WO2020179317A1 - Automatic analysis device and automatic analysis method - Google Patents

Automatic analysis device and automatic analysis method Download PDF

Info

Publication number
WO2020179317A1
WO2020179317A1 PCT/JP2020/004086 JP2020004086W WO2020179317A1 WO 2020179317 A1 WO2020179317 A1 WO 2020179317A1 JP 2020004086 W JP2020004086 W JP 2020004086W WO 2020179317 A1 WO2020179317 A1 WO 2020179317A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
tests
reagents
pair
calculated
Prior art date
Application number
PCT/JP2020/004086
Other languages
French (fr)
Japanese (ja)
Inventor
千枝 藪谷
牧野 彰久
栄一 松原
巧 山田
信彦 佐々木
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to CN202080009339.1A priority Critical patent/CN113795757B/en
Priority to JP2021503471A priority patent/JP7204878B2/en
Publication of WO2020179317A1 publication Critical patent/WO2020179317A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to an automatic analyzer and an automatic analysis method for analyzing the amount of components contained in a sample such as blood or urine.
  • tests such as biochemical tests, immunological tests, and blood coagulation tests as sample tests that handle samples such as blood and urine collected from patients.
  • tests that analyze components such as blood and urine are made when a sample and reagents are reacted and biochemical tests that measure components such as sugars, lipids, proteins, and enzymes, and bacteria and viruses enter the body.
  • Immunoassays are known in which antibodies, hormones, tumor markers, etc. are measured by an antigen-antibody reaction.
  • the biochemical test is performed by mixing a sample with a reagent and using an automatic biochemical analyzer that measures the change in color due to a chemical reaction using transmitted light.
  • the immunological test involves binding a luminescent substance to an antigen contained in the sample. It is general to add an antibody to cause an antigen-antibody reaction, wash the unbound antibody, and then measure the amount of luminescence due to the bound antibody with an immunoassay device.
  • Patent Document 1 describes "When performing a measurement by reacting a plurality of types of reagents with a test sample, based on the usable number of times of the first reagent and the usable number of times of the second reagent, a first reagent bottle and A system that can calculate the number of remaining uses for each reagent pair that is a combination of the second reagent bottles and, when the number of remaining uses is small, select a reagent pair that is excluded from the reagent pairs used for the reaction with the sample”. It is disclosed.
  • Japanese Patent Laid-Open No. 2004-242242 discloses that "after the detection means detects the liquid surface, the drive signal amount required by the drive means before the reagent probe stops in the reagent and the number of times of dispensing of the reagent are used in the past plural times. A determined relational expression is obtained, the predicted reagent remaining amount at this time is calculated based on the drive signal amount calculated from the relational expression, and the reagent remaining amount is calculated by comparing the predicted reagent remaining amount at this time with the previously predicted reagent remaining amount.
  • An automatic analyzer for determining and controlling discontinuation of dispensing is disclosed.
  • the number of remaining uses for each bottle pair in Patent Document 1 is a theoretical value calculated by the calculation unit, and, for example, the number of times actually measurable due to a molding error of a reagent container, an error of a reagent filling amount, or the like is calculated before the analysis is started. If it is different from the calculated expected number of usable times, the amount of the reagent that remains without being used up increases.
  • Patent Document 2 described above, management for each reagent pair is not assumed, and similarly to Patent Document 1, since the molding error of the reagent container and the error of the reagent filling amount are not considered, the remaining amount of the reagent remains. There remains a problem in the calculation accuracy of.
  • the present invention is an automatic analyzer including a dispensing mechanism that dispenses a plurality of reagents, the reagent probe dispensing a reagent filled in a reagent container, and the reagent probe.
  • a liquid level detection means for detecting the liquid level of the reagent via the, a calculation part for calculating the reagent remaining amount in the reagent container from the liquid level height of the reagent detected by the liquid level detection part, and the calculation part
  • a storage unit for storing the calculated data, wherein the calculation unit calculates the number of effective tests for each reagent container based on the calculated reagent remaining amount of each of the plurality of reagents, and the calculation is performed.
  • a reagent pair consisting of a combination of the plurality of reagents is registered in the storage unit, and after the analysis is started, the number of valid tests for each reagent container is corrected according to the usage status of the plurality of reagents. , The reagent pair is re-registered.
  • the present invention is an automatic analysis method for dispensing a plurality of reagents into a sample container, wherein the number of effective tests for each reagent container accommodating each of the plurality of reagents is calculated, and the calculated number of effective tests is calculated.
  • a reagent pair consisting of a combination of the plurality of reagents is determined, and after the analysis is started, the number of valid tests for each reagent container is corrected according to the usage status of the plurality of reagents, and the reagent pair is re-registered. It is characterized by
  • an automatic analyzer and an automatic analysis method capable of changing the composition of a reagent (bottle) pair according to the actual usage after determining the composition of a reagent (bottle) pair.
  • FIG. 1 shows the basic structure of the automatic analyzer which concerns on one Embodiment of this invention. It is a figure which shows the basic composition of the reagent liquid level detection mechanism of the automatic analyzer which concerns on one Embodiment of this invention. It is a figure which shows the reagent container which concerns on one Embodiment of this invention. It is a flowchart which shows the automatic analysis method (reagent pair registration method) in Example 1.
  • FIG. It is a figure which shows the example of the reagent pair in Example 1.
  • FIG. It is a figure which shows the example of the reagent pair in Example 1.
  • FIG. FIG. 3 is a diagram showing an example of a reagent pair in Example 1.
  • FIG. 3 is a diagram showing an example of a reagent pair in Example 1. It is a figure which shows the modification which concerns on the efficacy test calculation of the reagent pair in Example 1.
  • FIG. 8 is a diagram showing an example of a reagent pair in Example 2.
  • the reaction container 5 containing the sample moves to the first reagent dispensing position by the rotation operation of the reaction disk 6, and the first reagent dispensing mechanism 7a transfers the first reagent 8a used for the analysis to the first reagent container 9a. Dispense into the reaction vessel 5.
  • the first reagent stirring mechanism 10a stirs the mixed liquid in the reaction container 5.
  • the second reagent dispensing mechanism 7b dispenses the second reagent 8b used for the analysis from the second reagent container 9b to the reaction container 5.
  • the second reagent stirring mechanism 10b stirs the mixed liquid in the reaction container 5.
  • reaction container 5 for dispensing the second reagent 8b is the same as the reaction container 5 containing the sample 2 and the first reagent 8a described above.
  • the reaction vessel 5 is kept at a constant temperature, for example, 37° C., by a constant temperature bath circulating liquid 11 filled in the lower portion of the reaction disk 6 to promote the reaction and stabilize the progress of the reaction.
  • the control circuit 21 controls the control circuit 21.
  • the amount of transmitted light of the mixed liquid in the reaction container 5 is measured through the transmitted light measuring circuit 22 when passing through the absorptiometer 12 as the reaction disk 6 rotates.
  • the transmitted light amount data thus obtained is sent to a PC (personal computer) 23, and the calculation unit in the PC 23 calculates the concentration of the target component in the sample and stores the data in the data storage unit. ,
  • the calculation result is displayed on the output unit 24.
  • the reaction vessel 5 after the reaction is washed by the washing mechanism 13 and repeatedly used for the next reaction.
  • the reagent containers 9a and 9b are installed in the first reagent storage 14a and the second reagent storage 14b, respectively.
  • the first reagent dispensing mechanism 7a and the second reagent dispensing mechanism 7b are connected to the control unit (control circuit 21) via the liquid level detection circuit 26, as shown in FIG.
  • the remaining amount of the reagent is managed based on the information from 26, and the remaining amount of the reagent is displayed on the reagent management screen of the output unit 24.
  • FIG. 1 shows an example in which the reagent dispensing mechanism and the reagent (storage) storage are configured separately, this configuration is not necessarily required.
  • one reagent dispensing mechanism may dispense a plurality of reagents, or one reagent storage may store a plurality of types of reagents.
  • FIG. 3 shows a reagent container 9 used in the present invention and a structure for detecting the liquid level of the reagent.
  • FIG. 4 is a flowchart showing the automatic analysis method (reagent pair registration method) of this embodiment.
  • the reagents are recognized in the reagent containers 9a and 9b installed in the first reagent storage 14a and the second reagent storage 14b of FIG. 1 according to an instruction from the input unit 25, and the remaining amounts are registered.
  • the reagent recognition and the remaining amount registration are described as separate operations, but they can be performed together (simultaneously).
  • the individual identifier 16 As a method of recognizing the reagent, for example, there is a method of reading the individual identifier 16 attached to the reagent container 9 shown in FIG. 3 by the reading units 15a and 15b.
  • Examples of the individual identifier 16 include a bar code and an RFID, but are not limited to this.
  • the first reagent storage 14a and the second reagent storage 14b perform a rotating operation.
  • the reagent information attached to the individual identifier 16 is read every time the reagent containers 9a and 9b move and pass in front of the first reading unit 15a and the second reading unit 15b.
  • the reagent information indicates, for example, some or all of test item name, bottle code, reagent type, reagent container size, reagent expiration date, lot, sequence number, and calibration curve information.
  • the reagent containers 9a and 9b are not provided with the individual identifiers 16, the positions in the first reagent storage 14a and the second reagent storage 14b are designated from the input unit 25, and the reagent information is input to input the reagent. It is also possible to recognize.
  • the reagent dispensing mechanism 7 is connected to the liquid level detection circuit 26, and when the reagent remaining amount registration instruction is received from the input unit 25, the control circuit 21 controls the operation of the reagent probe 17 (FIG. 2 ).
  • Information on the capacitance when the tip of the reagent probe 17 reaches the reagent liquid level is processed by the liquid level detection circuit 26, and the calculation unit and the data storage unit in the PC 23 change the amount of the reagent probe 17 from the lowered amount to the reagent liquid level. Calculate and store the surface height.
  • the effective test number for each reagent container is calculated from the reagent liquid surface height and the cross-sectional area information of the reagent container 9, and the effective test number is stored in the data storage unit and is output to the output unit 24 (FIG. 4).
  • Step S401 the method of detecting the change in capacitance is used for the calculation of the reagent liquid level, but another method such as a pressure detection method in the pipe to which the probe is connected or an optical method is used. May be
  • the reagent type is a classification of reagents such as a diluent, a first reagent, and a second reagent.
