WO2020179346A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2020179346A1
WO2020179346A1 PCT/JP2020/004512 JP2020004512W WO2020179346A1 WO 2020179346 A1 WO2020179346 A1 WO 2020179346A1 JP 2020004512 W JP2020004512 W JP 2020004512W WO 2020179346 A1 WO2020179346 A1 WO 2020179346A1
Authority
WO
WIPO (PCT)
Prior art keywords
turning
angle
braking
working machine
work
Prior art date
Application number
PCT/JP2020/004512
Other languages
French (fr)
Japanese (ja)
Inventor
理優 成川
坂本 博史
秀一 森木
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2020179346A1 publication Critical patent/WO2020179346A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Definitions

  • the present invention relates to a work machine.
  • a work machine for example, a hydraulic excavator
  • a work machine driven by a hydraulic actuator for example, an articulated front work machine including a boom, an arm and an attachment
  • the work machine There may be obstacles (for example, structures such as buildings) on the side of the.
  • obstacles for example, structures such as buildings
  • intrusion prohibition areas work sites close to areas where work machines should not enter
  • the operator of the work machine needs to operate the work machine so as to avoid contact with these structures and intrusion into the invasion prohibited area.
  • an electric motor for rotating and driving an upper revolving structure by rotating a rotor with respect to a stator, an angular velocity detecting means for detecting an angular velocity of the rotor as a motor angular velocity, and the motor angular velocity is controlled by a turning operation lever.
  • the control device is disclosed.
  • the controller determines the turning braking start timing for stopping the turning body at the turning stop angle position at a predetermined turning deceleration and the subsequent target turning angular velocity based on the turning remaining angle of the turning body.
  • Angular velocity control is executed, and regardless of this control, disturbance (that is, external force that can be a resistance to turning (eg, gravity or wind acting on the upper revolving superstructure in a tilted posture)) causes Disclosed is a turning stop control device and method for a turning work machine, which corrects the target turning angular velocity to increase and generates restartable turning torque when the turning body stops at a position.
  • a control for applying a braking force (braking torque) to a working machine (turning body) during turning operation to stop at a predetermined turning angle.
  • a control turning braking control
  • braking torque braking torque
  • the front working machine is operated and the length and the moment of inertia of the front working machine are changed before the revolving structure is stopped by the braking force, which may cause a problem.
  • the front work machine for example, when a linear work area is defined on the side surface side of the front work machine, even if the same braking torque is applied at the same turning angle, the front work machine ( Depending on the length of the arm), it may or may not deviate from the work area. However, since such a situation is not taken into consideration in the above-mentioned prior art documents, depending on the length of the front working machine, even if the front working machine is stopped at a predetermined turning angle, the front working machine deviates from the work area (that is, intrusion prohibition). (Invades the area).
  • the latter moment of inertia changes depending on the posture of the front working machine and affects the turning motion, so it is necessary to consider it when turning braking.
  • the moment of inertia fluctuates according to the posture change of the front work implement. If the front working machine is operated in the direction in which the moment of inertia increases, the turning braking angle, which is the turning angle from the time when the turning braking is executed to the time when the front braking is stopped, increases, and there is a possibility of deviating from the work area.
  • An object of the present invention is to provide a work machine capable of preventing the occurrence of a problem due to the operation of the front work machine for executing the turning braking control in which a braking force is applied to the turning body during the turning operation to stop the turning body at a predetermined turning angle.
  • the present application includes a plurality of means for solving the above problems, and to give an example thereof, the lower traveling body, the upper rotating body rotatably attached to the lower traveling body, and the upper rotating body.
  • the upper revolving structure and the working machine Based on the attached work machine, the position of the preset work area, and the postures of the upper revolving structure and the working machine, the upper revolving structure and the working machine are deviated from the work area before deviating from the upper area.
  • a control device that calculates a target turning stop angle, which is a target value of a turning angle for stopping the turning of the turning body, and outputs a turning stop command for stopping the upper turning body during turning at the target turning stop angle.
  • the control device controls the operation of the upper revolving structure and the working machine during a braking period from when the turning stop command is output to when the upper revolving structure stops.
  • a predicted swing braking angle that is the angle at which the upper swing structure swings during the braking period is calculated, and the predicted swing braking angle of the working machine during the braking period is calculated. It is characterized in that the target turning stop angle is corrected based on the prediction result of the operation, and the turning stop command is output at a timing determined based on the predicted turning braking angle and the corrected target turning stop angle.
  • FIG. 3 is a detailed view of a control hydraulic unit in FIG. 2.
  • the hardware block diagram of the control controller of the hydraulic excavator of FIG. The figure which shows the coordinate system (excavator reference coordinate system) in a hydraulic excavator.
  • FIG. 3 is a functional block diagram of the controller according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a flowchart of deviation prevention control according to the first embodiment of the present invention.
  • the functional block diagram of the control controller which concerns on the modification of 1st Embodiment of this invention.
  • a hydraulic excavator including a bucket as a working tool (attachment) at the tip of the working machine is illustrated, but the present invention may be applied to a working machine including an attachment other than the bucket. Further, as long as it has a multi-joint type working machine configured by connecting a plurality of link members (attachment, boom, arm, etc.) on a swingable structure, a working machine other than a hydraulic excavator can be used. Can also be applied.
  • the lowercase letters of the alphabet may be added at the end of the code, but the uppercase letters of the alphabet should be omitted and the plurality of components should be described together.
  • the same three pumps 190a, 190b, 190c are present, these may be collectively referred to as a pump 190.
  • FIG. 1 is a configuration diagram of a hydraulic excavator according to a first embodiment of the present invention
  • FIG. 2 is a diagram showing a control controller (control device) 40 of the hydraulic excavator according to an embodiment of the present invention together with a hydraulic drive device.
  • 3 is a detailed view of the front control hydraulic unit 160 shown in FIG.
  • the hydraulic excavator 1 is composed of an articulated front working machine 1A and a vehicle body (machine body) 1B.
  • the vehicle body (machine body) 1B is mounted on the lower traveling body 11 which is driven by the left and right traveling hydraulic motors 3a and 3b, and is driven by the pivoting hydraulic motor 4 so that the vehicle body can rotate in the left and right directions. It consists of a body 12.
  • the front working machine 1A is configured by connecting a plurality of front members (boom 8, arm 9, and bucket 10) that rotate in the vertical direction, respectively, and is attached to the upper swing body 12.
  • the base end of the boom 8 is rotatably supported at the front part of the upper swing body 12 via a boom pin.
  • the arm 9 is rotatably connected to the tip of the boom 8 via an arm pin, and the bucket 10 is rotatably connected to the tip of the arm 9 via a bucket pin.
  • the boom 8 is driven by the boom cylinder 5, the arm 9 is driven by the arm cylinder 6, and the bucket 10 is driven by the bucket cylinder 7.
  • a boom angle sensor 30 is attached to the boom pin, an arm angle sensor 31 is attached to the arm pin, and a bucket angle sensor is attached to the bucket link 14 so that the rotation angles ⁇ , ⁇ , ⁇ (see FIG. 5) of the boom 8, the arm 9, and the bucket 10 can be measured.
  • 32 is attached, and a vehicle body tilt angle sensor 33 that detects an inclination angle ⁇ (see FIG. 5) of the upper swing body 12 (vehicle body 1B) with respect to a reference plane (for example, a horizontal plane) is attached to the upper swing body 12.
  • the angle sensors 30, 31, and 32 can be replaced with angle sensors (for example, an inertial measurement unit (IMU)) that detects an angle with respect to a reference plane (for example, a horizontal plane), respectively.
  • the obtained cylinder stroke may be converted into an angle by substituting the cylinder stroke sensor for detecting the stroke of each hydraulic cylinder 5, 6, 7.
  • a turning angle sensor 19 capable of detecting the relative angle (turning angle ⁇ sw ) between the upper turning body 12 and the lower running body 11 is attached near the rotation center of the upper turning body 12 and the lower traveling body 11. Further, a turning angular velocity sensor 17 capable of detecting the turning angular velocity is attached to the upper-part turning body 12.
  • An operating device 47a (FIG. 2) for operating the traveling right hydraulic motor 3a (lower traveling body 11) having a traveling right lever 23a (FIG. 1) is provided in the cab provided in the upper swing body 12, and traveling The operating device 47b (FIG. 2) for operating the traveling left hydraulic motor 3b (lower traveling body 11) having the left lever 23b (FIG. 1) and the operation right lever 22a (FIG. 1) are shared and the boom cylinder 5 ( The operation cylinders 45a and 46a (FIG. 2) for operating the boom 8) and the bucket cylinder 7 (bucket 10) share the operation left lever 22b (FIG. 1), and the arm cylinder 6 (arm 9) and the swing hydraulic motor 4 are shared. Operating devices 45b and 46b (FIG. 2) for operating the (upper rotating body 12) are installed.
  • the operation right lever 22a, the operation left lever 22b, the traveling right lever 23a, and the traveling left lever 23b may be collectively referred to as the operation levers 22 and 23.
  • the hydraulic pump 2 is a variable displacement pump whose displacement is controlled by the regulator 2a, and the pilot pump 48 is a fixed displacement pump.
  • a shuttle block 162 is provided in the middle of the pilot lines 144, 145, 146, 147, 148, and 149.
  • the hydraulic signals output from the operating devices 45, 46, 47 are also input to the regulator 2a via the shuttle block 162.
  • a hydraulic signal is input to the regulator 2a via the shuttle block 162, and the discharge flow rate of the hydraulic pump 2 is controlled according to the hydraulic signal.
  • the operating devices 45, 46, 47 are of the hydraulic pilot type, and the operation amount (for example, lever stroke) of the operating levers 22, 23 operated by the operator based on the pressure oil discharged from the pilot pump 48, respectively. Pilot pressure (sometimes called operating pressure) is generated according to the operating direction. The pilot pressure generated in this way is supplied to the hydraulic drive units 150a to 155b of the corresponding flow rate control valves 15a to 15f (see FIG. 2) in the control valve unit 20 via the pilot lines 144a to 149b (see FIG. 2). It is used as a control signal for driving these flow control valves 15a to 15f.
  • the pressure oil discharged from the hydraulic pump 2 passes through the flow control valves 15a, 15b, 15c, 15d, 15e, 15f (see FIG. 2), and the traveling right hydraulic motor 3a, the traveling left hydraulic motor 3b, and the swing hydraulic motor 4, It is supplied to the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7.
  • the boom cylinder 5, arm cylinder 6, and bucket cylinder 7 expand and contract with the supplied pressure oil, so that the boom 8, arm 9, and bucket 10 rotate, respectively, and the position and posture of the bucket 10 change.
  • the swing hydraulic motor 4 is rotated by the supplied pressure oil, so that the upper swing body 12 swings with respect to the lower traveling body 11.
  • the traveling right hydraulic motor 3a and the traveling left hydraulic motor 3b are rotated by the supplied pressure oil, so that the lower traveling body 11 travels.
  • the traveling hydraulic motor 3, the swing hydraulic motor 4, the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7 may be collectively referred to as a hydraulic actuator 3-7.
  • FIG. 4 is a configuration diagram of a deviation prevention control system (turning braking control system) included in the hydraulic excavator according to the present embodiment.
  • a deviation prevention control system (turning braking control system) included in the hydraulic excavator according to the present embodiment.
  • the shovel 1 when a turning operation is input from the operator to the operation lever 22b and the upper turning body 12 turns, the shovel 1 (more specifically) from a preset work area where the movement of the shovel 1 is permitted.
  • the deviation prevention that forcibly decelerates or stops the swing hydraulic motor 4 It executes control.
  • this control is referred to as "turning braking control”.
  • the swivel braking control when the operation of the swivel hydraulic motor 4 is instructed by the operation of the operation lever 22b, it is based on the positional relationship between the boundary of the work area 60 (work area boundary) 61 (see FIG. 7) and the hydraulic excavator 1.
  • a control signal for limiting the operation of the swing hydraulic motor 4 that approaches the work area boundary 61 is output to the flow control valve 15d, thereby preventing the hydraulic excavator 1 from deviating from the work area.
  • deviation of each part of the hydraulic excavator 1 from the work area 60 can be prevented. It becomes possible to concentrate on the original work of.
  • the work area 60 set along the side surface of the shovel 1 (the side surface of the lower traveling body 11) is shown.
  • the system of FIG. 4 includes a work machine posture detection device 51, a work area setting device 52, an operator operation detection device 53, a turning angle detection device 54, a turning angular velocity detection device 55, and a controller for controlling deviation prevention control (control).
  • the device) 40, a display device 83 capable of displaying the positional relationship between the work area 60 and the hydraulic excavator 1, and electromagnetic proportional valves 87 (87a, 87b) are provided.
  • the work implement attitude detection device 51 is a sensor that detects the attitude information of the upper swing body 12 (vehicle body 1B) and the front work implement 1A, and includes a boom angle sensor 30, an arm angle sensor 31, and a bucket attached to the front work implement 1A. It is composed of an angle sensor 32 and a vehicle body inclination sensor 33 which is an IMU attached to the upper swing body 12.
  • the turning angle detection device 54 includes a turning angle sensor 19 that detects a relative angle (turning angle ⁇ sw ) between the upper turning body 12 and the lower traveling body 11.
  • the turning angular velocity detection device 55 includes a turning angular velocity sensor 17 that detects a turning angular velocity of the upper-part turning body 12.
  • the turning angular velocity can be obtained from the difference (time change) of the turning angle ⁇ sw detected by the turning angle detection device 54 (turning angle sensor 19), and in this case, the turning angular velocity sensor 17 can be omitted. ..
  • the work area setting device 52 is an interface that can set the work area 60 of the hydraulic excavator 1 as shown in FIG. 7. Specifically, the work area 60 is set by setting the work area boundary 61. The operator may manually set the work area 60 via the work area setting device 52, or the work area setting device 52 is connected to an external terminal and the work area 60 set by the external terminal is swiveled and braked. It may be used for control. Further, the work area 60 can be set, for example, on the local coordinate system (excavator reference coordinate system) set in the hydraulic excavator 1 (for example, the lower traveling body 11). Besides, it is also possible to set on a desired coordinate system such as a global coordinate system (geographical coordinate system) or a site coordinate system set on the site.
  • a desired coordinate system such as a global coordinate system (geographical coordinate system) or a site coordinate system set on the site.
  • GNSS Global Navigation Satellite System
  • the swing braking control may be executed by calculating the coordinates and reading the work area 60 existing in a predetermined range from the coordinates into the controller 40.
  • the operator operation detection device 53 detects pressure sensors 70a to 75a and pressure sensors 70b to 75b (see FIG. 2) that detect the operation pressure generated in the pilot lines 144 to 149 shown in FIG. 2 by the operation of the operation levers 22 and 23 by the operator. Composed of. That is, the operator operation detection device 53 (pressure sensors 70 to 75) detects the operation of the operator regarding the hydraulic actuator 3-7.
  • the control controller 40 is based on the position of the work area 60 and the postures of the upper swing body 12 and the front work machine 1A, before the upper swing body 12 and the front work machine 1A deviate from the work area 60.
  • the target turning stop angle ⁇ stop (described later), which is the target value of the turning angle for stopping the turning, is calculated, and the turning stop for turning braking control to stop the upper turning body 12 during turning at the target turning stop angle is performed.
  • the control controller 40 executes turning braking control by appropriately changing the operating pressure generated in the pilot lines 147a and 147b by the operation of the operating lever 22b by the control hydraulic unit 160 (see FIG. 2).
  • FIG. 3 shows the details of the control hydraulic unit 160.
  • the control hydraulic unit 160 includes electromagnetic proportional valves 87a and 87b, which are pressure reducing valves installed on the two pilot lines 147a and 147b, respectively.
  • the electromagnetic proportional valves 87a and 87b are electrically connected to the control controller 40, and the valve opening degree is controlled based on the control signal output from the control controller 40, whereby the operating pressure of the pilot lines 147a and 147b ( Pilot pressure) can be reduced.
  • the opening degree of the electromagnetic proportional valves 87a and 87b is maximum when the power is off, and the opening degree decreases as the current, which is a control signal from the control controller 40, is increased. That is, the electromagnetic proportional valves 87a and 87b can generate a pilot pressure in which the pilot pressure generated by the operator operating the operating lever 22b is forcibly reduced.
  • the signal may be referred to as a "turning stop command".
  • the turning stop command of this embodiment reduces the operating pressure (pilot pressure) of the pilot lines 147a and 147b, but another operating pressure is generated as long as it brakes the turning of the upper swing body 12. May be.
  • another operation pressure for example, there is a pressure that causes the upper-part turning body 12 to turn in a direction opposite to the turning direction defined by the operator's operation.
  • the turning stop command may be a command that changes the pilot pressure according to the passage of time or a change in turning speed.
  • control controller 40 includes an input interface 91, a central processing unit (CPU) 92 that is a processor, a read only memory (ROM) 93 and a random access memory (RAM) 94 that are storage devices, and an output interface 95.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • the input interface 91 receives signals from the angle sensors 30, 31, 32, 34 and the tilt angle sensor 33, which are the working machine posture detection device 51, and a work area setting device 52, which is a device for setting the work area 60. Signals, a signal from an operator operation detecting device 53 which is a pressure sensor (including the pressure sensors 70 to 75) for detecting an operation amount from the operating devices 45 to 47, and a turning angle sensor 19 which is a turning angle detecting device 54. Signal and the signal from the turning angular velocity sensor 17 which is the turning angular velocity detection device 55 are input and converted so that the CPU 92 can calculate.
  • the ROM 93 is a recording medium in which a control program for executing deviation prevention control (turning braking control) including processing related to a flowchart described later and various information necessary for executing the flowchart are stored. According to the control program stored in the ROM 93, a predetermined arithmetic processing is performed on the signals received from the input interface 91 and the memories 93 and 94.
  • the output interface 95 controls the swing hydraulic motor 4 by creating an output signal according to the calculation result in the CPU 92 and outputting the signal to the solenoid proportional valve 87 (87a, 87b) or the display device 83.
  • images of the front working machine 1A, the vehicle body 1B, the bucket 10, the work area 60, and the like are displayed on the screen of the display device 83.
  • the control controller 40 of FIG. 4 is provided with semiconductor memories of ROM 93 and RAM 94 as storage devices, but any storage device can be substituted, and for example, a magnetic storage device such as a hard disk drive may be provided.
  • FIG. 6 is a functional block diagram of the controller 40.
  • the control controller 40 By executing the program stored in the ROM 93 by the CPU 92, the control controller 40 operates the turning angle calculation unit 170, the work area calculation unit 171, the work machine attitude calculation unit 172, the turning angular velocity calculation unit 173, and the operator. Functions as a speed estimation unit 174, a display control unit 175, a solenoid proportional valve control 176, a target stop angle calculation unit 101, a turning braking behavior prediction unit 102, a target stop angle correction unit 103, and a turning command calculation unit 104. To do. The processing in each unit will be described below.
  • the turning angle calculation unit 170 calculates the turning angle ⁇ sw of the upper turning body 12 in the shovel reference coordinate system (local coordinate system) based on the information from the turning angle detection device 54 (turning angle sensor 19).
  • the work implement posture calculation unit 172 calculates the posture of the front work implement 1A in the shovel reference coordinate system.
  • the posture of the hydraulic shovel 1 can be defined on the shovel reference coordinate system in FIG.
  • the shovel reference coordinate system in FIG. 5 has an origin at a point on the turning center axis where the lower traveling body 11 contacts the ground.
  • the traveling direction when the undercarriage 11 travels straight and the operating plane of the front working machine 1A are parallel, and the operating direction of the extending direction of the front working machine 1A and the operating direction when the undercarriage 11 is forwarded are
  • the matching directions are the X-axis
  • the turning center of the upper swivel body 12 is the Z-axis
  • the X-axis and the Z-axis described above are defined as the Y-axis so as to form a right-handed coordinate system.
  • the turning angle ⁇ sw the state in which the front working machine 1A is parallel to the X axis is 0 degree.
  • the rotation angle of the boom 8 with respect to the X-axis is the boom angle ⁇
  • the rotation angle of the arm 9 with respect to the boom 8 is the arm angle ⁇
  • the rotation angle of the tip of the toe of the bucket 10 with respect to the arm 9 is the bucket angle ⁇
  • the rotation of the upper revolving structure 12 with respect to the lower traveling structure 11 is the same.
  • the turning angle was defined as the turning angle ⁇ sw .
  • the boom angle ⁇ is detected by the boom angle sensor 30, the arm angle ⁇ is detected by the arm angle sensor 31, the bucket angle ⁇ is detected by the bucket angle sensor 32, and the swivel angle ⁇ sw is detected by the swivel angle sensor 19.
  • the posture and position of each part of the hydraulic excavator 1 in the excavator reference coordinate system can be calculated. Further, the inclination angle ⁇ of the vehicle body 1B with respect to the horizontal plane (reference plane) perpendicular to the direction of gravity can be detected by the vehicle body inclination angle sensor 33.
  • the work area calculation unit 171 executes an operation of converting the position information of the work area 60 into the excavator reference coordinate system shown in FIG. 5 based on the information from the work area setting device 52.
  • the work area 60 defined by a single work area boundary 61 as shown in FIG. 7 is shown, but the work area 60 may be defined by a plurality of work area boundaries 61.
  • the work area boundary 61 is not limited to the straight line shown in FIG. 7, but may be a curved line, and is not limited to the straight line substantially parallel to the X axis as shown in FIG.
  • the operator operation speed estimation unit 174 correlates the pilot pressure (operation pressure) detected by the operator operation detection device 53 (pressure sensors 70 to 75) with the pilot pressure and the actuator speed previously stored in the ROM 93 in the controller 40. Based on a table (see, eg, FIG. 11), the speed of the hydraulic actuator 3-7 operated by the operator is estimated.
  • the detection of the operation amount by the pressure sensors 70-75 is merely an example, and for example, a position sensor (for example, a rotary encoder) that detects the rotational displacement (tilt amount) of each operation lever 22, 23 is used for the operation lever 22, 23.
  • the pilot pressure is calculated from the lever operation amount based on the detected lever operation amount and the correlation table of the lever operation amount and the pilot pressure, and the spectacular table illustrated in FIG. 11 is used.
  • the speed of the hydraulic actuator 3-7 may be estimated. Further, instead of the configuration in which the operating speed of each hydraulic actuator 3-7 is estimated from the operation amount of the operator, the displacement of the hydraulic cylinder 3-7 is calculated from the detection values of the angle sensors 30 to 32 and the vehicle body inclination angle sensor 33, The operating speed may be calculated based on the time change of the displacement.
  • the turning angular velocity calculation unit 173 calculates the turning angular velocity of the upper swing body 12 based on the detection value of the turning angular velocity detection device 55 (turning angular velocity sensor 17).
  • the target stop angle calculation unit 101 includes the position of the work area 60 (work area boundary 61) calculated by the work area calculation unit 171, and the front work machine 1A and the upper swing body 12 calculated by the work machine attitude calculation unit 172. Based on the posture, a target turning stop angle ⁇ stop, which is a target value of a turning angle for stopping the turning of the upper swing body 12 before the front working machine 1A and the upper swing body 12 deviate from the work area 60, is calculated. .. In the excavator reference coordinate system, the target stop angle calculation unit 101 of the present embodiment has the reach length (sometimes simply referred to as “reach”) Rbk (FIG. 5) of the front work machine 1A and the work area boundary from the main body 1B.
  • the target turning stop angle ⁇ stop is calculated. For example, the calculation of the target turning stop angle ⁇ stop when the left end portion 10L of the bucket 10 approaches the work area boundary 61 of FIG. 7 will be described.
  • the distance d (FIG. 7) between the work area boundary 61 and the origin of the excavator reference coordinate system (the turning center 120 of the upper turning body 12), the length of the turning center 120 of the upper turning body 12 and the boom pin 8a in the X-axis direction is Lsb.
  • the length from the boom pin 8a to the arm pin 9a is Lbm
  • the length from the arm pin 9a to the bucket pin 10a is Lam (FIG.
  • the target turning stop angle ⁇ stop is It is expressed as 3).
  • the target turning stop angle ⁇ stop at this time is the turning angle ⁇ sw when the left end 10L of the bucket tip is located on the work area boundary 61, as shown in FIG. In this case, the left end 10L of the bucket tip reaches the work area boundary 61 at the earliest point on the hydraulic excavator 1 due to the turning operation of the upper swing body 12.
  • the point on the hydraulic excavator 1 that reaches the work area boundary 61 earliest by the turning motion of the upper swing body 12 changes each time. obtain.
  • the turning braking behavior prediction unit 102 is a period from the time when the turning stop command is output from the control controller 40 (start of turning braking) to the time when the upper turning body 12 is stopped (may be referred to as “braking period” in this document).
  • the turning braking behavior prediction unit 102 sets the braking period as initial conditions, for example, at a predetermined timing determined by the control cycle, with the posture of the front working machine 1A at that moment, the speed of the front working machine 1A, and the angular velocity of the upper turning body 12 as initial conditions.
  • the behaviors of the upper revolving superstructure 12 and the front working machine 1A are predicted. More specifically, the swing braking behavior prediction unit 102 changes the rotation angles ⁇ , ⁇ , ⁇ of the boom 8, the arm 9, and the bucket 10 during the braking period by the swing braking control, thereby changing the front working machine 1A.
  • Predicted value of reach (also referred to as “predictive work machine reach”) Rpre change and the angle at which the upper swing body 12 turns during the braking period (that is, the angle required from the start of turning braking to the stop of turning)
  • a predicted value of the turning braking angle (also referred to as “predicted turning braking angle”) ⁇ pre.
  • the change in reach Rpre of the front working machine 1A and the turning braking angle ⁇ pre can be calculated, for example, based on the equation of motion of the following equation (4).
  • is the braking torque for turning
  • is the turning angular velocity
  • J is the moment of inertia of the upper swinging body 12 that depends on the posture of the front working machine 1A (working machine posture)
  • B is the viscous damping coefficient
  • C is dependent on the working machine posture.
  • the change in the reach Rpre of the front working machine 1A during the braking period is defined by the change in the speed of the hydraulic actuator 5-7 during the braking period based on the speed characteristic of the hydraulic actuator (hydraulic cylinder) 5-7. Can be calculated by geometrically changing the rotation angles ⁇ , ⁇ , and ⁇ .
  • the speed characteristic of the hydraulic actuator 5-7 the correlation table between the pilot pressure and the hydraulic actuator 5-7 shown in FIG. 11 used by the operator operation speed estimation unit 174 is used.
  • the reach Rbk of the front working machine 1A shown in the equation (2) is calculated from the posture at the time of calculation (current time) to the maximum value.
  • the amount of increase in reach Rbk per hour is the theoretical maximum value defined by the specifications of the excavator 1.
  • the reach Rbk reaches the maximum value during the braking period, the maximum value is maintained thereafter.
  • the swing braking control when the operator operates so that the reach of the front work implement 1A increases from the current attitude and speed of the front work implement 1A toward the maximum value
  • the behavior at time can be predicted, and the predicted turning braking angle ⁇ pre can be calculated based on the behavior.
  • the turning braking behavior prediction unit 102 of the present embodiment calculates the predicted braking angle ⁇ pre on the assumption that the reach Rbk of the front work implement 1A continues to increase during the braking period.
  • the turning braking behavior prediction unit 102 does not assume a change in the posture of the front working machine 1A during the braking period, and the current posture.
  • the turning braking angle ⁇ pre is calculated while keeping (that is, the reach Rbk is the maximum value).
  • the target stop angle correction unit 103 corrects the target turn stop angle ⁇ stop from the prediction result of the operation of the front work machine 1A by the turn braking behavior prediction unit 102 (specifically, the reach Rpre of the front work machine 1A).
  • the modified value of the target turning stop angle ⁇ stop may be referred to as the modified turning stop angle ⁇ rs.
  • the corrected turning stop angle ⁇ rs of the present embodiment is a point on the shovel 1 when turning toward the work area boundary 61 while extending the reach of the front working machine 1A from the current value toward the maximum value according to a predetermined rule.
  • the turning angle ⁇ sw when the point at which the work area boundary 61 is reached earliest in the case of FIG.
  • the corrected turning stop angle ⁇ rs is usually smaller than ⁇ stop as the reach increases when the reach is not the maximum at the current time.
  • ⁇ rs and ⁇ stop have the same value.
  • the target stop angle correction unit 103 of the present embodiment corrects the turn stop angle ⁇ stop by correcting the target turn stop angle ⁇ stop on the assumption that the reach Rbk of the front work machine 1A continues to increase during the braking period. It can be said that the angle ⁇ rs is calculated.
  • the turning stop command (turning stop command (turning stop command) is determined based on the modified turning stop angle ⁇ rs, the current turning angle ⁇ c (turning angle detected by the turning angle sensor 19), and the predicted turning braking angle ⁇ pre.
  • a command to decelerate and stop the turning of the upper swing body 12) is output to the electromagnetic proportional valve 87.
  • a turning stop command for decelerating with the turning braking torque ⁇ (see equation (4)) is output, and the turning braking control is executed.
  • FIG. 8 shows a flow chart of deviation prevention control executed by the controller 40 of the present embodiment, and each step number is indicated by adding S.
  • the controller 40 starts the flow of FIG. 8 when the turning operation by the operator's operation lever 22b is executed. However, during turning, the flow of FIG. 8 is repeated and executed at a predetermined cycle.
  • step S100 the controller 40 sets the work area 60 at the current position of the hydraulic excavator 1 (own machine) based on the position of the work area 60 calculated by the work area calculation unit 171. Judge whether or not. For example, it is determined whether or not the work area boundary 61 exists within a predetermined range centering on the position of the player's own machine, and when the work area boundary 61 exists within the predetermined range, the work area 60 is set. It is judged that it has been done. Further, a switch for switching ON/OFF of execution of the deviation prevention control is provided, and the work area 60 is set when the switch is turned on through the switch, and the work area 60 is not set when the switch is OFF. There is also something to judge. If it is determined in S100 that the work area 60 is set, the process proceeds to S101, and if it is determined that there is no setting, the process proceeds to step S110.
  • step S101 the control controller 40 (working machine attitude calculation unit 172) receives data input (inputting attitude information of the front working machine 1A) from the working machine attitude detecting device 51, and at the present time (when executing step S101). In, it is determined whether or not the front working machine 1A has reached the full reach (maximum). If it is determined that the reach of the front working machine 1A is the maximum, the process proceeds to step S102, and if it has not reached the full reach, the process proceeds to step S105.
  • step S102 the controller 40 (target stop angle calculation unit 101) determines whether or not the front working machine 1A deviates from the work area 60 by the turning motion in the full reach posture. That is, the presence or absence of deviation from the work area 60 is determined by determining whether or not the hydraulic excavator 1 goes out of the work area 60 when turning with full reach. If it is determined to deviate, the process proceeds to step S103, and if it is determined not to deviate, the process proceeds to step S110.
  • step S103 the control controller 40 (target stop angle calculation unit 101) calculates the target stop angle ⁇ stop that does not deviate from the work area 60 with the current work implement posture (full reach). Specifically, the target stop angle calculation unit 101 describes the rotation angles ⁇ , ⁇ , ⁇ of the boom 8, arm 9, and bucket 10 and the distance d between the origin of the excavator reference coordinate system and the work area boundary 61. The target stop angle ⁇ stop at full reach is calculated based on (1)-(3) and is output to the turning command calculation unit 104. When step S104 ends, the process then proceeds to step S104.
  • step S104 the control controller 40 (turning braking behavior predicting unit 102) predicts the turning braking that is the angle required from the start of turning braking to the stop of the upper-part turning body 12 in the current working machine posture (full reach).
  • the angle ⁇ pre is calculated and output to the turning command calculation unit 104. Then proceed to step 108.
  • step S108 the control controller 40 (turning command calculation unit 104) calculates the target calculated in step 103 by the sum of the predicted turning braking angle ⁇ pre calculated in step S104 and the current angle ⁇ c input from the turning angle calculation unit 170. It is determined whether or not the turning stop angle ⁇ stop is reached. If the sum of these reaches the target turning stop angle ⁇ stop, the process proceeds to step S109, and if not, the process proceeds to step S110.
  • step S109 the control controller 40 (turning command calculation unit 104) executes turning braking control, that is, turning braking, thereby decelerating the turning operation of the upper turning body 12 and preventing deviation from the work area 60. ..
  • step S110 the turning braking control by the control controller 40 is not executed, and the turning operation of the excavator 1 is performed as operated by the operator.
  • the process of step S110 is performed when it is determined in step S100, step S102, step S106, and step S108 that the process is negative.
  • step S105 that is, when it is determined in step S101 that the front working machine 1A has not reached full reach
  • the control controller 40 performs turning braking by turning braking control.
  • the change in reach Rpre of the front work machine 1A predicted work machine reach) between the start and the stop of the upper swivel body 12 and the time required from the start of the swivel braking until the upper swivel body 12 stops.
  • the predicted turning braking angle ⁇ pre which is the angle, is calculated.
  • the work implement reach is maximized by rotating the reach Rbk of the front implement 1A shown in the equation (2) so as to maximize the reach Rbk from the posture at the time of calculation (current time).
  • the angles ⁇ , ⁇ , ⁇ are changed according to a predetermined rule.
  • the calculation of the predicted working machine reach and the predicted turning braking angle ⁇ pre are completed, they are output to the target stop angle correction unit 103 and the turning command calculation unit 104, and the process proceeds to step S106.
  • step S106 when the controller 40 (target stop angle correction unit 103) turns the hydraulic excavator 1 with the predicted work machine reach calculated in step S105 (that is, while increasing the work machine reach toward the maximum). , It is determined whether or not a part of the hydraulic excavator 1 deviates from the work area 60. The determination can be performed in the same manner as step S102. If it is determined that the vehicle departs, the process proceeds to step S107, and if it is determined that the vehicle does not depart, the process proceeds to step S110.
  • step S107 the controller 40 (target stop angle correction unit 103) causes the predicted work machine reach calculated in step S105 (changes in the rotation angles ⁇ , ⁇ , ⁇ ), the distance d, and the above equation (1)- From (3), the target turning stop angle (corrected turning stop angle ⁇ rs) for not departing from the work area 60 is calculated. Then, the process proceeds to step S108.
  • step S108 the control controller 40 (turning command calculation unit 104) determines the predicted turning braking angle ⁇ pre calculated in step S105 and the current angle ⁇ c input from the turning angle calculation unit 170. It is determined whether the sum has reached the target turning stop angle (corrected turning stop angle ⁇ rs) calculated in step 107. When these sums reach the target turning stop angle (corrected turning stop angle ⁇ rs), the process proceeds to step S109 (that is, turning braking is executed), and when not reached, the process proceeds to step S110.
  • step S109 that is, turning braking is executed
  • the target turning stop angle (corrected turning stop angle ⁇ rs) is calculated when the reach length of the front work implement 1A is increased toward the maximum value, and the upper turning body is started after turning braking (turning braking control) is started.
  • the reach length and moment of inertia of the front working machine 1A are taken into consideration in the calculation of the predicted turning braking angle ⁇ pre, which is the angle required for 12 to stop.
  • the calculation is performed when passing through S105, 106, and 107 in the present embodiment.
  • the control result is conservative because it takes a large value compared with ⁇ pre and the predicted work machine reach.
  • the predicted working machine reach and the predicted turning braking angle ⁇ pre are sequentially calculated based on the attitude of the front working machine 1A at the current time, the turning braking control is performed under a reasonable condition that may actually occur. Can be executed.
  • step S102 of FIG. 8 is executed after YES is determined in step S100, and step S101 is executed after YES is determined there. That is, in FIG. 8, before and after the order of steps S101 and S102 can be exchanged. When the front and back of steps S101 and S102 are exchanged, step S106 can be omitted.
  • the turning braking behavior predicting unit 102 shown in FIG. 6 determines the gravitational force based on the tilt angle ⁇ of the vehicle body 1B (upper revolving superstructure 12) detected by the vehicle body inclination angle sensor 33 (working machine attitude calculation unit 172).
  • Rpre which is the predicted reach of the working machine during swing braking control
  • ⁇ pre which is the predicted swing braking angle.
  • equation (6) the following equation of motion (Equation (6)) is used, where G is the term of the influence of gravity (the term of influence of gravity).
  • the hydraulic excavator 1 When the operator does not touch the operation right lever 22a As shown in FIG. 2, the hydraulic excavator 1 according to the first embodiment has three front members (boom 8, arm 9, Of the bucket 10), the boom 8 which is two front members and the operation right lever 22a which can operate the bucket 10 and the arm 9 which is the remaining one front member excluding the two front members from the three front members.
  • the upper swing body 12 and an operation left lever 22b capable of operating the upper swing body 12 are provided.
  • the operator normally inputs a swing operation with his/her left hand through the operation left lever 22b, and when it is necessary to operate the front working machine 1A, in addition to this swing operation, another operation is performed. input.
  • a contact detection sensor capable of detecting whether or not the operator touches the operation right lever 22a is attached to the operation right lever 22a, and the predictive work machine reach and the predictive turning braking in S105 of FIG. 8 are attached according to the output signal of the sensor.
  • the calculation content of the angle ⁇ pre may be changed. Specifically, when it is determined that the operator is touching the operation right lever 22a, the predicted work implement reach and the predicted turning braking angle ⁇ pre are calculated based on the processing already described in step S105 of FIG. That is, the calculation is performed assuming that the reach of the work implement is maximized).
  • the boom 8 when it is determined that the operator has not touched the operation right lever 22a, the boom 8 from the posture of the front work implement 1A at that time.
  • the bucket 10 may not operate, and the flowchart may be modified to calculate the predicted work implement reach and the predicted turning braking angle ⁇ pre assuming that the work implement reach increases only by pushing the arm 9 (that is, Work machine reach is calculated as increasing only by arm dump operation).
  • step S105 may be performed in consideration of the delay required to move in the moving direction).
  • FIG. 14 is a functional block diagram of the controller 40 of the hydraulic excavator according to this modification.
  • the contact detection sensor 58 shown in FIG. 14 is a sensor for detecting whether or not the operator is touching the operation right lever 22a, and is attached to the operation right lever 22a.
  • the contact detection sensor 58 is electrically connected to the control controller 40, and the detection signal of the contact detection sensor 58 is output to the turning braking behavior prediction unit 102 in the control controller 40.
  • FIG. 12 shows a part of a flowchart of processing executed by the controller 40 shown in FIG. 14, in which the contents of (1) and (2) above are reflected in step S105 of FIG. Has become.
  • the processes up to steps S1051 to S1057 in FIG. 12 are alternative processes to step S105 in FIG. 8, and the process in step S1051 is executed when NO is determined in step S101 in FIG. 8, and any of S1053-S1057. It is assumed that the process returns to step S106 of FIG. 8 when the process of FIG. 8 is completed, and the other processes are the same as those of FIG.
  • step S1051 the control controller 40 (turning braking behavior prediction unit 102) determines whether or not the operator is touching the operation right lever 22a based on the signal from the contact detection sensor 58. If it is determined that the operator is touching the operation right lever 22a, the process proceeds to step S1052.
  • step S1052 the control controller 40 (turning braking behavior prediction unit 102) operates the operation right lever 22a and the operation left lever 22b based on the signal from the operator operation detection device 53 to reduce the reach of the front work machine 1A. It is determined whether or not it is operated. When it is determined that the front working machine 1A is operated in the contracting direction by the operation right lever 22a and the operation left lever 22b, the process proceeds to step S1053.
  • step S1053 the control controller 40 (turning braking behavior prediction unit 102) starts and stops turning braking after considering the delay time until the actuator operated in the contraction direction moves in the reverse direction (extension direction).
  • the predicted work machine reach and the predicted turning braking angle ⁇ pre are calculated. That is, the predicted work implement reach and the predicted turning braking angle ⁇ pre are calculated on the assumption that the work implement reach increases toward the maximum value after the lapse of the delay time.
  • step S1052 When it is determined in step S1052 that the operation is not performed in the contraction direction, the process proceeds to step S1054, and the control controller 40 (turning braking behavior prediction unit 102) starts the same process as step S105 in FIG.
  • the predicted work machine reach and the predicted turning braking angle ⁇ pre until the vehicle stops are calculated.
  • step S1051 determines whether the operation right lever 22a is touched. If it is determined in step S1051 that the operation right lever 22a is not touched, the process proceeds to step S1055.
  • step S1055 the control controller 40 (turning braking behavior prediction unit 102) determines whether or not the operation left lever 22b is operated in the contracting direction of the arm 9 based on the signal from the operator operation detection device 53. If it is determined that the operation is in the contraction direction, the process proceeds to step S1056.
  • step S1056 the control controller 40 (turning braking behavior predicting unit 102) considers the delay until the arm 9 operated in the contraction direction moves in the opposite direction (extension direction) while the boom 8 and the bucket 10 do not move. Then, the predicted work machine reach from the start to the stop of the turning braking and the predicted turning braking angle ⁇ pre are calculated. That is, when the work machine reach increases toward the maximum value (however, only the arm operation is performed while the boom 8 and the bucket 10 are held in the same posture) after the delay time elapses, the work machine reach increases. Assuming that the predicted work machine reach and the predicted turning braking angle ⁇ pre are calculated.
  • step 1055 If it is determined in step 1055 that the operation has not been performed in the contraction direction, the process proceeds to step S1057.
  • step S1057 the control controller 40 (turning braking behavior prediction unit 102) calculates the predicted work machine reach and the predicted turning braking angle ⁇ pre from the start to the stop of turning braking, assuming that the boom 8 and the bucket 10 do not move. That is, the predicted working machine is assumed assuming that the working machine reach increases toward the maximum value (however, only the arm operation is performed while the boom 8 and the bucket 10 are held in the same posture) by the operation of only the arm 9. The reach and the predicted turning braking angle ⁇ pre are calculated.
  • step S105 of the flowchart of FIG. 8 By substituting step S105 of the flowchart of FIG. 8 with S1051-1057 shown in FIG. 12, it is possible to prevent the prediction work machine reach and the prediction turning braking angle ⁇ pre from being overestimated. Compared with, the work efficiency and the operation feeling of the operator can be improved.
  • the length from the turning center 120 to the left rear end 12BL is Lus, and the angle from the front working machine longitudinal direction (corresponding to the X axis when the turning angle is zero) to the left rear end 12BL is ⁇ us. Then, the position Yus of the left rear end portion 12BL of the upper swing body 12 with respect to the swing center 120 in the Y-axis direction is expressed by the following equation (7).
  • the target turning stop angle ⁇ usstop is expressed by the following equation (8).
  • the turning braking behavior prediction unit 102 adjusts the attitude of the front work implement 1A so that the term J of the moment of inertia in the formula (4) (or the formula (6)) continues to increase from the present point toward the maximum value.
  • the turning braking angle ⁇ pre is calculated on the assumption that the turning braking angle is changed from the present time.
  • the positional relationship between the rear end of the upper swing body 12 and the work area boundary 61 is not influenced by the posture of the front work machine 1A.
  • the turning braking angle ⁇ pre is influenced by the term J of the moment of inertia that depends on the attitude of the front work implement 1A.
  • the influence of the term J of the moment of inertia may be considered.
  • the flowchart in this case is shown in FIG.
  • the correlation diagram shown in FIG. 11 can also be used for calculating the change in the posture of the front working machine 1A of the present embodiment as in the first embodiment.
  • FIG. 9 shows a flowchart of deviation prevention control executed by the controller 40 of the present embodiment.
  • the controller 40 starts the flow of FIG. 9 when the turning operation by the operator's operation lever 22b is executed. However, during turning, the flow of FIG. 9 is repeated and executed at a predetermined cycle.
  • the same processes (steps) as those in FIG. 8 are designated by the same reference numerals and the description thereof may be omitted.
  • step S200 the control controller 40 (target stop angle calculation unit 101) determines whether or not the rear end of the upper swing body 12 deviates from the work area 60 by the swing motion. If it is determined to deviate, the process proceeds to step S201, and if it is determined not to deviate, the process proceeds to step S110.
  • step S201 the control controller 40 (target stop angle calculation unit 101) calculates the target turn stop angle ⁇ usstop using the above equation (7). After that, the process proceeds to step S202.
  • step S202 the control controller 40 (turning braking behavior prediction unit 102) determines whether or not the moment of inertia J determined by the posture of the front working machine 1A is the maximum at the present time (at the time of calculation in step S202).
  • the maximum value of the moment of inertia J is calculated in advance, and here it is determined whether or not the moment of inertia J at the present time has reached the maximum value. If J is the maximum at the present time, the process proceeds to step S104, and if it is not the maximum, the process proceeds to step S203.
  • step S104 the control controller 40 (turning braking behavior predicting unit 102) starts the turning braking with the current work implement attitude (that is, keeping the inertia moment J at the maximum), and then the upper turning body 12 stops.
  • the predicted turning braking angle ⁇ pre which is the angle required until it is calculated, is calculated and output to the turning command calculation unit 104. Then proceed to step 108.
  • step S203 the controller 40 (turning braking behavior prediction unit 102) makes a prediction assuming that the attitude of the front work implement 1A is changed so that the inertia moment J continues to increase toward the maximum value during the braking period.
  • the turning braking angle ⁇ pre is calculated, and then the process proceeds to step S108.
  • steps S100, S108, S109, and S110 are the same as those in the first embodiment, the description thereof will be omitted.
  • the work area 60 at the rear end of the upper swing body 12 is subject to deviation prevention control, so that the target turn stop angle ⁇ usstop does not change depending on the posture of the front work machine 1A. Therefore, the step of predicting the behavior during turning braking control and changing the target turning stop angle ⁇ usstop (step S107 in FIG. 8) is unnecessary and is not performed.
  • the present embodiment it is determined which of the front working machine 1A and the upper revolving structure 12 is likely to deviate from the work area 60, and the front working machine 1A and the upper working body 1 are separated. It is also possible to adopt a configuration in which the turning braking control is executed by giving priority to the turning body 12 that is more likely to deviate from the work area 60. That is, when the front work implement 1A is more likely to deviate, the flowchart of FIG. 8 is executed to determine the timing for outputting the turning stop command, and when the upper revolving superstructure 12 is more likely to deviate, The flowchart of 9 is executed to determine the timing of outputting the turning stop command. As for the determination of the high possibility of deviation, for example, it can be determined that the one that reaches the target turning stop angle first in step S108 has a high possibility of deviation.
  • the weight of the load in the bucket 10 affects the moment of inertia J. Therefore, in the present embodiment, the weight (load) of the load in the bucket 10 is calculated, and the inertia moment J calculated based on the load value is used to operate the upper swing body 12 and the front working machine 1A during the braking period. A case of predicting will be described. The description of the parts common to the first embodiment will be omitted.
  • FIG. 10 is a functional block diagram of the control controller 40 of the hydraulic excavator according to the present embodiment.
  • the load calculation unit 105 is added to the functional block diagram of the first embodiment shown in FIG.
  • the load calculator 105 is connected to the cylinder pressure detector 57.
  • the cylinder pressure detecting device 57 is composed of a pressure sensor provided on the rod portion and the bottom portion of the boom cylinder 5.
  • the load calculation unit 105 calculates the load of the load (load) of the bucket 10 from the posture of the front work implement 1A and the differential pressure between the rod portion and the bottom portion of the boom cylinder 5 from the cylinder pressure detection device 57.
  • the turning braking behavior prediction unit 102 calculates the term J of the moment of inertia shown in the above equation (4) (or equation (6)) based on the load calculation result of the load calculation unit 105. Further, based on this, similarly to the first embodiment, Rpre, which is the predicted reach of the working machine during the turning braking control, and ⁇ pre, which is the predicted turning braking angle, are calculated.
  • the moment of inertia becomes larger and the braking distance becomes longer by the amount of the load of the load, as compared with the case where there is no load in the same posture.
  • the predicted turning braking angle ⁇ pre can be estimated accurately, and the deviation from the work area 60 can be prevented more reliably.
  • the construction has been described by taking a working machine (hydraulic excavator) equipped with a hydraulic lever that outputs a pilot pressure according to the operation of the operating lever 22 by an operator as an example.
  • the present invention is also applicable to a working machine equipped with an electric lever that outputs an electric signal according to lever operation.
  • the tip of the bucket 10 has been described as an example of the reach, when a portion other than the tip of the bucket 10 (for example, the rear end of the bucket 10 or the rod-side tip of the bucket cylinder 7) has the maximum reach,
  • the target turning stop angle ⁇ stop may be calculated from a portion other than the tip of the bucket 10.
  • the operator may be notified that the turning braking control is being executed by displaying it on the screen of the display device 83.
  • the present invention is not limited to each of the above embodiments, and includes various modifications within a range not deviating from the gist thereof.
  • the present invention is not limited to the one including all the configurations described in the above-described embodiment, and includes the one in which a part of the configurations is deleted. Further, part of the configuration according to one embodiment can be added or replaced with the configuration according to another embodiment.
  • the configuration related to the above control device may be a program (software) in which each function related to the configuration of the control device is realized by reading and executing by an arithmetic processing unit (for example, a CPU).
  • Information related to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disk, etc.), and the like.
  • control line and the information line are shown to be necessary for the description of the embodiment, but all control lines and information lines related to the product are not necessarily required. Does not always indicate. In reality, it can be considered that almost all the configurations are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

