WO2020175691A1 - Conductive particles, conductive material, and connection structure - Google Patents

Conductive particles, conductive material, and connection structure Download PDF

Info

Publication number
WO2020175691A1
WO2020175691A1 PCT/JP2020/008458 JP2020008458W WO2020175691A1 WO 2020175691 A1 WO2020175691 A1 WO 2020175691A1 JP 2020008458 W JP2020008458 W JP 2020008458W WO 2020175691 A1 WO2020175691 A1 WO 2020175691A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
particles
conductive particles
particle
base
Prior art date
Application number
PCT/JP2020/008458
Other languages
French (fr)
Japanese (ja)
Inventor
寛人 松浦
脇屋 武司
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020538860A priority Critical patent/JPWO2020175691A1/en
Priority to CN202080017319.9A priority patent/CN113519031A/en
Priority to KR1020217027053A priority patent/KR20210130152A/en
Publication of WO2020175691A1 publication Critical patent/WO2020175691A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to a conductive particle in which a conductive portion is arranged on the surface of a base particle.
  • the present invention also relates to a conductive material and a connection structure using the conductive particles.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder resin.
  • conductive particles conductive particles having base particles and conductive portions arranged on the surface of the base particles may be used.
  • the anisotropic conductive material is used to obtain various connection structures.
  • Connections using the above anisotropic conductive materials include connections between flexible printed circuit boards and glass substrates ( ⁇ ⁇ (1 1 1 1 1 1 1 0 n 0 1 3 3 3)), connections between semiconductor chips and flexible printed circuit boards. ( ⁇ ⁇ ( ⁇ 1 ⁇ n 1 1 ⁇ ⁇ ), Connection between semiconductor chip and glass substrate ( ⁇ ⁇ ⁇ ( ⁇ ⁇ ⁇ n 0 1 3 3 3)), and Connection between flexible printed circuit board and glass epoxy substrate ( ⁇ (( 1 1 1 1 0 n Etc.
  • Patent Document 1 discloses conductive particles including a nickel layer and a gold layer formed on the nickel layer.
  • the average film thickness of the gold layer is 300 or less.
  • the metal layer is the outermost layer.
  • the elemental composition ratio ((//)) of nickel and gold on the surface of the conductive particle by X-ray photoelectron spectroscopy analysis is 0.4 or less.
  • Patent Document 2 discloses conductive particles including core particles, a 1 ⁇ 1 plating layer, a noble metal plating layer, and an antimony film.
  • the above-mentioned iron plating layer covers the above core particles.
  • the precious metal plating layer is less than the above-mentioned precious metal plating layer.
  • the noble metal plating layer includes at least one of 8 and 01.
  • the anti-rust coating covers at least one of the gold plating layer and the noble metal plating layer.
  • the anti-rust film contains an organic compound.
  • Patent Document 1 Japanese Patent Laid-Open No. 20 09 _ 1 0 2 7 3 1
  • Patent Document 2 JP 2 0 1 3 _ 2 0 7 2 1 Publication
  • the thickness of the conductive portion may be increased. However, if the thickness of the conductive portion is increased, the conductive particles may aggregate when forming the conductive portion by plating. When the conductive particles agglomerate with each other, the electrodes adjacent in the lateral direction tend to be easily connected to each other, and it may be difficult to improve the insulation reliability between the electrodes adjacent in the lateral direction.
  • An object of the present invention is to effectively reduce the connection resistance between electrodes, and ⁇ 0 2020/175691 3 ⁇ (: 171? 2020 /008458
  • the purpose of the present invention is to provide conductive particles capable of effectively suppressing the occurrence of aggregation of conductive particles. Moreover, the objective of this invention is providing the electrically conductive material and connection structure which used the said electroconductive particle.
  • [001 1] it is provided with base particles and a conductive portion arranged on the surface of the base particles, and the base particles have conductivity inside the base particles.
  • conductive particles containing a conductive metal are provided.
  • the porosity of the base particle is 10% or more.
  • the conductive metal includes nickel, gold, palladium, silver, or copper.
  • the conductive portion contains nickel, gold, palladium, silver, or copper.
  • 10% ⁇ value of the conductive particles is 1 0 0 1 ⁇ 1/ ⁇ 1 ⁇ 1 2 or more 2 5 0 0 0 1 ⁇ 1 / ⁇ 1 ⁇ 12 or less.
  • 30% ⁇ value of the conductive particles is 1 0 0 1 ⁇ 1/ ⁇ 1 ⁇ 1 2 or more 1 5 0 0 0 1 ⁇ 1 / ⁇ 1 ⁇ 12 or less.
  • the ratio of 10% ⁇ value of the conductive particles to 30% ⁇ value of the conductive particles is...! .5 or more and 5 or less.
  • the particle diameter of the conductive particle is not less than 0.101 and not more than 100.
  • the content of the conductive metal contained in the base particles is 0.1% by volume. It is above 30% by volume.
  • the conductive particle has a protrusion on an outer surface of the conductive portion.
  • the conductive particles are ⁇ 0 2020/175691 4 ⁇ (: 171? 2020 /008458
  • An insulating material is disposed on the outer surface of the conductive portion.
  • a conductive material including the above-mentioned conductive particles and a binder resin.
  • the conductive material includes a plurality of the conductive particles described above, and particles of the base material particle from an outer surface of the base material particle toward a center thereof.
  • the area having a distance of 1/2 of the diameter is defined as the area 1
  • the total number of the conductive particles is 100%
  • the conductive metal is present in the area 1 of the base particle.
  • the ratio of the number of particles is 50% or more.
  • the conductive material includes a plurality of the conductive particles described above, and particles of the base material particle from the center of the base material particle toward the outer surface thereof.
  • area 2 the total number of the conductive particles is 100%, and the conductive metal is present in the area 2 of the base particles.
  • the ratio of the number of particles is 5% or more.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection
  • a connecting member connecting the target member and the second connection target member, wherein the material of the connecting portion is the above-mentioned conductive particles, or the conductive particles and the binder resin.
  • a connection structure is provided, which is a conductive material containing: and the first electrode and the second electrode are electrically connected by the conductive particles.
  • the conductive particles according to the present invention include base particles, and conductive portions arranged on the surfaces of the base particles.
  • the base material particle contains a conductive metal inside the base material particle. Since the conductive particles according to the present invention are provided with the above configuration, the connection resistance between the electrodes can be effectively reduced, and the occurrence of aggregation of the conductive particles can be effectively suppressed. can do.
  • FIG. 1 is a cross-sectional view showing a conductive particle according to a first embodiment of the present invention. ⁇ 02020/175691 5 (: 17 2020/008458
  • FIG. 2 is a cross-sectional view showing a conductive particle according to a second embodiment of the present invention.
  • FIG. 3 is a sectional view showing a conductive particle according to a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram for explaining each region in the base particle for confirming the presence or absence of a conductive metal.
  • FIG. 5 is a front sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
  • the conductive particles according to the present invention include base particles and conductive parts arranged on the surfaces of the base particles.
  • the base material particle contains a conductive metal inside the base material particle.
  • the conductive particles according to the present invention are provided with the above configuration, the connection resistance between the electrodes can be effectively reduced, and the occurrence of aggregation of the conductive particles is effective. Can be suppressed.
  • the conductive particles are used.
  • the thickness of the conductive portion may be increased.
  • the conductive particles may aggregate during the formation of the conductive portion by plating.
  • the electrodes adjacent in the lateral direction tend to be easily connected to each other, and it may be difficult to improve the insulation reliability between the electrodes adjacent in the lateral direction.
  • the present inventors use both specific conductive particles to reduce both the connection resistance between electrodes and to suppress the occurrence of aggregation of conductive particles. I found that you can.
  • the conductive particles are compressed at the time of connection between the electrodes in the vertical direction, so that not only a conductive path is formed on the surface (conductive portion) of the conductive particles, but also inside the conductive particles (conductive Conductive metal) can also form a conductive path. Further, the conductive metal inside the conductive particles contributes to the reduction of the connection resistance to some extent even if the conductive path is not completely formed. As a result, the connection resistance between the electrodes in the vertical direction can be made sufficiently low even if the thickness of the conductive portion is relatively thin.
  • the conductive portion is relatively thin, it is possible to suppress the occurrence of aggregation of conductive particles and to effectively improve the insulation reliability between the electrodes that are adjacent to each other and that are not connected. it can.
  • the connection resistance between the electrodes can be effectively reduced, and the aggregation of the conductive particles can be effectively suppressed. ..
  • the conductive path (conductive portion) is formed not only on the surface of the base material particle but also inside the base material particle, and the conductive path (conductive portion) can enter the inside of the base material particle. As a result, the adhesiveness of the conductive part of the conductive particles can be effectively enhanced, and the peeling of the conductive part of the conductive particles can be effectively suppressed.
  • the 10% ⁇ value (compressive elastic modulus when compressed by 10%) of the conductive particles is preferably More preferably
  • connection resistance between the electrodes can be lowered more effectively, ⁇ 0 2020/1756 91 7 ⁇ (: 171? 2020 /008458
  • the generation of cracks in the conductive particles can be suppressed more effectively, and the connection reliability between the electrodes can be improved more effectively.
  • the value of 30% ⁇ value (compressive elastic modulus when compressed by 30%) of the conductive particles is preferably More preferably
  • connection resistance between the electrodes can be further effectively reduced, and the occurrence of cracking of the conductive particles can be further improved. It can be effectively suppressed, and the connection reliability between the electrodes can be more effectively enhanced.
  • the ratio of 10% ⁇ value of the conductive particles to 30% ⁇ value of the conductive particles (10% of conductive particles ⁇ value/30% of conductive particles ⁇ value) is Preferably 1.
  • connection resistance between the electrodes is 5 or more, more preferably 1.5 or more, preferably 5 or less, more preferably 4.5 or less.
  • measure the load value (1 ⁇ !) and compressive displacement ( ⁇ .) From the measured value, calculate the above-mentioned compressive modulus (1 ⁇ % ⁇ value and 30% ⁇ value) by the following formula.
  • the above-mentioned micro compression tester "Fisher Scope 1 to 1-100" manufactured by Fisher Co., Ltd. is used, etc.
  • the above 10% ⁇ value and the above 30% ⁇ of the above conductive particles are used.
  • the value is preferably calculated by arithmetically averaging the 10% ⁇ value and the 30% ⁇ value of the arbitrarily selected 50 conductive particles. ⁇ 02020/175691 8 ⁇ (: 171? 2020 /008458
  • the compressive elastic modulus universally and quantitatively represents the hardness of the conductive particles.
  • the hardness of the conductive particles can be quantitatively and uniquely expressed.
  • the above ratio (10% ⁇ value of conductive particles/30% ⁇ value of conductive particles) can quantitatively and uniquely express the physical properties of the conductive particles at the time of initial compression.
  • the particle diameter of the conductive particles is preferably 0.1 or more, and more preferably
  • the particle diameter of the conductive particles is not less than the lower limit and not more than the upper limit, the contact area between the conductive particles and the electrode becomes sufficiently large when the electrodes are connected using the conductive particles. In addition, it is difficult for the conductive particles to aggregate when forming the conductive portion. In addition, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive parts are less likely to peel off from the surface of the base material particles.
  • the particle size of the conductive particles is preferably an average particle size, and more preferably a number average particle size.
  • the particle size of the above conductive particles can be calculated by, for example, observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating the average particle size of each conductive particle, and measuring the particle size distribution. It is calculated using the device. When observed with an electron microscope or an optical microscope, the particle size of each conductive particle is calculated as the particle size at the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle size of any 50 conductive particles at the equivalent circle diameter is almost equal to the average particle size at the spherical equivalent diameter.
  • the particle size of each conductive particle is calculated as the particle size in terms of a sphere equivalent diameter.
  • the average particle size of the conductive particles is preferably calculated using a particle size distribution measuring device. ⁇ 02020/175691 9 boxes (: 171?2020/008458
  • the coefficient of variation ( ⁇ 3 V value) of the particle diameter of the conductive particles is preferably 10% or less, more preferably 5% or less.
  • the variation coefficient of the particle diameter of the conductive particles is equal to or less than the upper limit, it is possible to more effectively improve the conduction reliability and the insulation reliability between the electrodes.
  • V value (%) ( ! ⁇ / 0 X 100 0
  • the shape of the conductive particles is not particularly limited.
  • the conductive particles may have a spherical shape, a shape other than a spherical shape, a flat shape or the like.
  • FIG. 1 is a sectional view showing a conductive particle according to a first embodiment of the present invention.
  • the conductive particles 1 shown in FIG. 1 have base particles 2 and conductive parts 3. Conductive part
  • the conductive portion 3 is arranged on the surface of the base particle 2.
  • the conductive portion 3 is in contact with the surface of the base particle 2.
  • the conductive particle 1 is a coated particle in which the surface of the base material particle 2 is coated with the conductive portion 3.
  • the conductive portion 3 is a single-layer conductive layer.
  • the base material particles 2 contain a conductive metal inside the base material particles 2.
  • the conductive portion may cover the entire surface of the base material particle, or the conductive portion may cover a part of the surface of the base material particle.
  • the conductive portion may be a single-layer conductive layer or a multi-layer conductive layer composed of two or more layers.
  • the conductive particles 1 do not have a core substance.
  • the conductive particle 1 has no protrusion on the surface.
  • the conductive particles 1 are spherical.
  • the conductive part 3 has no protrusion on the outer surface.
  • the conductive particles according to the present invention may not have protrusions on the conductive surface and may be spherical.
  • the conductive particle 1 does not have an insulating material.
  • the conductive particles 1 may have an insulating substance disposed on the outer surface of the conductive portion 3.
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • the conductive particles 11 shown in FIG. 2 have a base particle 2, a conductive portion 12, a plurality of core substances 13 and a plurality of insulating substances 14.
  • the conductive portion 12 is arranged on the surface of the base material particle 2 so as to be in contact with the base material particle 2.
  • the conductive portion 12 is a single conductive layer. Conductive particles 1
  • the base particle 2 contains a conductive metal inside the base particle 2.
  • the conductive part may cover the entire surface of the base particle, or the conductive part may cover a part of the surface of the base particle.
