WO2020177183A1 - 木素型纤维纳米纤丝材料、基于该材料的稳定泡沫体系及其制备方法和应用 - Google Patents

木素型纤维纳米纤丝材料、基于该材料的稳定泡沫体系及其制备方法和应用 Download PDF

Info

Publication number
WO2020177183A1
WO2020177183A1 PCT/CN2019/082782 CN2019082782W WO2020177183A1 WO 2020177183 A1 WO2020177183 A1 WO 2020177183A1 CN 2019082782 W CN2019082782 W CN 2019082782W WO 2020177183 A1 WO2020177183 A1 WO 2020177183A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
fiber
foam
type fiber
stable foam
Prior art date
Application number
PCT/CN2019/082782
Other languages
English (en)
French (fr)
Inventor
魏兵
温洋兵
王媛媛
蒲万芬
陈神根
Original Assignee
西南石油大学
天津科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学, 天津科技大学 filed Critical 西南石油大学
Priority to US16/762,918 priority Critical patent/US11339254B2/en
Publication of WO2020177183A1 publication Critical patent/WO2020177183A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/38Gaseous or foamed well-drilling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • C09K8/703Foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • C09K8/94Foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2397/00Characterised by the use of lignin-containing materials
    • C08J2397/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • C08J2401/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials
    • C08J2497/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/08Fiber-containing well treatment fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Definitions

