meはメチル基を示す。
Various analyzes and evaluations were performed on the materials produced in each Example and each Comparative Example.
First, various analysis / evaluation methods are shown below.
Hereinafter, Ph represents a phenyl group and Me represents a methyl group.
<走査型電子顕微鏡(SEM)観察>
 実施例及び比較例で製造した各材料についてSEM観察を行った。
 SEMとして超高分解能分析走査電子顕微鏡 SU-70(株式会社日立ハイテクノロジーズ製)及び3Dリアルサーフェスビュー顕微鏡VE-9800(株式会社キーエンス製)を用い、所定の加速電圧で測定した。
<Scanning electron microscope (SEM) observation>
SEM observation was performed for each material produced in Examples and Comparative Examples.
Ultra-high resolution analytical scanning electron microscope SU-70 (manufactured by Hitachi High-Technologies Corporation) and 3D real surface view microscope VE-9800 (manufactured by Keyence Corporation) were used as SEMs and measured at a predetermined acceleration voltage.
(粒度分布測定)
 以下の実施例1~4並びに比較例1において製造した各SiOC構造体及びSiOC材料について粒度分布を測定し、粒度分布における10%、50%及び90%累積質量粒子径分布直径 (D10、D50及びD90)を算出した。粒度分布の測定方法は以下の通りである。調製したシリコンナノ粒子含有水素ポリシルセスキオキサン焼成物を少量ビーカーに取り、水および0.5%トリトンX-100水溶液を数滴加え、株式会社日本精機製作所製超音波ホモジナイザーUS-150を用いて3分間分散処理して測定用サンプルを調製した。この測定用サンプルを、マイクロトラック・ベル株式会社製レーザー回折散乱式粒子径分布測定装置MT3300IIを用いて測定した。
(Measurement of particle size distribution)
The particle size distribution was measured for each SiOC structure and SiOC material produced in Examples 1 to 4 and Comparative Example 1 below, and 10%, 50% and 90% cumulative mass particle size distribution diameters (D10, D50 and D90) was calculated. The method for measuring the particle size distribution is as follows. A small amount of the prepared hydrogenated polysilsesquioxane containing silicon nanoparticles was placed in a beaker, a few drops of water and 0.5% Triton X-100 aqueous solution were added, and an ultrasonic homogenizer US-150 manufactured by Nippon Seiki Co., Ltd. was used. A sample for measurement was prepared by dispersion treatment for 3 minutes. This measurement sample was measured using a laser diffraction/scattering type particle size distribution measuring device MT3300II manufactured by Microtrac Bell Co., Ltd.
<元素分析法>
 炭素元素分析については、酸素循環燃焼・TCD検出方式による炭素元素分析装置として、株式会社住化分析センター製NCH-21型を用い、酸素元素分析については、高温炭素反応・NDIR検出方式による酸素元素分析装置として、株式会社堀場製作所EMGA-2800を用い、さらにSi元素分析については、灰化-アルカリ溶融-酸溶解・ICP発光分析法によるケイ素元素分析装置として、セイコー電子工業株式会社製SPS4000を用い、それぞれ、元素分析を行った。
<Elemental analysis method>
For carbon elemental analysis, NCH-21 model manufactured by Sumika Chemical Analysis Service Co., Ltd. was used as a carbon elemental analyzer by oxygen circulation combustion/TCD detection method. For oxygen elemental analysis, oxygen element by high temperature carbon reaction/NDIR detection method was used. As an analyzer, EMGA-2800 manufactured by Horiba Ltd. was used, and for Si element analysis, SPS4000 manufactured by Seiko Denshi Kogyo Co., Ltd. was used as a silicon element analyzer by ashing-alkali melting-acid dissolution/ICP emission spectrometry. , Respectively, elemental analysis was performed.
<BET比表面積の測定>
 BET比表面積は、試料粉末1gを測定セルに投入後、脱気条件を250℃で1時間とし、
全自動比表面積測定装置Macsorb(登録商標)HM Model-1210(マウンテック社製)にて測定した。
<Measurement of BET specific surface area>
For the BET specific surface area, after putting 1 g of the sample powder into the measurement cell, the degassing condition was set to 250 ° C. for 1 hour.
It was measured with a fully automatic specific surface area measuring device Macsorb (registered trademark) HM Model-1210 (manufactured by Mountech Co., Ltd.).
<電池特性の評価>
 実施例及び比較例で製造した材料を含有する負極活物質を調製し、それら負極活物質を用いた負極並びにリチウムイオン二次電池について以下の通り充放電サイクル試験を行って電池特性を評価した。以下に、その手順を示す。
 北斗電工製HJR-110mSM、HJ1001SM8AもしくはHJ1010mSM8Aを用い、充電・放電ともに測定は、定電流で行った。その際、負極活物質(SiOC粒子)1g重量あたり、理論容量に対して20分の1となるような電流値0.05Cを採用した。
 また、充電は、電池電圧が0Vまで低下するまでの容量とし、放電は、電池電圧が1.5Vに到達するまでの容量とした。各充放電の切り替え時には、30分間、開回路で休止後、放電した。
<Evaluation of battery characteristics>
Negative electrode active materials containing the materials produced in the examples and comparative examples were prepared, and a negative electrode and a lithium ion secondary battery using the negative electrode active materials were subjected to a charge/discharge cycle test as described below to evaluate battery characteristics. The procedure is shown below.
Hokuto Denko HJR-110mSM, HJ1001SM8A or HJ1010mSM8A was used, and both charging and discharging were measured at a constant current. At that time, a current value of 0.05 C was adopted so as to be 1/20 of the theoretical capacity per 1 g of the negative electrode active material (SiOC particles).
In addition, the charge was the capacity until the battery voltage dropped to 0V, and the discharge was the capacity until the battery voltage reached 1.5V. At the time of switching between charge and discharge, the battery was discharged after being paused in the open circuit for 30 minutes.
 上記の条件にて、充放電サイクルを50回繰り返し、電池特性を測定した。
 なお、可逆容量は、初回の放電容量とし、初回充放電率は、第1サイクルにおいて、充電容量に対する放電容量の比率とし、サイクル試験後の容量維持率は、初回の充電量に対するサイクル後の充電容量で表示した。
Under the above conditions, the charge / discharge cycle was repeated 50 times, and the battery characteristics were measured.
The reversible capacity is the initial discharge capacity, the initial charge/discharge rate is the ratio of the discharge capacity to the charge capacity in the first cycle, and the capacity maintenance rate after the cycle test is the charge after the cycle for the initial charge amount. Displayed by capacity.
[実施例1](MeSiO0.5
(シリコンナノ粒子/メチルポリシルセスキオキサン複合体の製造)
 ビーカーに、0.01M酢酸水溶液100g、及びシリコンナノパウダー(シグマアルドリッチ社製;体積基準平均粒子径は100nm未満;ただし、粒子径は10nmを超える。)10gを入れ、超音波洗浄機を用いてシリコンナノ粒子分散液を調製した。次いで、300mlの三つ口フラスコに、0.01M酢酸水溶液100gを入れ、撹拌下に、該酢酸水溶液にメチルトリメトキシシラン(東京化成工業社製)24.3g(178mmol)を25℃にて滴下した後、30分間反応させた。次いで、得られた反応溶液に、上述のシリコンナノ粒子分散液を加え、さらに室温にて1時間攪拌した。このようにして得た混合液に、36重量%濃度の塩酸2.00g(20mmol)をさらに加え、室温にて10秒攪拌し、攪拌を停止した。その後、該混合液を1晩放置し、得られた反応物をメンブランフィルター(孔径0.45μm、親水性)を用いてろ過し、固体を回収した。得られた固体を80℃にて10時間、減圧乾燥し、シリコンナノ粒子/メチルポリシルセスキオキサン複合体(1)の粉体21.9gを得た。
 このようにして取得したシリコンナノ粒子/メチルポリシルセスキオキサン複合体(1)の粉体の一部を、SEM観察に供試した。
 なお、本実施例において、加水分解反応には0.01M酢酸水溶液を用いていることから、加水分解反応際のpHは3.29と計算される。加えて、重合反応には0.1M塩酸を用いていることになるので、重縮合反応の際のpHは1と計算される。
[Example 1] (MeSiO 0.5 )
(Manufacture of silicon nanoparticles / methylpolysilsesquioxane complex)
In a beaker, 100 g of 0.01 M acetic acid aqueous solution and 10 g of silicon nanopowder (manufactured by Sigma-Aldrich Co.; volume-based average particle size is less than 100 nm; particle size is more than 10 nm) are put, and an ultrasonic cleaner is used. A silicon nanoparticle dispersion was prepared. Then, 100 g of 0.01 M acetic acid aqueous solution was placed in a 300 ml three-necked flask, and 24.3 g (178 mmol) of methyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise to the acetic acid aqueous solution at 25° C. with stirring. After that, it was reacted for 30 minutes. Next, the above-mentioned silicon nanoparticle dispersion was added to the obtained reaction solution, and the mixture was further stirred at room temperature for 1 hour. To the mixed solution thus obtained, 2.00 g (20 mmol) of hydrochloric acid having a concentration of 36% by weight was further added, and the mixture was stirred at room temperature for 10 seconds, and the stirring was stopped. Then, the mixed solution was left to stand overnight, and the obtained reaction product was filtered using a membrane filter (pore size 0.45 μm, hydrophilic) to recover a solid. The obtained solid was dried under reduced pressure at 80 ° C. for 10 hours to obtain 21.9 g of a powder of silicon nanoparticles / methylpolysilsesquioxane complex (1).