  • the conductive portion may be a single-layer conductive layer or a multi-layer conductive layer composed of two or more layers.
  • the conductive particles 11 have a plurality of protrusions 11 13 on the conductive surface.
  • the 2 has a plurality of protrusions 1 2 3 on its outer surface.
  • a plurality of core substances 13 are arranged on the surface of the base particle 2.
  • a plurality of core substances 13 are embedded in the conductive portion 12.
  • the core substance 13 is arranged inside the protrusions 1 1 3 and 1 2 3.
  • the conductive part 12 covers a plurality of core substances 13.
  • the outer surface of the conductive part 12 is raised by the plurality of core substances 13 and the protrusions 1 1 2 3 are formed.
  • the conductive particles 11 have the insulating substance 14 arranged on the outer surface of the conductive portion 12. At least a part of the outer surface of the conductive portion 12 is covered with the insulating substance 14.
  • the insulating substance 14 is formed of a material having an insulating property and is an insulating particle.
  • the conductive particles according to the present invention may have an insulating substance arranged on the outer surface of the conductive portion. However, the conductive particles according to the present invention may not necessarily have an insulating substance.
  • FIG. 3 is a cross-sectional view showing conductive particles according to a third embodiment of the present invention.
  • the conductive particles 21 shown in Fig. 3 include a base material particle 2, a conductive portion 22 and a plurality of cores. ⁇ 0 2020/1756 91 1 1 ⁇ (: 171? 2020 /008458
  • the conductive portion 22 as a whole has a first conductive portion 22 28 on the base material particle 2 side and a second conductive portion 22 2 on the opposite side to the base material particle 2 side.
  • the conductive particles 11 and the conductive particles 21 are different only in the conductive part. That is, in the conductive particle 11 the conductive part 12 having a one-layer structure is formed, while in the conductive particle 21 the first conductive part 2 28 and the second conductive part having a two-layer structure are formed.
  • the conductive part 22 is formed.
  • the first conductive portion 22 8 and the second conductive portion 22 2 are formed as separate conductive portions.
  • the first conductive portion 22 8 is arranged on the surface of the base particle 2.
  • the first conductive portion 22 8 is arranged between 2 and the second conductive portion 22.
  • the first conductive portion 22 8 is in contact with the base particle 2.
  • the second conductive part 22 is in contact with the first conductive part 22 8. Therefore, the first conductive portion 22 8 is arranged on the surface of the base particle 2, and the second conductive portion 22 2 is arranged on the surface of the first conductive portion 22 8. ..
  • the conductive particles 21 have a plurality of protrusions 2 13 on the conductive surface.
  • Conductive part 2 2 has a plurality of projections 2 2 3 on the outer surface.
  • the first conducting portion 22 8 has a plurality of protrusions 22 8 3 on its outer surface.
  • the second conductive portion 2 2 observed on the outer surface, having a plurality of projections 2 2 Serpent 3.
  • the material of the base particles is not particularly limited.
  • the material of the base particles may be an organic material or an inorganic material.
  • Examples of the base material particles formed of only the organic material include resin particles.
  • Examples of the base particles formed of only the above inorganic material include inorganic particles excluding metals.
  • Examples of the base particles formed of both the organic material and the inorganic material include organic organic hybrid particles. From the viewpoint of further improving the compression characteristics of the base particles, the base particles are preferably resin particles or organic-inorganic hybrid particles, and more preferably resin particles.
  • Examples of the organic material include polyethylene, polypropylene, polystyrene, ⁇ 02020/175691 12 ((171?2020/008458
  • Polyolefin resins such as polyvinyl chloride, polyvinylidene chloride, polyisoptyrene, polybutadiene, etc.; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonates, polyamides, phenolformaldehyde resins, melamine formaldehyde resins, benzoguanamine formaldehyde resins, urea formaldehyde Resin, Phenol resin, Melamine resin, Benzoguanamine resin, Urea resin, Epoxy resin, Unsaturated polyester resin, Saturated polyester resin, Polyethylene terephthalate, Polysulfone, Polyphenylene oxide, Polyacetal, Polyimide, Polyamide imido, Examples thereof include polyether ether ketone, polyether sulfone, divinylbenzene polymer, and divinylbenzene copolymer.
  • the divinyl benzene copolymer and the like examples include divinylbenzene-styrene copolymer and divinylbenzene-(meth)acrylic acid ester copolymer. Since the compression characteristics of the base particles can be easily controlled to a suitable range, the material of the base particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferable that they are united.
  • the base particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group
  • the polymerizable monomer having an ethylenically unsaturated group is a non-crosslinkable monomer. Examples thereof include a body and a crosslinkable monomer.
  • non-crosslinkable monomer examples include vinyl compounds such as styrene, ⁇ styrene monomer such as methylstyrene and chlorostyrene; methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, etc.
  • Vinyl ether compounds vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate, and other vinyl ester compounds; vinyl chloride, vinyl fluoride, and other halogen-containing monomers; (meth) acrylic compound, methyl (meth) acrylate , Ethyl (meth) acrylate, Propyl (meth) acrylate, Butyl (meth) acrylate, 2-Ethylhexyl (meth) acrylate, Lauryl (meth) acrylate, Cetyl (meth) acrylate, Stearyl (meth) acrylate, cyclohexyl (Meth)acrylate, isobornyl (meth)acry ⁇ 02020/175691 13 Alkyl (meth)acryloyl compound such as: (171?2020/008458 rate; 2-hydroxyethyl (meth)acrylate, glycerol (meth)acrylate, polyoxyethylene (meth)acrylate, glycidyl Ox
  • crosslinkable monomer examples include vinyl compounds such as divinylbenzene and
  • Vinyl monomers such as 1,4-divinyloxybutane and divinyl sulfone; (meth) as an acrylic compound, tetramethylolmethane tetra (meth) acrylate, polytetramethylene glycol diacrylate, tetramethylol methanetri (meth) Acrylate, tetramethylolmethane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, glycerol tri(meth)acrylate, glycerol di(meth)acrylate ) Acrylate, polyethylene glycol di(meth) acrylate, polypropylene glycol di(meth) acrylate, polytetramethylene glycol di(meth) acrylate, 1,4-butanediol di(meth) acrylate
  • Phenyltrimethoxysilane dimethyldimethoxysilane, dimethyldioxysilane, diisopropyldimethoxysilane, trimethoxysilylstyrene, 7-(meth)acryloxypropyltrimethoxysilane, 1,3-divinyltetramethyldisiloxane, methylphenyldimethoxysilane, diphenyldimethoxysilane, etc.
  • Silane alkoxide compounds vinyltrimethoxysilane, vinyltrietoxysilane, dimethoxymethylvinylsisilane, dimethoxetylvinylsilane, jetoxymethylvinylsilane, jetoxetylvinylsilane, ethylmethyldivinylsilane, methylvinyldimethoxysilane, ethylvinyldime Toxysilane, Methyl vinyl jetoxy silane, Ethyl vinyl jetoxy silane, _Styryltrimethoxy silane,
  • the base particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group.
  • the above-mentioned polymerization method is not particularly limited, and examples thereof include known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, condensation polymerization), addition condensation, living polymerization, and living radical polymerization.
  • Another polymerization method is suspension polymerization in the presence of a radical polymerization initiator.
  • Examples of the above-mentioned inorganic materials include silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda lime glass, and alumina silicate glass.
  • the base particles may be organic-inorganic hybrid particles.
  • the child may be a core-shell particle.
  • the base particles are organic-inorganic hybrid particles
  • examples of the inorganic material that is a material of the base particles include silica, alumina, barium titanate, zirconia, and carbon black. It is preferable that the inorganic substance is not a metal.
  • the substrate particles formed of the above silica are not particularly limited, but after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form a crosslinked polymer particle, if necessary, Base material particles obtained by performing firing are mentioned.
  • Examples of the above-mentioned organic/inorganic hybrid particles include organic/inorganic hybrid particles formed by a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell arranged on the surface of the core.
  • the core is preferably an organic core.
  • the shell is preferably an inorganic shell.
  • the base material particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell arranged on the surface of the organic core.
  • Examples of the material of the organic core include the organic materials described above.
  • Examples of the material of the inorganic shell include the inorganic materials listed as the materials of the base particle.
  • the material of the inorganic shell is preferably silica.
  • the inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material by a sol-gel method on the surface of the core, and then firing the shell-like material.
  • the metal alkoxide is preferably silane alkoxide.
  • the inorganic shell is preferably formed of silane alkoxide.
  • the Mitsumi specific surface area of the base particles is preferably 8 2 /9 or more, more preferably 1 2 2 /9 or more, and preferably 1 2 0 2 /9 or less, more preferably More preferably 10 It is the following.
  • the conductive metal can be contained more easily in the base particles. ⁇ 0 2020/175691 16 ⁇ (: 171? 2020 /008458
  • the connection resistance between the electrodes can be reduced more effectively, and the occurrence of aggregation of the conductive particles is further enhanced. Can be suppressed.
  • the insulation reliability between the electrodes can be more effectively enhanced.
  • the above-mentioned Mitsumi ratio table area is not less than the above lower limit and not more than the above upper limit, the adhesion of the conductive part in the conductive particle can be more effectively enhanced, and the conductive part in the conductive particle is peeled off. Can be suppressed more effectively.
  • the Mitsumi specific surface area of the base particles can be measured from the adsorption isotherm of nitrogen according to the Mitsumi method.
  • Examples of a device for measuring the specific surface area of the Nitsubing Ding of the above-mentioned base particles include "1 ⁇ 10 8 4 2 0 0 6" manufactured by Kantachrome Instruments Co., Ltd.
  • Total pore volume of [0076] the base particles is preferably 0.0 1 ⁇ 3/9 or more, more favorable Mashiku ⁇ . Or more, preferably 3_Rei 3/9 or less, and more favorable Mashiku is 1. 5_Rei_rei! 3/9 or less.
  • the conductive metal can be more easily contained in the base particles.
  • the connection resistance between the electrodes can be further effectively reduced, and the occurrence of aggregation of the conductive particles can be suppressed more effectively. can do.
  • the insulation reliability between the electrodes can be more effectively enhanced.
  • the total pore volume is not less than the above lower limit and not more than the above upper limit, it is possible to further effectively enhance the adhesion of the conductive portion in the conductive particle, and the peeling of the conductive portion in the conductive particle occurs. Can be suppressed more effectively.
  • the total pore volume of the substrate particles snake “compliant 1 to 1 method, it is possible to measure the adsorption isotherm or these nitrogen.
  • An example of a device for measuring the total pore volume of the base particles is "1 ⁇ 10 8 4 2 0 0 6" manufactured by Kantachrome Instruments Co., Ltd. ⁇ 0 2020/175691 17 ⁇ (: 171? 2020 /008458
  • the average pore diameter of the base particles is preferably 10 n. Or less, more preferably
  • the lower limit of the average pore size of the base particles is not particularly limited.
  • the average pore size of the base particles is 1 It may be more.
  • the conductive metal can be contained in the base material particles more easily.
  • the connection resistance between the electrodes can be further effectively reduced, and the aggregation of the conductive particles can be more effectively generated. Can be suppressed.
  • insulation reliability between electrodes can be more effectively enhanced.
  • the adhesion of the conductive part in the conductive particle can be more effectively enhanced, and the conductive part in the conductive particle can be improved.
  • the occurrence of peeling can be suppressed more effectively.
  • the average pore diameter of the base particles snake “compliant 1 to 1 method, it is possible to measure the adsorption isotherm or these nitrogen.
  • An example of a device for measuring the average pore diameter of the base particles is "1 ⁇ 10 8 4 2 0 0 6" manufactured by Kantachrome Instruments Co., Ltd. and the like.
  • the porosity of the base particles is preferably 5% or more, more preferably 10% or more, preferably 90% or less, more preferably 70% or less.
  • the conductive metal can be contained in the base material particles more easily.
  • the porosity is equal to or higher than the lower limit and equal to or lower than the upper limit, the connection resistance between the electrodes can be reduced more effectively, and the occurrence of aggregation of the conductive particles can be suppressed more effectively. You can Further, when the porosity is equal to or higher than the lower limit and equal to or lower than the upper limit, the insulation reliability between the electrodes can be more effectively enhanced.
  • the porosity is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively enhance the adhesion of the conductive part in the conductive particle, and the peeling of the conductive part in the conductive particle occurs. Can be suppressed more effectively.
  • the porosity of the above-mentioned base particles is determined by measuring the mercury content against the pressure applied by the mercury penetration method. ⁇ 0 2020/175691 18 ⁇ (: 171? 2020 /008458
  • the base material particles satisfying the preferable ranges of the above-mentioned specific surface area and the porosity can be obtained, for example, by the method for producing base material particles including the following steps.
  • the polymerizable monomer include monofunctional monomers and polyfunctional monomers.
  • the organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water that is a polymerization medium.
  • examples of the organic solvent include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, and methylethylketone.
  • the amount of the organic solvent added is 100 parts by weight of the polymerizable monomer component.
  • the amount of the organic solvent added is in the above-mentioned preferred range, the Mitsumi specific surface area, the porosity, etc. can be controlled to a more suitable range, and the fine pores inside the particles can be controlled. It will be easier to obtain.
  • the base material particles satisfying the preferable ranges such as the above-mentioned specific surface area of Mitsumi and the above-mentioned porosity have a relatively large number of voids inside the base material particles, so that the conductive part is present on the surface of the base material particles.
  • the conductive part enters into the fine voids inside the base material particles, and the conductive metal can be easily contained inside the base material particles.
  • the conductive particles may be compressed when the electrodes are connected in the vertical direction, so that the conductive metals inside the base material particles may come into contact with each other to form a conduction path.
  • the surface of the conductive particles (conductive part ⁇ 0 2020/175691 19 ⁇ (: 171? 2020 /008458
  • a conductive path is formed not only in the conductive particles but also in the conductive particles (conductive metal).
  • the connection resistance between the electrodes in the vertical direction can be made sufficiently low even when the conductive portion is relatively thin.
  • the thickness of the conductive part is relatively thin, it is possible to suppress the occurrence of aggregation of conductive particles, and to effectively increase the insulation reliability between the electrodes that are not connected and are laterally adjacent to each other.