A controller is provided to a hydraulic shovel, the controller: computing, on the basis of the position of a preset work region and the orientation of an upper turning body and a work machine, a target turning stop angle θstop for stopping the turning of the upper turning body before the upper turning body and the work machine deviate from a work region; and outputting a turning stop command for stopping the upper turning body during turning at the target turning stop angle. The controller: predicts the operation of the upper turning body and the work machine during a braking period on the basis of the turning angular velocity of the upper turning body and the orientation of the work machine, and thereby computes a predicted turning braking angle θpre, which is the angle at which the upper turning body turns during the braking period; corrects the target turning stop angle θstop on the basis of the results of the prediction of the operation of the work machine during the braking period; and outputs a turning stop command at a timing determined on the basis of the predicted turning braking angle and the corrected target turning stop angle.

Description

作業機械Work machine
 本発明は,作業機械に関する。 The present invention relates to a work machine.
 油圧アクチュエータで駆動される作業機(例えば,ブーム,アーム及びアタッチメントからなる多関節型のフロント作業機)を備える作業機械(例えば油圧ショベル)を用いて掘削や積み込み等の作業を行う場合,作業機械の側面に障害物(例えば建物等の構造物)が存在する場合がある。また,一般道路のように作業機が侵入すべきではない領域(以下,侵入禁止領域と称す)と近接した作業現場もある。作業機械のオペレータは,これらの構造物との接触や,侵入禁止領域への侵入を避けるよう,作業機械を操作する必要がある。 When performing work such as excavation and loading using a work machine (for example, a hydraulic excavator) equipped with a work machine driven by a hydraulic actuator (for example, an articulated front work machine including a boom, an arm and an attachment), the work machine There may be obstacles (for example, structures such as buildings) on the side of the. There are also work sites close to areas where work machines should not enter (hereinafter referred to as intrusion prohibition areas) such as general roads. The operator of the work machine needs to operate the work machine so as to avoid contact with these structures and intrusion into the invasion prohibited area.
 このような環境においてオペレータの操作を支援する技術として,侵入禁止領域の外側に作業領域を設定し,そこから作業機械の逸脱を防止することで侵入禁止領域への侵入を避ける技術がある。特許文献1には,固定子に対し回転子を回転させて上部旋回体を旋回駆動する電動モータと,回転子の角速度をモータ角速度として検出する角速度検出手段と,該モータ角速度が旋回操作レバーで設定された該旋回速度に対応する大きさとなるように,電動モータの回転速度を制御する電動モータ制御手段と,モータ角速度の時間積分値に基づき上部旋回体の旋回角度を算出する旋回角度算出手段と,上部旋回体の旋回範囲(作業領域)を設定する旋回範囲設定手段と,旋回角度が該旋回範囲を超えないように電動モータの作動を停止させる停止制御手段と,を備える作業機械の旋回制御装置が開示されている。 As a technology to support the operation of the operator in such an environment, there is a technology that avoids entering the intrusion prohibited area by setting a work area outside the intrusion prohibited area and preventing deviation of the work machine from there. In Patent Document 1, an electric motor for rotating and driving an upper revolving structure by rotating a rotor with respect to a stator, an angular velocity detecting means for detecting an angular velocity of the rotor as a motor angular velocity, and the motor angular velocity is controlled by a turning operation lever. Electric motor control means for controlling the rotation speed of the electric motor so as to have a magnitude corresponding to the set swing speed, and swing angle calculation means for calculating the swing angle of the upper swing body based on the time integral value of the motor angular velocity. And a turning range setting means for setting a turning range (working area) of the upper-part turning body, and a stop control means for stopping the operation of the electric motor so that the turning angle does not exceed the turning range. The control device is disclosed.
 また特許文献2には,コントローラは所定の旋回減速度で旋回停止角度位置に旋回体を停止させるための旋回制動開始時期およびその後の目標旋回角速度を旋回体の旋回残り角度に基づいて決定する旋回角速度制御を実行し,この制御にかかわらず外乱(すなわち,旋回の抵抗となり得る外力(例えば,傾斜姿勢の上部旋回体に作用する重力や風))に起因して旋回停止角度位置よりも手前の位置で旋回体が停止してしまった場合に目標旋回角速度を増大させる補正をして再始動可能な旋回トルクを発生させる,旋回式作業機械の旋回停止制御装置及び方法が開示されている。 Further, in Patent Document 2, the controller determines the turning braking start timing for stopping the turning body at the turning stop angle position at a predetermined turning deceleration and the subsequent target turning angular velocity based on the turning remaining angle of the turning body. Angular velocity control is executed, and regardless of this control, disturbance (that is, external force that can be a resistance to turning (eg, gravity or wind acting on the upper revolving superstructure in a tilted posture)) causes Disclosed is a turning stop control device and method for a turning work machine, which corrects the target turning angular velocity to increase and generates restartable turning torque when the turning body stops at a position.
特開2011-52383号公報Japanese Unexamined Patent Publication No. 2011-52383 特開2010-247968号公報JP, 2010-247968, A
 これらの先行技術文献では,旋回動作中の作業機械(旋回体)に対して制動力(制動トルク)を加えて所定の旋回角度で停止させる制御(旋回制動制御)が開示されている。しかし,制動力により旋回体が停止するまでの間にフロント作業機が操作されてフロント作業機の長さや慣性モーメントが変化することまでは考慮されておらず,不具合が生じ得る。 In these prior art documents, a control (turning braking control) for applying a braking force (braking torque) to a working machine (turning body) during turning operation to stop at a predetermined turning angle is disclosed. However, it is not considered that the front working machine is operated and the length and the moment of inertia of the front working machine are changed before the revolving structure is stopped by the braking force, which may cause a problem.
 まず,前者のフロント作業機(腕部)の長さに関して,例えばフロント作業機の側面側に直線状の作業領域を規定した場合,同じ旋回角度で同じ制動トルクをかけても,フロント作業機(腕部)の長さによって作業領域を逸脱する場合と逸脱しない場合が生じ得る。しかし,上記の先行技術文献ではそのような状況が考慮されていなため,フロント作業機の長さによっては,所定の旋回角度で停止させてもフロント作業機が作業領域から逸脱する(すなわち侵入禁止領域に侵入する)恐れがある。 First, regarding the length of the former front work machine (arm), for example, when a linear work area is defined on the side surface side of the front work machine, even if the same braking torque is applied at the same turning angle, the front work machine ( Depending on the length of the arm), it may or may not deviate from the work area. However, since such a situation is not taken into consideration in the above-mentioned prior art documents, depending on the length of the front working machine, even if the front working machine is stopped at a predetermined turning angle, the front working machine deviates from the work area (that is, intrusion prohibition). (Invades the area).
 また,後者の慣性モーメントは,フロント作業機の姿勢によって変動して旋回動作に影響を与えるため,旋回制動時に考慮する必要がある。作業領域からの逸脱を防ぐための旋回制動が行われ,旋回動作が減速している最中にフロント作業機が操作されると,フロント作業機の姿勢変化に応じて慣性モーメントが変動する。仮に慣性モーメントが増大する方向へフロント作業機が操作されると,旋回制動が実行されてから停止するまでの旋回角度である旋回制動角度が増大し,作業領域から逸脱する可能性がある。このような事態を回避するために,例えば慣性モーメントが常に大きい状況を元に逸脱を防止する保守的な制御を実施すると,フロント作業機が作業領域の境界から大きく離れて停止することになり,オペレータ操作と作業機械の実際の動作が大きく乖離してオペレータに違和感を与える。また,逸脱を防止するための旋回制動が行われている最中はフロント作業機の操作を無効又は禁止することにすると,慣性モーメントの変動は生じないが,旋回制動中にフロント作業機の操作を所望するオペレータに違和感を与える。 Also, the latter moment of inertia changes depending on the posture of the front working machine and affects the turning motion, so it is necessary to consider it when turning braking. When the front work implement is operated while the turning braking is performed to prevent deviation from the work area and the turning motion is decelerating, the moment of inertia fluctuates according to the posture change of the front work implement. If the front working machine is operated in the direction in which the moment of inertia increases, the turning braking angle, which is the turning angle from the time when the turning braking is executed to the time when the front braking is stopped, increases, and there is a possibility of deviating from the work area. In order to avoid such a situation, for example, if conservative control is performed to prevent deviation based on the situation where the moment of inertia is always large, the front working machine will stop far away from the boundary of the work area, The operator's operation and the actual operation of the work machine deviate greatly, giving the operator a sense of discomfort. In addition, if the operation of the front work equipment is invalidated or prohibited while the turning braking is being performed to prevent deviation, the moment of inertia does not fluctuate, but the operation of the front working machine is performed during the turning braking. It gives a feeling of strangeness to an operator who desires.
 本発明の目的は,旋回動作中の旋回体に制動力を加えて所定の旋回角度で停止させる旋回制動制御の実行に,フロント作業機が操作されることによる不具合の発生を防止できる作業機械を提供することにある。 An object of the present invention is to provide a work machine capable of preventing the occurrence of a problem due to the operation of the front work machine for executing the turning braking control in which a braking force is applied to the turning body during the turning operation to stop the turning body at a predetermined turning angle. To provide.
 本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,下部走行体と,前記下部走行体に対して旋回可能に取り付けられた上部旋回体と,前記上部旋回体に取り付けられた作業機と,予め設定された作業領域の位置と前記上部旋回体及び前記作業機の姿勢とに基づいて,前記上部旋回体及び前記作業機が前記作業領域から逸脱する前に前記上部旋回体の旋回を停止させるための旋回角度の目標値である目標旋回停止角度を演算し,旋回中の前記上部旋回体を前記目標旋回停止角度で停止させるための旋回停止指令を出力する制御装置とを備えた作業機械において,前記制御装置は,前記旋回停止指令が出力されたときから前記上部旋回体が停止するときまでの制動期間中の前記上部旋回体及び前記作業機の動作を前記上部旋回体の旋回角速度と前記作業機の姿勢とから予測することで,前記制動期間中に前記上部旋回体が旋回する角度である予測旋回制動角度を演算し,前記制動期間中の前記作業機の動作の予測結果から前記目標旋回停止角度を修正し,前記予測旋回制動角度と前記修正された目標旋回停止角度とに基づいて決定したタイミングで前記旋回停止指令を出力することを特徴とする。 The present application includes a plurality of means for solving the above problems, and to give an example thereof, the lower traveling body, the upper rotating body rotatably attached to the lower traveling body, and the upper rotating body. Based on the attached work machine, the position of the preset work area, and the postures of the upper revolving structure and the working machine, the upper revolving structure and the working machine are deviated from the work area before deviating from the upper area. A control device that calculates a target turning stop angle, which is a target value of a turning angle for stopping the turning of the turning body, and outputs a turning stop command for stopping the upper turning body during turning at the target turning stop angle. In the work machine including the above, the control device controls the operation of the upper revolving structure and the working machine during a braking period from when the turning stop command is output to when the upper revolving structure stops. By predicting the swing angular velocity of the swing structure and the posture of the working machine, a predicted swing braking angle that is the angle at which the upper swing structure swings during the braking period is calculated, and the predicted swing braking angle of the working machine during the braking period is calculated. It is characterized in that the target turning stop angle is corrected based on the prediction result of the operation, and the turning stop command is output at a timing determined based on the predicted turning braking angle and the corrected target turning stop angle.
 本発明によれば,旋回制動制御中にフロント作業機が操作されることによる不具合の発生を防止できる。 According to the present invention, it is possible to prevent the occurrence of troubles caused by operating the front working machine during the turning braking control.
本発明の実施形態に係る油圧ショベルの構成図。The block diagram of the hydraulic excavator which concerns on embodiment of this invention. 図1の油圧ショベルの制御コントローラを油圧駆動装置とともに示す図。The figure which shows the control controller of the hydraulic shovel of FIG. 1 with a hydraulic drive device. 図2中の制御用油圧ユニットの詳細図。FIG. 3 is a detailed view of a control hydraulic unit in FIG. 2. 図1の油圧ショベルの制御コントローラのハードウェア構成図。The hardware block diagram of the control controller of the hydraulic excavator of FIG. 油圧ショベルにおける座標系(ショベル基準座標系)を示す図。The figure which shows the coordinate system (excavator reference coordinate system) in a hydraulic excavator. 本発明の第1実施形態に係る制御コントローラの機能ブロック図。FIG. 3 is a functional block diagram of the controller according to the first embodiment of the present invention. 本発明の実施形態に係る作業領域とショベルの位置関係を示す図。The figure which shows the positional relationship between the work area and the excavator which concerns on embodiment of this invention. 本発明の第1実施形態に係る逸脱防止制御のフローチャートを示す図。FIG. 3 is a diagram showing a flowchart of deviation prevention control according to the first embodiment of the present invention. 本発明の第2実施形態に係る逸脱防止制御のフローチャートを示す図。The figure which shows the flowchart of the deviation prevention control which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る制御コントローラの機能ブロック図。The functional block diagram of the control controller which concerns on 3rd Embodiment of this invention. パイロット圧とアクチュエータ速度の相関テーブルを示す図。The figure which shows the correlation table of pilot pressure and actuator speed. 本発明の第1実施形態の変形例に係る逸脱防止制御のフローチャートの一部を示す図。The figure which shows a part of the flowchart of deviation prevention control which concerns on the modification of 1st Embodiment of this invention. 本発明の実施形態に係る作業領域とショベルの位置関係を示す図。The figure which shows the positional relationship between the work area and the excavator which concerns on embodiment of this invention. 本発明の第1実施形態の変形例に係る制御コントローラの機能ブロック図。The functional block diagram of the control controller which concerns on the modification of 1st Embodiment of this invention.
 以下,本発明の実施形態について図面を用いて説明する。なお,以下では,作業機械として,作業機の先端の作業具(アタッチメント)としてバケットを備える油圧ショベルを例示するが,バケット以外のアタッチメントを備える作業機械に本発明を適用してもよい。また,旋回可能な構造物の上に,複数のリンク部材(アタッチメント,ブーム,アーム等)を連結して構成される多関節型の作業機を有するものであれば,油圧ショベル以外の作業機械への適用も可能である。 Embodiments of the present invention will be described below with reference to the drawings. In the following, as the working machine, a hydraulic excavator including a bucket as a working tool (attachment) at the tip of the working machine is illustrated, but the present invention may be applied to a working machine including an attachment other than the bucket. Further, as long as it has a multi-joint type working machine configured by connecting a plurality of link members (attachment, boom, arm, etc.) on a swingable structure, a working machine other than a hydraulic excavator can be used. Can also be applied.
 また,以下の説明では,同一の構成要素が複数存在する場合,符号の末尾にアルファベットの小文字を付すことがあるが,当該アルファベットの大文字を省略して当該複数の構成要素をまとめて表記することがある。例えば,同一の3つのポンプ190a,190b,190cが存在するとき,これらをまとめてポンプ190と表記することがある。 In addition, in the following explanation, when the same component exists more than once, the lowercase letters of the alphabet may be added at the end of the code, but the uppercase letters of the alphabet should be omitted and the plurality of components should be described together. There is. For example, when the same three pumps 190a, 190b, 190c are present, these may be collectively referred to as a pump 190.
 <第1実施形態>
 図1は本発明の第1の実施形態に係る油圧ショベルの構成図であり,図2は本発明の実施形態に係る油圧ショベルの制御コントローラ(制御装置)40を油圧駆動装置と共に示す図であり,図3は図2中のフロント制御用油圧ユニット160の詳細図である。
<First Embodiment>
FIG. 1 is a configuration diagram of a hydraulic excavator according to a first embodiment of the present invention, and FIG. 2 is a diagram showing a control controller (control device) 40 of the hydraulic excavator according to an embodiment of the present invention together with a hydraulic drive device. 3 is a detailed view of the front control hydraulic unit 160 shown in FIG.
 図1において,油圧ショベル1は,多関節型のフロント作業機1Aと,車体(機械本体)1Bで構成されている。車体(機械本体)1Bは,左右の走行油圧モータ3a,3bにより走行する下部走行体11と,下部走行体11の上に取り付けられ,旋回油圧モータ4によって駆動され左右方向に旋回可能な上部旋回体12とからなる。 In FIG. 1, the hydraulic excavator 1 is composed of an articulated front working machine 1A and a vehicle body (machine body) 1B. The vehicle body (machine body) 1B is mounted on the lower traveling body 11 which is driven by the left and right traveling hydraulic motors 3a and 3b, and is driven by the pivoting hydraulic motor 4 so that the vehicle body can rotate in the left and right directions. It consists of a body 12.
 フロント作業機1Aは,垂直方向にそれぞれ回動する複数のフロント部材(ブーム8,アーム9及びバケット10)を連結して構成されており,上部旋回体12に取り付けられている。ブーム8の基端は上部旋回体12の前部においてブームピンを介して回動可能に支持されている。ブーム8の先端にはアームピンを介してアーム9が回動可能に連結されており,アーム9の先端にはバケットピンを介してバケット10が回動可能に連結されている。ブーム8はブームシリンダ5によって駆動され,アーム9はアームシリンダ6によって駆動され,バケット10はバケットシリンダ7によって駆動される。 The front working machine 1A is configured by connecting a plurality of front members (boom 8, arm 9, and bucket 10) that rotate in the vertical direction, respectively, and is attached to the upper swing body 12. The base end of the boom 8 is rotatably supported at the front part of the upper swing body 12 via a boom pin. The arm 9 is rotatably connected to the tip of the boom 8 via an arm pin, and the bucket 10 is rotatably connected to the tip of the arm 9 via a bucket pin. The boom 8 is driven by the boom cylinder 5, the arm 9 is driven by the arm cylinder 6, and the bucket 10 is driven by the bucket cylinder 7.
 ブーム8,アーム9,バケット10の回動角度α,β,γ(図5参照)を測定可能なように,ブームピンにブーム角度センサ30,アームピンにアーム角度センサ31,バケットリンク14にバケット角度センサ32が取付けられ,上部旋回体12には基準面(例えば水平面)に対する上部旋回体12(車体1B)の傾斜角θ(図5参照)を検出する車体傾斜角センサ33が取付けられている。なお,角度センサ30,31,32はそれぞれ基準面(例えば水平面)に対する角度を検出する角度センサ(例えば,慣性計測装置(IMU:Inertial Measurement Unit))に代替可能である。または各油圧シリンダ5,6,7のストロークを検出するシリンダストロークセンサに代替し,得られたシリンダストロークを角度に換算しても良い。 A boom angle sensor 30 is attached to the boom pin, an arm angle sensor 31 is attached to the arm pin, and a bucket angle sensor is attached to the bucket link 14 so that the rotation angles α, β, γ (see FIG. 5) of the boom 8, the arm 9, and the bucket 10 can be measured. 32 is attached, and a vehicle body tilt angle sensor 33 that detects an inclination angle θ (see FIG. 5) of the upper swing body 12 (vehicle body 1B) with respect to a reference plane (for example, a horizontal plane) is attached to the upper swing body 12. The angle sensors 30, 31, and 32 can be replaced with angle sensors (for example, an inertial measurement unit (IMU)) that detects an angle with respect to a reference plane (for example, a horizontal plane), respectively. Alternatively, the obtained cylinder stroke may be converted into an angle by substituting the cylinder stroke sensor for detecting the stroke of each hydraulic cylinder 5, 6, 7.
 また,上部旋回体12と下部走行体11の回転中心近傍に,上部旋回体12と下部走行体11の相対角度(旋回角度θsw)を検出可能な旋回角度センサ19が取り付けられている。また,旋回の角速度を検出可能な旋回角速度センサ17が上部旋回体12に取り付けられている。 Further, a turning angle sensor 19 capable of detecting the relative angle (turning angle θ sw ) between the upper turning body 12 and the lower running body 11 is attached near the rotation center of the upper turning body 12 and the lower traveling body 11. Further, a turning angular velocity sensor 17 capable of detecting the turning angular velocity is attached to the upper-part turning body 12.
 上部旋回体12に設けられた運転室内には,走行右レバー23a(図1)を有し走行右油圧モータ3a(下部走行体11)を操作するための操作装置47a(図2)と,走行左レバー23b(図1)を有し走行左油圧モータ3b(下部走行体11)を操作するための操作装置47b(図2)と,操作右レバー22a(図1)を共有しブームシリンダ5(ブーム8)及びバケットシリンダ7(バケット10)を操作するための操作装置45a,46a(図2)と,操作左レバー22b(図1)を共有しアームシリンダ6(アーム9)及び旋回油圧モータ4(上部旋回体12)を操作するための操作装置45b,46b(図2)が設置されている。以下では,操作右レバー22a,操作左レバー22b,走行右レバー23aおよび走行左レバー23bを操作レバー22,23と総称することがある。 An operating device 47a (FIG. 2) for operating the traveling right hydraulic motor 3a (lower traveling body 11) having a traveling right lever 23a (FIG. 1) is provided in the cab provided in the upper swing body 12, and traveling The operating device 47b (FIG. 2) for operating the traveling left hydraulic motor 3b (lower traveling body 11) having the left lever 23b (FIG. 1) and the operation right lever 22a (FIG. 1) are shared and the boom cylinder 5 ( The operation cylinders 45a and 46a (FIG. 2) for operating the boom 8) and the bucket cylinder 7 (bucket 10) share the operation left lever 22b (FIG. 1), and the arm cylinder 6 (arm 9) and the swing hydraulic motor 4 are shared. Operating devices 45b and 46b (FIG. 2) for operating the (upper rotating body 12) are installed. Hereinafter, the operation right lever 22a, the operation left lever 22b, the traveling right lever 23a, and the traveling left lever 23b may be collectively referred to as the operation levers 22 and 23.
 上部旋回体12に搭載された原動機であるエンジン18は,油圧ポンプ2とパイロットポンプ48を駆動する。油圧ポンプ2はレギュレータ2aによって容量が制御される可変容量型ポンプであり,パイロットポンプ48は固定容量型ポンプである。本実施形態においては,図2に示すように,パイロットライン144,145,146,147,148,149の途中にシャトルブロック162が設けられている。操作装置45,46,47から出力された油圧信号が,このシャトルブロック162を介してレギュレータ2aにも入力される。シャトルブロック162の詳細構成は省略するが,油圧信号がシャトルブロック162を介してレギュレータ2aに入力されており,油圧ポンプ2の吐出流量が当該油圧信号に応じて制御される。 The engine 18, which is a prime mover mounted on the upper swing body 12, drives the hydraulic pump 2 and the pilot pump 48. The hydraulic pump 2 is a variable displacement pump whose displacement is controlled by the regulator 2a, and the pilot pump 48 is a fixed displacement pump. In the present embodiment, as shown in FIG. 2, a shuttle block 162 is provided in the middle of the pilot lines 144, 145, 146, 147, 148, and 149. The hydraulic signals output from the operating devices 45, 46, 47 are also input to the regulator 2a via the shuttle block 162. Although the detailed configuration of the shuttle block 162 is omitted, a hydraulic signal is input to the regulator 2a via the shuttle block 162, and the discharge flow rate of the hydraulic pump 2 is controlled according to the hydraulic signal.