A part of the powder of the silicon nanoparticles/methylpolysilsesquioxane composite (1) thus obtained was subjected to SEM observation.
In this Example, since a 0.01 M acetic acid aqueous solution was used for the hydrolysis reaction, the pH during the hydrolysis reaction was calculated to be 3.29. In addition, since 0.1 M hydrochloric acid is used in the polymerization reaction, the pH at the time of the polycondensation reaction is calculated to be 1.
(SiOC構造体の製造)
 続いて、上記シリコンナノ粒子/メチルポリシルセスキオキサン複合体(1)の粉体21.9gを、SSA-Sグレードのアルミナ製ボートにのせた後、該アルミナ製ボートを、真空パージ式チューブ炉KTF43N1-VPS(光洋サーモシステム社製)にセットした。熱処理条件として、アルゴンガス雰囲気下(高純度アルゴンガス99.999%)にて、アルゴンガスを250ml/分の流量で供給しつつ、4℃/分の割合で昇温し、1200℃、5時間にて熱処理することにより、シリコンナノ粒子/メチルポリシルセスキオキサン複合体(1)の焼成物を得た。
 次いで、得られた焼成物を、乳鉢にて5分間解砕粉砕し、目開き32μmのステンレス製篩を用いて分級することにより、最大粒子径が32μmであるシリコンナノ粒子/メチルポリシルセスキオキサン複合体(1)の焼成物〔SiOC構造体(1)〕粉体18.9gを得た。
 このSiOC構造体(1)粉体の一部を、上述の方法によりSEM観察、粒度分布測定、元素分析、及びBET比表面積の測定に供試した。
(Manufacturing of SiOC structure)
Subsequently, 21.9 g of the powder of the above-mentioned silicon nanoparticles/methylpolysilsesquioxane composite (1) was placed on a boat made of SSA-S grade alumina, and the boat made of alumina was vacuum-purged. It was set in the furnace KTF43N1-VPS (manufactured by Koyo Thermo System Co., Ltd.). As a heat treatment condition, under an argon gas atmosphere (high-purity argon gas 99.999%), while supplying argon gas at a flow rate of 250 ml/min, the temperature was raised at a rate of 4° C./min and 1200° C. for 5 hours. By heat-treating in the above, a fired product of the silicon nanoparticles / methylpolysilsesquioxane complex (1) was obtained.
Then, the obtained fired product is crushed and pulverized in a mortar for 5 minutes and classified using a stainless steel sieve having openings of 32 μm to obtain silicon nanoparticles having a maximum particle diameter of 32 μm/methyl polysilsesquioxy. 18.9 g of a fired product [SiOC structure (1)] powder of the sun composite (1) was obtained.
A part of the SiOC structure (1) powder was subjected to SEM observation, particle size distribution measurement, elemental analysis, and BET specific surface area measurement by the above-mentioned method.
(負極用組成物及び負極体の製造)
 カルボキシメチルセルロースの2重量%水溶液20g中に、SiOC粒子(3)3.2gと0.4gのデンカ株式会社製アセチレンブラックを加え、フラスコ内で攪拌子を用いて15分間混合した後、固形分濃度が15重量%となるよう蒸留水を加え、さらに15分間撹拌してスラリー状組成物を調製した。このスラリー状組成物をプライミックス社製の薄膜旋回型高速ミキサー(フィルミックス40-40型)に移し、回転数20m/sで30秒間、撹拌分散を行った。分散処理後のスラリーを、ドクターブレード法により、銅箔ロール上にスラリーを150μmの厚さにて塗工した。
(Manufacturing of composition for negative electrode and negative electrode body)
To 20 g of a 2% by weight aqueous solution of carboxymethyl cellulose, 3.2 g of SiOC particles (3) and 0.4 g of acetylene black manufactured by Denka Co., Ltd. were added and mixed in a flask for 15 minutes using a stirrer, and then the solid content concentration was increased. Distilled water was added so that the concentration was 15% by weight, and the mixture was further stirred for 15 minutes to prepare a slurry composition. This slurry composition was transferred to a thin film swirl type high speed mixer (Filmix 40-40 type) manufactured by Primix Co., Ltd., and stirred and dispersed at a rotation speed of 20 m/s for 30 seconds. The slurry after the dispersion treatment was applied onto a copper foil roll by a doctor blade method so as to have a thickness of 150 μm.
 塗工後30分風乾した後、80℃のホットプレートにて90分乾燥した。乾燥後、負極シートを2t小型精密ロールプレス(サンクメタル社製)にてプレスした。プレス後、φ14.50mmの電極打ち抜きパンチHSNG-EPにて電極を打ち抜き、ガラスチューブオーブンGTO―200(SIBATA)にて、80℃で、12時間以上減圧乾燥を行い、負極体を作製した。 After coating, it was air-dried for 30 minutes and then dried on a hot plate at 80 ° C. for 90 minutes. After drying, the negative electrode sheet was pressed with a 2t small precision roll press (manufactured by Thunk Metal Co., Ltd.). After pressing, the electrodes were punched with an electrode punching punch HSNG-EP having a diameter of 14.50 mm, and dried under reduced pressure at 80 ° C. for 12 hours or more in a glass tube oven GTO-200 (SIBATA) to prepare a negative electrode body.
(リチウムイオン二次電池の製造及び評価)
 図6に示す構造の2032型コイン電池(リチウムイオン二次電池)300を作成した。正極(リチウム対極)303として金属リチウム、セパレータ302として微多孔性のポリプロピレン製フィルム、負極(負極材)301として上記負極体を使用し、電解液としてLiPF6を1モル/Lの割合で溶解させたエチレンカーボネートとジエチルカーボネート1:1(体積比)混合溶媒を使用した。
 次いで、リチウムイオン二次電池の電池特性の評価を実施した。充放電試験機としては、北斗電工製HJ1001SM8Aを用いた。充放電条件としては、充電・放電共に0.05Cにて定電流で行い、放電終止電圧1mV、充電終止電圧は1500mVとした。
(Manufacturing and evaluation of lithium-ion secondary batteries)
A 2032 type coin battery (lithium ion secondary battery) 300 having the structure shown in FIG. 6 was produced. Lithium was used as the positive electrode (lithium counter electrode) 303, a microporous polypropylene film was used as the separator 302, and the negative electrode body was used as the negative electrode (negative electrode material) 301. LiPF6 was dissolved at a ratio of 1 mol/L as the electrolytic solution. A mixed solvent of ethylene carbonate and diethyl carbonate 1: 1 (volume ratio) was used.
Next, the battery characteristics of the lithium ion secondary battery were evaluated. As the charge / discharge tester, HJ1001SM8A manufactured by Hokuto Denko was used. As charging/discharging conditions, both charging and discharging were performed at a constant current of 0.05 C, and the discharge end voltage was 1 mV and the charge end voltage was 1500 mV.
[実施例2](MePhSiO0.5
 実施例1におけるシリコンナノ粒子/メチルポリシルセスキオキサン複合体(1)の製造において、メチルトリメトキシシラン24.3gの代わりに、メチルトリメトキシシラン14.4g(142mmol)とフェニルトリメトキシシラン7.1g(36mmol)の混合物を用いた以外は、実施例1と同様の手順で、シリコンナノ粒子/メチルポリシルセスキオキサン複合体(2)並びにその焼成物〔SiOC構造体(2)〕粉体を製造した。
 加えて、実施例1と同様にして、シリコンナノ粒子/メチルポリシルセスキオキサン複合体(2)の一部をSEM観察に供試し、さらにSiOC構造体(2)粉体の一部を、上述の方法によりSEM観察、粒度分布測定、元素分析及びBET比表面積の測定に供試した。
 さらに、実施例1で取得したSiOC構造体(1)に替えて、本実施例で得たSiOC構造体(2)を用いたこと以外は、実施例1と同様にして、負極用組成物及び負極体並びにリチウムイオン二次電池を作製し、電池特性の評価を行った。
Example 2 (MePhSiO 0.5 )
In the production of the silicon nanoparticles / methylpolysilsesquioxane complex (1) in Example 1, 14.4 g (142 mmol) of methyltrimethoxysilane and phenyltrimethoxysilane 7 were used instead of 24.3 g of methyltrimethoxysilane. . Silicon nanoparticles / methylpolysilsesquioxane complex (2) and its calcined product [SiOC structure (2)] powder in the same procedure as in Example 1 except that a mixture of 1 g (36 mmol) was used. Manufactured the body.
