WO2020178966A1 - ガスヘッダ、熱交換器及び冷凍サイクル装置 - Google Patents

ガスヘッダ、熱交換器及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2020178966A1
WO2020178966A1 PCT/JP2019/008507 JP2019008507W WO2020178966A1 WO 2020178966 A1 WO2020178966 A1 WO 2020178966A1 JP 2019008507 W JP2019008507 W JP 2019008507W WO 2020178966 A1 WO2020178966 A1 WO 2020178966A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular portion
hole
gas header
refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2019/008507
Other languages
English (en)
French (fr)
Inventor
教将 上村
発明 孫
洋次 尾中
加藤 央平
典宏 米田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019527574A priority Critical patent/JP6599056B1/ja
Priority to PCT/JP2019/008507 priority patent/WO2020178966A1/ja
Priority to US17/426,635 priority patent/US11898781B2/en
Priority to EP19918290.8A priority patent/EP3936810B1/en
Priority to CN201980093167.8A priority patent/CN113544458B/zh
Publication of WO2020178966A1 publication Critical patent/WO2020178966A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/224Longitudinal partitions

Definitions

  • the present invention relates to a gas header, a heat exchanger, and a refrigeration cycle device that are connected to one end of a plurality of flat tubes and are connected to a refrigerant pipe.
  • a gas-liquid two-phase state refrigerant in which a gas refrigerant and a liquid refrigerant are mixed flows in by a refrigerant distributor and is distributed to a plurality of heat transfer tubes.
  • the refrigerant distributed to the plurality of heat transfer tubes absorbs heat from the air and is in a gas-rich or gas single-phase state. After that, the refrigerant flows into the gas header, is merged, and flows out of the evaporator through the refrigerant pipe.
  • the bypass passage is provided in the gas header to prevent the compressor oil from staying.
  • the pressure loss of the refrigerant in the gas header is increased by providing the bypass flow path in the header pipe.
  • the manufacturing cost increases due to the provision of the bypass flow path.
  • the tip of the flat tube is inserted into the gas header as in the technique of Patent Document 2
  • the pressure loss of the refrigerant in the gas header increases.
  • the present invention is for solving the above problems, and an object of the present invention is to provide a gas header, a heat exchanger, and a refrigeration cycle device capable of reducing the pressure loss of the refrigerant while maintaining a simple structure.
  • the gas header according to the present invention is connected to one end of a plurality of flat pipes arranged at intervals in the vertical direction, and is connected to a refrigerant pipe in which the inflow and outflow of the refrigerant are reversed with respect to the plurality of flat pipes.
  • a gas header having a first tubular portion in which a flow path of a refrigerant is formed in the vertical direction and a second tubular portion having a flow path cross-sectional area smaller than that of the first tubular portion are integrally provided.
  • Each end of the plurality of flat tubes is inserted halfway into the inside of the 1 tubular portion from one of the horizontal directions, and the second tubular portion has a plurality of flat portions in the horizontal direction with respect to the first tubular portion.
  • the second tubular portion is provided on the side opposite to the pipe, and is connected to the refrigerant pipe at a position in the middle of the vertical direction and above the center in the vertical direction, and the first tubular portion and the first tubular portion.
  • the wall sandwiched between the two tubular portions has a first hole formed on an extension in the horizontal direction with respect to the connection point with the refrigerant pipe, and the first tubular portion below the first hole. And a second hole having a smaller diameter than the first hole, which communicates the portion with the second tubular portion.
  • the heat exchanger according to the present invention includes the above gas header.
  • the refrigeration cycle device includes the above heat exchanger.
  • the first tubular portion and the second tubular portion communicate with each other through the first hole and the second hole provided on the wall surface. Therefore, the pressure loss of the refrigerant can be reduced while achieving a simple structure.
  • FIG. 3 is an exploded perspective view showing the gas header according to the first embodiment of the present invention. It is explanatory drawing which shows a gas header in a longitudinal cross section when the heat exchanger which concerns on Embodiment 1 of this invention functions as an evaporator. It is explanatory drawing which shows the gas header in a longitudinal cross section when the heat exchanger which concerns on Embodiment 1 of this invention functions as a condenser.
  • FIG. 1 is a schematic view showing a heat exchanger 100 according to the first embodiment of the present invention.
  • the X direction in the drawing represents the horizontal direction.
  • the Y direction represents the vertical direction or the vertical direction orthogonal to the X direction.
  • the heat exchanger 100 includes a gas header 4, a plurality of flat pipes 3, fins 6, a refrigerant distributor 2, an inflow pipe 1, and an outflow pipe 5.
  • the plurality of flat pipes 3 are arranged by extending the pipes in the X direction and at intervals in the Y direction.
  • the heat exchanger 100 is also called a flat tube heat exchanger.
  • the gas header 4 extends longitudinally in the Y direction and allows the refrigerant to flow in the Y direction.
  • the gas header 4 is connected to one end of a plurality of flat tubes 3 arranged in the Y direction at intervals.
  • the gas header 4 is connected to an outflow pipe 5 which is a refrigerant pipe in which refrigerant flows in and out of the plurality of flat tubes 3.
  • the refrigerant distributor 2 is connected to the other end of the plurality of flat tubes 3 that is not connected to the gas header 4, and the refrigerant distributor 2 is also called a liquid header.
  • the type of the refrigerant distributor 2 is not particularly limited.
  • a plurality of fins 6 are arranged at intervals in the X direction with respect to the plurality of flat tubes 3.
  • the fins 6 extend in the Y direction in the same manner as the gas header 4 or the refrigerant distributor 2.
  • the fins 6 are joined to the outer tube surface of each of the plurality of flat tubes 3.
  • the fins 6 are plate fins or corrugated fins, and the kind thereof is not limited.
  • At least one outflow pipe 5 is connected to the end of the gas header 4.
  • the outflow pipe 5 connects the heat exchanger 100 and other components in the refrigeration cycle device described later, and makes the refrigerant communicate with each other.
  • the cross-sectional shape of the flow path of the outflow pipe 5 is not limited to the circular shape.
  • At least one inflow pipe 1 is connected to the end of the refrigerant distributor 2.
  • the liquid-phase or gas-liquid two-phase state refrigerant flows into the refrigerant distributor 2 via the inflow pipe 1.
  • the refrigerant that has flowed into the refrigerant distributor 2 is sequentially distributed from the flat pipe 3 that is close to the inflow pipe 1.
  • the refrigerant is distributed from the refrigerant distributor 2 to the plurality of flat pipes 3.
  • the gas-liquid two-phase state refrigerant distributed to each flat tube 3 exchanges heat with the surrounding air via the fins 6, becomes a gas-rich or gas-state refrigerant, and flows into the gas header 4.
  • the refrigerant flows into the gas header 4 from the plurality of flat tubes 3 and joins them.
  • the combined refrigerant flows out of the heat exchanger 100 through the outflow pipe 5.
  • FIG. 2 is a perspective view showing the gas header 4 according to the first embodiment of the present invention.
  • FIG. 3 is a front view showing the gas header 4 according to the first embodiment of the present invention.
  • FIG. 4 is an exploded perspective view showing the gas header 4 according to the first embodiment of the present invention. In FIG. 4, the upper portion and the lower portion of the gas header 4 are shown, and the intermediate portion in the Y direction is omitted.
  • the gas header 4 is connected to one end of a plurality of flat pipes 3 arranged at intervals in the Y direction, and the refrigerant flows into the plurality of flat pipes 3. It is connected to the outflow pipe 5 whose output is reversed.
  • the gas header 4 integrally includes a first tubular portion 11 and a second tubular portion 12.
  • the first tubular portion 11 is formed long in the Y direction, and the refrigerant flows in the Y direction. Inside the first tubular portion 11, the respective end portions of the plurality of flat tubes 3 are inserted halfway from the horizontal direction.
  • the second tubular portion 12 is provided on the opposite side of the first tubular portion 11 from the plurality of flat tubes 3 in the X direction.
  • the second tubular portion 12 is formed longitudinally in the Y direction, and the refrigerant flows in the Y direction.
  • the second tubular portion 12 has a smaller flow passage cross-sectional area than the first tubular portion 11.
  • the second tubular portion 12 is connected to the outflow pipe 5 at a position midway in the Y direction and above the center in the Y direction.
  • the first tubular portion 11 and the second tubular portion 12 have the same length in the Y direction.
  • the X-direction heights of both ends of the first tubular portion 11 and the second tubular portion 12 in the Y direction are the same.
  • a first hole 31 and a second hole 32 are formed in the wall 14 sandwiched between the first tubular portion 11 and the second tubular portion 12.
  • the first hole 31 is opened in the wall 14 by extending in the X direction with respect to the connection portion of the second tubular portion 12 with the outflow pipe 5.
  • the second hole 32 connects the first tubular portion 11 and the second tubular portion 12 below the first hole 31 of the wall 14. That is, the second hole 32 provided in the wall 14 communicates the first tubular portion 11 and the second tubular portion 12 at a position below the first hole 31 communicating with the outflow pipe 5. ..
  • the shapes of the first hole 31 and the second hole 32 are not limited to circular shapes.
  • the hole diameter of the second hole 32 is smaller than that of the first hole 31. Thereby, the flow velocity of the refrigerant passing through the second hole 32 is increased. Therefore, the airflow of the gas refrigerant flowing into the first tubular portion 11 passes the oil accumulated at the bottom of the first tubular portion 11 through the second hole 32 and is guided into the second tubular portion 12, and passes through the outflow pipe 5. It can be easily returned to the compressor 51 described later.
  • the cross-sectional shape of the flow path as viewed from the cross section in the X direction inside both the first tubular portion 11 and the second tubular portion 12 is circular.
  • the cross-sectional shape of the flow path is not limited to a circle.
  • At least one of the plurality of flat tubes 3 inserted into the first tubular portion 11 is located below the second hole 32 in the gas header 4.
  • the end of the flat tube 3 is located.
  • the gas header 4 has a first tubular portion 11 and a second tubular portion 12 at both ends in the longitudinal direction of the first tubular portion 11 and the second tubular portion 12, respectively. It is provided with a pair of header lids 13 that cover the insides of both.
  • the pair of header lids 13 have a large diameter portion 13a that abuts on both end faces of the first tubular portion 11 and the second tubular portion 12.
  • the pair of header lids 13 has a first plug portion 13b which projects from the large diameter portion 13a into the inside of the first tubular portion 11 and closes the inside.
  • the pair of header lids 13 has a second plug portion 13c that projects from the large diameter portion 13a into the inside of the second tubular portion 12 and closes the inside.
  • the gas header 4 has a first member 21 forming a part of the first tubular portion 11 and having a plurality of holes 21a into which the plurality of flat tubes 3 are inserted and fixed.