  • the conductive part when forming the conductive part on the surface of the base material particle, the conductive part enters into the fine voids inside the base material particle, so that the adhesion of the conductive part in the conductive particle is improved. It can be effectively increased, and peeling of the conductive portion of the conductive particles can be effectively suppressed.
  • the particle diameter of the base particles is preferably 0.1 or more, and more preferably 1 or more.
  • the particle size of the base particles is preferably 100 or less, more preferably 500 or less, even more preferably 300 or less, further preferably 50 or less, and still more preferably 10 or less. is there.
  • the contact surface area between the conductive particles and the electrodes becomes large, so that the conduction reliability between the electrodes can be further enhanced, and the conductive particles can be It is possible to further lower the connection resistance between the electrodes connected through.
  • the electroconductive portion is formed on the surface of the base material particle by electroless plating, it is possible to make it difficult for the aggregated electroconductive particles to be formed.
  • the particle size of the base material particles is equal to or less than the above upper limit, the conductive particles are easily compressed, the connection resistance between the electrodes can be further reduced, and the distance between the electrodes can be further reduced. be able to.
  • the particle diameter of the base particles is 1 or more and 3 or less.
  • the particle diameter of the base particles is in the range of 1 or more and 3 or less, it becomes difficult to aggregate when forming the conductive portion on the surface of the base particles, and it becomes difficult to form the aggregated conductive particles.
  • the particle diameter of the above-mentioned base particles indicates the number average particle diameter.
  • the particle diameter of the above-mentioned base particles is calculated by observing 50 arbitrary base material particles with an electron microscope or an optical microscope and calculating the average value of the particle diameters of each base material particle. Sought using ⁇ 02020/175691 20 units (: 171?2020/008458
  • the particle size of each base particle is determined as the particle size in terms of equivalent circle diameter.
  • the average particle size of the circle equivalent diameter of any 50 base particles is almost equal to the average particle diameter of the spherical equivalent diameter.
  • the particle size of each base particle is calculated as the particle size in terms of sphere equivalent diameter.
  • the average particle size of the base material particles is preferably calculated using a particle size distribution measuring device. In the case of measuring the particle size of the above-mentioned base particles in the conductive particles, it can be measured as follows, for example.
  • the content of the conductive particles was adjusted to 30% by weight. It is added to "Technobit 400 00 manufactured by the company” and dispersed to prepare an embedded resin for conductive particle inspection. Ion milling equipment (“Hitachi High Technologies Co., Ltd.” 1 ⁇ /1400) so that it passes through the center of the conductive particles dispersed in the inspection resin
  • the conductive particles according to the present invention include base particles and conductive parts arranged on the surfaces of the base particles.
  • the base material particle contains a conductive metal inside the base material particle.
  • the conductive portion preferably contains a metal.
  • the metal forming the conductive part is not particularly limited.
  • the conductive metal is not particularly limited.
  • the metal forming the conductive part and the conductive metal may be the same metal or different metals. It is preferable that the metal most contained in the conductive portion and the metal most contained in the conductive metal are the same.
  • Examples of the metal forming the conductive part and the conductive metal include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium. ⁇ 02020/175691 21 ⁇ (: 171?2020/008458
  • examples of the metal and the conductive metal forming the conductive portion include tin-doped indium oxide (poor) and solder. Only one type of metal or the conductive metal may be used, or two or more types may be used in combination.
  • the conductive portion preferably contains nickel, gold, palladium, silver, or copper, and may contain nickel, gold, or palladium. More preferable.
  • the content of nickel in 100% by weight of the conductive portion containing nickel is preferably
  • the amount is 10% by weight or more, more preferably 50% by weight or more, even more preferably 60% by weight or more, further preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the content of nickel in 100% by weight of the conductive portion containing nickel may be 97% by weight or more, or 97.5% by weight or more,
  • hydroxyl groups often exist on the surface of the conductive portion due to oxidation. Generally, hydroxyl groups are present on the surface of the conductive portion formed of nickel due to oxidation. An insulating substance can be arranged on the surface of the conductive part having such a hydroxyl group (the surface of the conductive particles) through a chemical bond.
  • the conductive section may be formed of one layer.
  • the conductive part may be formed of a plurality of layers. That is, the conductive part may have a laminated structure of two or more layers.
  • the metal forming the outermost layer is preferably gold, nickel, palladium, copper or an alloy containing tin and silver, and is preferably gold. More preferable.
  • the connection resistance between the electrodes becomes even lower.
  • the metal forming the outermost layer is gold, the corrosion resistance is further enhanced.
  • the method for forming the conductive portion on the surface of the base particle is not particularly limited. the above ⁇ 0 2020/175691 22 ⁇ (: 171? 2020 /008458
  • a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, and a metal powder or metal examples thereof include a method of coating the surface of the base particles with a paste containing a powder and a binder.
  • the method for forming the conductive portion is preferably electroless plating, electroplating, or physical collision.
  • the physical vapor deposition method include vacuum vapor deposition, ion plating, and ion sputtering.
  • a sheet composer manufactured by Tokuju Kosakusho Co., Ltd.
  • the method of incorporating a conductive metal into the base particles is not particularly limited.
  • a method of electroless plating using base material particles (base material body) that are porous particles, and a base material particle that is porous particles examples include electroplating using a base particle main body. Since the base particles (main body of the base particles), which are porous particles, have a relatively large number of voids inside the base particles, the base particles cannot be used when the conductive part is formed on the surface of the base particles.
  • the conductive part forming material (plating solution, etc.) can enter into the minute voids inside. By depositing the conductive metal from the conductive part forming material that has entered the inside of the base material particle, the conductive metal can be easily contained inside the base material particle.
  • the base particles that are porous particles include base particles that satisfy the preferable ranges of the above-mentioned specific surface area of Mitsumi and the above-mentioned porosity.
  • the thickness of the conductive portion is preferably 0.005 or more, more preferably 0.01 or more, preferably 10 or less, more preferably 1 or less, still more preferably 0.3 or less. Is.
  • the thickness of the conductive portion is the thickness of the entire conductive portion when the conductive portion is a multilayer. When the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed when connecting between electrodes. Can be done.
  • the thickness of the conductive portion of the outermost layer ⁇ 0 2020/175691 23 ⁇ (: 171? 2020 /008458
  • the thickness of the conductive portion of the outermost layer is not less than the above lower limit and not more than the above upper limit, the coating of the conductive portion of the outermost layer is uniform, the corrosion resistance is sufficiently high, and the connection resistance between the electrodes is increased. Can be low enough.
  • the metal forming the outermost layer is gold, the thinner the outermost layer is, the lower the cost can be.
  • the thickness of the conductive part can be measured by observing the cross section of the conductive particle using, for example, a transmission electron microscope (Chome 1 ⁇ /1).
  • Chome 1 ⁇ /1 a transmission electron microscope
  • the thickness of the conductive portion is preferably obtained by calculating the average value of the thickness of the conductive portion of each conductive particle for 10 arbitrary conductive particles.
  • the content of the above conductive metal is preferably 5 volume% or more, more preferably 10 volume% or more, and preferably 70 volume% or less, It is more preferably 50% by volume or less.
  • the content of the conductive metal is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be reduced more effectively, and the occurrence of aggregation of conductive particles is further enhanced. Can be suppressed.
  • the insulation reliability between the electrodes can be more effectively enhanced.
  • the content of the conductive metal is not less than the above lower limit and not more than the above upper limit, it is possible to further effectively improve the adhesion of the conductive portion in the conductive particle, and the conductive portion in the conductive particle The occurrence of peeling can be suppressed even more effectively.
  • the content of the conductive metal in 100% by volume of the conductive particles is preferably 5% by volume or more, more preferably 10% by volume. % Or more, preferably 50% by volume or less, more preferably 40% by volume or less.
  • the content of the above-mentioned conductive metal in 100% by volume of the conductive particles is preferably 10% by volume or more, more preferably 20% by volume or more, It is preferably 50% by volume or less, more preferably 40% by volume or less.
  • the content of the conductive metal in 100% by volume of the conductive particles is particularly preferably 10% by volume or more and 40% by volume or less.
  • the content of the conductive metal means the total content of the metal forming the conductive portion and the conductive metal contained inside the base particles. It is preferable to judge whether or not the conductive metal is contained inside the base material particles by the first ratio and the second ratio described later.
  • the content of the conductive metal can be calculated as follows.
  • Conductive metal content 0 X 1 ⁇ / 0 01 6 1 3 I X I 0 0
  • the metallization rate of the conductive particles can be calculated by using optical emission analysis or the like, and the specific gravity of the conductive particles can be measured by using a true specific gravity meter or the like. Further, the specific gravity of the conductive metal can be calculated using a value specific to the metal.
  • the metallization rate of the conductive particles is a ratio of the content (9) of the conductive metal contained in the conductive particles 19, that is, the metal content of the conductive metal contained in the conductive particles 19. Content (9) / Refers to conductive particles 19.
  • the content of the conductive metal contained in the base material particles is preferably 0.1% by volume or more, more preferably 1% by volume or more, and preferably Is 30% by volume or less, more preferably 20% by volume or less.
  • the connection resistance between the electrodes can be further effectively reduced, and the coagulation of the conductive particles can be reduced.
  • the content of the conductive metal is not less than the lower limit and not more than the upper limit, the adhesion of the conductive part in the conductive particle can be more effectively enhanced, and the conductive part in the conductive particle is peeled off. Can be suppressed more effectively.
  • the conductive particles are
  • the content of the above-mentioned conductive metal contained in the above-mentioned conductive portion is preferably 0.1% by volume or more, more preferably 1% by volume or more, and preferably 30% by volume or less. , And more preferably 20% by volume or less.
  • the content of the conductive metal contained in the conductive part in the conductive particles of 100% by volume is preferably 0.1 volume. % Or more, more preferably 1% by volume or more, preferably 30% by volume or less, more preferably 20% by volume or less.
  • the conductive particles preferably have protrusions on the outer surface of the conductive portion.
  • the conductive particles preferably have protrusions on the conductive surface. It is preferable that the protrusions are plural.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles. When conductive particles having protrusions on the surface of the conductive portion are used, the oxide film can be effectively eliminated by the protrusions by disposing the conductive particles between the electrodes and pressing them. For this reason, the electrodes and the conductive portion are more surely brought into contact with each other, and the connection resistance between the electrodes is further reduced.
  • the conductive particles include an insulating material, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the protrusions of the conductive particles cause a gap between the conductive particles and the electrode.
  • the insulating material or binder resin can be eliminated even more effectively. Therefore, the connection resistance between the electrodes can be further reduced.
  • the core substance is formed of a metal and the core substance exists in the conductive part, the core substance is regarded as a part of the conductive part.
  • a core substance was attached to the surface of the base material particles. ⁇ 0 2020/1756 91 26 ⁇ (: 171? 2020 /008458
  • a method of adding a core substance in the middle of forming the conductive portion on the surface of the base material particles may be mentioned.
  • the conductive material is formed on the base particles by electroless plating without using the above core substance, and then plating is deposited in the form of protrusions on the surface of the conductive portion. You may use the method of forming a conductive part by.
  • the core substance is added to the dispersion liquid of the base material particle, and the core substance is accumulated on the surface of the base material particle by Van der Waalsca. And a method of adhering the core substance to the surface of the base material particles by a mechanical action such as rotation of the container.
  • the method of attaching the core substance to the surface of the base material particles is a method of accumulating and attaching the core substance on the surface of the base material particles in the dispersion liquid. Is preferred.
  • Examples of the substance forming the core substance include a conductive substance and a non-conductive substance.
  • Examples of the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers.
  • Examples of the conductive polymer include polyacetylene.
  • Examples of the non-conductive substance include silica, alumina and zirconia. From the viewpoint of more effectively eliminating the oxide film, the core substance is preferably hard. From the viewpoint of effectively lowering the connection resistance between the electrodes, the core substance is preferably a metal.
  • the above metal is not particularly limited.
  • the metal include gold, silver, copper, platinum, lead, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead alloys. , Tin-copper alloy, tin-silver alloy, tin-lead-silver alloy, and tungsten carbide alloys composed of two or more metals. Between electrodes ⁇ 02020/175691 27 ⁇ (: 171?2020/008458
  • the metal is preferably nickel, copper, silver or gold.
  • the metal may be the same as or different from the metal forming the conductive part (conductive layer).
  • the shape of the core substance is not particularly limited.
  • the shape of the core substance is preferably massive.
  • Examples of the core substance include particulate lumps, agglomerates of a plurality of fine particles, and amorphous lumps.
  • the particle diameter of the core substance is preferably ⁇ 0.011 or more, more preferably ⁇ 0.0501 or more, preferably ⁇ 0.9 ⁇ ! or less, more preferably ⁇ 0.2 ⁇ ! is there.
  • the particle size of the core substance is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be lowered more effectively.
  • the particle diameter of the core substance is preferably an average particle diameter, and more preferably a number average particle diameter.
  • the particle size of the core substance can be obtained by observing 50 arbitrary core substances with an electron microscope or an optical microscope and calculating the average value of the particle size of each core substance, or by using a particle size distribution measuring device. .. When observed with an electron microscope or an optical microscope, the particle size of each core substance can be calculated as the particle size at the equivalent circle diameter. When observed with an electron microscope or an optical microscope, the average particle diameter of any 50 core substances at the circle equivalent diameter is almost equal to the average particle diameter at the sphere equivalent diameter. With a particle size distribution analyzer, the particle size of each core substance is calculated as the particle size in terms of sphere equivalent diameter.
  • the average particle size of the core substance is preferably calculated using a particle size distribution measuring device.
  • the number of the protrusions per one conductive particle is preferably 3 or more, more preferably 5 or more.
  • the upper limit of the number of protrusions is not particularly limited.
  • the upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the conductive particles and the like. When the number of protrusions is equal to or more than the lower limit, the connection resistance between the electrodes can be reduced more effectively.
  • the number of protrusions can be calculated by observing arbitrary conductive particles with an electron microscope or an optical microscope.
  • the number of protrusions is the average of the number of protrusions in each conductive particle when 50 conductive particles are observed with an electron microscope or an optical microscope. ⁇ 0 2020/175691 28 (:171? 2020/008458) It is preferable to obtain by calculating the value.