  • Methods for determining the priority order include the earliest opening date and time of reagents (the first loading date and time on the device), the earliest expiration date of reagents, the least reagent remaining amount, and the smallest reagent storage position. Not limited to this.
  • FIG. 5 shows an example of a reagent pair composed of two types of reagents.
  • two reagent containers capable of 400 test analysis are installed in the first reagent storage 14a
  • five reagents capable of performing 130 test analysis are installed in the second reagent storage 14b.
  • An example is shown in which positions 1 to 2 are installed in the reagent storage 14a, and five second reagents are installed in positions 1 to 5 in the second reagent storage 14b.
  • the priority is determined on the assumption that the priority is in ascending order of position.
  • the second reagent installed in positions 1 to 4 in the second reagent storage 14b is paired with the first reagent installed in position 1 in the first reagent storage 14a.
  • 130 valid tests are calculated for each reagent pair. Since the remaining amount of the first reagent after being consumed in S501 to S503 is 10 tests, the valid test for the reagent pair is 10 tests (S504).
  • the remaining amount after the consumption in S504 is 120 tests, and the reagent installed in the position 2 in the first reagent storage 14a To form a pair with (S505). Further, the reagent installed at the position 5 in the second reagent storage 14b is paired with the reagent at the position 2 in the first reagent storage 14a as in S506.
  • the effective test number for each reagent container registered at the time of reagent registration can be actually analyzed. May deviate from the number of tests.
  • the number of effective tests for each reagent container is represented by the formula (1) using the cross-sectional area 18 and the height 19 from the inner bottom of the reagent container to the liquid surface.
  • the cross-sectional area of the reagent container of the first reagent is 10% smaller than the cross-sectional area information registered in advance
  • the cross-sectional area of the reagent container of the second reagent is as the cross-sectional area information registered in advance.
  • the remaining amount management of the reagent in this case will be described with reference to FIG. 6A.
  • the pre-registered cross-sectional area is 10% larger than the actual cross-sectional area, and therefore the estimated number of effective tests is apparently overestimated.
  • the number of valid tests decreases at a speed 10% higher than the initially predicted number of tests, and 130 tests are actually performed.
  • the apparent decrease in the number of tests is 143 tests (S601 to S602).
  • the reagent is consumed as expected for the number of tests when registering the remaining amount of reagent.
  • the number of effective tests for the reagent installed in the position 1 in the first reagent storage 14a becomes 0 before the reagent installed in the position 3 in the second reagent storage 14b is used up.
  • the remaining reagents in position 3 in the second reagent storage 14b form a new pair with the reagent installed in position 2 in the first reagent storage 14a (S604), and the positions in the first reagent storage 14a
  • the reagents 4 and 5 are also paired with the reagent at position 2 in the first reagent storage 14a (S605, S606).
  • Fig. 6B schematically shows this.
  • the pairs shown in S611 to S616 were configured when the reagent remaining amount was registered, as a result of reflecting the actual analysis state, the pair in S614 does not exist and the pair in S617 is registered instead.
  • a calibration curve is created by measuring a standard sample of known concentration (hereinafter, also referred to as calibration), and the concentration is calculated by comparing the measurement result of the unknown concentration sample with the calibration curve. ..
  • a calibration curve is required for each reagent pair.
  • the automatic analyzer it is checked in advance whether the calibration curve is registered for each reagent pair or the quality control sample is measured (S404 in FIG. 4), and if there is no measurement result, Recommends (executes) measurement (S405 in FIG. 4).
  • the first reagent dispensing mechanism 7a and the second reagent dispensing mechanism 7b cause the height of the liquid surface of the reagent from the inner bottom of the reagent container (reference numeral 19 in FIG. 3) and the actual number of analyzes to be performed. Is stored in the storage unit of the PC 23, and the remaining amount of the reagent is displayed on the reagent management screen of the output unit 24.
  • the deviation rate (the error rate of the number of measurements) between the number of reagent valid tests at the time of registering the reagent and the actual number of aspirations is calculated, the number of valid tests is corrected, and the reagent pairs are re-registered in descending order of priority (FIG. 7). S703 to S705).
  • the error rate of the number of measurements is calculated by Eq. (2).
  • the error rate of the number of measurements is calculated by the following equation (2), the error rate of the number of measurements can be calculated as 10%.
  • the output unit 24 After re-registering the reagent pair, it is displayed on the output unit 24.
  • the configuration of the reagent pair is different from the configuration of the reagent remaining amount registration, the fact that the reagent pair has been updated is notified (S706), and calibration and control measurement are recommended (execution) as necessary. ) (S707).
  • the automatic analyzer includes the reagent dispensing mechanism 7 that dispenses a plurality of reagents, the reagent probe 17 that dispenses the reagent filled in the reagent container 9, and the reagent.
  • the liquid level detecting means (the liquid level detecting circuit 26) for detecting the liquid level of the reagent via the probe 17, and the inside of the reagent container 9 from the liquid level height of the reagent detected by the liquid level detecting means (the liquid level detecting circuit 26).
  • the reagent container 9 and a storage unit that stores the data calculated by the calculation unit.
  • the calculation unit is based on the calculated reagent remaining amount of each of the plurality of reagents.
  • the number of valid tests for each is calculated, a reagent pair consisting of a combination of a plurality of reagents is registered in the storage unit based on the calculated number of valid tests, and after the analysis is started, the reagent container 9 is used according to the usage status of the plurality of reagents. Correct the number of valid tests per valid test and re-register the reagent pair.
  • each reagent container 9 is calculated based on the usage status of a plurality of reagents, the number of effective tests for each reagent container 9 is corrected based on the calculated cross-sectional area 18, and the reagent pair is re-registered. To do.
  • the deviation rate between the number of valid tests when registering the reagent pair and the actual reagent consumption is calculated as an error rate, and the number of valid tests is corrected based on the error rate.
  • the timing for performing the correction is not necessarily limited to the above contents.
  • the error rate of the number of measurements in the formula (2), the number of tests actually measured when the first reagent container 9a is used up and the number of reductions of the number of effective tests calculated at the time of registering the remaining amount of the reagent and stored in the PC 23 are
  • the error rate may be calculated by counting the increase and decrease of the number of effective tests and the number of times, and considering that the error of the same number may occur (FIG. 9).
  • the error rate of the number of measurements is calculated from the actual number of measurements and the reduced number of effective tests stored in the PC 23. It can be calculated. If the number of tests at this time is reduced, the timing of updating the reagent pair can be advanced.
  • the change may be notified by the output unit 24 or a notifying means (not shown).
  • the configuration of the reagent (bottle) pair can be changed according to the actual use situation, and the reagent is wasted. It will be possible to use up to the end without any problems.
  • FIG. 4 The basic flow for calculating the number of effective tests for each reagent container and correcting the number of tests by reflecting the usage status by analysis is the same as that of the first embodiment (FIG. 4), and therefore detailed description is omitted and differences are described. Only explain.
  • the reagent liquid level height is detected each time the reagent probe 17 comes into contact with the reagent liquid surface during analysis, and the effective test number is updated to calculate the error rate of the reagent effective test number, and the reagent pair
  • the error of the reagent container cross-sectional area is corrected.
  • the cross-sectional area of the reagent container is expected to be different from the registered cross-sectional area.
  • the cross-sectional area can be calculated by the equation (4) using the liquid level height of the reagent from the inner bottom of the reagent container (reference numeral 19 in FIG. 3) and the actual number of analysis tests.
  • the actual reagent consumption amount is calculated from the dispensed amount and the number of analysis tests at the position 1 in the first reagent storage 14a, and the inner bottom of the reagent container is calculated.
  • the cross-sectional area of the reagent container is calculated by dividing it by the height 19 from the liquid surface to the liquid level, and is stored as the cross-sectional area information in the data storage unit in the PC 23 (S1001 in FIG. 10). The number of valid tests is corrected using this cross-sectional area information, and the reagent pairs are re-registered in order of higher priority (S1002 to S1003 in FIG. 10).
  • Example 1 the liquid level of the reagent was measured each time it was measured (analyzed) and the number of effective tests was updated, but in this example, the liquid level of each measurement (analysis) was updated. It is a point that the measurement of is not performed.
  • the number of effective tests is calculated and a reagent pair is constructed, but the remaining amount management after that does not reflect the liquid level height for each analysis, but the number of analyzes is performed by software counting. Reduce. In that case, no discrepancy occurs between the actual number of analysis tests and the number of valid tests stored in the PC 23.
  • FIG. 11 schematically shows the remaining amount of the reagent when the apparatus is stopped.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail to facilitate understanding of the present invention, and are not necessarily limited to those including all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Reagent probe 18 Cross-sectional area (of reagent container 9) 19... Reagent container inner bottom To liquid level 21.
  • Control circuit 22 Transmitted light measurement circuit 23
  • PC (personal computer) 24
  • Output unit 25 ...
  • Input unit 26 ... Liquid level detection circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Provided are an automatic analysis device and an automatic analysis method that are capable of changing the configuration of reagent (bottle) pairs in accordance with the actual usage status thereof, after the configuration of the reagent (bottle) pairs has been determined. The automatic analysis device comprises a dispensing mechanism that dispenses a plurality of reagents, the automatic analysis device characterized by including: a reagent probe that dispenses reagents respectively filled into reagent containers; a liquid level detection means that detects the liquid level of each reagent via the reagent probe; a computation unit that calculates the respective remaining amounts of reagent in the reagent containers from the liquid level height of each reagent detected by the liquid level detection means; and a storage unit that stores data calculated by the computation unit. The automatic analysis device is further characterized by the computation unit: calculating the number of valid tests for each of the reagent containers on the basis of the calculated remaining amount of each of the plurality of reagents; registering, in the storage unit, reagent pairs comprising combinations of the plurality of reagents, on the basis of the calculated number of valid tests; and after the start of analysis, correcting the number of valid tests for each of the reagent containers according to the usage status of the plurality of reagents, and re-registering the reagent pairs.