 操作装置45,46,47は,油圧パイロット方式であり,パイロットポンプ48から吐出される圧油をもとに,それぞれオペレータにより操作される操作レバー22,23の操作量(例えば,レバーストローク)と操作方向に応じたパイロット圧(操作圧と称することもある)を発生する。このように発生したパイロット圧は,コントロールバルブユニット20内の対応する流量制御弁15a~15f(図2参照)の油圧駆動部150a~155bにパイロットライン144a~149b(図2参照)を介して供給され,これら流量制御弁15a~15fを駆動する制御信号として利用される。 The operating devices 45, 46, 47 are of the hydraulic pilot type, and the operation amount (for example, lever stroke) of the operating levers 22, 23 operated by the operator based on the pressure oil discharged from the pilot pump 48, respectively. Pilot pressure (sometimes called operating pressure) is generated according to the operating direction. The pilot pressure generated in this way is supplied to the hydraulic drive units 150a to 155b of the corresponding flow rate control valves 15a to 15f (see FIG. 2) in the control valve unit 20 via the pilot lines 144a to 149b (see FIG. 2). It is used as a control signal for driving these flow control valves 15a to 15f.
 油圧ポンプ2から吐出された圧油は,流量制御弁15a,15b,15c,15d,15e,15f(図2参照)を介して走行右油圧モータ3a,走行左油圧モータ3b,旋回油圧モータ4,ブームシリンダ5,アームシリンダ6,バケットシリンダ7に供給される。供給された圧油によってブームシリンダ5,アームシリンダ6,バケットシリンダ7が伸縮することで,ブーム8,アーム9,バケット10がそれぞれ回動し,バケット10の位置及び姿勢が変化する。また,供給された圧油によって旋回油圧モータ4が回転することで,下部走行体11に対して上部旋回体12が旋回する。そして,供給された圧油によって走行右油圧モータ3a,走行左油圧モータ3bが回転することで,下部走行体11が走行する。以下では,走行油圧モータ3,旋回油圧モータ4,ブームシリンダ5,アームシリンダ6,バケットシリンダ7を総称して,油圧アクチュエータ3-7と総称することがある。 The pressure oil discharged from the hydraulic pump 2 passes through the flow control valves 15a, 15b, 15c, 15d, 15e, 15f (see FIG. 2), and the traveling right hydraulic motor 3a, the traveling left hydraulic motor 3b, and the swing hydraulic motor 4, It is supplied to the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7. The boom cylinder 5, arm cylinder 6, and bucket cylinder 7 expand and contract with the supplied pressure oil, so that the boom 8, arm 9, and bucket 10 rotate, respectively, and the position and posture of the bucket 10 change. In addition, the swing hydraulic motor 4 is rotated by the supplied pressure oil, so that the upper swing body 12 swings with respect to the lower traveling body 11. Then, the traveling right hydraulic motor 3a and the traveling left hydraulic motor 3b are rotated by the supplied pressure oil, so that the lower traveling body 11 travels. Hereinafter, the traveling hydraulic motor 3, the swing hydraulic motor 4, the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7 may be collectively referred to as a hydraulic actuator 3-7.
 図4は本実施形態に係る油圧ショベルが備える逸脱防止制御システム(旋回制動制御システム)の構成図である。図4のシステムは,操作レバー22bに対してオペレータから旋回操作が入力されて上部旋回体12が旋回したときに,ショベル1の移動が許可される予め設定された作業領域からショベル1(より具体的にはフロント作業機1A及び上部旋回体12)が逸脱することを防止するために(すなわち侵入禁止領域への侵入防止のために),旋回油圧モータ4を強制的に減速または停止する逸脱防止制御を実行するものである。特に,本実施形態では旋回動作を制御することで作業領域からの逸脱防止を実現するため,この制御のことを「旋回制動制御」と称する。 FIG. 4 is a configuration diagram of a deviation prevention control system (turning braking control system) included in the hydraulic excavator according to the present embodiment. In the system of FIG. 4, when a turning operation is input from the operator to the operation lever 22b and the upper turning body 12 turns, the shovel 1 (more specifically) from a preset work area where the movement of the shovel 1 is permitted. In order to prevent the front working machine 1A and the upper swing body 12) from deviating (that is, to prevent intrusion into the intrusion prohibited area), the deviation prevention that forcibly decelerates or stops the swing hydraulic motor 4 It executes control. Particularly, in the present embodiment, since the deviation from the work area is prevented by controlling the turning operation, this control is referred to as "turning braking control".
 旋回制動制御では,操作レバー22bの操作によって旋回油圧モータ4の動作が指示された場合,作業領域60の境界(作業領域境界)61(図7参照)と油圧ショベル1との位置関係に基づいて,作業領域境界61に近づこうとする旋回油圧モータ4の動作を制限するような制御信号を流量制御弁15dに出力し,それにより油圧ショベル1の作業領域からの逸脱を防止している。 In the swivel braking control, when the operation of the swivel hydraulic motor 4 is instructed by the operation of the operation lever 22b, it is based on the positional relationship between the boundary of the work area 60 (work area boundary) 61 (see FIG. 7) and the hydraulic excavator 1. A control signal for limiting the operation of the swing hydraulic motor 4 that approaches the work area boundary 61 is output to the flow control valve 15d, thereby preventing the hydraulic excavator 1 from deviating from the work area.
 逸脱防止制御システムによれば,油圧ショベル1の各部の作業領域60(図7参照)からの逸脱を防止できるため,オペレータは,侵入禁止領域を意識することなく,掘削作業のような油圧ショベル1の本来の作業に専念することが可能となる。なお,図7の例ではショベル1の側面(下部走行体11の側面)に沿って設定される作業領域60を示している。 According to the deviation prevention control system, deviation of each part of the hydraulic excavator 1 from the work area 60 (see FIG. 7) can be prevented. It becomes possible to concentrate on the original work of. In the example of FIG. 7, the work area 60 set along the side surface of the shovel 1 (the side surface of the lower traveling body 11) is shown.
 図4のシステムは,作業機姿勢検出装置51と,作業領域設定装置52と,オペレータ操作検出装置53と,旋回角度検出装置54と,旋回角速度検出装置55,逸脱防止制御をつかさどる制御コントローラ(制御装置)40と,作業領域60と油圧ショベル1の位置関係を表示可能な表示装置83と,電磁比例弁87(87a,87b)とを備えている。 The system of FIG. 4 includes a work machine posture detection device 51, a work area setting device 52, an operator operation detection device 53, a turning angle detection device 54, a turning angular velocity detection device 55, and a controller for controlling deviation prevention control (control). The device) 40, a display device 83 capable of displaying the positional relationship between the work area 60 and the hydraulic excavator 1, and electromagnetic proportional valves 87 (87a, 87b) are provided.
 作業機姿勢検出装置51は,上部旋回体12(車体1B)とフロント作業機1Aの姿勢情報を検出するセンサであり,フロント作業機1Aに取り付けられたブーム角度センサ30,アーム角度センサ31及びバケット角度センサ32と,上部旋回体12に取り付けられたIMUである車体傾斜センサ33とから構成される。 The work implement attitude detection device 51 is a sensor that detects the attitude information of the upper swing body 12 (vehicle body 1B) and the front work implement 1A, and includes a boom angle sensor 30, an arm angle sensor 31, and a bucket attached to the front work implement 1A. It is composed of an angle sensor 32 and a vehicle body inclination sensor 33 which is an IMU attached to the upper swing body 12.
 旋回角度検出装置54は,上部旋回体12と下部走行体11の相対角度(旋回角度θsw)を検出する旋回角度センサ19から構成される。 The turning angle detection device 54 includes a turning angle sensor 19 that detects a relative angle (turning angle θ sw ) between the upper turning body 12 and the lower traveling body 11.
 旋回角速度検出装置55は,上部旋回体12の旋回角速度を検出する旋回角速度センサ17から構成される。なお,旋回角速度は,旋回角度検出装置54(旋回角度センサ19)で検出した旋回角度θswの差分(時間変化)から取得することもでき,この場合は旋回角速度センサ17の省略が可能である。 The turning angular velocity detection device 55 includes a turning angular velocity sensor 17 that detects a turning angular velocity of the upper-part turning body 12. The turning angular velocity can be obtained from the difference (time change) of the turning angle θ sw detected by the turning angle detection device 54 (turning angle sensor 19), and in this case, the turning angular velocity sensor 17 can be omitted. ..
 作業領域設定装置52は,図7に示すような油圧ショベル1の作業領域60を設定可能なインターフェースであり,具体的には,作業領域境界61を設定することで作業領域60を設定する。作業領域設定装置52を介した作業領域60の設定は,オペレータが手動で行っても良いし,作業領域設定装置52を外部端末と接続し,その外部端末によって設定された作業領域60を旋回制動制御に利用しても良い。また,作業領域60は,例えば,油圧ショベル1(例えば下部走行体11)に設定されたローカル座標系(ショベル基準座標系)上に設定できる。その他にも,グローバル座標系(地理座標系)や現場に設定された現場座標系等,所望の座標系上に設定することも可能である。グローバル座標系上に作業領域60を設定した場合には,油圧ショベル1に2本のGNSS(Global Navigation Satellite System)アンテナ56を取り付け,GNSSアンテナ56で受信した衛星信号に基づいて油圧ショベル1のグローバル座標を演算し,その座標から所定の範囲に存在する作業領域60を制御コントローラ40に読み込むことで旋回制動制御を実行しても良い。 The work area setting device 52 is an interface that can set the work area 60 of the hydraulic excavator 1 as shown in FIG. 7. Specifically, the work area 60 is set by setting the work area boundary 61. The operator may manually set the work area 60 via the work area setting device 52, or the work area setting device 52 is connected to an external terminal and the work area 60 set by the external terminal is swiveled and braked. It may be used for control. Further, the work area 60 can be set, for example, on the local coordinate system (excavator reference coordinate system) set in the hydraulic excavator 1 (for example, the lower traveling body 11). Besides, it is also possible to set on a desired coordinate system such as a global coordinate system (geographical coordinate system) or a site coordinate system set on the site. When the work area 60 is set on the global coordinate system, two GNSS (Global Navigation Satellite System) antennas 56 are attached to the hydraulic excavator 1 and the global of the hydraulic excavator 1 is based on the satellite signals received by the GNSS antenna 56. The swing braking control may be executed by calculating the coordinates and reading the work area 60 existing in a predetermined range from the coordinates into the controller 40.
 オペレータ操作検出装置53は,オペレータによる操作レバー22,23の操作によって図2に示したパイロットライン144~149に生じる操作圧を検出する圧力センサ70a~75a及び圧力センサ70b~75b(図2参照)から構成される。つまり,オペレータ操作検出装置53(圧力センサ70~75)は,油圧アクチュエータ3-7に関するオペレータの操作を検出している。 The operator operation detection device 53 detects pressure sensors 70a to 75a and pressure sensors 70b to 75b (see FIG. 2) that detect the operation pressure generated in the pilot lines 144 to 149 shown in FIG. 2 by the operation of the operation levers 22 and 23 by the operator. Composed of. That is, the operator operation detection device 53 (pressure sensors 70 to 75) detects the operation of the operator regarding the hydraulic actuator 3-7.
 制御コントローラ40は,作業領域60の位置と,上部旋回体12及びフロント作業機1Aの姿勢とに基づいて,上部旋回体12及びフロント作業機1Aが作業領域60から逸脱する前に上部旋回体12の旋回を停止させるための旋回角度の目標値である目標旋回停止角度θstop(後述)を演算し,旋回中の上部旋回体12を目標旋回停止角度で停止させる旋回制動制御を行うための旋回停止指令を出力する。制御コントローラ40は,オペレータによる操作レバー22bの操作によりパイロットライン147a,147bに発生する操作圧を制御用油圧ユニット160(図2参照)で適宜変更することで旋回制動制御を実行する。図3に制御用油圧ユニット160の詳細を示す。この図に示すように,制御用油圧ユニット160は,2本のパイロットライン147a,147bにそれぞれ設置された減圧弁である電磁比例弁87a,87bを備えている。電磁比例弁87a,87bは,制御コントローラ40に電気的に接続されており,制御コントローラ40から出力される制御信号に基づいて弁開度が制御され,それによりパイロットライン147a,147bの操作圧(パイロット圧)を低減できる。電磁比例弁87a,87bは,非通電時には開度が最大であり,制御コントローラ40からの制御信号である電流を増大させるほど開度は小さくなる。つまり,電磁比例弁87a,87bは,オペレータが操作レバー22bを操作したことによって生じたパイロット圧を強制的に低減したパイロット圧を発生できる。 The control controller 40 is based on the position of the work area 60 and the postures of the upper swing body 12 and the front work machine 1A, before the upper swing body 12 and the front work machine 1A deviate from the work area 60. The target turning stop angle θstop (described later), which is the target value of the turning angle for stopping the turning, is calculated, and the turning stop for turning braking control to stop the upper turning body 12 during turning at the target turning stop angle is performed. Output the command. The control controller 40 executes turning braking control by appropriately changing the operating pressure generated in the pilot lines 147a and 147b by the operation of the operating lever 22b by the control hydraulic unit 160 (see FIG. 2). FIG. 3 shows the details of the control hydraulic unit 160. As shown in this figure, the control hydraulic unit 160 includes electromagnetic proportional valves 87a and 87b, which are pressure reducing valves installed on the two pilot lines 147a and 147b, respectively. The electromagnetic proportional valves 87a and 87b are electrically connected to the control controller 40, and the valve opening degree is controlled based on the control signal output from the control controller 40, whereby the operating pressure of the pilot lines 147a and 147b ( Pilot pressure) can be reduced. The opening degree of the electromagnetic proportional valves 87a and 87b is maximum when the power is off, and the opening degree decreases as the current, which is a control signal from the control controller 40, is increased. That is, the electromagnetic proportional valves 87a and 87b can generate a pilot pressure in which the pilot pressure generated by the operator operating the operating lever 22b is forcibly reduced.
 本稿では,旋回中の上部旋回体12を目標旋回停止角度θstop(後述)で強制的に停止する旋回制動制御を実行するために制御コントローラ40から電磁比例弁87a,87bに対して出力される制御信号を「旋回停止指令」と称することがある。なお,本実施形態の旋回停止指令はパイロットライン147a,147bの操作圧(パイロット圧)を低減するものであるが,上部旋回体12の旋回を制動するものであれば他の操作圧を生成しても良い。他の操作圧としては,例えば,オペレータ操作が規定する旋回方向と逆方向に上部旋回体12を旋回させるものがある。また,旋回停止指令は時間経過や旋回速度変化に応じてパイロット圧を変化させるものでも構わない。 In this paper, the control output from the controller 40 to the solenoid proportional valves 87a, 87b in order to execute the swing braking control for forcibly stopping the upper swing body 12 during swing at the target swing stop angle θstop (described later). The signal may be referred to as a "turning stop command". The turning stop command of this embodiment reduces the operating pressure (pilot pressure) of the pilot lines 147a and 147b, but another operating pressure is generated as long as it brakes the turning of the upper swing body 12. May be. As another operation pressure, for example, there is a pressure that causes the upper-part turning body 12 to turn in a direction opposite to the turning direction defined by the operator's operation. Further, the turning stop command may be a command that changes the pilot pressure according to the passage of time or a change in turning speed.
 制御コントローラ40のハードウェア構成について図4を用いて説明する。図4において制御コントローラ40は,入力インターフェース91と,プロセッサである中央処理装置(CPU)92と,記憶装置であるリードオンリーメモリ(ROM)93及びランダムアクセスメモリ(RAM)94と,出力インターフェース95とを有している。 The hardware configuration of the control controller 40 will be described with reference to FIG. 4, the control controller 40 includes an input interface 91, a central processing unit (CPU) 92 that is a processor, a read only memory (ROM) 93 and a random access memory (RAM) 94 that are storage devices, and an output interface 95. have.
 入力インターフェース91は,作業機姿勢検出装置51である角度センサ30,31,32,34及び傾斜角センサ33からの信号と,作業領域60を設定するための装置である作業領域設定装置52からの信号と,操作装置45~47からの操作量を検出する圧力センサ(圧力センサ70~75を含む)であるオペレータ操作検出装置53からの信号と,旋回角度検出装置54である旋回角度センサ19からの信号と,旋回角速度検出装置55である旋回角速度センサ17からの信号を入力し,CPU92が演算可能なように変換する。 The input interface 91 receives signals from the angle sensors 30, 31, 32, 34 and the tilt angle sensor 33, which are the working machine posture detection device 51, and a work area setting device 52, which is a device for setting the work area 60. Signals, a signal from an operator operation detecting device 53 which is a pressure sensor (including the pressure sensors 70 to 75) for detecting an operation amount from the operating devices 45 to 47, and a turning angle sensor 19 which is a turning angle detecting device 54. Signal and the signal from the turning angular velocity sensor 17 which is the turning angular velocity detection device 55 are input and converted so that the CPU 92 can calculate.
 ROM93は,後述するフローチャートに係る処理を含め逸脱防止制御(旋回制動制御)を実行するための制御プログラムと,当該フローチャートの実行に必要な各種情報等が記憶された記録媒体であり,CPU92は,ROM93に記憶された制御プログラムに従って入力インターフェース91及びメモリ93,94から取り入れた信号に対して所定の演算処理を行う。 The ROM 93 is a recording medium in which a control program for executing deviation prevention control (turning braking control) including processing related to a flowchart described later and various information necessary for executing the flowchart are stored. According to the control program stored in the ROM 93, a predetermined arithmetic processing is performed on the signals received from the input interface 91 and the memories 93 and 94.
 出力インターフェース95は,CPU92での演算結果に応じた出力用の信号を作成し,その信号を電磁比例弁87(87a,87b)または表示装置83に出力することで,旋回油圧モータ4を制御したり,フロント作業機1A,車体1B,バケット10及び作業領域60等の画像を表示装置83の画面上に表示させたりする。 The output interface 95 controls the swing hydraulic motor 4 by creating an output signal according to the calculation result in the CPU 92 and outputting the signal to the solenoid proportional valve 87 (87a, 87b) or the display device 83. Alternatively, images of the front working machine 1A, the vehicle body 1B, the bucket 10, the work area 60, and the like are displayed on the screen of the display device 83.
 なお,図4の制御コントローラ40は,記憶装置としてROM93及びRAM94という半導体メモリを備えているが,記憶装置であれば代替可能であり,例えばハードディスクドライブ等の磁気記憶装置を備えても良い。 The control controller 40 of FIG. 4 is provided with semiconductor memories of ROM 93 and RAM 94 as storage devices, but any storage device can be substituted, and for example, a magnetic storage device such as a hard disk drive may be provided.
 図6は,制御コントローラ40の機能ブロック図である。制御コントローラ40は,ROM93に記憶されたプログラムをCPU92によって実行することによって,旋回角度演算部170と,作業領域演算部171と,作業機姿勢演算部172と,旋回角速度演算部173と,オペレータ操作速度推定部174と,表示制御部175と,電磁比例弁制御176と,目標停止角度演算部101と,旋回制動挙動予測部102と,目標停止角度修正部103と,旋回指令演算部104として機能する。以下,各部における処理を説明する。 FIG. 6 is a functional block diagram of the controller 40. By executing the program stored in the ROM 93 by the CPU 92, the control controller 40 operates the turning angle calculation unit 170, the work area calculation unit 171, the work machine attitude calculation unit 172, the turning angular velocity calculation unit 173, and the operator. Functions as a speed estimation unit 174, a display control unit 175, a solenoid proportional valve control 176, a target stop angle calculation unit 101, a turning braking behavior prediction unit 102, a target stop angle correction unit 103, and a turning command calculation unit 104. To do. The processing in each unit will be described below.
 旋回角度演算部170は,旋回角度検出装置54(旋回角度センサ19)からの情報に基づき,ショベル基準座標系(ローカル座標系)における上部旋回体12の旋回角度θswを演算する。 The turning angle calculation unit 170 calculates the turning angle θ sw of the upper turning body 12 in the shovel reference coordinate system (local coordinate system) based on the information from the turning angle detection device 54 (turning angle sensor 19).
 作業機姿勢演算部172は,ショベル基準座標系におけるフロント作業機1Aの姿勢を演算する。油圧ショベル1の姿勢は,図5のショベル基準座標系上に定義できる。図5のショベル基準座標系は,旋回中心軸のうち,下部走行体11が地面と接する点を原点としている。下部走行体11が直進する際の進行方向と,フロント作業機1Aの動作平面が平行となり,かつフロント作業機1Aの伸ばし方向の動作方向と,下部走行体11を前進させたときの動作方向が一致する向きをX軸,上部旋回体12における旋回中心をZ軸,前述したX軸及びZ軸と右手座標系を構成するようにY軸を定めた。また,旋回角度θswについては,フロント作業機1AがX軸と平行になる状態を0度とした。X軸に対するブーム8の回転角をブーム角α,ブーム8に対するアーム9の回転角をアーム角β,アーム9に対するバケット10爪先の回転角をバケット角γ,下部走行体11に対する上部旋回体12の旋回角を旋回角θswとした。ブーム角αはブーム角度センサ30により,アーム角βはアーム角度センサ31により,バケット角γはバケット角度センサ32により,旋回角θswは旋回角度センサ19により検出される。これらの角度情報と,予めROM93に記憶されている油圧ショベル1の各部の寸法情報を用いることで,ショベル基準座標系における油圧ショベル1の各部の姿勢及び位置を演算できる。また,重力方向に対して直角な水平面(基準面)に対する車体1Bの傾斜角θは,車体傾斜角センサ33で検出可能である。 The work implement posture calculation unit 172 calculates the posture of the front work implement 1A in the shovel reference coordinate system. The posture of the hydraulic shovel 1 can be defined on the shovel reference coordinate system in FIG. The shovel reference coordinate system in FIG. 5 has an origin at a point on the turning center axis where the lower traveling body 11 contacts the ground. The traveling direction when the undercarriage 11 travels straight and the operating plane of the front working machine 1A are parallel, and the operating direction of the extending direction of the front working machine 1A and the operating direction when the undercarriage 11 is forwarded are The matching directions are the X-axis, the turning center of the upper swivel body 12 is the Z-axis, and the X-axis and the Z-axis described above are defined as the Y-axis so as to form a right-handed coordinate system. Regarding the turning angle θ sw , the state in which the front working machine 1A is parallel to the X axis is 0 degree. The rotation angle of the boom 8 with respect to the X-axis is the boom angle α, the rotation angle of the arm 9 with respect to the boom 8 is the arm angle β, the rotation angle of the tip of the toe of the bucket 10 with respect to the arm 9 is the bucket angle γ, and the rotation of the upper revolving structure 12 with respect to the lower traveling structure 11 is the same. The turning angle was defined as the turning angle θ sw . The boom angle α is detected by the boom angle sensor 30, the arm angle β is detected by the arm angle sensor 31, the bucket angle γ is detected by the bucket angle sensor 32, and the swivel angle θ sw is detected by the swivel angle sensor 19. By using these angle information and the dimensional information of each part of the hydraulic excavator 1 stored in the ROM 93 in advance, the posture and position of each part of the hydraulic excavator 1 in the excavator reference coordinate system can be calculated. Further, the inclination angle θ of the vehicle body 1B with respect to the horizontal plane (reference plane) perpendicular to the direction of gravity can be detected by the vehicle body inclination angle sensor 33.
 作業領域演算部171は,作業領域設定装置52からの情報に基づき,作業領域60の位置情報を図5に示すショベル基準座標系に変換する演算を実行する。本実施形態では,図7に示すような単一の作業領域境界61により規定される作業領域60を示しているが,複数の作業領域境界61によって定義される作業領域60であっても良い。作業領域境界61は図7に示した直線に限らず曲線であっても良いし,図7に示すようなX軸と略平行な直線に限らない。 The work area calculation unit 171 executes an operation of converting the position information of the work area 60 into the excavator reference coordinate system shown in FIG. 5 based on the information from the work area setting device 52. In the present embodiment, the work area 60 defined by a single work area boundary 61 as shown in FIG. 7 is shown, but the work area 60 may be defined by a plurality of work area boundaries 61. The work area boundary 61 is not limited to the straight line shown in FIG. 7, but may be a curved line, and is not limited to the straight line substantially parallel to the X axis as shown in FIG.