  • the first member 21 is formed in a semicircular gland shape or the like with a part of the circular gland shape removed.
  • the plurality of holes 21a are arranged in the X direction at regular intervals.
  • each flat tube 3 is inserted into the hole 21a from the X direction so as to be substantially perpendicular to the side surface portion of the first member 21.
  • the edge of the hole 21a and the outer peripheral surface of the flat tube 3 are joined by brazing.
  • the brazing method for joining the edge of the hole 21a and the outer peripheral surface of the flat tube 3 is not particularly limited. Further, burring may be applied to the edge of the hole 21a so that the edge of the hole 21a and the outer peripheral surface of the flat tube 3 can be easily brazed.
  • the gas header 4 has a second member 22 having a second tubular portion 12 and a portion other than the first member 21 of the first tubular portion 11.
  • the first member 21 and the second member 22 form a first tubular portion 11 by fitting.
  • the outflow pipe 5 is inserted into the outer wall of the second tubular portion and joined to the first hole 31 formed in the wall 14.
  • the joint end of the outflow pipe 5 to the wall 14 is open. That is, the outflow pipe 5 is joined to the first hole 31 provided in the wall 14 at a position higher than the central position in the Y direction of the gas header 4 and communicates with the first tubular portion 11.
  • the first hole 31 is a hole formed on the extension of the central axis of the joint end portion of the outflow pipe 5.
  • the outflow pipe 5 has a pair of holes 33 formed in the upper and lower portions in the Y direction near the joint end.
  • the pair of holes 33 are connected to the flow path of the second tubular portion 12.
  • the apparent flow passage cross-sectional area is reduced due to the insertion of the flat tube 3.
  • the gas-like refrigerant flowing out of the flat pipe 3 near the lower part of the first tubular portion 11 passes through the second hole 32 and the hole 33 via the second tubular portion 12 rather than the first tubular portion 11.
  • the first member 21, the second member 22, and the pair of header lids 13 are all made of aluminum, for example, and are joined by brazing.
  • the outflow pipe 5 is joined to the second member 22 by brazing.
  • FIG. 5 is explanatory drawing which shows the gas header 4 in a longitudinal cross section when the heat exchanger 100 which concerns on Embodiment 1 of this invention functions as an evaporator.
  • FIG. 6 is an explanatory diagram showing a vertical cross section of the gas header 4 when the heat exchanger 100 according to Embodiment 1 of the present invention functions as a condenser.
  • FIG. 6 shows the operation of the gas header 4 when the heat exchanger 100 functions as a condenser in comparison with the operation of the gas header 4 when the heat exchanger 100 shown in FIG. 5 functions as an evaporator.
  • the solid arrows shown in FIG. 5 indicate the flow direction of the refrigerant when the heat exchanger 100 functions as an evaporator.
  • a part of the gaseous refrigerant that has flowed into the first tubular portion 11 directly flows into the outflow pipe 5.
  • the other part of the gaseous refrigerant flowing into the first tubular portion 11 passes through the second tubular portion 12 and then flows into the outflow pipe 5.
  • the tip of the flat tube 3 is inserted into the inside of the first tubular portion 11 by the middle of the X direction. Therefore, the gaseous refrigerant flowing in the Y direction of the first tubular portion 11 includes a flow path expanding portion which is a space in which the flat pipe 3 is not inserted and a flow path reducing portion which is a gap narrowed by the insertion of the flat pipe 3. , Alternately.
  • the flow of the gaseous refrigerant flowing through the first tubular portion 11 is gradually expanded and contracted. Therefore, a pressure loss in the pipe of the gas header 4 occurs. Further, the refrigerating machine oil mixed in the gaseous refrigerant is separated and falls to the lower part of the first tubular portion 11.
  • the refrigerating machine oil easily accumulates in the lower portion of the first tubular portion 11.
  • the performance and reliability of the compressor 51 decrease due to sliding failure of the compression mechanism portion of the compressor 51 and the like.
  • the gas header 4 of the heat exchanger 100 the first tubular portion 11 and the second tubular portion 12 are communicated with each other by the second hole 32 provided in the wall 14. Due to this configuration, the gas header 4 can be miniaturized while suppressing the pressure loss of the refrigerant and improving the return of the refrigerating machine oil.
  • the end of the wall 14 and the header lid 13 can be joined and brazed, and the strength and airtightness of the gas header 4 can be improved.
  • FIG. 7 is an explanatory view showing an enlarged vertical cross section of the lower portion of the gas header 4 according to the first embodiment of the present invention.
  • the opening cross-sectional area S 1 of the second hole 32 is equal to or larger than the flow path cross-sectional area S 2 of the second tubular portion 12. That is, the relationship of S 1 ⁇ S 2 is satisfied.
  • the flow rate of the gaseous refrigerant flowing into the second tubular portion 12 is increased, and the compressor oil can be further returned to the compressor 51.
  • the flow path cross-sectional area S 2 of the second tubular portion 12 is smaller than the flow passage cross-sectional area of the first tubular portion 11.
  • the flow passage cross-sectional area S 2 of the second tubular portion 12 has a size that allows the gas refrigerant to easily pass therethrough. For example, when the width in the X direction, which is the height between adjacent flat pipes 3, is set to 1, the height to which the outflow pipe 5 is connected is set to 3/5 to 9/10 from the lower end of the width of 1. To be done.
  • the flow path cross-sectional area S 2 of the second tubular portion 12 is set to 1/5 to 1/2 of the apparent flow path cross-sectional area of the first tubular portion 11 in a narrow range of adjacent flat pipes 3. It is good to be done.
  • the broken line arrow shown in FIG. 6 indicates the flow direction of the refrigerant when the heat exchanger 100 functions as a condenser.
  • the second hole 32 may be formed slightly above the lower end of the wall 14 that separates the first tubular portion 11 and the second tubular portion 12.
  • at least one of the plurality of flat tubes 3 may be inserted halfway inside the first tubular portion 11 below the second hole 32.
  • the first tubular portion 11 and the second tubular portion 12 are communicated with each other through the second hole 32 provided in the wall 14.
  • the pressure loss of the refrigerant in the gas header 4 can be suppressed, and the heat exchange performance can be improved.
  • the compressor oil retained in the gas header during the evaporation operation can be reduced.
  • the distribution performance of the refrigerant in the gas state in the gas header 4 during the condensation operation can be improved.
  • the gas header 4 can be downsized and its strength and airtightness can be improved.
  • the gas header 4 is connected to one end of a plurality of flat pipes 3 arranged at intervals in the Y direction, and the inflow and outflow of the refrigerant are reversed with respect to the plurality of flat pipes 3. It is connected to the outflow pipe 5, which is a refrigerant pipe.
  • the gas header 4 includes a first tubular portion 11 formed longitudinally in the Y direction and a flow path through which the refrigerant flows in the Y direction, and a second tubular portion 12 having a flow path cross-sectional area smaller than that of the first tubular portion 11. , Are integrated.
  • the second tubular portion 12 is provided on the opposite side of the first tubular portion 11 from the plurality of flat tubes 3 in the X direction.
  • the second tubular portion 12 is connected to the outflow pipe 5 at a position midway in the Y direction and above the center in the Y direction.
  • a first hole 31 opened on the extension in the X direction with respect to the connection point with the outflow pipe 5, and at the lower portion A second hole 32 having a smaller hole diameter than the first hole 31 that communicates the first tubular portion 11 and the second tubular portion 12 is formed.
  • the first tubular portion 11 and the second tubular portion 12 communicate with each other through the first hole 31 and the second hole 32 provided in the wall 14, so that a simple structure can be achieved and the gas header 4 can be used.
  • the pressure loss of the refrigerant can be reduced and the heat exchange performance can be improved.
  • the second hole 32 in the lower part of the gas header 4 the amount of compressor oil that stays in the gas header 4 when the heat exchanger 100 functions as an evaporator can be reduced.
  • the distribution performance of the gas refrigerant when the heat exchanger 100 functions as a condenser can be improved.
  • the gas header 4 can be downsized and its strength and airtightness can be improved.
  • the gas header 4 has a first member 21 which constitutes a part of the first tubular portion 11 and has holes 21a into which a plurality of flat tubes 3 are inserted and fixed.
  • the gas header 4 has a second member 22 having another portion of the first tubular portion 11 and the second tubular portion 12.
  • the first tubular portion 11 and the second tubular portion 12 have the same length in the Y direction.
  • the Y-direction heights of both ends of the first tubular portion 11 and the second tubular portion 12 in the longitudinal direction are the same.
  • the gas header 4 is inside both the first tubular portion 11 and the second tubular portion 12 at both ends in the longitudinal direction of the first tubular portion 11 and the second tubular portion 12, respectively.
  • a pair of header lids 13 for covering the above are provided.
  • the inside of both the first tubular portion 11 and the second tubular portion 12 is covered by the pair of header lids 13, and while a simple structure is achieved, the number of parts is small and the manufacturing cost can be reduced.
  • the pair of header lids 13 have a large diameter portion 13a abutting on both end faces of the first tubular portion 11 and the second tubular portion 12.
  • the pair of header lids 13 has a first plug portion 13b which projects from the large diameter portion 13a into the inside of the first tubular portion 11 and closes the inside.
  • the pair of header lids 13 has a second plug portion 13c that projects from the large diameter portion 13a into the inside of the second tubular portion 12 and closes the inside.
  • the pair of header lids 13 simultaneously close the inside of the first tubular portion 11 by the first plug portion 13b and the inside of the second tubular portion 12 by the second plug portion 13c. It can be carried out, the number of manufacturing steps can be reduced, and the manufacturing cost can be reduced.
  • the flow passage cross-sectional shapes inside both the first tubular portion 11 and the second tubular portion 12 are circular.
  • the opening cross-sectional area S 1 of the second hole 32 is equal to or larger than the flow path cross-sectional area S 2 of the second tubular portion 12.
  • the flow of the refrigerant in the second hole 32 becomes smooth, and the pressure loss of the refrigerant can be reduced.
  • the end of at least one of the plurality of flat tubes 3 inserted into the first tubular portion 11 is located at a position below the second hole 32.
  • the refrigerant from the flat pipe 3 located below the second hole 32 flows into the compressor oil that is about to accumulate at the bottom of the first tubular portion 11, and the oil return property can be improved.
  • the heat exchanger 100 includes the gas header 4.
  • the heat exchanger 100 includes a plurality of flat tubes 3 arranged at intervals in the Y direction.
  • the heat exchanger 100 includes a refrigerant distributor 2 that is a liquid header connected to the other ends of the plurality of flat tubes 3.