  • the invention belongs to the technical field of oilfield exploitation, and specifically relates to a lignin-type fiber nanofibril material, a stable foam system based on the material, and a preparation method and application thereof.
  • Foam is a heterogeneous system based on gas, surfactants and water. Because of its low density, small weight, and a certain viscosity, it can flow continuously and carry water, oil, and sand. It is widely used in oil displacement, profile control, water control, gas channeling prevention, fracturing, etc. However, the foam is a thermodynamic metastable system. The space occupied by the foam liquid film will decrease spontaneously to reduce the overall surface free energy of the system and maintain its own stability. From a long-term perspective, the collapse of the foam is irreversible.
  • Fiber nanofibrils are filamentous fibers separated from plant cellulose with a diameter of 5-20 nm and a length of several hundred nanometers to several micrometers. It is also a kind of natural polysaccharide polymer material that exists most widely in nature. As the basic unit of cellulose fiber, it not only has the characteristics of cellulose, but also has many characteristics of nanomaterials, such as large surface area, strong hydrophilicity, easy modification, high stability, etc., so it has good stability in foam liquid film Application potential.
  • the present invention provides a lignin fiber nanofibril material, a stable foam system based on the material, and a preparation method and application thereof, which can effectively solve the poor foam stability and cost in the prior art High question.
  • a lignin-type fiber nanofibrillar material includes the following components:
  • Wood powder 0.5-20wt%, TEMPO (2,2,6,6-tetramethylpiperidine oxide) 0.1-10wt%, oxidant 2-25mmol/g, NaBr 6-15wt%, the balance is water.
  • the lignin-type fiber nanofibril material includes the following components: 15wt% wood powder, 5wt% TEMPO (2,2,6,6-tetramethylpiperidine oxide), 10mmol/g oxidant, and 12wt% NaBr %, the balance is water.
  • the particle size of the wood powder is 20-120 mesh, and the oxidizing agent is NaClO or NaClO 2 .
  • the preparation method of the lignin-type fiber nanofibril material includes the following steps:
  • the carboxyl group content in the oxidized fiber is 0.3-2.5 mol/L, and the lignin content is 0.1-40 wt%.
  • a stable foam system based on lignin fiber nanofibrils including the following components in mass percentage: lignin fiber nanofibril material 0.1-1.0wt%, surfactant 0.2-1.0wt%, sodium chloride 0.1 -10wt%, calcium chloride 0.1-1.0wt%, magnesium chloride 0.1-1.0wt%, sodium sulfate 0.1-1.0wt%, and the balance is water.
  • the stable foam system based on lignin-type fiber nanofibrils includes the following components in mass percentage: 0.1-0.4wt% of lignin-type fiber nanofibrils, 0.2-1.0wt% of surfactants, sodium chloride 0-4.2wt%, calcium chloride 0-0.7wt%, magnesium chloride 0-0.42wt%, sodium sulfate 0-0.04wt%, the balance is water; preferably 0.1wt% of lignin fiber nanofibrous material, surface Active agent 0.4wt%, sodium chloride 3.44wt%, calcium chloride 0.64wt%, magnesium chloride 0.18wt%, sodium sulfate 0.018wt%, and the balance is water.
  • the surfactant is a mixture of secondary sodium alkyl sulfonate and ⁇ -enyl sulfonate at a molar ratio of 1:1.
  • the method for preparing the above-mentioned stable foam system based on lignin fiber nanofibrils includes the following steps:
  • step (3) Disperse the lignin-type fiber nanofibril material into the solution obtained in step (2), and stir evenly;
  • step (3) Blow air into the solution obtained in step (3) until the foam volume no longer increases to obtain a stable foam system.
  • the above-mentioned stable foam system based on lignin-type fiber nanofibrils can be used in oilfield development, such as profile control, cone pressure, fracturing, drilling, foam drainage, etc.
  • the lignin-type fiber nanofibril material, the stable foam system based on the material, and the preparation method and application thereof provided by the present invention have the following beneficial effects:
  • the wood powder used in the present invention is the sawdust waste produced by the wood processing industry on the market.
  • the present invention makes full use of it. It is not chemically treated before use, and it is directly reacted with oxidant, NaBr, and TEMPO, and the process is simple , The cost is low, all the lignin is retained in the prepared fiber nanofibril material.
  • the reaction mechanism is: there are a large number of primary alcohol hydroxyl groups in the wood flour, and NaClO is used as the main oxidant of the process.
  • the prepared lignin-type fiber nanofibrils are used as an important component of the foam system.
  • the foam obtained by coordinating with other components has good stability, the half-life of the liquid can be increased by 1.5 times, and the life of the foam can be extended by 1 time.
  • the drag coefficient and residual drag coefficient can be increased by 5 times.
  • Figure 1 is the EDX spectrum of LCNF in Example 1.
  • Figure 2 is the EDX spectrum of CNF in Example 1.
  • Figure 3 is an SEM image of LCNF and CNF in Example 1.
  • Figure 4 shows the comparison results of the foaming volume and the half-life (without oil) of the stable foam and the ordinary foam (blank, containing only surfactant) in Examples 2-5.
  • Fig. 5 is the comparison result of the foaming volume and the half-life (containing 1 vol% oil) of the stable foam and the ordinary foam (blank, containing only surfactant) in Examples 2-5.
  • Fig. 6 is the comparison result of foam defoaming speed (without oil) of stable foam and ordinary foam (blank, containing only surfactant) in Examples 2-5.
  • Fig. 7 is the comparison result of foam defoaming speed (containing 1 vol% oil) of stable foam and ordinary foam (blank, containing only surfactant) in Examples 2-5.
  • Fig. 8 is the comparison result of liquid film thickness (without oil) between stable foam and ordinary foam (blank, containing only surfactant) in Examples 2-5.
  • Figure 9 is the comparison result of liquid film thickness (containing 1 vol% oil) of stable foam and ordinary foam (blank, containing only surfactant) in Examples 2-5.
  • Fig. 10 is the comparison result of the liquid film moisture content of stable foam and ordinary foam (blank sample, containing only surfactant) in Examples 2-5.
  • Fig. 11 is the comparison result of core injection pressure between stable foam and ordinary foam (blank sample, containing only surfactant) in Examples 2-5.
  • a lignin-type fiber nanofibrillar material includes the following components:
  • Coniferous wood powder 15wt%, TEMPO (2,2,6,6-tetramethylpiperidine oxide) 5wt%, NaClO10mmol/g, NaBr 12wt%, the balance is water; the particle size of coniferous wood powder is 50-100 mesh.
  • the preparation method of the lignin-type fiber nanofibril material includes the following steps:
  • the lignin content in LCNF-1 was measured to be 15.5wt%.
  • the amount of NaClO in the above components was changed to 13mmol/g, and the remaining components and contents were unchanged, and the lignin-type fiber nanofibril material was prepared according to the above preparation process.
  • the prepared material was recorded as LCNF-2, which The lignin content is 11.7%.
  • the amount of NaClO in the above components was changed to 18mmol/g, and the remaining components and contents were unchanged, and the lignin-type fiber nanofibril material was prepared according to the above preparation process.
  • the prepared material was recorded as LCNF-3, which The lignin content is 8.66%.
  • the amount of NaClO in the above components was changed to 25mmol/g, the remaining components and content were unchanged, and the lignin-type fiber nanofibril material was prepared according to the above preparation process, and the prepared material was recorded as LCNF-4, which The lignin content is 4.49%.
  • the lignin-type fiber nanofibril material in Example 1 is used to prepare a stable foam system.
  • the foam system includes the following mass percentage components: lignin-type fiber nanofibril material (LCNF-1) 0.1wt%, surface activity 0.4wt% of sodium chloride, 3.44wt% of sodium chloride, 0.64wt% of calcium chloride, 0.18wt% of magnesium chloride, 0.018wt% of sodium sulfate, the balance being water; wherein the surfactant is sodium secondary alkyl sulfonate and ⁇ -ene The molar ratio of base sulfonate is a 1:1 mixture.
  • the preparation method of the above-mentioned stable foam system includes the following steps:
  • step (3) Disperse the lignin-type fiber nanofibril material into the solution obtained in step (2) at room temperature, and stir evenly until there is no obvious flocculation;
  • step (3) Transfer the solution obtained in step (3) to a foam meter, and blow air from the bottom until the foam volume no longer increases, and a stable foam system is prepared.
  • a stable foam system based on lignin fiber nanofibrils includes the following components in mass percentage: lignin fiber nanofibril material (LCNF-2) 0.1wt%, surfactant 0.4wt%, chlorine Sodium chloride 3.44% by weight, calcium chloride 0.64% by weight, magnesium chloride 0.18% by weight, sodium sulfate 0.018% by weight, and the balance is water; the surfactant is sodium secondary alkyl sulfonate and ⁇ -ene sulfonate mole The ratio is 1:1 mixed mixture.
  • LCNF-2 lignin fiber nanofibril material
  • the preparation method of the above-mentioned stable foam system includes the following steps:
  • step (3) Disperse the lignin-type fiber nanofibril material into the solution obtained in step (2) at room temperature, and stir evenly until there is no obvious flocculation;
  • step (3) Transfer the solution obtained in step (3) to a foam meter, and blow air from the bottom until the foam volume no longer increases, and a stable foam system is prepared.
  • a stable foam system based on lignin fiber nanofibrils includes the following components in mass percentage: lignin fiber nanofibril material (LCNF-3) 0.1wt%, surfactant 0.4wt%, chlorine Sodium chloride 3.44% by weight, calcium chloride 0.64% by weight, magnesium chloride 0.18% by weight, sodium sulfate 0.018% by weight, and the balance is water; the surfactant is sodium secondary alkyl sulfonate and ⁇ -ene sulfonate mole The ratio is 1:1 mixed mixture.
  • LCNF-3 lignin fiber nanofibril material
  • surfactant 0.4wt%
  • chlorine Sodium chloride 3.44% by weight calcium chloride 0.64% by weight
  • magnesium chloride 0.18% by weight sodium sulfate 0.018% by weight
  • the balance is water
  • the surfactant is sodium secondary alkyl sulfonate and ⁇ -ene sulfonate mole
  • the ratio is 1:1 mixed
  • the preparation method of the above-mentioned stable foam system includes the following steps:
  • step (3) Disperse the lignin-type fiber nanofibril material into the solution obtained in step (2) at room temperature, and stir evenly until there is no obvious flocculation;
  • step (3) Transfer the solution obtained in step (3) to a foam meter, and blow air from the bottom until the foam volume no longer increases, and a stable foam system is prepared.
  • a stable foam system based on lignin-type fiber nanofibrils includes the following components by mass percentage: lignin-type fiber nanofibril material (LCNF-4) 0.1wt%, surfactant 0.4wt%, chlorine Sodium chloride 3.44% by weight, calcium chloride 0.64% by weight, magnesium chloride 0.18% by weight, sodium sulfate 0.018% by weight, and the balance is water; the surfactant is sodium secondary alkyl sulfonate and ⁇ -ene sulfonate mole The ratio is 1:1 mixed mixture.
  • LCNF-4 lignin-type fiber nanofibril material
  • the preparation method of the above-mentioned stable foam system includes the following steps:
  • step (3) Disperse the lignin-type fiber nanofibril material into the solution obtained in step (2) at room temperature, and stir evenly until there is no obvious flocculation;
  • step (3) Transfer the solution obtained in step (3) to a foam meter, and blow air from the bottom until the foam volume no longer increases, and a stable foam system is prepared.
  • the LCNF-1 prepared in Example 1 and the existing CNF (purchased from Tianjin Mujing Biological Technology Co., Ltd., the product name is microfibrillated cellulose) were detected, and the EDX spectrum is shown in Figure 1. It can be seen from Figure 1 that the mass fractions of C and O in LCNF are 75.4% and 21.49%, respectively, which are very close to the elemental composition of lignin; while the content of C, O and H in CNF is a typical fiber composition.
  • the LCNF prepared by the invention contains a certain amount of lignin.
  • Figure 2 is an SEM image of LCNF-1 prepared in Example 1 and an existing CNF. It can be seen from Figure 2 that the surface structure of LCNF is rougher than that of CNF, and there are flakes suspended on the surface of the fiber. Combined with the results of EDX analysis, it can be proved that the flakes are lignin.
  • Figure 3 shows the comparison results of the foaming volume and the half-life of the liquid (without oil) of the stable foam and the ordinary foam (blank, containing only surfactant) in Examples 2-5. It can be seen from Figure 3 that due to gravity, the bubble volume of the LCNF stabilized foam is lower than that of the blank sample, but its liquid absorption half-life is significantly longer than that of the blank sample, indicating the high stability of the foam.
  • Fig. 4 is the comparison result of the foaming volume and the half-life (containing 1 vol% oil) of the stable foam and the ordinary foam (blank, containing only surfactant) in Examples 2-5.
  • the addition of crude oil will cause foam instability and accelerate the rate of foaming. It can be seen from Figure 4 that compared to the blank sample, the LCNF stable foam has a longer half-life, indicating that the LCNF stable foam has excellent oil resistance.
  • Figure 5 shows the comparison result of foam defoaming speed (without oil) between stable foam and ordinary foam (blank, containing only surfactant) in Examples 2-5. It can be seen from Figure 5 that the defoaming speed of the blank sample is faster, and the foam volume decreases rapidly after 6h, while the defoaming speed of the LCNF stabilized foam is slower, and there is no obvious change within 12h, indicating its excellent stability.
  • Fig. 6 is the comparison result of foam defoaming speed (containing 1 vol% oil) of stable foam and ordinary foam (blank, containing only surfactant) in Examples 2-5. It can be seen from Figure 6 that the defoaming speed of the blank sample is faster, and the foam volume decreases rapidly after 30 minutes, while the defoaming speed of the LCNF stabilized foam is slower, and there is a significant change after 120 minutes, indicating its excellent stability.
  • Fig. 7 is the comparison result of liquid film thickness (without oil) of stable foam and ordinary foam (blank, containing only surfactant) in Examples 2-5. It can be seen from Figure 7 that the liquid film thickness of the blank sample decreases linearly with time, while the liquid film thickness of the LCNF stabilized foam decreases slowly, especially the decrease speed of LCNF-1 and LCNF-3 is the slowest, which can explain the application
  • the LCNF foam provided has good stability.
  • Fig. 8 is the comparison result of liquid film thickness (containing 1 vol% oil) of stable foam and ordinary foam (blank, containing only surfactant) in Examples 2-5. It can be seen from Figure 8 that although the liquid film thickness of the foam will decrease rapidly over time, at the same time, the liquid film thickness of the LCNF foam is thicker than the blank sample, indicating that its stability is better than that of the blank sample.
  • Fig. 9 is the comparison result of the liquid film moisture content of stable foam and ordinary foam (blank, containing only surfactant) in Examples 2-5. It can be seen from Figure 9 that when the initial water content is equivalent, the water content of the liquid film of the LCNF stabilized foam decreases significantly slower, which indicates that the liquid discharge rate of the LCNF stabilized foam is relatively small and the foam is more stable.
  • the porosity and permeability properties are close to the sandstone core, and the foam flow in the porous medium is simulated, and the pressure difference between the inlet and outlet of the core is measured, as shown in Figure 10. It can be seen from Figure 10 that under the same experimental conditions, the pressure difference produced by the LCNF stabilized foam is significantly higher than that of the blank sample, especially LCNF-3. This phenomenon shows that the stability of the LCNF stabilized foam in porous media is better.
  • the interface elasticity of the foam can inhibit the coarsening of the foam and the collapse of the foam skeleton, and improve the stability of the foam.
  • the expansion and viscoelasticity of the air-liquid interface of the foam was measured, and the measurement results are shown in Table 1.
  • the present invention also uses a foam scanner to measure the stability parameters of the foam, and the measurement results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paper (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