 オペレータ操作速度推定部174は,オペレータ操作検出装置53(圧力センサ70~75)で検出したパイロット圧(操作圧)と,制御コントローラ40内のROM93に予め保持してあるパイロット圧とアクチュエータ速度の相関テーブル(例えば図11参照)とに基づいて,オペレータ操作による油圧アクチュエータ3-7の速度を推定する。なお,圧力センサ70-75による操作量の検出は一例に過ぎず,例えば各操作レバー22,23の回転変位(傾倒量)を検出する位置センサ(例えば,ロータリーエンコーダ)で当該操作レバー22,23の操作量を検出し,その検出したレバー操作量と,レバー操作量とパイロット圧の相関テーブルとに基づいてレバー操作量からパイロット圧を算出し,さらに図11に例示した壮観テーブルを利用して油圧アクチュエータ3-7の速度を推定しても良い。また,オペレータの操作量から各油圧アクチュエータ3-7の動作速度を推定する構成に代えて,角度センサ30~32や車体傾斜角センサ33の検出値から油圧シリンダ3-7の変位を算出し,当該変位の時間変化を基に動作速度を算出しても良い。 The operator operation speed estimation unit 174 correlates the pilot pressure (operation pressure) detected by the operator operation detection device 53 (pressure sensors 70 to 75) with the pilot pressure and the actuator speed previously stored in the ROM 93 in the controller 40. Based on a table (see, eg, FIG. 11), the speed of the hydraulic actuator 3-7 operated by the operator is estimated. The detection of the operation amount by the pressure sensors 70-75 is merely an example, and for example, a position sensor (for example, a rotary encoder) that detects the rotational displacement (tilt amount) of each operation lever 22, 23 is used for the operation lever 22, 23. Of the lever operation amount, the pilot pressure is calculated from the lever operation amount based on the detected lever operation amount and the correlation table of the lever operation amount and the pilot pressure, and the spectacular table illustrated in FIG. 11 is used. The speed of the hydraulic actuator 3-7 may be estimated. Further, instead of the configuration in which the operating speed of each hydraulic actuator 3-7 is estimated from the operation amount of the operator, the displacement of the hydraulic cylinder 3-7 is calculated from the detection values of the angle sensors 30 to 32 and the vehicle body inclination angle sensor 33, The operating speed may be calculated based on the time change of the displacement.
 旋回角速度演算部173は,旋回角速度検出装置55(旋回角速度センサ17)の検出値に基づき,上部旋回体12の旋回角速度を演算する。 The turning angular velocity calculation unit 173 calculates the turning angular velocity of the upper swing body 12 based on the detection value of the turning angular velocity detection device 55 (turning angular velocity sensor 17).
 目標停止角度演算部101は,作業領域演算部171で演算された作業領域60(作業領域境界61)の位置と,作業機姿勢演算部172で演算されたフロント作業機1A及び上部旋回体12の姿勢とに基づいて,フロント作業機1A及び上部旋回体12が作業領域60から逸脱する前に上部旋回体12の旋回を停止させるための旋回角度の目標値である目標旋回停止角度θstopを演算する。本実施形態の目標停止角度演算部101は,ショベル基準座標系において,フロント作業機1Aのリーチ長さ(単に「リーチ」と称することもある)Rbk(図5)と,本体1Bから作業領域境界61までの距離とから,目標の旋回停止角度θstopを演算する。例えば,図7の作業領域境界61に対して,バケット10の左端部10Lが接近するときの,目標旋回停止角度θstopの算出について説明する。作業領域境界61とショベル基準座標系の原点(上部旋回体12の旋回中心120)との距離d(図7),上部旋回体12の旋回中心120とブームピン8aのX軸方向の長さをLsb(図5),ブームピン8aからアームピン9aまでの長さをLbm(図5),アームピン9aからバケットピン10aまでの長さをLam(図5),バケットピン10aからバケット先端10bまでの長さをLbk(図5),バケット先端の幅方向の長さをWbk(図7),ブーム8,アーム9,バケット10の回動角度をα,β,γ(図5)とする。なお,旋回中心120と,ブームピン8aに,Z軸方向やY軸方向のオフセットは無いものとする。このとき,フロント作業機1AのリーチRbkは下記の式(1)で表される。 The target stop angle calculation unit 101 includes the position of the work area 60 (work area boundary 61) calculated by the work area calculation unit 171, and the front work machine 1A and the upper swing body 12 calculated by the work machine attitude calculation unit 172. Based on the posture, a target turning stop angle θstop, which is a target value of a turning angle for stopping the turning of the upper swing body 12 before the front working machine 1A and the upper swing body 12 deviate from the work area 60, is calculated. .. In the excavator reference coordinate system, the target stop angle calculation unit 101 of the present embodiment has the reach length (sometimes simply referred to as “reach”) Rbk (FIG. 5) of the front work machine 1A and the work area boundary from the main body 1B. From the distance to 61, the target turning stop angle θstop is calculated. For example, the calculation of the target turning stop angle θstop when the left end portion 10L of the bucket 10 approaches the work area boundary 61 of FIG. 7 will be described. The distance d (FIG. 7) between the work area boundary 61 and the origin of the excavator reference coordinate system (the turning center 120 of the upper turning body 12), the length of the turning center 120 of the upper turning body 12 and the boom pin 8a in the X-axis direction is Lsb. (FIG. 5), the length from the boom pin 8a to the arm pin 9a is Lbm (FIG. 5), the length from the arm pin 9a to the bucket pin 10a is Lam (FIG. 5), and the length from the bucket pin 10a to the bucket tip 10b is Let Lbk (FIG. 5), the length of the bucket tip in the width direction be Wbk (FIG. 7), and the rotation angles of the boom 8, arm 9, and bucket 10 be α, β, γ (FIG. 5). It should be noted that there is no offset between the turning center 120 and the boom pin 8a in the Z-axis direction or the Y-axis direction. At this time, the reach Rbk of the front working machine 1A is represented by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで旋回角度をθswとすると,バケット先端10bの左端の10Lの位置Ybkは,下記の式(2)として表される。 Here, assuming that the turning angle is θsw, the position Ybk of the left end 10L of the bucket tip 10b is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記の式(2)において,三角関数の合成による係数をa,b,δ,ショベル基準座標系の原点と作業領域境界61との距離をdとすると,目標旋回停止角度θstopは下記の式(3)として表される。このときの目標旋回停止角度θstopは,図13に示すように,バケット先端の左端10Lが作業領域境界61上に位置するときの旋回角度θswである。この場合,バケット先端の左端10Lが,上部旋回体12の旋回動作により油圧ショベル1上の点で最も早く作業領域境界61上に到達する点である。但し,上部旋回体12の旋回方向と作業領域境界61の位置に応じて,上部旋回体12の旋回動作により油圧ショベル1上の点で最も早く作業領域境界61上に到達する点はその都度変わり得る。 In the above formula (2), when the coefficients obtained by combining the trigonometric functions are a, b, δ, and the distance between the origin of the shovel reference coordinate system and the work area boundary 61 is d, the target turning stop angle θstop is It is expressed as 3). The target turning stop angle θstop at this time is the turning angle θsw when the left end 10L of the bucket tip is located on the work area boundary 61, as shown in FIG. In this case, the left end 10L of the bucket tip reaches the work area boundary 61 at the earliest point on the hydraulic excavator 1 due to the turning operation of the upper swing body 12. However, depending on the turning direction of the upper swing body 12 and the position of the work area boundary 61, the point on the hydraulic excavator 1 that reaches the work area boundary 61 earliest by the turning motion of the upper swing body 12 changes each time. obtain.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 旋回制動挙動予測部102は,制御コントローラ40から旋回停止指令が出力されたとき(旋回制動の開始)から上部旋回体12が停止するときまで期間(本稿では「制動期間」と称することがある)中の上部旋回体12及びフロント作業機1Aの動作を上部旋回体12の旋回角速度とフロント作業機1Aの姿勢とから予測することで,制動期間中に上部旋回体12が旋回する角度である予測旋回制動角度θpreを演算する。旋回制動挙動予測部102は,例えば制御周期で決められた所定のタイミングにおいて,その瞬間のフロント作業機1Aの姿勢,フロント作業機1Aの速度,上部旋回体12の角速度を初期条件として,制動期間中の上部旋回体12とフロント作業機1Aの挙動を予測する。より具体的には,旋回制動挙動予測部102は,旋回制動制御による制動期間において,ブーム8,アーム9,バケット10の回動角度であるα,β,γが変化することによるフロント作業機1Aのリーチの予測値(「予測作業機リーチ」とも称する)Rpreの変化と,同じく制動期間中に上部旋回体12が旋回する角度(すなわち,旋回制動の開始から旋回が停止するまでに要する角度)である旋回制動角度の予測値(「予測旋回制動角度」とも称する)θpreとを算出する。このフロント作業機1AのリーチRpreの変化と,旋回制動角度θpreは,例えば下記式(4)の運動方程式に基づいて算出できる。τを旋回の制動トルク,ωを旋回角速度,Jをフロント作業機1Aの姿勢(作業機姿勢)に依存する上部旋回体12の慣性モーメント,Bを粘性減衰係数,Cを作業機姿勢に依存する遠心力に関する項とすると,上部旋回体12の運動方程式は下記の式(4)のようになる。作業機姿勢に依存する項である慣性モーメントの項Jと遠心力の項Cとを変化させ,各時刻において下記の式(4)を解くことで,フロント作業機1Aの姿勢が変化する場合の,旋回制動角度と,フロント作業機1Aのリーチの変化を演算することができる。 The turning braking behavior prediction unit 102 is a period from the time when the turning stop command is output from the control controller 40 (start of turning braking) to the time when the upper turning body 12 is stopped (may be referred to as “braking period” in this document). By predicting the operation of the upper revolving structure 12 and the front working machine 1A in the middle from the turning angular velocity of the upper revolving structure 12 and the posture of the front working machine 1A, it is possible to predict the angle at which the upper revolving structure 12 turns during the braking period. The turning braking angle θpre is calculated. The turning braking behavior prediction unit 102 sets the braking period as initial conditions, for example, at a predetermined timing determined by the control cycle, with the posture of the front working machine 1A at that moment, the speed of the front working machine 1A, and the angular velocity of the upper turning body 12 as initial conditions. The behaviors of the upper revolving superstructure 12 and the front working machine 1A are predicted. More specifically, the swing braking behavior prediction unit 102 changes the rotation angles α, β, γ of the boom 8, the arm 9, and the bucket 10 during the braking period by the swing braking control, thereby changing the front working machine 1A. Predicted value of reach (also referred to as "predictive work machine reach") Rpre change and the angle at which the upper swing body 12 turns during the braking period (that is, the angle required from the start of turning braking to the stop of turning) And a predicted value of the turning braking angle (also referred to as “predicted turning braking angle”) θpre. The change in reach Rpre of the front working machine 1A and the turning braking angle θpre can be calculated, for example, based on the equation of motion of the following equation (4). τ is the braking torque for turning, ω is the turning angular velocity, J is the moment of inertia of the upper swinging body 12 that depends on the posture of the front working machine 1A (working machine posture), B is the viscous damping coefficient, and C is dependent on the working machine posture. Assuming the term relating to the centrifugal force, the equation of motion of the upper revolving superstructure 12 is given by the following equation (4). When the inertia moment term J and the centrifugal force term C, which are terms that depend on the work implement posture, are changed and the following equation (4) is solved at each time, the posture of the front work implement 1A changes. The change in the turning braking angle and the reach of the front working machine 1A can be calculated.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 制動期間中のフロント作業機1AのリーチRpreの変化は,制動期間中の油圧アクチュエータ5-7の速度の変化を油圧アクチュエータ(油圧シリンダ)5-7の速度特性に基づいて規定し,その速度変化を回動角度α,β,γの変化に幾何学的に変化することで算出可能である。本実形態では油圧アクチュエータ5-7の速度特性として,オペレータ操作速度推定部174が利用する図11に示したパイロット圧と油圧アクチュエータ5-7の相関テーブルを利用している。また,本実施形態では,制動期間中の油圧アクチュエータ5-7の速度の変化のさせ方として,式(2)に示したフロント作業機1AのリーチRbkを演算時(現時点)の姿勢から最大値に向かって制動期間中に増加し続けるように変化させている。作業領域60からの逸脱を確実に防止する観点からは,リーチRbkの時間あたりの増加量はショベル1の仕様から規定される理論上の最大値とすることが好ましい。なお,制動期間中にリーチRbkが最大値に達すれば,それ以降は最大値を維持するものとする。このようなアクチュエータ速度の変化を想定することで,現在のフロント作業機1Aの姿勢および速度から,フロント作業機1Aのリーチが最大値に向かって増加するようにオペレータが操作した場合の旋回制動制御時の挙動を予測することができ,その挙動に基づいて予測旋回制動角度θpreも算出できる。以上を換言すると,本実施形態の旋回制動挙動予測部102は,制動期間中にフロント作業機1AのリーチRbkが増加し続けることを仮定して予測制動角度θpreを演算しているといえる。 The change in the reach Rpre of the front working machine 1A during the braking period is defined by the change in the speed of the hydraulic actuator 5-7 during the braking period based on the speed characteristic of the hydraulic actuator (hydraulic cylinder) 5-7. Can be calculated by geometrically changing the rotation angles α, β, and γ. In this actual embodiment, as the speed characteristic of the hydraulic actuator 5-7, the correlation table between the pilot pressure and the hydraulic actuator 5-7 shown in FIG. 11 used by the operator operation speed estimation unit 174 is used. Further, in the present embodiment, as a method of changing the speed of the hydraulic actuator 5-7 during the braking period, the reach Rbk of the front working machine 1A shown in the equation (2) is calculated from the posture at the time of calculation (current time) to the maximum value. Toward the end of the braking period so that it continues to increase. From the viewpoint of surely preventing deviation from the work area 60, it is preferable that the amount of increase in reach Rbk per hour is the theoretical maximum value defined by the specifications of the excavator 1. When the reach Rbk reaches the maximum value during the braking period, the maximum value is maintained thereafter. By assuming such a change in the actuator speed, the swing braking control when the operator operates so that the reach of the front work implement 1A increases from the current attitude and speed of the front work implement 1A toward the maximum value The behavior at time can be predicted, and the predicted turning braking angle θpre can be calculated based on the behavior. In other words, it can be said that the turning braking behavior prediction unit 102 of the present embodiment calculates the predicted braking angle θpre on the assumption that the reach Rbk of the front work implement 1A continues to increase during the braking period.
 なお,仮に現時刻においてフロント作業機1AのリーチRbkが最大となっている場合は,旋回制動挙動予測部102は,制動期間中のフロント作業機1Aの姿勢の変化を想定せず,現時点の姿勢(すなわちリーチRbkが最大値)のまま旋回制動角度θpreを算出する。 If the reach Rbk of the front working machine 1A is the maximum at the current time, the turning braking behavior prediction unit 102 does not assume a change in the posture of the front working machine 1A during the braking period, and the current posture. The turning braking angle θpre is calculated while keeping (that is, the reach Rbk is the maximum value).
 目標停止角度修正部103は,旋回制動挙動予測部102によるフロント作業機1Aの動作の予測結果(具体的にはフロント作業機1AのリーチRpre)から目標旋回停止角度θstopを修正する。ここでは目標旋回停止角度θstopの修正値を修正旋回停止角度θrsと称することがある。本実施形態の修正旋回停止角度θrsは,フロント作業機1Aのリーチを現在値から所定のルールに従って最大値に向かって伸ばしながら作業領域境界61に向かって旋回したときに,ショベル1上の点で最も早く作業領域境界61に到達する点(図13の場合はバケット先端の左端10L)が作業領域境界61上に位置するときの旋回角度θswとなる。修正旋回停止角度θrsは,現時刻でリーチが最大でない場合にはリーチが増加することでθstopより小さくなることが通常である。なお,現時刻において作業機姿勢がフルリーチ(最大値)に到達している場合は,θrsとθstopは等しい値となる。以上を換言すると,本実施形態の目標停止角度修正部103は,制動期間中にフロント作業機1AのリーチRbkが増加し続けることを仮定して目標旋回停止角度θstopを修正することで修正旋回停止角度θrsを演算しているといえる。 The target stop angle correction unit 103 corrects the target turn stop angle θstop from the prediction result of the operation of the front work machine 1A by the turn braking behavior prediction unit 102 (specifically, the reach Rpre of the front work machine 1A). Here, the modified value of the target turning stop angle θstop may be referred to as the modified turning stop angle θrs. The corrected turning stop angle θrs of the present embodiment is a point on the shovel 1 when turning toward the work area boundary 61 while extending the reach of the front working machine 1A from the current value toward the maximum value according to a predetermined rule. The turning angle θsw when the point at which the work area boundary 61 is reached earliest (in the case of FIG. 13, the left end 10L of the bucket tip) is located on the work area boundary 61. The corrected turning stop angle θrs is usually smaller than θstop as the reach increases when the reach is not the maximum at the current time. When the work implement posture reaches the full reach (maximum value) at the current time, θrs and θstop have the same value. In other words, the target stop angle correction unit 103 of the present embodiment corrects the turn stop angle θstop by correcting the target turn stop angle θstop on the assumption that the reach Rbk of the front work machine 1A continues to increase during the braking period. It can be said that the angle θrs is calculated.
 旋回指令演算部104では,修正旋回停止角度θrsと,現在の旋回角度θc(旋回角度センサ19により検出される旋回角)と,予測旋回制動角度θpreとに基づいて決定したタイミングで旋回停止指令(上部旋回体12の旋回を減速して停止する指令)を電磁比例弁87に出力する。本実施形態では,下記式(5)の条件を満たすと,旋回の制動トルクτ(式(4)参照)にて減速させる旋回停止指令を出力し,旋回制動制御を実行する。ただし,後述する図8,9のフローチャートでは,予測旋回制動角度θpreと現在の旋回角度θcの和が修正旋回停止角度θrs(作業機リーチが既に最大のときはθstop)に達した時,制動トルクτを加える旋回制動を行うことと説明している。 In the turning command calculation unit 104, the turning stop command (turning stop command (turning stop command) is determined based on the modified turning stop angle θrs, the current turning angle θc (turning angle detected by the turning angle sensor 19), and the predicted turning braking angle θpre. A command to decelerate and stop the turning of the upper swing body 12) is output to the electromagnetic proportional valve 87. In the present embodiment, when the condition of the following equation (5) is satisfied, a turning stop command for decelerating with the turning braking torque τ (see equation (4)) is output, and the turning braking control is executed. However, in the flowcharts of FIGS. 8 and 9 described later, when the sum of the predicted turning braking angle θpre and the current turning angle θc reaches the corrected turning stop angle θrs (θstop when the reach of the working machine is already maximum), the braking torque. It is described that turning braking is performed by adding τ.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記式(5)を満たすタイミングで旋回停止指令を出力することで,仮に現在の姿勢から作業機1Aのリーチが最大に向かうような操作が制動期間中にオペレータによって行われた場合であっても,作業領域60を逸脱することなく,またフロント作業機1Aの動作を制限することなく,ショベル1の旋回動作を停止させることができる。 Even if the operator performs an operation such that the reach of the work implement 1A is maximized from the current posture by outputting the turning stop command at the timing that satisfies the above expression (5), even if the operator performs the operation. The turning operation of the shovel 1 can be stopped without departing from the work area 60 and without restricting the operation of the front working machine 1A.
 -フローチャート(図8)-
 次に,図8に基づいて,上記の構成を備えた油圧ショベル1による制御処理手順を説明する。図8は本実施形態の制御コントローラ40が実行する逸脱防止制御のフローチャートを示しており,各ステップ番号にSを付して表す。制御コントローラ40はオペレータの操作レバー22bによる旋回操作が実行されると図8のフローを開始する。但し,旋回中は所定の周期で図8のフローが繰り替えし実行される。
-Flowchart (Fig. 8)-
Next, a control processing procedure by the hydraulic excavator 1 having the above configuration will be described with reference to FIG. FIG. 8 shows a flow chart of deviation prevention control executed by the controller 40 of the present embodiment, and each step number is indicated by adding S. The controller 40 starts the flow of FIG. 8 when the turning operation by the operator's operation lever 22b is executed. However, during turning, the flow of FIG. 8 is repeated and executed at a predetermined cycle.
 まず,制御コントローラ40は,ステップS100で,作業領域演算部171で演算された作業領域60の位置に基づいて,油圧ショベル1(自機)の現在の位置に作業領域60の設定がされているか否かを判断する。例えば,自機の位置を中心にして所定の範囲内に作業領域境界61が存在するか否かを判定し,当該所定の範囲内に作業領域境界61が存在する場合には作業領域60の設定がされていると判断する。また,逸脱防止制御の実行のON/OFFを切り替えるスイッチを備え,そのスイッチを介してONとされた場合には作業領域60の設定があり,OFFの場合には作業領域60の設定はないと判断するものもある。S100で作業領域60の設定がされていると判断された場合にはS101に進み,設定がないと判断された場合にはステップS110へ進む。 First, in step S100, the controller 40 sets the work area 60 at the current position of the hydraulic excavator 1 (own machine) based on the position of the work area 60 calculated by the work area calculation unit 171. Judge whether or not. For example, it is determined whether or not the work area boundary 61 exists within a predetermined range centering on the position of the player's own machine, and when the work area boundary 61 exists within the predetermined range, the work area 60 is set. It is judged that it has been done. Further, a switch for switching ON/OFF of execution of the deviation prevention control is provided, and the work area 60 is set when the switch is turned on through the switch, and the work area 60 is not set when the switch is OFF. There is also something to judge. If it is determined in S100 that the work area 60 is set, the process proceeds to S101, and if it is determined that there is no setting, the process proceeds to step S110.
 ステップS101では,制御コントローラ40(作業機姿勢演算部172)は,作業機姿勢検出装置51からのデータ入力(フロント作業機1Aの姿勢情報の入力)を受けて,現時点(ステップS101の実行時)においてフロント作業機1Aがフルリーチ(最大)に達しているか否かを判断する。フロント作業機1Aのリーチが最大と判断された場合ステップS102へ進み,フルリーチに達していない場合ステップS105へ進む。 In step S101, the control controller 40 (working machine attitude calculation unit 172) receives data input (inputting attitude information of the front working machine 1A) from the working machine attitude detecting device 51, and at the present time (when executing step S101). In, it is determined whether or not the front working machine 1A has reached the full reach (maximum). If it is determined that the reach of the front working machine 1A is the maximum, the process proceeds to step S102, and if it has not reached the full reach, the process proceeds to step S105.
 ステップS102では,制御コントローラ40(目標停止角度演算部101)は,フロント作業機1Aがフルリーチ姿勢において,旋回動作によって作業領域60から逸脱するか否かを判定する。すなわち,フルリーチで旋回したとき油圧ショベル1が作業領域60の外に出るか否かを判定することで,作業領域60からの逸脱の有無を判定する。逸脱すると判定した場合はステップS103へ進み,逸脱しないと判定した場合はステップS110へ進む。 In step S102, the controller 40 (target stop angle calculation unit 101) determines whether or not the front working machine 1A deviates from the work area 60 by the turning motion in the full reach posture. That is, the presence or absence of deviation from the work area 60 is determined by determining whether or not the hydraulic excavator 1 goes out of the work area 60 when turning with full reach. If it is determined to deviate, the process proceeds to step S103, and if it is determined not to deviate, the process proceeds to step S110.