Description

自動分析装置および自動分析方法Automatic analyzer and automatic analysis method
 本発明は、血液や尿などのサンプルに含まれる成分量を分析する自動分析装置および自動分析方法に関する。 The present invention relates to an automatic analyzer and an automatic analysis method for analyzing the amount of components contained in a sample such as blood or urine.
 患者から採取した血液や尿等の検体を扱う検体検査として生化学検査・免疫検査・血液凝固検査などの検査がある。 There are tests such as biochemical tests, immunological tests, and blood coagulation tests as sample tests that handle samples such as blood and urine collected from patients.
 例えば、血液や尿などの成分を分析する検査には、サンプルと試薬を反応させ、糖、脂質、蛋白、酵素などの成分を測定する生化学検査と細菌やウィルスが体内に入った時に作られる抗体やホルモン、腫瘍マーカーなどを抗原抗体反応により測定する免疫検査が知られている。 For example, tests that analyze components such as blood and urine are made when a sample and reagents are reacted and biochemical tests that measure components such as sugars, lipids, proteins, and enzymes, and bacteria and viruses enter the body. Immunoassays are known in which antibodies, hormones, tumor markers, etc. are measured by an antigen-antibody reaction.
 生化学検査は、サンプルと試薬を混合し、化学反応による色の変化を透過光により測定する生化学自動分析装置を用いて測定し、免疫検査は、サンプルに含まれる抗原に発光体を結合させた抗体を添加して抗原抗体反応を起こさせ、結合しなかった抗体を洗浄した後、結合した抗体による発光量を測定する免疫検査装置で測定するのが一般的である。 The biochemical test is performed by mixing a sample with a reagent and using an automatic biochemical analyzer that measures the change in color due to a chemical reaction using transmitted light.The immunological test involves binding a luminescent substance to an antigen contained in the sample. It is general to add an antibody to cause an antigen-antibody reaction, wash the unbound antibody, and then measure the amount of luminescence due to the bound antibody with an immunoassay device.
 また、生化学自動分析装置の中でもラテックス粒子に抗体を固定した試薬を用いてサンプル中に含まれる抗体を検出する方法がある。また、血液凝固検査では血液が固まるまでにかかる時間を測定する項目や、血液凝固反応にかかわる分子マーカーを透過光により測定する項目がある。 There is also a method of detecting the antibody contained in the sample using a reagent in which the antibody is immobilized on latex particles among the automatic biochemical analyzers. Further, in the blood coagulation test, there are an item for measuring the time required for blood to solidify and an item for measuring a molecular marker involved in the blood coagulation reaction by transmitted light.
 自動分析装置において効率的な分析を実施するために、試薬がなくなると次の試薬容器へと順次切り替わる機能がある。ここで、サンプルと混合する試薬の多くは2種類の試薬から構成されているため、試薬をペア毎に管理している。しかし、試薬容器の成型誤差や試薬充填量の誤差などにより、ペアをなす試薬は必ずしも同一タイミングでなくなるとは限らない。また、第一試薬と第二試薬の吸引の間で装置が緊急停止した場合などには、試薬ペアのうちの一方だけが早く消費されることがある。 In order to perform efficient analysis in the automatic analyzer, there is a function to switch to the next reagent container in sequence when the reagents run out. Here, most of the reagents to be mixed with the sample are composed of two types of reagents, and therefore the reagents are managed in pairs. However, due to the molding error of the reagent container, the error of the reagent filling amount, and the like, the paired reagents are not always at the same timing. In addition, when the device is urgently stopped between the aspiration of the first reagent and the second reagent, only one of the reagent pairs may be consumed early.
 本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には「複数種類の試薬と被検試料とを反応させて測定を行う際に、第1試薬の使用可能回数と第2試薬の使用可能回数とに基づいて、第1試薬ボトル及び第2試薬ボトルの組み合わせである試薬ペアごとの残使用回数を算出し、残使用回数が少ない場合には、試料との反応に用いられる試薬ペアから除外される試薬ペアを選択可能なシステム」が開示されている。 As a background art in this technical field, for example, there is a technology as disclosed in Patent Document 1. Patent Document 1 describes "When performing a measurement by reacting a plurality of types of reagents with a test sample, based on the usable number of times of the first reagent and the usable number of times of the second reagent, a first reagent bottle and A system that can calculate the number of remaining uses for each reagent pair that is a combination of the second reagent bottles and, when the number of remaining uses is small, select a reagent pair that is excluded from the reagent pairs used for the reaction with the sample”. It is disclosed.
 また、特許文献2には「検知手段が液面を検知した後、試薬プローブが試薬中で停止するまでに駆動手段が要した駆動信号量と試薬の分注回数とに関する過去複数回のデータによって決まる関係式を求め、該関係式から算出した駆動信号量をもとに今回の予測試薬残量を算出し、該今回の予測試薬残量と前回の予測試薬残量との比較から試薬残量を決定して分注の停止制御を行う自動分析装置」が開示されている。 In addition, Japanese Patent Laid-Open No. 2004-242242 discloses that "after the detection means detects the liquid surface, the drive signal amount required by the drive means before the reagent probe stops in the reagent and the number of times of dispensing of the reagent are used in the past plural times. A determined relational expression is obtained, the predicted reagent remaining amount at this time is calculated based on the drive signal amount calculated from the relational expression, and the reagent remaining amount is calculated by comparing the predicted reagent remaining amount at this time with the previously predicted reagent remaining amount. An automatic analyzer for determining and controlling discontinuation of dispensing is disclosed.
特開2016-95147号公報Japanese Unexamined Patent Publication No. 2016-95147 特開2007-322241号公報JP-A-2007-322241
 しかしながら、上記特許文献1に記載された方法では、残った試薬を使い切ることができずに、試薬を無駄に消費する可能性がある。特許文献1でのボトルペアごとの残使用回数は、算出部で算出された理論値であり、例えば、試薬容器の成型誤差や試薬充填量の誤差などによって実際に測定可能な回数が分析開始前に算出した使用可能回数の予測と異なる場合、使い切れずに残ってしまう試薬の量は増大する。 However, in the method described in Patent Document 1, there is a possibility that the remaining reagent cannot be used up and the reagent is wastefully consumed. The number of remaining uses for each bottle pair in Patent Document 1 is a theoretical value calculated by the calculation unit, and, for example, the number of times actually measurable due to a molding error of a reagent container, an error of a reagent filling amount, or the like is calculated before the analysis is started. If it is different from the calculated expected number of usable times, the amount of the reagent that remains without being used up increases.
 また、上記特許文献2では試薬ペア毎の管理については想定されておらず、また、特許文献1と同様に、試薬容器の成型誤差や試薬充填量の誤差は考慮されていないため、試薬残量の算出精度には課題が残る。 Further, in Patent Document 2 described above, management for each reagent pair is not assumed, and similarly to Patent Document 1, since the molding error of the reagent container and the error of the reagent filling amount are not considered, the remaining amount of the reagent remains. There remains a problem in the calculation accuracy of.
 そこで、本発明の目的は、試薬(ボトル)ペアの構成を決定した後に、実使用状況に合わせて試薬(ボトル)ペアの構成を変更可能な自動分析装置及び自動分析方法を提供することにある。 Therefore, it is an object of the present invention to provide an automatic analyzer and an automatic analysis method capable of changing the composition of a reagent (bottle) pair according to the actual use situation after determining the composition of a reagent (bottle) pair. ..
 上記課題を解決するために、本発明は、複数の試薬を分注する分注機構を備えた自動分析装置であって、試薬容器に充填された試薬を分注する試薬プローブと、前記試薬プローブを介して試薬の液面を検知する液面検知手段と、前記液面検知手段により検知した試薬の液面高さから前記試薬容器内の試薬残量を算出する演算部と、前記演算部で算出したデータを記憶する記憶部と、を有し、前記演算部は、算出した前記複数の試薬の各々の試薬残量に基づいて、前記試薬容器毎の有効テスト数を算出し、前記算出した有効テスト数に基づいて、前記複数の試薬の組み合わせからなる試薬ペアを前記記憶部に登録し、分析開始後、前記複数の試薬の使用状況に応じて前記試薬容器毎の有効テスト数を補正し、試薬ペアを再登録することを特徴とする。 In order to solve the above problems, the present invention is an automatic analyzer including a dispensing mechanism that dispenses a plurality of reagents, the reagent probe dispensing a reagent filled in a reagent container, and the reagent probe. A liquid level detection means for detecting the liquid level of the reagent via the, a calculation part for calculating the reagent remaining amount in the reagent container from the liquid level height of the reagent detected by the liquid level detection part, and the calculation part And a storage unit for storing the calculated data, wherein the calculation unit calculates the number of effective tests for each reagent container based on the calculated reagent remaining amount of each of the plurality of reagents, and the calculation is performed. Based on the number of valid tests, a reagent pair consisting of a combination of the plurality of reagents is registered in the storage unit, and after the analysis is started, the number of valid tests for each reagent container is corrected according to the usage status of the plurality of reagents. , The reagent pair is re-registered.
 また、本発明は、試料容器に複数の試薬を分注する自動分析方法であって、前記複数の試薬の各々が収容された試薬容器毎の有効テスト数を算出し、前記算出した有効テスト数に基づいて、前記複数の試薬の組み合わせからなる試薬ペアを決定し、分析開始後、前記複数の試薬の使用状況に応じて前記試薬容器毎の有効テスト数を補正し、試薬ペアを再登録することを特徴とする。 Further, the present invention is an automatic analysis method for dispensing a plurality of reagents into a sample container, wherein the number of effective tests for each reagent container accommodating each of the plurality of reagents is calculated, and the calculated number of effective tests is calculated. Based on the above, a reagent pair consisting of a combination of the plurality of reagents is determined, and after the analysis is started, the number of valid tests for each reagent container is corrected according to the usage status of the plurality of reagents, and the reagent pair is re-registered. It is characterized by
 本発明によれば、試薬(ボトル)ペアの構成を決定した後に、実使用状況に合わせて試薬(ボトル)ペアの構成を変更可能な自動分析装置及び自動分析方法を提供することができる。 According to the present invention, it is possible to provide an automatic analyzer and an automatic analysis method capable of changing the composition of a reagent (bottle) pair according to the actual usage after determining the composition of a reagent (bottle) pair.
 これにより、試薬を無駄にすることなく最後まで使い切ることが可能になる。 This makes it possible to use up the reagents to the end without wasting them.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 The problems, configurations, and effects other than those described above will be clarified by the description of the embodiments below.
本発明の一実施形態に係る自動分析装置の基本構成を示す図である。It is a figure which shows the basic structure of the automatic analyzer which concerns on one Embodiment of this invention. 本発明の一実施形態に係る自動分析装置の試薬液面検出機構の基本構成を示す図である。It is a figure which shows the basic composition of the reagent liquid level detection mechanism of the automatic analyzer which concerns on one Embodiment of this invention. 本発明の一実施形態に係る試薬容器を示す図である。It is a figure which shows the reagent container which concerns on one Embodiment of this invention. 実施例1における自動分析方法(試薬ペア登録方法)を示すフローチャートである。It is a flowchart which shows the automatic analysis method (reagent pair registration method) in Example 1. FIG. 実施例1における試薬ペアの例を示す図である。It is a figure which shows the example of the reagent pair in Example 1. FIG. 実施例1における試薬ペアの例を示す図である。It is a figure which shows the example of the reagent pair in Example 1. FIG. 実施例1における試薬ペアの例を示す図である。FIG. 3 is a diagram showing an example of a reagent pair in Example 1. 実施例1における自動分析方法(試薬ペア再登録方法)を示すフローチャートである。It is a flowchart which shows the automatic analysis method (reagent pair re-registration method) in Example 1. FIG. 実施例1における試薬ペアの例を示す図である。FIG. 3 is a diagram showing an example of a reagent pair in Example 1. 実施例1における試薬ペアの有効テスト算出に係る変形例を示す図である。It is a figure which shows the modification which concerns on the efficacy test calculation of the reagent pair in Example 1. FIG. 実施例2における自動分析方法(試薬ペア再登録方法)を示すフローチャートである。It is a flowchart which shows the automatic analysis method (reagent pair re-registration method) in Example 2. 実施例2における試薬ペアの例を示す図である。FIG. 8 is a diagram showing an example of a reagent pair in Example 2.
 以下、本発明を実施するための形態について図面を用いて詳細に説明する。なお、全体を通して、各図における同一の機能を有する各構成部分については原則として同一の符号を付すようにし、説明を省略することがある。 Hereinafter, modes for carrying out the present invention will be described in detail with reference to the drawings. In addition, throughout the drawings, in principle, the same reference numerals are given to the respective constituent parts having the same functions in the respective drawings, and the description thereof may be omitted.