一种木素型纤维纳米纤丝材料、基于该材料的稳定泡沫体系及其制备方法和应用。木素型纤维纳米纤丝材料包括以下组分:木粉0.5‑20wt%、2,2,6,6‑四甲基哌啶氧化物0.1‑10wt%、氧化剂2‑25mmol/g、NaBr 6‑15wt%,余量为水。通过将废弃物木粉进行废物利用,保留了木粉中的木素,制得木素型纤维纳米纤丝材料,并将该材料作为泡沫体系的一个重要组分部分,与表面活性剂、氯化钠等组分相互配合制得的泡沫稳定性好,析液半衰期可提高1.5倍,泡沫寿命可延长1倍,阻力系数和残余阻力系数可提高5倍。

Description

木素型纤维纳米纤丝材料、基于该材料的稳定泡沫体系及其制备方法和应用 技术领域
本发明属于油田开采技术领域,具体涉及一种木素型纤维纳米纤丝材料、基于该材料的稳定泡沫体系及其制备方法和应用。
背景技术
泡沫是基于气体、表面活性剂和水建立的一种非均相体系,由于密度低、重量小,同时具有一定的粘滞性,可连续流动,对水、油、砂有携带作用,所以被广泛应用在驱油、调剖、控水、防气窜、压裂等方向。但是,泡沫是一个热力学亚稳定体系,泡沫液膜所占空间会自发减小以降低体系的整体表面自由能,维持自身稳定,从长时间角度看,泡沫的破灭不可逆转。
当前泡沫稳定剂主要包括高分子聚合物和固相纳米材料,但是材料性能、成本和来源问题极大限制了油田规模化推广和应用。纤维纳米纤丝(CNF)是一种从植物纤维素分离得到的直径为5~20nm,长度几百纳米至几微米的丝状纤维,也是自然界存在最为广泛的一种天然多糖类高分子材料,作为纤维素纤维的基本组成单元,不仅具有纤维素的特性,更具有纳米材料的诸多特性,如比面大、强亲水、易修饰、稳定性高等,所以在稳定泡沫液膜方面具有良好的应用潜力。
现对普通的纤维纳米纤丝(CNF)和经过改性后的纤维材料的稳泡性能进行了研究,证实了两亲性CNF的效果最佳,但此类纤维材料需要同时嫁接两种基团,其处理工艺复杂,生产成本高,从而限制了油田现场应用。
因此,开发一种成本低且具有相似效果的纤维材料对于泡沫体系在油田生产中的广泛应用具有重大意义和实用价值。
发明内容
针对现有技术中存在的上述问题,本发明提供一种木素型纤维纳米纤丝材料、基于该材料的稳定泡沫体系及其制备方法和应用,可有效解决现有技术中泡沫稳定性差和成本高的问题。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:
一种木素型纤维纳米纤丝材料,包括以下组分:
木粉0.5-20wt%、TEMPO(2,2,6,6-四甲基哌啶氧化物)0.1-10wt%、氧化剂2-25mmol/g、NaBr 6-15wt%,余量为水。
进一步地,木素型纤维纳米纤丝材料,包括以下组分:木粉15wt%、TEMPO(2,2,6,6-四甲基哌啶氧化物)5wt%、氧化剂10mmol/g、NaBr 12wt%,余量为水。
进一步地,木粉的粒径为20-120目,氧化剂为NaClO或NaClO 2
上述木素型纤维纳米纤丝材料的制备方法,包括以下步骤:
(1)将木粉均匀分散至水中,然后加入TEMPO和NaBr并调整反应体系pH值为10-10.5后,再加入氧化剂,反应过程中保持反应体系pH值不变,反应时间为0.5-4h,最后经洗涤得到氧化纤维;
(2)将氧化纤维加入水中,使得氧化纤维的浓度为0.5-10wt%,然后采用高压均质机进行均质处理,均质压力为40-150MPa,均质次数为1-20次,制得木素型纤维纳米纤丝材料(LCNF)。
进一步地,氧化纤维中羧基含量为0.3-2.5mol/L,木素含量为0.1-40wt%。
一种基于木素型纤维纳米纤丝的稳定泡沫体系,包括以下质量百分数的组分:木素型纤维纳米纤丝材料0.1-1.0wt%、表面活性剂0.2-1.0wt%、氯化钠0.1-10wt%、氯化钙0.1-1.0wt%、氯化镁0.1-1.0wt%、硫酸钠0.1-1.0wt%,余量为水。
进一步地,基于木素型纤维纳米纤丝的稳定泡沫体系,包括以下质量百分数的组分:木素型纤维纳米纤丝材料0.1-0.4wt%、表面活性剂0.2-1.0wt%、氯化钠0-4.2wt%、氯化钙0-0.7wt%、氯化镁0-0.42wt%、硫酸钠0-0.04wt%,余量为水;优选为木素型纤维纳米纤丝材料0.1wt%、表面活性剂0.4wt%、氯化钠3.44wt%、氯化钙0.64wt%、氯化镁0.18wt%、硫酸钠0.018wt%,余量为水。
进一步地,表面活性剂为仲烷基磺酸钠和α-烯基磺酸盐按摩尔比为1:1混合的混合物。
上述基于木素型纤维纳米纤丝的稳定泡沫体系的制备方法,包括以下步骤:
(1)将氯化钠、氯化钙、氯化镁和硫酸钠溶解于去离子水中,搅拌均匀;
(2)将表面活性剂溶于步骤(1)所得溶液中,搅拌均匀;
(3)将木素型纤维纳米纤丝材料分散到步骤(2)所得溶液中,搅拌均匀;
(4)向步骤(3)所得溶液中鼓入空气,直到泡沫体积不再增加为止,制得稳定泡沫体系。
上述基于木素型纤维纳米纤丝的稳定泡沫体系,可用于油田开发,如调剖、压锥、压裂、钻井、泡排等。
本发明提供的木素型纤维纳米纤丝材料、基于该材料的稳定泡沫体系及其制备方法和应用,具有以下有益效果:
本发明使用的木粉为市场上木材加工行业生产的锯末废料,本发明对其进行充分利用,在使用前对其没有进行化学处理,直接将其与氧化剂、NaBr、TEMPO进行反应,工艺过程简单,成本低,制得的纤维纳米纤丝材料中保留了全部木素,其反应机理为:木粉中存在大量的伯醇羟基,NaClO作为该过程的主氧化剂,其首先与NaBr形成NaBrO,随后NaBrO将TEMPO氧化成亚硝鎓离子,亚硝鎓离子将木粉中的伯醇羟基氧化成醛基(中间体),最终生成羧基, 具体反应式如下:
Figure PCTCN2019082782-appb-000001
将制备得到的木素型纤维纳米纤丝作为泡沫体系的一个重要组分部分,与其他组分相互配合制得的泡沫稳定性好,析液半衰期可提高1.5倍,泡沫寿命可延长1倍,阻力系数和残余阻力系数可提高5倍。
附图说明
[根据细则91更正 12.02.2020] 
图1为实施例1中LCNF的EDX谱图。
图2为实施例1中CNF的EDX谱图。
[根据细则91更正 12.02.2020] 
图3为实施例1中LCNF和CNF的SEM图。
[根据细则91更正 12.02.2020] 
图4为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)起泡体积和析液半衰期对比结果(不含油)。
[根据细则91更正 12.02.2020] 
图5为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)起泡体积和析液半衰期对比结果(含1vol%油)。
[根据细则91更正 12.02.2020] 
图6为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)泡沫消泡速度对比结果(不含油)。
[根据细则91更正 12.02.2020] 
图7为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)泡沫 消泡速度对比结果(含1vol%油)。
[根据细则91更正 12.02.2020] 
图8为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)液膜厚度对比结果(不含油)。
[根据细则91更正 12.02.2020] 
图9为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)液膜厚度对比结果(含1vol%油)。
[根据细则91更正 12.02.2020] 
图10为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)液膜含水率对比结果。
[根据细则91更正 12.02.2020] 
图11为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)岩心注入压力对比结果。
具体实施方式
实施例1
一种木素型纤维纳米纤丝材料,包括以下组分:
针叶木木粉15wt%、TEMPO(2,2,6,6-四甲基哌啶氧化物)5wt%、NaClO10mmol/g、NaBr 12wt%,余量为水;其中,针叶木木粉粒径为50-100目。
上述木素型纤维纳米纤丝材料的制备方法,包括以下步骤:
(1)将针叶木木粉均匀分散至水中,使得针叶木木粉的浓度为15wt%,然后加入TEMPO和NaBr并调整反应体系pH值为10-10.5后,再加入NaClO,反应过程中保持反应体系pH值不变,反应时间为4h,最后经洗涤得到氧化纤维;
(2)将氧化纤维加入水中,使得氧化纤维的浓度为5wt%,然后采用高压均质机进行均质处理,均质压力为50MPa,均质次数为10次,制得木素型纤维纳米纤丝材料(LCNF-1)。
采用TAPPI T 222om-11(2011)方法,测得LCNF-1中木素含量为15.5wt%。
将上述组分中NaClO的用量改为13mmol/g,其余组分和含量均不改变,并按照上述制备过程来制备木素型纤维纳米纤丝材料,制得的材料记为LCNF-2,其木素含量为11.7%。
将上述组分中NaClO的用量改为18mmol/g,其余组分和含量均不改变,并按照上述制备过程来制备木素型纤维纳米纤丝材料,制得的材料记为LCNF-3,其木素含量为8.66%。
将上述组分中NaClO的用量改为25mmol/g,其余组分和含量均不改变,并按照上述制备过程来制备木素型纤维纳米纤丝材料,制得的材料记为LCNF-4,其木素含量为4.49%。
实施例2
将实施例1中的木素型纤维纳米纤丝材料用于制备稳定泡沫体系,泡沫体系包括以下质量百分数的组分:木素型纤维纳米纤丝材料(LCNF-1)0.1wt%、表面活性剂0.4wt%、氯化钠3.44wt%、氯化钙0.64wt%、氯化镁0.18wt%、硫酸钠0.018wt%,余量为水;其中表面活性剂为仲烷基磺酸钠和α-烯基磺酸盐按摩尔比为1:1混合的混合物。
上述稳定泡沫体系的制备方法,包括以下步骤:
(1)在室温条件下,将氯化钠、氯化钙、氯化镁和硫酸钠溶解于去离子水中,搅拌均匀;
(2)在室温条件下,将表面活性剂溶于步骤(1)所得溶液中,搅拌均匀;
(3)在室温条件下,将木素型纤维纳米纤丝材料分散到步骤(2)所得溶液中,搅拌均匀,直至无明显絮状;
(4)将步骤(3)所得溶液转移至泡沫仪中,从底部鼓入空气,直到泡沫体积不再增加为止,制得稳定泡沫体系。
实施例3
一种基于木素型纤维纳米纤丝的稳定泡沫体系,泡沫体系包括以下质量百分数的组分:木素型纤维纳米纤丝材料(LCNF-2)0.1wt%、表面活性剂0.4wt%、氯化钠3.44wt%、氯化钙0.64wt%、氯化镁0.18wt%、硫酸钠0.018wt%,余量为水;其中表面活性剂为仲烷基磺酸钠和α-烯基磺酸盐按摩尔比为1:1混合的混合物。
上述稳定泡沫体系的制备方法,包括以下步骤:
(1)在室温条件下,将氯化钠、氯化钙、氯化镁和硫酸钠溶解于去离子水中,搅拌均匀;
(2)在室温条件下,将表面活性剂溶于步骤(1)所得溶液中,搅拌均匀;
(3)在室温条件下,将木素型纤维纳米纤丝材料分散到步骤(2)所得溶液中,搅拌均匀,直至无明显絮状;
(4)将步骤(3)所得溶液转移至泡沫仪中,从底部鼓入空气,直到泡沫体积不再增加为止,制得稳定泡沫体系。
