WO2020177003A1 - Flexible led lighting system for homogeneously lighting a horizontal plane and its use in cultivating plants in enclosed spaces such as greenhouses and plant propagation laboratories - Google Patents

Flexible led lighting system for homogeneously lighting a horizontal plane and its use in cultivating plants in enclosed spaces such as greenhouses and plant propagation laboratories Download PDF

Info

Publication number
WO2020177003A1
WO2020177003A1 PCT/CL2019/050014 CL2019050014W WO2020177003A1 WO 2020177003 A1 WO2020177003 A1 WO 2020177003A1 CL 2019050014 W CL2019050014 W CL 2019050014W WO 2020177003 A1 WO2020177003 A1 WO 2020177003A1
Authority
WO
WIPO (PCT)
Prior art keywords
lighting system
light
led lighting
flexible led
leds
Prior art date
Application number
PCT/CL2019/050014
Other languages
Spanish (es)
French (fr)
Inventor
Matías Francisco PALACIOS RODRÍGUEZ
Juan Pablo MATTE RISOPATRÓN
Original Assignee
Ciencia Pura Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciencia Pura Spa filed Critical Ciencia Pura Spa
Priority to PCT/CL2019/050014 priority Critical patent/WO2020177003A1/en
Publication of WO2020177003A1 publication Critical patent/WO2020177003A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/20Forcing-frames; Lights, i.e. glass panels covering the forcing-frames
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention consists of a flexible LED lighting system that allows homogeneous illumination of a horizontal plane, and its use for growing plants in closed spaces, such as greenhouses and plant propagation laboratories, with the aim of optimizing the growth of the plants. themselves.
  • Photosynthesis is the process that converts energy from sunlight or other sources of artificial lighting into chemical energy, which can be used by biological systems such as plants.
  • Three main characteristics of light affect plant growth: quantity (intensity or quantity of photons), quality (light spectrum or wavelength of light or color) and duration (time). The color and intensity of light are used in different photosynthesis reactions.
  • photoreceptor pigments that use red and blue light to carry out photosynthesis
  • other photosensitive pigments are capable of perceiving different parts of the light spectrum, reacting and producing a signaling cascade that allows the plant to respond to environmental stimuli.
  • LED lighting Light Emitting Diodes
  • LEDs consist of a layer of two different semiconductors and can be used to provide a source of light with a specific wavelength.
  • LED lighting fixtures for growing plants have the difficulty of illuminating a plurality of plants with a uniform light quantity distribution.
  • a horizontal plane or a table is illuminated (in the case of plant growth)
  • the ideal would be to have the same amount of light at each point, both in intensity and composition of the light spectrum.
  • This even distribution is expected to be uniform on the lateral and longitudinal axis.
  • a conventional lighting device for growing plants it is difficult to provide light at the border plant, among a plurality of plants arranged in a plane, with light of the same level and intensity as that received by a centrally located plant.
  • the light intensity distribution generated by current solutions, such as fluorescent tubes or standard LED tubes concentrates the light in the center of the horizontal plane ( Figure 1_a).
  • the angle of dispersion is reduced and areas of high intensity and areas of low light intensity are generated, affecting the productive process of multiplication of uniform crops.
  • LED lights when they are specific to plants, have limited ranges of the light spectrum used in photosynthesis, generating imbalances in the absorption of light in photosynthetic pigments.
  • white LED light which uses fluorescence from a part of the blue light of the spectrum, generates a white color, which is designed more properly for humans and has a very limited spectrum with the presence of blue. and red which is not necessarily in the absorption range of plants.
  • the most popular solutions are those that use specific ranges of the spectrum in separate lenses, generating a non-uniform distribution of the proportion of the color of the light that affects the crops in the horizontal plane ( Figure 1 a, Figure 2 a, and Figure 3 c and d).
  • the flexible LED lighting system for plants object of the present invention, responds to these problems. Mainly, it allows to illuminate with a certain proportion of red and blue light, at a uniform intensity, a plurality of plants arranged in a horizontal plane.
  • Document WO2017168667 (A1) describes a lighting device for growing plants, which has a plurality of LEDs that are arranged linearly and asymmetrically. In this device the LEDs are arranged in a linear fashion, with a higher density of LEDs at the ends. Therefore, the aim of the Invention of WO2017168667 (A1) was to improve the distribution of light delivered to a plurality of plants at the extreme edges of a horizontal plane. Within the detailed description of the Invention, the use of LEDs that emit in different wavelengths is included and the position of the LEDs and the height of the lighting system can be varied to control the intensity.
  • Document US2018035619 (A1) describes a lighting system that includes a light emitting module that includes an LED light source that emits blue light with an emission peak in the blue range 400 nm to 470 nm, and an LED light source red having an emission peak in the red range from 61 0 nm to 680 nm; a regulator that controls the light intensity of the blue and red lights emitted from the light emitting module; and a clock that measures time.
  • the dimmer switch causes the second Light Intensity to change along with a change in the first Light Intensity, in accordance with the time measured by the watch.
  • This lighting system allows you to easily regulate the Intensity ratio between blue and red light.
  • the field of use is for lighting plants during their growth.
  • the system allows controlling and regulating the light intensity received by the plants and uses LEDs that emit at different wavelengths. It does not make specific reference to an arrangement or distribution of a set of LEDs or to the uniformity of the light intensity in a certain work area. Furthermore, the system is equipped with a container for growing a single plant, not a set of plants.
  • Document US2017311 554 (A1) describes a Lighting device and assembly that incorporates an Independently powered array of at least two types of LED lights that emit light of specific wavelengths for growing plants.
  • the set includes at least two of the lighting fixtures together with at least one high intensity bulb commonly used for indoor horticulture, where the set is adjustable against changes in dimension of the plants in question as they grow.
  • a timing method for applying durations specific to each type of light that effectively simulates sunrise, daylight and sunset, allowing the plant to wake up naturally, absorb more light during the day and prepare to sleep at night, giving the plant more rest, which contributes to healthier plant growth.
  • the described lighting system uses LEDs that emit at different wavelengths and allows combinations to be made.
  • the LED lights can also be distributed in bars and are computer controlled, which allows the development of different “recipes” of light according to the needs of the different plants.
  • Figure 1 Measurement of the photon flux density in the horizontal plane, obtaining the light intensity distribution in the horizontal plane when using (a) traditional lighting system and (b) the proposed solution PAR @ LED to illuminate an area rectangular.
  • Figure 3 Example of the installation of lights in the plant growth chamber and simulation of the light distribution under different lighting systems on the horizontal plane. a) Scheme of a typical arrangement of in-vitro plants grown in a growth chamber on a shelf with PAR @ LED lights. b) Light distribution under the PAR @ LED system. c) Light distribution under LED lighting system. d) Light distribution under a fluorescent tube system. Figure 4. Thermal images of (a) a fluorescent tube, (b) of two white LED tubes and (c) the proposed solution PAR @ LED. In all 3 cases, it was standardized by setting the power at 31W.
  • Figure 5 Design of the aluminum bar used in the system, which contains plastic caps and plastic covers for simple assembly.
  • Figure 6 Example of a simulation of radiation received in the longitudinal axis under (a) a homogeneous distribution of LEDs and (b) under an asymmetric distribution of LED lights.
  • the present invention describes a flexible lighting system for the multiplication of vegetable crops that uses an asymmetric arrangement of LEDs specifically designed to provide a uniform or homogeneous light intensity on a horizontal plane, maintaining a temperature between 20 and 25 ° C.
  • the main components of the Lighting system are: one or more pairs of LED bars, located on the sides of the shelves, whose operation is controlled through software that allows adjusting the intensity of separate channels within the spectrum of the light emitted, among other parameters, depending on the type of crop for which it is required.
  • the present invention corresponds to a flexible LED lighting system specifically designed to respond to the various current problems presented by lighting systems used for plant growth.
  • the invention consists of a flexible lighting system, which includes Hardware (HW) and Software (SW), and that uses a linear and asymmetric arrangement of LEDs arranged in an aluminum bar, located on the edges of a horizontal plane with 45 ° Inclination, specifically designed to provide a uniform or homogeneous light intensity on a plurality of plants arranged on a horizontal plane, which allows obtaining productivity gains in the multiplication of vegetable crops in closed spaces, such as nurseries and propagation crop laboratories. and plant growth.
  • HW Hardware
  • SW Software
  • the improvements in production are obtained by accelerating the biological processes of plant growth because all plants receive the amount and proportion of the appropriate light spectrum Independent of their position in the horizontal plane, which leads to a positive response from the plants according to the production process, which can be mainly to stimulate multiplication, growth and uprising.
  • the main components of the lighting system are: one or more pairs of LED bars (HW), connected to a local control system (HW), managed through a remote web interface (SW) that allows making a series of adjustments according to required by the user.
  • HW local control system
  • SW remote web interface
  • the system allows adjusting the proportion of the available colors of the light spectrum and together with the web interface, it is possible to program different light programs or recipes, which allow varying the duration, intensity and quality of light, for each type of species or variety and , for example, generate dawn or dusk conditions.
  • the system is characterized by being an easy-to-install system, which allows a series of LED bars to be connected sequentially without loss of light intensity.
  • the system is characterized by using external drivers with constant current, prolonging the useful life of the circuit components and generating a constant intensity and light spectrum, also allowing to have a low temperature lighting system, since the greater amount of temperature It is generated in the controller devices that are installed outside the growth chamber (drivers or transformers). This feature facilitates the use of the system in vertical agriculture centers or plant propagation on shelves, reducing the minimum height of the same and facilitating an increase in the useful area per production center, without affecting the quality of the crops produced.
  • the system contains one or more pairs of LED bars and is designed to generate a homogeneous light intensity distribution along the horizontal plane.
  • the system has a linear and asymmetrical distribution of LEDs along each lighting bar with separate channels installed at 45 ° from the horizontal plane.
  • the distribution of the LEDs that generates a uniform light intensity along the longitudinal axis is determined by means of an algorithm to find the best distribution, which according to the length of the bar and the number of LEDs, through virtual iterations of the possible positions of the LEDs, the optimal distribution is solved according to the minimum standard deviation generated.
  • the model was made using the dispersion of a standard LED, where the intensity generated by said LED installed at 45 ° on the horizontal axis, 30cm high and 30cm deep, was measured, taking measurements along the longitudinal axis. With these measurements, the overlap generated by the light beams in the longitudinal axis was simulated, according to the position of the LEDs.
  • a uniform distribution of light intensity is achieved by installing the LED bars at the edges of the grow shelves where the PCB with the LEDs is at a 45 ° angle inside the bar, relative to the horizontal axis. .
  • the LED used in the system consists of a chip with multiple crystals, which generate a homogeneous distribution of the proportion of the light spectrum generated by the LEDs.
  • the LED used consists of a chip with multiple crystals, allowing the selection of specific ranges within the light spectrum, such as UV light (300nm-400nm), blue light (400nm-500nm), green light (500nm- 600nm), red light (600nm-700nm) and far red light (700nm-800nm).
  • UV light 300nm-400nm
  • blue light 400nm-500nm
  • green light 500nm- 600nm
  • red light 600nm-700nm
  • far red light 700nm-800nm
  • the multi-crystal chip has multiple channels to allow independent crystal control.
  • the bars containing the LEDs are aluminum bars.
  • the aluminum LED bars are designed to be installed with a standard metal clip or magnet.
  • Plastic caps and plastic covers for simple assembly, space for the PCB containing the LEDs at an angle of 45 ° to the horizontal axis ( Figure 5).
  • the installation of the external current drivers is carried out outside the plant growth chamber, reducing the heat generation of the lighting equipment inside the chamber and facilitating its air conditioning.
  • the system is controlled based on a web interface.
  • the system includes light recipes for different crops, depending on the species, variety and stage of growth or specific production, varying the intensity of light and the proportion of the light spectrum, which can be controlled through the web interface.
  • Example 1 Evaluation of the light distribution of multiple LEDs.
  • the light radiation generated by an LED was measured along the longitudinal axis at a height of 35 cm and the scattering of the light generated by said LED was modeled.
  • the light distribution was modeled by using multiple LEDs using the measurements obtained previously. From a homogeneous distribution (Figure 6 a), iterations of the position of the LEDs in the longitudinal axis were performed, finding the optimal spatial distribution, minimizing the standard deviation of the sum of the Intensity at each point of the longitudinal axis ( Figure 6 b).
  • the temperature generated by the equipment when turned on for 30 minutes was determined, maintaining normalized conditions, setting the equipment at 31 Watts of power, and with an ambient temperature of 20 S C.
  • Table 2 also shows the current necessary to reach 31W of power, where the fluorescent tube and white LED lights require more current than the PAR @ LED equipment.
  • Efficiency measurement PF Power Factor, Current in mA, Voltage in V, Power in W, average temperature in degrees Celsius, temperature at the edges of the equipment in degrees Celsius and driver temperature.
  • the proposed PAR @ LED system design generates less heat than traditional equipment.
  • the experimental conditions were established using standard conditions with fluorescent light, white LED lights and 4 different light recipes generated with the PAR @ LED equipment.
  • a group of plants were left for 1 growth cycle (15 days) in each condition, by way of acclimatization, and in the second cycle (15 days), the multiplication rate of each variety was measured under the different conditions.
  • the standard multiplication rate for the three varieties of Blueberries is close to 2, which means that each plant can be divided in two at the end of each cycle, generating 2 new plants per cycle.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Cultivation Of Plants (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