In addition, in the same manner as in Example 1, a part of the silicon nanoparticle/methylpolysilsesquioxane composite (2) was subjected to SEM observation, and a part of the SiOC structure (2) powder was added. It was used for SEM observation, particle size distribution measurement, elemental analysis and BET specific surface area measurement by the above method.
Further, in the same manner as in Example 1 except that the SiOC structure (1) obtained in Example 1 was replaced by the SiOC structure (2) obtained in this example, the composition for a negative electrode and A negative electrode body and a lithium ion secondary battery were produced and the battery characteristics were evaluated.
[実施例3](MeSiO0.7
 実施例1におけるシリコンナノ粒子/メチルポリシルセスキオキサン複合体(1)の製造において、メチルトリメトキシシランの滴下量を42.5gに変えた以外は、実施例1と同様の手順で、シリコンナノ粒子/メチルポリシルセスキオキサン複合体(3)並びにその焼成物〔SiOC構造体(3)〕粉体を製造した。
 加えて、実施例1と同様にして、シリコンナノ粒子/メチルポリシルセスキオキサン複合体(3)の一部をSEM観察に供試し、さらにSiOC構造体(3)粉体の一部を、上述の方法によりSEM観察、粒度分布測定及びBET比表面積の測定に供試した。
 さらに、実施例1で取得したSiOC構造体(1)に替えて、本実施例で得たSiOC構造体(3)を用いたこと以外は、実施例1と同様にして、負極用組成物及び負極体並びにリチウムイオン二次電池を作製し、電池特性の評価を行った。
[Example 3] (MeSiO 0.7 )
In the production of the silicon nanoparticles/methylpolysilsesquioxane composite (1) in Example 1, silicon was prepared by the same procedure as in Example 1 except that the dropping amount of methyltrimethoxysilane was changed to 42.5 g. A nanoparticle/methylpolysilsesquioxane composite (3) and its fired product [SiOC structure (3)] powder were produced.
In addition, in the same manner as in Example 1, a part of the silicon nanoparticles/methylpolysilsesquioxane composite (3) was subjected to a SEM observation test, and a part of the SiOC structure (3) powder was added. The test was performed by the above-mentioned method for SEM observation, particle size distribution measurement, and BET specific surface area measurement.
Further, in the same manner as in Example 1 except that the SiOC structure (1) obtained in Example 1 was replaced by the SiOC structure (3) obtained in this example, the composition for a negative electrode and A negative electrode body and a lithium ion secondary battery were prepared, and the battery characteristics were evaluated.
[実施例4](MePhSiO0.7
 実施例1におけるシリコンナノ粒子/メチルポリシルセスキオキサン複合体(1)の製造において、メチルトリメトキシシラン24.3gの代わりに、メチルトリメトキシシラン34.0gとフェニルトリメトキシシラン12.4gの混合物を用いた以外は、実施例1と同様の手順で、シリコンナノ粒子/メチルポリシルセスキオキサン複合体(4)及びその焼成物〔SiOC構造体(4)〕粉体を製造した。
 加えて、実施例1と同様にして、シリコンナノ粒子/メチルポリシルセスキオキサン複合体(4)の一部をSEM観察に供試し、さらにSiOC構造体(4)粉体の一部を、上述の方法によりSEM観察、粒度分布測定及びBET比表面積の測定に供試した。
 さらに、実施例1で取得したSiOC構造体(1)に替えて、本実施例で得たSiOC構造体(4)を用いたこと以外は、実施例1と同様にして、負極用組成物及び負極体並びにリチウムイオン二次電池を作製し、電池特性の評価を行った。
[Example 4] (MePhSiO 0.7 )
In the production of the silicon nanoparticles/methylpolysilsesquioxane composite (1) in Example 1, 34.0 g of methyltrimethoxysilane and 12.4 g of phenyltrimethoxysilane were used instead of 24.3 g of methyltrimethoxysilane. Silicon nanoparticles/methylpolysilsesquioxane composite (4) and its fired product [SiOC structure (4)] powder were produced by the same procedure as in Example 1 except that the mixture was used.
In addition, in the same manner as in Example 1, a part of the silicon nanoparticles/methylpolysilsesquioxane composite (4) was subjected to SEM observation, and a part of the SiOC structure (4) powder was added. The test was performed by the above-mentioned method for SEM observation, particle size distribution measurement, and BET specific surface area measurement.
Further, in the same manner as in Example 1 except that the SiOC structure (1) obtained in Example 1 was replaced by the SiOC structure (4) obtained in this example, the composition for a negative electrode and A negative electrode body and a lithium ion secondary battery were produced and the battery characteristics were evaluated.
[比較例1](MeSiO0.5
 ビーカーに水3.6gとイソプロパノール7gとシリコンナノパウダー(シグマアルドリッチ、100nm未満(体積基準平均粒子径、ただし、10nmは超える))4.12gを入れ、超音波洗浄機にてシリコンナノ粒子分散液を調製した。この分散液にメチルトリメトキシシラン10.0gを加えた後、1M塩酸0.1gを加え30分攪拌した。この反応溶液を80℃の恒温槽に入れ1晩放置し、バルクゲルの形態を有するシリコンナノ粒子/メチルポリシルセスキオキサン複合体(5)を作成した。
[Comparative Example 1] (MeSiO 0.5 )
In a beaker, put 3.6 g of water, 7 g of isopropanol, and 4.12 g of silicon nanopowder (Sigma Aldrich, less than 100 nm (volume-based average particle diameter, but more than 10 nm)), and use an ultrasonic cleaner to disperse the silicon nanoparticle dispersion. Was prepared. After adding 10.0 g of methyltrimethoxysilane to this dispersion, 0.1 g of 1M hydrochloric acid was added and the mixture was stirred for 30 minutes. This reaction solution was placed in a thermostat at 80° C. and left overnight to prepare a silicon nanoparticle/methylpolysilsesquioxane complex (5) having a bulk gel form.
 得られたシリコンナノ粒子/メチルポリシルセスキオキサン複合体(5)をSSA-Sグレードのアルミナ製ボートにのせた後、該ボートを真空パージ式チューブ炉 KTF43N1-VPS(光洋サーモシステム社製)にセットし、熱処理条件として、アルゴンガス雰囲気下(高純度アルゴンガス99.999%)にて、アルゴンガスを250ml/分の流量で供給しつつ、4℃/分の割合で昇温し、1200℃で5時間焼成することで、シリコンナノ粒子/メチルポリシルセスキオキサン複合体(5)の焼成物を調製した。 After placing the obtained silicon nanoparticles / methylpolysilsesquioxane complex (5) on an SSA-S grade alumina boat, the boat is placed in a vacuum purge type tube furnace KTF43N1-VPS (manufactured by Koyo Thermo System). The heat treatment condition is as follows: under an argon gas atmosphere (high-purity argon gas 99.999%), while supplying argon gas at a flow rate of 250 ml/min, the temperature is raised at a rate of 4° C./min. By calcining at 5° C. for 5 hours, a calcined product of the silicon nanoparticles/methylpolysilsesquioxane composite (5) was prepared.
 次いで、上述のとおり得られた、シリコンナノ粒子/メチルポリシルセスキオキサン複合体(5)の焼成物を乳鉢にて粉砕し、目開き32μmのステンレス製篩を用いて分級することにより最大粒子径が32μmであるSiOC複合材(5)の粉体7.2gを得た。 Next, the calcined product of the silicon nanoparticles / methylpolysilsesquioxane composite (5) obtained as described above was pulverized in a mortar and classified using a stainless sieve having an opening of 32 μm to obtain the largest particles. 7.2 g of a powder of the SiOC composite material (5) having a diameter of 32 μm was obtained.
 このようにして得られたSiOC複合材の一部について、実施例1と同様にしてSEM観察、粒度分布測定、及びBET比表面積の測定を行った。
 さらに、実施例1で取得したSiOC構造体に替えて、本比較例で得たSiOC複合材を用いたこと以外は、実施例1と同様にして、負極用組成物及び負極体並びにリチウムイオン二次電池を作製し、電池特性の評価を行った。
For a part of the SiOC composite material thus obtained, SEM observation, particle size distribution measurement, and BET specific surface area measurement were performed in the same manner as in Example 1.