 ≪装置の全体構成≫
 先ず、図1および図2を参照して、自動分析装置の基本構成とそれによる分析の流れについて説明する。試料容器1に充填された試料2は、試料ディスク3に設置されると、試料分注機構4により吸引され、反応容器5へと吐出される。
<<Overall configuration of the device>>
First, with reference to FIGS. 1 and 2, the basic configuration of the automatic analyzer and the flow of analysis by the basic configuration will be described. When the sample 2 filled in the sample container 1 is placed on the sample disk 3, it is sucked by the sample dispensing mechanism 4 and discharged to the reaction container 5.
 試料が入れられた反応容器5は、反応ディスク6の回転動作により第一試薬分注位置に移動し、第一試薬分注機構7aが、分析に使用する第一試薬8aを第1試薬容器9aから反応容器5へと分注する。 The reaction container 5 containing the sample moves to the first reagent dispensing position by the rotation operation of the reaction disk 6, and the first reagent dispensing mechanism 7a transfers the first reagent 8a used for the analysis to the first reagent container 9a. Dispense into the reaction vessel 5.
 続いて、第一試薬撹拌機構10aにより反応容器5内の混合液の撹拌が行われる。一定時間経過した後、第二試薬分注機構7bが、分析に使用する第二試薬8bを第二試薬容器9bから反応容器5へと分注する。続いて、第二試薬撹拌機構10bにより反応容器5内の混合液の撹拌が行われる。 Subsequently, the first reagent stirring mechanism 10a stirs the mixed liquid in the reaction container 5. After a certain time has elapsed, the second reagent dispensing mechanism 7b dispenses the second reagent 8b used for the analysis from the second reagent container 9b to the reaction container 5. Then, the second reagent stirring mechanism 10b stirs the mixed liquid in the reaction container 5.
 ここで、第二試薬8bを分注する反応容器5は、前述の試料2及び第一試薬8aの入った反応容器5と同じである。反応容器5は反応ディスク6下部に満たされた恒温槽循環液体11によって、一定の温度、例えば37℃に保たれており、反応の促進と反応の進行の安定化が図られている。 Here, the reaction container 5 for dispensing the second reagent 8b is the same as the reaction container 5 containing the sample 2 and the first reagent 8a described above. The reaction vessel 5 is kept at a constant temperature, for example, 37° C., by a constant temperature bath circulating liquid 11 filled in the lower portion of the reaction disk 6 to promote the reaction and stabilize the progress of the reaction.
 これらの一連の動作は制御回路21にて制御される。反応容器5内の混合液は、反応ディスク6の回転動作に伴い、吸光光度計12を通過する時にその透過光量が透過光測定回路22を介して測定される。このようにして得られた透過光量データは、PC(パーソナルコンピュータ)23に送られ、PC23内の演算部によって、試料中の対象成分の濃度が算出されると共に、データ記憶部にデータを記憶し、出力部24に演算結果を表示する。反応後の反応容器5は、洗浄機構13により洗浄され、次の反応に繰り返し使用される。 These series of operations are controlled by the control circuit 21. The amount of transmitted light of the mixed liquid in the reaction container 5 is measured through the transmitted light measuring circuit 22 when passing through the absorptiometer 12 as the reaction disk 6 rotates. The transmitted light amount data thus obtained is sent to a PC (personal computer) 23, and the calculation unit in the PC 23 calculates the concentration of the target component in the sample and stores the data in the data storage unit. , The calculation result is displayed on the output unit 24. The reaction vessel 5 after the reaction is washed by the washing mechanism 13 and repeatedly used for the next reaction.
 ここで、試薬容器9a,9bは第一試薬庫14aおよび第二試薬庫14bにそれぞれ設置されている。また、第一試薬分注機構7aおよび第二試薬分注機構7bは、図2に示す通り、液面検知回路26を介して制御部(制御回路21)と接続されており、液面検知回路26からの情報により、試薬の残量を管理し、出力部24の試薬管理画面に試薬の残量を表示する。 Here, the reagent containers 9a and 9b are installed in the first reagent storage 14a and the second reagent storage 14b, respectively. The first reagent dispensing mechanism 7a and the second reagent dispensing mechanism 7b are connected to the control unit (control circuit 21) via the liquid level detection circuit 26, as shown in FIG. The remaining amount of the reagent is managed based on the information from 26, and the remaining amount of the reagent is displayed on the reagent management screen of the output unit 24.
 なお、図1では試薬分注機構、試薬(保管)庫が別々に構成されている例を示したが、必ずしも本構成でなくてもよい。例えば、1つの試薬分注機構によって複数の試薬の分注をする構成でもよく、1つの試薬庫に複数種類の試薬が保管される構成としてもよい。 Note that, although FIG. 1 shows an example in which the reagent dispensing mechanism and the reagent (storage) storage are configured separately, this configuration is not necessarily required. For example, one reagent dispensing mechanism may dispense a plurality of reagents, or one reagent storage may store a plurality of types of reagents.
 次に、図3から図6Bを参照して、本発明における試薬の残量管理について説明する。図3は本発明に使用される試薬容器9と試薬の液面高さを検知するための構造を示す。図4は本実施例の自動分析方法(試薬ペア登録方法)を示すフローチャートである。 Next, the residual amount management of the reagent in the present invention will be described with reference to FIGS. 3 to 6B. FIG. 3 shows a reagent container 9 used in the present invention and a structure for detecting the liquid level of the reagent. FIG. 4 is a flowchart showing the automatic analysis method (reagent pair registration method) of this embodiment.
 図1の第一試薬庫14aおよび第二試薬庫14bに設置された試薬容器9a,9bには入力部25からの指示により試薬が認識され、残量が登録される。ここでは試薬の認識と残量登録を別々の動作として説明するが、一緒に(同時に)行うことも可能である。 The reagents are recognized in the reagent containers 9a and 9b installed in the first reagent storage 14a and the second reagent storage 14b of FIG. 1 according to an instruction from the input unit 25, and the remaining amounts are registered. Here, the reagent recognition and the remaining amount registration are described as separate operations, but they can be performed together (simultaneously).
 試薬を認識する方法としては、例えば、図3に示す試薬容器9に添付された個別識別子16を読み取り部15a,15bによって読み取る方法がある。個別識別子16の一例としては、バーコードやRFIDなどがあるが、これに限定されない。 As a method of recognizing the reagent, for example, there is a method of reading the individual identifier 16 attached to the reagent container 9 shown in FIG. 3 by the reading units 15a and 15b. Examples of the individual identifier 16 include a bar code and an RFID, but are not limited to this.
 また、個別識別子16を有しない試薬容器9に関しては、操作部から手入力する方法もある。 For the reagent container 9 that does not have the individual identifier 16, there is also a method of manually inputting from the operation unit.
 入力部25からの指示により、第一試薬庫14aおよび第二試薬庫14bは回転動作を実行する。これにより、試薬容器9a,9bが移動し、第一読み取り部15a,第二読み取り部15bの前を通過するたびに個別識別子16に付された試薬情報が読み取られる。 According to an instruction from the input unit 25, the first reagent storage 14a and the second reagent storage 14b perform a rotating operation. Thereby, the reagent information attached to the individual identifier 16 is read every time the reagent containers 9a and 9b move and pass in front of the first reading unit 15a and the second reading unit 15b.
 試薬情報とは、例えば、テスト項目名、ボトルコード、試薬タイプ、試薬容器のサイズ、試薬有効期限、ロット、シーケンス番号、検量線情報などのうちのいくつか、若しくは、全部を示す。また、試薬容器9a,9bに個別識別子16が付されていない場合には、入力部25から第一試薬庫14aおよび第二試薬庫14bにおけるポジションを指定して、試薬情報を入力することによって試薬を認識することも可能である。 The reagent information indicates, for example, some or all of test item name, bottle code, reagent type, reagent container size, reagent expiration date, lot, sequence number, and calibration curve information. When the reagent containers 9a and 9b are not provided with the individual identifiers 16, the positions in the first reagent storage 14a and the second reagent storage 14b are designated from the input unit 25, and the reagent information is input to input the reagent. It is also possible to recognize.
 次に、残量登録を実施する。試薬分注機構7は、液面検知回路26に接続されており、入力部25から試薬残量登録の指示を受けると、制御回路21により試薬プローブ17の動作を制御する(図2)。試薬プローブ17の先端が試薬液面に到達した時の静電容量の情報が液面検知回路26にて処理され、PC23内の演算部とデータ記憶部によって、試薬プローブ17の下降量から試薬液面高さを演算し、記憶する。 Next, register the remaining amount. The reagent dispensing mechanism 7 is connected to the liquid level detection circuit 26, and when the reagent remaining amount registration instruction is received from the input unit 25, the control circuit 21 controls the operation of the reagent probe 17 (FIG. 2 ). Information on the capacitance when the tip of the reagent probe 17 reaches the reagent liquid level is processed by the liquid level detection circuit 26, and the calculation unit and the data storage unit in the PC 23 change the amount of the reagent probe 17 from the lowered amount to the reagent liquid level. Calculate and store the surface height.
 また、PC23では、試薬液面高さと試薬容器9の断面積情報から試薬容器ごとの有効テスト数を算出し、データ記憶部に記憶すると共に、出力部24に有効テスト数を出力する(図4のステップS401)。ここで、試薬液面高さの算出には静電容量の変化を検知する方式を用いて説明したが、プローブが接続された配管内の圧力検出方式、光学的な方式によるものなど、別方式としてもよい。 In the PC 23, the effective test number for each reagent container is calculated from the reagent liquid surface height and the cross-sectional area information of the reagent container 9, and the effective test number is stored in the data storage unit and is output to the output unit 24 (FIG. 4). Step S401). Here, the method of detecting the change in capacitance is used for the calculation of the reagent liquid level, but another method such as a pressure detection method in the pipe to which the probe is connected or an optical method is used. May be
 次に、同一項目、同一の試薬タイプにおいて複数の試薬容器が設置されている場合には、試薬タイプごとの優先順位を決定する(図4のステップS402)。なお、試薬タイプとは、希釈液、第一試薬、第二試薬などの試薬の分類のことである。 Next, when a plurality of reagent containers are installed for the same item and the same reagent type, the priority order for each reagent type is determined (step S402 in FIG. 4). The reagent type is a classification of reagents such as a diluent, a first reagent, and a second reagent.
 続いて、図4のステップS403の処理に従い、優先順位の高い順に試薬ペアを登録する。優先順位の決定方法は、試薬の開封日時(装置に初めて搭載した日時)の早い順、試薬有効期限の早い順、試薬残量の少ない順、試薬庫内のポジションの小さい順などがあるが、これに限定されない。 Next, the reagent pairs are registered in the order of high priority according to the process of step S403 in FIG. Methods for determining the priority order include the earliest opening date and time of reagents (the first loading date and time on the device), the earliest expiration date of reagents, the least reagent remaining amount, and the smallest reagent storage position. Not limited to this.
 図5は、2種類の試薬を用いて構成される試薬ペアの一例を示している。ここでは、第一試薬庫14aに400テスト分析が可能な試薬容器が2本、第二試薬庫14bに130テスト分析可能な試薬が5本設置されており、第一試薬の2本は第一試薬庫14a内のポジション1~2に、第二試薬の5本は第二試薬庫14b内のポジション1~5に設置されている例を示している。ここでは、優先順位はポジションの小さい順としたと仮定して優先順位を決定する。 FIG. 5 shows an example of a reagent pair composed of two types of reagents. Here, two reagent containers capable of 400 test analysis are installed in the first reagent storage 14a, and five reagents capable of performing 130 test analysis are installed in the second reagent storage 14b. An example is shown in which positions 1 to 2 are installed in the reagent storage 14a, and five second reagents are installed in positions 1 to 5 in the second reagent storage 14b. Here, the priority is determined on the assumption that the priority is in ascending order of position.
 図5においては、第一試薬庫14a内のポジション1に設置された第一試薬とペアになるのは第二試薬庫14b内のポジション1~4に設置された第二試薬である。この時、S501~S503では試薬ペア毎の有効テストが130テストと算出される。第一試薬に関してS501~S503で消費された後の残量は10テストであるため、試薬ペアでの有効テストは10テストとなる(S504)。 In FIG. 5, the second reagent installed in positions 1 to 4 in the second reagent storage 14b is paired with the first reagent installed in position 1 in the first reagent storage 14a. At this time, in S501 to S503, 130 valid tests are calculated for each reagent pair. Since the remaining amount of the first reagent after being consumed in S501 to S503 is 10 tests, the valid test for the reagent pair is 10 tests (S504).
 この場合、第二試薬庫14b内のポジション4に設置された第二試薬に関しては、S504で消費された後の残量は120テストとなり、第一試薬庫14a内のポジション2に設置された試薬とペアを形成する(S505)。更に、第二試薬庫14b内のポジション5に設置された試薬はS506のように第一試薬庫14a内のポジション2の試薬とペアになる。 In this case, with respect to the second reagent installed in the position 4 in the second reagent storage 14b, the remaining amount after the consumption in S504 is 120 tests, and the reagent installed in the position 2 in the first reagent storage 14a To form a pair with (S505). Further, the reagent installed at the position 5 in the second reagent storage 14b is paired with the reagent at the position 2 in the first reagent storage 14a as in S506.
