WO2020177274A1 - 复合膜、制备方法及其应用 - Google Patents

复合膜、制备方法及其应用 Download PDF

Info

Publication number
WO2020177274A1
WO2020177274A1 PCT/CN2019/099978 CN2019099978W WO2020177274A1 WO 2020177274 A1 WO2020177274 A1 WO 2020177274A1 CN 2019099978 W CN2019099978 W CN 2019099978W WO 2020177274 A1 WO2020177274 A1 WO 2020177274A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate layer
gqds
aromatic
membrane
less
Prior art date
Application number
PCT/CN2019/099978
Other languages
English (en)
French (fr)
Inventor
苏保卫
李艳阳
梁懿之
李树轩
韩力挥
李�灿
张金苗
Original Assignee
中国海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910166783.3A external-priority patent/CN110141978B/zh
Priority claimed from CN201910166886.XA external-priority patent/CN109925896B/zh
Application filed by 中国海洋大学 filed Critical 中国海洋大学
Publication of WO2020177274A1 publication Critical patent/WO2020177274A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Definitions

  • the invention belongs to the technical field of membrane separation, and specifically relates to a composite membrane, a preparation method and its application.
  • the membranes involved in seawater desalination membrane technology include reverse osmosis and nanofiltration membranes.
  • Reverse osmosis (RO) membrane is the most refined membrane product, which can effectively intercept most of the dissolved salts and organic matter while allowing water molecules to pass through.
  • Nanofiltration (NF) is a pressure-driven membrane separation technology between ultrafiltration (UF) and reverse osmosis.
  • the pore size of the nanofiltration membrane is about 0.5-2.0 nm, and the molecular weight cut-off is 200-1000 Daltons (Da ), the nanofiltration process has the characteristics of normal temperature separation, no phase transformation, low operating pressure, high separation selectivity for divalent and multivalent ions, and simple operation and scale-up production.
  • commercial nanofiltration membranes are widely used in aqueous systems, but when it comes to organic solvent systems, the application of nanofiltration membranes is greatly restricted.
  • Organic solvents are widely used in the chemical, petroleum and petrochemical, pharmaceutical and other fields, and the usage amount is usually large. Therefore, how to effectively reuse organic solvents is particularly important.
  • the traditional separation and purification process of organic solvent system, such as rectification and extraction, is complicated in operation and high in energy consumption.
  • Solvent-resistant nanofiltration (Organic solvent nanofiltration, OSN) is a new type of membrane separation technology developed on the basis of existing nanofiltration technology. It can be applied in solutions of organic solvents in petrochemical, pharmaceutical, food, fine chemical and other fields Has great application potential.
  • OSN Organic solvent nanofiltration
  • the large-scale application process of OSN is still relatively small. The main reason is that there are very few commercial nanofiltration membranes resistant to organic solvents, and the flux of current solvent-resistant nanofiltration membranes is still low. Solvent performance is relatively poor, and it is difficult to maintain stable permeation flux and selectivity in organic solvents for a long time.
  • Graphene Oxide is a single-layer or multi-layer graphite oxide formed by exfoliation of graphite oxide. It has a typical quasi-two-dimensional spatial structure, and there are a large number of oxygen-containing groups on the sheet, such as hydroxyl groups. And epoxy groups, there are carboxyl and hydroxyl groups at the edges.
  • oxygen-containing groups such as hydroxyl groups.
  • epoxy groups there are carboxyl and hydroxyl groups at the edges.
  • some scholars at home and abroad have used the in-situ growth method to cover the GO nanosheets on the PVDF ultrafiltration base membrane, or use the method of suction to cover the GO on the crosslinked polyimide ultrafiltration base. Membrane and other ways to control the process of interfacial polymerization.
  • GQDs Graphene quantum dots
  • the surface contains a large number of oxygen-containing functional groups, such as hydroxyl, carboxyl and Epoxy groups can interact with the matrix.
  • oxygen-containing functional groups such as hydroxyl, carboxyl and Epoxy groups
  • the present invention aims at the technical problems that the nanofiltration membrane in the prior art cannot be used in aqueous and organic solution systems, the flux of the solvent-resistant nanofiltration membrane is low, and the solvent-resistant performance is poor, and proposes a composite membrane, a preparation method and application thereof , The prepared composite membrane has good solvent resistance, high flux and good separation performance.
  • the present invention also addresses the technical problems of low flux of nanofiltration and reverse osmosis membranes for aqueous solution systems and poor pollution resistance of the membranes in the prior art, and poor solvent resistance and phase inversion polyimide membranes for organic solvent systems.
  • the technical problem of low flux of amine solvent-resistant nanofiltration membrane, an ultra-thin composite membrane, preparation method and application are proposed, and the prepared ultra-thin composite membrane has good separation performance.
  • the first aspect of the present invention discloses a hybrid composite membrane, by depositing a nano-material intermediate layer on the surface of a base membrane (consisting of a non-woven fabric and a supporting layer), and then interfacially polymerizing a layer of separation on the nano-intermediate layer Made of cortex, where
  • the separation skin layer contains the following two repeating structural units:
  • Ar is the aromatic nucleus of the aromatic polyamine compound
  • Ar' is the aromatic nucleus of the aromatic polybasic acid halide compound
  • the “multiple” refers to three or more (the same below).
  • the nanomaterial intermediate layer is composed of cross-linked graphene oxide.
  • the thickness of the nano-material intermediate layer is less than 20 nm.
  • the average thickness of the GO nano material intermediate layer is less than 5 nm.
  • the average thickness of the separation skin layer is less than 30 nm, and the average roughness is less than 5 nm.
  • the two repeating units are:
  • the cross-linked graphene oxide is prepared by cross-linking the graphene oxide suspension aqueous solution with an aliphatic diamine compound between 1°C and 80°C.
  • the content of graphene oxide in the graphene oxide suspension aqueous solution is 0.1 mg/L to 1000 mg/L; more preferably, the content of graphene oxide is 0.1 mg/L to 50 mg/L.
  • the supporting layer contains an imide group capable of cross-linking with aliphatic polyamine compounds or aromatic polyamine compounds.
  • the support layer and the nanomaterial intermediate layer are connected by a covalent bond.
  • an aliphatic polyamine compound or an aromatic polyamine compound is used for cross-linking.
  • hexamethylene diamine is used for crosslinking after the interfacial polymerization.
  • a solvent activation treatment is performed.
  • the preparation method of the nanomaterial intermediate layer is: after the base film is fully contacted with the surface modifier solution for 10s-30 minutes, the residual surface modifier solution on the surface of the base film is removed, rinsed with deionized water, and dried. , And then fully contact with the suspension aqueous solution of cross-linked graphene oxide for 1 to 120 seconds, remove the excess cross-linked graphene oxide suspension on the surface, rinse with deionized water, and dry to obtain the nano-material intermediate layer.
  • the surface modifier includes polyethyleneimine, triethylamine, and dopamine.
  • the surface modifier is polyethyleneimine.
  • the graphene oxide crosslinking agent is an aliphatic diamine.
  • the graphene oxide crosslinking agent is ethylene diamine.
  • the second aspect of the present invention discloses a method for preparing a multifunctional hybrid composite membrane, which includes the following steps:
  • Step 1 After fully contacting the base film with the surface modifier solution for 10s-30min, remove the residual surface modifier solution on the surface of the base film, rinse with deionized water, dry until the droplets disappear, and continue to dry for 1s ⁇ 300s , And then fully contact with the cross-linked graphene oxide suspension aqueous solution for 1 to 120s to remove the excess cross-linked graphene oxide suspension on the surface, rinse with deionized water, and dry for 1 to 120s to obtain the modified base film;
  • Step 2 After fully contacting the modified base film obtained in Step 1 with the aqueous monomer solution containing the aromatic diamine compound for 1 to 120s, remove the excess aqueous monomer solution on the surface of the film and dry it, and then mix it with the aromatic diamine compound.
  • the first organic solvent solution (organic phase monomer solution) of the polybasic acid chloride is fully contacted for 1-60s. After removing the organic phase monomer solution on the surface of the membrane, it is placed in a certain temperature atmosphere for heat treatment for 10 to 300s, taken out and placed Cool in a dry environment to obtain a hybrid composite film containing a cross-linked graphene oxide intermediate layer.
  • the hybrid composite film containing the cross-linked graphene oxide intermediate layer of step 2 is placed in a solution of a second organic solvent containing a cross-linking agent at a certain temperature for cross-linking for a certain period of time, taken out, and used with a second organic solvent After washing, a cross-linked hybrid composite film containing a cross-linked graphene oxide intermediate layer is obtained.
  • the cross-linked hybrid composite film containing the cross-linked graphene oxide intermediate layer of step 3 is activated in an activation solvent at a certain temperature for a certain period of time, and after taking it out to dry, replace it with a third organic solvent, and then store it in In the third organic solvent, a hybrid composite membrane is obtained.
  • the base membrane includes an ultrafiltration membrane and a microfiltration membrane
  • the base membrane is prepared from polyimide or polyetherimide on a non-woven fabric through a phase inversion method.
  • the surface modifier includes polyethyleneimine, triethylamine, and dopamine.
  • the graphene oxide crosslinking agent is an aliphatic diamine.
  • the aliphatic diamine reagent includes one or a combination of any two or more of ethylene diamine, hexamethylene diamine, and other aliphatic compounds containing two amino groups.
  • the crosslinking temperature of the graphene oxide is 25°C to 80°C.
  • the content of the graphene oxide is 0.1 mg/L to 1000 mg/L.
  • the content of the graphene oxide is 1 mg/L-50 mg/L.
  • the aqueous monomer solution contains an aromatic diamine compound.
  • the mass percentage concentration of the aromatic diamine compound ranges from 0.01% to 2.0%.
  • the aromatic diamine compound includes one or a combination of any two or more of m-phenylenediamine, p-phenylenediamine, and other aromatic compounds containing two amine groups.
  • the organic phase monomer solution contains: aromatic tribasic acid chloride or mixed aromatic polybasic acid chloride, and a first organic solvent.
  • the aromatic polybasic acid chloride includes 1,3,5-trimesoyl chloride
  • the mixed aromatic polybasic acid chloride is a combination of aromatic tribasic acid chloride and 1,2,4,5-pyromellitic acid chloride or other aromatic polybasic acid chlorides. combination.
  • the crosslinking agent solution contains: one or more crosslinking agents and a second organic solvent.
  • the crosslinking agent includes one or a combination of any two or more of aromatic diamine compounds and aliphatic diamine compounds.
  • the crosslinking agent is ethylene diamine or hexamethylene diamine.
  • the activation solvent includes N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), tetrahydrofuran (THF) one or a combination of any two or more.
  • DMF N,N-dimethylformamide
  • NMP N-methylpyrrolidone
  • DMAc dimethylacetamide
  • DMSO dimethylsulfoxide
  • THF tetrahydrofuran
  • the first organic solvent includes a non-polar or weakly polar solvent.
  • the second organic solvent includes isopropanol.
  • the third organic solvent includes ethanol.
  • the cross-linking temperature ranges from room temperature to the bubble point temperature of the cross-linking agent solution, and the cross-linking time is 5 min to 4 h.
  • the activation temperature ranges from room temperature to the bubble point temperature of the activation reagent, and the activation time is 5 min to 120 min.
  • the mass percentage concentration of the aromatic polybasic acid chloride is 0.005% to 1.0%.
  • the mass percentage concentration of the crosslinking agent is 1.0% to 20.0%.
  • the third aspect of the present invention discloses the application of the above-mentioned hybrid composite membrane, which can be used for separation and purification of organic solvent system and separation and purification of aqueous solution system, as well as separation and separation of solute and solvent of solution system containing water and organic solvent. purification.
  • the preparation method of the hybrid composite membrane of the present invention improves the separation performance and solvent resistance of the membrane by depositing cross-linked graphene oxide on the ultrafiltration or microfiltration base membrane, and then performing interfacial polymerization.
  • the combined solvent activation step greatly improves the stability and separation performance of the membrane, and at the same time improves the compatibility of the membrane, and greatly expands the application system of nanofiltration membranes.
  • a significant technical advantage of the present invention is that the crosslinked graphene oxide nanomaterial is deposited on the polyimide base film, and the crosslinked graphene oxide nanomaterial sheets are connected by covalent bonds to make it stronger and increase
  • the crosslinked graphene oxide nanomaterial sheets are connected by covalent bonds to make it stronger and increase
  • the second significant technical advantage of the present invention is that since the surface of the cross-linked graphene oxide sheet has oxygen-containing groups, the hydrophilicity of the base film is improved, which is beneficial to interfacial polymerization, and the process of interfacial polymerization is controlled. A thinner separation layer can be obtained, thereby increasing the flux of the membrane.
  • the third significant technical advantage of the present invention is that the concentration of the water phase monomer and the oil phase monomer are very low, the separation layer produced is very thin, the flow resistance of the solvent is reduced, and the flux is improved.
  • the fourth significant technical advantage of the present invention is that the surface modifier and the base film are covalently bonded; the surface modifier and the cross-linked graphene oxide layer are covalently bonded; the two in the aqueous monomer solution
  • the amine compound and the graphene oxide layer form an amide covalent bond, so that the graphene oxide layer and the separation layer are firmly combined; using post-crosslinking, the crosslinking agent reacts with the polyimide base film to form a more solvent-resistant poly
  • the amide effectively improves the overall solvent resistance of the membrane; the post-crosslinking crosslinking agent can also react with the free acid chloride in the interfacial polymerization separation skin to play a surface modification effect and further improve the separation performance of the membrane.
  • the fifth significant technical advantage of the present invention is to dissolve a small amount of uncrosslinked low molecular weight polymer through further solvent activation treatment, and automatically adjust and optimize the spatial configuration of the polymer to make the polymer molecular spatial configuration
  • the energy is lower, and the polymer interstitial pore structure is more uniform, which further improves the flux and rejection rate of the membrane, while maintaining the chemical and mechanical stability of the membrane.
  • the present invention has achieved significant technological progress and has excellent application prospects in the field of separation of organic solution systems and water treatment containing organic solvents.