Furthermore, the composition for a negative electrode, the negative electrode body, and the lithium ion dioxin were prepared in the same manner as in Example 1 except that the SiOC composite material obtained in this Comparative Example was used instead of the SiOC structure obtained in Example 1. The next battery was prepared and the battery characteristics were evaluated.
[比較例2](MeSiO0.5
 まず、実施例1と同様の手順で、シリコンナノ粒子分散液を調製すると共に、0.01M酢酸水溶液を用いてメチルトリメトキシシランを加水分解させ、得られた加水分解反応溶液に、上記シリコンナノ粒子分散液を加え、室温にて1時間攪拌した。
 次いで、このようにして得た混合液に、36重量%濃度の塩酸2.00g(20mmol)を加え、室温にて、一晩、該混合溶液を撹拌しながら、上記シラン化合物加水分解物の重合反応を進めたところ、最終的に餅状のシリコンナノ粒子/メチルポリシルセスキオキサン複合体(6)を得た。該複合体(6)は、反応容器内部に付着した状態で生成したため、回収が困難であった。そこで、該複合体(6)の一部を採取してSEM観察を行い、残部は焼成せずに廃棄した。
[Comparative Example 2] (MeSiO 0.5 )
First, in the same procedure as in Example 1, a silicon nanoparticle dispersion liquid was prepared, and methyltrimethoxysilane was hydrolyzed using a 0.01 M acetic acid aqueous solution. The particle dispersion was added, and the mixture was stirred at room temperature for 1 hour.
Then, 2.00 g (20 mmol) of hydrochloric acid having a concentration of 36% by weight was added to the mixed solution thus obtained, and the above-mentioned silane compound hydrolyzate was polymerized while stirring the mixed solution at room temperature overnight. As a result of proceeding with the reaction, a rice cake-shaped silicon nanoparticles / methylpolysilsesquioxane complex (6) was finally obtained. Since the complex (6) was produced in a state of being attached to the inside of the reaction vessel, it was difficult to recover the complex (6). Therefore, a part of the complex (6) was sampled and SEM observed, and the rest was discarded without firing.
<結果>
(SEM観察)
 図1に、実施例1~4で製造した各シリコンナノ粒子/メチルポリシルセスキオキサン複合体(1)~(4)のSEM写真をそれぞれ示す。加えて、図2A及び図2Bに、実施例1~4で製造した各SiOC構造体(1)~(4)、及び比較例1で製造したSiOC複合材(5)の各SEM写真(10,000倍)をそれぞれ示す。加えて、図2Cに、比較例2で製造したシリコンナノ粒子/メチルポリシルセスキオキサン複合体(6)のSEM写真(20,000倍)を示す。さらに、実施例1で製造した各SiOC構造体については、拡大倍率を上げて取得したSEM写真(50,000倍)を図3に示す。
<Results>
(SEM observation)
FIG. 1 shows SEM photographs of the respective silicon nanoparticles/methylpolysilsesquioxane composites (1) to (4) produced in Examples 1 to 4. In addition, in FIGS. 2A and 2B, SEM photographs (10, 10) of the SiOC structures (1) to (4) manufactured in Examples 1 to 4 and the SiOC composite material (5) manufactured in Comparative Example 1 are shown. 000 times) are shown respectively. In addition, FIG. 2C shows a SEM photograph (20,000 times) of the silicon nanoparticle/methylpolysilsesquioxane composite (6) produced in Comparative Example 2. Further, for each SiOC structure manufactured in Example 1, an SEM photograph (50,000 times) obtained by increasing the magnification is shown in FIG.
 図2A及び図3に示すSEM写真においては、実施例1~4で製造したSiOC構造体(1)~(4)は何れも、シリコンナノ粒子が、ポリシルセスキオキサンに由来するSiOCコート層に均一に被覆されており、かつ複数のシリコンナノ粒子がSiOCコート層を介して連結されている様子が確認された。
 加えて、図1に示すSEM写真から、実施例1~4で合成したシリコンナノ粒子/メチルポリシルセスキオキサン複合体(1)~(4)は何れも、シリコンナノ粒子が、所定のシラン化合物の加水分解及び重縮合反応により生成されたポリシルセスキオキサンにより被覆されており、複数のシリコンナノ粒子が、このポリシルセスキオキサンのコート層を介して連結されていることが把握された。つまり、熱処理により取得したSiOC構造体(1)~(4)におけるSiOCコート層は、このポリシルセスキオキサンのコート層が熱処理によりセラミック化することにより、SiOCコート層に変換されつつも、熱処理により大きな形態変化は受けず、当該コート層によるシリコンナノ粒子の被覆構造は維持されたものと思料される。
 そして、シリコンナノ粒子/ポリシルセスキオキサン複合体の合成プロセスに注目すると、実施例1~4では、所定のシラン化合物を酸性触媒の存在下、撹拌下に加水分解させた後、重縮合させる際には、反応液を撹拌することなく一晩静置させる方法により、重縮合反応を進めることで、シリコンナノ粒子が、重縮合により生成したポリシルセスキオキサン部分で比較的均一に被覆された構造を有するシリコンナノ粒子/ポリシルセスキオキサン複合体が形成されたものと推察される。
In the SEM photographs shown in FIGS. 2A and 3, all of the SiOC structures (1) to (4) manufactured in Examples 1 to 4 have a SiOC coating layer in which the silicon nanoparticles are derived from polysilsesquioxane. It was confirmed that the silicon nanoparticles were uniformly coated on the surface and that a plurality of silicon nanoparticles were connected via the SiOC coating layer.
In addition, from the SEM photograph shown in FIG. 1, all of the silicon nanoparticles/methylpolysilsesquioxane composites (1) to (4) synthesized in Examples 1 to 4 were obtained when the silicon nanoparticles were a predetermined silane. It is understood that the compound is coated with polysilsesquioxane produced by the hydrolysis and polycondensation reaction of the compound, and that a plurality of silicon nanoparticles are linked through the polysilsesquioxane coat layer. It was In other words, the SiOC coating layers in the SiOC structures (1) to (4) obtained by the heat treatment are converted into the SiOC coating layers by the heat treatment of the polysilsesquioxane coating layers into ceramics, It is considered that the coating structure of the silicon nanoparticles by the coat layer was maintained without undergoing a large morphological change.
Focusing on the synthesis process of the silicon nanoparticle/polysilsesquioxane complex, in Examples 1 to 4, a predetermined silane compound was hydrolyzed under stirring in the presence of an acidic catalyst and then polycondensed. In this case, the polycondensation reaction was carried out by allowing the reaction solution to stand overnight without stirring, so that the silicon nanoparticles were relatively uniformly coated with the polysilsesquioxane moiety generated by the polycondensation. It is presumed that a silicon nanoparticle / polysilsesquioxane complex having a similar structure was formed.
 一方、実施例1~4とは対照的に、比較例1で製造したSiOC複合材については、図2BのSEM写真から把握されるとおり、ポリシルセスキオキサンに由来するSiOC部分がシリコンナノ粒子を被覆している状態は観察できず、外部に対して多くの部分が剥き出しの状態にあるシリコンナノ粒子が多数確認された。即ち、比較例1で製造したSiOC複合材については、シリコンナノ粒子がSiOC部分で均一に被覆されているのではなく、両者が互いに無秩序に凝集したような構造体として確認された。
 このような凝集様構造の発現は、比較例1では、シリコンナノ粒子分散液に、メチルトリメトキシシラン及び塩酸を、一遍に添加し、メチルトリメトキシシランの加水分解及び重縮合を進めることにより、バルクゲルの形態を有するシリコンナノ粒子/メチルポリシルセスキオキサン複合体を合成したことに起因する。
On the other hand, in contrast to Examples 1 to 4, in the SiOC composite material produced in Comparative Example 1, as understood from the SEM photograph of FIG. 2B, the SiOC portion derived from polysilsesquioxane is silicon nanoparticles. The state in which the particles were covered was not observable, and many silicon nanoparticles in which many parts were exposed to the outside were confirmed. That is, in the SiOC composite material manufactured in Comparative Example 1, it was confirmed that the silicon nanoparticles were not uniformly coated with the SiOC portions, but that the both were randomly aggregated with each other.
In Comparative Example 1, the expression of such an aggregation-like structure was achieved by uniformly adding methyltrimethoxysilane and hydrochloric acid to the silicon nanoparticle dispersion and proceeding with hydrolysis and polycondensation of methyltrimethoxysilane. This is due to the synthesis of a silicon nanoparticles / methylpolysilsesquioxane complex having the form of a bulk gel.
 さらに、加水分解後の重縮合の間も継続的に反応液を撹拌した比較例2においては、餅状の形態を呈したシリコンナノ粒子/メチルポリシルセスキオキサン複合体が生成された(図2CのSEM写真を参照。)。 Further, in Comparative Example 2 in which the reaction solution was continuously stirred during the polycondensation after hydrolysis, a silicon nanoparticle / methylpolysilsesquioxane complex having a rice cake-like morphology was produced (Fig. See SEM photograph of 2C.).