The invention relates to a flexible LED lighting system consisting of a flexible lighting system that includes hardware (HW) and software (SW) and which uses an asymmetrical linear arrangement of LED lights disposed on an aluminium bar, on the edges of a horizontal plane having a 45° slope. The system allows uniform or homogeneous light intensity to be cast over a plurality of plants disposed in a horizontal plane, which also facilitates its installation and use for multiplying plant crops in enclosed spaces such as crop nurseries and laboratories for propagating and growing plants.

Description

SISTEMA DE ILUMINACIÓN LED FLEXIBLE PARA ILUMINAR DE MANERA HOMOGÉNEA UN PLANO HORIZONTAL, Y SU USO EN EL CULTIVO DE PLANTAS EN ESPACIOS CERRADOS, COMO INVERNADEROS Y FLEXIBLE LED LIGHTING SYSTEM FOR HOMOGENOUSLY ILLUMINATING A HORIZONTAL PLANE, AND FOR USE IN THE GROWING OF PLANTS IN CLOSED SPACES, SUCH AS GREENHOUSES
LABORATORIOS DE PROPAGACIÓN VEGETAL VEGETABLE PROPAGATION LABORATORIES
Campo de la invención. Field of the invention.
La presente invención consiste en un sistema de iluminación LED flexible que permite iluminar de manera homogénea un plano horizontal, y su uso para el cultivo de plantas en espacios cerrados, como invernaderos y laboratorios de propagación vegetal, con el objetivo de optimizar el crecimiento de las mismas. The present invention consists of a flexible LED lighting system that allows homogeneous illumination of a horizontal plane, and its use for growing plants in closed spaces, such as greenhouses and plant propagation laboratories, with the aim of optimizing the growth of the plants. themselves.
Antecedentes. Background.
En la naturaleza, el crecimiento óptimo de las plantas depende de manera imperativa de la absorción de la luz, que es realizada por distintos pigmentos especiales llamados fotoreceptores, de manera transversal en cientos de variedades de plantas. La fotosíntesis es el proceso que convierte la energía proveniente de la luz solar u otras fuentes de iluminación artificial, en energía química, la que puede ser utilizada por los sistemas biológicos como las plantas. Tres características principaies de la luz afectan el crecimiento de la planta: cantidad (intensidad o cantidad de fotones), calidad (espectro lumínico o longitud de onda de la luz o color) y duración (tiempo). El color y la intensidad de la luz se usan en diferentes reacciones de fotosíntesis. Por ejemplo, existen pigmentos fotoreceptores que utilizan la luz roja y azul para realizar la fotosíntesis, y otros pigmentos fotosensibles, son capaces de percibir distintas partes del espectro lumínico reaccionando y produciendo una cascada de señalización que permite a la planta responder ante ios estímulos ambientales. In nature, the optimal growth of plants depends imperatively on the absorption of light, which is carried out by different special pigments called photoreceptors, in a transversal way in hundreds of varieties of plants. Photosynthesis is the process that converts energy from sunlight or other sources of artificial lighting into chemical energy, which can be used by biological systems such as plants. Three main characteristics of light affect plant growth: quantity (intensity or quantity of photons), quality (light spectrum or wavelength of light or color) and duration (time). The color and intensity of light are used in different photosynthesis reactions. For example, there are photoreceptor pigments that use red and blue light to carry out photosynthesis, and other photosensitive pigments are capable of perceiving different parts of the light spectrum, reacting and producing a signaling cascade that allows the plant to respond to environmental stimuli.
En cultivos vegetales realizados en invernaderos, siempre es deseable controlar el crecimiento de las plantas y lograr diferentes resultados como, por ejemplo, mantener un crecimiento acelerado para la propagación, mantener un crecimiento disminuido o basal para plantas madres, estimular enraizamiento para plantas propagadas y generar condiciones para aclimatar plantas antes de ser plantada en terreno. Así, puede ser conveniente promover o inhibir el crecimiento de una planta y otros procesos fisiológicos. En estos aspectos el control de la luz que reciben los cultivos es determinante y sub-utilizada. Actualmente, se conoce una variedad de aparatos de iluminación para el cultivo de plantas los que se utilizan principalmente para promover el crecimiento de plantas sin que éste se vea afectado por las estaciones o el clima. Los tipos comunes de iluminación incluyen luces incandescentes, luces fluorescentes, luces de sodio de alta presión y luces halógenas, entre otras. La cantidad de intensidad de determinadas longitudes de onda de luz pueden variar con el tipo de luces utilizadas para controlar el crecimiento. De manera general, se considera que irradiar plantas con luz azul y roja es bueno para su crecimiento ya que la luz verde es absorbida con menor eficiencia que las mencionadas. Es así, que, en algunos aparatos de iluminación utilizados específicamente para el cultivo de plantas, están diseñados para irradiar plantas con iuz azul y la luz roja. Además, existe una relación en la proporción entre la intensidad de la luz azul y la luz roja que se considera óptima para el cultivo de una especie de planta en particular. Se sabe que la relación óptima antes mencionada es diferente dependiendo del tipo o especie de la planta y etapa de crecimiento de éstas. Por lo tanto, se debe considerar dicho aspecto al momento de elegir un aparato de iluminación para el cultivo de una especie o variedad de planta en particular. In vegetable crops grown in greenhouses, it is always desirable to control plant growth and achieve different results, such as maintaining accelerated growth for propagation, maintaining slow or basal growth for mother plants, stimulating rooting for propagated plants and generating conditions to acclimatize plants before being planted in the field. Thus, it may be desirable to promote or inhibit plant growth and other physiological processes. In these aspects, the control of the light that the crops receive is decisive and under-used. Currently, a variety of plant growing lighting fixtures are known which are primarily used to promote plant growth without being affected by seasons or weather. Common types of lighting include incandescent lights, fluorescent lights, high pressure sodium lights, and halogen lights, among others. The amount of intensity of certain wavelengths of light can vary with the type of lights used to control growth. In general, it is considered that irradiating plants with blue and red light is good for their growth since green light is absorbed less efficiently than those mentioned. Thus, in some lighting devices used specifically for growing plants, they are designed to irradiate plants with blue light and red light. Also, there is a relationship in the ratio between the intensity of blue light and red light that is considered optimal for growing a particular plant species. It is known that the aforementioned optimal ratio is different depending on the type or species of the plant and its growth stage. Therefore, this aspect should be considered when choosing a lighting device for growing a particular species or variety of plant.
En la última década se ha incorporado el uso de iluminación LED ( Ligh ! Emitting Diodes) en los sistemas de cultivos de plantas en invernadero. Los LEDs consisten en una capa de dos semiconductores diferentes y se pueden usar para proporcionar una fuente de luz con una longitud de onda específica. In the last decade, the use of LED lighting (Light Emitting Diodes) has been incorporated into greenhouse plant growing systems. LEDs consist of a layer of two different semiconductors and can be used to provide a source of light with a specific wavelength.
En la actualidad, existen aparatos o dispositivos que utilizan iluminación LED para la propagación de plantas en laboratorio, invernaderos y granjas urbanas a escala comercial. Variados aparatos que usan LEDs permiten proporcionar la intensidad de luz y/o la longitud de onda deseadas para controlar el crecimiento de las plantas de una forma más precisa. At present, there are apparatus or devices that use LED lighting for the propagation of plants in laboratories, greenhouses and urban farms on a commercial scale. Various devices that use LEDs make it possible to provide the desired light intensity and / or wavelength to control plant growth in a more precise way.
Sin embargo, los aparatos convencionales de iluminación LED para el cultivo de plantas, tienen la dificultad de dar luz a una pluralidad de plantas con una distribución de cantidad de luz uniforme. Cuando se ilumina un plano horizontal o una mesa (en el caso de crecimiento de plantas), lo ideal sería tener la misma cantidad de luz en cada punto, tanto en intensidad como en composición del espectro lumínico. Esta distribución pareja se espera que sea uniforme en el eje lateral y longitudinal. Por ejemplo, en un dispositivo de iluminación convencional para cultivar plantas, es difícil proporcionar luz en la planta del borde, entre una pluralidad de plantas dispuestas en un plano, con luz del mismo nivel e intensidad que la que recibe una planta de ubicación central. La distribución de intensidad lumínica generada por las soluciones actuales, como tubos fluorescentes o tubos LED estándar, concentran la luz en el centro del plano horizontal (Figura 1_a). En el caso de tubos de iluminación con dispersión más restringida, como es el caso de luces o focos LED de alta potencia, el ángulo de dispersión es reducido y se generan áreas de mucha Intensidad y áreas de baja Intensidad lumínica, afectando el proceso productivo de multiplicación de cultivos uniformes. However, conventional LED lighting fixtures for growing plants have the difficulty of illuminating a plurality of plants with a uniform light quantity distribution. When a horizontal plane or a table is illuminated (in the case of plant growth), the ideal would be to have the same amount of light at each point, both in intensity and composition of the light spectrum. This even distribution is expected to be uniform on the lateral and longitudinal axis. For example, in a conventional lighting device for growing plants, it is difficult to provide light at the border plant, among a plurality of plants arranged in a plane, with light of the same level and intensity as that received by a centrally located plant. The light intensity distribution generated by current solutions, such as fluorescent tubes or standard LED tubes, concentrates the light in the center of the horizontal plane (Figure 1_a). In the case of lighting tubes with more restricted dispersion, such as High power LED lights or spotlights, the angle of dispersion is reduced and areas of high intensity and areas of low light intensity are generated, affecting the productive process of multiplication of uniform crops.