 ステップS103では,制御コントローラ40(目標停止角度演算部101)は,現時点の作業機姿勢(フルリーチ)で,作業領域60を逸脱しないための目標停止角度θstopを算出する。具体的には,目標停止角度演算部101は,ブーム8,アーム9,バケット10の回動角度α,β,γと,ショベル基準座標系の原点と作業領域境界61との距離dと,式(1)-(3)とに基づいてフルリーチ時の目標停止角度θstopを算出し,それを旋回指令演算部104に出力する。ステップS104が終了したら,その後ステップS104へ処理を進める。 In step S103, the control controller 40 (target stop angle calculation unit 101) calculates the target stop angle θstop that does not deviate from the work area 60 with the current work implement posture (full reach). Specifically, the target stop angle calculation unit 101 describes the rotation angles α, β, γ of the boom 8, arm 9, and bucket 10 and the distance d between the origin of the excavator reference coordinate system and the work area boundary 61. The target stop angle θstop at full reach is calculated based on (1)-(3) and is output to the turning command calculation unit 104. When step S104 ends, the process then proceeds to step S104.
 ステップS104では,制御コントローラ40(旋回制動挙動予測部102)は,現時点の作業機姿勢(フルリーチ)において,旋回制動を開始してから上部旋回体12が停止するまでに要する角度である予測旋回制動角度θpreを算出し,それを旋回指令演算部104に出力する。その後ステップ108へ進む。 In step S104, the control controller 40 (turning braking behavior predicting unit 102) predicts the turning braking that is the angle required from the start of turning braking to the stop of the upper-part turning body 12 in the current working machine posture (full reach). The angle θpre is calculated and output to the turning command calculation unit 104. Then proceed to step 108.
 ステップS108では,制御コントローラ40(旋回指令演算部104)は,ステップS104で演算した予測旋回制動角度θpreと,旋回角度演算部170から入力される現在角度θcの和が,ステップ103で演算した目標旋回停止角度θstopに達したか否かを判定する。これらの和が目標旋回停止角度θstopに達した場合にはステップS109へ処理を進め,達していない場合にはステップS110へ処理を進める。 In step S108, the control controller 40 (turning command calculation unit 104) calculates the target calculated in step 103 by the sum of the predicted turning braking angle θpre calculated in step S104 and the current angle θc input from the turning angle calculation unit 170. It is determined whether or not the turning stop angle θstop is reached. If the sum of these reaches the target turning stop angle θstop, the process proceeds to step S109, and if not, the process proceeds to step S110.
 ステップS109では,制御コントローラ40(旋回指令演算部104)は,旋回制動制御,すなわち旋回制動を実行し,それにより上部旋回体12の旋回動作が減速され,作業領域60からの逸脱が防止される。 In step S109, the control controller 40 (turning command calculation unit 104) executes turning braking control, that is, turning braking, thereby decelerating the turning operation of the upper turning body 12 and preventing deviation from the work area 60. ..
 ステップS110では,制御コントローラ40による旋回制動制御は実行されず,ショベル1の旋回動作はオペレータの操作通りに行われる。ステップS110の処理は,ステップS100,ステップS102,ステップS106,ステップS108で否と判定された場合に行われる。 In step S110, the turning braking control by the control controller 40 is not executed, and the turning operation of the excavator 1 is performed as operated by the operator. The process of step S110 is performed when it is determined in step S100, step S102, step S106, and step S108 that the process is negative.
 一方,ステップS105では(すなわち,ステップS101でフロント作業機1Aがフルリーチに達していないと判定された場合には),制御コントローラ40(旋回制動挙動予測部102)は,旋回制動制御により旋回制動を開始してから上部旋回体12が停止するまでの間にフロント作業機1AのリーチRpreの変化(予測作業機リーチ)と,同じく旋回制動を開始してから上部旋回体12が停止するまでに要する角度である予測旋回制動角度θpreとを算出する。具体的には,現時点(ステップS105の実行時)のフロント作業機1Aの姿勢・速度および上部旋回体12の角速度の状態で,所定の制動トルクτによる旋回制動と作業機リーチの最大化とを開始したと想定し,上部旋回体12が停止するまでに要する角度(予測旋回制動角度)θpreと,上部旋回体12が停止するまでのフロント作業機1AのリーチRpreの変化(予測作業機リーチ)とを上記の式(4)の運動方程式に基づいて算出する。なお,本実施の形態における作業機リーチの最大化は,既述の通り,式(2)に示したフロント作業機1AのリーチRbkを演算時(現時点)の姿勢から最大化するように回動角度α,β,γ(各シリンダ5-7の速度)を予め定めたルールに従って変化させる。予測作業機リーチと予測旋回制動角度θpreの演算が完了したら,それらを目標停止角度修正部103及び旋回指令演算部104に出力して,ステップS106に進む。 On the other hand, in step S105 (that is, when it is determined in step S101 that the front working machine 1A has not reached full reach), the control controller 40 (turning braking behavior prediction unit 102) performs turning braking by turning braking control. The change in reach Rpre of the front work machine 1A (predicted work machine reach) between the start and the stop of the upper swivel body 12 and the time required from the start of the swivel braking until the upper swivel body 12 stops. The predicted turning braking angle θpre, which is the angle, is calculated. Specifically, in the state of the posture and speed of the front working machine 1A and the angular velocity of the upper turning body 12 at the present time (when the step S105 is executed), turning braking by a predetermined braking torque τ and maximizing the reach of the working machine are performed. Assuming that the start has started, a change in the angle (predicted turning braking angle) θpre required until the upper swing body 12 stops and the reach Rpre of the front work implement 1A until the upper swing body 12 stops (predicted work machine reach) And are calculated based on the equation of motion of the above equation (4). It should be noted that, as described above, the work implement reach is maximized by rotating the reach Rbk of the front implement 1A shown in the equation (2) so as to maximize the reach Rbk from the posture at the time of calculation (current time). The angles α, β, γ (speed of each cylinder 5-7) are changed according to a predetermined rule. When the calculation of the predicted working machine reach and the predicted turning braking angle θpre are completed, they are output to the target stop angle correction unit 103 and the turning command calculation unit 104, and the process proceeds to step S106.
 ステップS106では,制御コントローラ40(目標停止角度修正部103)は,ステップS105で演算した予測作業機リーチで(即ち,作業機リーチを最大に向かって増加しながら)油圧ショベル1を旋回した際に,油圧ショベル1の一部が作業領域60から逸脱するか否かを判定する。判定はステップS102と同様に行うことができる。ここで逸脱すると判定された場合はステップS107へ進み,逸脱しないと判定された場合はステップS110へ進む。 In step S106, when the controller 40 (target stop angle correction unit 103) turns the hydraulic excavator 1 with the predicted work machine reach calculated in step S105 (that is, while increasing the work machine reach toward the maximum). , It is determined whether or not a part of the hydraulic excavator 1 deviates from the work area 60. The determination can be performed in the same manner as step S102. If it is determined that the vehicle departs, the process proceeds to step S107, and if it is determined that the vehicle does not depart, the process proceeds to step S110.
 ステップS107では,制御コントローラ40(目標停止角度修正部103)は,ステップS105で演算した予測作業機リーチ(回動角α,β,γの変化)と,距離dと,上記式(1)-(3)とから,作業領域60を逸脱しないための目標旋回停止角度(修正旋回停止角度θrs)を算出する。その後ステップS108へ進む。 In step S107, the controller 40 (target stop angle correction unit 103) causes the predicted work machine reach calculated in step S105 (changes in the rotation angles α, β, γ), the distance d, and the above equation (1)- From (3), the target turning stop angle (corrected turning stop angle θrs) for not departing from the work area 60 is calculated. Then, the process proceeds to step S108.
 ステップS107を経由してステップS108に来た場合,制御コントローラ40(旋回指令演算部104)は,ステップS105で演算した予測旋回制動角度θpreと,旋回角度演算部170から入力される現在角度θcの和が,ステップ107で演算した目標旋回停止角度(修正旋回停止角度θrs)に達したか否かを判定する。これらの和が目標旋回停止角度(修正旋回停止角度θrs)に達した場合にはステップS109へ処理を進め(すなわち旋回制動を実行し),達していない場合にはステップS110へ処理を進める。 When the process proceeds to step S108 via step S107, the control controller 40 (turning command calculation unit 104) determines the predicted turning braking angle θpre calculated in step S105 and the current angle θc input from the turning angle calculation unit 170. It is determined whether the sum has reached the target turning stop angle (corrected turning stop angle θrs) calculated in step 107. When these sums reach the target turning stop angle (corrected turning stop angle θrs), the process proceeds to step S109 (that is, turning braking is executed), and when not reached, the process proceeds to step S110.
 -効果-
 上記のように構成された油圧ショベル1では以下のような効果が発揮される。
-effect-
The hydraulic excavator 1 configured as described above has the following effects.
 (1)旋回中にフロント作業機1Aが操作されても作業領域60を逸脱する可能性がないとき
 上部旋回体12の旋回中にフロント作業機1Aがオペレータに操作されても油圧ショベル1が作業領域60から逸脱する可能性がないとき,つまり,ステップS100,S102,S106のいずれかでNOと判定されてステップS110に到達するときは,旋回制動制御は実行されないため,不要な旋回制動制御(旋回制動)の実行が回避されて作業効率が低下することを防止できる。
(1) When the front work implement 1A is operated during turning, there is no possibility of deviating from the work area 60. Even if the front work implement 1A is operated by the operator during turning of the upper swing body 12, the hydraulic excavator 1 works. When there is no possibility of deviating from the region 60, that is, when it is determined to be NO in any of steps S100, S102, and S106 and the processing reaches step S110, the turning braking control is not executed, so unnecessary turning braking control ( It is possible to prevent the execution of the turning braking) from being avoided and the work efficiency from being lowered.
 (2)旋回中にフロント作業機1Aが操作されて作業領域60を逸脱するとき
 一方,上部旋回体12の旋回により油圧ショベル1が作業領域60から逸脱する可能性があるときは,旋回中にフロント作業機1Aのリーチ長さを最大値に向かって増加した場合の目標旋回停止角度(修正旋回停止角度θrs)が演算されるとともに,旋回制動(旋回制動制御)を開始してから上部旋回体12が停止するまでに要する角度である予測旋回制動角度θpreの演算にフロント作業機1Aのリーチ長さと慣性モーメントが考慮されることとなる。このように構成することで,旋回制動制御中にオペレータによるフロント作業機1Aの操作を許容しつつ,作業領域60からの逸脱を防止することができる。仮に,常にフロント作業機1Aがフルリーチであると仮定して,予測旋回制動角度θpreと予測作業機リーチを演算した場合には,本実施形態でS105,106,107を通過した際に演算されるθpreと予測作業機リーチに比して大きな値をとるため,制御結果としては保守的になる。しかしながら,本実施形態では,現時刻のフロント作業機1Aの姿勢を基準に予測作業機リーチと予測旋回制動角度θpreを逐次算出するため,実際に起こり得る妥当な条件のもとで,旋回制動制御を実行することができる。
(2) When the front work implement 1A is operated to deviate from the work area 60 during turning, on the other hand, when the hydraulic excavator 1 may deviate from the work area 60 due to turning of the upper swing body 12, The target turning stop angle (corrected turning stop angle θrs) is calculated when the reach length of the front work implement 1A is increased toward the maximum value, and the upper turning body is started after turning braking (turning braking control) is started. The reach length and moment of inertia of the front working machine 1A are taken into consideration in the calculation of the predicted turning braking angle θpre, which is the angle required for 12 to stop. With this configuration, it is possible to prevent deviation from the work area 60 while allowing the operator to operate the front work implement 1A during the turning braking control. If it is assumed that the front working machine 1A is always in full reach and the predicted turning braking angle θpre and the predicted working machine reach are calculated, the calculation is performed when passing through S105, 106, and 107 in the present embodiment. The control result is conservative because it takes a large value compared with θpre and the predicted work machine reach. However, in the present embodiment, since the predicted working machine reach and the predicted turning braking angle θpre are sequentially calculated based on the attitude of the front working machine 1A at the current time, the turning braking control is performed under a reasonable condition that may actually occur. Can be executed.
 したがって,本実施形態によれば,旋回制動制御中にオペレータによるフロント作業機1Aの操作を許容しても,それによる不具合の発生(例えば,作業領域60からの逸脱や,オペレータの操作フィーリングの低下等)を防止できる。 Therefore, according to the present embodiment, even if the operator allows the operation of the front work machine 1A during the turning braking control, a problem occurs due to the operation (for example, deviation from the work area 60 and the operation feeling of the operator). (Drop, etc.) can be prevented.
 なお,図8のステップS102は,ステップS100でYESと判定された後に実行し,そこでYESと判定された後にステップS101を実行するようにフローチャートを構成しても良い。すなわち,図8においてステップS101とS102の順番の前後は交換可能である。ステップS101とS102の前後を入れ替えた場合,ステップS106は省略可能である。 Note that the flowchart may be configured such that step S102 of FIG. 8 is executed after YES is determined in step S100, and step S101 is executed after YES is determined there. That is, in FIG. 8, before and after the order of steps S101 and S102 can be exchanged. When the front and back of steps S101 and S102 are exchanged, step S106 can be omitted.
 なお,図5に示すように油圧ショベル1が傾斜地にある場合,旋回動作は斜面の傾斜による重力の影響を受ける。この場合,図6に示す旋回制動挙動予測部102は,車体傾斜角センサ33(作業機姿勢演算部172)で検出される車体1B(上部旋回体12)の傾斜角θに基づいて,重力の影響を考慮して旋回制動制御時の予測される作業機のリーチであるRpre,予測される旋回制動角度であるθpreを算出し得る。具体的には,重力の影響の項(重力の影響項)をGとして,下記の運動方程式(式(6))を利用する。 Note that when the hydraulic excavator 1 is on a slope as shown in Fig. 5, the turning motion is affected by gravity due to the slope of the slope. In this case, the turning braking behavior predicting unit 102 shown in FIG. 6 determines the gravitational force based on the tilt angle θ of the vehicle body 1B (upper revolving superstructure 12) detected by the vehicle body inclination angle sensor 33 (working machine attitude calculation unit 172). In consideration of the influence, it is possible to calculate Rpre, which is the predicted reach of the working machine during swing braking control, and θpre, which is the predicted swing braking angle. Specifically, the following equation of motion (Equation (6)) is used, where G is the term of the influence of gravity (the term of influence of gravity).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 これにより,重力の影響を受ける場合であっても,精度よく旋回制動制御時の挙動を予測することが可能となる。 This makes it possible to accurately predict the behavior during turning braking control, even when affected by gravity.
 <変形例>
 上記の第1実施形態では,上部旋回体12の旋回中にオペレータがフロント作業機1Aの操作を実際に行うか否かに関わらず,オペレータの操作によってフロント作業機1Aのリーチが最大値に向かって増大する場面を想定した旋回制動について説明したが,以下に示すような方法でオペレータの操作を考慮しても良い。
<Modification>
In the above-described first embodiment, regardless of whether or not the operator actually operates the front work implement 1A during the swing of the upper swing body 12, the reach of the front work implement 1A is moved to the maximum value by the operator's operation. Although the turning braking has been described assuming a situation in which the number of operators increases, the operator's operation may be taken into consideration in the following method.
 (1)オペレータが操作右レバー22aに触れていない場合
 第1実施形態に係る油圧ショベル1は,図2に示すように,フロント作業機1Aを構成する3つのフロント部材(ブーム8,アーム9,バケット10)のうち2つのフロント部材であるブーム8及びバケット10を操作可能な操作右レバー22aと,3つのフロント部材から前記2つのフロント部材を除いた残りの1つのフロント部材であるアーム9と上部旋回体12とを操作可能な操作左レバー22bとを備えている。上部旋回体12の旋回時には,オペレータは,通常,操作左レバー22bを介して左手で旋回操作を入力し,フロント作業機1Aの操作が必要な場合は,この旋回操作に加えて他の操作を入力する。そのため,操作左レバー22bによる旋回操作中にオペレータが操作右レバー22aに触れていない場合には,ブーム8およびバケット10は動作しない。そこで,オペレータが操作右レバー22aに触れているか否かを検出可能な接触検知センサを操作右レバー22aに取り付け,そのセンサの出力信号に応じて図8のS105の予測作業機リーチと予測旋回制動角度θpreの演算内容を変更しても良い。具体的には,オペレータが操作右レバー22aに触れていると判定された場合には,図8のステップS105で既に説明した処理に基づいて予測作業機リーチと予測旋回制動角度θpreを演算し(すなわち,作業機リーチが最大化することを想定して演算する),反対に,オペレータが操作右レバー22aに触れていないと判定された場合には,その時のフロント作業機1Aの姿勢からブーム8およびバケット10は動作しないものとし,アーム9の押し動作のみで作業機リーチが増加すると仮定して予測作業機リーチと予測旋回制動角度θpreを演算するようにフローチャートを変更しても良い(すなわち,作業機リーチはアームダンプ動作だけで増加するものとして演算する)。
(1) When the operator does not touch the operation right lever 22a As shown in FIG. 2, the hydraulic excavator 1 according to the first embodiment has three front members (boom 8, arm 9, Of the bucket 10), the boom 8 which is two front members and the operation right lever 22a which can operate the bucket 10 and the arm 9 which is the remaining one front member excluding the two front members from the three front members. The upper swing body 12 and an operation left lever 22b capable of operating the upper swing body 12 are provided. When the upper swing body 12 swings, the operator normally inputs a swing operation with his/her left hand through the operation left lever 22b, and when it is necessary to operate the front working machine 1A, in addition to this swing operation, another operation is performed. input. Therefore, when the operator does not touch the operation right lever 22a during the turning operation by the operation left lever 22b, the boom 8 and the bucket 10 do not operate. Therefore, a contact detection sensor capable of detecting whether or not the operator touches the operation right lever 22a is attached to the operation right lever 22a, and the predictive work machine reach and the predictive turning braking in S105 of FIG. 8 are attached according to the output signal of the sensor. The calculation content of the angle θpre may be changed. Specifically, when it is determined that the operator is touching the operation right lever 22a, the predicted work implement reach and the predicted turning braking angle θpre are calculated based on the processing already described in step S105 of FIG. That is, the calculation is performed assuming that the reach of the work implement is maximized). On the contrary, when it is determined that the operator has not touched the operation right lever 22a, the boom 8 from the posture of the front work implement 1A at that time. The bucket 10 may not operate, and the flowchart may be modified to calculate the predicted work implement reach and the predicted turning braking angle θpre assuming that the work implement reach increases only by pushing the arm 9 (that is, Work machine reach is calculated as increasing only by arm dump operation).
 (2)作業機リーチが小さくなる方向に操作レバー22a,22bが操作されている場合
 オペレータの操作レバー22a,22bの操作によって作業機リーチが縮む方向へフロント作業機1Aが操作されている場合,オペレータが操作方向を作業機リーチが伸びる方向へ逆転させ,実際にアクチュエータが逆方向に動くまでに生じる遅れ時間を考慮して,図8のステップS105に示す旋回制動を開始し停止するまでの予測作業機リーチと予測旋回制動角度θpreを算出するステップを演算してもよい。例えば操作左レバー22bが,オペレータによってアーム9の巻き込み方向(アームシリンダ6が伸長する方向)に操作されている場合,アクチュエータが逆方向に動く,つまりアーム9が伸長する方向(アームシリンダ6が収縮する方向)に動くまでに要する遅れを考慮して,ステップS105の演算を実施しても良い。
(2) When the operating levers 22a and 22b are operated in the direction in which the working machine reach becomes smaller When the front working machine 1A is operated in the direction in which the working machine reach is contracted by the operation of the operating levers 22a and 22b by the operator, Prediction until the start and stop of the swing braking shown in step S105 of FIG. 8 in consideration of the delay time that occurs when the operator reverses the operation direction to the direction in which the work machine reach extends and the actuator actually moves in the opposite direction. The step of calculating the work implement reach and the predicted turning braking angle θpre may be calculated. For example, when the operation left lever 22b is operated by the operator in the winding direction of the arm 9 (the direction in which the arm cylinder 6 extends), the actuator moves in the opposite direction, that is, the direction in which the arm 9 extends (the arm cylinder 6 contracts). The calculation in step S105 may be performed in consideration of the delay required to move in the moving direction).
 (3)まとめ(図12,図14)
 ここで上記(1)及び(2)の内容を反映させた第1実施形態の変形例に係る油圧ショベルについて説明する。図14は,本変形例に係る油圧ショベルの制御コントローラ40の機能ブロック図である。図14に示した接触検知センサ58は,オペレータが操作右レバー22aに触れているか否かを検出するためのセンサであり,操作右レバー22aに取り付けられている。接触検知センサ58は制御コントローラ40と電機的に接続されており,接触検知センサ58の検出信号は制御コントローラ40内の旋回制動挙動予測部102に出力されている。
(3) Summary (Figs. 12 and 14)
Here, a hydraulic excavator according to a modified example of the first embodiment in which the contents of (1) and (2) are reflected will be described. FIG. 14 is a functional block diagram of the controller 40 of the hydraulic excavator according to this modification. The contact detection sensor 58 shown in FIG. 14 is a sensor for detecting whether or not the operator is touching the operation right lever 22a, and is attached to the operation right lever 22a. The contact detection sensor 58 is electrically connected to the control controller 40, and the detection signal of the contact detection sensor 58 is output to the turning braking behavior prediction unit 102 in the control controller 40.
 図12は,図14に示した制御コントローラ40が実行する処理のフローチャートの一部を示しており,図8のステップS105に対して,上記(1)及び(2)の内容を反映させたものとなっている。図12におけるステップS1051-S1057までの処理は図8のステップS105に代替する処理であり,ステップS1051の処理は図8のステップS101でNOと判定されたときに実行され,S1053-S1057のいずれかの処理が終了したら図8のステップS106に復帰するものとし,その他の処理は図8と同じであるとする。 FIG. 12 shows a part of a flowchart of processing executed by the controller 40 shown in FIG. 14, in which the contents of (1) and (2) above are reflected in step S105 of FIG. Has become. The processes up to steps S1051 to S1057 in FIG. 12 are alternative processes to step S105 in FIG. 8, and the process in step S1051 is executed when NO is determined in step S101 in FIG. 8, and any of S1053-S1057. It is assumed that the process returns to step S106 of FIG. 8 when the process of FIG. 8 is completed, and the other processes are the same as those of FIG.
 まず,ステップS1051において,制御コントローラ40(旋回制動挙動予測部102)は,接触検知センサ58からの信号に基づいて操作右レバー22aにオペレータが触れているか否かを判定する。操作右レバー22aにオペレータが触れていると判定された場合,ステップS1052へ進む。 First, in step S1051, the control controller 40 (turning braking behavior prediction unit 102) determines whether or not the operator is touching the operation right lever 22a based on the signal from the contact detection sensor 58. If it is determined that the operator is touching the operation right lever 22a, the process proceeds to step S1052.