  • the height of the protrusions is preferably ⁇ 0.01 or more, more preferably ⁇ .
  • the connection resistance between the electrodes can be reduced more effectively.
  • the height of the protrusions can be calculated by observing the protrusions in arbitrary conductive particles with an electron microscope or an optical microscope.
  • the height of the projections is preferably calculated by taking the average value of the heights of all the projections per conductive particle as the height of the projection of one conductive particle.
  • the height of the projections is preferably obtained by calculating an average value of the heights of the projections of the conductive particles for 50 arbitrary conductive particles.
  • the conductive particles preferably include an insulating substance arranged on the outer surface of the conductive portion.
  • an insulating substance exists between the plurality of electrodes, so that it is possible to prevent a short circuit between laterally adjacent electrodes instead of between the upper and lower electrodes.
  • the conductive particles are pressed by the two electrodes, so that the insulating substance between the conductive portion of the conductive particles and the electrodes can be easily eliminated.
  • the insulating substance between the conductive portion of the conductive particles and the electrode can be more easily eliminated.
  • the insulating substance is preferably insulating particles because the insulating substance can be more easily removed during pressure bonding between the electrodes.
  • Examples of the material of the insulating substance include the above-mentioned organic materials, the above-mentioned inorganic materials, and the above-mentioned inorganic materials as the material of the base particles.
  • the material of the insulating substance is preferably the organic material described above.
  • Examples of other materials of the above insulating material include polyolefin compounds, (meth)acrylate polymers, (meth)acrylate copolymers, block polymers, and heat. ⁇ 0 2020/175691 29 ⁇ (: 171? 2020 /008458
  • Examples thereof include a plastic resin, a crosslinked product of a thermoplastic resin, a thermosetting resin, and a water-soluble resin.
  • a plastic resin a crosslinked product of a thermoplastic resin, a thermosetting resin, and a water-soluble resin.
  • the material of the insulating material only one kind may be used, or two or more kinds may be used in combination.
  • Examples of the above-mentioned polyolefin compounds include polyethylene, ethylene-vinyl acetate copolymers, ethylene-acrylic acid ester copolymers, and the like.
  • Examples of the above-mentioned (meth)acrylate polymer include polymethyl (meth)acrylate, polydodecyl (meth)acrylate, and polystearyl (meth)acrylate.
  • Examples of the block polymer include polystyrene, a styrene-acrylic acid ester copolymer, a 3 type styrene-butadiene block copolymer, and 3 Examples thereof include type styrene-butadiene block copolymers, and hydrogenated products thereof.
  • thermoplastic resin examples include vinyl polymers and vinyl copolymers.
  • thermosetting resin examples include epoxy resin, phenol resin and melamine resin.
  • crosslinked product of the thermoplastic resin examples include introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, alkoxylated pentaerythritol methacrylate and the like.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylic amide, polyvinyl pyrrolidone, polyethylene oxide and methyl cellulose.
  • a chain transfer agent may be used to adjust the degree of polymerization. Examples of chain transfer agents include thiol and carbon tetrachloride.
  • Examples of the method of disposing the insulating substance on the surface of the conductive portion include a chemical method and a physical or mechanical method.
  • Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • Examples of the above-mentioned physical or mechanical method include spray drying, high pridization, electrostatic adhesion method, spraying method, diving and vacuum deposition.
  • the method of arranging the insulating material on the surface of the conductive portion is a physical method. Preferably. ⁇ 0 2020/175691 30 ⁇ (: 171? 2020 /008458
  • the outer surface of the conductive part and the outer surface of the insulating substance may be coated with a compound having a reactive functional group.
  • the outer surface of the conductive part and the outer surface of the insulating substance may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to a functional group on the outer surface of the insulating substance through a polymer electrolyte such as polyethyleneimine.
  • the particle size of the insulating particles can be appropriately selected depending on the particle size of the conductive particles, the use of the conductive particles, and the like.
  • the particle size of the insulating particles is preferably 10 or more, more preferably 100 or more, and even more preferably 300 or more. Or more, particularly preferably 5 00 n or more, preferably 4 00 0 n or less, more preferably 2 00 0 n or less, and further preferably 1 5 0 0 The following are particularly preferred It is below.
  • the particle diameter of the insulating particles is not less than the above lower limit, it becomes difficult for the conductive portions of the plurality of conductive particles to contact each other when the conductive particles are dispersed in the binder resin.
  • the particle size of the insulating particles is less than or equal to the above upper limit, it is not necessary to increase the pressure to eliminate the insulating particles between the electrodes and the conductive particles when connecting the electrodes, There is no need to heat to a high temperature.
  • the particle size of the insulating particles is preferably an average particle size, and more preferably a number average particle size.
  • the particle diameter of the insulating particles can be calculated by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope and calculating the average value of the particle diameter of each insulating particle, or by using a particle size distribution measuring device. Desired. In the observation with an electron microscope or an optical microscope, the particle size of each insulating particle is calculated as the particle size in equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 insulating particles in terms of equivalent circle diameter is approximately equal to the average particle diameter in equivalent sphere diameter.
  • the particle size of each insulating particle is calculated as the particle size in terms of a sphere equivalent diameter.
  • the average particle size of the insulating particles is preferably calculated using a particle size distribution measuring device. Conductivity above ⁇ 02020/175691 31 ⁇ (: 171?2020/008458
  • the particle diameter of the above-mentioned insulating particles for example, it can be measured as follows.
  • the ratio of the particle diameter of the conductive particles to the particle diameter of the insulating particles is preferably 4 or more, more preferably 8 or more. , Preferably 200 or less, more preferably 100 or less.
  • the above ratio is not less than the above lower limit and not more than the above upper limit, insulation reliability and continuity reliability are obtained when electrodes are electrically connected. Can be more effectively increased.
  • the conductive material according to the present invention contains the conductive particles described above and a binder resin.
  • the conductive particles are preferably dispersed in a binder resin for use, and are preferably dispersed in a binder resin for use as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection between electrodes.
  • the conductive material is preferably a conductive material for circuit connection. Since the above-mentioned conductive particles are used in the above-mentioned conductive material, the connection resistance between the electrodes can be reduced more effectively, and the occurrence of aggregation of conductive particles can be suppressed more effectively. can do. Since the above-mentioned conductive particles are used in the above-mentioned conductive material, the insulation reliability between the electrodes can be more effectively enhanced. ⁇ 0 2020/175691 32 ⁇ (: 171? 2020 /008458
  • the conductive material preferably contains a plurality of the conductive particles. From the outer surface of the base material particle toward the center, a region of a distance of 1/2 of the particle diameter of the base material particle.
  • the ratio of the number of conductive particles in which the conductive metal is present in the region 1 of the base particles in the total number of the conductive particles of 100% (hereinafter referred to as the first ratio) Is preferably 50% or more, more preferably 60% or more.
  • the upper limit of the first ratio is not particularly limited.
  • the first percentage may be 100% or less.
  • the insulation reliability between the electrodes can be more effectively enhanced.
  • the first ratio is equal to or higher than the lower limit and equal to or lower than the upper limit, it is possible to more effectively enhance the adhesiveness of the conductive portion in the conductive particle, and peeling of the conductive portion in the conductive particle. It is possible to more effectively suppress the occurrence of
  • the first ratio exceeds 0%, it can be judged that the conductive metal is contained inside the base material particles.
  • the above-mentioned region 1 is a region outside the broken line !_ 1 of the base particle 2 in FIG. Above area Is the outer surface portion of the base particles.
  • the region 1 is a region different from the central part of the base particle.
  • the ratio of the number of the conductive particles in which the conductive metal is present in the region 2 of the base material particles in 100% of the total number of the conductive particles is preferably 5% or more, more preferably 10% or more.
  • the upper limit of the second ratio is not particularly limited.
  • the second ratio may be 100% or less.
  • the connection resistance between the electrodes can be reduced more effectively, and the occurrence of aggregation of conductive particles can be suppressed more effectively. ..
  • the second ratio is not less than the lower limit, the insulation reliability between the electrodes can be more effectively enhanced.
  • the second ratio above is ⁇ 2020/175691 33 ⁇ (: 171? 2020 /008458
  • the region 2 is a region inside the broken line !_ 1 of the base particle 2 in FIG.
  • the region 2 is the central portion of the base material particles.
  • the region 2 is a region different from the outer surface portion of the base particle.
  • the first ratio and the second ratio can be calculated as follows.
  • the conductive particles are collected from the conductive material by filtration or the like.
  • An embedded resin for conductive particle inspection was prepared by adding and dispersing the recovered conductive particles to X-recon ⁇ “Technobit 400 0” manufactured by the company so that the content of the conductive particles was 30% by weight. To do. Using an ion milling device (“Hitachi High-Technologies Inc. “ ⁇ 1 ⁇ /140 0 0”) so that it passes through the center of the conductive particles dispersed in the resin for inspection, one conductive particle is used. Cut out the cross section.
  • the binder resin is not particularly limited.
  • the binder resin a known insulating resin is used.
  • the binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component.
  • the curable component include a photocurable component and a thermosetting component.
  • the photocurable component preferably contains a photocurable compound and a photopolymerization initiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • binder resin examples include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers and elastomers.
  • binder resin examples include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers and elastomers.
  • Only one type of resin may be used, or two or more types may be used in combination.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include a polyolefin resin, an ethylene-vinyl acetate copolymer, and a polyamide resin.
  • examples of the curable resin include epoxy resin, urethane resin, polyimide resin and unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated product of styrene-butadiene-styrene block copolymer, and Examples thereof include hydrogenated products of styrene-isoprene-styrene block copolymers.
  • the elastomer examples include styrene-butadiene copolymer rubber, and acrylonitrile-styrene block copolymer rubber.
  • the conductive material may be, for example, a filler, a filler, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, in addition to the conductive particles and the binder resin. It may contain various additives such as agents, light stabilizers, ultraviolet absorbers, lubricants, antistatic agents and flame retardants.
  • a conventionally known dispersion method can be used and is not particularly limited.
  • the method for dispersing the conductive particles in the binder resin include the following methods. A method in which the above conductive particles are added to the binder resin and then kneaded and dispersed by a planetary mixer or the like. After the conductive particles are dispersed evenly _ using Homoji in water or an organic solvent Naiza etc., added to the binder resin, planetary - mixers - How kneaded to disperse the like. A method in which the above binder resin is diluted with water, an organic solvent or the like, and then the above conductive particles are added and kneaded and dispersed by a planetary mixer or the like.
  • the viscosity (7 to 25) of the above conductive material at 25 ° ⁇ is preferably 3 0 3 3 or more. ⁇ 0 2020/175691 35 ⁇ (: 171? 2020 /008458
  • the upper limit is more preferably 5033 or more, preferably 4003 or less, and more preferably 3003 or less.
  • the viscosity of the above conductive material at 25° is not less than the above lower limit and not more than the above upper limit, the insulation reliability between the electrodes can be more effectively enhanced, and the conduction reliability between the electrodes can be further improved. It can be increased more effectively.
  • the viscosity (7] 25) can be appropriately adjusted depending on the kind and the amount of the components to be mixed.
  • the above-mentioned viscosity (7 to 25) can be calculated, for example, from a Mitsumi-type viscometer ("Tokimi 2 2
  • the conductive material according to the present invention can be used as a conductive paste, a conductive film, or the like.
  • a film containing no conductive particles may be laminated on a conductive film containing conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, further preferably 50% by weight or more, particularly preferably It is 70% by weight or more, preferably 99.99% by weight or less, and more preferably 99.9% by weight or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further improved. Can be increased.
  • the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and preferably 80% by weight.
  • the amount is below, more preferably 60% by weight or less, further preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
  • the content of the conductive particles is at least the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be lowered even more effectively.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, it is possible to further enhance the communication reliability between electrodes and the insulation reliability.
  • connection structure according to the present invention includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, and the first connection target member. And a connection portion connecting the second connection target member.
  • the material of the connection portion is the above-mentioned conductive particles or a conductive material containing the above-mentioned conductive particles and a binder resin.
  • the first electrode and the second electrode are electrically connected by the conductive particles.
  • connection structure is formed by placing the conductive particles or the conductive material between the first connection target member and the second connection target member, and conducting thermocompression bonding to achieve conductivity. It can be obtained through the step of connecting.
  • the conductive particles have the insulating substance, it is preferable that the insulating substance be desorbed from the conductive particles during the thermocompression bonding.
  • connection portion itself is the conductive particles. That is, the first connection target member and the second connection target member are connected by the conductive particles.
  • the conductive material used to obtain the connection structure is preferably an anisotropic conductive material.
  • FIG. 5 is a schematic front sectional view of a connection structure using conductive particles according to the first embodiment of the present invention.
  • connection structure 5 1 shown in Fig. 5 includes a first connection target member 52, a second connection target member 5 3 and first and second connection target members 5 2, 5 3. And a connecting portion 5 4 connected thereto.
  • the connection portion 54 is formed by curing a conductive material containing the conductive particles 1.
  • the conductive particles 1 are schematically illustrated for convenience of illustration. Instead of the conductive particles 1, other conductive particles such as the conductive particles 11 and 21 may be used.
  • the first connection object member 5 2 on the surface (upper surface) to have a plurality of first electrode 5 2 3.
  • the second connection target member 5 3 has a plurality of second electrodes 5 33 on the front surface (lower surface).
  • the first electrode 5 2 3 and the second electrode 5 3 3 have one or more conductive ⁇ 0 2020/1756 91 37 ⁇ (: 171? 2020 /008458
  • the first and second connection target members 5 2 and 5 3 are electrically connected by the conductive particles 1.
  • the method for producing the connection structure is not particularly limited.
  • the conductive material is arranged between the first connection target member and the second connection target member to obtain a laminated body, and then the laminated body is heated and heated.
  • a method of applying pressure may be used.
  • the pressure for the thermocompression bonding is preferably 4 0 1 ⁇ /1 3 or more, more preferably 6 or more, preferably 90 0 IV! 3 or less, more preferably 70 0 IV! 3 or less.
  • the temperature of the heating of the thermo-compression bonding is preferably 8 0 ° ⁇ or more, more favorable Mashiku is 1 0 0 ° ⁇ As, preferably 1 4 0 ° ⁇ less, more preferably 1 2 0 ° ⁇ less is there.