Otro problema asociado con las luces LED es que estas luces, cuando son específicas para plantas, tienen rangos limitados del espectro lumínico usado en la fotosíntesis, generando desbalances en la absorción de la luz en los pigmentos fotoslntétlcos. Del mismo modo, la luz LED de color blanco, que utiliza la fluorescencia a partir de una parte de la luz azul del espectro, genera un color blanco, que está diseñado mas propiamente para humanos y tienen un espectro muy limitado con presencia de color azul y rojo que no necesariamente se encuentra en el rango de absorción de las plantas. Es por esto que las soluciones más populares, son las que usan rangos específicos del espectro en lentes separados, generando una distribución no uniforme de la proporción del color de la luz que Incide en los cultivos en el plano horizontal (Figura 1 a, Figura 2 a, y Figura 3 c y d). Another problem associated with LED lights is that these lights, when they are specific to plants, have limited ranges of the light spectrum used in photosynthesis, generating imbalances in the absorption of light in photosynthetic pigments. In the same way, white LED light, which uses fluorescence from a part of the blue light of the spectrum, generates a white color, which is designed more properly for humans and has a very limited spectrum with the presence of blue. and red which is not necessarily in the absorption range of plants. This is why the most popular solutions are those that use specific ranges of the spectrum in separate lenses, generating a non-uniform distribution of the proportion of the color of the light that affects the crops in the horizontal plane (Figure 1 a, Figure 2 a, and Figure 3 c and d).
Existen otras problemáticas asociadas a los sistemas convencionales de Iluminación LED para plantas. Por ejemplo, son de difícil Instalación, generan calor debido a la tecnología y a que los drlvers se encuentran montados dentro de las lámparas (Figura 4), tienen variación en la Intensidad lumínica, presentan variación en la vida útil de los componentes, entre otros. El sistema flexible de Iluminación LED para plantas objeto de la presente Invención , da respuesta a estas problemáticas. Principalmente, permite ¡luminar con cierta proporción de luz roja y azul, a una Intensidad uniforme una pluralidad de plantas dispuestas en un plano horizontal. There are other problems associated with conventional LED lighting systems for plants. For example, they are difficult to install, they generate heat due to the technology and because the drivers are mounted inside the lamps (Figure 4), they have variation in light intensity, they present variation in the useful life of the components, among others. The flexible LED lighting system for plants object of the present invention, responds to these problems. Mainly, it allows to illuminate with a certain proportion of red and blue light, at a uniform intensity, a plurality of plants arranged in a horizontal plane.
Por otra parte, los sistemas estándar de Iluminación para plantas pueden generar un espectro fijo, sin la posibilidad de variación en el espectro lumínico. Esto es un problema ya que las distintas etapas de crecimiento vegetal y distintas especies y variedades, pueden requerir un espectro diferente para generar condiciones óptimas. El sistema descrito aquí, permite ajustar el espectro lumínico y junto con la Interfaz web, es posible programar diferentes programas o recetas lumínicas que permiten variar el espectro lumínico para cada tipo de especie y, por ejemplo, generar condiciones de amanecer y anochecer. On the other hand, standard lighting systems for plants can generate a fixed spectrum, without the possibility of variation in the light spectrum. This is a problem since the different stages of plant growth and different species and varieties may require a different spectrum to generate optimal conditions. The system described here allows you to adjust the light spectrum and together with the web interface, it is possible to program different light programs or recipes that allow you to vary the light spectrum for each type of species and, for example, generate dawn and dusk conditions.
El documento más relevante del estado de la técnica para la presente Invención corresponde al documento WO2017168667 (A1 ). El documento WO2017168667 (A1 ) describe un dispositivo de Iluminación para el cultivo de plantas, que tiene una pluralidad de LEDs que están dispuestos de manera lineal y asimétrica. En este dispositivo los LEDs están ordenados de manera lineal, con una mayor densidad de LEDs en los extremos. Por lo tanto, el objetivo de la Invención del documento WO2017168667 (A1 ) fue mejorar la distribución de la luz entregada a una pluralidad de plantas en los bordes extremos de un plano horizontal . Dentro de la descripción detallada del Invento se Incluye la utilización de LEDs que emiten en distintas longitudes de onda y se puede variar la posición de los LEDs y la altura del sistema de Iluminación para controlar la Intensidad. Sin embargo, el sistema descrito en dicho documento no Incorpora el control de Intensidad lumínica mediante la utilización de un software, ni la flexibilidad para programar la Iluminación ni de“recetas” de luz que pueden ser usadas para distintos tipos de cultivos. Esta Invención no describe como deben Ir las luces y en el ejemplo dado, las luces van ubicadas en paralelo equidistantes entre los bordes. Además, menciona el uso de distintos LEDs como unidades separadas, no menciona el uso de multlcrlstales en un mismo LED. The most relevant document of the state of the art for the present invention corresponds to document WO2017168667 (A1). Document WO2017168667 (A1) describes a lighting device for growing plants, which has a plurality of LEDs that are arranged linearly and asymmetrically. In this device the LEDs are arranged in a linear fashion, with a higher density of LEDs at the ends. Therefore, the aim of the Invention of WO2017168667 (A1) was to improve the distribution of light delivered to a plurality of plants at the extreme edges of a horizontal plane. Within the detailed description of the Invention, the use of LEDs that emit in different wavelengths is included and the position of the LEDs and the height of the lighting system can be varied to control the intensity. However, the system described in said document does not incorporate light intensity control through the use of software, nor the flexibility to program lighting or light "recipes" that can be used for different types of crops. This Invention does not describe how the lights should go and in the example given, the lights are placed in parallel equidistant between the edges. In addition, it mentions the use of different LEDs as separate units, it does not mention the use of multi-crystals in the same LED.
El documento US2018035619 (A1 ) describe un sistema de Iluminación que Incluye un módulo emisor de luz que Incluye una fuente de luz LED que emite luz azul con un pico de emisión en el rango azul 400 nm a 470 nm, y una fuente de luz LED roja que tiene un pico de emisión en el rango rojo desde 61 0 nm a 680 nm; un regulador que controla la Intensidad lumínica de las luces azul y roja emitidas desde el módulo emisor de luz; y un reloj que mide el tiempo. El regulador de luz hace que la segunda Intensidad de luz cambie junto con un cambio en la primera Intensidad de luz, de acuerdo con el tiempo medido por el reloj. Este sistema de Iluminación permite regular fácilmente la relación de Intensidad entre la luz azul y la roja. El campo de uso es para Iluminación de plantas durante su crecimiento. El sistema permite controlar y regular la Intensidad lumínica que reciben las plantas y utiliza LEDs que emiten en diferentes longitudes de onda. No hace referencia específica a un arreglo o distribución de un conjunto de LEDs ni a la uniformidad de la Intensidad lumínica en una determinada área de trabajo. Además, el sistema está equipado con un contenedor para el cultivo de una única planta, no un conjunto de plantas. Document US2018035619 (A1) describes a lighting system that includes a light emitting module that includes an LED light source that emits blue light with an emission peak in the blue range 400 nm to 470 nm, and an LED light source red having an emission peak in the red range from 61 0 nm to 680 nm; a regulator that controls the light intensity of the blue and red lights emitted from the light emitting module; and a clock that measures time. The dimmer switch causes the second Light Intensity to change along with a change in the first Light Intensity, in accordance with the time measured by the watch. This lighting system allows you to easily regulate the Intensity ratio between blue and red light. The field of use is for lighting plants during their growth. The system allows controlling and regulating the light intensity received by the plants and uses LEDs that emit at different wavelengths. It does not make specific reference to an arrangement or distribution of a set of LEDs or to the uniformity of the light intensity in a certain work area. Furthermore, the system is equipped with a container for growing a single plant, not a set of plants.