  • the pressure loss of the refrigerant in the gas header 4 can be reduced while achieving a simple structure.
  • FIG. 8 is an exploded perspective view showing the gas header 4 according to the second embodiment of the present invention.
  • FIG. 9 is explanatory drawing which shows the gas header 4 in a longitudinal cross section when the heat exchanger 100 which concerns on Embodiment 2 of this invention functions as an evaporator.
  • FIG. 10 is explanatory drawing which shows the gas header 4 in a longitudinal cross section when the heat exchanger 100 which concerns on Embodiment 2 of this invention functions as a condenser.
  • the same items as those in the first embodiment will be omitted, and the feature portions thereof will be described.
  • the intervals in the Y direction of the ends of the plurality of flat tubes 3 inserted halfway into the first tubular portion 11 are arranged by mixing narrow portions and wide portions. I am making it.
  • the position of the first hole 31 is the center position in the Y direction of the portion of the plurality of flat tubes 3 where the end portions of the adjacent flat tubes 3 have a large Y direction interval.
  • the flow path contraction portion of the first tubular portion 11 does not become excessively small, and the pressure loss of the refrigerant in the first tubular portion 11 can be reduced, which is even better.
  • the gas header 4 can suppress the inflow of the gas-state refrigerant unevenly to a specific flat tube 3, and can improve the distribution performance of the gas-state refrigerant, which is even better.
  • the position of the second hole 32 is preferably a position within the range of the Y direction of the portion of the plurality of flat pipes 3 in which the distance between the ends of the adjacent flat pipes 3 in the Y direction is narrow.
  • the position of the second hole 32 is set at a portion where the distance between the ends of the adjacent flat pipes 3 at the lowermost portion in the Y direction is narrow, the gaseous refrigerant strongly flows into the first hole 31 from the flat pipe 3. Therefore, the effect of returning the compressor oil collected in the lower portion of the first tubular portion 11 to the compressor 51 via the second tubular portion 12 via the second hole 32 is enhanced.
  • the intervals in the Y direction of the ends of the plurality of flat tubes 3 inserted into the first tubular portion 11 are arranged in a mixture of narrow portions and wide portions.
  • the expansion and contraction of the flow path cross-sectional area in the refrigerant flow direction becomes gentle at the portion where the distance between the ends of the plurality of flat pipes 3 in the Y direction is narrow, and the refrigerant in the first tubular portion 11
  • the pressure loss of can be reduced.
  • the position of the first hole 31 is the center position in the Y direction of the portion where the ends of the adjacent flat tubes 3 are widely spaced in the Y direction.
  • the inflow of the refrigerant in the gas state to a specific flat tube 3 can be suppressed, and the refrigerant in the gas state can be suppressed.
  • the distribution performance of can be improved.
  • the position of the second hole 32 is a position within the Y-direction range of a portion where the Y-direction interval between the ends of the adjacent flat tubes 3 is narrow.
  • the gas-state refrigerant easily flows strongly into the second hole 32 from the flat pipe 3 in the portion where the distance between the ends of the adjacent flat pipes 3 in the Y direction is narrow. Therefore, the compressor oil that is about to accumulate at the bottom of the first tubular portion 11 easily flows into the second tubular portion 12 together with the gas-state refrigerant, and the oil return property can be improved.
  • FIG. 11 is a refrigerant circuit diagram showing the air conditioner 50 during the cooling operation according to the third embodiment of the present invention.
  • FIG. 12 is a refrigerant circuit diagram showing the air conditioner 50 during the heating operation according to the third embodiment of the present invention.
  • the air conditioner 50 is an example of a refrigeration cycle device.
  • the air conditioner 50 includes a compressor 51, an indoor heat exchanger 52, an indoor fan 53, an expansion valve 54, an outdoor heat exchanger 55, an outdoor fan 56, and a flow path switching device 57.
  • the compressor 51 may be, for example, a rotary compressor, a scroll compressor, a screw compressor, a reciprocating compressor, or the like.
  • the indoor heat exchanger 52 is, for example, a fin-and-tube heat exchanger, a microchannel heat exchanger, a shell-and-tube heat exchanger, a heat pipe heat exchanger, a double-tube heat exchanger or a plate heat exchanger. Etc. may be used.
  • the expansion valve 54 may be, for example, an electric expansion valve capable of adjusting the flow rate of the refrigerant.
  • the expansion valve 54 is not limited to an electric expansion valve, and may be a mechanical expansion valve having a diaphragm as a pressure receiving portion.
  • the flow path switching device 57 is, for example, a four-way valve.
  • the flow path switching device 57 switches the destination of the refrigerant from the discharge port of the compressor 51 to the indoor heat exchanger 52 or the outdoor heat exchanger 55.
  • the air conditioner 50 uses the heat exchanger 100 described in the first and second embodiments as the outdoor heat exchanger 55. By using the heat exchanger 100, energy efficiency can be improved.
  • the refrigeration cycle device such as the air conditioner 50 may employ the heat exchanger 100 as one or both of the outdoor heat exchanger 55 and the indoor heat exchanger 52.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 51 flows into the outdoor heat exchanger 55 from the outflow pipe 5.
  • a part of the high-temperature high-pressure gas-state refrigerant flowing into the outflow pipe 5 directly flows into the first tubular portion 11.
  • the other part of the high-temperature and high-pressure gas-state refrigerant that has flowed into the outflow pipe 5 flows into the lower part of the first tubular portion 11 through the second tubular portion 12 and through the second hole 32.
  • the high-temperature, high-pressure gas-state refrigerant flowing into the first tubular portion 11 branches into each of the plurality of flat tubes 3 and flows.
  • the refrigerant in a high-temperature and high-pressure gas state flows through each of the plurality of flat pipes 3, it exchanges heat with the outdoor air supplied by the outdoor fan 56 through the surface of the flat pipes 3 and the surface of the fins 6.
  • the high-temperature and high-pressure gas-state refrigerant flowing through each of the flat tubes 3 condenses into a high-pressure liquid refrigerant, which flows out from the outdoor heat exchanger 55 via the refrigerant distributor 2.
  • the high-pressure liquid-state refrigerant flowing out from the outdoor heat exchanger 55 becomes a low-pressure gas-liquid two-phase refrigerant by the expansion valve 54.
  • the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 52 that functions as an evaporator.
  • the indoor heat exchanger 52 heat is exchanged between the flowing refrigerant in the gas-liquid two-phase state and the indoor air supplied by the indoor fan 53.
  • the liquid-state refrigerant among the gas-liquid two-phase state refrigerant evaporates to become a low-pressure gas-state refrigerant. Due to the effect of heat exchange, the heat-exchanged indoor air is cooled, and the room is cooled.
  • the low-pressure gaseous refrigerant sent from the indoor heat exchanger 52 flows into the compressor 51 via the flow path switching device 57.
  • the low-pressure gas refrigerant is compressed by the compressor 51 to become a high-temperature and high-pressure gaseous refrigerant, and is discharged from the compressor 51 again. Hereinafter, this cycle is repeated.
  • Solid arrows in FIG. 12 indicate the flow of the refrigerant during the heating operation.
  • the compressor 51 By operating the compressor 51, the refrigerant in a high-temperature and high-pressure gas state is discharged from the compressor 51.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 51 flows into the indoor heat exchanger 52 functioning as a condenser via the flow path switching device 57.
  • the indoor heat exchanger 52 heat is exchanged between the flowing-in high-temperature and high-pressure refrigerant in a gas state and the indoor air supplied by the indoor fan 53. Due to the heat exchange, the high-temperature and high-pressure gas-state refrigerant is condensed into a high-pressure liquid refrigerant. Due to the effect of heat exchange, the indoor air is warmed and the room is heated.
  • the high-pressure liquid-state refrigerant sent from the indoor heat exchanger 52 becomes a low-pressure gas-liquid two-phase refrigerant by the expansion valve 54.
  • the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 55 that functions as an evaporator.
  • the outdoor heat exchanger 55 heat is exchanged between the flowing refrigerant in the gas-liquid two-phase state and the outdoor air supplied by the outdoor fan 56.
  • the liquid-state refrigerant among the gas-liquid two-phase state refrigerant evaporates to become a low-pressure gas-state refrigerant.
  • the low-pressure gas-liquid two-phase state of the refrigerant by the expansion valve 54 flows into each of the plurality of flat pipes 3 in the outdoor heat exchanger 55.
  • the refrigerant in the gas-liquid two-phase state exchanges heat with the outdoor air supplied by the outdoor fan 56 via the surfaces of the flat tubes 3 and the fins 6.
  • the gas-liquid two-phase state refrigerant flowing through each of the plurality of flat tubes 3 becomes a low-pressure gas state refrigerant.
  • the low-pressure gaseous refrigerant flows out from the end of each flat pipe 3 to the gas header 4, and joins at the first tubular portion 11.
  • a part of the refrigerant in a gas state joined in the first tubular portion 11 of the gas header 4 directly flows into the outflow pipe 5. Further, another part of the refrigerant in the gas state, which merges in the first tubular portion 11, passes through the second tubular portion 12 through the second hole 32 and flows into the outflow pipe 5. The gaseous refrigerant that has flowed into the outflow pipe 5 flows out of the outdoor heat exchanger 55.
  • the low-pressure gaseous refrigerant flowing out of the outdoor heat exchanger 55 flows into the compressor 51 via the flow path switching device 57.
  • the low-pressure gaseous refrigerant that has flowed into the compressor 51 is compressed into a high-temperature and high-pressure gaseous refrigerant, which is discharged from the compressor 51 again.
  • this cycle is repeated.
  • the "defrosting operation” is to supply a high-temperature and high-pressure gas-like refrigerant from the compressor 51 to the outdoor heat exchanger 55 in order to melt and remove the frost adhering to the outdoor heat exchanger 55 that functions as an evaporator. It is driving to do.
  • the air conditioner 50 when the defrosting operation is started, the flow path of the flow path switching device 57 is switched to the flow path during the cooling operation. That is, during the defrosting operation, the outflow pipe 5 of the outdoor heat exchanger 55 communicates with the discharge port of the compressor 51.
  • the air conditioner 50 as a refrigeration cycle device includes a heat exchanger 100.
  • the pressure loss of the refrigerant in the gas header 4 can be reduced while achieving a simple structure.
  • the first to third embodiments of the present invention may be combined or applied to other parts.
  • 1 Inflow pipe 2 Refrigerant distributor, 3 Flat pipe, 4 Gas header, 5 Outflow pipe, 6 fins, 11 1st tubular part, 12 2nd tubular part, 13 Header lid, 13a Large diameter part, 13b 1st plug part, 13c 2nd plug, 14 wall, 21 1st member, 21a hole, 22 2nd member, 31 1st hole, 32 2nd hole, 33 hole, 50 air conditioner, 51 compressor, 52 indoor heat exchanger, 53 indoor fan, 54 expansion valve, 55 outdoor heat exchanger, 56 outdoor fan, 57 flow path switching device, 100 heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