 以上のとおり、本発明による実施例では、シリコンナノ粒子が、ポリシルセスキオキサンに由来するSiOCコート層に均一に被覆されており、かつ複数のシリコンナノ粒子がSiOCコート層を介して連結されている構造を有する、SiOC構造体を製造することができた。ここで、SiOCコート層は、比較的、表面荒れ等有さずに、滑らかな表面を有していた。 As described above, in the examples according to the present invention, the silicon nanoparticles are uniformly coated on the SiOC coating layer derived from polysilsesquioxane, and a plurality of silicon nanoparticles are connected via the SiOC coating layer. It was possible to manufacture a SiOC structure having the structure shown in FIG. Here, the SiOC coat layer had a relatively smooth surface without surface roughness or the like.
 次に、実施例1~4で製造した各SiOC構造体及び比較例1で製造したSiOC複合材について、粒度分布測定により取得した粒度分布のグラフを図4A及び4Bに示す。さらに、これらSiOC構造体とSiOC複合材について、測定された体積基準平均粒子径(μm)、BET比表面積(m/g)及び元素分析(質量%)の結果を表1に示す。 Next, FIGS. 4A and 4B show graphs of particle size distributions obtained by particle size distribution measurement for each of the SiOC structures manufactured in Examples 1 to 4 and the SiOC composite material manufactured in Comparative Example 1. Table 1 shows the measured volume-based average particle diameter (μm), BET specific surface area (m 2 /g) and elemental analysis (mass %) of these SiOC structures and SiOC composite materials.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 まず、比較例1については、表1並びに図4A及び4Bに示されるとおり、平均粒子径が比較的大きいにも関わらず、BET比表面積は、23.2m/gの値を示し、実施例のSiOC構造体と比較して、顕著に大きいことが確認された。このような結果になった理由は、上記SEM写真(図2B)で観察される通り、複合材を破砕処理により細かくしようとしたために、微粉の発生及び表面荒れが発生したことに起因するものと思われる。この事は、図4A及び4Bに示す粒度分布のグラフにおいて、比較例1の粒度分布では、ピークが、粒子径の大きい方向にシフトしつつ、ピークを挟んで左側(つまり、粒子径が小さい領域)にも、所定程度で分布がみられ、ブロードな分布が見られる結果と一致しているものと考えられる。 First, as for Comparative Example 1, as shown in Table 1 and FIGS. 4A and 4B, the BET specific surface area shows a value of 23.2 m 2 /g, although the average particle diameter is relatively large. It was confirmed that it was remarkably large compared to the SiOC structure of. The reason for such a result is that, as observed in the SEM photograph (FIG. 2B), since the composite material was crushed to be finely divided, fine powder and surface roughness were generated. Seem. This is because in the particle size distribution graphs shown in FIGS. 4A and 4B, in the particle size distribution of Comparative Example 1, the peak shifts in the direction of larger particle size, while sandwiching the peak on the left side (that is, in the region where the particle size is small). ) Also shows a distribution at a predetermined level, which is considered to be consistent with the result of a broad distribution.
 これに対して、実施例1~4で製造したSiOC構造体は何れも、BET比表面積が、10m/g未満の値を示し、比較的低い値を示していることが把握できる。加えて、図4A及び4Bの粒度分布のグラフから、実施例1~4に係るSiOC構造体は、粒度分布のピークがシャープであり、より均一な粒子サイズの形態として提供されるものであることが理解できる。そして、この事は、図2AのSEM写真で示されるとおり、シリコンナノ粒子が、重縮合により生成したポリシルセスキオキサン部分で均一に被覆された、均一で表面荒れの無い構造が形成され、焼成後も、このような均一で表面荒れのない構造が維持されている事と一致する。 On the other hand, it can be understood that the SiOC structures manufactured in Examples 1 to 4 all have a BET specific surface area of less than 10 m 2 /g, which is a relatively low value. In addition, from the particle size distribution graphs of FIGS. 4A and 4B, the SiOC structures according to Examples 1 to 4 have sharp particle size distribution peaks and are provided as a more uniform particle size morphology. Can understand. Then, as shown in the SEM photograph of FIG. 2A, the silicon nanoparticles are uniformly coated with the polysilsesquioxane moiety produced by polycondensation to form a uniform structure without surface roughness. This is consistent with the fact that such a uniform and surface-free structure is maintained even after firing.
 なお、実施例4で製造したSiOC構造体は、実施例1~3で製造したSiOC構造体よりも、平均粒子径は、比較的大きく、比較例1のそれよりも大きい値(17.71μm)を示した。しかしながら、実施例4は、比較例1とは異なり、BET比表面積が1.3m/gと顕著に小さい値を示し(表1)、粒度分布のピークもシャープであることが把握される(図4B)。即ち、実施例4は、比較的粒子径が大きいながらも、全体としては、実施例1~3と同様に、均一で表面荒れの無い構造が形成されていることが把握される。この事は、図2Aに示すSEM写真からも明らかである。 The SiOC structures manufactured in Example 4 have a relatively large average particle diameter than the SiOC structures manufactured in Examples 1 to 3, and a value larger than that of Comparative Example 1 (17.71 μm). showed that. However, unlike Comparative Example 1, Example 4 has a BET specific surface area of 1.3 m 2 /g, which is a remarkably small value (Table 1), and it is understood that the peak of the particle size distribution is also sharp ( FIG. 4B). That is, it is understood that, in Example 4, a structure having a uniform particle size and a uniform surface without roughness is formed as a whole as in Examples 1 to 3, although the particle size is relatively large. This is clear from the SEM photograph shown in FIG. 2A.
(充放電サイクル試験の結果)
 実施例1~4及び比較例1でそれぞれ作製したリチウムイオン電池について行った充放電サイクル試験の結果を表2並びに図5A及び5Bに示す。
 なお、図5Aにおいて、実線は充電容量を示し、破線は放電容量を示す。
(Result of charge/discharge cycle test)
The results of charge / discharge cycle tests performed on the lithium-ion batteries produced in Examples 1 to 4 and Comparative Example 1, respectively, are shown in Table 2 and FIGS. 5A and 5B.
In FIG. 5A, the solid line shows the charge capacity, and the broken line shows the discharge capacity.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 まず、図5Aから読み取れるとおり、5サイクル付近から比較的容量の落ち込みが安定する傾向にあることから、本充放電サイクル試験の結果については、5サイクル目に対する50サイクル目の容量維持率及び平均クーロン効率(平均CE)を算出することにより、各リチウムイオン電池の性能について評価した。 First, as can be read from FIG. 5A, since the capacity drop tends to be relatively stable from around 5 cycles, the results of this charge / discharge cycle test show the capacity retention rate and average coulomb at the 50th cycle with respect to the 5th cycle. The performance of each lithium-ion battery was evaluated by calculating the efficiency (average CE).
 その結果、表2及び図5Aに示される通り、実施例1~4で作製したリチウムイオン電池については、充放電サイクル試験において、5~50サイクルにおける容量維持率はいずれも、65%以上の値を示し、極めて良好な容量維持率を示した。加えて、これらリチウムイオン電池は、5~50サイクルにおける平均クーロン効率がいずれも、99%付近の値を示し、極めて良好な平均クーロン効率を保持した(表2及び図5B)。 As a result, as shown in Table 2 and FIG. 5A, for the lithium ion batteries produced in Examples 1 to 4, the capacity retention rate in 5 to 50 cycles was a value of 65% or more in the charge / discharge cycle test. And showed a very good capacity retention rate. In addition, the average coulombic efficiencies of these lithium-ion batteries in the 5 to 50 cycles all showed values of around 99%, and maintained extremely good averaged coulombic efficiencies (Table 2 and FIG. 5B).
 これに対して、比較例1で作製したリチウムイオン電池については、本発明所定のSiOC構造体を負極材料として使用した実施例1~4と比較して、5~50サイクルにおける容量維持率は、32.9%の値しか示さず、極めて劣っていた(表2及び図5A)。さらに、比較例1のリチウムイオン電池は、5~50サイクルにおけるクーロン効率も、97.2%の値しか示さず、実施例1~4のリチウムイオン電池と比較して劣っていた(表2及び図5B)。 On the other hand, in the lithium ion battery manufactured in Comparative Example 1, the capacity retention ratio in 5 to 50 cycles was higher than that in Examples 1 to 4 in which the predetermined SiOC structure of the present invention was used as the negative electrode material. It showed only a value of 32.9% and was extremely inferior (Table 2 and FIG. 5A). Furthermore, the lithium-ion battery of Comparative Example 1 also showed a coulombic efficiency of only 97.2% in 5 to 50 cycles, which was inferior to that of the lithium-ion batteries of Examples 1 to 4 (Table 2 and). FIG. 5B).