 ここで、試薬容器の成型誤差などにより、予め登録されている試薬容器の断面積情報に誤差があった場合には、試薬登録時に登録した試薬容器ごとの有効テスト数は、実際に分析可能なテスト数と乖離することがある。図3の試薬容器9に関して、試薬容器ごとの有効テスト数は、断面積18、試薬容器内底から液面までの高さ19を用いると(1)式で表される。 Here, if there is an error in the cross-sectional area information of the reagent container registered in advance due to the molding error of the reagent container, etc., the effective test number for each reagent container registered at the time of reagent registration can be actually analyzed. May deviate from the number of tests. With respect to the reagent container 9 of FIG. 3, the number of effective tests for each reagent container is represented by the formula (1) using the cross-sectional area 18 and the height 19 from the inner bottom of the reagent container to the liquid surface.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、第一試薬の試薬容器の断面積が、予め登録されている断面積情報よりも10%小さく、第二試薬の試薬容器の断面積が、予め登録されている断面積情報通りであった場合、試薬残量登録時の有効テスト数と実際の測定可能テスト数に乖離が生じる。この場合の試薬の残量管理について図6Aを用いて説明する。第一試薬に関しては、試薬ペアを登録した時点では、予め登録されている断面積が実断面積よりも10%多いために予測有効テスト数が見かけ上多く見積もられてしまう。 For example, the cross-sectional area of the reagent container of the first reagent is 10% smaller than the cross-sectional area information registered in advance, and the cross-sectional area of the reagent container of the second reagent is as the cross-sectional area information registered in advance. In this case, there is a discrepancy between the number of valid tests when registering the remaining amount of the reagent and the actual number of measurable tests. The remaining amount management of the reagent in this case will be described with reference to FIG. 6A. As for the first reagent, at the time of registering the reagent pair, the pre-registered cross-sectional area is 10% larger than the actual cross-sectional area, and therefore the estimated number of effective tests is apparently overestimated.
 ここで、測定するたびに液面高さを測定し、有効テスト数を更新する場合には、当初の予測テスト数より10%多いスピードで有効テスト数が減少し、実際に130テスト実施する場合の見かけのテスト数の減少は143テストとなる(S601~S602)。 Here, when the liquid level is measured every time the measurement is performed and the number of valid tests is updated, the number of valid tests decreases at a speed 10% higher than the initially predicted number of tests, and 130 tests are actually performed. The apparent decrease in the number of tests is 143 tests (S601 to S602).
 一方で、第二試薬に関しては、試薬残量登録時のテスト数の想定通りに試薬が消費される。この場合には第二試薬庫14b内のポジション3に設置された試薬を使い切る前に第一試薬庫14a内のポジション1に設置された試薬は有効テスト数が0となる。この場合、第二試薬庫14b内のポジション3の残りの試薬は第一試薬庫14a内のポジション2に設置された試薬と新たにペアを構成し(S604)、第一試薬庫14a内のポジション4,5の試薬についても第一試薬庫14a内のポジション2の試薬とペアを構成する(S605,S606)。 On the other hand, regarding the second reagent, the reagent is consumed as expected for the number of tests when registering the remaining amount of reagent. In this case, the number of effective tests for the reagent installed in the position 1 in the first reagent storage 14a becomes 0 before the reagent installed in the position 3 in the second reagent storage 14b is used up. In this case, the remaining reagents in position 3 in the second reagent storage 14b form a new pair with the reagent installed in position 2 in the first reagent storage 14a (S604), and the positions in the first reagent storage 14a The reagents 4 and 5 are also paired with the reagent at position 2 in the first reagent storage 14a (S605, S606).
 これを模式的に表したのが図6Bである。試薬残量登録時にはS611~S616に示すペアが構成されていたが、実際の分析の状態を反映した結果、S614のペアは存在しなくなり、代わりにS617のペアが登録される。 Fig. 6B schematically shows this. Although the pairs shown in S611 to S616 were configured when the reagent remaining amount was registered, as a result of reflecting the actual analysis state, the pair in S614 does not exist and the pair in S617 is registered instead.
 ところで、分析装置では、既知濃度の標準試料の測定(以降、キャリブレーションとも呼ぶ)を実施することによって検量線を作成し、未知濃度試料の測定結果を検量線と比較することによって濃度を算出する。このためには試薬ペア毎に検量線が必要である。また、被験者検体を測定する前には装置と試薬の状態に問題ないかを確認するために精度管理試料を測定する必要がある。 By the way, in the analyzer, a calibration curve is created by measuring a standard sample of known concentration (hereinafter, also referred to as calibration), and the concentration is calculated by comparing the measurement result of the unknown concentration sample with the calibration curve. .. For this purpose, a calibration curve is required for each reagent pair. In addition, before measuring the subject sample, it is necessary to measure the quality control sample in order to confirm whether there is any problem in the state of the device and the reagent.
 そこで、本発明に関わる自動分析装置では、試薬ペア毎に検量線が登録されているか、精度管理試料の測定がなされているかを事前にチェックし(図4のS404)、測定結果がない場合には、測定を推奨(実行)する(図4のS405)。 Therefore, in the automatic analyzer according to the present invention, it is checked in advance whether the calibration curve is registered for each reagent pair or the quality control sample is measured (S404 in FIG. 4), and if there is no measurement result, Recommends (executes) measurement (S405 in FIG. 4).
 なお、検量線の作成は必ずしも試薬ペア毎に実施する必要はない。すなわち、図5の例ではS501のペアでキャリブレーションを実施した場合、S502~S505のペアを使用する前にS501のキャリブレーション結果を適用することができる。 Note that it is not always necessary to create a calibration curve for each reagent pair. That is, in the example of FIG. 5, when the calibration is performed with the pair of S501, the calibration result of S501 can be applied before using the pair of S502 to S505.
 ところで、前述したような、試薬残量の有効テスト数と実際の測定可能テスト数に乖離があり、連続して分析した際に試薬ペアの構成が変更になる場合、実際には使用しない試薬ペアでの検量線、精度管理試料の測定を実施してしまい、試薬を無駄に消費してしまう。 By the way, if there is a discrepancy between the number of valid tests of the reagent remaining amount and the actual number of measurable tests as described above, and the composition of the reagent pair changes during continuous analysis, the reagent pair that is not actually used In this case, the calibration curve and the quality control sample are measured, and the reagent is wasted.
 図7および図8を参照して、試薬の残テスト数を適宜補正し、試薬ペアを再登録する本実施例のフローについて説明する。 With reference to FIGS. 7 and 8, the flow of the present embodiment for appropriately correcting the number of remaining tests of the reagent and re-registering the reagent pair will be described.
 先ず、試薬残量登録により試薬ペアが登録された後(図7のS701)、入力部25から測定の指示を受けると、制御回路21により各種機構が制御され、前述の≪装置の全体構成≫に記載した通り、分析動作が開始される(図7のS702)。 First, after the reagent pair is registered by registering the remaining amount of the reagent (S701 in FIG. 7), when a measurement instruction is received from the input unit 25, various mechanisms are controlled by the control circuit 21 and the above-mentioned <<total configuration of apparatus>>. The analysis operation is started as described in (S702 in FIG. 7).
 その後、試薬を吸引する度に第一試薬分注機構7aおよび第二試薬分注機構7bが、試薬の試薬容器内底からの液面高さ(図3の符号19)や、実際の分析回数をPC23の記憶部に記憶すると共に、出力部24の試薬管理画面に試薬の残量を表示する。 After that, each time the reagent is sucked, the first reagent dispensing mechanism 7a and the second reagent dispensing mechanism 7b cause the height of the liquid surface of the reagent from the inner bottom of the reagent container (reference numeral 19 in FIG. 3) and the actual number of analyzes to be performed. Is stored in the storage unit of the PC 23, and the remaining amount of the reagent is displayed on the reagent management screen of the output unit 24.
 その後、試薬登録時の試薬有効テスト数と実際の吸引回数の乖離率(測定回数の誤差率)を算出し、有効テスト数の補正、優先順位の高い順に試薬ペアの再登録を行う(図7のS703~S705)。測定回数の誤差率は(2)式により算出する。 After that, the deviation rate (the error rate of the number of measurements) between the number of reagent valid tests at the time of registering the reagent and the actual number of aspirations is calculated, the number of valid tests is corrected, and the reagent pairs are re-registered in descending order of priority (FIG. 7). S703 to S705). The error rate of the number of measurements is calculated by Eq. (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、図8のS801において、実際に130テストの分析を実施したときにPC23のデータ記憶部では、143テストが減少していたとする。この場合に、測定回数の誤差率を、以下の(2)式により算出すると、測定回数の誤差率は10%と算出できる。 Here, it is assumed that when the analysis of 130 tests is actually performed in S801 of FIG. 8, the number of 143 tests is decreased in the data storage unit of the PC 23. In this case, if the error rate of the number of measurements is calculated by the following equation (2), the error rate of the number of measurements can be calculated as 10%.
 次に、(2)式により算出した誤差率を用いて(3)式によりPC23の記憶部に記憶されている有効テスト数を補正し、以降の残量管理に反映する(図8のS802~S805)。 Next, using the error rate calculated by the equation (2), the number of valid tests stored in the storage unit of the PC 23 is corrected by the equation (3) and reflected in the remaining amount management thereafter (S802 to FIG. 8). S805).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 望ましくは、試薬ペアを再登録後、出力部24に表示する。特に、試薬ペアの構成が試薬残量登録の構成と異なる場合には、試薬ペアが更新されたことを通知し(S706)、必要に応じて、キャリブレーションの実施とコントロールの測定を推奨(実行)する(S707)。 Desirably, after re-registering the reagent pair, it is displayed on the output unit 24. In particular, when the configuration of the reagent pair is different from the configuration of the reagent remaining amount registration, the fact that the reagent pair has been updated is notified (S706), and calibration and control measurement are recommended (execution) as necessary. ) (S707).
 以上説明したように、本実施例の自動分析装置は、複数の試薬を分注する試薬分注機構7を備えており、試薬容器9に充填された試薬を分注する試薬プローブ17と、試薬プローブ17を介して試薬の液面を検知する液面検知手段(液面検知回路26)と、液面検知手段(液面検知回路26)により検知した試薬の液面高さから試薬容器9内の試薬残量を算出する演算部と、演算部で算出したデータを記憶する記憶部と、を有し、演算部は、算出した複数の試薬の各々の試薬残量に基づいて、試薬容器9毎の有効テスト数を算出し、算出した有効テスト数に基づいて、複数の試薬の組み合わせからなる試薬ペアを記憶部に登録し、分析開始後、複数の試薬の使用状況に応じて試薬容器9毎の有効テスト数を補正し、試薬ペアを再登録する。 As described above, the automatic analyzer according to the present embodiment includes the reagent dispensing mechanism 7 that dispenses a plurality of reagents, the reagent probe 17 that dispenses the reagent filled in the reagent container 9, and the reagent. The liquid level detecting means (the liquid level detecting circuit 26) for detecting the liquid level of the reagent via the probe 17, and the inside of the reagent container 9 from the liquid level height of the reagent detected by the liquid level detecting means (the liquid level detecting circuit 26). Of the reagent container 9 and a storage unit that stores the data calculated by the calculation unit. The calculation unit is based on the calculated reagent remaining amount of each of the plurality of reagents. The number of valid tests for each is calculated, a reagent pair consisting of a combination of a plurality of reagents is registered in the storage unit based on the calculated number of valid tests, and after the analysis is started, the reagent container 9 is used according to the usage status of the plurality of reagents. Correct the number of valid tests per valid test and re-register the reagent pair.
 また、複数の試薬の使用状況に基づいて、試薬容器9毎の断面積18を算出し、算出した断面積18に基づいて、試薬容器9毎の有効テスト数を補正し、試薬ペアを再登録する。 Further, the cross-sectional area 18 of each reagent container 9 is calculated based on the usage status of a plurality of reagents, the number of effective tests for each reagent container 9 is corrected based on the calculated cross-sectional area 18, and the reagent pair is re-registered. To do.
 また、試薬ペア登録時の有効テスト数と実試薬消費量の乖離率を誤差率として算出し、誤差率に基づいて、有効テスト数を補正する。 Also, the deviation rate between the number of valid tests when registering the reagent pair and the actual reagent consumption is calculated as an error rate, and the number of valid tests is corrected based on the error rate.
 なお、本実施例では、第二試薬が無くなって次のペアに移行する際に、測定回数の誤差率を算出し、試薬ペアを変更する方法について説明したが、測定回数の誤差率の算出方法や補正を行うタイミングは、必ずしも上記の内容に限定されるものではない。 In the present embodiment, when the second reagent is lost and the process moves to the next pair, the error rate of the number of measurements is calculated, and the method of changing the reagent pair has been described. The timing for performing the correction is not necessarily limited to the above contents.