ガスヘッダは、第1管状部と、第2管状部と、を一体化して有し、第1管状部の内部には、水平方向の一方から複数の扁平管のそれぞれの端部が途中まで挿入され、第2管状部は、第1管状部に対して水平方向において複数の扁平管とは反対側に設けられ、第2管状部は、上下方向の途中であって上下方向における中央よりも上の位置にて、冷媒配管に接続され、第1管状部と第2管状部とに挟まれた壁には、冷媒配管との接続箇所に対して水平方向の延長上にて開けられた第1孔と、第1孔よりも下部にて第1管状部と第2管状部とを連通させる第1孔よりも孔径の小さい第2孔と、が形成される。

Description

ガスヘッダ、熱交換器及び冷凍サイクル装置
 本発明は、複数の扁平管の一方の端部に接続されるとともに冷媒配管に接続されたガスヘッダ、熱交換器及び冷凍サイクル装置に関する。
 従来の空気調和装置の蒸発器では、ガス冷媒と液冷媒とが混在する気液二相状態の冷媒が冷媒分配器によって流入して複数の伝熱管に分配される。そして、複数の伝熱管に分配された冷媒は、空気から吸熱し、ガスリッチ又はガス単相の状態となる。その後、冷媒は、ガスヘッダに流入して合流され、冷媒配管から蒸発器の外に流出する。
 ここで、ガスヘッダには、冷媒が下から上に移動する。このため、ガスヘッダの底部には、圧縮機油が溜まり込む。ガスヘッダの底部に圧縮機油を溜め込んだ状態に維持すると、圧縮機内の油量が減少し、圧縮機の故障が発生するおそれがある。そのため、ガスヘッダの底部に溜まり込む圧縮機油の量を少なくする必要がある。そこで、ガスヘッダの内部の圧縮機油の返油性を向上させるために、ガスヘッダにバイパス流路を備える技術がある(たとえば、特許文献1参照)。
 一方、近年のエネルギー消費性能の向上と冷媒量の削減とに対応するため、熱交換器に用いられる伝熱管の細径化と多パス化とが進められている。それに伴い、伝熱管には、従来の円管から細径の流路に形成された扁平管を用いる場合が多い。そして、扁平管の端部をヘッダの内部に挿入した技術がある(たとえば、特許文献2参照)。
実開平03-067869号公報 特開2015-021664号公報
 特許文献1の技術では、ガスヘッダにバイパス流路を設けることにより、圧縮機油の滞留が防止されている。しかしながら、ヘッダパイプ内にバイパス流路を設けたことにより、ガスヘッダでの冷媒の圧力損失が増加する課題がある。また、バイパス流路を設けたことにより、製造コストが増加する課題がある。また、特許文献2の技術のようにガスヘッダ内に扁平管の先端を挿入した場合でも、ガスヘッダでの冷媒の圧力損失が増加する課題がある。
 本発明は、上記課題を解決するためのものであり、簡素な構造が図られつつ、冷媒の圧力損失が低減できるガスヘッダ、熱交換器及び冷凍サイクル装置を提供することを目的とする。
 本発明に係るガスヘッダは、上下方向に間隔をあけて並ぶ複数の扁平管の一方の端部に接続され、前記複数の扁平管に対して冷媒の流入出が逆になる冷媒配管に接続されたガスヘッダであって、上下方向に冷媒の流路が形成される第1管状部と、前記第1管状部よりも流路断面積が小さい第2管状部と、を一体化して有し、前記第1管状部の内部には、水平方向の一方から前記複数の扁平管のそれぞれの端部が途中まで挿入され、前記第2管状部は、前記第1管状部に対して水平方向において複数の扁平管とは反対側に設けられ、前記第2管状部は、上下方向の途中であって上下方向における中央よりも上の位置にて、前記冷媒配管に接続され、前記第1管状部と前記第2管状部とに挟まれた壁には、前記冷媒配管との接続箇所に対して水平方向の延長上にて開けられた第1孔と、前記第1孔よりも下部にて前記第1管状部と前記第2管状部とを連通させる前記第1孔よりも孔径の小さい第2孔と、が形成されるものである。
 本発明に係る熱交換器は、上記のガスヘッダを備えるものである。
 本発明に係る冷凍サイクル装置は、上記の熱交換器を備えるものである。
 本発明に係るガスヘッダ、熱交換器及び冷凍サイクル装置によれば、第1管状部と第2管状部とが壁面に設けた第1孔及び第2孔によって連通する。したがって、簡素な構造が図られつつ、冷媒の圧力損失が低減できる。
本発明の実施の形態1に係る熱交換器を示す概略図である。 本発明の実施の形態1に係るガスヘッダを示す斜視図である。 本発明の実施の形態1に係るガスヘッダを示す正面図である。 本発明の実施の形態1に係るガスヘッダを示す分解斜視図である。 本発明の実施の形態1に係る熱交換器が蒸発器として機能するときのガスヘッダを縦断面にて示す説明図である。 本発明の実施の形態1に係る熱交換器が凝縮器として機能するときのガスヘッダを縦断面にて示す説明図である。 本発明の実施の形態1に係るガスヘッダの下部を拡大した縦断面にて示す説明図である。 本発明の実施の形態2に係るガスヘッダを示す分解斜視図である。 本発明の実施の形態2に係る熱交換器が蒸発器として機能するときのガスヘッダを縦断面にて示す説明図である。 本発明の実施の形態2に係る熱交換器が凝縮器として機能するときのガスヘッダを縦断面にて示す説明図である。 本発明の実施の形態3に係る冷房運転時の空気調和装置を示す冷媒回路図である。 本発明の実施の形態3に係る暖房運転時の空気調和装置を示す冷媒回路図である。
 以下では、図面に基づいて本発明の実施の形態を説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面では、視認性に鑑みて適宜ハッチングが省略されている。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
<熱交換器の構成>
 図1は、本発明の実施の形態1に係る熱交換器100を示す概略図である。以下、図中のX方向は、水平方向を表す。Y方向は、X方向に直交した上下方向あるいは鉛直方向を表す。
 図1に示すように、熱交換器100は、ガスヘッダ4と、複数の扁平管3と、フィン6と、冷媒分配器2と、流入管1と、流出管5と、を備える。
 複数の扁平管3は、X方向に配管を延伸させ、Y方向に間隔をあけて並ぶ。このように、伝熱管に扁平管3を用いているので、熱交換器100が扁平管熱交換器とも呼ばれる。
 ガスヘッダ4は、Y方向に長手に延び、Y方向に冷媒を流通させる。ガスヘッダ4は、Y方向に間隔をあけて並ぶ複数の扁平管3の一方の端部に接続されている。ガスヘッダ4は、複数の扁平管3に対して冷媒の流入出が逆になる冷媒配管である流出管5に接続されている。
 冷媒分配器2は、複数の扁平管3におけるガスヘッダ4と接続されてない他方の端部に接続されている冷媒分配器2は、液ヘッダともいう。冷媒分配器2の種類は、特に限定されるものではない。
 フィン6は、複数の扁平管3に対してX方向に間隔をあけて複数配置されている。フィン6は、Y方向にガスヘッダ4又は冷媒分配器2と同等に延伸されている。フィン6は、複数の扁平管3のそれぞれの外管表面と接合されている。フィン6は、プレートフィン又はコルゲートフィンなどであり、種類を限定されるものではない。
 ガスヘッダ4の端部には、流出管5が少なくとも1つ接続されている。流出管5は、後述する冷凍サイクル装置において、熱交換器100と他の構成要素とを接続し、冷媒を連通させる。なお、流出管5の流路断面形状は、円形状に限定されない。
 冷媒分配器2の端部には、流入管1が少なくとも1つ接続されている。
<蒸発器である熱交換器100の動作>
 液相又は気液二相状態の冷媒は、流入管1を介し、冷媒分配器2に流入する。冷媒分配器2に流入した冷媒は、流入管1から近い扁平管3から順次、分配されて行く。これにより、冷媒は、冷媒分配器2から複数の扁平管3に分配される。各扁平管3に分配された気液二相状態の冷媒は、フィン6を介し、周囲の空気と熱交換し、ガスリッチ又はガス状態の冷媒になり、ガスヘッダ4に流入する。ガスヘッダ4には、複数の扁平管3から冷媒が流入して合流する。合流した冷媒は、流出管5を通り、熱交換器100から流出する。
<ガスヘッダの構成>
 図2は、本発明の実施の形態1に係るガスヘッダ4を示す斜視図である。図3は、本発明の実施の形態1に係るガスヘッダ4を示す正面図である。図4は、本発明の実施の形態1に係るガスヘッダ4を示す分解斜視図である。図4では、ガスヘッダ4の上部及び下部が示され、Y方向の中間部が省略されている。