 ステップS1052では,制御コントローラ40(旋回制動挙動予測部102)は,オペレータ操作検出装置53からの信号に基づいて,操作右レバー22aと操作左レバー22bの操作によりフロント作業機1Aのリーチが縮む方向に操作されているか否かを判定する。操作右レバー22aと操作左レバー22bによりフロント作業機1Aが縮む方向に操作されていると判定された場合,ステップS1053へ進む。 In step S1052, the control controller 40 (turning braking behavior prediction unit 102) operates the operation right lever 22a and the operation left lever 22b based on the signal from the operator operation detection device 53 to reduce the reach of the front work machine 1A. It is determined whether or not it is operated. When it is determined that the front working machine 1A is operated in the contracting direction by the operation right lever 22a and the operation left lever 22b, the process proceeds to step S1053.
 ステップS1053では,制御コントローラ40(旋回制動挙動予測部102)は,縮み方向に操作されているアクチュエータが逆方向(伸び方向)に動くまでの遅れ時間を考慮した上で,旋回制動を開始し停止するまでの予測作業機リーチと予測旋回制動角度θpreを算出する。すなわち,その遅れ時間の経過後に作業機リーチが最大値に向かって増加すると仮定して予測作業機リーチと予測旋回制動角度θpreを算出する。 In step S1053, the control controller 40 (turning braking behavior prediction unit 102) starts and stops turning braking after considering the delay time until the actuator operated in the contraction direction moves in the reverse direction (extension direction). The predicted work machine reach and the predicted turning braking angle θpre are calculated. That is, the predicted work implement reach and the predicted turning braking angle θpre are calculated on the assumption that the work implement reach increases toward the maximum value after the lapse of the delay time.
 ステップS1052で縮み方向に操作されていないと判定された場合,ステップS1054へ進み,制御コントローラ40(旋回制動挙動予測部102)は,図8のステップS105と同じ処理,すなわち,旋回制動を開始し停止するまでの予測作業機リーチと予測旋回制動角度θpreを算出する。 When it is determined in step S1052 that the operation is not performed in the contraction direction, the process proceeds to step S1054, and the control controller 40 (turning braking behavior prediction unit 102) starts the same process as step S105 in FIG. The predicted work machine reach and the predicted turning braking angle θpre until the vehicle stops are calculated.
 一方,ステップS1051で操作右レバー22aに触れていないと判定された場合,ステップS1055へ進む。 On the other hand, if it is determined in step S1051 that the operation right lever 22a is not touched, the process proceeds to step S1055.
 ステップS1055では,制御コントローラ40(旋回制動挙動予測部102)は,オペレータ操作検出装置53からの信号に基づいて,操作左レバー22bがアーム9の縮む方向に操作されているか否かを判定する。縮む方向に操作されていると判定された場合,ステップS1056へ進む。 In step S1055, the control controller 40 (turning braking behavior prediction unit 102) determines whether or not the operation left lever 22b is operated in the contracting direction of the arm 9 based on the signal from the operator operation detection device 53. If it is determined that the operation is in the contraction direction, the process proceeds to step S1056.
 ステップS1056では,制御コントローラ40(旋回制動挙動予測部102)は,ブーム8とバケット10は動かないとして,縮み方向に操作されているアーム9が逆方向(伸び方向)に動くまでの遅れを考慮して,旋回制動を開始し停止するまでの予測作業機リーチと予測旋回制動角度θpreを算出する。すなわち,その遅れ時間の経過後に作業機リーチがアーム9のみの動作によって最大値(ただし,ブーム8とバケット10は同じ姿勢に保持したままでアーム操作のみによる最大値)に向かって増加する場合を想定して予測作業機リーチと予測旋回制動角度θpreを算出する。 In step S1056, the control controller 40 (turning braking behavior predicting unit 102) considers the delay until the arm 9 operated in the contraction direction moves in the opposite direction (extension direction) while the boom 8 and the bucket 10 do not move. Then, the predicted work machine reach from the start to the stop of the turning braking and the predicted turning braking angle θpre are calculated. That is, when the work machine reach increases toward the maximum value (however, only the arm operation is performed while the boom 8 and the bucket 10 are held in the same posture) after the delay time elapses, the work machine reach increases. Assuming that the predicted work machine reach and the predicted turning braking angle θpre are calculated.
 ステップ1055で縮み方向に操作されていないと判定された場合,ステップS1057へ進む。 If it is determined in step 1055 that the operation has not been performed in the contraction direction, the process proceeds to step S1057.
 ステップS1057では,制御コントローラ40(旋回制動挙動予測部102)は,ブーム8とバケット10は動かないとして,旋回制動を開始し停止するまでの予測作業機リーチと予測旋回制動角度θpreを算出する。すなわち,作業機リーチがアーム9のみの動作によって最大値(ただし,ブーム8とバケット10は同じ姿勢に保持したままでアーム操作のみによる最大値)に向かって増加する場合を想定して予測作業機リーチと予測旋回制動角度θpreを算出する。 In step S1057, the control controller 40 (turning braking behavior prediction unit 102) calculates the predicted work machine reach and the predicted turning braking angle θpre from the start to the stop of turning braking, assuming that the boom 8 and the bucket 10 do not move. That is, the predicted working machine is assumed assuming that the working machine reach increases toward the maximum value (however, only the arm operation is performed while the boom 8 and the bucket 10 are held in the same posture) by the operation of only the arm 9. The reach and the predicted turning braking angle θpre are calculated.
 このように図8のフローチャートのステップS105を図12に示したS1051-1057に代替すると,予測作業機リーチと予測旋回制動角度θpreを過大に予測することを防ぐことができるので,第1実施形態と比較して,作業効率とオペレータの操作フィーリングが向上し得る。 By substituting step S105 of the flowchart of FIG. 8 with S1051-1057 shown in FIG. 12, it is possible to prevent the prediction work machine reach and the prediction turning braking angle θpre from being overestimated. Compared with, the work efficiency and the operation feeling of the operator can be improved.
 <第2実施形態>
 本実施形態では,旋回動作によって,フロント作業機1Aではなく,上部旋回体12が作業領域60から逸脱し得る場面での旋回制動制御について説明する。ここでは,図7に示すように,旋回動作(右旋回)によって上部旋回体12の左側後端部12BLが作業領域60を逸脱するおそれがある場合の旋回制動制御についての例を示す。なお,第1実施形態と共通する部分は説明を省略することがある。
<Second Embodiment>
In the present embodiment, swing braking control will be described in a situation where the upper swing body 12 rather than the front work implement 1A can deviate from the work area 60 due to the swing operation. Here, as shown in FIG. 7, an example of turning braking control when the left rear end portion 12BL of the upper turning body 12 may deviate from the work area 60 due to the turning operation (right turning) is shown. The description of the same parts as those in the first embodiment may be omitted.
 図7において,旋回中心120から左側後端部12BLまでの長さをLus,フロント作業機長手方向(旋回角度がゼロの時はX軸と一致)から左側後端部12BLまでの角度をαusとすると,旋回中心120に対する上部旋回体12の左側後端部12BLのY軸方向の位置Yusは下記の式(7)のように表される。 In FIG. 7, the length from the turning center 120 to the left rear end 12BL is Lus, and the angle from the front working machine longitudinal direction (corresponding to the X axis when the turning angle is zero) to the left rear end 12BL is α us. Then, the position Yus of the left rear end portion 12BL of the upper swing body 12 with respect to the swing center 120 in the Y-axis direction is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このとき,旋回中心120と作業領域境界61との距離をdとすると,目標旋回停止角度θusstopは,下記の式(8)で表される。 At this time, assuming that the distance between the turning center 120 and the working area boundary 61 is d, the target turning stop angle θusstop is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 本実施形態において旋回制動挙動予測部102は,式(4)(または式(6))において,慣性モーメントの項Jが現時点から最大値に向かって増加しつづけるようにフロント作業機1Aの姿勢を現時点から変化させることを仮定して旋回制動角度θpreを算出する。これは,式(4)(または式(6))から明らかなように,上部旋回体12の後端部と作業領域境界61の位置関係は,フロント作業機1Aの姿勢の影響を受けない。一方で,旋回制動角度θpreは,フロント作業機1Aの姿勢に依存する慣性モーメントの項Jの影響を受ける。そのため,本実施形態のような旋回動作による上部旋回体12の作業領域60からの逸脱を防止するためには,慣性モーメントの項Jの影響を考慮すればよい。この場合のフローチャートは図9に示すようになる。なお,本実施形態のフロント作業機1Aの姿勢の変化の算出にも,第1実施形態と同様に図11に示した相関図を利用することができる。 In the present embodiment, the turning braking behavior prediction unit 102 adjusts the attitude of the front work implement 1A so that the term J of the moment of inertia in the formula (4) (or the formula (6)) continues to increase from the present point toward the maximum value. The turning braking angle θpre is calculated on the assumption that the turning braking angle is changed from the present time. As is clear from the expression (4) (or the expression (6)), the positional relationship between the rear end of the upper swing body 12 and the work area boundary 61 is not influenced by the posture of the front work machine 1A. On the other hand, the turning braking angle θpre is influenced by the term J of the moment of inertia that depends on the attitude of the front work implement 1A. Therefore, in order to prevent the upper swivel body 12 from deviating from the working area 60 due to the swivel operation as in the present embodiment, the influence of the term J of the moment of inertia may be considered. The flowchart in this case is shown in FIG. The correlation diagram shown in FIG. 11 can also be used for calculating the change in the posture of the front working machine 1A of the present embodiment as in the first embodiment.
 図9は本実施形態の制御コントローラ40が実行する逸脱防止制御のフローチャートを示している。制御コントローラ40はオペレータの操作レバー22bによる旋回操作が実行されると図9のフローを開始する。但し,旋回中は所定の周期で図9のフローが繰り替えし実行される。なお,図8と同じ処理(ステップ)には同じ符号を付して説明を省略することがある。 FIG. 9 shows a flowchart of deviation prevention control executed by the controller 40 of the present embodiment. The controller 40 starts the flow of FIG. 9 when the turning operation by the operator's operation lever 22b is executed. However, during turning, the flow of FIG. 9 is repeated and executed at a predetermined cycle. The same processes (steps) as those in FIG. 8 are designated by the same reference numerals and the description thereof may be omitted.
 ステップS200において,制御コントローラ40(目標停止角度演算部101)は,旋回動作で上部旋回体12の後端部が作業領域60から逸脱するか否かを判定する。逸脱すると判定された場合にはステップS201へ進み,逸脱しないと判定された場合にはステップS110へ進む。 In step S200, the control controller 40 (target stop angle calculation unit 101) determines whether or not the rear end of the upper swing body 12 deviates from the work area 60 by the swing motion. If it is determined to deviate, the process proceeds to step S201, and if it is determined not to deviate, the process proceeds to step S110.
 ステップS201では,制御コントローラ40(目標停止角度演算部101)は,上記の式(7)を用いて目標旋回停止角度θusstopを算出する。その後,ステップS202へ進む。 In step S201, the control controller 40 (target stop angle calculation unit 101) calculates the target turn stop angle θusstop using the above equation (7). After that, the process proceeds to step S202.
 ステップS202では,制御コントローラ40(旋回制動挙動予測部102)は,現時点(ステップS202の演算時)において,フロント作業機1Aの姿勢によって定まる慣性モーメントJが最大となっているか否かを判定する。慣性モーメントJの最大値は予め演算されており,ここでは現時点での慣性モーメントJが当該最大値に達しているか否かが判定される。現時点でJが最大である場合にはステップS104へ進み,最大ではない場合にはステップS203へ進む。 In step S202, the control controller 40 (turning braking behavior prediction unit 102) determines whether or not the moment of inertia J determined by the posture of the front working machine 1A is the maximum at the present time (at the time of calculation in step S202). The maximum value of the moment of inertia J is calculated in advance, and here it is determined whether or not the moment of inertia J at the present time has reached the maximum value. If J is the maximum at the present time, the process proceeds to step S104, and if it is not the maximum, the process proceeds to step S203.
 ステップS104では,制御コントローラ40(旋回制動挙動予測部102)は,現時点の作業機姿勢のまま(すなわち,慣性モーメントJを最大としたまま),旋回制動を開始してから上部旋回体12が停止するまでに要する角度である予測旋回制動角度θpreを算出し,それを旋回指令演算部104に出力する。その後ステップ108へ進む。 In step S104, the control controller 40 (turning braking behavior predicting unit 102) starts the turning braking with the current work implement attitude (that is, keeping the inertia moment J at the maximum), and then the upper turning body 12 stops. The predicted turning braking angle θpre, which is the angle required until it is calculated, is calculated and output to the turning command calculation unit 104. Then proceed to step 108.
 ステップS203では,制御コントローラ40(旋回制動挙動予測部102)は,制動期間中に慣性モーメントJが最大値に向かって増加しつづけるようにフロント作業機1Aの姿勢を変化することを仮定して予測旋回制動角度θpreを演算し,その後ステップS108へ進む。 In step S203, the controller 40 (turning braking behavior prediction unit 102) makes a prediction assuming that the attitude of the front work implement 1A is changed so that the inertia moment J continues to increase toward the maximum value during the braking period. The turning braking angle θpre is calculated, and then the process proceeds to step S108.
 ステップS100,S108,S109,S110の処理は第1実施形態と同一であるため説明は省略する。 Since the processes of steps S100, S108, S109, and S110 are the same as those in the first embodiment, the description thereof will be omitted.
 本実施形態では,第1実施形態とは異なり上部旋回体12の後端部の作業領域60が逸脱防止制御の対象であるため,フロント作業機1Aの姿勢によって目標旋回停止角度θusstopが変化しない。そのため,旋回制動制御時の挙動を予測して目標旋回停止角度θusstopを変更するステップ(図8のステップS107)は不要であり行われない。 In the present embodiment, unlike the first embodiment, the work area 60 at the rear end of the upper swing body 12 is subject to deviation prevention control, so that the target turn stop angle θusstop does not change depending on the posture of the front work machine 1A. Therefore, the step of predicting the behavior during turning braking control and changing the target turning stop angle θusstop (step S107 in FIG. 8) is unnecessary and is not performed.
 また,本実施形態と,第1実施形態とを組み合わせて,フロント作業機1Aと上部旋回体12のうちいずれが作業領域60を逸脱する可能性が高いかを判断し,フロント作業機1Aと上部旋回体12のうち作業領域60を逸脱する可能性が高いものを優先して旋回制動制御を実行する構成としても良い。すなわち,フロント作業機1Aの方が逸脱可能性が高い場合は図8のフローチャートを実行して旋回停止指令を出力するタイミングを決定し,上部旋回体12の方が逸脱可能性が高い場合は図9のフローチャートを実行して旋回停止指令を出力するタイミングを決定することとなる。なお,逸脱可能性の高さの判定は,例えば,ステップS108で先に目標旋回停止角度に達する方を逸脱可能性が高いと判断することができる。 Further, by combining the present embodiment and the first embodiment, it is determined which of the front working machine 1A and the upper revolving structure 12 is likely to deviate from the work area 60, and the front working machine 1A and the upper working body 1 are separated. It is also possible to adopt a configuration in which the turning braking control is executed by giving priority to the turning body 12 that is more likely to deviate from the work area 60. That is, when the front work implement 1A is more likely to deviate, the flowchart of FIG. 8 is executed to determine the timing for outputting the turning stop command, and when the upper revolving superstructure 12 is more likely to deviate, The flowchart of 9 is executed to determine the timing of outputting the turning stop command. As for the determination of the high possibility of deviation, for example, it can be determined that the one that reaches the target turning stop angle first in step S108 has a high possibility of deviation.
 <第3実施形態>
 ところで,バケット10内の積荷の重量は慣性モーメントJに影響を与える。そこで,本実施形態では,バケット10内の積荷の重量(荷重)を演算し,その荷重値に基づいて演算した慣性モーメントJを用いて制動期間中の上部旋回体12とフロント作業機1Aの動作を予測する場合について説明する。第1実施形態と共通する部分は説明を省略する。
<Third Embodiment>
By the way, the weight of the load in the bucket 10 affects the moment of inertia J. Therefore, in the present embodiment, the weight (load) of the load in the bucket 10 is calculated, and the inertia moment J calculated based on the load value is used to operate the upper swing body 12 and the front working machine 1A during the braking period. A case of predicting will be described. The description of the parts common to the first embodiment will be omitted.
 図10は,本実施形態に係る油圧ショベルの制御コントローラ40の機能ブロック図である。図6に示した第1実施形態の機能ブロック図に荷重算出部105が追加されている。 FIG. 10 is a functional block diagram of the control controller 40 of the hydraulic excavator according to the present embodiment. The load calculation unit 105 is added to the functional block diagram of the first embodiment shown in FIG.
 荷重算出部105は,シリンダ圧力検出装置57と接続されている。シリンダ圧力検出装置57は,ブームシリンダ5のロッド部とボトム部に備えられた圧力センサから構成される。荷重算出部105は,フロント作業機1Aの姿勢と,シリンダ圧力検出装置57からのブームシリンダ5のロッド部とボトム部の差圧から,バケット10の積載物(積荷)の荷重を算出する。 The load calculator 105 is connected to the cylinder pressure detector 57. The cylinder pressure detecting device 57 is composed of a pressure sensor provided on the rod portion and the bottom portion of the boom cylinder 5. The load calculation unit 105 calculates the load of the load (load) of the bucket 10 from the posture of the front work implement 1A and the differential pressure between the rod portion and the bottom portion of the boom cylinder 5 from the cylinder pressure detection device 57.
 旋回制動挙動予測部102は,荷重算出部105の荷重算出結果に基づき,上記式(4)(または式(6))に示す慣性モーメントの項Jを算出する。さらにそれに基づき,第1実施形態と同様に,旋回制動制御時の予測される作業機のリーチであるRpre,予測される旋回制動角度であるθpreを算出する。 The turning braking behavior prediction unit 102 calculates the term J of the moment of inertia shown in the above equation (4) (or equation (6)) based on the load calculation result of the load calculation unit 105. Further, based on this, similarly to the first embodiment, Rpre, which is the predicted reach of the working machine during the turning braking control, and θpre, which is the predicted turning braking angle, are calculated.
 例えば,バケット10に積載物がある場合,同じ姿勢で積載物がない場合と比較して,積載物の荷重の分,慣性モーメントが大きくなり,制動距離は長くなる。バケットの荷重を考慮することで,予測旋回制動角度θpreを精度良く推定することが可能となり,作業領域60からの逸脱をより確実に防止できる。 For example, when there is a load in the bucket 10, the moment of inertia becomes larger and the braking distance becomes longer by the amount of the load of the load, as compared with the case where there is no load in the same posture. By considering the load of the bucket, the predicted turning braking angle θpre can be estimated accurately, and the deviation from the work area 60 can be prevented more reliably.
 なお,これまでに示した各実施形態において,オペレータによる操作レバー22の操作に応じてパイロット圧を出力する油圧レバーを備えた作業機械(油圧ショベル)を例として構成を説明してきたが,同様のレバー操作に応じて電気信号を出力する電気レバーを備えた作業機械にも,本発明は適用可能である。また,リーチとしてバケット10の先端を例として説明したが,バケット10の先端以外の部位(例えばバケット10の後端や,バケットシリンダ7のロッド側先端など)がリーチとして最大の値となる場合は,そのバケット10の先端以外の部位から目標旋回停止角度θstopを算出する構成としてもよい。 In each of the above-described embodiments, the construction has been described by taking a working machine (hydraulic excavator) equipped with a hydraulic lever that outputs a pilot pressure according to the operation of the operating lever 22 by an operator as an example. The present invention is also applicable to a working machine equipped with an electric lever that outputs an electric signal according to lever operation. Although the tip of the bucket 10 has been described as an example of the reach, when a portion other than the tip of the bucket 10 (for example, the rear end of the bucket 10 or the rod-side tip of the bucket cylinder 7) has the maximum reach, The target turning stop angle θstop may be calculated from a portion other than the tip of the bucket 10.
 また,上記では詳細な説明は省略したが,旋回制動制御が実行されていることを表示装置83の画面に表示してオペレータに通達する構成としても良い。 Although detailed description is omitted above, the operator may be notified that the turning braking control is being executed by displaying it on the screen of the display device 83.
 なお,本発明は,上記の各実施の形態に限定されるものではなく,その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば,本発明は,上記の実施の形態で説明した全ての構成を備えるものに限定されず,その構成の一部を削除したものも含まれる。また,ある実施の形態に係る構成の一部を,他の実施の形態に係る構成に追加又は置換することが可能である。 It should be noted that the present invention is not limited to each of the above embodiments, and includes various modifications within a range not deviating from the gist thereof. For example, the present invention is not limited to the one including all the configurations described in the above-described embodiment, and includes the one in which a part of the configurations is deleted. Further, part of the configuration according to one embodiment can be added or replaced with the configuration according to another embodiment.
 また,上記の制御装置(制御コントローラ40)に係る各構成や当該各構成の機能及び実行処理等は,それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また,上記の制御装置に係る構成は,演算処理装置(例えばCPU)によって読み出し・実行されることで当該制御装置の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は,例えば,半導体メモリ(フラッシュメモリ,SSD等),磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク,光ディスク等)等に記憶することができる。 Further, for each configuration related to the above control device (control controller 40), functions and execution processing of each configuration, a part or all of them are designed by hardware (for example, logic for executing each function is designed by an integrated circuit). Etc.). Further, the configuration related to the above control device may be a program (software) in which each function related to the configuration of the control device is realized by reading and executing by an arithmetic processing unit (for example, a CPU). Information related to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disk, etc.), and the like.
 また,上記の各実施の形態の説明では,制御線や情報線は,当該実施の形態の説明に必要であると解されるものを示したが,必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。 Further, in the above description of each embodiment, the control line and the information line are shown to be necessary for the description of the embodiment, but all control lines and information lines related to the product are not necessarily required. Does not always indicate. In reality, it can be considered that almost all the configurations are connected to each other.
 1A…フロント作業機(作業機),1B…車体,8…ブーム,9…アーム,10…バケット(アタッチメント),12…上部旋回体,33…車体傾斜角センサ,40…制御コントローラ(制御装置),60…作業領域,θstop,θusstop…目標旋回停止角度,θpre…予測旋回制動角度,θrs…修正旋回停止角度,Rpre…フロント作業機のリーチ(作業機のリーチ長さ),22a…操作右レバー(第1操作レバー),22b…操作左レバー(第2操作レバー),58…接触検知センサ(センサ) 1A ... front work machine (work machine), 1B ... car body, 8 ... boom, 9 ... arm, 10 ... bucket (attachment), 12 ... upper swivel body, 33 ... car body tilt angle sensor, 40 ... control controller (control device) , 60... Work area, θstop, θusstop... Target turning stop angle, θpre... Predicted turning braking angle, θrs... Corrected turning stop angle, Rpre... Reach of front working machine (reach length of working machine), 22a... Operation right lever (First operation lever), 22b... Operation left lever (second operation lever), 58... Contact detection sensor (sensor)