 また、測定回数の誤差率として、(2)式では第一試薬容器9aを使い切った時に実際に測定したテスト数と試薬残量登録時に算出してPC23に記憶された有効テスト数の減少数とを比較したが、分析回数一回毎に分割して考えてもよい。 Further, as the error rate of the number of measurements, in the formula (2), the number of tests actually measured when the first reagent container 9a is used up and the number of reductions of the number of effective tests calculated at the time of registering the remaining amount of the reagent and stored in the PC 23 are However, it is also possible to divide the analysis for each analysis.
 すなわち、理想的には1回分注するごとに1テストの試薬が消費されるが、断面積18の誤差と液面の揺れなどにより液面検知による高さ変動により、必ずしも1テスト分減少するとは限らない。そこで、有効テスト数の増減とその回数をカウントし、同様の回数の誤差が発生し得ると考えて誤差率を算出してもよい(図9)。 That is, ideally, one test reagent is consumed for each dispensing, but it is not always reduced by one test due to the height variation due to the liquid level detection due to the error of the cross-sectional area 18 and the fluctuation of the liquid level. Not exclusively. Therefore, the error rate may be calculated by counting the increase and decrease of the number of effective tests and the number of times, and considering that the error of the same number may occur (FIG. 9).
 試薬ペア変更を早期に実施するためには、予め設定したテスト数分の試薬を消費した後に、実際の測定回数と、PC23に記憶されている有効テストの減少数とから測定回数の誤差率を算出することができる。この時のテスト数を少なくすれば試薬ペアの更新のタイミングを早くすることができる。 In order to implement the reagent pair change at an early stage, after consuming the reagent for the preset number of tests, the error rate of the number of measurements is calculated from the actual number of measurements and the reduced number of effective tests stored in the PC 23. It can be calculated. If the number of tests at this time is reduced, the timing of updating the reagent pair can be advanced.
 但し、現実的には、ある程度以上纏まったテスト数分を消費した際に計算を行う方が、液面検知高さの変動をより正確な誤差率で算出できる。そこで、有効テスト補正の算出までのテスト数を入力部25から入力可能にしておけば、ユーザーの任意のタイミングで有効テストの補正が可能となる。 However, in reality, it is possible to calculate the fluctuation of the liquid level detection height with a more accurate error rate by performing the calculation when a certain number of tests that have been collected are consumed to some extent. Therefore, if the number of tests until the calculation of the effective test correction can be input from the input unit 25, the effective test correction can be performed at any timing of the user.
 また、オペレーションを開始する時に、自動的に試薬残量を確認して有効テスト数の補正を行う方法や、ユーザーが任意のタイミングで試薬残量を登録したときに有効テストの補正を行うなどの方法もある。 Also, when starting the operation, you can automatically check the reagent remaining amount and correct the number of valid tests, or correct the valid test when the user registers the reagent remaining amount at any time. There is also a method.
 なお、試薬ペアの再登録により試薬ペアの構成が変更になった場合、変更になったことを出力部24や図示しない報知手段により報知するように構成しても良い。 Note that when the composition of the reagent pair is changed by re-registering the reagent pair, the change may be notified by the output unit 24 or a notifying means (not shown).
 以上説明したように、本実施例によれば、試薬(ボトル)ペアの構成を決定した後に、実使用状況に合わせて試薬(ボトル)ペアの構成を変更することができ、試薬を無駄にすることなく最後まで使い切ることが可能になる。 As described above, according to the present embodiment, after the configuration of the reagent (bottle) pair is determined, the configuration of the reagent (bottle) pair can be changed according to the actual use situation, and the reagent is wasted. It will be possible to use up to the end without any problems.
 図10を参照して、本発明に係る別の実施形態について説明する。試薬容器ごとの有効テスト数の算出から分析による使用状況を反映してテスト数補正する基本的なフローについては実施例1(図4)と同様であるため、詳細な説明は割愛し、相違点のみを説明する。 Another embodiment according to the present invention will be described with reference to FIG. The basic flow for calculating the number of effective tests for each reagent container and correcting the number of tests by reflecting the usage status by analysis is the same as that of the first embodiment (FIG. 4), and therefore detailed description is omitted and differences are described. Only explain.
 実施例1では、試薬プローブ17が分析時に試薬液面に接触するたびに試薬液面高さを検知し、有効テスト数を更新することにより、試薬有効テスト数の誤差率を算出し、試薬ペアの再登録を実施したが、実施例2では試薬容器断面積の誤差を補正する。 In the first embodiment, the reagent liquid level height is detected each time the reagent probe 17 comes into contact with the reagent liquid surface during analysis, and the effective test number is updated to calculate the error rate of the reagent effective test number, and the reagent pair However, in the second embodiment, the error of the reagent container cross-sectional area is corrected.
 例えば、試薬ペア登録時の有効テスト数に対して実使用テスト数が少ない場合には試薬容器の断面積が登録されている断面積と異なることが予測される。試薬の試薬容器内底からの液面高さ(図3の符号19)および、実際の分析テスト数を用いて(4)式により断面積を算出することができる。 For example, when the number of actually used tests is smaller than the number of effective tests when registering a reagent pair, the cross-sectional area of the reagent container is expected to be different from the registered cross-sectional area. The cross-sectional area can be calculated by the equation (4) using the liquid level height of the reagent from the inner bottom of the reagent container (reference numeral 19 in FIG. 3) and the actual number of analysis tests.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この場合には、図8のS801のボトルの130テストを分析した段階で、第一試薬庫14a内のポジション1において分注量と分析テスト数から実試薬消費量を算出し、試薬容器内底から液面までの高さ19で除することによって試薬容器の断面積を算出し、PC23内のデータ記憶部に断面積情報として記憶する(図10のS1001)。この断面積情報を用いて有効テスト数を補正し、優先順位の高い順に試薬ペアの再登録を行う(図10のS1002~S1003)。 In this case, when the 130 tests of the bottle in S801 of FIG. 8 are analyzed, the actual reagent consumption amount is calculated from the dispensed amount and the number of analysis tests at the position 1 in the first reagent storage 14a, and the inner bottom of the reagent container is calculated. The cross-sectional area of the reagent container is calculated by dividing it by the height 19 from the liquid surface to the liquid level, and is stored as the cross-sectional area information in the data storage unit in the PC 23 (S1001 in FIG. 10). The number of valid tests is corrected using this cross-sectional area information, and the reagent pairs are re-registered in order of higher priority (S1002 to S1003 in FIG. 10).
 次に、図11を参照して、有効テスト数の補正方法に関する別の実施形態について説明する。試薬の残量管理全般のフローは実施例1と概ね同じであるため詳細な説明を割愛する。相違点は、実施例1では測定(分析)するたびに試薬の液面高さを測定し、有効テスト数を更新していたが、本実施例では、測定(分析)ごとの液面高さの測定を行わない点である。 Next, with reference to FIG. 11, another embodiment regarding a method for correcting the number of valid tests will be described. The flow of the overall management of the remaining amount of the reagent is almost the same as that of the first embodiment, and therefore the detailed description is omitted. The difference is that in Example 1, the liquid level of the reagent was measured each time it was measured (analyzed) and the number of effective tests was updated, but in this example, the liquid level of each measurement (analysis) was updated. It is a point that the measurement of is not performed.
 すなわち、試薬残量登録の後、有効テスト数を算出し試薬ペアを構成するが、その後の残量管理は、分析ごとの液面高さを反映するのではなく、分析した回数をソフトウェアカウントにより減少させる。その場合には、実際の分析テスト数とPC23に記憶されている有効テスト数の間に乖離は発生しない。 That is, after registering the remaining amount of reagent, the number of effective tests is calculated and a reagent pair is constructed, but the remaining amount management after that does not reflect the liquid level height for each analysis, but the number of analyzes is performed by software counting. Reduce. In that case, no discrepancy occurs between the actual number of analysis tests and the number of valid tests stored in the PC 23.
 しかし、第一試薬を分注した後、第二試薬を分注するまでの間に、停電などにより装置が緊急停止した場合には、第一試薬の有効テスト数だけが減少する。例えば、試薬残量登録後、図5のような試薬ペアを登録した後、第一試薬庫14a内のポジション1の試薬を30テスト消費し、第二試薬の分注が始まる前に緊急停止により装置がストップした場合の試薬残量を模式的に表すと図11のようになる。 However, after dispensing the first reagent and before dispensing the second reagent, if the device suddenly stops due to a power failure, etc., only the number of valid tests for the first reagent will decrease. For example, after registering the remaining amount of the reagent, after registering the reagent pair as shown in FIG. 5, 30 tests of the reagent in position 1 in the first reagent storage 14a are consumed, and an emergency stop is performed before the dispensing of the second reagent is started. FIG. 11 schematically shows the remaining amount of the reagent when the apparatus is stopped.
 S1101で第一試薬庫14a内のポジション1の試薬は30テストを分注したのだから、有効テスト数は370テストである。しかし、第二試薬の分注前であるため、ペアを構成する第二試薬庫14b内のポジション1の試薬の有効テスト数は130テストのまま変更されない。この後、分析を再開すれば、第二試薬庫14b内のポジション3の試薬を使い切る前に第一試薬庫14a内のポジション1の試薬がなくなり、第一試薬は使い切れずに20テスト分余ってしまう。 In S1101, 30 tests were dispensed for the reagent at position 1 in the first reagent storage 14a, so the number of valid tests is 370 tests. However, since the second reagent has not yet been dispensed, the number of valid tests for the reagent at the position 1 in the second reagent storage 14b forming the pair remains unchanged at 130 tests. After that, when the analysis is restarted, the reagent at position 1 in the first reagent storage 14a is exhausted before the reagent in position 3 in the second reagent storage 14b is used up, and the first reagent cannot be used up, leaving 20 tests. End up.
 これを効率的に使い切るためには、想定してしたS1104の処理は実施せず、代わりにS1107の処理を追加することによって試薬ペアを再構成すればよい。 In order to use up this efficiently, the expected processing of S1104 is not performed, and instead the processing of S1107 is added to reconfigure the reagent pair.
 すなわち、装置が一度停止してから測定を再開する前に、自動で試薬ペアを再登録することにより、ペアを構成する一方の試薬だけが消費された場合でも、分析の状況を反映して試薬ペアを再登録することにより、試薬を効率的に使い切ることが可能となる。 In other words, by automatically re-registering the reagent pair before the measurement is restarted after the device is stopped, even if only one of the reagents that make up the pair is consumed, the reagent conditions are reflected in the analysis. By re-registering the pair, the reagent can be used up efficiently.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記の実施例は本発明に対する理解を助けるために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail to facilitate understanding of the present invention, and are not necessarily limited to those including all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add/delete/replace other configurations with respect to a part of the configurations of the respective embodiments.
 1…試料容器
 2…試料
 3…試料ディスク
 4…試料分注機構
 5…反応容器
 6…反応ディスク
 7…試薬分注機構
 7a…第一試薬分注機構
 7b…第二試薬分注機構
 8a…第一試薬
 8b…第二試薬
 9…試薬容器
 9a…第一試薬容器
 9b…第二試薬容器
 10a…第一試薬撹拌機構
 10b…第二試薬撹拌機構
 11…恒温槽循環液体
 12…吸光光度計
 13…洗浄機構
 14a…第一試薬庫
 14b…第二試薬庫
 15a…第一読み取り部
 15b…第二読み取り部
 16…個別識別子
 17…試薬プローブ
 18…(試薬容器9の)断面積
 19…試薬容器内底から液面までの高さ
 21…制御回路
 22…透過光測定回路
 23…PC(パーソナルコンピュータ)
 24…出力部
 25…入力部
 26…液面検知回路
DESCRIPTION OF SYMBOLS 1... Sample container 2... Sample 3... Sample disk 4... Sample dispensing mechanism 5... Reaction container 6... Reaction disk 7... Reagent dispensing mechanism 7a... First reagent dispensing mechanism 7b... Second reagent dispensing mechanism 8a... 1 reagent 8b... 2nd reagent 9... reagent container 9a... 1st reagent container 9b... 2nd reagent container 10a... 1st reagent stirring mechanism 10b... 2nd reagent stirring mechanism 11... Constant temperature tank circulation liquid 12... Absorptiometer 13... Cleaning mechanism 14a... 1st reagent storage 14b... 2nd reagent storage 15a... 1st reading part 15b... 2nd reading part 16... Individual identifier 17... Reagent probe 18... Cross-sectional area (of reagent container 9) 19... Reagent container inner bottom To liquid level 21... Control circuit 22... Transmitted light measurement circuit 23... PC (personal computer)
24 ... Output unit 25 ... Input unit 26 ... Liquid level detection circuit