  • the pressure and temperature of the thermocompression bonding are not less than the lower limit and not more than the upper limit, the conduction reliability and insulation reliability between the electrodes can be further enhanced.
  • the conductive particles have the insulating particles, the insulating particles can be easily detached from the surface of the conductive particles during conductive connection.
  • the conductive particles have the insulating particles, between the conductive particles and the first electrode and the second electrode when the laminate is heated and pressed. It is possible to eliminate the above-mentioned insulating particles existing in the. For example, during the heating and pressurization, the insulating particles present between the conductive particles and the first electrode and the second electrode are removed from the surface of the conductive particles. Easily detach. In addition, during the heating and pressurization, a part of the insulating particles may be detached from the surface of the conductive particles, and the surface of the conductive portion may be partially exposed. The exposed portion of the surface of the conductive portion comes into contact with the first electrode and the second electrode to electrically connect the first electrode and the second electrode through the conductive particles. can do.
  • connection structure since the above-mentioned conductive particles are used, the conductive particles are compressed during the heating and pressurization, so that the conductive particles are A conductive path is not only formed on the surface (conductive portion) of the conductive particles, but also a conductive path is formed by the conductive metals inside the conductive particles contacting each other. As a result, even if the conductive part is relatively thin, the connection resistance between the electrodes in the vertical direction ⁇ 0 2020/175691 38 ⁇ (: 171? 2020 /008458
  • the thickness of the conductive portion is relatively thin, it is possible to suppress the occurrence of aggregation of conductive particles, and to effectively improve the insulation reliability between the electrodes that are laterally adjacent and must not be connected. You can
  • the first connection target member and the second connection target member are not particularly limited.
  • first connection target member and the second connection target member include a semiconductor chip, a semiconductor package, and a! _ _ 0 chips,! _ _ 0 Electronic components such as packages, capacitors and diodes, and electronic components such as resin films, printed circuit boards, flexible printed circuit boards, flexible flat cables, rigid flexible boards, circuit boards such as glass epoxy boards and glass boards Etc. It is preferable that the first connection target member and the second connection target member are electronic components.
  • the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, 3 II 3 electrodes, and tungsten electrodes. Is mentioned.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode or a tungsten electrode.
  • the above electrode is an aluminum electrode, it may be an electrode formed of only aluminum or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer.
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the above-mentioned trivalent metal element include Sn, Hachijo, and ⁇ 3.
  • Polystyrene particles having an average particle size of 0.5 were prepared as seed particles.
  • a mixture solution was prepared by mixing 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion-exchanged water, and 120 parts by weight of a 5% by weight aqueous solution of polyvinyl alcohol. After the above mixed solution was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly.
  • An emulsion was prepared by adding 50 parts by weight and 110 parts by weight of ion-exchanged water.
  • the obtained base particles are washed and dried, and then 10 parts by weight of the base particles are dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser. After that, the base material particles were taken out by filtering the solution. Next, the base particles were added to 100 parts by weight of a 1 wt% solution of dimethylamine borane to activate the surface of the base particles. After thoroughly washing the surface-activated base material particles with water, the dispersion liquid was obtained by adding to 500 parts by weight of distilled water and dispersing. Next, nickel particle slurry (average particle size 100 n) 19 was added to the above dispersion over 3 minutes to obtain a suspension containing base material particles to which the core substance was attached.
  • connection structure [0165]
  • a transparent glass substrate with an electrode pattern (1st electrode, metal pickers hardness of the electrode surface of 100 0 ! ⁇ ) formed on the upper surface was prepared. Also, ! A semiconductor chip was prepared on the lower surface of which an eight-electrode electrode pattern (the second electrode, the Vickers hardness of the metal of the electrode surface was 5 01 to 1 V) whose _ / 3 was 10/10 was formed. The obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 to form an anisotropic conductive paste layer. Next, the semiconductor chip was laminated on the anisotropic conductive paste layer so that the electrodes face each other.
  • Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the amount of the solvent used was 10 parts by weight during the production of the base particles. ⁇ 0 2020/175691 41 ⁇ (: 171? 2020/008458
  • Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the amount of the solvent used was 70 parts by weight when the base particles were prepared.
  • a conductive material and a connection structure were obtained in the same manner as in Example 1 except that the amount of the base particles blended was 5 parts by weight when the conductive particles were produced.
  • a conductive material and a connection structure were obtained in the same manner as in Example 1 except that the amount of the base particles mixed was 2.5 parts by weight in the production of the conductive particles.
  • the conductive particles obtained in Example 1 were prepared. Further, a gold plating solution was prepared by adding potassium gold cyanide 59 to a solution 5009 containing 109/!_ sodium ethylenediamine tetraacetate and 109/1_ sodium citrate. 100 parts by weight of the conductive particles obtained in Example 1, was added to 500 parts by weight of the gold plating solution,
  • a suspension was obtained by adding 10 parts by weight of the conductive particles obtained in Example 1 to 200 parts by weight of distilled water and dispersing them. Also, a palladium plating solution containing 109/1_ ethylene diamine, 3.09/1-palladium sulfate, 5.09/1-sodium formate was prepared. After heating the suspension to 700 ° C., 700 parts by weight of the palladium plating solution was added dropwise over 10 minutes to carry out electroless palladium plating. Then, the suspension is filtered to remove the particles, washed with water, and dried to form a nickel-boron-palladium conductive layer on the surface of the base particles, and conductive particles having a conductive portion on the surface. Got Got ⁇ 02020/175691 42 ((171?2020/008458
  • a conductive material and a connection structure were obtained in the same manner as in Example 1 except that the conductive particles were used.
  • a suspension was obtained by adding 10 parts by weight of the conductive particles obtained in Example 1 to 200 parts by weight of distilled water and dispersing them.
  • a mixed solution containing 109/!-Ca silver cyanide, 809/1_ potassium cyanide, 59/1_ ethylenediaminetetraacetic acid, and 209/!_ sodium hydroxide was added to A silver plating solution adjusted to 1 to 16 with sodium was prepared. After the above suspension was heated to 500°, electroless silver plating was performed by dropping 700 parts by weight of the above silver plating solution over 30 minutes.
  • the suspension is filtered to take out the particles, washed with water, and dried to form a nickel-boron-silver conductive layer on the surface of the base material particles, and to form conductive particles having conductive parts on the surface. Obtained.
  • a conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles were used.
  • the base particles having a particle diameter of 1.001 were obtained by changing the seed particle diameter during the preparation of the base particles.
  • Conductive particles, a conductive material and a connecting material were obtained in the same manner as in Example 1 except that the obtained base material particles were used and the amount of the obtained base material particles was changed to 5 parts by weight. The structure was obtained.
  • the base particles having a particle diameter of 2.501 were obtained by changing the seed particle diameter during the preparation of the base particles.
  • Conductive particles and conductive material were prepared in the same manner as in Example 1 except that the obtained base material particles were used and the amount of the obtained base material particles was changed to 12.5 parts by weight. And a connection structure was obtained.
  • base particles having a particle size of 3.001 were obtained.
  • Conductive particles, a conductive material and a connecting material were obtained in the same manner as in Example 1 except that the obtained base material particles were used and the amount of the obtained base material particles was changed to 15 parts by weight. The structure was obtained. ⁇ 02020/175691 43 ⁇ (: 171?2020/008458
  • base particles having a particle size of 5.001 were obtained.
  • Conductive particles, a conductive material and a connecting material were obtained in the same manner as in Example 1 except that the obtained base material particles were used and the amount of the obtained base material particles was changed to 25 parts by weight. The structure was obtained.
  • base particles having a particle size of 10.0 were obtained.
  • Conductive particles, conductive material and connection structure were obtained in the same manner as in Example 1 except that the obtained base material particles were used, and the amount of the obtained base material particles was changed to 50 parts by weight.
  • the solid content of the following monomer composition Distilled water was added so that the concentration became 10% by weight, the mixture was stirred at 200 ", and polymerization was carried out at 60 °C for 24 hours under a nitrogen atmosphere.
  • the above monomer composition was methyl methacrylate ⁇ ⁇ , glycidyl methacrylate 4 5 01 01 ⁇ ⁇ , parastyryl ethylphosphine 2 0 01 01 ⁇ I, Ethylene glycol dimethacrylate 1 ⁇ , polyvinylpyrrolidone ⁇ .
  • the insulating particles obtained in (1) above were dispersed in distilled water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
  • the conductive particles 109 obtained in Example 1 were dispersed in distilled water 500!, 10% by weight aqueous dispersion of insulating particles 19 was added, and the mixture was stirred at room temperature for 8 hours. After filtering with 3 mesh filter ⁇ 02020/175691 44 ⁇ (: 171?2020/008458
  • Example 2 A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles with insulating particles were used.
  • nickel particle slurry (average particle size 100 Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the above was not used.
  • Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the amount of the catalyst liquid was changed to 200 parts by weight when producing the conductive particles.
  • Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the amount of the catalyst liquid was changed to 500 parts by weight in the production of the conductive particles.
  • Example 15 The conductive particles obtained in Example 15 were prepared. Using the conductive particles obtained in Example 15 and in the same manner as in Example 14, conductive particles with insulating particles were obtained. A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles with insulating particles were used.
  • Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the solvent was changed from toluene to ethanol during the production of the base particles.
  • Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Comparative Example 1 except that the amount of the base particles blended was 5 parts by weight in the production of the conductive particles.
  • a conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles with insulating particles were used.
  • Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Comparative Example 1 except that the amount of the base particles blended was 20 parts by weight during the production of the conductive particles.
  • the particle size of the particles was calculated. Specifically, it was determined by measuring the particle size of about 100,000 base particles or conductive particles and calculating the average value.
  • Kantachrome Instruments “1 ⁇ 108 8200 was used to measure the adsorption isotherm of nitrogen. From the measurement results, snake "in conformity with 1-1 method to calculate the total pore volume of the substrate particles.
  • Kantachrome Instruments “1 ⁇ 108 8200 was used to measure the adsorption isotherm of nitrogen. From the measurement results, snake "in conformity with 1-1 method to calculate the total pore volume of the substrate particles.
  • the cumulative penetration amount of mercury was measured with respect to the pressure applied by the mercury porosimetry, using a silver-silver porosimeter “Poremaster 60” manufactured by Kantachrome Instruments. From the measurement results, the porosity of the base particles was calculated. ⁇ 02020/175691 46 ⁇ (: 171? 2020 /008458
  • the content of the conductive metal in 100% by volume of the conductive particles was calculated as follows.
  • the content of the conductive metal contained in the conductive portion in 100% by volume of the conductive particles was calculated as follows.
  • the metallization rate of the conductive part Is a ratio (9) of the content of the conductive metal in the conductive part contained in the conductive particles 19, that is, the conductive metal contained in the conductive part contained in the conductive particles 19.
  • Content (9) / refers to conductive particles 19
  • the metallization rate IV! 1 of the conductive portion was calculated using the following two relational expressions.
  • the content of the conductive metal contained in the base material particles in 100% by volume of the conductive particles was calculated as follows.
  • the ratio (first ratio) of the number of conductive particles in which the conductive metal is present in the region 1 of the base particle in the total number of 100% was calculated as follows. Further, using the obtained conductive material, when the area of the distance of 1/2 of the particle diameter of the base material particle is set to the area 2 from the center of the base material particle toward the outer surface, The ratio (second ratio) of the number of conductive particles in which the conductive metal is present in the region 2 of the base material particle in 100% of the total number of particles was calculated as follows.
  • Conductive particles were collected by filtering the obtained conductive material. Set the content of the recovered conductive particles to 30% by weight, "techno ⁇ 0 2020/175 969 1 48 (: 171? 2020/008458
  • the compression elastic modulus (10% ⁇ value and 30% ⁇ value) was measured by the above-described method using a micro compression tester (“Fisher Scope 1 to 1 _ 1 0 by Fisher”). 0"). From the measurement results, 10% ⁇ value and 30% ⁇ value were calculated.
  • the obtained conductive material was observed and it was confirmed whether or not aggregation of conductive particles had occurred. Aggregation of the conductive particles was judged under the following conditions.
  • Obtained conductive particles 1.09 and diameter 1 The zirconia beads of 509 and 1 are put in a mayonnaise bottle of 001. Further, add mayonnaise to toluene.
  • the adhesion of the conductive part in the conductive particles was judged under the following conditions.
  • connection resistance between the upper and lower electrodes of the obtained 20 connection structures was measured by the 4-terminal method.
  • connection resistance The average value of the connection resistance is 1.50 or less
  • connection resistance The average value of the connection resistance is more than 1.5 and not more than 2.0.
  • connection resistance is more than 2.0 and not more than 5.00
  • The average value of the connection resistance exceeds 5.0 and 100 or less
  • connection resistance The average value of connection resistance exceeds 100
  • connection reliability In 20 connection structures obtained in (12) Evaluation of connection reliability, the presence or absence of leakage between adjacent electrodes was evaluated by measuring the resistance value with a tester. The insulation reliability was evaluated according to the following criteria.

Abstract

Provided are conductive particles with which it is possible to effectively reduce the connection resistance between electrodes and to effectively prevent the conductive particles from aggregating together. The conductive particles (1, 11, 21) each comprise a base particle (2) and a conductive portion (3, 12, 22) disposed on the surface of the base particle, wherein the base particle contains a conductive metal inside the base particle.

Description

\¥02020/175691 1 卩(:17 2020/008458 \¥02020/175691 1 卩 (: 17 2020/008458
明 細 書 Specification
発明の名称 : 導電性粒子、 導電材料及び接続構造体 Title of invention: Conductive particles, conductive material and connection structure
技術分野 Technical field
[0001 ] 本発明は、 基材粒子の表面上に導電部が配置されている導電性粒子に関す る。 また、 本発明は、 上記導電性粒子を用いた導電材料及び接続構造体に関 する。 The present invention relates to a conductive particle in which a conductive portion is arranged on the surface of a base particle. The present invention also relates to a conductive material and a connection structure using the conductive particles.