  • the fourth aspect of the present invention discloses an ultra-thin composite membrane, which is prepared by depositing a nano-material intermediate layer on the surface of an ultrafiltration or microfiltration base membrane, and then forming a separation skin layer on the nano-interlayer through interfacial polymerization, among them:
  • the nanomaterial intermediate layer is composed of graphene quantum dots (GQDs); the GQDs include aminated graphene quantum dots and carboxylated graphene quantum dots;
  • the average plate diameter of the GQDs is less than or equal to 30 nm; preferably, the average plate diameter of the GQDs is less than or equal to 20 nm; more preferably, the average plate diameter of the GQDs is less than or equal to 10 nm;
  • the average thickness of the GQDs is less than or equal to 5 nm; preferably, the average thickness of the GQDs is less than or equal to 2 nm;
  • the GQDs nanomaterial intermediate layer is modified on the base film by the following method: first, the base film is contacted with the surface modifier solution for 10s to 30 minutes, then the surface modifier solution remaining on the surface is removed, and after drying, Fully contact with the GQDs suspension for 1 to 300s, remove the excess GQDs suspension on the surface, and then dry, and the GQDs nanomaterial intermediate layer is modified on the base film; preferably, the surface modifier includes polyethyleneimine;
  • the GQDs suspension is an aqueous solution, wherein the concentration of GQDs ranges from 1 to 500 mg/L;
  • the average thickness of the GQDs nanomaterial intermediate layer is less than 10nm; preferably, the average thickness of the GQDs nanomaterial intermediate layer is less than 5nm;
  • the average thickness of the separation skin layer is less than 30 nm, and the average roughness is less than 5 nm.
  • the one kind of ultra-thin composite membrane is a nanofiltration membrane for organic solvent system applications, and has the following characteristics:
  • the base film contains imide groups capable of cross-linking with aliphatic polyamine compounds or aromatic polyamine compounds;
  • the separating skin layer is polyamide
  • the ultra-thin composite film after interfacial polymerization is integrally cross-linked with aliphatic polyamine compounds or aromatic polyamine compounds;
  • the solvent-resistant ultra-thin composite membrane is characterized in that the ultra-thin composite membrane is exposed to 100 mg ⁇ L -1 rhodamine B ethanol solution at 25°C and a transmembrane pressure difference of 1.0 MPa
  • the rejection rate of rhodamine B is greater than 98%, the flux is greater than 40L ⁇ m -2 ⁇ h -1 , and the molecular weight of rhodamine B is 479 Daltons.
  • the fifth aspect of the present invention discloses a method for preparing an ultra-thin composite film. It includes the following steps:
  • Step 1 After contacting the surface of the base film with the surface modifier solution for 10s to 30 minutes, remove the remaining surface modifier solution on the surface of the base film, dry the base film, and then fully contact the GQDs suspension for 1 to 300 seconds to remove the base film The excess GQDs suspension on the surface is dried to obtain the modified base film;
  • Step 2 After fully contacting the surface of the modified base film obtained in Step 1 with the aqueous monomer solution containing aromatic diamine compounds for 1s ⁇ 120s, remove the aqueous monomer solution on the surface of the film and dry it; after drying After fully contacting the surface of the film with the first organic solvent solution (organic phase monomer solution) containing aromatic polybasic acid chloride for 1s ⁇ 120s, remove the organic phase monomer solution on the surface of the film, and heat the film at a certain temperature for 10s ⁇ 300s Then, cool to room temperature in a dry environment to obtain a hybrid composite film containing an intermediate layer of GQDs;
  • organic solvent solution organic phase monomer solution
  • a method for preparing an ultra-thin composite solvent-resistant film further includes the following steps:
  • Step 3 Cross-link the hybrid composite membrane containing the GQDs intermediate layer of step 2 through a crosslinking agent solution at a certain temperature for a certain period of time, and then rinse the membrane surface with a second organic solvent to obtain a crosslinked hybrid containing GQDs intermediate layer Composite membrane;
  • Step 4 The cross-linked hybrid composite membrane containing the GQDs intermediate layer of step 3 is activated by a certain temperature of activation solvent for a certain period of time, then dried, replaced with a third organic solvent, and then stored in the third organic solvent In, an ultra-thin composite film is obtained.
  • the aqueous monomer solution contains an aromatic diamine compound.
  • the aromatic diamine compound includes m-phenylenediamine, p-phenylenediamine, other aromatic compounds containing two amine groups, or a combination of any of the foregoing.
  • the mass percentage concentration of the aromatic diamine compound ranges from 0.01% to 4.0%.
  • the organic phase monomer solution contains: aromatic tribasic acid chloride or mixed aromatic polybasic acid chloride, and a first organic solvent.
  • the aromatic polybasic acid chloride includes 1,3,5-trimesoyl chloride
  • the mixed aromatic polybasic acid chloride is a combination of aromatic tribasic acid chloride and 1,2,4,5-pyromellitic acid chloride or other aromatic polybasic acid chlorides. combination.
  • the crosslinking agent solution contains: one or more crosslinking agents and a second organic solvent.
  • the crosslinking agent includes aromatic diamine compounds, aliphatic diamine compounds, or mixtures thereof.
  • the aliphatic diamine compound includes ethylene diamine, hexamethylene diamine, other aliphatic compounds containing two amine groups, or a combination of any of the foregoing.
  • the crosslinking agent is ethylene diamine or hexamethylene diamine.
  • the activation solvent includes N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), tetrahydrofuran (THF), or a combination of any of the above.
  • DMF N,N-dimethylformamide
  • NMP N-methylpyrrolidone
  • DMAc dimethylacetamide
  • DMSO dimethylsulfoxide
  • THF tetrahydrofuran
  • the first organic solvent includes hydrocarbons such as alkanes and other non-polar and weakly polar solvents.
  • the second organic solvent includes isopropanol.
  • the third organic solvent includes ethanol.
  • the cross-linking temperature ranges from room temperature to the bubble point temperature of the cross-linking agent solution, and the cross-linking time is 5 min to 4 h.
  • the activation temperature ranges from room temperature to the bubble point temperature of the activation reagent, and the activation time is 5 min to 120 min.
  • the concentration range of the mass percentage of the aromatic tribasic acid chloride is 0.005% to 1.0%.
  • the mass percentage concentration of the crosslinking agent ranges from 1.0% to 20.0%.
  • the sixth aspect of the present invention discloses the application of an ultra-thin composite membrane, which is characterized in that it is used for the separation and purification of organic solvent systems and the separation and purification of aqueous solutions, as well as the solute and solvent of a solution system containing water and organic solvents.
  • the separation and purification of the solute has a molecular weight ranging from 200 to 1000 Daltons.
  • the preparation method of the ultra-thin composite membrane of the present invention improves the separation performance and solvent resistance of the membrane by depositing GQDs on the ultrafiltration or microfiltration base membrane and then performing interfacial polymerization, and through chemical crosslinking and solvent activation Steps to greatly improve the stability and separation performance of the membrane, while expanding the application system of nanofiltration membranes.
  • a significant technical advantage of the present invention is that the deposition of GQDs nanomaterials on the polyimide base film is a new type of quasi-zero-dimensional nanomaterials, and it is a nanometer graphene sheet, which not only has strong quantum effects and boundary effects And fluorescence performance, and has good thermal and chemical stability, as well as excellent biocompatibility and low toxicity. Because its surface contains a large number of oxygen-containing functional groups, such as hydroxyl, carboxyl and epoxy groups, the hydrophilicity of the base membrane is improved, which is beneficial to the interfacial polymerization process, which allows the interfacial polymerization process to be controlled, and a thinner separation layer can be obtained. Thereby increasing the flux of the membrane.
  • Another significant technical advantage of the present invention is that the concentration of the water phase monomer and the oil phase monomer are very low, the separation layer produced is very thin, the flow resistance of the solvent is reduced, and the flux is improved.
  • the third significant technical advantage of the present invention is to effectively improve the solvent resistance of the film by performing a chemical crosslinking step after the interfacial polymerization.
  • the crosslinking agent reacts with the polyimide base film to form a more solvent-resistant polyamide; it can also make the diamine compound in the aqueous monomer solution and the GQDs intermediate layer form an amide covalent bond to increase the separation layer It can also react with free acid chloride to modify the surface and greatly improve the separation performance of the membrane.
  • Another significant technical advantage of the present invention is that through further solvent activation treatment, a small amount of uncrosslinked low molecular weight polymer is dissolved and removed, and the spatial configuration of the polymer is automatically adjusted and optimized, so that the spatial configuration of the polymer molecule is improved.
  • the energy is lower and the polymer interstitial pore structure is more uniform, thereby further improving the flux and rejection rate of the membrane, while maintaining the chemical and mechanical stability of the membrane.
  • the present invention has made significant technological progress, and has excellent applications in the field of water-salt systems, separation of organic matter in the molecular weight range of 200-2000 Daltons in separated water and organic solution systems, and water treatment containing organic solvents. prospect.
  • the base membrane is a polyimide (PI) flat ultrafiltration membrane with a molecular weight cut-off of 50,000 Daltons (Da);
  • the aromatic diamine compound used is m-phenylenediamine (MPD);
  • the aromatic tribasic acid chloride used is 1,3,5-trimesoyl chloride (TMC);
  • the surface modifier used is polyethyleneimine (PEI);
  • the graphene oxide crosslinking agent used is ethylene diamine (EDA);
  • the base film crosslinking agent used is hexamethylene diamine
  • the first organic solvent is n-hexane
  • the second organic solvent is isopropanol
  • the third organic solvent is ethanol
  • the activation solvent is N,N-dimethylformamide (DMF);
  • the rejection rate and solvent flux of the prepared membrane were measured with a 100 mg/L rhodamine B (479 Dalton)-ethanol solution.
  • the rejection rate of sodium sulfate and the corresponding water flux of the prepared membrane were measured with a 2000 mg/L sodium sulfate aqueous solution.
  • the aromatic diamine compound is dissolved in deionized water with a mass percentage concentration of 0.1% to prepare an aqueous monomer solution.
  • the aromatic tribasic acid chloride is dissolved in the first organic solvent with a mass percentage concentration of 0.005% to prepare an organic phase monomer solution.
  • the membrane preparation steps and conditions of the polyamide composite nanofiltration membrane are as follows:
  • the membrane After fully contacting the surface of the base film with the aqueous monomer solution for 120s, remove the aqueous monomer solution on the surface of the base film, dry it naturally in the air at room temperature, and then fully contact the organic monomer solution for 60 seconds, then remove the film surface In the organic phase monomer solution, the membrane is quickly placed in a drying oven at 80°C for 5 minutes, taken out and naturally cooled in a dry environment to obtain a dry polyamide composite nanofiltration membrane.
  • the prepared polyamide composite nanofiltration membrane has a rejection rate of 90% for rhodamine B in a 100mg/L rhodamine B-ethanol solution at 25°C and a transmembrane pressure difference of 1.0MPa, and the ethanol flux is 13.7L/ (m 2 ⁇ h) (abbreviated as LMH); at 25°C and a transmembrane pressure difference of 1.0 MPa, the rejection rate of sodium sulfate in a 2000 mg/L sodium sulfate aqueous solution is 48%, and the flux is 308.322 LMH.
  • the prepared membrane dissolves quickly in both polar solvents DMF and NMP, indicating that the polyamide composite nanofiltration membrane prepared by the above method is not resistant to strong polar solvents.
  • the GO has an average sheet diameter of 500 nm and an average thickness of 2 nm.
  • the film making steps are as follows:
  • Step 1 After fully contacting the base film with a polyethyleneimine solution with a concentration of 0.1% by weight at 70°C for 30 seconds, remove the remaining modifiers on the base film surface, and dry for 60 seconds, then cross-linked with graphene oxide The suspension aqueous solution is fully contacted for 60s to remove the free suspension on the surface of the membrane and dry it to obtain a modified base membrane;
  • Step 2 After fully contacting the modified base film obtained in step 1 with the aqueous monomer solution for 120s, remove the aqueous monomer solution on the surface of the base film and dry it; fully dry the dried film with the organic monomer solution After contacting for 60s, remove the organic phase monomer solution on the surface of the membrane, heat-treat it in an atmosphere at 80°C for 5 minutes, take it out and cool it to room temperature in a dry environment to obtain a dry hybrid composite containing a cross-linked graphene oxide intermediate layer membrane;
  • Step 3 Put the dry hybrid composite film containing the graphene oxide intermediate layer obtained in step 2 into a crosslinking agent solution with a mass percentage concentration of 10wt% and a temperature of 60°C for 30 minutes.
  • Cross-linked hybrid composite nanofiltration membrane with cross-linked graphene oxide intermediate layer
  • test conditions are the same as the comparative example.
  • the prepared cross-linked hybrid composite nanofiltration membrane has a rejection rate of 83.59% for sodium sulfate, which is much higher than the comparative example, indicating that the introduction of cross-linked graphene oxide can control the interfacial polymerization process and improve the separation performance of the membrane.
  • Example 1 The only difference from Example 1 is that the obtained cross-linked hybrid composite nanofiltration membrane containing the cross-linked graphene oxide intermediate layer is placed in the activation reagent DMF at 80° C. for activation for 30 minutes.
  • Example 1 All other steps are the same as in Example 1; the test conditions are the same as in Example 1.
  • the prepared hybrid composite nanofiltration membrane has a rejection rate of 97.49% for sodium sulfate and a water flux of 55.85LMH, which is much higher than the comparative example.
  • both the flux and rejection rate are obtained.
  • the significant increase indicates that the activation process dissolves some short-chain molecules and rearranges the long-chain molecules, which greatly improves the separation performance of the membrane.
  • step 1 the polyimide base film is fully contacted with 0.1 wt% polyethyleneimine at 25° C. for 30 seconds.
  • Example 1 All other steps are the same as in Example 1; the test conditions are the same as in the comparative example.
  • the average thickness of the separation skin layer is 20 nm, and the average roughness is 1.99 nm.
  • the prepared hybrid composite nanofiltration membrane has a retention rate of 96.69% for rhodamine B and a flux of 43.44LMH of ethanol, which is much higher than the comparative example.
  • Example 3 The difference from Example 3 is that the concentration of polyimide used in step 1 is 5 mg/L.
  • Example 1 All other steps are the same as in Example 1; the test conditions are the same as in Example 3.