El documento US2017311 554 (A1 ) describe un dispositivo y ensamblaje de Iluminación que Incorpora una matriz con alimentación Independiente de al menos dos tipos de luces LED que emiten luz de longitudes de onda específicas para plantas en crecimiento. El conjunto Incluye al menos dos de los dispositivos de Iluminación junto con al menos una bombilla de alta Intensidad comúnmente utilizada para horticultura en espacios Interiores, donde el conjunto es ajustable frente a cambios de dimensión en las plantas en cuestión a medida que crecen . Un método de cronometraje para aplicar duraciones específicas de cada tipo de luz que simula efectivamente el amanecer, la luz del día y el ocaso, permitiendo que la planta se despierte de forma natural, absorba más luz durante el día y se prepare para dormir por la noche, dando a la planta más descanso, lo que contribuye a un crecimiento más saludable de las plantas. Document US2017311 554 (A1) describes a Lighting device and assembly that incorporates an Independently powered array of at least two types of LED lights that emit light of specific wavelengths for growing plants. The set includes at least two of the lighting fixtures together with at least one high intensity bulb commonly used for indoor horticulture, where the set is adjustable against changes in dimension of the plants in question as they grow. A timing method for applying durations specific to each type of light that effectively simulates sunrise, daylight and sunset, allowing the plant to wake up naturally, absorb more light during the day and prepare to sleep at night, giving the plant more rest, which contributes to healthier plant growth.
El sistema de Iluminación descrito utiliza luces LEDs que emiten a distintas longitudes de onda y permite realizar combinaciones. En este caso las luces LEDs también pueden estar distribuidas en barras y son controlados computacionalmente lo que permite desarrollar distintas“recetas” de luz acorde a las necesidades de las distintas plantas. No se hace referencia a un control o uniformidad de la intensidad de la luz emitida. En resumen, no existen patentes que describan un sistema de Iluminación LED para el cultivo de plantas que contenga todas las características del propuesto en la presente Invención. The described lighting system uses LEDs that emit at different wavelengths and allows combinations to be made. In this case, the LED lights can also be distributed in bars and are computer controlled, which allows the development of different “recipes” of light according to the needs of the different plants. There is no reference to a control or uniformity of the intensity of the emitted light. In summary, there are no patents that describe an LED Lighting system for growing plants that contains all the characteristics of the one proposed in the present invention.
Además, existen opciones disponibles comercialmente, como genéricos tubos LED de luz blanca, tubos LED de luz colores, y soluciones comerciales Valoya ®, HelioSpectra ®, y Philips ®. En la Tabla 1 a continuación, se presenta una comparación de las principales características de la presente Invención con respecto a las alternativas disponibles comercialmente. In addition, there are commercially available options such as generic white light LED tubes, colored light LED tubes, and Valoya ®, HelioSpectra ®, and Philips ® commercial solutions. In Table 1 below, a comparison of the main characteristics of the present invention with respect to commercially available alternatives is presented.
Tabla 1. Comparación de las principales características de la presente Invención con respecto a las alternativas disponibles comercial mente Table 1. Comparison of the main characteristics of the present invention with respect to the commercially available alternatives
Figure imgf000007_0001
Figure imgf000008_0001
Figure imgf000007_0001
Figure imgf000008_0001
(*) Se refiere a los principales atributos de la solución, que deben compararse con la competencia existente. (**) Hay soluciones fijas que consumen menos energía, con peores resultados de crecimiento. Breve descripción de Figuras ( * ) Refers to the main attributes of the solution, which must be compared with the existing competition. ( ** ) There are fixed solutions that consume less energy, with worse growth results. Brief description of Figures
Figura 1. Medición de la densidad de flujo de fotones en el plano horizontal, obteniendo la distribución de la intensidad lumínica en el plano horizontal al utilizar (a) sistema de iluminación tradicional y (b) la solución propuesta PAR@LED para iluminar un área rectangular. Figure 1. Measurement of the photon flux density in the horizontal plane, obtaining the light intensity distribution in the horizontal plane when using (a) traditional lighting system and (b) the proposed solution PAR @ LED to illuminate an area rectangular.
Figura 2. Proporción entre la parte de color Rojo del espectro y del color Azul (RED:BLUE R:B) bajo (a) un sistema de iluminación tradicional y (b) bajo la solución propuesta PAR@LED. Figure 2. Proportion between the Red color part of the spectrum and the Blue color (RED: BLUE R: B) under (a) a traditional lighting system and (b) under the proposed PAR @ LED solution.
Figura 3. Ejemplo de instalación de luces en cámara de crecimiento de plantas y simulación de la distribución lumínica bajo difeentes sistemas de iluminación sobre el plano horizonatl. a) Esquema de una disposición típica de plantas in-vitro cultivadas en cámara de crecimiento sobre una repisa con luces PAR@LED. b) Distribución lumínica bajo el sistema PAR@LED. c) Distribución lumínica bajo sistema de luces LED. d) Distribución lumínica bajo sistema con tubos fluorescentes. Figura 4. Imágenes térmicas de (a) un tubo fluorescente, (b) de dos tubos LED blancos y (c) la solución propuesta PAR@LED. En los 3 casos se estandarizó fijando la potencia a 31W. Figure 3. Example of the installation of lights in the plant growth chamber and simulation of the light distribution under different lighting systems on the horizontal plane. a) Scheme of a typical arrangement of in-vitro plants grown in a growth chamber on a shelf with PAR @ LED lights. b) Light distribution under the PAR @ LED system. c) Light distribution under LED lighting system. d) Light distribution under a fluorescent tube system. Figure 4. Thermal images of (a) a fluorescent tube, (b) of two white LED tubes and (c) the proposed solution PAR @ LED. In all 3 cases, it was standardized by setting the power at 31W.
Figura 5. Diseño de la barra de aluminio utilizada en el sistema, que contiene tapas plásticas y cobertores de plásticos para un ensamblaje simple. Figure 5. Design of the aluminum bar used in the system, which contains plastic caps and plastic covers for simple assembly.
Figura 6. Ejemplo de una simulación de la radiación recibida en el eje longitudinal bajo (a) una distribución homogénea de LEDs y (b) bajo una distribución asimétrica de luces LED. Figure 6. Example of a simulation of radiation received in the longitudinal axis under (a) a homogeneous distribution of LEDs and (b) under an asymmetric distribution of LED lights.
Figura 7. Resultados obtenidos en plantas de Arándanos, en las variedades Snow chaser, Star y Emerald. Las condiciones lumínicas testeadas fueron luz fluorescente, LED Blanco y 4 recetas distintas bajo el sistema propuesto PAR@LED. Figure 7. Results obtained in Blueberry plants, in the Snow chaser, Star and Emerald varieties. The lighting conditions tested were fluorescent light, White LED and 4 different recipes under the proposed PAR @ LED system.
Breve descripción de la invención Brief description of the invention
La presente invención describe un sistema de iluminación flexible para multiplicación de cultivos vegetales que utiliza una disposición asimétrica de LEDs diseñada específicamente para otorgar una intensidad lumínica uniforme u homogénea sobre un plano horizontal, manteniendo una temperatura entre 20 y 25°C. Los principales componentes del sistema de Iluminación son: uno o más pares de barras LED, ubicadas en los laterales de las repisas, cuyo funcionamiento es controlado a través de un software que permite ajustar la intensidad de canales separados dentro del espectro de la luz emitida entre, otros parámetros, dependiendo del tipo de cultivo para el que se requiera. The present invention describes a flexible lighting system for the multiplication of vegetable crops that uses an asymmetric arrangement of LEDs specifically designed to provide a uniform or homogeneous light intensity on a horizontal plane, maintaining a temperature between 20 and 25 ° C. The main components of the Lighting system are: one or more pairs of LED bars, located on the sides of the shelves, whose operation is controlled through software that allows adjusting the intensity of separate channels within the spectrum of the light emitted, among other parameters, depending on the type of crop for which it is required.
Descripción detallada del invento Detailed description of the invention