 以上のとおり、実施例1~4及び比較例1の結果によれば、本発明所定のSiOC構造体を採用した場合には、容量維持率及びクーロン効率の高い二次電池の提供が可能となることが示された。 As described above, according to the results of Examples 1 to 4 and Comparative Example 1, when the SiOC structure prescribed in the present invention is adopted, it is possible to provide a secondary battery having a high capacity retention rate and a high coulombic efficiency. Was shown.
 本発明は、SiOC材料、負極活物質、負極材等を製造する材料/化学分野、並びに二次電池及び各種電子機器等の電気電子の分野等において高い産業上の利用可能性を有する。 The present invention has high industrial applicability in the field of materials / chemicals for producing SiOC materials, negative electrode active materials, negative electrode materials, etc., and in the field of electrical and electronic equipment such as secondary batteries and various electronic devices.
300 リチウムイオン二次電池(コイン電池300)
301 負極材
302 セパレータ
303 リチウム対極

 
300 Lithium-ion secondary battery (coin battery 300)
301 Negative electrode material 302 Separator 303 Lithium counter electrode

Claims (29)

  1. (A)少なくとも1つのシリコン系微粒子と、
    (B)少なくともSi(ケイ素)とO(酸素)とC(炭素)とを構成元素として含有するSiOCコート層と、
    を含み、
    上記少なくとも1つのシリコン系微粒子は、上記SiOCコート層によって被覆されており、
    BET比表面積が20m/g以下であり、
    レーザー回折散乱式粒度分布測定法により得られる累積10%粒径(D10)、累積50%粒径(D50)、及び累積90%粒径(D90)が、1nm≦D50≦990μm、かつD90/D10≦13.0の条件を満たす、
    SiOC構造体。
    (A) With at least one silicon-based fine particle,
    (B) A SiOC coat layer containing at least Si (silicon), O (oxygen) and C (carbon) as constituent elements, and
    Including,
    The at least one silicon-based fine particle is coated with the SiOC coat layer.
    BET specific surface area is 20 m 2 / g or less,
    The cumulative 10% particle size (D10), cumulative 50% particle size (D50), and cumulative 90% particle size (D90) obtained by the laser diffraction scattering particle size distribution measurement method are 1 nm≦D50≦990 μm and D90/D10. Satisfy the condition of ≤13.0,
    SiOC structure.
  2. 上記少なくとも1つシリコン系微粒子と上記SiOCコート層とが互いに化学的に結合している、請求項1に記載のSiOC構造体。 The SiOC structure according to claim 1, wherein the at least one silicon-based fine particle and the SiOC coating layer are chemically bonded to each other.
  3. 上記BET比表面積が15m/g以下である、請求項1又は2に記載のSiOC構造体。 The SiOC structure according to claim 1 or 2, wherein the BET specific surface area is 15 m 2 / g or less.
  4. 上記BET比表面積が10m/g以下である、請求項1~3の何れか1項に記載のSiOC構造体。 The SiOC structure according to any one of claims 1 to 3, wherein the BET specific surface area is 10 m 2 /g or less.
  5. 上記累積50%粒径(D50)が、500nm≦D50≦100μmの条件を満たす、請求項1~4の何れか1項に記載のSiOC構造体。 The SiOC structure according to any one of claims 1 to 4, wherein the cumulative 50% particle diameter (D50) satisfies the condition of 500 nm ≤ D50 ≤ 100 µm.
  6. 上記累積50%粒径(D50)が、1μm≦D50≦20μmの条件を満たす、請求項1~5の何れか1項に記載のSiOC構造体。 The SiOC structure according to any one of claims 1 to 5, wherein the cumulative 50% particle diameter (D50) satisfies the condition of 1 µm ≤ D50 ≤ 20 µm.
  7. 上記累積10%粒径(D10)及び上記累積90%粒径(D90)が、2.0≦D90/D10≦12.0の条件を満たす、請求項1~6の何れか1項に記載のSiOC構造体。 7. The cumulative 10% particle diameter (D10) and the cumulative 90% particle diameter (D90) satisfy the condition of 2.0≦D90/D10≦12.0, according to any one of claims 1 to 6. SiOC structure.
  8. 上記累積10%粒径(D10)及び上記累積90%粒径(D90)が、2.5≦D90/D10≦8.0の条件を満たす、請求項1~7の何れか1項に記載のSiOC構造体。 8. The cumulative 10% particle size (D10) and the cumulative 90% particle size (D90) satisfy the condition of 2.5≦D90/D10≦8.0, according to any one of claims 1 to 7. SiOC structure.
  9. 上記少なくとも1つシリコン系微粒子は、1nm~2μmの範囲の体積基準平均粒子径を有する、請求項1~8の何れか1項に記載のSiOC構造体。 The SiOC structure according to any one of claims 1 to 8, wherein the at least one silicon-based fine particle has a volume-based average particle diameter in the range of 1 nm to 2 μm.
  10. 上記少なくとも1つシリコン系微粒子は、10nm~500nmの範囲の体積基準平均粒子径を有する、請求項1~9の何れか1項に記載のSiOC構造体。 The SiOC structure according to any one of claims 1 to 9, wherein the at least one silicon-based fine particle has a volume-based average particle diameter in the range of 10 nm to 500 nm.
  11. 上記少なくとも1つのシリコン系微粒子が上記SiOCコート層で完全に被覆されることにより複数の二次粒子が形成されており、該複数の二次粒子が上記SiOCコート層を介して互いに連結されている、請求項1~10の何れか1項に記載のSiOC構造体。 A plurality of secondary particles are formed by completely covering the at least one silicon-based fine particle with the SiOC coating layer, and the plurality of secondary particles are connected to each other through the SiOC coating layer. The SiOC structure according to any one of claims 1 to 10.
  12. SiOC構造体の総質量に基づき、50質量%~90質量%の範囲のSiと、5質量%~35質量%の範囲のOと、2質量%~35質量%の範囲のCとを主な構成元素として含む、請求項1~11の何れか1項に記載のSiOC構造体。 Based on the total mass of the SiOC structure, Si mainly in the range of 50% by mass to 90% by mass, O in the range of 5% by mass to 35% by mass, and C in the range of 2% by mass to 35% by mass. The SiOC structure according to any one of claims 1 to 11, which is contained as a constituent element.
  13. 請求項1~12の何れか1項に記載のSiOC構造体を負極活物質として含む、負極用組成物。 A composition for a negative electrode containing the SiOC structure according to any one of claims 1 to 12 as a negative electrode active material.
  14. 炭素系導電助剤及び/又は結着剤を更に含む、請求項13に記載の負極用組成物。 The composition for a negative electrode according to claim 13, further comprising a carbon-based conductive auxiliary agent and / or a binder.
  15. 請求項13又は14に記載の負極用組成物を含む、負極。 A negative electrode comprising the negative electrode composition according to claim 13.
  16. 請求項15に記載の負極を少なくとも1つ備えた、二次電池。 A secondary battery comprising at least one negative electrode according to claim 15.
  17. リチウムイオン二次電池である、請求項16に記載の二次電池。 The secondary battery according to claim 16, which is a lithium-ion secondary battery.
  18. (p)一般式(I):
    SiX 4-n  ・・・ (I)
    (式中、Rは、水素、水酸基、又は炭素数1~45の置換若しくは非置換の炭化水素であり、炭素数1~45の炭化水素において、任意の水素はハロゲンで置き換えられてもよく、任意の-CH2-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよく、
    は、ハロゲン、炭素数1~6のアルキルオキシ、又はアセトキシであり、
    及びXが、それぞれ複数存在する場合は、それぞれ互いに独立しており、
    nは0~3の整数である。)で表されるシラン化合物を加水分解し、次いで、シリコン系微粒子の存在下で重縮合させることにより、少なくとも1つのシリコン系微粒子が、少なくとも1種のシリコン含有ポリマーを含むコート層により被覆されてなる、シリコン系微粒子/シリコン含有ポリマー複合体を生成すること;並びに
    (q)非酸化性ガス雰囲気下において、上記シリコン系微粒子/シリコン含有ポリマー複合体に対して加熱処理を施すことにより、請求項1~10の何れか1項に記載のSiOC構造体に変換すること、
    を含む、SiOC構造体を製造する方法。
    (P) General formula (I):
    R 1 n SiX 1 4-n ... (I)
    (In the formula, R 1 is hydrogen, a hydroxyl group, or a substituted or unsubstituted hydrocarbon having 1 to 45 carbon atoms, and in the hydrocarbon having 1 to 45 carbon atoms, any hydrogen may be replaced with halogen. , Any -CH 2- may be replaced with -O-, -CH = CH-, cycloalkylene or cycloalkenylene.