  • the average thickness of the separation skin layer is 20 nm, and the average roughness is 2.04 nm.
  • the prepared hybrid composite nanofiltration membrane has a rejection rate of 99.34% for rhodamine B and a flux of 41.47LMH of ethanol, which is much higher than the comparative example.
  • the prepared hybrid composite nanofiltration membrane was soaked in DMF at 80°C for 12 days, the flux of ethanol was 50.97LMH, and the rejection rate of rhodamine B was 99.3%. It shows that the prepared hybrid composite nanofiltration membrane has good solvent resistance.
  • the hybrid composite nanofiltration membrane and the traditional solvent-resistant nanofiltration membrane were compared with the atomic force microscope and scanning electron microscope images.
  • the surface of the membrane became smoother, indicating that the interfacial polymerization process has been effectively controlled to form a smoother surface, which is more beneficial The passage of solvents.
  • the pore size analysis results show that the prepared hybrid composite nanofiltration membrane has a reduced pore size, which leads to an increase in the rejection rate of the membrane; at the same time, the pore density and porosity are also greatly increased, resulting in a significant increase in flux.
  • the present invention has achieved remarkable technical effects and progress.
  • Example 3 The difference from Example 3 is that the graphene oxide used is not crosslinked.
  • Example 1 All other steps are the same as in Example 1; the test conditions are the same as in the comparative example.
  • the prepared hybrid composite nanofiltration membrane has a retention rate of 96.59% for rhodamine B and a flux of 13.23 LMH.
  • Example 3 Compared with Example 3, the rejection rate did not change, but the flux was greatly reduced because the graphene oxide was not cross-linked and only hydrogen bonds existed between the layers, while the graphene oxide and the polyimide base film There are also hydrogen bonds and very weak covalent bonds. Therefore, the interfacial polymerization process cannot be well controlled, resulting in defects in the formed separation layer, resulting in a significant reduction in flux.
  • Example 4 The difference from Example 4 is that the concentration of crosslinked graphene oxide used in step 1 is 10 mg/L.
  • Example 1 All other steps are the same as in Example 1; the test conditions are the same as in the comparative example.
  • the prepared hybrid composite nanofiltration membrane has a rejection rate of 98.40% for rhodamine B and a flux of 33.07LMH of ethanol, which is much higher than the comparative example.
  • Example 4 The difference from Example 4 is that the concentration of the crosslinked graphene oxide used in step one is 100 mg/L.
  • Example 1 All other steps are the same as in Example 1; the test conditions are the same as in the comparative example.
  • the prepared hybrid composite nanofiltration membrane has a rejection rate of 97.07% for rhodamine B and a flux of 25.42LMH of ethanol, which is much higher than the comparative example.
  • the separation performance and solvent resistance of the polyamide composite nanofiltration membrane of the comparative example and the hybrid composite nanofiltration membrane prepared in each example are compared, and the results are shown in Table 1.
  • the hybrid composite nanofiltration membranes prepared in each example (except Example 1) were all activated by DMF at 80°C for 30 minutes to test the separation performance of rhodamine B-ethanol solution and the separation performance of sodium sulfate aqueous solution.
  • the comparative examples are the same.
  • the membrane of the comparative example does not have a high rejection rate for sodium sulfate and rhodamine B, because the concentration of monomers in the water phase and the monomer in the oil phase is low, and the interfacial polymerization process produces more separation layer defects.
  • Example 1 Compared with the comparative example, the flux of Example 1 is reduced, but the rejection rate is doubled, because the introduction of PEI and crosslinked graphene oxide reduces the defects of the prepared hybrid composite membrane, resulting in flux The reduction of the defects; the existence of defects makes the rejection rate of the hybrid composite membrane unable to meet the expected requirements.
  • the base film is covered with a layer of cross-linked graphene oxide, which increases the hydrophilicity and porosity of the base film surface and reduces the base film.
  • the pore size of the membrane is beneficial to control the process of interfacial polymerization, so that the generated separation layer has fewer defects, while the separation layer is thinner, and the flux and rejection rate are significantly improved; on the other hand, the addition of chemical crosslinking steps has a significant impact on the performance Significant increase.
  • Example 5 illustrates that the cross-linking of graphene oxide nanosheets is important for improving flux and rejection.
  • Examples 6 and 7 illustrate that high-concentration graphene oxide nanosheets are prone to agglomeration, which leads to defects in the interfacial polymerization process and reduces the rejection rate.
  • the above examples illustrate that coating a layer of crosslinked graphene oxide nanosheets on the base film has a great influence on the interfacial polymerization process.
  • the prepared multifunctional hybrid composite film has excellent performance and achieved remarkable results. Technical effects and progress.
  • the base membrane is a polyimide (PI) flat ultrafiltration membrane with a molecular weight of 50000Da;
  • the aromatic diamine compound is dissolved in deionized water with a mass percentage concentration of 0.1% to prepare an aqueous monomer solution.
  • the aromatic tribasic acid chloride is dissolved in the first organic solvent with a mass percentage concentration of 0.005% to prepare an organic phase monomer solution.
  • the membrane preparation steps and conditions of the polyamide composite nanofiltration membrane are as follows:
  • the obtained dry nanofiltration membrane into a cross-linking agent solution with a mass percentage concentration of 10% and a temperature of 60°C for 30 minutes to obtain a cross-linked nanofiltration membrane; then put the nanofiltration membrane into 80°C Activated in the activating reagent DMF for 30 minutes, the polyamide composite nanofiltration membrane is prepared.
  • the prepared polyamide composite nanofiltration membrane was tested for separation performance using 100 mg ⁇ L -1 rhodamine B-ethanol solution at 25° C. and a transmembrane pressure difference of 1.0 MPa.
  • the rejection rate of rhodamine B is 87.4%
  • the ethanol flux is 31.0L ⁇ m -2 ⁇ h -1 (abbreviated as LMH)
  • the rejection rate is not high, indicating that the prepared membrane has many defects.
  • the GQDs aqueous solution with a concentration of 100 mg ⁇ L -1 was sonicated for 60 min for use.
  • the average thickness of the GQDs is 1.8 nm; the average thickness of the GQDs is 1.9 nm.
  • the film making steps are as follows:
  • Step 1 After fully contacting the base film with a polyethyleneimine solution with a concentration of 0.005wt% at 25°C for 30s, remove the residual modifier on the base film surface and dry it, then fully contact the GQDs aqueous solution for 60s to remove the film surface The free suspension is dried to obtain a modified hybrid membrane;
  • Step 2 After fully contacting the modified hybrid membrane obtained in step 1 with the aqueous monomer solution for 120s, remove the aqueous monomer solution on the surface of the base film and dry it for 45s; the dried membrane and the organic monomer Fully contact the solution for 60s, remove the organic phase monomer solution on the membrane surface, heat-treat it in an atmosphere at 80°C for 5 minutes, take it out and cool it to room temperature in a dry environment to obtain a dry composite membrane containing an intermediate layer of GQDs;
  • Step 3 Put the dry composite film containing the GQDs intermediate layer obtained in Step 2 into a crosslinking agent solution with a mass percentage of 10% and a temperature of 60°C for 30 minutes to obtain crosslinked GQDs.
  • Step 4 Put the obtained cross-linked composite nanofiltration membrane containing GQDs intermediate layer into the activation reagent DMF at 80° C. to activate for 30 minutes.
  • test conditions are the same as Comparative Example 2.
  • the average thickness of the separation skin layer is 45 nm, and the average roughness is 2.37 nm.
  • the prepared ultra-thin composite nanofiltration membrane has a retention rate of 94% for rhodamine B, which is higher than that of Comparative Example 2, indicating that the introduction of GQDs can control the interfacial polymerization process and improve the separation performance of the membrane.
  • step 1 the polyimide base film is fully contacted with 0.025wt% polyethyleneimine at 25°C for 30s. All other steps are the same as in Example 8.
  • the test conditions are the same as Comparative Example 2.
  • the prepared multifunctional hybrid composite nanofiltration membrane has a rejection rate of 98.2% for rhodamine B and a flux of 33.8LMH of ethanol, which is much higher than that of Comparative Example 2.
  • Example 9 The difference from Example 9 is that the concentration of polyimide used in step 1 is 0.05 wt%. All other steps are the same as in Example 8.
  • the test conditions are the same as Comparative Example 2.
  • the average thickness of the separation skin layer is 25 nm, and the average roughness is less than 2.0 nm.
  • the prepared ultra-thin composite nanofiltration membrane has a rejection rate of 98.4% for rhodamine B and a flux of 40.2LMH of ethanol, which is much higher than that of Comparative Example 2.
  • the prepared multifunctional hybrid composite nanofiltration membrane was soaked in DMF at 80°C for 8 days, the flux of ethanol was 51.7LMH, and the rejection rate of rhodamine B was 98.3%. It shows that the prepared multifunctional hybrid composite nanofiltration membrane has good solvent resistance.
  • Example 10 The difference from Example 10 is that the graphene quantum dot concentration used in step 1 is 5 mg ⁇ L -1 . All other steps are the same as in Example 8.
  • the test conditions are the same as Comparative Example 2.
  • the prepared ultra-thin composite nanofiltration membrane has a retention rate of 99.2% for rhodamine B and a flux of 21.3LMH of ethanol.
  • Example 10 The difference from Example 10 is that the graphene quantum dot concentration used in step 1 is 200 mg ⁇ L -1 . All other steps are the same as in Example 8.
  • the test conditions are the same as Comparative Example 2.
  • the prepared ultra-thin composite nanofiltration membrane has a rejection rate of 96.4% for rhodamine B, and a flux of 40.8LMH of ethanol, which is much higher than that of Comparative Example 2.
  • the base membrane is a polysulfone (PSF) flat ultrafiltration membrane with a molecular weight of 80,000 Da.
  • PSF polysulfone
  • the piperazine is dissolved in deionized water with a mass percentage concentration of 0.5% to prepare an aqueous monomer solution.
  • the aromatic tribasic acid chloride is dissolved in the first organic solvent with a mass percentage concentration of 0.1% to prepare an organic phase monomer solution.
  • the membrane preparation steps and conditions of the polyamide composite nanofiltration membrane are as follows:
  • the prepared polypiperazine amide composite nanofiltration membrane was tested for separation performance of a 2000 mg ⁇ L -1 Na 2 SO 4 aqueous solution at 25° C. and a transmembrane pressure difference of 1.0 MPa.
  • the rejection rate of Na 2 SO 4 is 95.83%, and the water flux is 68.67 LMH.
  • the base film, the aqueous phase monomer solution, and the organic phase monomer solution are the same as Comparative Example 3.
  • the GQDs aqueous solution with a concentration of 100 mg ⁇ L -1 was sonicated for 60 min for use.
  • GQDs have an average chip diameter of 3.0nm and an average thickness of 2.0nm.
  • the film making steps are as follows:
  • Step 1 After fully contacting the PSF base film with a polyethyleneimine solution with a concentration of 0.025% by weight at 25°C for 30 seconds, remove the residual modifier on the base film surface and dry it, then fully contact the GQDs aqueous solution for 60 seconds to remove the film The free suspension on the surface is dried to obtain a modified hybrid membrane;
  • Step 2 After fully contacting the modified hybrid membrane obtained in step 1 with the aqueous monomer solution for 60 seconds, remove the aqueous monomer solution on the surface of the base film and dry it for 45 seconds; and dry the membrane with the organic monomer The solution is fully contacted for 30s, the organic phase monomer solution on the membrane surface is removed, and it is heat-treated in an atmosphere at 80°C for 7 minutes, and then placed in a dry environment to cool to room temperature to obtain a dry composite nanofiltration membrane containing an intermediate layer of GQDs;
  • test conditions are the same as Comparative Example 3.
  • the prepared polypiperazinamide composite nanofiltration membrane has a Na 2 SO 4 rejection rate of 95.56% and a water flux of 90.61 LMH.
  • step one the polysulfone-based membrane is fully contacted with 0.05wt% polyethyleneimine at 25°C for 30s. All other steps are the same as in Example 13.
  • the test conditions are the same as Comparative Example 3.
  • the prepared polypiperazinamide composite nanofiltration membrane has a Na 2 SO 4 rejection rate of 95.86% and a water flux of 88.79 LMH.
  • step one the polysulfone-based membrane is fully contacted with 0.1 wt% polyethyleneimine at 25° C. for 30 s. All other steps are the same as in Example 13.
  • test conditions are the same as Comparative Example 3.
  • the prepared polypiperazinamide composite nanofiltration membrane has a rejection rate of 96.26% for Na 2 SO 4 and a water flux of 72.69 LMH.
  • the ultra-thin composite nanofiltration membrane and the traditional solvent-resistant nanofiltration membrane were compared with atomic force microscope and scanning electron microscope images.
  • the surface of the membrane became smoother, indicating that the interfacial polymerization process has been effectively controlled, forming a smoother surface, which is more beneficial
  • the passage of the solvent improves the pollution resistance of the membrane.
  • the pore size analysis results show that the prepared ultra-thin composite nanofiltration membrane has a reduced pore size, which leads to an increase in the rejection rate of the membrane; at the same time, the pore density and porosity are also greatly increased, resulting in a significant increase in flux.
  • the separation performance and solvent resistance of the polyamide composite nanofiltration membranes of Comparative Examples 2 and 3 and the composite nanofiltration membranes prepared in each example are compared, and the results are shown in Table 2.
  • the ultra-thin composite nanofiltration membranes prepared in Comparative Example 2 and Examples 8-12 were cross-linked with hexamethylenediamine at 60°C for 30 minutes and DMF activated at 80°C for 30 minutes to test the separation performance of rhodamine B-ethanol solution. Test conditions Same as Comparative Example 2.
  • the ultra-thin composite nanofiltration membranes prepared in Comparative Example 3 and Examples 13-15 were not cross-linked by hexamethylene diamine and DMF activated.
  • the separation performance of the rhodamine B-ethanol solution was tested, and the test conditions were the same as those in Comparative Example 3.
  • the base membrane is covered with a layer of GQDs, which increases the hydrophilicity and porosity of the base membrane surface, reduces the pore size of the base membrane, and helps control the process of interfacial polymerization.
  • the resulting separation layer has fewer defects, while the separation layer is thinner, and the flux and rejection rate are significantly improved.
  • Examples 8-15 illustrate that coating a layer of GQDs intermediate layer on the base film has a great influence on the interfacial polymerization process.
  • the prepared ultra-thin composite film has excellent performance and has achieved significant technical effects and progress.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种复合膜、其制备方法及用途。具体地,所述复合膜是以氧化石墨烯为中间层或者以石墨烯量子点为中间层的复合膜。以氧化石墨烯为中间层的杂化复合膜的制备方法包括界面聚合步骤、多元胺修饰步骤、化学交联步骤和溶剂活化步骤。以石墨烯量子点为中间层的超薄复合膜的制备方法包括添加石墨烯量子点中间层步骤、界面聚合反应步骤、化学交联步骤和溶剂活化步骤。所述的氧化石墨烯中间层具有大量的含氧官能团,石墨烯量子点具有大量羟基和羧基,极大地增加了基膜的亲水性,从而有效提高膜的分离性能和/或耐溶剂性。