Claims (9)

  1.  下部走行体と,
     前記下部走行体に対して旋回可能に取り付けられた上部旋回体と,
     前記上部旋回体に取り付けられた作業機と,
     予め設定された作業領域の位置と前記上部旋回体及び前記作業機の姿勢とに基づいて,前記上部旋回体及び前記作業機が前記作業領域から逸脱する前に前記上部旋回体の旋回を停止させるための旋回角度の目標値である目標旋回停止角度を演算し,旋回中の前記上部旋回体を前記目標旋回停止角度で停止させるための旋回停止指令を出力する制御装置とを備えた作業機械において,
     前記制御装置は,
      前記旋回停止指令が出力されたときから前記上部旋回体が停止するときまでの期間である制動期間中の前記上部旋回体及び前記作業機の動作を前記上部旋回体の旋回角速度と前記作業機の姿勢とから予測することで,前記制動期間中に前記上部旋回体が旋回する角度である予測旋回制動角度を演算し,
      前記制動期間中の前記作業機の動作の予測結果から前記目標旋回停止角度を修正し,
      前記予測旋回制動角度と前記修正された目標旋回停止角度とに基づいて決定したタイミングで前記旋回停止指令を出力することを特徴とする作業機械。
    An undercarriage,
    An upper revolving structure mounted so as to be rotatable with respect to the lower traveling structure,
    The work machine attached to the upper swing body and
    Based on the preset position of the work area and the postures of the upper swing body and the working machine, the swing of the upper swing body is stopped before the upper swing body and the working machine deviate from the work area. And a control device that outputs a swing stop command for stopping the upper swinging body during swing at the target swing stop angle. ,
    The control device is
    The operation of the upper revolving superstructure and the working machine during a braking period, which is a period from when the revolving stop command is output to when the upper revolving superstructure is stopped, is described as follows. By predicting from the posture, the predicted turning braking angle, which is the angle at which the upper turning body turns during the braking period, is calculated.
    Correct the target turning stop angle from the prediction result of the operation of the work machine during the braking period,
    A work machine characterized in that the turning stop command is output at a timing determined based on the predicted turning braking angle and the modified target turning stop angle.
  2.  請求項1に記載の作業機械において,
     前記制御装置は,前記作業機を駆動するアクチュエータの速度特性に基づいて,前記制動期間中の前記作業機の動作を予測することを特徴とする作業機械。
    In the work machine according to claim 1,
    The work machine, wherein the control device predicts an operation of the work machine during the braking period based on a speed characteristic of an actuator that drives the work machine.
  3.  請求項1に記載の作業機械において,
     前記制御装置は,前記作業機と前記上部旋回体のうちいずれが前記作業領域を逸脱する可能性が高いかを判断し,前記作業機と前記上部旋回体のうち前記作業領域を逸脱する可能性が高いものを対象として,前記旋回停止指令を出力するタイミングを決定することを特徴とする作業機械。
    In the work machine according to claim 1,
    The control device determines which of the work machine and the upper swing body is more likely to deviate from the work area, and may deviate from the work area of the work machine and the upper swing body. A work machine characterized in that the timing for outputting the turning stop command is determined for a machine having a high rotation rate.
  4.  請求項3に記載の作業機械において,
     前記制御装置は,前記作業機が前記作業領域を逸脱する可能性が高いと判断されたとき,前記制動期間中に前記作業機のリーチ長さが増加することを仮定して前記予測旋回制動角度を演算し,前記制動期間中に前記作業機のリーチ長さが増加することを仮定して前記目標旋回停止角度を修正することを特徴とする作業機械。
    In the work machine according to claim 3,
    The control device assumes that the reach length of the working machine increases during the braking period when it is determined that the working machine is likely to deviate from the working area, and the predicted turning braking angle. Is calculated, and the target turning stop angle is corrected on the assumption that the reach length of the working machine increases during the braking period.
  5.  請求項3に記載の作業機械において,
     前記制御装置は,前記上部旋回体が前記作業領域を逸脱する可能性が高いと判断されたとき,前記制動期間中に慣性モーメントが増加するように前記作業機の姿勢を変化することを仮定して前記予測旋回制動角度を演算し,前記作業機の姿勢の変化による前記目標旋回停止角度の修正は行わないことを特徴とする作業機械。
    In the work machine according to claim 3,
    When it is determined that the upper swing body is likely to deviate from the work area, the control device assumes that the attitude of the work implement is changed so that the moment of inertia increases during the braking period. The working machine characterized in that the predicted turning braking angle is calculated and the target turning stop angle is not corrected by a change in the posture of the working machine.
  6.  請求項4に記載の作業機械において,
     前記制御装置は,前記作業機のリーチ長さが縮む方向に前記作業機が操作されているとき,前記作業機のリーチ長さが伸びる方向に前記作業機が動くまでの遅れ時間を考慮して前記予測旋回制動角度を演算することを特徴とする作業機械。
    In the work machine according to claim 4,
    The control device considers a delay time until the working machine moves in a direction in which the reach length of the working machine is extended when the working machine is operated in a direction in which the reach length of the working machine is reduced. A working machine, wherein the predicted turning braking angle is calculated.
  7.  請求項4に記載の作業機械において,
     前記作業機は,ブーム,アーム及びアタッチメントの3つの部材を連結した多関節型の作業機であり,
     前記3つの部材のうち2つの部材を操作可能な第1操作レバーと,
     前記3つの部材から前記2つの部材を除いた残りの1つの部材と前記上部旋回体とを操作可能な第2操作レバーと,
     前記第1操作レバーにオペレータが触れているか否かを検出するセンサとを備え,
     前記制御装置は,前記センサによって前記第1操作レバーにオペレータが触れていないと検出されたとき,前記制動期間中に前記2つの部材は動作せず前記残りの1つの部材によって前記作業機のリーチ長さが増加することを仮定して,前記予測旋回制動角度を演算することを特徴とする作業機械。
    In the work machine according to claim 4,
    The working machine is a multi-joint type working machine in which three members of a boom, an arm and an attachment are connected,
    A first operation lever capable of operating two members of the three members;
    A second operation lever capable of operating the remaining one member excluding the two members from the three members and the upper swing body,
    A sensor for detecting whether or not an operator is touching the first operation lever,
    When the sensor detects that the operator is not touching the first operating lever, the control device does not operate the two members during the braking period, and the remaining one member reaches the working machine. A working machine, wherein the predicted turning braking angle is calculated on the assumption that the length increases.
  8.  請求項1に記載の作業機械において,
     前記作業機はバケットを含み,
     前記制御装置は,前記バケット内の積荷の荷重に基づいて前記上部旋回体の慣性モーメントを演算し,その慣性モーメントを用いて,前記制動期間中の前記上部旋回体及び前記作業機の動作を予測することを特徴とする作業機械。
    In the work machine according to claim 1,
    The working machine includes a bucket,
    The control device calculates an inertia moment of the upper swing body based on a load of a load in the bucket, and uses the inertia moment to predict the operations of the upper swing body and the working machine during the braking period. A work machine characterized by doing.
  9.  請求項1に記載の作業機械において,
     前記制御装置は,前記上部旋回体の車体傾斜角に基づいて車体傾斜による重力の影響項を含めて,前記制動期間中の前記上部旋回体及び前記作業機の動作を予測することを特徴とする作業機械。
    In the work machine according to claim 1,
    The control device is characterized in that it predicts the operation of the upper swing body and the working machine during the braking period, including the influence term of gravity due to the body tilt based on the vehicle body tilt angle of the upper swing body. Work machine.
PCT/JP2020/004512 2019-03-04 2020-02-06 Work machine WO2020179346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-038871 2019-03-04
JP2019038871A JP7231444B2 (en) 2019-03-04 2019-03-04 working machine