实施例4
一种基于木素型纤维纳米纤丝的稳定泡沫体系,泡沫体系包括以下质量百分数的组分:木素型纤维纳米纤丝材料(LCNF-3)0.1wt%、表面活性剂0.4wt%、氯化钠3.44wt%、氯化钙0.64wt%、氯化镁0.18wt%、硫酸钠0.018wt%,余量为水;其中表面活性剂为仲烷基磺酸钠和α-烯基磺酸盐按摩尔比为1:1混合的混合物。
上述稳定泡沫体系的制备方法,包括以下步骤:
(1)在室温条件下,将氯化钠、氯化钙、氯化镁和硫酸钠溶解于去离子水中,搅拌均匀;
(2)在室温条件下,将表面活性剂溶于步骤(1)所得溶液中,搅拌均匀;
(3)在室温条件下,将木素型纤维纳米纤丝材料分散到步骤(2)所得溶液中,搅拌均匀,直至无明显絮状;
(4)将步骤(3)所得溶液转移至泡沫仪中,从底部鼓入空气,直到泡沫体积不再增加为止,制得稳定泡沫体系。
实施例5
一种基于木素型纤维纳米纤丝的稳定泡沫体系,泡沫体系包括以下质量百分数的组分:木素型纤维纳米纤丝材料(LCNF-4)0.1wt%、表面活性剂0.4wt%、氯化钠3.44wt%、氯化钙0.64wt%、氯化镁0.18wt%、硫酸钠0.018wt%,余量为水;其中表面活性剂为仲烷基磺酸钠和α-烯基磺酸盐按摩尔比为1:1混合的混合物。
上述稳定泡沫体系的制备方法,包括以下步骤:
(1)在室温条件下,将氯化钠、氯化钙、氯化镁和硫酸钠溶解于去离子水中,搅拌均匀;
(2)在室温条件下,将表面活性剂溶于步骤(1)所得溶液中,搅拌均匀;
(3)在室温条件下,将木素型纤维纳米纤丝材料分散到步骤(2)所得溶液中,搅拌均匀,直至无明显絮状;
(4)将步骤(3)所得溶液转移至泡沫仪中,从底部鼓入空气,直到泡沫体积不再增加为止,制得稳定泡沫体系。
对实施例1制得的LCNF-1和现有的CNF(购自天津市木精灵生物科技有限公司,产品名称为微纤化纤维素)进行检测,其EDX谱图见图1。由图1可知,LCNF中C和O的质量分数分别为75.4%和21.49%,和木素的元素组成非常接近;而CNF中C、O和H的含量是典型的纤维组成,由此可知,本发明制 得的LCNF中含有一定量的木素。
图2为实施例1制得的LCNF-1和现有的CNF的SEM图。由图2可知,LCNF的表面结构比CNF粗糙,纤维表面悬挂有片状物质,结合EDX分析结果,可证明该片状物质为木素。
图3为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)起泡体积和析液半衰期对比结果(不含油)。由图3可知,由于重力原因,LCNF稳定泡沫的气泡体积比空白样要低,但其吸液半衰期相对于空白样明显延长,说明泡沫的稳定性高。
图4为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)起泡体积和析液半衰期对比结果(含1vol%油)。加入原油后会导致泡沫失稳,加快泡沫析液速度,由图4可知,相对于空白样,LCNF稳定泡沫的析液半衰期要长,说明LCNF稳定泡沫具有优异的耐油性能。
图5为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)泡沫消泡速度对比结果(不含油)。由图5可知,空白样的消泡速度较快,6h后泡沫体积快速下降,而LCNF稳定泡沫的消泡速度较慢,12h内未见明显变化,说明其具有优异的稳定性。
图6为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)泡沫消泡速度对比结果(含1vol%油)。由图6可知,空白样的消泡速度较快,30min后泡沫体积快速下降,而LCNF稳定泡沫的消泡速度较慢,120min后才出现明显变化,说明其具有优异的稳定性。
图7为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)液膜厚度对比结果(不含油)。由图7可知,空白样的液膜厚度随时间呈线性递减,而LCNF稳定泡沫的液膜厚度递减速度较慢,尤其是LCNF-1和LCNF-3递减速 度最慢,由此可说明本申请提供的LCNF泡沫的稳定性好。
图8为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)液膜厚度对比结果(含1vol%油)。由图8可知,虽然泡沫的液膜厚度随时间都会快速递减,但在同一时间,LCNF泡沫的液膜厚度比空白样要厚,说明其稳定性要优于空白样。
图9为实施例2-5中稳定泡沫和普通泡沫(空白样,仅含表面活性剂)液膜含水率对比结果。由图9可知,在初始含水率相当的情况下,LCNF稳定泡沫的液膜含水率递减明显较慢,这表明LCNF稳定泡沫的排液速度较小,泡沫较稳定。
采用孔渗性质接近砂岩岩心,模拟泡沫在多孔介质中的流动,测定岩心进出口压差,如图10所示。由图10可知,在相同的实验条件下,LCNF稳定泡沫产生的压差明显高于空白样品,尤其是LCNF-3.这一现象说明,LCNF稳定泡沫在多孔介质中的稳定性比较好。
泡沫的界面弹性可抑制泡沫粗化和泡沫骨架坍塌,提高泡沫的稳定性。本发明对泡沫的气液界面扩张粘弹性进行了测定,测定结果见表1。
表1 泡沫的界面弹性结果
Figure PCTCN2019082782-appb-000002
由表1可知,LCNF稳定泡沫的界面弹性比普通泡沫高1.4-2.3倍,说明LCNF稳定泡沫的稳定性好。
本发明还采用泡沫扫描仪测定泡沫的稳定性参数,其测定结果见表2。
表2 泡沫的稳定性参数
Figure PCTCN2019082782-appb-000003
由表2可知,LCNF稳定泡沫的稳定性指数明显高于空白样,相对空白样增加了4.1-5.2倍,说明LCNF稳定泡沫具有良好的稳定性。