Description

复合膜、制备方法及其应用 技术领域
本发明属于膜分离技术领域,具体涉及复合膜、制备方法及其应用。
背景技术
海水淡化膜技术涉及到的膜包括反渗透和纳滤膜等。反渗透(RO)膜是最精细的一种膜产品,能有效截留绝大部分溶解盐及有机物,同时允许水分子通过。纳滤(NF)是一种介于超滤(UF)和反渗透之间的压力驱动的膜分离技术,纳滤膜孔径在0.5~2.0nm左右,截留分子量在200~1000道尔顿(Da)之间,纳滤过程具有常温分离、无相转化、操作压力低、对二价和多价离子的分离选择性高,操作与放大生产简单等特点。目前商品化的纳滤膜广泛应用于水溶液体系,但在涉及有机溶剂体系时,纳滤膜的应用受到很大的限制。
有机溶剂在化工、石油石化、医药等领域中应用广泛,且使用量通常都较大,因此,如何有效地重复利用有机溶剂显得尤其重要。有机溶剂体系的传统分离提纯工艺如精馏、萃取等,操作复杂、能耗较高。耐溶剂纳滤(Organic solvent nanofiltration,OSN)是在现有的纳滤技术基础上发展起来的新型膜分离技术,可以在有机溶剂的溶液中应用,在石油化工、医药、食品、精细化工等领域具有极大的应用潜力。然而,OSN的大规模应用过程依然较少,主要原因是耐有机溶剂的商品纳滤膜非常少,且目前的耐溶剂纳滤膜通量仍较低,在实际有机溶剂体系中应用时的耐溶剂性能比较差,较难以在有机溶剂中长期保持稳定的渗透通量和选择性。
近年来,随着纳米技术的迅速发展,将一些功能性无机纳米材料引入聚合物膜内以提高膜的渗透选择性和耐污染稳定性等已发展成为一个重要的研究方向。一些研究者也考虑引入纳米颗粒中间层的方式提高膜的分离性能。
氧化石墨烯(Graphene Oxide,GO)是由氧化石墨发生剥离而形成的单层或多层氧化石墨,具有典型的准二维空间结构,并且片层上还有大量的含氧基团,例如羟基和环氧基,边缘处还有羧基和羟基。近些年,国内外的一些学者通过利用原位生长的方法把GO纳米片覆盖在PVDF超滤基膜上,或利用抽滤的方式把GO覆盖在交联后的聚酰亚胺超滤基膜上等方式来控制界面聚合的过程。但是,所制备出来的纳滤膜有的不能够长期存在于有机溶液中,会发生溶胀;有的膜有很高的截留率,但是通量较低。基于GO自身的特点,开发出一种杂化复合膜,使其在水溶液体系中具有较稳定的通量和较高的截留率,同时,在有机溶剂体系中也具有较高的通量和截留率,实现“一膜多用”,有很好的应用价值。
石墨烯量子点(GQDs)是一种新型的准零维纳米级的石墨烯片,具有良好的化学稳定性以及优良的生物相容性,且表面含有大量的含氧官能团,如羟基,羧基和环氧基,可以与基体发生相互作用。基于GQDs自身的性质,开发出一种具有稳定通量和较高截留率的杂化复合膜,将其应用在有机溶剂体系和水溶液体系分离中,也有很好的应用价值。
发明内容
本发明针对现有技术中存在的纳滤膜在水溶液体系和有机溶液体系不能通用、耐溶剂纳滤膜通量较低、耐溶剂性能较差的技术问题,提出复合膜、制备方法及其应用,所制备的复合膜具有很好的耐溶剂性能和高通量以及很好的分离性能。
本发明还针对现有技术中面向水溶液体系纳滤和反渗透膜的通量较低、膜不耐污染的技术问题,和面向有机溶剂体系的纳滤膜耐溶剂性差、相转化法聚酰亚胺耐溶剂纳滤膜通量较低的技术问题,提出一种超薄复合膜、制备方法及其应用,所制备的超薄复合膜具有很好的分离性能。
为实现上述目的,本发明的技术方案如下。
本发明的第一方面公开了一种杂化复合膜,通过在基膜(由无纺布和支撑层构成)表面沉积一层纳米材料中间层,再在该纳米中间层上界面聚合一层分离皮层制得,其中,
(1)所述的分离皮层包含以下两种重复结构单元:
Figure PCTCN2019099978-appb-000001
其中,Ar是芳香多元胺化合物的芳香核,Ar’是芳香多元酰卤化合物的芳香核;
所述的“多”是指三个或三个以上(下同)。
(2)所述的纳米材料中间层由交联氧化石墨烯构成。
(3)所述的纳米材料中间层和所述的分离皮层之间通过共价键连接。
(4)所述的纳米材料中间层的厚度小于20nm。优选的,所述的GO纳米材料中间层的平均厚度小于5nm。
(5)所述的分离皮层的平均厚度小于30nm,平均粗糙度小于5nm。
优选的,所述的两种重复单元分别为:
Figure PCTCN2019099978-appb-000002
优选的,所述的交联氧化石墨烯是通过将氧化石墨烯悬浮水溶液用脂肪族二胺化合物在1℃~80℃之间交联制得的。
优选的,所述的氧化石墨烯悬浮水溶液中的氧化石墨烯的含量为0.1mg/L~1000mg/L;更优先的,氧化石墨烯的含量为0.1mg/L~50mg/L。
优选的,所述的支撑层含有能与脂肪族多元胺化合物或芳香多元胺化合物发生交联反应的酰亚胺基团。
优选的,所述的支撑层和所述的纳米材料中间层之间通过共价键连接。
优选的,所述的界面聚合之后利用脂肪族多元胺化合物或芳香多元胺化合物进行交联。
优选的,所述的界面聚合之后利用己二胺进行交联。
优选的,所述的交联之后,再经过溶剂活化处理。
优选的,所述的纳米材料中间层的制备方式是:将基膜与表面修饰剂溶液充分接触10s~30min后,去掉基膜表面残留的表面修饰剂溶液,并用去离子水冲洗后,晾干,然后再与交联氧化石墨烯的悬浮水溶液充分接触1~120s后,去除表面多余的交联氧化石墨烯悬浮液,并用去离子水冲洗后,晾干,即制得纳米材料中间层。
优选的,所述的表面修饰剂包括聚乙烯亚胺、三乙胺、多巴胺。
优选的,所述的表面修饰剂为聚乙烯亚胺。
优选的,所述的氧化石墨烯交联剂为脂肪族二胺。
优选的,所述的氧化石墨烯交联剂为乙二胺。
本发明的第二方面公开了一种多功能杂化复合膜的制备方法,包括以下步骤:
步骤一:将基膜与表面修饰剂溶液充分接触10s~30min后,去掉基膜表面残留的表面修饰剂溶液,并用去离子水冲洗后,晾干至液滴消失后,继续晾干1s~300s,再与交联氧化石墨烯的悬浮水溶液充分接触1~120s,去除表面多余的交联氧化石墨烯悬浮液,并用去离子水冲洗后,晾干1~120s,得到修饰后的基膜;
步骤二:将步骤一得到的修饰后的基膜与含有芳香二胺化合物的水相单体溶液充分接触1~120s后,去掉膜表面的多余水相单体溶液并晾干后,与含有芳香族多元酰氯的第一有机溶剂的溶液(有机相单体溶液)充分接触1~60s,去掉膜表面的有机相单体溶液后,放入到一定温度的氛围中热处理10~300s,取出,放在干燥的环境中冷却,得到含有交联氧化石墨烯中间层的杂化复合膜。
优选的,将步骤二的含有交联氧化石墨烯中间层的杂化复合膜放入一定温度下的含有交联剂的第二有机溶剂的溶液中交联一定时间,取出,用第二有机溶剂冲洗,即得到含有交联氧化石墨烯中间层的交联杂化复合膜。
优选的,将步骤三的含有交联氧化石墨烯中间层的交联杂化复合膜在一定温度下的活化溶剂中活化处理一定时间,取出晾干后,用第三有机溶剂置换,然后保存于第三有机溶剂中,得到杂化复合膜。
优选的,所述的基膜包括超滤膜和微滤膜,基膜由聚酰亚胺或聚醚酰亚胺经相转化法在无纺布上制备得到。
优选的,所述的表面修饰剂包括聚乙烯亚胺、三乙胺、多巴胺。
优选的,所述的氧化石墨烯交联剂为脂肪族二胺。
优选的,所述的脂肪族二胺试剂包括乙二胺、己二胺、其它含有两个氨基的脂肪族化合物中的一种或者任意两种以上的组合。
优选的,所述的氧化石墨烯的交联温度为25℃~80℃。
优选的,所述氧化石墨烯的含量为0.1mg/L~1000mg/L。
更优选的,所述氧化石墨烯的含量为1mg/L~50mg/L。
优选的,所述的水相单体溶液中含有:芳香二胺化合物。
优选的,所述的芳香二胺化合物的质量百分比浓度范围为0.01%~2.0%。
优选的,所述的芳香二胺化合物包括间苯二胺、对苯二胺、其它含有两个胺基的芳香化合物中的一种或者任意两种以上的组合。
优选的,所述的有机相单体溶液中含有:芳香三元酰氯或混合芳香多元酰氯,和第一有机溶剂。
优选的,所述的芳香族多元酰氯包括1,3,5-均苯三甲酰氯,混合芳香多元酰氯为芳香三元酰氯与1,2,4,5-苯四甲酰氯或其它芳香多元酰氯的组合。
优选的,所述的交联剂溶液中含有:一种或多种交联剂,和第二有机溶剂。
优选的,所述的交联剂包括芳香二胺化合物、脂肪族二胺化合物中的一种或者任意两种以上的组合。
优选的,所述的交联剂为乙二胺或己二胺。
优选的,所述的活化溶剂包括N,N-二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)、二甲基亚砜(DMSO)、四氢呋喃(THF)中的一种或者任意两种以上的组合。
优选的,所述的第一有机溶剂包括非极性或弱极性溶剂。
优选的,所述的第二有机溶剂包括异丙醇。
优选的,所述的第三有机溶剂包括乙醇。
优选的,所述的交联温度范围为室温至交联剂溶液的泡点温度,所述的交联时间为5min~4h。
优选的,所述的活化温度范围为室温至活化试剂的泡点温度,所述的活化时间为5min~120min。
优选的,所述的芳香多元酰氯的质量百分比浓度为0.005%~1.0%。
优选的,所述的交联剂的质量百分比浓度为1.0%~20.0%。
本发明的第三方面公开了上述的一种杂化复合膜的应用,可用于有机溶剂体系分离与纯化和水溶液体系分离与纯化,以及同时含水和有机溶剂的溶液体系的溶质与溶剂的分离与纯化。
本发明所述的杂化复合膜的制备方法,通过在超滤或微滤基膜上沉积交联氧化石墨烯,再进行界面聚合的方法提高膜的分离性能和耐溶剂性能,并通过化学交联和溶剂活化步骤,大大提高膜的稳定性和分离性能,同时也提高了膜的兼容性,大大拓展了纳滤膜的应用体系。
本发明的一个显著技术优点是,在聚酰亚胺基膜上沉积交联氧化石墨烯纳米材料,交联氧化石墨烯纳米材料片层之间通过共价键连接,使其更加牢固,同时增加了片层之间的空隙,与水相接触的过程中,可以储存更多的水相单体,使界面聚合的过程得到控制,从而提高了膜的分离性能和耐溶剂性能。
本发明的第二个显著的技术优点是,由于交联氧化石墨烯片层表面带有含氧基团,使基膜的亲水性提高,有利于界面聚合,使界面聚合的过程得到控制,可得到更加薄的分离层,从而提高了膜的通量。
本发明的第三个显著的技术优点是,水相单体和油相单体的浓度都很低,产生的分离层很薄,减小了溶剂的流动阻力,提高了通量。
本发明的第四个显著的技术优点是,表面修饰剂与基膜之间以共价健结合;表面修饰剂与交联氧化石墨烯层以共价健结合;水相单体溶液中的二胺化合物和氧化石墨烯层形成酰胺共价键,使得氧化石墨烯层与分离层之间牢固地结合起来;采用后交联,交联剂和聚酰亚胺基膜反应形成更耐溶剂的聚酰胺,有效地提高了膜的整体耐溶剂性;后交联的交联剂还可以与界面聚合分离皮层中的游离酰氯发生反应,起到表面修饰作用,进一步提升膜的分离性能。
本发明的第五个显著的技术优点是通过进一步的溶剂活化处理,将少量未交联的小分子量聚合物溶解掉,并且自动调整和优化聚合物的空间构型,使聚合物分子空间构型的能量更低,聚合物间隙孔结构更均匀,从而进一步提高了膜的通量和截留率,同时保持了膜的化学与机械稳定性。
通过上述技术创新,本发明取得了显著的技术进步,在有机溶液体系分离和含 有机溶剂的水处理领域具有极好的应用前景。
本发明的第四方面公开了一种超薄复合膜,通过在超滤或微滤基膜表面沉积一层纳米材料中间层、再经过界面聚合在纳米中间层上形成一层分离皮层制得,其中:
(1)所述的纳米材料中间层由石墨烯量子点(GQDs)构成;所述的GQDs包括氨基化石墨烯量子点、羧基化石墨烯量子点;
(2)所述的GQDs的平均片径小于或等于30nm;优选的,所述的GQDs的平均片径小于或等于20nm;更优选的,所述的GQDs的平均片径小于或等于10nm;
(3)所述的GQDs的平均厚度小于或等于5nm;优选的,所述的GQDs的平均厚度小于或等于2nm;
(4)所述的GQDs纳米材料中间层通过如下方法修饰到基膜上:先将基膜与表面修饰剂溶液接触10s~30min后,去掉表面残留的表面修饰剂溶液,并晾干后,再与GQDs悬浮液充分接触1~300s,去除表面多余的GQDs悬浮液,再晾干,GQDs纳米材料中间层即修饰到基膜上;优选的,所述的表面修饰剂包括聚乙烯亚胺;
(5)所述的GQDs悬浮液为水溶液,其中GQDs的浓度范围为1~500mg/L;
(6)所述的GQDs纳米材料中间层的平均厚度小于10nm;优选的,所述的GQDs纳米材料中间层的平均厚度小于5nm;
(7)所述的分离皮层的平均厚度小于30nm,平均粗糙度小于5nm。
优选的,所述的一种超薄复合膜为面向有机溶剂体系应用的纳滤膜,具有以下特征:
(1)所述的基膜含有能与脂肪族多元胺化合物或芳香多元胺化合物发生交联反应的酰亚胺基团;
(2)所述的分离皮层为聚酰胺;
(3)所述的基膜和所述的GQDs纳米材料中间层之间通过共价键连接;
(4)所述的GQDs纳米材料中间层和所述的分离层之间通过共价键连接;
(5)所述的界面聚合之后的超薄复合膜利用脂肪族多元胺化合物或芳香多元胺化合物进行整体交联;
(6)所述的整体交联之后的膜再通过极性非质子型溶剂活化处理。
优选的,所述的一种耐溶剂超薄复合膜,其特征在于,所述的超薄复合膜在25℃和跨膜压差1.0MPa下,对100mg·L -1罗丹明B乙醇溶液中的罗丹明B的截留率大于98%,通量大于40L·m -2·h -1,所述罗丹明B的分子量为479道尔顿。
本发明的第五方面公开了一种超薄复合膜的制备方法。包括以下步骤:
步骤一:将基膜表面与表面修饰剂溶液接触10s~30min后,去除基膜表面残留的表面修饰剂溶液,将基膜晾干,再与GQDs悬浮液充分接触1~300s后,去除基膜表面多余的GQDs悬浮液,晾干,得到修饰后的基膜;
步骤二:将步骤一得到的修饰后的基膜表面与含有芳香二胺化合物的水相单体溶液充分接触1s~120s后,去除膜表面的水相单体溶液并晾干;将晾干后的膜表面与含有芳香族多元酰氯的第一有机溶剂的溶液(有机相单体溶液)充分接触1s~120s后,去除膜表面的有机相单体溶液,将膜在一定温度下热处理10s~300s后,在干燥的环境中冷却至室温,得到含有GQDs中间层的杂化复合膜;
优选的,一种超薄复合耐溶剂膜的制备方法,还包括如下步骤:
步骤三:将步骤二的含有GQDs中间层的杂化复合膜经过一定温度的交联剂溶液交联一定时间后,用第二有机溶剂冲洗膜面,即得到含有GQDs中间层的交联杂化复合膜;步骤四:将步骤三的含有GQDs中间层的交联杂化复合膜经过一定温度的活化溶剂活化处理一定时间后,晾干,用第三有机溶剂置换,然后保存于第三有机溶剂中,得到超薄复合膜。
优选的,所述的水相单体溶液中含有:芳香二胺化合物。
优选的,所述的芳香二胺化合物包括间苯二胺、对苯二胺、其它含有两个胺基的芳香化合物,或上述任意多者的组合。
优选的,所述的芳香二胺化合物的质量百分比浓度范围为0.01%~4.0%。
优选的,所述的有机相单体溶液中含有:芳香三元酰氯或混合芳香多元酰氯,和第一有机溶剂。
优选的,所述的芳香族多元酰氯包括1,3,5-均苯三甲酰氯,混合芳香多元酰氯为芳香三元酰氯与1,2,4,5-苯四甲酰氯或其它芳香多元酰氯的组合。
优选的,所述的交联剂溶液中含有:一种或多种交联剂和第二有机溶剂。
优选的,所述的交联剂包括芳香二胺化合物、脂肪族二胺化合物,或其混合物。
优选的,所述的脂肪族二胺化合物包括乙二胺、己二胺、其它含有两个胺基的脂肪族化合物,或上述任意多者的组合。
优选的,所述的交联剂为乙二胺或己二胺。
优选的,所述的活化溶剂包括N,N-二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)、二甲基亚砜(DMSO)、四氢呋喃(THF),或上述任意多种的组合。
优选的,所述的第一有机溶剂包括烷烃等烃类和其它非极性和弱极性溶剂。
优选的,所述的第二有机溶剂包括异丙醇。
优选的,所述的第三有机溶剂包括乙醇。
优选的,所述的交联温度范围为室温至交联剂溶液的泡点温度,所述的交联时间为5min~4h。
优选的,所述的活化温度范围为室温至活化试剂的泡点温度,所述的活化时间为 5min~120min。
优选的,所述的芳香三元酰氯的质量百分比浓度范围为0.005%~1.0%。
优选的,所述的交联剂的质量百分比浓度范围为1.0%~20.0%。
本发明的第六个方面公开了一种超薄复合膜的应用,其特征在于,用于有机溶剂体系分离与纯化和水溶液体系分离与纯化,以及同时含水和有机溶剂的溶液体系的溶质与溶剂的分离与纯化,其中溶质的分子量范围为200~1000道尔顿。
本发明所述的超薄复合膜的制备方法,通过在超滤或微滤基膜上沉积GQDs,再进行界面聚合的方法提高膜的分离性能和耐溶剂性能,并通过化学交联和溶剂活化步骤,大大提高膜的稳定性和分离性能,同时拓展了纳滤膜的应用体系。
本发明的一个显著技术优点是,在聚酰亚胺基膜上沉积GQDs纳米材料是一种新型的准零维纳米材料,是纳米级的石墨烯片,不仅具有较强的量子效应、边界效应和荧光性能,而且具有良好的热稳定性和化学稳定性以及优良的生物相容性和低毒性。由于其表面含有大量的含氧官能团,如羟基,羧基和环氧基,使基膜的亲水性提高,有利于界面聚合过程,使界面聚合的过程得到控制,可得到更加薄的分离层,从而提高了膜的通量。
本发明的又一个显著的技术优点是,水相单体和油相单体的浓度都很低,产生的分离层很薄,减小了溶剂的流动阻力,提高了通量。
本发明的第三个显著的技术优点是,通过在界面聚合之后进行化学交联步骤有效地提高膜的耐溶剂性。采用后交联,交联剂和聚酰亚胺基膜反应形成更耐溶剂的聚酰胺;还可以使水相单体溶液中的二胺化合物和GQDs中间层形成酰胺共价键,增加分离层与GQDs层之间的作用;还可以与游离的酰氯反应,起到表面修饰作用,对膜的分离性能有很大的提高。
本发明的再一个显著的技术优点是通过进一步的溶剂活化处理,将少量未交联的小分子量聚合物溶解去掉,并且自动调整和优化聚合物的空间构型,使聚合物分子空间构型的能量更低,聚合物间隙孔结构更均匀,从而进一步提高了膜的通量和截留率,同时保持了膜的化学与机械稳定性。
通过上述技术创新,本发明取得了显著的技术进步,在水盐体系、分离水中分子量范围为200~2000道尔顿的有机物和有机溶液体系分离以及含有机溶剂的水处理领域具有极好的应用前景。
具体实施方式
下面通过具体的对比例及实施例对本发明做进一步说明。
基膜为聚酰亚胺(PI)平板超滤膜,截留分子量50000道尔顿(Da);
所用芳香二胺化合物为间苯二胺(MPD);
所用芳香三元酰氯为1,3,5-均苯三甲酰氯(TMC);
所用表面修饰剂为聚乙烯亚胺(PEI);
所用的氧化石墨烯交联剂为乙二胺(EDA);
所用的基膜交联剂为己二胺;
第一有机溶剂为正己烷;
第二有机溶剂为异丙醇;
第三有机溶剂为乙醇;
活化溶剂为N,N-二甲基甲酰胺(DMF);
在25℃和跨膜压差1.0MPa下,以100mg/L的罗丹明B(479道尔顿)-乙醇溶液测定所制备膜的截留率和溶剂通量。
在25℃和跨膜压差1.0MPa下,以2000mg/L的硫酸钠水溶液测定所制备的膜对硫酸钠的截留率和相应的水通量。
对比例1:
将所述的芳香二胺化合物溶于去离子水中,质量百分比浓度为0.1%,配成水相单体溶液。
将所述芳香三元酰氯溶于第一有机溶剂中,质量百分比浓度为0.005%,配成有机相单体溶液。
聚酰胺复合纳滤膜的制膜步骤和条件如下:
将基膜表面与水相单体溶液充分接触120s后,去掉基膜表面的水相单体溶液,于室温的空气中自然晾干,然后与有机相单体溶液充分接触60s后,去掉膜表面的有机相单体溶液,将膜迅速放入80℃的干燥箱中烘干5min,取出后于干燥环境中自然冷却,得到干态聚酰胺复合纳滤膜。
所制备的聚酰胺复合纳滤膜在25℃和跨膜压差1.0MPa下,对100mg/L的罗丹明B-乙醇溶液中罗丹明B的截留率为90%,乙醇通量为13.7L/(m 2·h)(简写为LMH);在25℃和跨膜压差1.0MPa下,对2000mg/L的硫酸钠水溶液中的硫酸钠的截留率为48%,通量为308.322LMH。所制备的膜在极性溶剂DMF和NMP中均快速溶解,说明上述方法制备的聚酰胺复合纳滤膜不耐强极性溶剂。
实施例1
将浓度为2mg/L的氧化石墨烯悬浮水溶液与乙二胺混合后,超声30min,然后在室温下交联至少12h,备用。
所述的GO的平均片径500nm,平均厚度2nm。
制膜步骤如下:
步骤一:将基膜与浓度为0.1wt%的聚乙烯亚胺溶液在70℃下充分接触30s后, 去掉基膜表面残留的修饰剂,并晾干60s后,与交联后的氧化石墨烯悬浮水溶液充分接触60s,去除膜表面游离的悬浮液,晾干,得到修饰的基膜;
步骤二:将步骤一得到的修饰的基膜与水相单体溶液充分接触120s后,去掉基膜表面的水相单体溶液并晾干;将晾干后的膜与有机相单体溶液充分接触60s,去掉膜表面的有机相单体溶液,在80℃中的气氛中热处理5min,取出后放在干燥的环境中冷却至室温,得到含有交联氧化石墨烯中间层的干态杂化复合膜;
步骤三:将步骤二得到含有氧化石墨烯中间层的干态杂化复合膜放入交联剂质量百分比浓度为10wt%、温度为60℃的交联剂溶液中交联30min后,即得到含有交联氧化石墨烯中间层的交联杂化复合纳滤膜;
测试条件与对比例相同。
所制备的交联杂化复合纳滤膜对硫酸钠的截留率为83.59%,远高于对比例,说明交联氧化石墨烯的引入可以控制界面聚合过程,提高膜的分离性能。
实施例2
与实施例1的区别仅在于:得到的含有交联氧化石墨烯中间层的交联杂化复合纳滤膜放入80℃的活化试剂DMF中活化30min。
其它所有步骤与实施例1相同;测试条件与实施例1相同。
所制备的杂化复合纳滤膜对硫酸钠的截留率高达97.49%,水的通量为55.85LMH,远远高于对比例,同时和实施例1相比较,通量和截留率都得到了大幅度提高,说明活化过程溶解掉了部分短链分子,并使长链分子重新排列,使膜的分离性能得到了很大的提高。
由此可见,本发明取得了显著的技术效果和进步。
实施例3
与实施例1的区别在于:步骤一中将聚酰亚胺基膜与0.1wt%聚乙烯亚胺在25℃下充分接触30s。
其它所有步骤与实施例1相同;测试条件与对比例相同。
所述的分离皮层的平均厚度20nm,平均粗糙度1.99nm。
所制备的杂化复合纳滤膜对罗丹明B的截留率为96.69%,乙醇的通量为43.44LMH,远高于对比例。
实施例4
与实施例3区别在于:步骤一中使用的聚酰亚胺浓度为5mg/L。
其它所有步骤与实施例1相同;测试条件与实施例3相同。
所述的分离皮层的平均厚度20nm,平均粗糙度2.04nm。
所制备的杂化复合纳滤膜对罗丹明B的截留率为99.34%,乙醇的通量为 41.47LMH,远高于对比例。