 図2、図3及び図4に示すように、ガスヘッダ4は、Y方向に間隔をあけて並ぶ複数の扁平管3の一方の端部に接続され、複数の扁平管3に対して冷媒の流入出が逆になる流出管5に接続されている。
 ガスヘッダ4は、第1管状部11と第2管状部12とを一体化して有する。
 第1管状部11は、Y方向に長手に形成されてY方向に冷媒が流れる。第1管状部11の内部には、水平方向の一方から複数の扁平管3のそれぞれの端部が途中まで挿入されている。
 第2管状部12は、第1管状部11に対してX方向において複数の扁平管3とは反対側に設けられている。第2管状部12は、Y方向に長手に形成されてY方向に冷媒が流れる。第2管状部12は、第1管状部11よりも流路断面積が小さい。第2管状部12は、Y方向の途中であってY方向における中央よりも上の位置にて、流出管5に接続されている。
 第1管状部11と第2管状部12とは、Y方向に同じ長さである。第1管状部11と第2管状部12とのY方向の両端部のX方向高さは、一致している。
 図4に示すように、第1管状部11と第2管状部12とに挟まれた壁14には、第1孔31と第2孔32とが形成されている。
 第1孔31は、流出管5との第2管状部12の接続箇所に対してX方向の延長上にて壁14に開けられている。
 第2孔32は、壁14の第1孔31よりも下部にて、第1管状部11と第2管状部12とを連通させる。つまり、壁14に設けられた第2孔32は、流出管5と連通した第1孔31よりも下方となる位置にて、第1管状部11と第2管状部12とを連通している。なお、第1孔31及び第2孔32の形状は、円形状に限定されるものではない。
 第2孔32の孔径は、第1孔31の孔径よりも小さい。これにより、第2孔32を通過する冷媒の流速が高められる。このため、第1管状部11に流入したガス冷媒の気流は、第1管状部11の底部に溜まる油を第2孔32に通過させて第2管状部12内に導き、流出管5を経て後述する圧縮機51に容易に戻せる。
 第1管状部11と第2管状部12との双方の内部のX方向の横断面から見た流路断面形状は、円形である。なお、流路断面形状は、円形に限定されない。
 図1、図2、図3及び図4に示すように、ガスヘッダ4における第2孔32よりも下の位置には、第1管状部11に挿入された複数の扁平管3のうち少なくとも1つの扁平管3の端部が位置している。
 図2、図3及び図4に示すように、ガスヘッダ4は、第1管状部11と第2管状部12との長手方向の両端のそれぞれにて、第1管状部11と第2管状部12との双方の内部を覆う一対のヘッダ蓋13を備える。
 図4に示すように、一対のヘッダ蓋13は、第1管状部11及び第2管状部12の双方の端面に突き当たった大径部13aを有する。一対のヘッダ蓋13は、大径部13aから第1管状部11の内部に突出して内部を閉栓した第1栓部13bを有する。一対のヘッダ蓋13は、大径部13aから第2管状部12の内部に突出して内部を閉栓した第2栓部13cを有する。
 ガスヘッダ4は、第1管状部11の一部を構成して複数の扁平管3が挿入固定された複数の孔21aが形成された第1部材21を有する。第1部材21は、円菅状の一部を削除した半円菅状などの形状に形成されている。
 複数の孔21aは、X方向に規定の間隔をあけて並んでいる。たとえば、各扁平管3は、第1部材21の側面部に対して略垂直となるように、X方向から孔21aに挿入されている。孔21aの縁部と扁平管3の外周面とは、ろう付けによって接合されている。なお、孔21aの縁部と扁平管3の外周面とを接合するろう付けの方法は、特に限定されない。また、孔21aの縁部と扁平管3の外周面とがろう付けされ易いように、バーリング加工が孔21aの縁部に施されていても良い。
 ガスヘッダ4は、第1管状部11の第1部材21以外の他部と第2管状部12とが形成された第2部材22を有する。第1部材21と第2部材22とは、嵌め合わせによって第1管状部11を構成している。
 流出管5は、第2管状部外壁に挿通されて壁14に形成された第1孔31に接合されている。流出管5の壁14に対する接合端部は、開口している。つまり、流出管5は、ガスヘッダ4のY方向の中央位置よりも高い位置にて、壁14に設けられた第1孔31に接合されて第1管状部11と連通している。第1孔31は、流出管5の接合端部の中心軸延長上に開けられた孔である。
 流出管5には、接合端部近傍のY方向の上下部分に一対の孔33が形成されている。一対の孔33は、第2管状部12の流路に繋がっている。これにより、X方向の上部の扁平管3から流出して第1管状部11を通って流出管5の先端がある第1孔31から流入するガス状態の冷媒と、X方向の下部付近にある扁平管3から流出して第2管状部12を通って流出管5の下面の孔33から流入するガス状態の冷媒と、が流出管5にて合流する。
 ここで、第1管状部11では、扁平管3の挿入によって見かけ流路断面積が小さくなっている。これにより、特に第1管状部11の下部付近にある扁平管3から流出したガス状態の冷媒が第2孔32を通って第1管状部11よりも第2管状部12を経由して孔33から流出管5に流れる。
 第1部材21と第2部材22と一対のヘッダ蓋13とは、たとえば全てアルミニウム製で構成され、ロウ付けによって接合されている。流出管5は、第2部材22にロウ付けによって接合されている。
<熱交換器100が蒸発器として機能するときのガスヘッダ4の動作>
 図5は、本発明の実施の形態1に係る熱交換器100が蒸発器として機能するときのガスヘッダ4を縦断面にて示す説明図である。図6は、本発明の実施の形態1に係る熱交換器100が凝縮器として機能するときのガスヘッダ4を縦断面にて示す説明図である。図6は、熱交換器100が凝縮器として機能するときのガスヘッダ4の動作を、図5に示す熱交換器100が蒸発器として機能するときのガスヘッダ4の動作と対比して示す。
 図5に示す実線矢印は、熱交換器100を蒸発器として機能させる場合の冷媒の流れ方向を示している。第1管状部11に流入したガス状冷媒の一部は、直接、流出管5に流入して行く。また、第1管状部11に流入したガス状冷媒の他の一部は、第2管状部12を通って、流出管5に流入して行く。
<従来からの課題>
 第1管状部11の内部には、X方向の半ばまでに扁平管3の先端が挿入されている。このため、第1管状部11のY方向に流れるガス状冷媒は、扁平管3が挿入されない空間である流路拡大部と、扁平管3の挿入で狭くなった隙間である流路縮小部と、を交互に通過して行く。第1管状部11を流れるガス状冷媒の流れの拡大と縮小とが順次生じる。そのため、ガスヘッダ4の管内圧力損失が生じる。また、ガス状冷媒中に混在していた冷凍機油が分離され、第1管状部11の下部へ落下する。このように、第1管状部11の下部には、冷凍機油が溜まり易い。圧縮機51に戻る冷凍機油が少なくなると、圧縮機51の圧縮機構部の摺動不良などにより、圧縮機51の性能及び信頼性が低下する。
 上記課題の解決のために、ガスヘッダ4の下部には、バイパス流路が設けられ、冷媒の圧力損失の抑制及び冷凍機油の戻りの向上を図る技術がある。しかし、バイパス流路を設ける場合には、ガスヘッダ4が大型化する。ガスヘッダ4の大型化は、その分、熱交換器100の実装面積を減少させる課題がある。また、バイパス流路を設ける場合には、製造コストが増加する課題もある。
<課題解決方法>
 しかしながら、熱交換器100のガスヘッダ4は、第1管状部11と第2管状部12とを壁14に設けた第2孔32によって連通させている。この構成のため、冷媒の圧力損失の抑制及び冷凍機油の戻りの向上が図られつつ、ガスヘッダ4が小型化できる。
 また、壁14の端部とヘッダ蓋13とが接合させてろう付けでき、ガスヘッダ4の強度及び気密性の向上が図られる。
<ガスヘッダ4の下部構成>
 図7は、本発明の実施の形態1に係るガスヘッダ4の下部を拡大した縦断面にて示す説明図である。図7に示すように、第2孔32の開口断面積Sは第2管状部12の流路断面積S以上である。つまり、S≧Sの関係が満たされる。これにより、第2管状部12に流入するガス状態の冷媒の流量が増大し、圧縮機油が更に圧縮機51に返油できる。
 なお、第2管状部12の流路断面積Sは、第1管状部11の流路断面積よりも小さい。しかし、冷媒の圧力損失を減少する観点から、第2管状部12の流路断面積Sは、ガス冷媒が容易に通過できる大きさであると好ましい。たとえば、隣り合う扁平管3の間の高さであるX方向の幅を1とした場合に、流出管5が接続される高さが1の幅の下端から3/5~9/10と設定される。このとき同時に、第2管状部12の流路断面積Sが隣り合う扁平管3の幅が狭い範囲における第1管状部11の見かけ流路断面積の1/5~1/2などに設定されると良い。