Claims (10)

  1. 一种木素型纤维纳米纤丝材料,其特征在于,包括以下组分:
    木粉0.5-20wt%、2,2,6,6-四甲基哌啶氧化物0.1-10wt%、氧化剂2-25mmol/g、NaBr 6-15wt%,余量为水。
  2. 根据权利要求1所述的木素型纤维纳米纤丝材料,其特征在于,包括以下组分:木粉15wt%、2,2,6,6-四甲基哌啶氧化物5wt%、氧化剂10mmol/g、NaBr12wt%,余量为水。
  3. 根据权利要求1或2所述的木素型纤维纳米纤丝材料,其特征在于,木粉的粒径为20-120目,氧化剂为NaClO或NaClO 2
  4. 权利要求1-3任一项所述的木素型纤维纳米纤丝材料的制备方法,其特征在于,包括以下步骤:
    (1)将木粉均匀分散至水中,然后加入2,2,6,6-四甲基哌啶氧化物和NaBr并调整反应体系pH值为10-10.5后,再加入氧化剂,反应过程中保持反应体系pH值不变,反应时间为0.5-4h,最后经洗涤得到氧化纤维;
    (2)将氧化纤维加入水中,使得氧化纤维的浓度为0.5-10wt%,然后采用高压均质机进行均质处理,均质压力为40-150MPa,均质次数为1-20次,制得木素型纤维纳米纤丝材料。
  5. 根据权利要求4所述的木素型纤维纳米纤丝材料的制备方法,其特征在于,氧化纤维中羧基含量为0.3-2.5mol/L,木素含量为0.1-40wt%。
  6. 一种基于木素型纤维纳米纤丝的稳定泡沫体系,其特征在于,包括以下质量百分数的组分:权利要求1-3任一项所述的木素型纤维纳米纤丝材料0.1-1.0wt%、表面活性剂0.2-1.0wt%、氯化钠0.1-10wt%、氯化钙0.1-1.0wt%、氯化镁0.1-1.0wt%、硫酸钠0.1-1.0wt%,余量为水。
  7. 根据权利要求6所述的基于木素型纤维纳米纤丝的稳定泡沫体系,其特 征在于,包括以下质量百分数的组分:木素型纤维纳米纤丝材料0.1wt%、表面活性剂0.4wt%、氯化钠3.44wt%、氯化钙0.64wt%、氯化镁0.18wt%、硫酸钠0.018wt%,余量为水。
  8. 根据权利要求6或7所述的基于木素型纤维纳米纤丝的稳定泡沫体系,其特征在于,表面活性剂为仲烷基磺酸钠和α-烯基磺酸盐按摩尔比为1:1混合的混合物。
  9. 权利要求6-8任一项所述的基于木素型纤维纳米纤丝的稳定泡沫体系的制备方法,其特征在于,包括以下步骤:
    (1)将氯化钠、氯化钙、氯化镁和硫酸钠溶解于去离子水中,搅拌均匀;
    (2)将表面活性剂溶于步骤(1)所得溶液中,搅拌均匀;
    (3)将木素型纤维纳米纤丝材料分散到步骤(2)所得溶液中,搅拌均匀;
    (4)向步骤(3)所得溶液中鼓入空气,直到泡沫体积不再增加为止,制得稳定泡沫体系。
  10. 权利要求6-8任一项所述的基于木素型纤维纳米纤丝的稳定泡沫体系在油田开发中的应用。
PCT/CN2019/082782 2019-03-04 2019-04-15 木素型纤维纳米纤丝材料、基于该材料的稳定泡沫体系及其制备方法和应用 WO2020177183A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/762,918 US11339254B2 (en) 2019-03-04 2019-04-15 Lignocellulose nanofibril material, stable foam system based thereon, preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910160551.7 2019-03-04
CN201910160551.7A CN109880118B (zh) 2019-03-04 2019-03-04 木素型纤维纳米纤丝材料、基于该材料的稳定泡沫体系及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020177183A1 true WO2020177183A1 (zh) 2020-09-10