所制备的杂化复合纳滤膜在80℃的DMF中浸泡12天,乙醇的通量为50.97LMH,罗丹明B的截留率为99.3%。说明所制备的杂化复合纳滤膜有很好的耐溶剂性能。
杂化复合纳滤膜和传统的耐溶剂纳滤膜的原子力显微镜和扫描电镜图像对比,膜的表面变得更加光滑,说明界面聚合过程得到了有效的控制,形成更加平整的表面,更加有利于溶剂的通过。
孔径分析结果表明,所制备的杂化复合纳滤膜孔径降低,导致了膜的截留率增加;同时,孔密度和孔隙率也大幅度增加,导致了通量的显著增加。
即本发明取得了显著的技术效果和进步。
实施例5
与实施例3区别在于所使用的氧化石墨烯未交联。
其它所有步骤与实施例1相同;测试条件与对比例相同。
所制备的杂化复合纳滤膜对罗丹明B的截留率为96.59%,乙醇的通量为13.23LMH。
与实施例3对比,截留率没有发生变化,但是通量大幅度降低,是因为氧化石墨烯未交联,片层之间只存在氢键作用,而氧化石墨烯与聚酰亚胺基膜之间也存在氢键作用和很弱的共价键。所以,不能很好地控制界面聚合过程,导致形成的分离层存在缺陷,引起通量大幅度的降低。
实施例6
与实施例4区别在于:步骤一中使用的交联的氧化石墨烯浓度为10mg/L。
其它所有步骤与实施例1相同;测试条件与对比例相同。
所制备的杂化复合纳滤膜对罗丹明B的截留率为98.40%,乙醇的通量为33.07LMH,远高于对比例。
实施例7
与实施例4区别在于:步骤一中使用的交联的氧化石墨烯浓度为100mg/L。
其它所有步骤与实施例1相同;测试条件与对比例相同。
所制备的杂化复合纳滤膜对罗丹明B的截留率为97.07%,乙醇的通量为25.42LMH,远高于对比例。
将对比例的聚酰胺复合纳滤膜和各实施例所制备的杂化复合纳滤膜的分离性能与耐溶剂性能的对比,结果如表1所示。各实施例(除实施例1外)所制备的杂化复合纳滤膜均经过80℃的DMF活化30min,测试对罗丹明B-乙醇溶液的分离性能和硫酸钠水溶液的分离性能,测试条件与对比例均相同。
表1对比例和实施例制备的杂化复合纳滤膜的分离性能对比
Figure PCTCN2019099978-appb-000003
由表1可知,对比例的膜对硫酸钠和罗丹明B的截留率都不高,是因为水相单体和油相单体浓度低,界面聚合过程产生的分离层缺陷较多。
实施例1与对比例相比,通量降低,但是截留率增加了一倍,是因为PEI和交联过后的氧化石墨烯的引入,使制备出来的杂化复合膜缺陷减少,导致了通量的降低;缺陷的存在,使杂化复合膜的截留率不能够达到预期的要求。实施例2、实施例3、实施例4与对比例相比,一方面,基膜上覆盖一层交联后的氧化石墨烯,增加了基膜表面亲水性和孔隙率,减小了基膜孔径,有利于控制界面聚合的过程,使生成的分离层缺陷少,同时分离层较薄,通量和截留率都显著提高;另一方面,增加了化学交联步骤,对膜的性能有较大幅度提高。
实施例5说明,氧化石墨烯纳米片的交联对于提高通量和截留率很重要。
实施例6、实施例7说明,高浓度的氧化石墨烯纳米片容易发生团聚,导致界面聚合过程产生缺陷,导致截留率降低。
以上实施例说明,在基膜上涂一层交联后的氧化石墨烯纳米片层,对界面聚合过程有很大的影响,所制备的多功能杂化复合膜具有优异的性能,取得了显著的技术效果和进步。
对比例2:
基膜为聚酰亚胺(PI)平板超滤膜,分子量50000Da;
将所述的芳香二胺化合物溶于去离子水中,质量百分比浓度为0.1%,配成水相单体溶液。
将所述芳香三元酰氯溶于第一有机溶剂中,质量百分比浓度为0.005%,配成有机相 单体溶液。
聚酰胺复合纳滤膜的制膜步骤和条件如下:
将基膜表面与水相单体溶液充分接触120s后,去掉基膜表面的水相单体溶液,于室温的空气中自然晾干,将晾干后的基膜表面与有机相单体溶液充分接触60s后,去掉膜表面的有机相单体溶液,将膜迅速放入80℃的干燥箱中烘干5min,取出后于干燥环境中自然冷却,得到干态聚酰胺复合纳滤膜。
将得到的干态纳滤膜放入质量百分比浓度为10%、温度为60℃的交联剂溶液中交联30min后,即得到交联的纳滤膜;再将纳滤膜放入80℃的活化试剂DMF中活化30min,即制得聚酰胺复合纳滤膜。
所制备的聚酰胺复合纳滤膜在25℃和跨膜压差1.0MPa下,使用100mg·L -1的罗丹明B-乙醇溶液进行分离性能测试。罗丹明B的截留率为87.4%,乙醇通量为31.0L·m -2·h -1(简写为LMH),截留率不高,说明所制备的膜缺陷较多。
实施例8
将浓度为100mg·L -1的GQDs水溶液超声60min,备用。所述的GQDs的平均片径厚度1.8nm;所述的GQDs的平均厚度1.9nm。
制膜步骤如下:
步骤一:将基膜与浓度为0.005wt%的聚乙烯亚胺溶液在25℃下充分接触30s后,去掉基膜表面残留的修饰剂并晾干后,与GQDs水溶液充分接触60s,去除膜表面游离的悬浮液,晾干得到修饰的杂化膜;
步骤二:将步骤一得到的修饰的杂化膜与水相单体溶液充分接触120s后,去掉基膜表面的水相单体溶液并晾干45s;将晾干后的膜与有机相单体溶液充分接触60s,去掉膜表面有机相单体溶液,在80℃中的气氛中热处理5min,取出后放在干燥的环境中冷却至室温,得到含有GQDs中间层的干态复合膜;
步骤三:将步骤二得到含有GQDs中间层的干态复合膜放入交联剂质量百分比浓度为10%、温度为60℃的交联剂溶液中交联30min后,即得到交联的含有GQDs中间层的杂化复合纳滤膜;
步骤四:将得到的交联的含有GQDs中间层的复合纳滤膜放入80℃的活化试剂DMF中活化30min。
测试条件与对比例2相同。
所述的分离皮层的平均厚度为45nm,平均粗糙度为2.37nm。
所制备的超薄复合纳滤膜对罗丹明B的截留率为94%,高于对比例2,说明GQDs的引入可以控制界面聚合过程,提高膜的分离性能。
实施例9
与实施例8的区别在于:步骤一中将聚酰亚胺基膜与0.025wt%聚乙烯亚胺在25℃下充分接触30s。其它所有步骤与实施例8相同。
测试条件与对比例2相同。所制备的多功能杂化复合纳滤膜对罗丹明B的截留率为98.2%,乙醇的通量为33.8LMH,远高于对比例2。
实施例10
与实施例9区别在于:步骤一中使用的聚酰亚胺浓度为0.05wt%。其它所有步骤与实施例8相同。
测试条件与对比例2相同。所述的分离皮层的平均厚度为25nm,平均粗糙度小于2.0nm。所制备的超薄复合纳滤膜对罗丹明B的截留率为98.4%,乙醇的通量为40.2LMH,远高于对比例2。
所制备的多功能杂化复合纳滤膜在80℃的DMF中浸泡8天,乙醇的通量为51.7LMH,罗丹明B的截留率为98.3%。说明所制备的多功能杂化复合纳滤膜有很好的耐溶剂性能。
实施例11
与实施例10区别在于:步骤一中使用的石墨烯量子点浓度为5mg·L -1。其它所有步骤与实施例8相同。
测试条件与对比例2相同。所制备的超薄复合纳滤膜对罗丹明B的截留率为99.2%,乙醇的通量为21.3LMH。
实施例12
与实施例10区别在于:步骤一中使用的石墨烯量子点浓度为200mg·L -1。其它所有步骤与实施例8相同。
测试条件与对比例2相同。所制备的超薄复合纳滤膜对罗丹明B的截留率为96.4%,乙醇的通量为40.8LMH,远高于对比例2。
对比例3:
基膜为聚砜(PSF)平板超滤膜,分子量80000Da。
将哌嗪溶于去离子水中,质量百分比浓度为0.5%,配成水相单体溶液。
将所述芳香三元酰氯溶于第一有机溶剂中,质量百分比浓度为0.1%,配成有机相单体溶液。
聚酰胺复合纳滤膜的制膜步骤和条件如下:
将基膜表面与水相单体溶液充分接触60s后,去掉基膜表面的水相单体溶液,于室温的空气中自然晾干,将晾干后的基膜表面与有机相单体溶液充分接触30s后,去掉膜表面的有机相单体溶液,将膜迅速放入80℃的干燥箱中烘干7min,取出后于干燥环境中自然冷却,得到干态聚哌嗪酰胺复合纳滤膜。
所制备的聚哌嗪酰胺复合纳滤膜在25℃和跨膜压差1.0MPa下,对2000mg·L -1的Na 2SO 4水溶液进行分离性能测试。Na 2SO 4的截留率为95.83%,水通量为68.67LMH。
实施例13
基膜和水相单体溶液、有机相单体溶液与对比例3相同。
将浓度为100mg·L -1的GQDs水溶液超声60min,备用。GQDs的平均片径3.0nm,平均厚度2.0nm。制膜步骤如下:
步骤一:将PSF基膜与浓度为0.025wt%的聚乙烯亚胺溶液在25℃下充分接触30s后,去掉基膜表面残留的修饰剂并晾干后,与GQDs水溶液充分接触60s,去除膜表面游离的悬浮液,晾干得到修饰的杂化膜;
步骤二:将步骤一得到的修饰的杂化膜与水相单体溶液充分接触60s后,去掉基膜表面的水相单体溶液并晾干45s;将晾干后的膜与有机相单体溶液充分接触30s,去掉膜表面有机相单体溶液,在80℃中的气氛中热处理7min,取出后放在干燥的环境中冷却至室温,得到含有GQDs中间层的干态复合纳滤膜;
测试条件与对比例3相同。
所制备的聚哌嗪酰胺复合纳滤膜Na 2SO 4的截留率为95.56%,水通量为90.61LMH。
实施例14
与实施例13区别在于:步骤一中将聚砜基膜与0.05wt%聚乙烯亚胺在25℃下充分接触30s。其它所有步骤与实施例13相同。
测试条件与对比例3相同。所制备的聚哌嗪酰胺复合纳滤膜Na 2SO 4的截留率为95.86%,水通量为88.79LMH。
实施例15
与实施例13区别在于:步骤一中将聚砜基膜与0.1wt%聚乙烯亚胺在25℃下充分接触30s。其它所有步骤与实施例13相同。
测试条件与对比例3相同。
所制备的聚哌嗪酰胺复合纳滤膜Na 2SO 4的截留率为96.26%,水通量为72.69LMH。
超薄复合纳滤膜和传统的耐溶剂纳滤膜的原子力显微镜和扫描电镜图像对比,膜的表面变得更加光滑,说明界面聚合过程得到了有效的控制,形成更加平整的表面,更加有利于溶剂的通过,提高了膜的耐污染性能。
孔径分析结果表明,所制备的超薄复合纳滤膜孔径降低,导致了膜的截留率增加;同时,孔密度和孔隙率也大幅度增加,导致了通量的显著增加。
将对比例2和3的聚酰胺复合纳滤膜和各实施例所制备的复合纳滤膜的分离性能与耐溶剂性能的对比,结果如表2所示。对比例2和实施例8~12制备的超薄复合纳滤膜均经过60℃的己二胺交联30min和80℃的DMF活化30min,测试对罗丹明B-乙醇溶 液的分离性能,测试条件与对比例2均相同。对比例3和实施例13~15制备的超薄复合纳滤膜均未经过己二胺交联和DMF活化,测试对罗丹明B-乙醇溶液的分离性能,测试条件与对比例3均相同。
表2对比例2~3和实施例8~15制备的复合纳滤膜的分离性能对比
Figure PCTCN2019099978-appb-000004
由表2可知,对比例2的膜对罗丹明B的截留率很低,是因为界面聚合过程产生的分离层缺陷较多。
实施例8~15与对比例2~3相比,基膜上覆盖一层GQDs,增加了基膜表面亲水性和孔隙率,减小了基膜孔径,有利于控制界面聚合的过程,使生成的分离层缺陷少,同时分离层较薄,通量和截留率都显著改善。
以上实施例8~15说明,在基膜上涂一层GQDs中间层,对界面聚合过程有很大的影响,所制备的超薄复合膜具有优异的性能,取得了显著的技术效果和进步。
需要指出的是,上述实施例仅仅是本发明优选的特定的实施方式,并不构成对本发明的限制,任何落入本发明权利要求的特征或者等同特征构成的本发明的保护范围内的实施方式均构成侵犯本发明的专利权。