Publications (1)

Publication Number Publication Date
WO2020179346A1 true WO2020179346A1 (en) 2020-09-10

Family

ID=72336894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004512 WO2020179346A1 (en) 2019-03-04 2020-02-06 Work machine

Country Status (2)

Country Link
JP (1) JP7231444B2 (en)
WO (1) WO2020179346A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208974A1 (en) * 2021-03-29 2022-10-06 日立建機株式会社 Work machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330034A (en) * 2004-05-18 2005-12-02 Hitachi Constr Mach Co Ltd Gripping force controller and dismantling work machine
JP2010095906A (en) * 2008-10-16 2010-04-30 Hitachi Constr Mach Co Ltd Construction machine and slewing controlling device
JP2010247968A (en) * 2009-04-17 2010-11-04 Kobe Steel Ltd Slewing stop control apparatus and method for slewing type working machine
JP2011052383A (en) * 2009-08-31 2011-03-17 Caterpillar Sarl Swing control unit of working machine
JP2011063407A (en) * 2009-09-18 2011-03-31 Kobe Steel Ltd Turning stop control device and method for turning type working machine
JP2013189767A (en) * 2012-03-13 2013-09-26 Sumitomo Heavy Ind Ltd Electrically driven turning device
WO2014123228A1 (en) * 2013-02-08 2014-08-14 日立建機株式会社 Surroundings monitoring device for slewing-type work machine
JP2017096006A (en) * 2015-11-25 2017-06-01 日立建機株式会社 Construction machine control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330034A (en) * 2004-05-18 2005-12-02 Hitachi Constr Mach Co Ltd Gripping force controller and dismantling work machine
JP2010095906A (en) * 2008-10-16 2010-04-30 Hitachi Constr Mach Co Ltd Construction machine and slewing controlling device
JP2010247968A (en) * 2009-04-17 2010-11-04 Kobe Steel Ltd Slewing stop control apparatus and method for slewing type working machine
JP2011052383A (en) * 2009-08-31 2011-03-17 Caterpillar Sarl Swing control unit of working machine
JP2011063407A (en) * 2009-09-18 2011-03-31 Kobe Steel Ltd Turning stop control device and method for turning type working machine
JP2013189767A (en) * 2012-03-13 2013-09-26 Sumitomo Heavy Ind Ltd Electrically driven turning device
WO2014123228A1 (en) * 2013-02-08 2014-08-14 日立建機株式会社 Surroundings monitoring device for slewing-type work machine
JP2017096006A (en) * 2015-11-25 2017-06-01 日立建機株式会社 Construction machine control device

Also Published As

Publication number Publication date
JP2020143449A (en) 2020-09-10
JP7231444B2 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP6709880B2 (en) Work machine
KR102097340B1 (en) Working machine
JP6025372B2 (en) Excavator excavation control system and excavation control method
WO2018003176A1 (en) Work machine
CN109790698B (en) Working machine
JP7093277B2 (en) Work machine
KR20180136518A (en) Machine controls and working machines
JP6867398B2 (en) Work machine control system and work machine control method
WO2017104408A1 (en) Work equipment control device and work machine
WO2019088065A1 (en) Work machine
JP6843039B2 (en) Work machine
KR102588223B1 (en) working machine
WO2020179346A1 (en) Work machine
JP7360568B2 (en) working machine
KR102590162B1 (en) working machine
JP7149912B2 (en) working machine
JP6912687B2 (en) Hydraulic excavator
US20220316173A1 (en) Work machine
CN115715344A (en) Work machine and work machine control system
JP7375260B2 (en) working machine
WO2021059931A1 (en) Work machine
KR102680653B1 (en) Control system of working machine, working machine, and control method of working machine
CN114787455B (en) Work machine control system, work machine, and work machine control method
JP2022148741A (en) Work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765940

Country of ref document: EP

Kind code of ref document: A1