<熱交換器100が凝縮器として機能するときのガスヘッダ4の動作>
 一方、図6に示す破線矢印は、熱交換器100を凝縮器として機能させる場合の冷媒の流れ方向を示している。ガスヘッダ4は、壁14に設けた第2孔32によって、管内圧力損失が抑制される。
 ここで、図7に示すように、第2孔32は第1管状部11と第2管状部12とを隔てる壁14の下端よりも少し上に形成すると良い。特に、複数の扁平管3のうち少なくとも1つの扁平管3は、第2孔32よりも下部にて第1管状部11の内部に途中まで挿入されると良い。これにより、ガス状態の冷媒がある特定の扁平管3に偏っての流入が抑制できる。そして、ガスヘッダ4でのガス状態の冷媒の分配性能が向上できる。
<作用>
 以上のように、ガスヘッダ4では、第1管状部11と第2管状部12とが壁14に設けた第2孔32によって連通されている。これにより、ガスヘッダ4での冷媒の圧力損失が抑制でき、熱交換性能が向上できる。また、蒸発運転時のガスヘッダ内に滞留する圧縮機油が減少できる。さらに、凝縮運転時のガスヘッダ4でのガス状態の冷媒の分配性能が向上できる。加えて、ガスヘッダ4の小型化並びに強度及び気密性の向上が図られる。
<実施の形態1の効果>
 実施の形態1によれば、ガスヘッダ4は、Y方向に間隔をあけて並ぶ複数の扁平管3の一方の端部に接続され、複数の扁平管3に対して冷媒の流入出が逆になる冷媒配管である流出管5に接続されている。ガスヘッダ4は、Y方向に長手に形成されてY方向に冷媒が流れる流路が形成される第1管状部11と、第1管状部11よりも流路断面積が小さい第2管状部12と、を一体化して有する。第1管状部11の内部には、X方向の一方から複数の扁平管3のそれぞれの端部が途中まで挿入されている。第2管状部12は、第1管状部11に対してX方向において複数の扁平管3とは反対側に設けられている。第2管状部12は、Y方向の途中であってY方向における中央よりも上の位置にて、流出管5に接続されている。第1管状部11と第2管状部12とに挟まれた壁14には、流出管5との接続箇所に対してX方向の延長上にて開けられた第1孔31と、下部にて第1管状部11と第2管状部12とを連通させる第1孔31よりも孔径の小さい第2孔32と、が形成されている。
 この構成によれば、第1管状部11と第2管状部12とが壁14に設けた第1孔31及び第2孔32によって連通することにより、簡素な構造が図られつつ、ガスヘッダ4での冷媒の圧力損失が低減でき、熱交換性能が向上できる。また、第2孔32がガスヘッダ4の下部に形成されることにより、熱交換器100が蒸発器として機能するときのガスヘッダ4内に滞留する圧縮機油が減少できる。さらに、熱交換器100が凝縮器として機能するときのガス冷媒の分配性能が向上できる。加えて、ガスヘッダ4の小型化並びに強度及び気密性の向上が図れる。
 実施の形態1によれば、ガスヘッダ4は、第1管状部11の一部を構成して複数の扁平管3が挿入固定された孔21aを有する第1部材21を有する。ガスヘッダ4は、第1管状部11の他部と第2管状部12とを有する第2部材22を有する。
 この構成によれば、部品点数が少なく、製造コストが低減できる。
 実施の形態1によれば、第1管状部11と第2管状部12とは、Y方向に同じ長さである。第1管状部11と第2管状部12との長手方向の両端部のY方向高さは、一致する。
 この構成によれば、簡素な構造が図られる。
 実施の形態1によれば、ガスヘッダ4は、第1管状部11と第2管状部12との長手方向の両端のそれぞれにて、第1管状部11と第2管状部12との双方の内部を覆う一対のヘッダ蓋13を備える。
 この構成によれば、一対のヘッダ蓋13によって第1管状部11と第2管状部12との双方の内部が覆え、簡素な構造が図られつつ、部品点数が少なく製造コストが低減できる。
 実施の形態1によれば、一対のヘッダ蓋13は、第1管状部11及び第2管状部12の双方の端面に突き当たった大径部13aを有する。一対のヘッダ蓋13は、大径部13aから第1管状部11の内部に突出して内部を閉栓した第1栓部13bを有する。一対のヘッダ蓋13は、大径部13aから第2管状部12の内部に突出して内部を閉栓した第2栓部13cを有する。
 この構成によれば、一対のヘッダ蓋13が第1栓部13bによって第1管状部11の内部を閉栓することと第2栓部13cによって第2管状部12の内部を閉栓することとを同時に実施でき、製造工数が低減でき、製造コストが低減できる。
 実施の形態1によれば、第1管状部11と第2管状部12との双方の内部の流路断面形状は、円形である。
 この構成によれば、第1管状部11と第2管状部12との双方での冷媒の流れがスムーズになって冷媒の圧力損失が低減できる。
 実施の形態1によれば、第2孔32の開口断面積Sは、第2管状部12の流路断面積S以上である。
 この構成によれば、第2孔32での冷媒の流れがスムーズになって冷媒の圧力損失が低減できる。
 実施の形態1によれば、第2孔32よりも下の位置には、第1管状部11に挿入された複数の扁平管3のうち少なくとも1つの扁平管3の端部が位置する。
 この構成によれば、第1管状部11の底部に溜まろうとする圧縮機油に第2孔32よりも下に位置した扁平管3からの冷媒が流入して返油性が向上できる。
 実施の形態1によれば、熱交換器100は、ガスヘッダ4を備える。熱交換器100は、Y方向に間隔をあけて並ぶ複数の扁平管3を備える。熱交換器100は、複数の扁平管3の他方の端に接続された液ヘッダである冷媒分配器2を備える。
 この構成によれば、上記のガスヘッダ4を備える熱交換器100では、簡素な構造が図られつつ、ガスヘッダ4での冷媒の圧力損失が低減できる。
実施の形態2.
<ガスヘッダ4>
 図8は、本発明の実施の形態2に係るガスヘッダ4を示す分解斜視図である。図9は、本発明の実施の形態2に係る熱交換器100が蒸発器として機能するときのガスヘッダ4を縦断面にて示す説明図である。図10は、本発明の実施の形態2に係る熱交換器100が凝縮器として機能するときのガスヘッダ4を縦断面にて示す説明図である。実施の形態2は、上記実施の形態1と同事項を省略し、その特徴部分を説明する。
 図8、図9及び図10に示すように、第1管状部11に途中まで挿入された複数の扁平管3の端部のY方向の間隔は、狭い部分と広い部分とを混在させて並ばせている。第1孔31の位置は、複数の扁平管3のうち隣り合う扁平管3の端部のY方向の間隔が広い部分のY方向の中央の位置である。この構成であると、扁平管3の挿入による第1管状部11の流路縮小部と、流出管5の挿入による第1管状部11の流路縮小部と、が近接しない。これにより、第1管状部11の流路縮小部が過度に小さくならず、第1管状部11での冷媒の圧力損失が低減でき、なお良い。また、凝縮運転時のガス冷媒分配において、ガスヘッダ4では、ガス状態の冷媒がある特定の扁平管3に偏っての流入が抑制でき、ガス状態の冷媒の分配性能が向上でき、なお良い。
 第2孔32の位置は、複数の扁平管3のうち隣り合う扁平管3の端部のY方向の間隔が狭い部分のY方向範囲内の位置であると良い。特に第2孔32の位置は、最下部の隣り合う扁平管3の端部のY方向の間隔が狭い部分に設置すると、ガス状態の冷媒が扁平管3から第1孔31に強く流入する。よって、第1管状部11の下部に溜まった圧縮機油が第2孔32を介して第2管状部12を経て圧縮機51に戻す効果が高められる。
<実施の形態2の効果>
 実施の形態2によれば、第1管状部11に挿入された複数の扁平管3の端部のY方向の間隔は、狭い部分と広い部分とを混在させて並んでいる。
 この構成によれば、複数の扁平管3の端部のY方向の間隔が狭い部分にて冷媒流れ方向の流路断面積の拡大と縮小とが緩やかになり、第1管状部11での冷媒の圧力損失が低減できる。
 実施の形態2によれば、第1孔31の位置は、隣り合う扁平管3の端部のY方向の間隔が広い部分のY方向の中央の位置である。
 この構成によれば、熱交換器100が凝縮器として機能するときのガス状態の冷媒の分配において、ガス状態の冷媒がある特定の扁平管3に偏っての流入が抑制でき、ガス状態の冷媒の分配性能が向上できる。