    X 1 is halogen, alkyloxy having 1 to 6 carbons, or acetoxy,
    When a plurality of R 1 and X 1 are present, they are independent of each other,
    n is an integer from 0 to 3. ) Is hydrolyzed and then polycondensed in the presence of the silicon-based fine particles to coat at least one silicon-based fine particle with a coating layer containing at least one silicon-containing polymer. A silicon-based fine particle/silicon-containing polymer composite comprising: (q) heat-treating the silicon-based fine particle/silicon-containing polymer composite in a non-oxidizing gas atmosphere. Converting to the SiOC structure according to any one of 1 to 10;
    A method for producing a SiOC structure, which comprises.
  19. 一般式(I)で表されるシラン化合物が、下記一般式(II):
    10Si(R)(R)(R)  ・・・ (II)
    (式中、R、R及びRはそれぞれ独立に、水素、ハロゲン、水酸基又は炭素数1~4のアルキルオキシであり、R10は、炭素数1~45の置換又は非置換のアルキル、置換又は非置換のアリール、及び置換又は非置換のアリールアルキルからなる群から選択され、炭素数の1~45のアルキルにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよく、置換又は非置換のアリールアルキル中のアルキレンにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよい。)
    で表されるシラン化合物である、
    請求項18に記載の方法。
    The silane compound represented by the general formula (I) has the following general formula (II):
    R 10 Si (R 7 ) (R 8 ) (R 9 ) ・ ・ ・ (II)
    (In the formula, R 7 , R 8 and R 9 are independently hydrogen, halogen, hydroxyl group or alkyloxy having 1 to 4 carbon atoms, and R 10 is a substituted or unsubstituted alkyl having 1 to 45 carbon atoms. , A substituted or unsubstituted aryl, and a substituted or unsubstituted arylalkyl, and in the alkyl having 1 to 45 carbon atoms, any hydrogen may be replaced by halogen, and any --CH 2 -May be replaced by -O-, -CH=CH-, cycloalkylene or cycloalkenylene, and in the alkylene in the substituted or unsubstituted arylalkyl, any hydrogen may be replaced by halogen; -CH 2- may be replaced with -O-, -CH = CH-, cycloalkylene or cycloalkenylene.)
    Is a silane compound represented by
    18. The method of claim 18.
  20. 前記シリコン含有ポリマーは、下記の一般式(III)、(IV)、(V)、及び(VI)
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式中、R及びRはそれぞれ独立に、炭素数1から45の置換又は非置換のアルキル、置換または非置換のアリール、及び置換又は非置換のアリールアルキルからなる群から選択され、炭素数の1から45のアルキルにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン又はシクロアルケニレンで置き換えられてもよいものとし、置換又は非置換のアリールアルキル中のアルキレンにおいて任意の水素はハロゲンで置換えられてもよく、任意の-CH-は、-O-、-CH=CH-又はシクロアルキレンで置き換えられてもよく、
    、R、R及びRはそれぞれ独立に、水素、炭素数1~45の置換又は非置換のアルキル、置換又は非置換のアリール、及び置換又は非置換のアリールアルキルからなる群から選択され、炭素数の1~45のアルキルにおいて、任意の水素はハロゲンで置き換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン、シクロアルケニレン又は-SiR -で置き換えられてもよく、置換又は非置換のアリールアルキル中のアルキレンにおいて、任意の水素はハロゲンで置換えられてもよく、任意の-CH-は、-O-、-CH=CH-、シクロアルキレン、シクロアルケニレン又は-SiR -で置き換えられてもよく、nは1以上の整数を示す。)
    でそれぞれ表されるポリシルセスキオキサン構造をそれぞれ有するポリシルセスキオキサンからなる群から選択される少なくとも1つを含む、請求項18又は19に記載の方法。
    The silicon-containing polymer has the following general formulas (III), (IV), (V), and (VI).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 1 and R 4 are each independently selected from the group consisting of substituted or unsubstituted alkyl having 1 to 45 carbon atoms, substituted or unsubstituted aryl, and substituted or unsubstituted arylalkyl; In the number 1 to 45 alkyl, any hydrogen may be replaced with a halogen and any —CH 2 — may be replaced with —O—, —CH═CH—, cycloalkylene or cycloalkenylene. Provided that any hydrogen in the alkylene in the substituted or unsubstituted arylalkyl may be replaced by halogen, and any —CH 2 — may be replaced by —O—, —CH═CH— or cycloalkylene. Well,
    The R 2, R 3, R 5 and R 6 are each independently hydrogen, substituted or unsubstituted alkyl of 1 to 45 carbon atoms, a substituted or unsubstituted aryl, and from the group consisting of substituted or unsubstituted arylalkyl In the selected alkyl having 1 to 45 carbon atoms, any hydrogen may be replaced by halogen, and any —CH 2 — is —O—, —CH═CH—, cycloalkylene, cycloalkenylene or — SiR 1 2 — may be replaced, and in the alkylene in the substituted or unsubstituted arylalkyl, any hydrogen may be replaced by halogen, and any —CH 2 — may be —O—, —CH═. CH-, cycloalkylene, cycloalkenylene or -SiR 1 2 - may be replaced, n is an integer of 1 or more. )
    The method according to claim 18 or 19, comprising at least one selected from the group consisting of polysilsesquioxanes each having a polysilsesquioxane structure represented by
  21. 工程(p)において、下記(p-1)ないし(p-3)を行う、請求項18~20の何れか1項に記載の方法:
    (p-1)pHが3~6の酸性溶液に、一般式(I)で表されるシラン化合物を添加し、該シラン化合物を加水分解させること;
    (p-2)工程(p-1)により得られた反応液に、シリコン系微粒子又はその分散液を添加すること;
    (p-3)工程(p-2)により得られた混合液に、所定量の酸又はその溶液を添加することにより、上記混合液のpHを2以下に調整し、該混合液を所定時間かつ所定温度で静置させることにより、上記シラン化合物の重縮合を進行させ、上記シリコン系微粒子/シリコン含有ポリマー複合体を生成させること。
    The method according to any one of claims 18 to 20, wherein in the step (p), the following (p-1) to (p-3) is performed:
    (P-1) adding a silane compound represented by the general formula (I) to an acidic solution having a pH of 3 to 6 to hydrolyze the silane compound;
    (P-2) Add silicon-based fine particles or a dispersion thereof to the reaction solution obtained in step (p-1);
    (P-3) The pH of the mixed solution is adjusted to 2 or less by adding a predetermined amount of acid or a solution thereof to the mixed solution obtained in the step (p-2), and the mixed solution is kept for a predetermined time. And, by allowing it to stand at a predetermined temperature, the polycondensation of the silane compound is promoted to produce the silicon-based fine particles/silicon-containing polymer composite.
  22. 工程(p)において、下記(p-1’)ないし(p-3’)を行う、請求項18~21の何れか1項に記載の方法:
    (p-1’)pHが3~6の酸性溶液に、撹拌条件下、一般式(I)で表されるシラン化合物を段階的に添加し、撹拌条件下に、所定時間かつ所定温度で該シラン化合物を加水分解させること;
    (p-2’)工程(p-1’)により得られた反応液に、シリコン系微粒子又はその分散液を添加し、該シリコン系微粒子又はその分散液を上記反応液中に均一に分散させること;
    (p-3’)工程(p-2’)により得られた混合液に、所定量の酸又はその溶液を添加することにより、上記混合液のpHを2以下に調整し、次いで、該混合液を所定時間かつ所定温度で静置させることにより、上記シラン化合物の重縮合を進行させ、上記シリコン系微粒子/シリコン含有ポリマー複合体を生成させること。
    The method according to any one of claims 18 to 21, wherein the following (p-1') to (p-3') are performed in the step (p):
    (P-1') A silane compound represented by the general formula (I) is added stepwise to an acidic solution having a pH of 3 to 6 under stirring conditions, and the mixture is stirred under stirring conditions for a predetermined time at a predetermined temperature. Hydrolyzing silane compounds;
    (P-2′) Silicon fine particles or a dispersion thereof is added to the reaction liquid obtained in the step (p-1′) to uniformly disperse the silicon fine particles or a dispersion thereof in the reaction liquid. thing;
    (P-3′) The pH of the mixed solution is adjusted to 2 or less by adding a predetermined amount of acid or a solution thereof to the mixed solution obtained in the step (p-2′), and then the mixed solution is mixed. By allowing the liquid to stand at a predetermined temperature for a predetermined time, the polycondensation of the silane compound is promoted to generate the silicon-based fine particle/silicon-containing polymer composite.
  23. 工程(p)において、酸触媒として、酸又はその水溶液を用いる、請求項18~22の何れか1項に記載の方法。 The method according to any one of claims 18 to 22, wherein an acid or an aqueous solution thereof is used as the acid catalyst in the step (p).