背景技術 Background technology
[0002] 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知 られている。 該異方性導電材料では、 バインダー樹脂中に導電性粒子が分散 されている。 また、 導電性粒子として、 基材粒子と、 該基材粒子の表面上に 配置された導電部とを有する導電性粒子が用いられることがある。 [0002] Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder resin. In addition, as the conductive particles, conductive particles having base particles and conductive portions arranged on the surface of the base particles may be used.
[0003] 上記異方性導電材料は、 各種の接続構造体を得るために用いられている。 [0003] The anisotropic conductive material is used to obtain various connection structures.
上記異方性導電材料を用いる接続としては、 フレキシブルプリント基板とガ ラス基板との接続 ( 〇〇 ( 1 1 〇1 〇 n 0 1 3 3 3) ) , 半導体チッ プとフレキシブルプリント基板との接続 (〇〇 (〇 1 〇 n 1 1 〇〇 ) 、 半導体チップとガラス基板との接続 (〇〇〇 (〇 丨 〇 n 0 1 3 3 3) ) , 並びにフレキシブルプリント基板とガラスエポキシ基板との 接続 ( 〇巳 ( 1 1 〇1 〇 n
Figure imgf000003_0001
等が挙げられる。
Connections using the above anisotropic conductive materials include connections between flexible printed circuit boards and glass substrates (○ 〇 (1 1 1 1 1 1 0 n 0 1 3 3 3)), connections between semiconductor chips and flexible printed circuit boards. (○ 〇 (〇 1 〇 n 1 1 〇 〇), Connection between semiconductor chip and glass substrate (〇 〇 〇 (〇 丨 〇 n 0 1 3 3 3)), and Connection between flexible printed circuit board and glass epoxy substrate (○ (( 1 1 1 1 0 n
Figure imgf000003_0001
Etc.
[0004] 上記導電性粒子の一例として、 下記の特許文献 1 には、 ニッケル層と、 該 ニッケル層上に形成されている金層とを備える導電性粒子が開示されている 。 上記金層の平均膜厚は 3 0〇 以下である。 この導電性粒子では、 上記金 層は最外層である。 また、 この導電性粒子では、 X線光電子分光分析による 導電性粒子の表面におけるニッケル及び金の元素組成比 ( 丨 / リ) が 0 . 4以下である。 As an example of the above-mentioned conductive particles, the following Patent Document 1 discloses conductive particles including a nickel layer and a gold layer formed on the nickel layer. The average film thickness of the gold layer is 300 or less. In this conductive particle, the metal layer is the outermost layer. Further, in this conductive particle, the elemental composition ratio ((//)) of nickel and gold on the surface of the conductive particle by X-ray photoelectron spectroscopy analysis is 0.4 or less.
[0005] 下記の特許文献 2には、 コア粒子と、 1\1 丨めっき層と、 貴金属めっき層と 、 防鲭膜とを備える導電性粒子が開示されている。 上記 丨めっき層は、 上 記コア粒子を被覆している。 上記貴金属めっき層は、 上記 丨めっき層の少 \¥0 2020/175691 2 卩(:171? 2020 /008458 [0005] The following Patent Document 2 discloses conductive particles including core particles, a 1\1 plating layer, a noble metal plating layer, and an antimony film. The above-mentioned iron plating layer covers the above core particles. The precious metal plating layer is less than the above-mentioned precious metal plating layer. \¥0 2020/175691 2 卩 (: 171? 2020 /008458
なくとも一部を被覆している。 上記貴金属めっき層は、 八リ及び 〇1のうち 少なくともいずれかを含む。 上記防鲭膜は、 上記 丨めっき層及び上記貴金 属めっき層のうち少なくともいずれかを被覆している。 上記防鲭膜は、 有機 化合物を含む。 At least a part of it is covered. The noble metal plating layer includes at least one of 8 and 01. The anti-rust coating covers at least one of the gold plating layer and the noble metal plating layer. The anti-rust film contains an organic compound.
先行技術文献 Prior art documents
特許文献 Patent literature
[0006] 特許文献 1 :特開 2 0 0 9 _ 1 0 2 7 3 1号公報 [0006] Patent Document 1: Japanese Patent Laid-Open No. 20 09 _ 1 0 2 7 3 1
特許文献 2 :特開 2 0 1 3 _ 2 0 7 2 1号公報 Patent Document 2: JP 2 0 1 3 _ 2 0 7 2 1 Publication
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0007] 近年、 導電性粒子を含む導電材料では、 プリント配線板等における配線及 びコネクター等のファインピッチ化により、 導電性粒子の小粒子径化が進行 している。 [0007] In recent years, in conductive materials containing conductive particles, the diameter of the conductive particles has been reduced due to the fine pitch of wirings and connectors in printed wiring boards and the like.
[0008] 小粒子径の導電性粒子を用いて電極間を接続して接続構造体を作製する際 に、 上下方向の電極間の接続抵抗を十分に低くするために、 導電性粒子にお ける導電部の厚みを厚くすることがある。 しかしながら、 導電部の厚みを厚 くすると、 めっきにより導電部を形成する際に、 導電性粒子同士が凝集する ことがある。 導電性粒子同士の凝集が発生すると、 横方向に隣接する電極間 が接続されやすい傾向があり、 横方向に隣接する電極間の絶縁信頼性を高め ることが困難な場合がある。 [0008] In order to sufficiently lower the connection resistance between the electrodes in the vertical direction when the connection structure is produced by connecting the electrodes using the conductive particles having a small particle diameter, The thickness of the conductive portion may be increased. However, if the thickness of the conductive portion is increased, the conductive particles may aggregate when forming the conductive portion by plating. When the conductive particles agglomerate with each other, the electrodes adjacent in the lateral direction tend to be easily connected to each other, and it may be difficult to improve the insulation reliability between the electrodes adjacent in the lateral direction.
[0009] また、 導電性粒子同士の凝集を抑制するために、 導電部の厚みを薄くする と、 めっきにより導電部を形成する際に、 導電性粒子同士の凝集を抑制する ことができるものの、 上下方向の電極間の接続抵抗を十分に低くすることが 困難となる。 従来の導電性粒子では、 電極間の接続抵抗を低くすることと、 導電性粒子同士の凝集の発生を抑制することとの双方を両立させることは困 難である。 [0009] Further, in order to suppress the aggregation of the conductive particles, if the thickness of the conductive portion is reduced, it is possible to suppress the aggregation of the conductive particles when forming the conductive portion by plating, It is difficult to reduce the connection resistance between the vertical electrodes sufficiently. In the conventional conductive particles, it is difficult to reduce both the connection resistance between the electrodes and suppress the occurrence of aggregation of the conductive particles.
[0010] 本発明の目的は、 電極間の接続抵抗を効果的に低くすることができ、 かつ \¥0 2020/175691 3 卩(:171? 2020 /008458 [0010] An object of the present invention is to effectively reduce the connection resistance between electrodes, and \¥0 2020/175691 3 卩 (: 171? 2020 /008458
、 導電性粒子同士の凝集の発生を効果的に抑制することができる導電性粒子 を提供することである。 また、 本発明の目的は、 上記導電性粒子を用いた導 電材料及び接続構造体を提供することである。 The purpose of the present invention is to provide conductive particles capable of effectively suppressing the occurrence of aggregation of conductive particles. Moreover, the objective of this invention is providing the electrically conductive material and connection structure which used the said electroconductive particle.
課題を解決するための手段 Means for solving the problem
[001 1 ] 本発明の広い局面によれば、 基材粒子と、 前記基材粒子の表面上に配置さ れた導電部とを備え、 前記基材粒子が、 前記基材粒子の内部に導電性金属を 含有する、 導電性粒子が提供される。 [001 1] According to a broad aspect of the present invention, it is provided with base particles and a conductive portion arranged on the surface of the base particles, and the base particles have conductivity inside the base particles. Provided are conductive particles containing a conductive metal.
[0012] 本発明に係る導電性粒子のある特定の局面では、 前記基材粒子の空隙率が 、 1 0 %以上である。 [0012] In a specific aspect of the conductive particle of the present invention, the porosity of the base particle is 10% or more.
[0013] 本発明に係る導電性粒子のある特定の局面では、 前記導電性金属が、 ニッ ケル、 金、 パラジウム、 銀、 又は銅を含む。 [0013] In a specific aspect of the conductive particle according to the present invention, the conductive metal includes nickel, gold, palladium, silver, or copper.
[0014] 本発明に係る導電性粒子のある特定の局面では、 前記導電部が、 ニッケル 、 金、 パラジウム、 銀、 又は銅を含む。 [0014] In a specific aspect of the conductive particle according to the present invention, the conductive portion contains nickel, gold, palladium, silver, or copper.
[0015] 本発明に係る導電性粒子のある特定の局面では、 前記導電性粒子の 1 0 % <値が、 1 0 0 1\1 /〇11 2以上 2 5 0 0 0 1\1 /〇11 2以下である。 [0015] In a particular aspect of the conductive particles according to the present invention, 10% <value of the conductive particles is 1 0 0 1\1/○ 11 2 or more 2 5 0 0 0 1\1 / 〇 112 or less.
[0016] 本発明に係る導電性粒子のある特定の局面では、 前記導電性粒子の 3 0 % <値が、 1 0 0 1\1 /〇11 2以上 1 5 0 0 0 1\1 /〇11 2以下である。 [0016] In a specific aspect of the conductive particles according to the present invention, 30% <value of the conductive particles is 1 0 0 1\1/○ 11 2 or more 1 5 0 0 0 1\1 / 〇 112 or less.
[0017] 本発明に係る導電性粒子のある特定の局面では、 前記導電性粒子の 1 〇% <値の、 前記導電性粒子の 3 0 %<値に対する比が、 ·! . 5以上 5以下であ る。 In a specific aspect of the conductive particles according to the present invention, the ratio of 10%<value of the conductive particles to 30%<value of the conductive particles is...! .5 or more and 5 or less.
[0018] 本発明に係る導電性粒子のある特定の局面では、 前記導電性粒子の粒子径 が、 〇. 1 01以上 1 0 0 0 以下である。 [0018] In a specific aspect of the conductive particle according to the present invention, the particle diameter of the conductive particle is not less than 0.101 and not more than 100.
[0019] 本発明に係る導電性粒子のある特定の局面では、 前記導電性粒子 1 0 0体 積%中、 前記基材粒子に含まれる前記導電性金属の含有量が、 〇. 1体積% 以上 3 0体積%以下である。 [0019] In one specific aspect of the conductive particles according to the present invention, in 100% by volume of the conductive particles, the content of the conductive metal contained in the base particles is 0.1% by volume. It is above 30% by volume.
[0020] 本発明に係る導電性粒子のある特定の局面では、 前記導電性粒子が、 前記 導電部の外表面に突起を有する。 [0020] In one specific aspect of the conductive particle according to the present invention, the conductive particle has a protrusion on an outer surface of the conductive portion.
[0021 ] 本発明に係る導電性粒子のある特定の局面では、 前記導電性粒子が、 前記 \¥0 2020/175691 4 卩(:171? 2020 /008458 [0021] In a particular aspect of the conductive particles according to the present invention, the conductive particles are \¥0 2020/175691 4 卩 (: 171? 2020 /008458
導電部の外表面上に配置された絶縁性物質を備える。 An insulating material is disposed on the outer surface of the conductive portion.
[0022] 本発明の広い局面によれば、 上述した導電性粒子と、 バインダー樹脂とを 含む、 導電材料が提供される。 According to a broad aspect of the present invention, there is provided a conductive material including the above-mentioned conductive particles and a binder resin.
[0023] 本発明に係る導電材料のある特定の局面では、 前記導電材料が、 複数の前 記導電性粒子を含み、 前記基材粒子の外表面から中心に向かって、 前記基材 粒子の粒子径の 1 / 2の距離の領域を領域 1 としたときに、 前記導電性粒 子の全個数 1 0 0 %中、 前記基材粒子の前記領域 1 に前記導電性金属が存 在する導電性粒子の個数の割合が、 5 0 %以上である。 [0023] In a specific aspect of the conductive material according to the present invention, the conductive material includes a plurality of the conductive particles described above, and particles of the base material particle from an outer surface of the base material particle toward a center thereof. When the area having a distance of 1/2 of the diameter is defined as the area 1, the total number of the conductive particles is 100%, and the conductive metal is present in the area 1 of the base particle. The ratio of the number of particles is 50% or more.
[0024] 本発明に係る導電材料のある特定の局面では、 前記導電材料が、 複数の前 記導電性粒子を含み、 前記基材粒子の中心から外表面に向かって、 前記基材 粒子の粒子径の 1 / 2の距離の領域を領域 2としたときに、 前記導電性粒 子の全個数 1 0 0 %中、 前記基材粒子の前記領域 2に前記導電性金属が存 在する導電性粒子の個数の割合が、 5 %以上である。 [0024] In a specific aspect of the conductive material according to the present invention, the conductive material includes a plurality of the conductive particles described above, and particles of the base material particle from the center of the base material particle toward the outer surface thereof. When the area with a distance of 1/2 the diameter is defined as area 2, the total number of the conductive particles is 100%, and the conductive metal is present in the area 2 of the base particles. The ratio of the number of particles is 5% or more.
[0025] 本発明の広い局面によれば、 第 1の電極を表面に有する第 1の接続対象部 材と、 第 2の電極を表面に有する第 2の接続対象部材と、 前記第 1の接続対 象部材と前記第 2の接続対象部材とを接続している接続部とを備え、 前記接 続部の材料が、 上述した導電性粒子であるか、 又は前記導電性粒子とバイン ダー樹脂とを含む導電材料であり、 前記第 1の電極と前記第 2の電極とが前 記導電性粒子により電気的に接続されている、 接続構造体が提供される。 発明の効果 According to a broad aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, and the first connection. A connecting member connecting the target member and the second connection target member, wherein the material of the connecting portion is the above-mentioned conductive particles, or the conductive particles and the binder resin. A connection structure is provided, which is a conductive material containing: and the first electrode and the second electrode are electrically connected by the conductive particles. Effect of the invention
[0026] 本発明に係る導電性粒子は、 基材粒子と、 上記基材粒子の表面上に配置さ れた導電部とを備える。 本発明に係る導電性粒子では、 上記基材粒子が、 上 記基材粒子の内部に導電性金属を含有する。 本発明に係る導電性粒子では、 上記の構成が備えられているので、 電極間の接続抵抗を効果的に低くするこ とができ、 かつ、 導電性粒子同士の凝集の発生を効果的に抑制することがで きる。 [0026] The conductive particles according to the present invention include base particles, and conductive portions arranged on the surfaces of the base particles. In the conductive particle according to the present invention, the base material particle contains a conductive metal inside the base material particle. Since the conductive particles according to the present invention are provided with the above configuration, the connection resistance between the electrodes can be effectively reduced, and the occurrence of aggregation of the conductive particles can be effectively suppressed. can do.