 実施の形態2によれば、第2孔32の位置は、隣り合う扁平管3の端部のY方向の間隔が狭い部分のY方向範囲内の位置である。
 この構成によれば、ガス状態の冷媒が隣り合う扁平管3の端部のY方向の間隔が狭い部分の扁平管3から第2孔32に強く流入し易くなる。そのため、第1管状部11の底部に溜まろうとする圧縮機油がガス状態の冷媒と伴に第2管状部12に流入し易くなり、返油性が向上できる。
実施の形態3.
<空気調和装置50>
 図11は、本発明の実施の形態3に係る冷房運転時の空気調和装置50を示す冷媒回路図である。図12は、本発明の実施の形態3に係る暖房運転時の空気調和装置50を示す冷媒回路図である。空気調和装置50は、冷凍サイクル装置の一例である。
 図11及び図12に示すように、空気調和装置50は、圧縮機51、室内熱交換器52、室内ファン53、膨張弁54、室外熱交換器55、室外ファン56及び流路切替装置57を備える。
 圧縮機51は、たとえば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機又は往復圧縮機などを用いて良い。
 室内熱交換器52は、たとえば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器又はプレート熱交換器などを用いて良い。
 膨張弁54は、たとえば、冷媒の流量を調整可能な電動膨張弁などを用いて良い。なお、膨張弁54は、電動膨張弁だけでなく、受圧部にダイアフラムを採用した機械式膨張弁などでも良い。
 流路切替装置57は、たとえば四方弁などである。流路切替装置57は、圧縮機51の吐出口からの冷媒の送り先を、室内熱交換器52又は室外熱交換器55に切り替える。
 空気調和装置50は、実施の形態1及び実施の形態2で説明した熱交換器100を室外熱交換器55に用いる。熱交換器100を用いることにより、エネルギー効率の向上が図られる。
 なお、空気調和装置50などの冷凍サイクル装置は、室外熱交換器55又は室内熱交換器52の一方又は双方に熱交換器100を採用して良い。
<空気調和装置50の動作>
<冷房運転>
 図11の破線矢印は、冷房運転時の冷媒の流れを示している。圧縮機51を稼働させることにより、高温高圧のガス状態の冷媒が圧縮機51から吐出される。圧縮機51から吐出された高温高圧のガス状冷媒は、流路切替装置57を介して凝縮器として機能する室外熱交換器55に流れ込む。室外熱交換器55では、流れ込んだ高温高圧のガス状態の冷媒と、室外ファン56によって供給される室外空気と、の間で熱交換が行われる。熱交換により、高温高圧のガス状態の冷媒は、凝縮して高圧の液状冷媒になる。
 ここでは、熱交換器100を用いた室外熱交換器55での詳細な運転状態を後述する。圧縮機51から吐出された高温高圧のガス状態の冷媒は、流出管5から室外熱交換器55に流入する。流出管5に流入した高温高圧のガス状態の冷媒の一部は、直接、第1管状部11に流入する。また、流出管5に流入した高温高圧のガス状態の冷媒の他の一部は、第2管状部12を通って、第2孔32を介して第1管状部11の下部に流入する。そして、第1管状部11に流入した高温高圧のガス状態の冷媒は、複数の扁平管3のそれぞれに分岐して流れて行く。高温高圧のガス状態の冷媒は、複数の扁平管3のそれぞれを流れる際に、扁平管3の表面及びフィン6の表面を介して、室外ファン56によって供給される室外空気と熱交換する。これにより、扁平管3のそれぞれを流れる高温高圧のガス状態の冷媒は、凝縮して高圧の液状冷媒になり、冷媒分配器2を経て室外熱交換器55から流出する。
 その後、室外熱交換器55から流出した高圧の液状態の冷媒は、膨張弁54によって低圧の気液二相状態の冷媒になる。気液二相状態の冷媒は、蒸発器として機能する室内熱交換器52に流れ込む。室内熱交換器52では、流れ込んだ気液二相状態の冷媒と、室内ファン53によって供給される室内空気と、の間で熱交換が行われる。熱交換により、気液二相状態の冷媒のうち液状態の冷媒が蒸発して低圧のガス状態の冷媒になる。熱交換の効果により、熱交換された室内空気が冷却され、室内が冷房される。室内熱交換器52から送り出された低圧のガス状態の冷媒は、流路切替装置57を介して圧縮機51に流れ込む。低圧のガス冷媒は、圧縮機51にて圧縮されて高温高圧のガス状冷媒となり、再び圧縮機51から吐出される。以下、このサイクルが繰り返される。
<暖房運転>
 図12の実線矢印は、暖房運転時の冷媒の流れを示している。圧縮機51を稼働させることによって、高温高圧のガス状態の冷媒が圧縮機51から吐出される。圧縮機51から吐出された高温高圧のガス状態の冷媒は、流路切替装置57を介して凝縮器として機能する室内熱交換器52に流れ込む。室内熱交換器52では、流れ込んだ高温高圧のガス状態の冷媒と、室内ファン53によって供給される室内空気と、の間で熱交換が行われる。熱交換により、高温高圧のガス状態の冷媒は、凝縮して高圧の液状冷媒になる。熱交換の効果により、室内空気が温められ、室内が暖房される。
 室内熱交換器52から送り出された高圧の液状態の冷媒は、膨張弁54によって低圧の気液二相状態の冷媒になる。気液二相状態の冷媒は、蒸発器として機能する室外熱交換器55に流れ込む。室外熱交換器55では、流れ込んだ気液二相状態の冷媒と、室外ファン56によって供給される室外空気と、の間で熱交換が行われる。熱交換により、気液二相状態の冷媒のうち液状態の冷媒が蒸発して低圧のガス状態の冷媒になる。
 ここでは、熱交換器100を用いた室外熱交換器55での詳細な運転状態を後述する。膨張弁54によって低圧の気液二相状態となった冷媒は、室外熱交換器55における複数の扁平管3のそれぞれに流入する。気液二相状態の冷媒は、複数の扁平管3のそれぞれを流れる際に、扁平管3の表面及びフィン6の表面を介し、室外ファン56によって供給される室外空気と熱交換する。熱交換により、複数の扁平管3のそれぞれを流れる気液二相状態の冷媒は、低圧のガス状態の冷媒になる。低圧のガス状冷媒は、各扁平管3の端部からガスヘッダ4に流出し、第1管状部11で合流する。
 ガスヘッダ4の第1管状部11で合流したガス状態の冷媒の一部は、直接、流出管5に流入して行く。また、第1管状部11で合流したガス状態の冷媒の他の一部は、第2孔32を介して第2管状部12を通って、流出管5に流入して行く。流出管5に流入したガス状態の冷媒は、室外熱交換器55から流出する。
 その後、室外熱交換器55から流出した低圧のガス状冷媒は、流路切替装置57を介して圧縮機51に流れ込む。圧縮機51に流れ込んだ低圧のガス状冷媒は、圧縮されて高温高圧のガス状冷媒となり、再び圧縮機51から吐出される。以下、このサイクルが繰り返される。
 <除霜運転>
 低外気温状態となっている暖房運転時、蒸発器として機能する室外熱交換器55では、空気中の水分が凝縮して付着し、室外熱交換器55の表面で凍ってしまう場合がある。すなわち、室外熱交換器55に着霜することがある。このため、空気調和装置50は、暖房運転中に室外熱交換器55に付着した霜を除去する「除霜運転」を行う。
 「除霜運転」とは、蒸発器として機能する室外熱交換器55に付着した霜を融解させて除去するために、圧縮機51から室外熱交換器55に高温高圧のガス状態の冷媒を供給する運転である。空気調和装置50では、除霜運転を開始する場合に、流路切替装置57の流路が冷房運転時の流路に切り替えられる。すなわち、除霜運転時に、室外熱交換器55の流出管5は、圧縮機51の吐出口と連通する。
<実施の形態3の効果>
 実施の形態3によれば、冷凍サイクル装置としての空気調和装置50は、熱交換器100を備える。
 この構成によれば、上記の熱交換器100を備える冷凍サイクル装置では、簡素な構造が図られつつ、ガスヘッダ4での冷媒の圧力損失が低減できる。
 なお、本発明の実施の形態1~3は、組み合わせられても良いし、他の部分に適用しても良い。
 1 流入管、2 冷媒分配器、3 扁平管、4 ガスヘッダ、5 流出管、6 フィン、11 第1管状部、12 第2管状部、13 ヘッダ蓋、13a 大径部、13b 第1栓部、13c 第2栓部、14 壁、21 第1部材、21a 孔、22 第2部材、31 第1孔、32 第2孔、33 孔、50 空気調和装置、51 圧縮機、52 室内熱交換器、53 室内ファン、54 膨張弁、55 室外熱交換器、56 室外ファン、57 流路切替装置、100 熱交換器。