Claims (25)

  1. 一种杂化复合膜,通过在超滤或微滤基膜表面沉积一层纳米材料中间层、再经过界面聚合在纳米材料中间层上形成一层分离皮层制得,其特征在于,
    所述的纳米材料中间层由氧化石墨烯(GO)构成,所述的GO包括交联的氧化石墨烯、未交联的氧化石墨烯;
    所述的GO的平均片径小于或等于100μm;
    所述的GO的平均厚度小于或等于5nm;优选的,所述的GO的平均厚度小于或等于2nm;
    所述的GO纳米材料中间层的平均厚度小于10nm;
    所述的分离皮层的平均厚度小于30nm,平均粗糙度小于5nm。
  2. 一种杂化复合膜,通过在超滤或微滤基膜表面沉积一层纳米材料中间层、再经过界面聚合在纳米材料中间层上形成一层分离皮层制得,其特征在于,
    所述的纳米材料中间层由氧化石墨烯(GO)构成,所述的GO包括交联的氧化石墨烯、未交联的氧化石墨烯;
    所述的GO的平均片径小于或等于100μm;
    所述的GO的平均厚度小于或等于5nm;优选的,所述的GO的平均厚度小于或等于2nm;
    所述的GO纳米材料中间层通过如下方法修饰到基膜上:先将基膜与表面修饰剂溶液接触10s~30min后,去掉表面残留的表面修饰剂溶液,并晾干1~120s后,再与GO悬浮液充分接触1~300s,去除表面多余的GO悬浮液,晾干至无液滴后再继续晾干1~120s,GO纳米材料中间层即修饰到基膜上;优选的,所述的表面修饰剂包括聚乙烯亚胺;
    所述的GO悬浮液为水溶液,其中GO的浓度范围为1~200mg/L;
    所述的GO纳米材料中间层的平均厚度小于10nm;
    所述的分离皮层的平均厚度小于30nm,平均粗糙度小于5nm。
  3. 根据权利要求1或2所述的杂化复合膜,其特征在于,
    所述的一种杂化复合膜为面向有机溶剂体系应用的纳滤膜;
    所述的GO纳米材料中间层和所述的基膜之间通过共价键连接;
    所述的GO纳米材料中间层和所述的分离层之间通过氢键或共价键连接;
    所述的分离层包括以下两种重复结构单元:
    Figure PCTCN2019099978-appb-100001
    其中,Ar是芳香多元酰卤化合物的芳香核,Ar’是芳香多元胺化合物的芳香核;
    优选的,所说的两种重复单元分别为:
    Figure PCTCN2019099978-appb-100002
  4. 根据权利要求1或2所述的杂化复合膜,其特征在于,
    所述的一种杂化复合膜为耐溶剂复合膜;
    所述的基膜含有能与脂肪族多元胺化合物或芳香多元胺化合物发生交联反应的酰亚胺基团;
    所述的分离皮层为聚酰胺或聚酰亚胺,或聚酰胺与聚酰亚胺的混合结构;
    所述的基膜和所述的GO纳米材料中间层之间通过共价键连接;
    所述的GO纳米材料中间层和所述的分离层之间通过共价键连接;
    所述的界面聚合之后的膜利用脂肪族多元胺化合物或芳香多元胺化合物进行整体交联;
    所述的整体交联之后的膜再通过极性非质子型溶剂活化处理。
  5. 根据权利要求1或2所述的杂化复合膜,其特征在于,所述的杂化复合膜在80℃下的强极性溶剂DMF中浸泡12天后,在25℃和跨膜压差1.0MPa下,对100mg·L -1罗丹明B乙醇溶液中的罗丹明B的截留率大于99%,通量大于40L·m -2·h -1,所述罗丹明B的分子量为479道尔顿。
  6. 一种杂化复合膜的制备方法,其特征在于,包括以下步骤:
    步骤一:将基膜与表面修饰剂溶液接触10s~30min后,去掉表面残留的表面修饰剂溶液,并晾干1~120s后,再与GO悬浮液充分接触1~300s后,去除表面多余的GO悬浮液,晾干1~120s,得到修饰后的基膜;优选地,所述表面修饰剂包括聚乙烯亚胺、三乙胺或多巴胺;
    步骤二:将步骤一得到的修饰后的基膜与含有芳香二胺化合物的水相单体溶液充分接触1s~120s,去掉膜表面的水相单体溶液,晾干至液滴消失后继续晾干1s~300s;将晾干后的膜与含有芳香族多元酰氯的第一有机溶剂的溶液充分接触1s~120s,去掉膜表面的有机相溶液,放入到一定温度的环境中热处理10s~300s后, 取出放在干燥的环境中冷却,得到含有GO中间层的杂化复合膜;优选地,所述第一有机溶剂为非极性或弱极性溶剂。
  7. 根据权利要求6所述的制备方法,其特征在于,还包括以下步骤:
    步骤三:将步骤二的含有GO中间层的杂化复合膜放入一定温度下的交联剂溶液中交联一定时间,取出,用第二有机溶剂冲洗,即得到交联的含有GO中间层的杂化复合膜;优选地,所述第二有机溶剂包括异丙醇;
    步骤四:将步骤三的交联的含有GO中间层的复合膜在一定温度下的活化溶剂中活化处理一定时间,取出晾干后,用第三有机溶剂置换,然后保存于第三有机溶剂中,得到杂化复合膜;优选地,所述活化溶剂包括N,N-二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)、二甲基亚砜(DMSO)、四氢呋喃(THF),或上述任意多种的组合;优选地,所述第三有机溶剂包括乙醇。
  8. 根据权利要求6或7所述的制备方法,其特征在于,所述的水相单体溶液中含有:芳香二胺化合物;优选地,所述的芳香二胺化合物包括间苯二胺、对苯二胺、其它含有两个胺基的芳香化合物,或上述任意多者的组合;优选地,所述的水相单体溶液中所含的芳香二胺化合物的质量百分比浓度范围为0.01%~4.0%。
  9. 根据权利要求6或7所述的制备方法,其特征在于,所述的有机相单体溶液中含有:芳香三元酰氯或混合芳香多元酰氯,和第一有机溶剂;优选地,所述的芳香族多元酰氯包括1,3,5-均苯三甲酰氯,所述的混合芳香多元酰氯为芳香三元酰氯与1,2,4,5-苯四甲酰氯或其它芳香多元酰氯的组合;优选地,所述的有机相单体溶液中的芳香三元酰氯的质量百分比浓度范围为0.005%~1.0%。
  10. 根据权利要求7所述的制备方法,其特征在于,所述的交联剂溶液中含有:一种或多种交联剂和第二有机溶剂;优选地,所述的交联剂包括芳香二胺化合物、脂肪族二胺化合物,或其混合物;更优选地,所述的交联剂为乙二胺或己二胺;优选地,所述的交联剂的质量百分比浓度范围为1.0%~20.0%。
  11. 根据权利要求7所述的制备方法,其特征在于,所述的交联温度范围为室温至交联剂溶液的泡点温度,所述的交联时间为5min~4h。
  12. 一种超薄复合膜,通过在超滤或微滤基膜表面沉积一层纳米材料中间层、再经过界面聚合在纳米中间层上形成一层分离皮层制得,其特征在于,
    所述的纳米材料中间层由石墨烯量子点(GQDs)构成;所述的GQDs包括氨基化石墨烯量子点;
    所述的GQDs的平均片径小于或等于30nm;优选的,所述的GQDs的平均片径小于或等于20nm;更优选的,所述的GQDs的平均片径小于或等于10nm;
    所述的GQDs的平均厚度小于或等于5nm;优选的,所述的GQDs的平均厚度小于 或等于2nm;
    所述的GQDs纳米材料中间层的平均厚度小于10nm;优选的,所述的GQDs纳米材料中间层的平均厚度小于5nm;
    所述的分离皮层的平均厚度小于30nm,平均粗糙度小于2nm。
  13. 一种超薄复合膜,通过在超滤或微滤基膜表面沉积一层纳米材料中间层、再经过界面聚合在纳米中间层上形成一层分离皮层制得,其特征在于,
    所述的纳米材料中间层由石墨烯量子点(GQDs)构成;所述的GQDs包括氨基化石墨烯量子点;
    所述的GQDs的平均片径小于或等于30nm;优选的,所述的GQDs的平均片径小于或等于20nm;更优选的,所述的GQDs的平均片径小于或等于10nm;
    所述的GQDs的平均厚度小于或等于5nm;优选的,所述的GQDs的平均厚度小于或等于2nm;
    所述的GQDs纳米材料中间层通过如下方法修饰到基膜上:先将基膜与表面修饰剂溶液接触10s~30min后,去掉表面残留的表面修饰剂溶液,并晾干后,再与GQDs悬浮液充分接触1~300s,去除表面多余的GQDs悬浮液,再晾干,GQDs纳米材料中间层即修饰到基膜上;优选的,所述的表面修饰剂包括聚乙烯亚胺;
    所述的GQDs悬浮液为水溶液,其中GQDs的浓度为1~500mg/L;
    所述的GQDs纳米材料中间层的平均厚度小于10nm;优选的,所述的GQDs纳米材料中间层的平均厚度小于5nm;
    所述的分离皮层的平均厚度小于30nm,平均粗糙度小于2nm。
  14. 根据权利要求12或13所述的超薄复合膜,其特征在于,
    所述的GQDs纳米材料中间层和所述的分离层之间通过范德华作用力或氢键或共价键连接;
  15. 根据权利要求12或13所述的超薄复合膜,其特征在于,所述的分离皮层为聚酰胺;
  16. 根据权利要求12或13所述的超薄复合膜,其特征在于,
    所述的一种超薄复合膜为耐溶剂复合膜;
    所述的基膜含有能与脂肪族多元胺化合物或芳香多元胺化合物发生交联反应的酰亚胺基团;
    所述的基膜和所述的GQDs纳米材料中间层之间通过共价键连接;
    所述的GQDs纳米材料中间层和所述的分离层之间通过共价键连接;
    所述的界面聚合之后的超薄复合膜利用脂肪族多元胺化合物或芳香多元胺化合物进行整体交联;
    所述的整体交联之后的膜再通过极性非质子型溶剂活化处理。
  17. 根据权利要求12或13所述的超薄复合膜,其特征在于,所述的超薄复合膜在25℃和跨膜压差1.0MPa下,对100mg·L -1罗丹明B乙醇溶液中的罗丹明B的截留率大于98%,通量大于40L·m -2·h -1,所述罗丹明B的分子量为479道尔顿。
  18. 一种超薄复合膜的制备方法,其特征在于,包括以下步骤:
    步骤一:将基膜表面与表面修饰剂溶液接触10s~30min后,去除基膜表面残留的表面修饰剂溶液,将基膜晾干,再与GQDs悬浮液充分接触1~300s后,去除基膜表面多余的GQDs悬浮液,晾干,得到修饰后的基膜;
    步骤二:将步骤一得到的修饰后的基膜表面与含有芳香二胺化合物或哌嗪的水相单体溶液充分接触1s~120s后,去除膜表面的水相单体溶液并晾干;将晾干后的膜表面与含有芳香族多元酰氯的第一有机溶剂的溶液充分接触1s~120s后,去除膜表面的有机相单体溶液,将膜在一定温度下热处理10s~300s后,在干燥的环境中冷却至室温,得到含有GQDs中间层的杂化复合膜;优选地,所述的第一有机溶剂包括烷烃等烃类和其它非极性和弱极性溶剂。
  19. 根据权利要求18所述的制备方法,其特征在于,所述的超薄复合膜还经过如下处理步骤:
    步骤三:将权利要求18所述的含有GQDs中间层的杂化复合膜经过一定温度的交联剂溶液交联一定时间后,用第二有机溶剂冲洗膜面,即得到含有GQDs中间层的交联杂化复合膜;优选地,所述的第二有机溶剂包括异丙醇;
    步骤四:将步骤三的含有GQDs中间层的交联杂化复合膜经过一定温度的活化溶剂活化处理一定时间后,晾干,用第三有机溶剂置换,然后保存于第三有机溶剂中,得到超薄复合膜;优选地,所述的活化溶剂包括N,N-二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)、二甲基亚砜(DMSO)、四氢呋喃(THF),或上述任意多种的组合;优选地,所述的第三有机溶剂包括乙醇。
  20. 根据权利要求18或19所述的制备方法,其特征在于,所述的水相单体溶液中含有:芳香二胺化合物;优选地,所述的芳香二胺化合物包括间苯二胺、对苯二胺、其它含有两个胺基的芳香化合物,或上述任意多者的组合;优选地,所述的芳香二胺化合物的质量百分比浓度范围为0.01%~4.0%。
  21. 根据权利要求18或19所述的制备方法,其特征在于,所述的有机相单体溶液中含有:芳香三元酰氯或混合芳香多元酰氯,和第一有机溶剂;所述的芳香族多元酰氯包括1,3,5-均苯三甲酰氯,混合芳香多元酰氯为芳香三元酰氯与1,2,4,5-苯四甲酰氯或其它芳香多元酰氯的组合;优选地,所述的芳香三元酰氯的质量百分比浓度范围为0.005%~1.0%。
  22. 根据权利要求19所述的制备方法,其特征在于,所述的交联剂溶液中含有:一种或多种交联剂和第二有机溶剂;优选地,所述的交联剂的质量百分比浓度范围为1.0%~20.0%;优选地,所述的交联剂包括芳香二胺化合物、脂肪族二胺化合物,或其混合物;优选地,所述的脂肪族二胺化合物包括乙二胺、己二胺、其它含有两个胺基的脂肪族化合物,或上述任意多者的组合;更优选地,所述的交联剂为乙二胺或己二胺。
  23. 根据权利要求19所述的制备方法,其特征在于,所述的交联温度范围为室温至交联剂溶液的泡点温度,所述的交联时间为5min~4h。
  24. 根据权利要求19所述的制备方法,其特征在于,所述的活化温度范围为室温至活化试剂的泡点温度,所述的活化时间为5min~120min。
  25. 权利要求1~5任意一项所述的杂化复合膜、或权利要求12~17任意一项所述的超薄复合膜、或由权利要求6~11任意一项所述的制备方法制得的杂化复合膜、或由权利要求18~24任意一项所述的制备方法制得的超薄复合膜的用途,用于有机溶剂体系分离与纯化和水溶液体系分离与纯化,以及同时含水和有机溶剂的溶液体系的溶质与溶剂的分离与纯化,其中溶质的分子量范围为200~1000道尔顿。
PCT/CN2019/099978 2019-03-06 2019-08-09 复合膜、制备方法及其应用 WO2020177274A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910166783.3A CN110141978B (zh) 2019-03-06 2019-03-06 一种超薄复合膜及其制备方法
CN201910166886.X 2019-03-06
CN201910166783.3 2019-03-06
CN201910166886.XA CN109925896B (zh) 2019-03-06 2019-03-06 一种杂化复合膜、制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2020177274A1 true WO2020177274A1 (zh) 2020-09-10