Family

ID=66930496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082782 WO2020177183A1 (zh) 2019-03-04 2019-04-15 木素型纤维纳米纤丝材料、基于该材料的稳定泡沫体系及其制备方法和应用

Country Status (3)

Country Link
US (1) US11339254B2 (zh)
CN (1) CN109880118B (zh)
WO (1) WO2020177183A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115960586B (zh) * 2022-12-09 2023-11-28 中国石油大学(北京) 泡沫钻井液及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383078A (en) * 1980-11-17 1983-05-10 Blount David H Process for the production of alkali metal polyhydroxy lignin-cellulose polymer
CN101182561A (zh) * 2007-12-05 2008-05-21 天津大学 纳米细菌纤维素醛基化改性的方法
CN101874043A (zh) * 2007-11-26 2010-10-27 国立大学法人东京大学 纤维素纳米纤维及其制造方法、纤维素纳米纤维分散液
CN102504164A (zh) * 2011-11-22 2012-06-20 中国农业大学 一种增强型玉米芯基聚氨酯泡沫材料的制造方法
CN102746841A (zh) * 2012-06-29 2012-10-24 中国石油大学(华东) 一种油气田用添加纳米颗粒的复合泡沫体系及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964454B (zh) * 2012-11-29 2014-12-10 中国林业科学研究院林产化学工业研究所 一种纳米纤维素的制备方法
TWI662867B (zh) * 2013-04-23 2019-06-11 日商太陽控股股份有限公司 Printed wiring board material and printed wiring board using the same
CN104449640A (zh) * 2014-11-14 2015-03-25 天津大港油田滨港集团博弘石油化工有限公司 一种采油用复合纤维素醚高温稳泡剂
NO343188B1 (en) * 2015-05-29 2018-11-26 Elkem Materials A fluid for use in enhanced oil recovery, containing nanofibrillated cellulose as viscosity modifier
WO2017138913A1 (en) * 2016-02-08 2017-08-17 Halliburton Energy Services, Inc. Nanocellulose foam stabilizing additive
CN106497534B (zh) * 2016-08-31 2019-06-28 西南石油大学 一种由纳米纤维素构建的强化泡沫体系
US11248107B2 (en) * 2018-03-29 2022-02-15 The Regents Of The University Of California Nanocellulose aerogels and foams

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383078A (en) * 1980-11-17 1983-05-10 Blount David H Process for the production of alkali metal polyhydroxy lignin-cellulose polymer
CN101874043A (zh) * 2007-11-26 2010-10-27 国立大学法人东京大学 纤维素纳米纤维及其制造方法、纤维素纳米纤维分散液
CN101182561A (zh) * 2007-12-05 2008-05-21 天津大学 纳米细菌纤维素醛基化改性的方法
CN102504164A (zh) * 2011-11-22 2012-06-20 中国农业大学 一种增强型玉米芯基聚氨酯泡沫材料的制造方法
CN102746841A (zh) * 2012-06-29 2012-10-24 中国石油大学(华东) 一种油气田用添加纳米颗粒的复合泡沫体系及其制备方法

Also Published As

Publication number Publication date
CN109880118A (zh) 2019-06-14
US11339254B2 (en) 2022-05-24
US20210214509A1 (en) 2021-07-15
CN109880118B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
Cui et al. Flexible and transparent composite nanofibre membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture
TWI274556B (en) Biodegradable cellulose acetate structures and tobacco filters
CN101597356B (zh) 高性能改性纳米二氧化硅/丙烯酸类浆料及其制备方法
CN111074669A (zh) 一种细菌纤维素-植物纤维复合导电纸及其制备方法与应用
CN105174768B (zh) 一种纳米纤维素纤维增强水泥基材料
CN110835377B (zh) 一种疏水改性纳米纤维素及其制备方法和应用
CN107955586B (zh) 纤维素纳米纤维作为钻井液用流型调节剂的应用
WO2020177183A1 (zh) 木素型纤维纳米纤丝材料、基于该材料的稳定泡沫体系及其制备方法和应用
CN109954329A (zh) 一种植物纤维自支撑石墨烯防霾滤层材料及其制备方法和应用
CN109402755B (zh) 表面嵌有金属有机骨架纳米纤维的复合纤维的制备方法
CN111808581A (zh) 一种壳聚糖氧化石墨烯纳米水凝胶封堵剂及水基钻井液
CN110201652A (zh) 一种具有三维网络结构的碳纳米管/壳聚糖水凝胶的制备方法
CN108658531A (zh) 纤维水泥板的制造工艺
CN110804900A (zh) 一种疏水增强型书画纸及其制备方法
CN105924865A (zh) 一种酸性质子交换膜及其制备方法
CN113563762B (zh) 一种水性疏水浆料及其制备方法与应用
CN107552011A (zh) 一种羧甲基纤维素‑Cu金属有机骨架材料复合小球的制备方法
CN102943318A (zh) 一种聚乙烯醇/羧甲基纤维素钠纳米纤维、制备方法及应用
Liu et al. A mild re-watering strategy for fast and efficient nanoscale redispersion of oven-dried TEMPO-oxidized cellulose nanofibrils in water
CN115368882A (zh) 一种油田用相渗调节剂及其制备方法
CN112745451B (zh) 一种用cnf稳定的苯丙乳液及其制备方法与应用
CN103693695B (zh) 一种阻力摩擦切割式小分子团水制备方法及小分子团水制备装置
CN111961451A (zh) 一种油气井缓释起泡剂及其制备方法
CN106381755B (zh) 一种纸尿裤绒毛化纤维纸用涂布剂及其制备方法
CN105220492A (zh) 一种精细化纳米改性丙烯酸类非织用浆料及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917843

Country of ref document: EP

Kind code of ref document: A1