La presente invención corresponde a un sistema flexible de Iluminación LED diseñado específicamente para dar respuesta a las distintas problemáticas actuales que presentan los sistemas de Iluminación utilizados para el crecimiento de plantas. La Invención consiste en un sistema de Iluminación flexible, que incluye Hardware (HW) y Software (SW), y que utiliza una disposición lineal y asimétrica de LEDs dispuestos en una barra d aluminio, ubicadas en los bordes de un plano horizontal con 45° de Inclinación, diseñada específicamente para otorgar una Intensidad lumínica uniforme u homogénea sobre una pluralidad de plantas dispuestas sobre un plano horizontal, lo que permite obtener ganancias de productividad en la multiplicación de cultivos vegetales en espacios cerrados, tales como viveros y laboratorios de cultivos de propagación y crecimiento de plantas. Las mejoras en la producción se obtienen acelerando los procesos biológicos de crecimiento de las plantas debido a que todas las plantas reciben la cantidad y proporción del espectro de luz adecuada Independiente de su posición en el plano horizontal, lo que conlleva a una respuesta positiva de las plantas según el proceso productivo, el que puede ser para estimular multiplicación, crecimiento y enralzamiento principalmente. Los principales componentes del sistema de iluminación son : uno o más pares de barras LED (HW), conectadas a un sistema de control local (HW), administrado a través de una Interfaz web remota (SW) que permite hacer una serie de ajustes según requiera el usuario. El sistema permite ajustar la proporción de los colores disponibles del espectro lumínico y junto con la Interfaz web, es posible programar diferentes programas o recetas lumínicas, que permiten variar la duración, intensidad y calidad de la luz, para cada tipo de especie o variedad y, por ejemplo, generar condiciones de amanecer o anochecer. Además, se caracteriza por ser un sistema de fácil Instalación, que permite conectar una serie de barras LED de manera secuendal sin pérdida de Intensidad lumínica. También, el sistema se caracteriza por utilizar drivers externos con corriente constante, prolongando la vida útil de los componentes del circuito y generando una Intensidad y espectro lumínico constante, permitiendo además tener un sistema de iluminación de baja temperatura, ya que la mayor cantidad de temperatura se genera en los dispositivos controladores que se Instalan fuera de la cámara de crecimiento (drivers o transformadores). Esta característica facilita el uso del sistema en centros de agricultura vertical o propagación de plantas en repisas, reduciendo la altura mínima de las mismas y facilitando un aumento de la superficie útil por centro productivo, sin afectar la calidad de los cultivos producidos. En una realización preferida, el sistema contiene uno o más pares de barras LED y está diseñado para generar una distribución de intensidad luminosa homogénea a lo largo del plano horizontal. The present invention corresponds to a flexible LED lighting system specifically designed to respond to the various current problems presented by lighting systems used for plant growth. The invention consists of a flexible lighting system, which includes Hardware (HW) and Software (SW), and that uses a linear and asymmetric arrangement of LEDs arranged in an aluminum bar, located on the edges of a horizontal plane with 45 ° Inclination, specifically designed to provide a uniform or homogeneous light intensity on a plurality of plants arranged on a horizontal plane, which allows obtaining productivity gains in the multiplication of vegetable crops in closed spaces, such as nurseries and propagation crop laboratories. and plant growth. The improvements in production are obtained by accelerating the biological processes of plant growth because all plants receive the amount and proportion of the appropriate light spectrum Independent of their position in the horizontal plane, which leads to a positive response from the plants according to the production process, which can be mainly to stimulate multiplication, growth and uprising. The main components of the lighting system are: one or more pairs of LED bars (HW), connected to a local control system (HW), managed through a remote web interface (SW) that allows making a series of adjustments according to required by the user. The system allows adjusting the proportion of the available colors of the light spectrum and together with the web interface, it is possible to program different light programs or recipes, which allow varying the duration, intensity and quality of light, for each type of species or variety and , for example, generate dawn or dusk conditions. In addition, it is characterized by being an easy-to-install system, which allows a series of LED bars to be connected sequentially without loss of light intensity. Also, the system is characterized by using external drivers with constant current, prolonging the useful life of the circuit components and generating a constant intensity and light spectrum, also allowing to have a low temperature lighting system, since the greater amount of temperature It is generated in the controller devices that are installed outside the growth chamber (drivers or transformers). This feature facilitates the use of the system in vertical agriculture centers or plant propagation on shelves, reducing the minimum height of the same and facilitating an increase in the useful area per production center, without affecting the quality of the crops produced. In a preferred embodiment, the system contains one or more pairs of LED bars and is designed to generate a homogeneous light intensity distribution along the horizontal plane.
En una modalidad preferida el sistema tiene una distribución lineal y asimétrica de LEDs a lo largo de cada barra de iluminación con canales separados e instalados a 45° del plano horizontal. In a preferred embodiment the system has a linear and asymmetrical distribution of LEDs along each lighting bar with separate channels installed at 45 ° from the horizontal plane.
En una modalidad específica la distribución de los LEDs que genera una intensidad luminosa uniforme a lo largo del eje longitudinal, se determina mediante un algoritmo para encontrar la mejor distribución, que según el largo de la barra y número de LEDs, mediante iteraciones virtuales de las posibles posiciones de los LEDs, se resuelve la distribución óptima según la mínima desviación estándar generada. El modelo se realizó usando la dispersión de un LED estándar, donde se midió la intensidad que genera dicho LED instalado a 45° sobre el eje horizontal, a 30cm de altura y 30cm de profundidad, tomando medidas a lo largo del eje longitudinal . Con estas medidas, se simularon, según la posición de los LEDs, el traslape generado por los haces de luz en el eje longitudinal. In a specific mode, the distribution of the LEDs that generates a uniform light intensity along the longitudinal axis is determined by means of an algorithm to find the best distribution, which according to the length of the bar and the number of LEDs, through virtual iterations of the possible positions of the LEDs, the optimal distribution is solved according to the minimum standard deviation generated. The model was made using the dispersion of a standard LED, where the intensity generated by said LED installed at 45 ° on the horizontal axis, 30cm high and 30cm deep, was measured, taking measurements along the longitudinal axis. With these measurements, the overlap generated by the light beams in the longitudinal axis was simulated, according to the position of the LEDs.
En una modalidad preferida, una distribución uniforme de la intensidad luminosa se logra instalando las barras LED en los bordes de las repisas de cultivo en donde el PCB con los LEDs queda en un ángulo de 45° dentro de la barra, con respecto al eje horizontal.In a preferred embodiment, a uniform distribution of light intensity is achieved by installing the LED bars at the edges of the grow shelves where the PCB with the LEDs is at a 45 ° angle inside the bar, relative to the horizontal axis. .
En otra modalidad preferida, el LED que se utiliza en el sistema, consiste en un chip con múltiples cristales, que generan una distribución homogénea de la proporción del espectro lumínico generado por los LEDs. In another preferred embodiment, the LED used in the system consists of a chip with multiple crystals, which generate a homogeneous distribution of the proportion of the light spectrum generated by the LEDs.
En una realización específica, el LED que se utiliza consiste en un chip con múltiples cristales, permitiendo seleccionar rangos específicos dentro del espectro lumínico, tales como luz UV (300nm-400nm), luz azul (400nm-500nm), luz verde (500nm-600nm), luz roja (600nm-700nm) y luz roja lejana (700nm-800nm). In a specific embodiment, the LED used consists of a chip with multiple crystals, allowing the selection of specific ranges within the light spectrum, such as UV light (300nm-400nm), blue light (400nm-500nm), green light (500nm- 600nm), red light (600nm-700nm) and far red light (700nm-800nm).
En una modalidad preferida el chip con múltiples cristales tiene múltiples canales para poder controlar los cristales de manera independiente. In a preferred embodiment, the multi-crystal chip has multiple channels to allow independent crystal control.
En una realización preferida las barras que contienen los LEDs, son barras de aluminio. In a preferred embodiment, the bars containing the LEDs are aluminum bars.
En una modalidad preferida las barras LED de aluminio tienen un diseño para ser instaladas con imán o clip metálico estándar. Tapas plásticas y cobertores de plásticos para un ensamblaje simple, espacio para el PCB que contiene los LEDs en un ángulo de 45° con respecto al eje horizontal (Figura 5). En una realización preferida la Instalación de los drivers externos de corriente se realiza fuera de la cámara de crecimiento de plantas, disminuyendo la generación de calor de los equipos lumínicos dentro de la cámara y facilitando la climatización de esta. In a preferred embodiment the aluminum LED bars are designed to be installed with a standard metal clip or magnet. Plastic caps and plastic covers for simple assembly, space for the PCB containing the LEDs at an angle of 45 ° to the horizontal axis (Figure 5). In a preferred embodiment, the installation of the external current drivers is carried out outside the plant growth chamber, reducing the heat generation of the lighting equipment inside the chamber and facilitating its air conditioning.