図面の簡単な説明 Brief description of the drawings
[0027] [図 1 ]図 1は、 本発明の第 1の実施形態に係る導電性粒子を示す断面図である \¥02020/175691 5 卩(:17 2020/008458 [FIG. 1] FIG. 1 is a cross-sectional view showing a conductive particle according to a first embodiment of the present invention. \¥02020/175691 5 (: 17 2020/008458
[図 2]図 2は、 本発明の第 2の実施形態に係る導電性粒子を示す断面図である [FIG. 2] FIG. 2 is a cross-sectional view showing a conductive particle according to a second embodiment of the present invention.
[図 3]図 3は、 本発明の第 3の実施形態に係る導電性粒子を示す断面図である FIG. 3 is a sectional view showing a conductive particle according to a third embodiment of the present invention.
[図 4]図 4は、 基材粒子において、 導電性金属の存在の有無を確認する各領域 を説明するための模式図である。 [FIG. 4] FIG. 4 is a schematic diagram for explaining each region in the base particle for confirming the presence or absence of a conductive metal.
[図 5]図 5は、 本発明の第 1の実施形態に係る導電性粒子を用いた接続構造体 を模式的に示す正面断面図である。 FIG. 5 is a front sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、 本発明の詳細を説明する。 [0028] Hereinafter, details of the present invention will be described.
[0029] (導電性粒子) [0029] (Conductive particles)
本発明に係る導電性粒子は、 基材粒子と、 上記基材粒子の表面上に配置さ れた導電部とを備える。 本発明に係る導電性粒子では、 上記基材粒子が、 上 記基材粒子の内部に導電性金属を含有する。 The conductive particles according to the present invention include base particles and conductive parts arranged on the surfaces of the base particles. In the conductive particle according to the present invention, the base material particle contains a conductive metal inside the base material particle.
[0030] 本発明に係る導電性粒子では、 上記の構成が備えられているので、 電極間 の接続抵抗を効果的に低くすることができ、 かつ、 導電性粒子同士の凝集の 発生を効果的に抑制することができる。 [0030] Since the conductive particles according to the present invention are provided with the above configuration, the connection resistance between the electrodes can be effectively reduced, and the occurrence of aggregation of the conductive particles is effective. Can be suppressed.
[0031] 小粒子径の導電性粒子を用いて電極間を接続して接続構造体を作製する際 に、 上下方向の電極間の接続抵抗を十分に低くするために、 導電性粒子にお ける導電部の厚みを厚くすることがある。 しかしながら、 導電部の厚みを厚 くすると、 めっきによる導電部の形成の際に、 導電性粒子同士が凝集するこ とがある。 導電性粒子同士の凝集が発生すると、 横方向に隣接する電極間が 接続されやすい傾向があり、 横方向に隣接する電極間の絶縁信頼性を高める ことが困難な場合がある。 [0031] In order to sufficiently lower the connection resistance between the electrodes in the vertical direction when connecting the electrodes using the conductive particles having a small particle diameter to manufacture the connection structure, the conductive particles are used. The thickness of the conductive portion may be increased. However, if the thickness of the conductive portion is increased, the conductive particles may aggregate during the formation of the conductive portion by plating. When the conductive particles agglomerate with each other, the electrodes adjacent in the lateral direction tend to be easily connected to each other, and it may be difficult to improve the insulation reliability between the electrodes adjacent in the lateral direction.
[0032] また、 導電性粒子同士の凝集を抑制するために、 導電部の厚みを薄くする と、 めっきによる導電部の形成の際に、 導電性粒子同士の凝集を抑制するこ とができるものの、 上下方向の電極間の接続抵抗を十分に低くすることが困 \¥02020/175691 6 卩(:171?2020/008458 [0032] Further, if the thickness of the conductive portion is reduced in order to suppress the aggregation of the conductive particles, it is possible to suppress the aggregation of the conductive particles during the formation of the conductive portion by plating. , It is difficult to make the connection resistance between the vertical electrodes sufficiently low. \¥02020/175691 6 卩 (: 171?2020/008458
難となる。 従来の導電性粒子では、 電極間の接続抵抗を低くすることと、 導 電性粒子同士の凝集の発生を抑制することとの双方を両立させることは困難 である。 It will be difficult. With conventional conductive particles, it is difficult to achieve both low connection resistance between electrodes and suppression of aggregation of conductive particles.
[0033] 本発明者らは、 特定の導電性粒子を用いることで、 電極間の接続抵抗を低 くすることと、 導電性粒子同士の凝集の発生を抑制することとの双方を両立 させることができることを見出した。 本発明では、 上下方向の電極間の接続 時に導電性粒子が圧縮されることで、 導電性粒子の表面 (導電部) に導通経 路が形成されるだけではなく、 導電性粒子の内部 (導電性金属) にも導通経 路を形成させることができる。 また、 導電性粒子の内部の導電性金属は、 完 全な導通経路を形成しなくても、 接続抵抗の低減に少なからず寄与する。 結 果として、 導電部の厚みが比較的薄い場合でも、 上下方向の電極間の接続抵 抗を十分に低くすることができる。 また、 導電部の厚みが比較的薄いので、 導電性粒子同士の凝集の発生を抑制することができ、 接続されてはならない 横方向に隣接する電極間の絶縁信頼性を効果的に高めることができる。 本発 明では、 上記の構成が備えられているので、 電極間の接続抵抗を効果的に低 くすることができ、 かつ、 導電性粒子同士の凝集の発生を効果的に抑制する ことができる。 また、 本発明では、 基材粒子の表面だけではなく、 基材粒子 の内部にも導通経路 (導電部) が形成され、 導通経路 (導電部) が基材粒子 の内部に入り込むことができる。 結果として、 導電性粒子における導電部の 密着性を効果的に高めることができ、 導電性粒子における導電部の剥がれの 発生を効果的に抑制することができる。 [0033] The present inventors use both specific conductive particles to reduce both the connection resistance between electrodes and to suppress the occurrence of aggregation of conductive particles. I found that you can. In the present invention, the conductive particles are compressed at the time of connection between the electrodes in the vertical direction, so that not only a conductive path is formed on the surface (conductive portion) of the conductive particles, but also inside the conductive particles (conductive Conductive metal) can also form a conductive path. Further, the conductive metal inside the conductive particles contributes to the reduction of the connection resistance to some extent even if the conductive path is not completely formed. As a result, the connection resistance between the electrodes in the vertical direction can be made sufficiently low even if the thickness of the conductive portion is relatively thin. In addition, since the conductive portion is relatively thin, it is possible to suppress the occurrence of aggregation of conductive particles and to effectively improve the insulation reliability between the electrodes that are adjacent to each other and that are not connected. it can. In the present invention, since the above configuration is provided, the connection resistance between the electrodes can be effectively reduced, and the aggregation of the conductive particles can be effectively suppressed. .. Further, in the present invention, the conductive path (conductive portion) is formed not only on the surface of the base material particle but also inside the base material particle, and the conductive path (conductive portion) can enter the inside of the base material particle. As a result, the adhesiveness of the conductive part of the conductive particles can be effectively enhanced, and the peeling of the conductive part of the conductive particles can be effectively suppressed.
[0034] 本発明では、 上記のような効果を得るために、 特定の導電性粒子を用いる ことは大きく寄与する。 [0034] In the present invention, the use of specific conductive particles contributes greatly in order to obtain the above effects.
[0035] 上記導電性粒子の 1 0 %<値 (1 0 %圧縮したときの圧縮弾性率) は、 好 ましくは
Figure imgf000008_0001
より好ましくは
Figure imgf000008_0002
[0035] The 10% <value (compressive elastic modulus when compressed by 10%) of the conductive particles is preferably
Figure imgf000008_0001
More preferably
Figure imgf000008_0002
り、 好ましくは
Figure imgf000008_0003
より好ましくは
Figure imgf000008_0004
Preferably
Figure imgf000008_0003
More preferably
Figure imgf000008_0004
2以下である。 上記導電性粒子の 1 0 %<値が、 上記下限以上及び上記上限 以下であると、 電極間の接続抵抗をより一層効果的に低くすることができ、 \¥0 2020/175691 7 卩(:171? 2020 /008458 2 or less. When the 10% <value of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be lowered more effectively, \¥0 2020/1756 91 7 卩 (: 171? 2020 /008458
導電性粒子の割れの発生をより一層効果的に抑制することができ、 電極間の 接続信頼性をより一層効果的に高めることができる。 The generation of cracks in the conductive particles can be suppressed more effectively, and the connection reliability between the electrodes can be improved more effectively.
[0036] 上記導電性粒子の 3 0 %<値 (3 0 %圧縮したときの圧縮弾性率) は、 好 ましくは
Figure imgf000009_0001
より好ましくは
Figure imgf000009_0002
[0036] The value of 30% <value (compressive elastic modulus when compressed by 30%) of the conductive particles is preferably
Figure imgf000009_0001
More preferably
Figure imgf000009_0002
り、 好ましくは
Figure imgf000009_0003
より好ましくは
Figure imgf000009_0004
Preferably
Figure imgf000009_0003
More preferably
Figure imgf000009_0004
2以下である。 上記導電性粒子の 3 0 %<値が、 上記下限以上及び上記上限 以下であると、 電極間の接続抵抗をより一層効果的に低くすることができ、 導電性粒子の割れの発生をより一層効果的に抑制することができ、 電極間の 接続信頼性をより一層効果的に高めることができる。 2 or less. When the 30% <value of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively reduced, and the occurrence of cracking of the conductive particles can be further improved. It can be effectively suppressed, and the connection reliability between the electrodes can be more effectively enhanced.
[0037] 上記導電性粒子の 1 0 %<値の、 上記導電性粒子の 3 0 %<値に対する比 (導電性粒子の 1 0 %<値/導電性粒子の 3 0 %<値) は、 好ましくは 1 . [0037] The ratio of 10% <value of the conductive particles to 30% <value of the conductive particles (10% of conductive particles <value/30% of conductive particles <value) is Preferably 1.
5以上、 より好ましくは 1 . 5 5以上であり、 好ましくは 5以下、 より好ま しくは 4 . 5以下である。 上記比 (導電性粒子の 1 0 %<値/導電性粒子の 3 0 %<値) が、 上記下限以上及び上記上限以下であると、 電極間の接続抵 抗をより一層効果的に低くすることができ、 導電性粒子の割れの発生をより 一層効果的に抑制することができ、 電極間の接続信頼性をより一層効果的に 高めることができる。 It is 5 or more, more preferably 1.5 or more, preferably 5 or less, more preferably 4.5 or less. When the ratio (10% of conductive particles<value/30% of conductive particles<value) is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes is further effectively reduced. Therefore, the generation of cracks in the conductive particles can be suppressed more effectively, and the connection reliability between the electrodes can be improved more effectively.
[0038] 上記導電性粒子における上記 1 0 %<値及び上記 3 0 %<値は、 以下のよ うにして測定できる。 [0038] The above-mentioned 10% <value and the above-mentioned 30% <value in the above-mentioned conductive particles can be measured as follows.
[0039] 微小圧縮試験機を用いて、 円柱 (直径 1 〇〇 、 ダイヤモンド製) の平 滑圧子端面で、 2 5 °0、 圧縮速度〇. 3 /秒、 及び最大試験荷重 2 0 [0039] Using a micro-compression tester, at the end face of a flat indenter of a cylinder (diameter 100, made of diamond), 25 ° 0, compression speed 0.3 / second, and maximum test load 20
1\!の条件下で導電性粒子 1個を圧縮する。 このときの荷重値 (1\!) 及び圧縮 変位 ( 〇〇 を測定する。 得られた測定値から、 上記圧縮弾性率 (1 〇%< 値及び 3 0 %<値) を下記式により求めることができる。 上記微小圧縮試験 機としては、 フイッシャー社製 「フイッシャースコ _プ1~1 - 1 0 0」 等が用 いられる。 上記導電性粒子における上記 1 〇%<値及び上記 3 0 %<値は、 任意に選択された 5 0個の導電性粒子の 1 0 %<値及び 3 0 %<値を算術平 均することにより、 算出することが好ましい。 \¥02020/175691 8 卩(:171? 2020 /008458 Compress one conductive particle under the condition of 1\!. At this time, measure the load value (1\!) and compressive displacement (○○.) From the measured value, calculate the above-mentioned compressive modulus (1○%<value and 30%<value) by the following formula. As the above-mentioned micro compression tester, "Fisher Scope 1 to 1-100" manufactured by Fisher Co., Ltd. is used, etc. The above 10% <value and the above 30% <of the above conductive particles are used. The value is preferably calculated by arithmetically averaging the 10%< value and the 30%< value of the arbitrarily selected 50 conductive particles. \¥02020/175691 8 卩 (: 171? 2020 /008458
[0040] 1 0%[<値及び 30%<値 (1\1/〇1〇12) = (3/21/2) . . 3-3/2 ·[0040] 1 0% <value and 30% <value (1 \ 1 / Rei_1_rei_1 2) = (3/21/2).. 3 3/2 ·
/2 /2
:導電性粒子が 1 0%又は 30%圧縮変形したときの荷重値 (1\!) : Load value when conductive particles are deformed by 10% or 30% (1\!)