Family

ID=72338327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099978 WO2020177274A1 (zh) 2019-03-06 2019-08-09 复合膜、制备方法及其应用

Country Status (1)

Country Link
WO (1) WO2020177274A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713295A (zh) * 2022-04-22 2022-07-08 河北工业大学 一种单价选择性阳离子交换膜及其制备方法与应用
CN115025622A (zh) * 2022-07-13 2022-09-09 浙江工业大学 一种基于多维氧化石墨烯改性的高通量反渗透膜及其制备方法
CN115301086A (zh) * 2022-08-09 2022-11-08 烟台大学 一种全氟聚合物基复合纳滤膜
CN115430296A (zh) * 2022-09-20 2022-12-06 中国科学院过程工程研究所 一种具有催化中间层的复合纳滤膜及其制备方法和应用
CN117101427A (zh) * 2023-10-23 2023-11-24 山东膜泰环保科技股份有限公司 一种pvdf弹性超滤膜的制备方法
WO2024114370A1 (zh) * 2022-11-28 2024-06-06 沃顿科技股份有限公司 纳滤膜的制备方法和由其制备的纳滤膜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989330A (zh) * 2012-12-20 2013-03-27 浙江工商大学 一种石墨烯/芳香聚酰胺杂化反渗透膜及其制备方法
US20150258506A1 (en) * 2014-03-14 2015-09-17 University Of Maryland Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms
CN105413464A (zh) * 2015-10-22 2016-03-23 中国海洋大学 一种添加石墨烯量子点的正渗透膜制备方法、所制备的正渗透膜以及该膜的应用
US9527043B2 (en) * 2012-05-17 2016-12-27 Samsung Electronics Co., Ltd. Gas separation membrane and method of preparing the same
CN106964262A (zh) * 2017-04-13 2017-07-21 东华大学 一种纳米纤维基渗透汽化复合膜及其制备方法
CN107469637A (zh) * 2017-07-14 2017-12-15 中国海洋大学 一种高通量耐溶剂聚酰亚胺有机/无机杂化复合膜的制备方法
CN108421422A (zh) * 2018-01-18 2018-08-21 方大炭素新材料科技股份有限公司 一种选择性离子分离的纳滤复合膜及其制备方法
CN109925896A (zh) * 2019-03-06 2019-06-25 中国海洋大学 一种杂化复合膜、制备方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9527043B2 (en) * 2012-05-17 2016-12-27 Samsung Electronics Co., Ltd. Gas separation membrane and method of preparing the same
CN102989330A (zh) * 2012-12-20 2013-03-27 浙江工商大学 一种石墨烯/芳香聚酰胺杂化反渗透膜及其制备方法
US20150258506A1 (en) * 2014-03-14 2015-09-17 University Of Maryland Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms
CN105413464A (zh) * 2015-10-22 2016-03-23 中国海洋大学 一种添加石墨烯量子点的正渗透膜制备方法、所制备的正渗透膜以及该膜的应用
CN106964262A (zh) * 2017-04-13 2017-07-21 东华大学 一种纳米纤维基渗透汽化复合膜及其制备方法
CN107469637A (zh) * 2017-07-14 2017-12-15 中国海洋大学 一种高通量耐溶剂聚酰亚胺有机/无机杂化复合膜的制备方法
CN108421422A (zh) * 2018-01-18 2018-08-21 方大炭素新材料科技股份有限公司 一种选择性离子分离的纳滤复合膜及其制备方法
CN109925896A (zh) * 2019-03-06 2019-06-25 中国海洋大学 一种杂化复合膜、制备方法及其应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713295A (zh) * 2022-04-22 2022-07-08 河北工业大学 一种单价选择性阳离子交换膜及其制备方法与应用
CN115025622A (zh) * 2022-07-13 2022-09-09 浙江工业大学 一种基于多维氧化石墨烯改性的高通量反渗透膜及其制备方法
CN115025622B (zh) * 2022-07-13 2023-03-28 浙江工业大学 一种基于多维氧化石墨烯改性的高通量反渗透膜及其制备方法
CN115301086A (zh) * 2022-08-09 2022-11-08 烟台大学 一种全氟聚合物基复合纳滤膜
CN115301086B (zh) * 2022-08-09 2024-03-22 烟台大学 一种全氟聚合物基复合纳滤膜
CN115430296A (zh) * 2022-09-20 2022-12-06 中国科学院过程工程研究所 一种具有催化中间层的复合纳滤膜及其制备方法和应用
WO2024114370A1 (zh) * 2022-11-28 2024-06-06 沃顿科技股份有限公司 纳滤膜的制备方法和由其制备的纳滤膜
CN117101427A (zh) * 2023-10-23 2023-11-24 山东膜泰环保科技股份有限公司 一种pvdf弹性超滤膜的制备方法

Similar Documents

Publication Publication Date Title
WO2020177274A1 (zh) 复合膜、制备方法及其应用
CN109925896B (zh) 一种杂化复合膜、制备方法及其应用
Bi et al. Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties
CN111229053B (zh) 一种高通量纳滤膜、其制备方法及应用
Hwang et al. Ultrafiltration using graphene oxide surface-embedded polysulfone membranes
Ghanbari et al. Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination
CN106215720B (zh) 一种掺杂石墨烯量子点耐有机溶剂超滤膜的制备方法、所制备的超滤膜以及该超滤膜的应用
CN110141978B (zh) 一种超薄复合膜及其制备方法
Valamohammadi et al. Preparation of positively charged thin-film nanocomposite membranes based on the reaction between hydrolyzed polyacrylonitrile containing carbon nanomaterials and HPEI for water treatment application
Zhan et al. How to understand the effects of heat curing conditions on the morphology and performance of polypiperazine-amide NF membrane
KR101399827B1 (ko) 표면 개질된 나노탄소 물질을 포함하는 역삼투막의 제조방법
US20160051939A1 (en) Nanocomposite ultra-thin separation membrane and method for manufacturing the same
CN103635242A (zh) 嵌入分子笼型化合物的薄膜复合膜
CN111565826A (zh) 薄膜复合膜
CN109351190B (zh) 一种交联含氟聚酰胺复合耐溶剂纳滤膜、制备方法及其应用
CN107709454B (zh) 石墨烯基膜及其制造方法
CN111214965A (zh) 反渗透膜及其制备方法与应用
Khan et al. Incorporating covalent organic framework nanosheets into polyamide membranes for efficient desalination
CN115090130B (zh) 含硅胶纳米颗粒中间层的纳滤膜及其制备方法
CN110292867B (zh) 一种高通量耐有机溶剂纳滤凝胶复合膜及其制备方法
Guo et al. Engineering polydopamine-glued sandwich-like nanocomposites with antifouling and antibacterial properties for the development of advanced mixed matrix membranes
CN112973479A (zh) 一种高通量反渗透膜及其制备方法与应用
Yuan et al. Polyamide nanofiltration membrane fine-tuned via mixed matrix ultrafiltration support to maximize the sieving selectivity of Li+/Mg2+ and Cl–/SO42–
Tsai et al. The preparation of polyelectrolyte/hydrolyzed polyacrylonitrile composite hollow fiber membrane for pervaporation
CN110833768B (zh) 一种含β-CD@ZIF-8纳米颗粒双层聚酰胺耐溶剂纳滤膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917621

Country of ref document: EP

Kind code of ref document: A1