En una realización preferida el sistema es controlado en base a una Interfaz web. En otra realización preferida el sistema Incluye recetas de luz para diferentes cultivos, dependiendo de la especie, variedad y etapa de crecimiento o producción específica variando la Intensidad de luz y de proporción del espectro lumínico, que pueden controlarse a través de la Interfaz web. In a preferred embodiment the system is controlled based on a web interface. In another preferred embodiment, the system includes light recipes for different crops, depending on the species, variety and stage of growth or specific production, varying the intensity of light and the proportion of the light spectrum, which can be controlled through the web interface.
A continuación, se incluyen ejemplos de realización para la presente invención tal como fue antes descrita: The following are examples of embodiments for the present invention as described above:
Ejemplo 1 : Evaluación de la distribución lumínica de múltiples LEDs. Example 1: Evaluation of the light distribution of multiple LEDs.
Objetivo del experimento: Objective of the experiment:
Determinar y simular la distribución lumínica de múltiples LEDs en distribución simétrica y asimétrica. Determine and simulate the light distribution of multiple LEDs in symmetrical and asymmetric distribution.
Descripción del experimento: Description of the experiment:
Se midió la radiación lumínica generada por un LED, a lo largo del eje longitudinal a 35 cm de altura y se modeló la dispersión de la luz generada por dicho LED. The light radiation generated by an LED was measured along the longitudinal axis at a height of 35 cm and the scattering of the light generated by said LED was modeled.
Se modeló la distribución lumínica al utilizar múltiples LEDs utilizando las medidas obtenidas anteriormente. A partir de una distribución homogénea (Figura 6 a), se realizaron iteraciones de la posición de los LED en el eje longitudinal, encontrando la distribución espacial óptima, minimizando la desviación estándar de la suma de la Intensidad en cada punto del eje longitudinal (Figura 6 b). The light distribution was modeled by using multiple LEDs using the measurements obtained previously. From a homogeneous distribution (Figure 6 a), iterations of the position of the LEDs in the longitudinal axis were performed, finding the optimal spatial distribution, minimizing the standard deviation of the sum of the Intensity at each point of the longitudinal axis (Figure 6 b).
Resultados: Results:
La distribución homogénea de los chips LED a lo largo del eje longitudinal genera una mayor concentración lumínica al centro del plano y menos Intensidad en los extremos (Figura 6 a). The homogeneous distribution of the LED chips along the longitudinal axis generates a higher concentration of light in the center of the plane and less intensity at the ends (Figure 6 a).
Se observó que la distribución de la luz al utilizar una distribución asimétrica, obtenida It was observed that the light distribution when using an asymmetric distribution, obtained
Conclusiones: Es posible mejorar la distribución lumínica en el eje longitudinal en un plano, modificando la posición de los chips LED. Esta distribución se puede encontrar mediante Iteraciones modelando la radiación emitida por cada chip. Ejemplo 2: Evaluación de la emisión de temperatura del Sistema comparado con otras soluciones Conclusions: It is possible to improve the light distribution in the longitudinal axis in a plane, by modifying the position of the LED chips. This distribution can be found by Iterations modeling the radiation emitted by each chip. Example 2: Evaluation of the temperature emission of the System compared to other solutions
Objetivo del experimento: Objective of the experiment:
Determinar la temperatura que generan los equipos de iluminación tradicional y el sistema propuesto PAR@LED Determine the temperature generated by traditional lighting equipment and the proposed PAR @ LED system
Descripción del experimento: Description of the experiment:
Utilizando una cámara térmica, se determinó la temperatura que generan los equipos al encenderse por 30 minutos, manteniendo condiciones normalizadas, fijando los equipos a 31 Watts de potencia, y con una temperatura ambiente de 20SC. Using a thermal camera, the temperature generated by the equipment when turned on for 30 minutes was determined, maintaining normalized conditions, setting the equipment at 31 Watts of power, and with an ambient temperature of 20 S C.
Resultados: Results:
La temperatura alcanzada por los equipos de iluminación estándar, superan la temperatura ambiente, llegando a temperaturas de 70.6SC en tubos fluorescentes (Figura 4 a) y 51 .8SC en luces LED blancas (Figura 4 b). Los equipos PAR@LED, llegan a 22.7SC (Figura 4 c). En la Tabla 2 se muestran los parámetros utilizados en la medición, en donde se fijó la potencia a 31 W y se midió el factor de potencia como unidad de eficiencia, en donde PF puede adoptar valores entre 0 y 1 , en donde 1 es la máxima eficiencia energética. El tubo fluorescente presenta el menor valor (0.54), luego continúan los tubos LED blancos (0.61 ) y finalmente el sistema propuesto PAR@LED presenta el mayor valor (0.89). The temperature reached by standard lighting equipment exceeds ambient temperature, reaching temperatures of 70.6 S C in fluorescent tubes (Figure 4 a) and 51 .8 S C in white LED lights (Figure 4 b). PAR @ LED equipment reaches 22.7 S C (Figure 4 c). Table 2 shows the parameters used in the measurement, where the power was set at 31 W and the power factor was measured as an efficiency unit, where PF can adopt values between 0 and 1, where 1 is the maximum energy efficiency. The fluorescent tube presents the lowest value (0.54), then the white LED tubes continue (0.61) and finally the proposed PAR @ LED system presents the highest value (0.89).
En la Tabla 2 también se muestra la corriente necesaria para alcanzar los 31W de potencia, en donde el tubo fluorescente y las luces LED blancas requieren mayor corriente que el equipo PAR@LED. Table 2 also shows the current necessary to reach 31W of power, where the fluorescent tube and white LED lights require more current than the PAR @ LED equipment.
Tabla 2. Parámetros y mediciones en el estudio de radiación térmica de sistemas de iluminación estándar y el sistema propuesto PAR@LED. Medición de eficiencia PF = Factor de Potencia, Corriente en mA, Voltaje en V, Potencia en W, temperatura promedio en grados Celsius, temperatura en los bordes del equipo en grados Celsius y temperatura del driver.
Figure imgf000014_0001
Table 2. Parameters and measurements in the study of thermal radiation of standard lighting systems and the proposed PAR @ LED system. Efficiency measurement PF = Power Factor, Current in mA, Voltage in V, Power in W, average temperature in degrees Celsius, temperature at the edges of the equipment in degrees Celsius and driver temperature.
Figure imgf000014_0001
Conclusiones: Conclusions:
El diseño del sistema propuesto PAR@LED genera menos calor que los equipos tradicionales. The proposed PAR @ LED system design generates less heat than traditional equipment.
Ejemplo 3: Resultados con plantas de arándanos Example 3: Results with blueberry plants
Objetivo del experimento: Objective of the experiment:
Validación de distintas recetas de luz generadas con PAR@LED en comparación con los sistemas tradicionales en tres variedades distintas de plantas de Arándanos. Validation of different light recipes generated with PAR @ LED compared to traditional systems in three different varieties of Blueberry plants.
Descripción del experimento: Description of the experiment:
Se establecieron las condiciones experimentales utilizando condiciones estándar con luz fluorescente, luces LED blancas y 4 recetas distintas de luz generadas con los equipos PAR@LED. The experimental conditions were established using standard conditions with fluorescent light, white LED lights and 4 different light recipes generated with the PAR @ LED equipment.
Se dejaron un grupo de plantas durante 1 ciclo de crecimiento (15 días) en cada condición, a modo de aclimatación, y en el segundo ciclo (15 días), se midió la tasa de multiplicación de cada variedad en las distintas condiciones. A group of plants were left for 1 growth cycle (15 days) in each condition, by way of acclimatization, and in the second cycle (15 days), the multiplication rate of each variety was measured under the different conditions.
Resultados: Results:
La tasa de multiplicación estándar para las tres variedades de Arándanos (Snow chaser, Star y Emerald) es cercana a 2, lo que significa que cada planta se puede dividir en dos al final de cada ciclo, generando 2 nuevas plantas por ciclo. The standard multiplication rate for the three varieties of Blueberries (Snow chaser, Star and Emerald) is close to 2, which means that each plant can be divided in two at the end of each cycle, generating 2 new plants per cycle.
En la Figura 7, se muestran las condiciones control y las cuatro condiciones generadas con el sistema PAR@LED, se puede observar que la primera Receta (R1 ) es favorable para Snow chaser, pero no para las otras dos variedades. La segunda receta (R2) es favorable para Snow chaser y Star. La tercera receta (R3), es apropiada sólo para Snow chaser. La cuarta receta (R4) genera buenos resultados en Snow chaser y Emerald.In Figure 7, the control conditions and the four conditions generated with the PAR @ LED system are shown, it can be seen that the first Recipe (R1) is favorable for Snow chaser, but not for the other two varieties. The second recipe (R2) is suitable for Snow chaser and Star. The third recipe (R3), is suitable only for Snow chaser. The fourth recipe (R4) produces good results on Snow chaser and Emerald.
Conclusiones: Conclusions:
En este experimento se valida que las recetas de luz generan resultados diferentes en cada variedad, obteniendo crecimientos mayores que las condiciones estándar. In this experiment, it is validated that the light recipes generate different results in each variety, obtaining growths greater than the standard conditions.