Claims (12)

  1.  複数の試薬を分注する分注機構を備えた自動分析装置であって、
     試薬容器に充填された試薬を分注する試薬プローブと、
     前記試薬プローブを介して試薬の液面を検知する液面検知手段と、
     前記液面検知手段により検知した試薬の液面高さから前記試薬容器内の試薬残量を算出する演算部と、
     前記演算部で算出したデータを記憶する記憶部と、を有し、
     前記演算部は、算出した前記複数の試薬の各々の試薬残量に基づいて、前記試薬容器毎の有効テスト数を算出し、
     前記算出した有効テスト数に基づいて、前記複数の試薬の組み合わせからなる試薬ペアを前記記憶部に登録し、
     分析開始後、前記複数の試薬の使用状況に応じて前記試薬容器毎の有効テスト数を補正し、試薬ペアを再登録することを特徴とする自動分析装置。
    An automatic analyzer equipped with a dispensing mechanism that dispenses multiple reagents.
    A reagent probe that dispenses the reagent filled in the reagent container, and
    A liquid level detecting means for detecting the liquid level of a reagent via the reagent probe, and
    An operation unit for calculating the reagent remaining amount in the reagent container from the liquid level height of the reagent detected by the liquid level detection means,
    It has a storage unit for storing data calculated by the calculation unit, and has a storage unit.
    The calculation unit calculates the number of effective tests for each reagent container based on the remaining reagent amount of each of the calculated reagents,
    Based on the calculated number of valid tests, a reagent pair consisting of a combination of the plurality of reagents is registered in the storage unit,
    After the analysis is started, the number of effective tests for each reagent container is corrected according to the usage status of the plurality of reagents, and the reagent pair is re-registered.
  2.  請求項1に記載の自動分析装置であって、
     前記複数の試薬の使用状況に基づいて、前記試薬容器毎の断面積を算出し、
     前記算出した断面積に基づいて、前記試薬容器毎の有効テスト数を補正し、試薬ペアを再登録することを特徴とする自動分析装置。
    The automatic analyzer according to claim 1.
    Based on the usage status of the plurality of reagents, the cross-sectional area of each reagent container is calculated.
    An automatic analyzer characterized by correcting the number of effective tests for each reagent container based on the calculated cross-sectional area and re-registering a reagent pair.
  3.  請求項1に記載の自動分析装置であって、
     試薬ペア登録時の有効テスト数と実試薬消費量の乖離率を誤差率として算出し、
     前記誤差率に基づいて、有効テスト数を補正することを特徴とする自動分析装置。
    The automatic analyzer according to claim 1.
    Calculate the deviation rate between the number of effective tests and the actual reagent consumption when registering a reagent pair as an error rate.
    An automatic analyzer characterized in that the number of valid tests is corrected based on the error rate.
  4.  請求項1に記載の自動分析装置であって、
     分析開始後、ソフトウェアカウントにより減少させた分析回数に応じて前記試薬容器毎の有効テスト数を補正し、試薬ペアを再登録することを特徴とする自動分析装置。
    The automatic analyzer according to claim 1, wherein
    An automatic analyzer characterized in that after the start of analysis, the number of effective tests for each reagent container is corrected according to the number of analyzes reduced by software counting, and the reagent pair is re-registered.
  5.  請求項1に記載の自動分析装置であって、
     有効テスト数を補正するまでの分析回数を入力可能な入力部を有することを特徴とする自動分析装置。
    The automatic analyzer according to claim 1, wherein
    An automatic analyzer characterized by having an input unit capable of inputting the number of analyzes until the number of valid tests is corrected.
  6.  請求項1に記載の自動分析装置であって、
     試薬ペアの再登録により試薬ペアの構成が変更になった場合、変更になったことを報知することを特徴とする自動分析装置。
    The automatic analyzer according to claim 1.
    An automatic analyzer characterized in that when the composition of a reagent pair is changed due to re-registration of a reagent pair, the change is notified.
  7.  試料容器に複数の試薬を分注する自動分析方法であって、
     前記複数の試薬の各々が収容された試薬容器毎の有効テスト数を算出し、
     前記算出した有効テスト数に基づいて、前記複数の試薬の組み合わせからなる試薬ペアを決定し、
     分析開始後、前記複数の試薬の使用状況に応じて前記試薬容器毎の有効テスト数を補正し、試薬ペアを再登録することを特徴とする自動分析方法。
    An automatic analysis method that dispenses multiple reagents into a sample container.
    The number of effective tests for each reagent container containing each of the plurality of reagents was calculated.
    Based on the calculated number of effective tests, a reagent pair consisting of a combination of the plurality of reagents is determined.
    After the analysis is started, the number of effective tests for each reagent container is corrected according to the usage status of the plurality of reagents, and the reagent pair is re-registered.
  8.  請求項7に記載の自動分析方法であって、
     前記複数の試薬の使用状況に基づいて、前記試薬容器毎の断面積を算出し、
     前記算出した断面積に基づいて、前記試薬容器毎の有効テスト数を補正し、
     試薬ペアを再登録することを特徴とする自動分析方法。
    The automatic analysis method according to claim 7.
    Based on the usage status of the plurality of reagents, the cross-sectional area of each reagent container is calculated.
    Based on the calculated cross-sectional area, the number of effective tests for each reagent container is corrected.
    An automated analysis method characterized by re-registering reagent pairs.
  9.  請求項7に記載の自動分析方法であって、
     試薬ペア登録時の有効テスト数と実試薬消費量の乖離率を誤差率として算出し、
     前記誤差率に基づいて、有効テスト数を補正することを特徴とする自動分析方法。
    The automatic analysis method according to claim 7.
    Calculate the difference rate between the number of effective tests and the actual reagent consumption when registering the reagent pair as an error rate,
    An automatic analysis method, characterized in that the number of valid tests is corrected based on the error rate.
  10.  請求項7に記載の自動分析方法であって、
     分析開始後、ソフトウェアカウントにより減少させた分析回数に応じて前記試薬容器毎の有効テスト数を補正し、試薬ペアを再登録することを特徴とする自動分析方法。
    The automatic analysis method according to claim 7, wherein
    An automatic analysis method characterized in that after the start of analysis, the number of effective tests for each reagent container is corrected according to the number of analyzes reduced by software counting, and the reagent pair is re-registered.
  11.  請求項7に記載の自動分析方法であって、
     有効テスト数を補正するまでの分析回数を予め設定することを特徴とする自動分析方法。
    The automatic analysis method according to claim 7, wherein
    An automatic analysis method characterized in that the number of analyzes until the number of valid tests is corrected is set in advance.
  12.  請求項7に記載の自動分析方法であって、
     試薬ペアの再登録により試薬ペアの構成が変更になった場合、変更になったことを報知することを特徴とする自動分析方法。
    The automatic analysis method according to claim 7, wherein
    An automatic analysis method characterized in that when the configuration of a reagent pair is changed due to re-registration of the reagent pair, the change is notified.
PCT/JP2020/004086 2019-03-05 2020-02-04 Automatic analysis device and automatic analysis method WO2020179317A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080009339.1A CN113795757B (en) 2019-03-05 2020-02-04 Automatic analysis device and automatic analysis method
JP2021503471A JP7204878B2 (en) 2019-03-05 2020-02-04 Automatic analyzer and automatic analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019039248 2019-03-05
JP2019-039248 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020179317A1 true WO2020179317A1 (en) 2020-09-10