  24. 一般式(I)において、n=1であり、Rが炭素数1~10の炭化水素であり、3つ存在するXが、それぞれ独立に、ハロゲン、炭素数1~6のアルキルオキシ、又はアセトキシである、請求項18~23の何れか1項に記載の方法。 In the general formula (I), n=1, R 1 is a hydrocarbon having 1 to 10 carbon atoms, three X 1 s are independently halogen, alkyloxy having 1 to 6 carbon atoms, The method according to any one of claims 18 to 23, which is or acetoxy.
  25. 工程(p)において、一般式(I)で表されるシラン化合物が、メチルトリメトキシシラン及びフェニルトリメトキシシランからなる群から選択される少なくとも1つのシラン化合物を含む、請求項18~24の何れか1項に記載の方法。 Any of claims 18 to 24, wherein in the step (p), the silane compound represented by the general formula (I) contains at least one silane compound selected from the group consisting of methyltrimethoxysilane and phenyltrimethoxysilane. The method according to item 1.
  26. 工程(q)における上記非酸化性ガス雰囲気が、不活性ガスを含む雰囲気である、請求項18~25の何れか1項に記載の方法。 The method according to any one of claims 18 to 25, wherein the non-oxidizing gas atmosphere in the step (q) is an atmosphere containing an inert gas.
  27. 工程(q)における上記非酸化性ガス雰囲気が、窒素ガス及び/又はアルゴンガスを含む雰囲気である、請求項18~26の何れか1項に記載の方法。 The method according to any one of claims 18 to 26, wherein the non-oxidizing gas atmosphere in the step (q) is an atmosphere containing nitrogen gas and / or argon gas.
  28. 工程(q)において、上記シリコン系微粒子/シリコン含有ポリマー複合体を、400℃~1800℃の範囲にある温度に加熱し、該温度で30分~10時間の範囲の時間加熱する、請求項18~27の何れか1項に記載の方法。 In step (q), the silicon-based fine particle / silicon-containing polymer composite is heated to a temperature in the range of 400 ° C. to 1800 ° C., and heated at that temperature for a time in the range of 30 minutes to 10 hours, claim 18. 28. The method according to any one of items 27 to 27.
  29. 請求項1~12の何れか1項に記載のSiOC構造体を負極活物質として用いることにより負極用組成物を取得することを含む、負極用組成物を製造する方法。

     
    A method for producing a negative electrode composition, which comprises obtaining the negative electrode composition by using the SiOC structure according to any one of claims 1 to 12 as a negative electrode active material.

PCT/JP2020/005738 2019-03-01 2020-02-14 Sioc structure and composition for negative electrode using same, negative electrode, and secondary battery WO2020179409A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021503511A JPWO2020179409A1 (en) 2019-03-01 2020-02-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-038011 2019-03-01
JP2019038011 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020179409A1 true WO2020179409A1 (en) 2020-09-10

Family

ID=72338364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005738 WO2020179409A1 (en) 2019-03-01 2020-02-14 Sioc structure and composition for negative electrode using same, negative electrode, and secondary battery

Country Status (3)

Country Link
JP (1) JPWO2020179409A1 (en)
TW (1) TW202043146A (en)
WO (1) WO2020179409A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113034205A (en) * 2021-04-20 2021-06-25 上海交通大学 Energy storage station and transformer substation combined planning method considering capacity-to-load ratio dynamic adjustment
CN113248257A (en) * 2021-05-12 2021-08-13 浙江大学 Co-continuous macroporous SiOC negative electrode material of lithium ion battery and preparation method thereof
WO2022239699A1 (en) * 2021-05-12 2022-11-17 株式会社村田製作所 Secondary battery
WO2023017694A1 (en) 2021-08-11 2023-02-16 Dic株式会社 Secondary battery material, negative electrode active material, and secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003150A1 (en) * 2016-06-30 2018-01-04 Jnc株式会社 Silicon nanoparticle-containing hydrogen polysilsesquioxane, calcined product thereof, and method for producing said polysilsesquioxane and said calcined product
WO2018131606A1 (en) * 2017-01-11 2018-07-19 Jnc株式会社 Silicon nanoparticle-containing hydrogen polysilsesquioxane sintered product–metal oxide complex, method for producing same, negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery, and lithium-ion battery
WO2018131608A1 (en) * 2017-01-11 2018-07-19 Jnc株式会社 Polysilsesquioxane-coated silicon nanoparticles or sintered product thereof, production method therefor, negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery, and lithium-ion battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003150A1 (en) * 2016-06-30 2018-01-04 Jnc株式会社 Silicon nanoparticle-containing hydrogen polysilsesquioxane, calcined product thereof, and method for producing said polysilsesquioxane and said calcined product
WO2018131606A1 (en) * 2017-01-11 2018-07-19 Jnc株式会社 Silicon nanoparticle-containing hydrogen polysilsesquioxane sintered product–metal oxide complex, method for producing same, negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery, and lithium-ion battery
WO2018131608A1 (en) * 2017-01-11 2018-07-19 Jnc株式会社 Polysilsesquioxane-coated silicon nanoparticles or sintered product thereof, production method therefor, negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery, and lithium-ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113034205A (en) * 2021-04-20 2021-06-25 上海交通大学 Energy storage station and transformer substation combined planning method considering capacity-to-load ratio dynamic adjustment
CN113034205B (en) * 2021-04-20 2022-03-11 上海交通大学 Energy storage station and transformer substation combined planning method considering capacity-to-load ratio dynamic adjustment
CN113248257A (en) * 2021-05-12 2021-08-13 浙江大学 Co-continuous macroporous SiOC negative electrode material of lithium ion battery and preparation method thereof
CN113248257B (en) * 2021-05-12 2022-09-30 浙江大学 Co-continuous macroporous SiOC negative electrode material of lithium ion battery and preparation method thereof
WO2022239699A1 (en) * 2021-05-12 2022-11-17 株式会社村田製作所 Secondary battery
WO2023017694A1 (en) 2021-08-11 2023-02-16 Dic株式会社 Secondary battery material, negative electrode active material, and secondary battery
KR20240042054A (en) 2021-08-11 2024-04-01 디아이씨 가부시끼가이샤 Materials for secondary batteries, negative active materials and secondary batteries

Also Published As

Publication number Publication date
TW202043146A (en) 2020-12-01
JPWO2020179409A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
US20200280057A1 (en) SILICON-BASED FINE PARTICLE/SILICON-CONTAINING POLYMER COMPOSITE AND METHOD OF PRODUCING THE SAME, SiOC STRUCTURE AND METHOD OF PRODUCING THE SAME, NEGATIVE ELECTRODE COMPOSITION USING SiOC STRUCTURE, NEGATIVE ELECTRODE, AND LITHIUM ION SECONDARY BATTERY
WO2020179409A1 (en) Sioc structure and composition for negative electrode using same, negative electrode, and secondary battery
JP6941302B2 (en) Polysilsesquioxane-coated silicon nanoparticles or their fired product and its manufacturing method, negative electrode active material for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion batteries
JP6987358B2 (en) A core-shell structure, a method for manufacturing the same, a composition for a negative electrode using the core-shell structure as a negative electrode active material, a negative electrode, and a secondary battery.
JP6819024B2 (en) Hydrogen polysilsesquioxane containing silicon nanoparticles, its calcined product, and method for producing them
EP3597597A1 (en) Spherical sioc particulate electrode material
US10770717B2 (en) Composition for secondary battery negative electrode and negative electrode for secondary battery using the same and secondary battery
JP6726394B2 (en) Silicon nanoparticle-containing hydrogen polysilsesquioxane calcined product-metal oxide composite, method for producing the same, negative electrode active material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
WO2012105669A1 (en) Method for manufacturing a carbon surface-coated silicon-containing carbon-based composite material
JP2014107013A (en) Silicon-containing composite material
KR20210103480A (en) Silicon nanoparticles, active material for negative electrode of non-aqueous secondary battery using same, and secondary battery
JP7052495B2 (en) Spherical hydrogen polysilsesquioxane fine particles and spherical silicon oxide fine particles, and a method for producing these.
TW201725772A (en) Method for producing negative electrode active material for lithium ion secondary batteries
TWI692904B (en) Negative electrode active material for lithium ion secondary battery and manufacturing method thereof
JP6727558B2 (en) Silicon nanoparticle-containing fired product of hydrogen polysilsesquioxane, negative electrode active material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
JP6986201B2 (en) Hydrogen polysilsesquioxane containing silicon nanoparticles, silicon oxide structure and method for producing them
JP2014029785A (en) Silicon-containing carbon-based composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765693

Country of ref document: EP

Kind code of ref document: A1