Claims

REIVINDICACIONES
1. Sistema flexible de iluminación LED CARACTERIZADO porque consiste en un sistema de iluminación flexible, que incluye Hardware (HW) y Software (SW), y que utiliza una disposición lineal y asimétrica de LEDs dispuestos en una barra de aluminio, ubicadas en los bordes de un plano horizontal con 45° de inclinación. 1. Flexible LED lighting system CHARACTERIZED because it consists of a flexible lighting system, which includes Hardware (HW) and Software (SW), and that uses a linear and asymmetric arrangement of LEDs arranged in an aluminum bar, located on the edges of a horizontal plane with 45 ° inclination.
2. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 , CARACTERIZADO porque permite otorgar una intensidad lumínica uniforme u homogénea sobre una pluralidad de plantas dispuestas sobre un plano horizontal. 2. Flexible LED lighting system according to claim 1, CHARACTERIZED in that it allows granting a uniform or homogeneous light intensity on a plurality of plants arranged on a horizontal plane.
3. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 , CARACTERIZADO porque permite su instalación y uso para la multiplicación de cultivos vegetales en espacios cerrados. 3. Flexible LED lighting system according to claim 1, CHARACTERIZED because it allows its installation and use for the multiplication of vegetable crops in closed spaces.
4. Sistema flexible de iluminación LED de acuerdo a la reivindicación 3, CARACTERIZADO porque los espacios cerrados se seleccionan entre viveros y laboratorios de cultivos de propagación y crecimiento de plantas. 4. Flexible LED lighting system according to claim 3, CHARACTERIZED in that the closed spaces are selected between nurseries and laboratories of propagation and plant growth cultures.
5. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 , CARACTERIZADO porque comprende como hardware (HW) uno o más pares de barras LED, conectadas a un sistema de control local (HW), administrado a través de una interfaz web remota (SW) que permite manejar los parámetros de operación del sistema. 5. Flexible LED lighting system according to claim 1, CHARACTERIZED because it comprises as hardware (HW) one or more pairs of LED bars, connected to a local control system (HW), managed through a remote web interface ( SW) that allows managing the operating parameters of the system.
6. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 ,6. Flexible LED lighting system according to claim 1,
CARACTERIZADO porque la combinación de hardware (HW) y software (SW) permite ajustar la proporción de los colores disponibles del espectro lumínico y junto con la interfaz web, es posible programar diferentes programas o recetas lumínicas, que permiten variar la duración, intensidad y calidad de la luz, para cada tipo de especie o variedad vegetal. CHARACTERIZED because the combination of hardware (HW) and software (SW) allows adjusting the proportion of the available colors of the light spectrum and together with the web interface, it is possible to program different lighting programs or recipes, which allow the duration, intensity and quality of light to be varied, for each type of species or plant variety.
7. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 ,7. Flexible LED lighting system according to claim 1,
CARACTERIZADO porque permite generar condiciones de amanecer o anochecer. CHARACTERIZED because it allows generating dawn or dusk conditions.
8. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 ,8. Flexible LED lighting system according to claim 1,
CARACTERIZADO porque permite conectar una serie de barras LED de manera secuencial sin pérdida de intensidad lumínica. CHARACTERIZED because it allows connecting a series of LED bars in a sequential manner without loss of light intensity.
9. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 , CARACTERIZADO porque puede utilizar drivers externos con corriente constante, prolongando la vida útil de los componentes del circuito y generando una intensidad y espectro lumínico constante, permitiendo además tener un sistema de iluminación de baja temperatura, ya que la mayor cantidad de temperatura se genera en los dispositivos controladores que se instalan fuera de la cámara de crecimiento (drivers o transformadores). 9. Flexible LED lighting system according to claim 1, CHARACTERIZED because it can use external drivers with constant current, prolonging the useful life of the circuit components and generating a constant light intensity and spectrum, also allowing to have a lighting system of low temperature, since the greatest amount of temperature is generated in the controlling devices that are installed outside the growth chamber (drivers or transformers).
10. Sistema flexible de iluminación LED de acuerdo a la reivindicación 9, CARACTERIZADO porque facilita el uso del sistema en centros de agricultura vertical o propagación de plantas en repisas, reduciendo la altura mínima de las mismas y facilitando un aumento de la superficie útil por centro productivo, sin afectar la calidad de los cultivos producidos. 10. Flexible LED lighting system according to claim 9, CHARACTERIZED because it facilitates the use of the system in centers of vertical agriculture or propagation of plants on shelves, reducing the minimum height of the same and facilitating an increase in the useful surface per center productive, without affecting the quality of the crops produced.
1 1 . Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 ,eleven . Flexible LED lighting system according to claim 1,
CARACTERIZADO porque contiene uno o más pares de barras LED y está diseñado para generar una distribución de intensidad luminosa homogénea a lo largo del plano horizontal. CHARACTERIZED because it contains one or more pairs of LED bars and is designed to generate a homogeneous light intensity distribution along the horizontal plane.
12. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 , CARACTERIZADO porque tiene una distribución lineal y asimétrica de LEDs a lo largo de cada barra de iluminación con canales separados e instalados a 45° del plano horizontal. 12. Flexible LED lighting system according to claim 1, CHARACTERIZED in that it has a linear and asymmetric distribution of LEDs along each lighting bar with separate channels installed at 45 ° from the horizontal plane.
13. Sistema flexible de iluminación LED de acuerdo a la reivindicación 12, CARACTERIZADO porque la distribución de los LEDs que genera una intensidad luminosa uniforme a lo largo del eje longitudinal se determina mediante un software (SW), que permite encontrar la mejor distribución, que según el largo de la barra y número de LEDs, mediante iteraciones virtuales de las posibles posiciones de los LEDs, se resuelve la distribución óptima según la mínima desviación estándar generada. 13. Flexible LED lighting system according to claim 12, CHARACTERIZED in that the distribution of the LEDs that generates a uniform light intensity along the longitudinal axis is determined by software (SW), which allows finding the best distribution, which According to the length of the bar and the number of LEDs, through virtual iterations of the possible positions of the LEDs, the optimal distribution is solved according to the minimum standard deviation generated.
14. Sistema flexible de iluminación LED de acuerdo a la reivindicación 13,14. Flexible LED lighting system according to claim 13,
CARACTERIZADO porque la distribución uniforme de la intensidad luminosa se logra instalando las barras LED en los bordes de las repisas de cultivo en donde el PCB con los LEDs queda en un ángulo de 45° dentro de la barra, con respecto al eje horizontal. CHARACTERIZED because the uniform distribution of light intensity is achieved by installing the LED bars on the edges of the grow shelves where the PCB with the LEDs is at a 45 ° angle inside the bar, with respect to the horizontal axis.
15. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 , CARACTERIZADO porque el LED que se utiliza en el sistema, consiste en un chip con múltiples cristales, que generan una distribución homogénea de la proporción del espectro lumínico generado por los LEDs. 15. Flexible LED lighting system according to claim 1, CHARACTERIZED in that the LED used in the system consists of a chip with multiple crystals, which generate a homogeneous distribution of the proportion of the light spectrum generated by the LEDs.
16. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 , CARACTERIZADO porque el LED que se utiliza consiste en un chip con múltiples cristales, permitiendo seleccionar rangos específicos dentro del espectro lumínico, tales como luz UV (300nm-400nm), luz azul (400nm- 500nm), luz verde (500nm-600nm), luz roja (600nm-700nm) y luz roja lejana (700nm-800nm). 16. Flexible LED lighting system according to claim 1, CHARACTERIZED because the LED that is used consists of a chip with multiple crystals, allowing to select specific ranges within the light spectrum, such as UV light (300nm-400nm), blue light (400nm- 500nm), green light (500nm-600nm), red light (600nm-700nm) and far red light (700nm-800nm).
17. Sistema flexible de iluminación LED de acuerdo a la reivindicación 15 o 16, CARACTERIZADO porque el chip con múltiples cristales tiene múltiples canales para poder controlar los cristales de manera independiente. 17. Flexible LED lighting system according to claim 15 or 16, CHARACTERIZED in that the chip with multiple crystals has multiple channels to be able to control the crystals independently.
18. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 , CARACTERIZADO porque las barras que contienen los LEDs, son barras de aluminio. 18. Flexible LED lighting system according to claim 1, CHARACTERIZED in that the bars containing the LEDs are aluminum bars.
19. Sistema flexible de iluminación LED de acuerdo a la reivindicación 18, CARACTERIZADO porque las barras LED de aluminio tienen un diseño para ser instaladas con imán o clip metálico estándar, apas plásticas y cobertores de plásticos para un ensamblaje simple, espacio para el PCB que contiene los LEDs en un ángulo de 45° con respecto al eje horizontal. 19. Flexible LED lighting system according to claim 18, CHARACTERIZED because the aluminum LED bars have a design to be installed with a standard metal magnet or clip, plastic apas and plastic covers for a simple assembly, space for the PCB that It contains the LEDs at an angle of 45 ° to the horizontal axis.
20. Sistema flexible de iluminación LED de acuerdo a la reivindicación 9, CARACTERIZADO porque la instalación de los drivers externos de corriente se realiza fuera de la cámara de crecimiento de plantas, disminuyendo la generación de calor de los equipos lumínicos dentro de la cámara y facilitando la aclimatación de la misma. 20. Flexible LED lighting system according to claim 9, CHARACTERIZED in that the installation of the external current drivers is carried out outside the plant growth chamber, reducing the generation of heat from the lighting equipment inside the chamber and facilitating acclimatization of it.
21. Sistema flexible de iluminación LED de acuerdo a la reivindicación 1 , CARACTERIZADO porque es controlado en base a una interfaz web. 21. Flexible LED lighting system according to claim 1, CHARACTERIZED in that it is controlled based on a web interface.
22. Sistema flexible de iluminación LED de acuerdo a la reivindicación 6, CARACTERIZADO porque incluye recetas de luz para diferentes cultivos, dependiendo de la especie, variedad y etapa de crecimiento o producción específica variando la intensidad de luz y de proporción del espectro lumínico, que pueden controlarse a través de la interfaz web. 22. Flexible LED lighting system according to claim 6, CHARACTERIZED in that it includes light recipes for different crops, depending on the species, variety and stage of growth or specific production varying the intensity of light and the proportion of the light spectrum, which they can be controlled through the web interface.
PCT/CL2019/050014 2019-03-05 2019-03-05 Flexible led lighting system for homogeneously lighting a horizontal plane and its use in cultivating plants in enclosed spaces such as greenhouses and plant propagation laboratories WO2020177003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050014 WO2020177003A1 (en) 2019-03-05 2019-03-05 Flexible led lighting system for homogeneously lighting a horizontal plane and its use in cultivating plants in enclosed spaces such as greenhouses and plant propagation laboratories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050014 WO2020177003A1 (en) 2019-03-05 2019-03-05 Flexible led lighting system for homogeneously lighting a horizontal plane and its use in cultivating plants in enclosed spaces such as greenhouses and plant propagation laboratories