Family

ID=72337557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004086 WO2020179317A1 (en) 2019-03-05 2020-02-04 Automatic analysis device and automatic analysis method

Country Status (3)

Country Link
JP (1) JP7204878B2 (en)
CN (1) CN113795757B (en)
WO (1) WO2020179317A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090017A1 (en) * 2021-11-22 2023-05-25 株式会社島津製作所 Analysis device and method
WO2024033534A1 (en) 2022-08-11 2024-02-15 Preomics Gmbh Fractionation of proteins for proteomics

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017362A (en) * 1983-07-11 1985-01-29 Nippon Tectron Co Ltd Automatic analyzing device
JP2003294774A (en) * 2002-04-01 2003-10-15 Olympus Optical Co Ltd Automatic analyzer
JP2008309777A (en) * 2007-05-15 2008-12-25 Hitachi High-Technologies Corp Liquid dispensing apparatus
JP2010107478A (en) * 2008-10-31 2010-05-13 Sysmex Corp Sample analyzer, reagent information displaying method in the sample analyzer and computer program
JP2011102705A (en) * 2009-11-10 2011-05-26 Hitachi High-Technologies Corp Automatic analysis apparatus
WO2013150978A1 (en) * 2012-04-06 2013-10-10 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2015049094A (en) * 2013-08-30 2015-03-16 シスメックス株式会社 Specimen analysis device and specimen analysis method
WO2018051672A1 (en) * 2016-09-16 2018-03-22 株式会社 日立ハイテクノロジーズ Automated analyzer, automated analysis system, and method for displaying reagent list
WO2018056064A1 (en) * 2016-09-26 2018-03-29 株式会社日立ハイテクノロジーズ Automated analyzing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156550B2 (en) * 1995-07-11 2001-04-16 株式会社日立製作所 Reagent management method and apparatus
JP4851267B2 (en) * 2006-08-18 2012-01-11 シスメックス株式会社 Sample analyzer
JP5280797B2 (en) * 2008-10-27 2013-09-04 シスメックス株式会社 Sample analyzer
JP6017362B2 (en) * 2013-03-29 2016-10-26 株式会社クボタ Working machine hose guide structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017362A (en) * 1983-07-11 1985-01-29 Nippon Tectron Co Ltd Automatic analyzing device
JP2003294774A (en) * 2002-04-01 2003-10-15 Olympus Optical Co Ltd Automatic analyzer
JP2008309777A (en) * 2007-05-15 2008-12-25 Hitachi High-Technologies Corp Liquid dispensing apparatus
JP2010107478A (en) * 2008-10-31 2010-05-13 Sysmex Corp Sample analyzer, reagent information displaying method in the sample analyzer and computer program
JP2011102705A (en) * 2009-11-10 2011-05-26 Hitachi High-Technologies Corp Automatic analysis apparatus
WO2013150978A1 (en) * 2012-04-06 2013-10-10 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2015049094A (en) * 2013-08-30 2015-03-16 シスメックス株式会社 Specimen analysis device and specimen analysis method
WO2018051672A1 (en) * 2016-09-16 2018-03-22 株式会社 日立ハイテクノロジーズ Automated analyzer, automated analysis system, and method for displaying reagent list
WO2018056064A1 (en) * 2016-09-26 2018-03-29 株式会社日立ハイテクノロジーズ Automated analyzing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090017A1 (en) * 2021-11-22 2023-05-25 株式会社島津製作所 Analysis device and method
WO2024033534A1 (en) 2022-08-11 2024-02-15 Preomics Gmbh Fractionation of proteins for proteomics

Also Published As

Publication number Publication date
JP7204878B2 (en) 2023-01-16
CN113795757B (en) 2024-07-16
CN113795757A (en) 2021-12-14
JPWO2020179317A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP7193564B2 (en) Automatic analysis device and automatic analysis method
JP7450656B2 (en) automatic analyzer
JP6653375B2 (en) Automatic analyzer
JP7216815B2 (en) Automatic analyzer and its cleaning method
US8894948B2 (en) Cleaning device, method for detecting suction nozzle clogging, and automatic analyzer
JP2008002897A (en) Distributor and autoanalyzer
EP3081943B1 (en) Biological sample measurement device, biological sample measurement system, and biological sample measurement method
JP6700645B2 (en) Automatic analyzer
US8894949B2 (en) Cleaning device, method for cleaning nozzle clogging, and automatic analyzer
WO2020179317A1 (en) Automatic analysis device and automatic analysis method
US20090292494A1 (en) Analyzer
JP4948020B2 (en) Liquid quality control method and automatic analyzer for analysis support of automatic analyzer
JP7200357B2 (en) How labware works
JP4676689B2 (en) Improved fluid measurement in reaction vessels used with clinical analyzers.
JP5231186B2 (en) Sample dispensing method and analyzer
JP2007322394A (en) Dispensing device and automated analyzer
WO2022176295A1 (en) Automatic analysis device and method for controlling automatic analysis device
JP6479411B2 (en) Dispensing device and clinical examination device
JP4083339B2 (en) Analysis equipment
JP4871761B2 (en) Biological sample analysis method and automatic analyzer
JP7472360B2 (en) Automated Analysis Method
WO2023167078A1 (en) Sample analysis device and sample analysis method
CN114144807A (en) Departure time visualization method and system
US20220236213A1 (en) Automatic analysis device and automatic analysis method of specimen
US20230152343A1 (en) Laboratory instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503471

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766898

Country of ref document: EP

Kind code of ref document: A1