Claims (13)

  1.  上下方向に間隔をあけて並ぶ複数の扁平管の一方の端部に接続され、前記複数の扁平管に対して冷媒の流入出が逆になる冷媒配管に接続されたガスヘッダであって、
     上下方向に冷媒の流路が形成される第1管状部と、前記第1管状部よりも流路断面積が小さい第2管状部と、を一体化して有し、
     前記第1管状部の内部には、水平方向の一方から前記複数の扁平管のそれぞれの端部が途中まで挿入され、
     前記第2管状部は、前記第1管状部に対して水平方向において複数の扁平管とは反対側に設けられ、
     前記第2管状部は、上下方向の途中であって上下方向における中央よりも上の位置にて、前記冷媒配管に接続され、
     前記第1管状部と前記第2管状部とに挟まれた壁には、前記冷媒配管との接続箇所に対して水平方向の延長上にて開けられた第1孔と、前記第1孔よりも下部にて前記第1管状部と前記第2管状部とを連通させる前記第1孔よりも孔径の小さい第2孔と、が形成されるガスヘッダ。
  2.  前記第1管状部の一部を構成して前記複数の扁平管が挿入固定された孔を有する第1部材と、前記第1管状部の他部と前記第2管状部とを有する第2部材と、を有する請求項1に記載のガスヘッダ。
  3.  前記第1管状部と前記第2管状部とは、上下方向に同じ長さであり、
     前記第1管状部と前記第2管状部との長手方向の両端部の水平方向高さは、一致する請求項1又は請求項2に記載のガスヘッダ。
  4.  前記第1管状部と前記第2管状部との長手方向の両端のそれぞれにて、前記第1管状部と前記第2管状部との双方の内部を覆う一対のヘッダ蓋を備える請求項1~請求項3のいずれか1項に記載のガスヘッダ。
  5.  前記一対のヘッダ蓋は、前記第1管状部及び前記第2管状部の双方の端面に突き当たった大径部と、前記大径部から前記第1管状部の内部に突出して内部を閉栓した第1栓部と、前記大径部から前記第2管状部の内部に突出して内部を閉栓した第2栓部と、を有する請求項4に記載のガスヘッダ。
  6.  前記第1管状部と前記第2管状部との双方の内部の流路断面形状は、円形である請求項1~請求項5のいずれか1項に記載のガスヘッダ。
  7.  前記第2孔の開口断面積は、前記第2管状部の流路断面積以上である請求項1~請求項6のいずれか1項に記載のガスヘッダ。
  8.  前記第2孔よりも下の位置には、前記第1管状部に挿入された前記複数の扁平管のうち少なくとも1つの扁平管の端部が位置する請求項1~請求項7のいずれか1項に記載のガスヘッダ。
  9.  前記第1管状部に挿入された前記複数の扁平管の端部の上下方向の間隔は、狭い部分と広い部分とを混在させて並ぶ請求項1~請求項8のいずれか1項に記載のガスヘッダ。
  10.  前記第1孔の位置は、前記複数の扁平管のうち隣り合う扁平管の端部の上下方向の間隔が広い部分の上下方向の中央の位置である請求項9に記載のガスヘッダ。
  11.  前記第2孔の位置は、前記複数の扁平管のうち隣り合う扁平管の端部の上下方向の間隔が狭い部分の上下方向範囲内の位置である請求項9又は請求項10に記載のガスヘッダ。
  12.  請求項1~請求項11のいずれか1項に記載のガスヘッダを備える熱交換器。
  13.  請求項12に記載の熱交換器を備える冷凍サイクル装置。
PCT/JP2019/008507 2019-03-05 2019-03-05 ガスヘッダ、熱交換器及び冷凍サイクル装置 WO2020178966A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019527574A JP6599056B1 (ja) 2019-03-05 2019-03-05 ガスヘッダ、熱交換器及び冷凍サイクル装置
PCT/JP2019/008507 WO2020178966A1 (ja) 2019-03-05 2019-03-05 ガスヘッダ、熱交換器及び冷凍サイクル装置
US17/426,635 US11898781B2 (en) 2019-03-05 2019-03-05 Gas header, heat exchanger, and refrigeration cycle apparatus
EP19918290.8A EP3936810B1 (en) 2019-03-05 2019-03-05 Gas header, heat exchanger, and refrigeration cycle device
CN201980093167.8A CN113544458B (zh) 2019-03-05 2019-03-05 气体集管、热交换器以及制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008507 WO2020178966A1 (ja) 2019-03-05 2019-03-05 ガスヘッダ、熱交換器及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020178966A1 true WO2020178966A1 (ja) 2020-09-10

Family

ID=68383298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008507 WO2020178966A1 (ja) 2019-03-05 2019-03-05 ガスヘッダ、熱交換器及び冷凍サイクル装置

Country Status (5)

Country Link
US (1) US11898781B2 (ja)
EP (1) EP3936810B1 (ja)
JP (1) JP6599056B1 (ja)
CN (1) CN113544458B (ja)
WO (1) WO2020178966A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020006927T5 (de) * 2020-03-19 2023-01-12 Mitsubishi Electric Corporation Wärmetauscher-Rohrverteiler, Wärmetauscher, Verfahren zur Herstellung eines Wärmetauscher-Rohrverteilers und Verfahren zur Herstellung eines Wärmetauschers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367869U (ja) 1989-10-20 1991-07-03
JPH04174297A (ja) * 1990-11-07 1992-06-22 Zexel Corp 熱交換器
JP2009092359A (ja) * 2007-10-12 2009-04-30 Showa Denko Kk 熱交換器およびその製造方法
WO2018225252A1 (ja) * 2017-06-09 2018-12-13 三菱電機株式会社 熱交換器及び冷凍サイクル装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946036B2 (en) * 2006-09-28 2011-05-24 Delphi Technologies, Inc. Method of manufacturing a manifold for a heat exchanger
JP2012042128A (ja) * 2010-08-19 2012-03-01 Sharp Corp 熱交換器及びそれを搭載した空気調和機
JP5761252B2 (ja) * 2013-05-22 2015-08-12 ダイキン工業株式会社 熱交換器
JP2015021664A (ja) 2013-07-18 2015-02-02 ダイキン工業株式会社 熱交換器および空気調和機
JP5850118B1 (ja) * 2014-09-30 2016-02-03 ダイキン工業株式会社 熱交換器および空気調和装置
JP6551251B2 (ja) * 2016-02-09 2019-07-31 三菱電機株式会社 ヘッダー分配器、ヘッダー分配器を搭載した室外機、及び空気調和装置
JP6419882B2 (ja) * 2017-03-29 2018-11-07 日立ジョンソンコントロールズ空調株式会社 空気調和機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367869U (ja) 1989-10-20 1991-07-03
JPH04174297A (ja) * 1990-11-07 1992-06-22 Zexel Corp 熱交換器
JP2009092359A (ja) * 2007-10-12 2009-04-30 Showa Denko Kk 熱交換器およびその製造方法
WO2018225252A1 (ja) * 2017-06-09 2018-12-13 三菱電機株式会社 熱交換器及び冷凍サイクル装置

Also Published As

Publication number Publication date
CN113544458B (zh) 2023-04-28
EP3936810A4 (en) 2022-03-16
US11898781B2 (en) 2024-02-13
JPWO2020178966A1 (ja) 2021-03-11
US20220099344A1 (en) 2022-03-31
EP3936810B1 (en) 2023-08-09
CN113544458A (zh) 2021-10-22
JP6599056B1 (ja) 2019-10-30
EP3936810A1 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
CN112204312B (zh) 空气调节装置的室外机及空气调节装置
US8234881B2 (en) Multichannel heat exchanger with dissimilar flow
WO2010146852A1 (ja) 天井設置型空気調和装置
AU2012208118A1 (en) Heat exchanger and air conditioner
EP3156752B1 (en) Heat exchanger
JP6890509B2 (ja) 空気調和機
JP2011127831A (ja) 熱交換器及びこれを備えた冷凍サイクル装置
CN110709665B (zh) 热交换器及制冷循环装置
JP6980117B2 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP7292510B2 (ja) 熱交換器及び空気調和機
WO2020178966A1 (ja) ガスヘッダ、熱交換器及び冷凍サイクル装置
JP6198976B2 (ja) 熱交換器、及び冷凍サイクル装置
JP6987227B2 (ja) 熱交換器及び冷凍サイクル装置
JP2019215161A (ja) 空気調和装置の室外機及び空気調和装置
WO2021234961A1 (ja) 熱交換器、空気調和装置の室外機及び空気調和装置
JP7130116B2 (ja) 空気調和装置
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
WO2019155571A1 (ja) 熱交換器および冷凍サイクル装置
JP7118279B2 (ja) 熱交換器、その製造方法および空気調和装置
JP7137092B2 (ja) 熱交換器
JP6928793B2 (ja) プレートフィン積層型熱交換器およびそれを用いた冷凍システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019527574

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019918290

Country of ref document: EP

Effective date: 20211005