Publications (1)

Publication Number Publication Date
WO2020177003A1 true WO2020177003A1 (en) 2020-09-10

Family

ID=72337397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050014 WO2020177003A1 (en) 2019-03-05 2019-03-05 Flexible led lighting system for homogeneously lighting a horizontal plane and its use in cultivating plants in enclosed spaces such as greenhouses and plant propagation laboratories

Country Status (1)

Country Link
WO (1) WO2020177003A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150016119A1 (en) * 2013-07-12 2015-01-15 Enplas Corporation Light flux controlling member, light emitting device and illumination apparatus
US20160286747A1 (en) * 2015-03-31 2016-10-06 Ushio Denki Kabushiki Kaisha Plant growth lighting apparatus, plant hydroponic cultivation apparatus and plant hydroponic cultivation method
WO2017168667A1 (en) * 2016-03-31 2017-10-05 富士通株式会社 Illumination device for plant cultivation, plant cultivation device, plant cultivation method
US20170311554A1 (en) * 2014-08-19 2017-11-02 Edward Leonard Haggarty Lighting device, assembly and method for growing horticulture indoors
US20180014374A1 (en) * 2016-07-08 2018-01-11 Hubbell Incorporated Horticultural light
US20180363884A1 (en) * 2017-06-16 2018-12-20 Osram Gmbh Lighting installation and corresponding method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150016119A1 (en) * 2013-07-12 2015-01-15 Enplas Corporation Light flux controlling member, light emitting device and illumination apparatus
US20170311554A1 (en) * 2014-08-19 2017-11-02 Edward Leonard Haggarty Lighting device, assembly and method for growing horticulture indoors
US20160286747A1 (en) * 2015-03-31 2016-10-06 Ushio Denki Kabushiki Kaisha Plant growth lighting apparatus, plant hydroponic cultivation apparatus and plant hydroponic cultivation method
WO2017168667A1 (en) * 2016-03-31 2017-10-05 富士通株式会社 Illumination device for plant cultivation, plant cultivation device, plant cultivation method
US20180014374A1 (en) * 2016-07-08 2018-01-11 Hubbell Incorporated Horticultural light
US20180363884A1 (en) * 2017-06-16 2018-12-20 Osram Gmbh Lighting installation and corresponding method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CIENCIA PURA: "Entrevista a Juan Pablo Matte en Agenda Agricola", YOUTUBE, 7 September 2018 (2018-09-07), XP054980957, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=phjYr5t910s> [retrieved on 20190715] *

Similar Documents

Publication Publication Date Title
RU2369086C1 (en) Led plant spotlight
US9736994B2 (en) Lighting device, assembly and method for growing horticulture indoors
ES2707148T3 (en) LED horticultural lighting set
JP5779678B2 (en) Lamp for plant cultivation and plant cultivation method using the same
US20120044713A1 (en) Compact High Brightness Led Aquarium Light Apparatus, Using an Extended Point Source Led Array with Light Emitting Diodes
US20120198762A1 (en) Spectural specific horticulture apparatus
JP6156677B2 (en) Lighting device, plant cultivation system, and plant cultivation method
JP5723900B2 (en) Plant cultivation method
KR101451911B1 (en) Horticulture emitting diode lighting device
US20190335675A1 (en) Grow lights for horticulture
ES2954576T3 (en) Fiber Optic Diffused Horticultural Lighting
CN103925483A (en) Novel LED (Light Emitting Diode) plant growth lamp
JP5723901B2 (en) Plant cultivation method
US20180359934A1 (en) Photon delivery devices, systems, and methods
RU2704104C2 (en) Electromagnetic radiation spectrum forming method, agriculture lighting method and agriculture lighting system
JP2015133939A (en) Illumination device for plant cultivation
WO2020177003A1 (en) Flexible led lighting system for homogeneously lighting a horizontal plane and its use in cultivating plants in enclosed spaces such as greenhouses and plant propagation laboratories
CN204573661U (en) With the fosterage of plants lamp assembly of movable supporting frame
JP2014147377A (en) Plant cultivation method
KR101290801B1 (en) A light source and apparatus for plant cultivation using it
RU2723725C1 (en) Artificial phyto-lighting system
RU191120U1 (en) LINEAR LED PHYTOR LIGHT
JP2017046651A (en) Plant cultivation luminaire and plant cultivation method using the same
CN207246808U (en) There is blue light, purple light, the plant growth lamp of UV A at the same time
RU2725003C1 (en) Irradiation system of plants in a greenhouse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918160

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19918160

Country of ref document: EP

Kind code of ref document: A1