3 :導電性粒子が 1 0%又は 30%圧縮変形したときの圧縮変位 ( 〇〇 導電性粒子の半径 (01〇〇 3: Compressive displacement when conductive particles undergo 10% or 30% compressive deformation (○ 〇 Radius of conductive particles (01 〇 〇
[0041] 上記圧縮弾性率は、 導電性粒子の硬さを普遍的かつ定量的に表す。 上記圧 縮弾性率の使用により、 導電性粒子の硬さを定量的かつ一義的に表すことが できる。 また、 上記比 (導電性粒子の 1 0%<値/導電性粒子の 30%<値 ) は、 導電性粒子の初期圧縮時の物性を定量的かつ一義的に表すことができ る。 [0041] The compressive elastic modulus universally and quantitatively represents the hardness of the conductive particles. By using the compression modulus, the hardness of the conductive particles can be quantitatively and uniquely expressed. Further, the above ratio (10%<value of conductive particles/30%<value of conductive particles) can quantitatively and uniquely express the physical properties of the conductive particles at the time of initial compression.
[0042] 上記導電性粒子の粒子径は、 好ましくは 0. 1 以上、 より好ましくは [0042] The particle diameter of the conductive particles is preferably 0.1 or more, and more preferably
1 以上であり、 好ましくは 1 000 以下、 より好ましくは 1 0 以下である。 上記導電性粒子の粒子径が、 上記下限以上及び上記上限以下で あると、 上記導電性粒子を用いて電極間を接続した場合に、 導電性粒子と電 極との接触面積が十分に大きくなり、 かつ導電部を形成する際に凝集した導 電性粒子が形成され難くなる。 また、 導電性粒子を介して接続された電極間 の間隔が大きくなりすぎず、 かつ導電部が基材粒子の表面から剥離し難くな る。 It is 1 or more, preferably 1 000 or less, more preferably 10 or less. When the particle diameter of the conductive particles is not less than the lower limit and not more than the upper limit, the contact area between the conductive particles and the electrode becomes sufficiently large when the electrodes are connected using the conductive particles. In addition, it is difficult for the conductive particles to aggregate when forming the conductive portion. In addition, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive parts are less likely to peel off from the surface of the base material particles.
[0043] 上記導電性粒子の粒子径は、 平均粒子径であることが好ましく、 数平均粒 子径であることが好ましい。 上記導電性粒子の粒子径は、 例えば、 任意の導 電性粒子 50個を電子顕微鏡又は光学顕微鏡にて観察し、 各導電性粒子の粒 子径の平均値を算出することや、 粒度分布測定装置を用いて求められる。 電 子顕微鏡又は光学顕微鏡での観察では、 1個当たりの導電性粒子の粒子径は 、 円相当径での粒子径として求められる。 電子顕微鏡又は光学顕微鏡での観 察において、 任意の 50個の導電性粒子の円相当径での平均粒子径は、 球相 当径での平均粒子径とほぼ等しくなる。 粒度分布測定装置では、 1個当たり の導電性粒子の粒子径は、 球相当径での粒子径として求められる。 上記導電 性粒子の平均粒子径は、 粒度分布測定装置を用いて算出することが好ましい \¥02020/175691 9 卩(:171?2020/008458 The particle size of the conductive particles is preferably an average particle size, and more preferably a number average particle size. The particle size of the above conductive particles can be calculated by, for example, observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating the average particle size of each conductive particle, and measuring the particle size distribution. It is calculated using the device. When observed with an electron microscope or an optical microscope, the particle size of each conductive particle is calculated as the particle size at the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle size of any 50 conductive particles at the equivalent circle diameter is almost equal to the average particle size at the spherical equivalent diameter. With a particle size distribution analyzer, the particle size of each conductive particle is calculated as the particle size in terms of a sphere equivalent diameter. The average particle size of the conductive particles is preferably calculated using a particle size distribution measuring device. \¥02020/175691 9 boxes (: 171?2020/008458
[0044] 上記導電性粒子の粒子径の変動係数 (<3 V値) は、 好ましくは 1 0 %以下 、 より好ましくは 5 %以下である。 上記導電性粒子の粒子径の変動係数が、 上記上限以下であると、 電極間の導通信頼性及び絶縁信頼性をより _層効果 的に高めることができる。 The coefficient of variation (<3 V value) of the particle diameter of the conductive particles is preferably 10% or less, more preferably 5% or less. When the variation coefficient of the particle diameter of the conductive particles is equal to or less than the upper limit, it is possible to more effectively improve the conduction reliability and the insulation reliability between the electrodes.
[0045] 上記変動係数 (〇 値) は、 以下のようにして測定できる。 The above coefficient of variation (◯ value) can be measured as follows.
[0046] 〇 V値 (%) = (!〇/ 0 X 1 0 0 [0046] V value (%) = ( ! 〇 / 0 X 100 0
1〇 :導電性粒子の粒子径の標準偏差 10: Standard deviation of particle size of conductive particles
0 n :導電性粒子の粒子径の平均値 0 n: average particle size of conductive particles
[0047] 上記導電性粒子の形状は特に限定されない。 上記導電性粒子の形状は、 球 状であってもよく、 球状以外の形状であってもよく、 扁平状等であってもよ い。 [0047] The shape of the conductive particles is not particularly limited. The conductive particles may have a spherical shape, a shape other than a spherical shape, a flat shape or the like.
[0048] 以下、 図面を参照しつつ、 本発明を具体的に説明する。 [0048] Hereinafter, the present invention will be specifically described with reference to the drawings.
[0049] 図 1は、 本発明の第 1の実施形態に係る導電性粒子を示す断面図である。 [0049] FIG. 1 is a sectional view showing a conductive particle according to a first embodiment of the present invention.
[0050] 図 1 に示す導電性粒子 1は、 基材粒子 2と、 導電部 3とを有する。 導電部 The conductive particles 1 shown in FIG. 1 have base particles 2 and conductive parts 3. Conductive part
3は、 基材粒子 2の表面上に配置されている。 第 1の実施形態では、 導電部 3は、 基材粒子 2の表面に接している。 導電性粒子 1は、 基材粒子 2の表面 が導電部 3により被覆された被覆粒子である。 3 is arranged on the surface of the base particle 2. In the first embodiment, the conductive portion 3 is in contact with the surface of the base particle 2. The conductive particle 1 is a coated particle in which the surface of the base material particle 2 is coated with the conductive portion 3.
[0051 ] 導電性粒子 1では、 導電部 3は、 単層の導電層である。 導電性粒子 1では 、 基材粒子 2は、 基材粒子 2の内部に導電性金属を含有する。 上記導電性粒 子では、 上記導電部が上記基材粒子の表面の全体を覆っていてもよく、 上記 導電部が上記基材粒子の表面の一部を覆っていてもよい。 上記導電性粒子で は、 上記導電部は、 単層の導電層であってもよく、 2層以上の層から構成さ れる多層の導電層であってもよい。 [0051] In the conductive particle 1, the conductive portion 3 is a single-layer conductive layer. In the conductive particles 1, the base material particles 2 contain a conductive metal inside the base material particles 2. In the conductive particle, the conductive portion may cover the entire surface of the base material particle, or the conductive portion may cover a part of the surface of the base material particle. In the conductive particles, the conductive portion may be a single-layer conductive layer or a multi-layer conductive layer composed of two or more layers.
[0052] 導電性粒子 1は、 後述する導電性粒子 1 1 , 2 1 とは異なり、 芯物質を有 さない。 導電性粒子 1は表面に突起を有さない。 導電性粒子 1は球状である 。 導電部 3は外表面に突起を有さない。 このように、 本発明に係る導電性粒 子は導電性の表面に突起を有していなくてもよく、 球状であってもよい。 ま \¥02020/175691 10 卩(:171?2020/008458 [0052] Unlike the conductive particles 1 1 and 2 1 described later, the conductive particles 1 do not have a core substance. The conductive particle 1 has no protrusion on the surface. The conductive particles 1 are spherical. The conductive part 3 has no protrusion on the outer surface. As described above, the conductive particles according to the present invention may not have protrusions on the conductive surface and may be spherical. Well \¥02020/175691 10 boxes (: 171?2020/008458
た、 導電性粒子 1は、 後述する導電性粒子 1 1 , 2 1 とは異なり、 絶縁性物 質を有さない。 但し、 導電性粒子 1は、 導電部 3の外表面上に配置された絶 縁性物質を有していてもよい。 Further, unlike the conductive particles 1 1 and 2 1 described later, the conductive particle 1 does not have an insulating material. However, the conductive particles 1 may have an insulating substance disposed on the outer surface of the conductive portion 3.
[0053] 図 2は、 本発明の第 2の実施形態に係る導電性粒子を示す断面図である。 FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
[0054] 図 2に示す導電性粒子 1 1は、 基材粒子 2と、 導電部 1 2と、 複数の芯物 質 1 3と、 複数の絶縁性物質 1 4とを有する。 導電部 1 2は、 基材粒子 2の 表面上に基材粒子 2に接するように配置されている。 The conductive particles 11 shown in FIG. 2 have a base particle 2, a conductive portion 12, a plurality of core substances 13 and a plurality of insulating substances 14. The conductive portion 12 is arranged on the surface of the base material particle 2 so as to be in contact with the base material particle 2.
[0055] 導電性粒子 1 1では、 導電部 1 2は、 単層の導電層である。 導電性粒子 1 In the conductive particle 11, the conductive portion 12 is a single conductive layer. Conductive particles 1
1では、 基材粒子 2は、 基材粒子 2の内部に導電性金属を含有する。 上記導 電性粒子では、 上記導電部が上記基材粒子の表面の全体を覆っていてもよく 、 上記導電部が上記基材粒子の表面の一部を覆っていてもよい。 上記導電性 粒子では、 上記導電部は、 単層の導電層であってもよく、 2層以上の層から 構成される多層の導電層であってもよい。 In 1, the base particle 2 contains a conductive metal inside the base particle 2. In the conductive particle, the conductive part may cover the entire surface of the base particle, or the conductive part may cover a part of the surface of the base particle. In the conductive particle, the conductive portion may be a single-layer conductive layer or a multi-layer conductive layer composed of two or more layers.
[0056] 導電性粒子 1 1は導電性の表面に、 複数の突起 1 1 3を有する。 導電部 1 The conductive particles 11 have a plurality of protrusions 11 13 on the conductive surface. Conductive part 1
2は外表面に、 複数の突起 1 2 3を有する。 複数の芯物質 1 3が、 基材粒子 2の表面上に配置されている。 複数の芯物質 1 3は、 導電部 1 2内に埋め込 まれている。 芯物質 1 3は、 突起 1 1 3 , 1 2 3の内側に配置されている。 導電部 1 2は、 複数の芯物質 1 3を被覆している。 複数の芯物質 1 3により 導電部 1 2の外表面が***されており、 突起 1
Figure imgf000012_0001
1 2 3が形成されてい る。
2 has a plurality of protrusions 1 2 3 on its outer surface. A plurality of core substances 13 are arranged on the surface of the base particle 2. A plurality of core substances 13 are embedded in the conductive portion 12. The core substance 13 is arranged inside the protrusions 1 1 3 and 1 2 3. The conductive part 12 covers a plurality of core substances 13. The outer surface of the conductive part 12 is raised by the plurality of core substances 13 and the protrusions 1
Figure imgf000012_0001
1 2 3 are formed.
[0057] 導電性粒子 1 1は、 導電部 1 2の外表面上に配置された絶縁性物質 1 4を 有する。 導電部 1 2の外表面の少なくとも一部の領域が、 絶縁性物質 1 4に より被覆されている。 絶縁性物質 1 4は絶縁性を有する材料により形成され ており、 絶縁性粒子である。 このように、 本発明に係る導電性粒子は、 導電 部の外表面上に配置された絶縁性物質を有していてもよい。 但し、 本発明に 係る導電性粒子は、 絶縁性物質を必ずしも有していなくてもよい。 The conductive particles 11 have the insulating substance 14 arranged on the outer surface of the conductive portion 12. At least a part of the outer surface of the conductive portion 12 is covered with the insulating substance 14. The insulating substance 14 is formed of a material having an insulating property and is an insulating particle. Thus, the conductive particles according to the present invention may have an insulating substance arranged on the outer surface of the conductive portion. However, the conductive particles according to the present invention may not necessarily have an insulating substance.
[0058] 図 3は、 本発明の第 3の実施形態に係る導電性粒子を示す断面図である。 [0058] FIG. 3 is a cross-sectional view showing conductive particles according to a third embodiment of the present invention.
[0059] 図 3に示す導電性粒子 2 1は、 基材粒子 2と、 導電部 2 2と、 複数の芯物 \¥0 2020/175691 1 1 卩(:171? 2020 /008458 [0059] The conductive particles 21 shown in Fig. 3 include a base material particle 2, a conductive portion 22 and a plurality of cores. \\0 2020/1756 91 1 1 卩 (: 171? 2020 /008458
質 1 3と、 複数の絶縁性物質 1 4とを有する。 導電部 2 2は全体で、 基材粒 子 2側に第 1の導電部 2 2八と、 基材粒子 2側とは反対側に第 2の導電部 2 2巳とを有する。 It has a quality 13 and a plurality of insulating substances 14. The conductive portion 22 as a whole has a first conductive portion 22 28 on the base material particle 2 side and a second conductive portion 22 2 on the opposite side to the base material particle 2 side.
[0060] 導電性粒子 1 1 と導電性粒子 2 1 とでは、 導電部のみが異なっている。 す なわち、 導電性粒子 1 1では、 1層構造の導電部 1 2が形成されているのに 対し、 導電性粒子 2 1では、 2層構造の第 1の導電部 2 2八及び第 2の導電 部 2 2巳が形成されている。 第 1の導電部 2 2八と第 2の導電部 2 2巳とは 別の導電部として形成されている。 [0060] The conductive particles 11 and the conductive particles 21 are different only in the conductive part. That is, in the conductive particle 11 the conductive part 12 having a one-layer structure is formed, while in the conductive particle 21 the first conductive part 2 28 and the second conductive part having a two-layer structure are formed. The conductive part 22 is formed. The first conductive portion 22 8 and the second conductive portion 22 2 are formed as separate conductive portions.
[0061 ] 第 1の導電部 2 2八は、 基材粒子 2の表面上に配置されている。 基材粒子 The first conductive portion 22 8 is arranged on the surface of the base particle 2. Base particle
2と第 2の導電部 2 2巳との間に、 第 1の導電部 2 2八が配置されている。 第 1の導電部 2 2八は、 基材粒子 2に接している。 第 2の導電部 2 2巳は、 第 1の導電部 2 2八に接している。 従って、 基材粒子 2の表面上に第 1の導 電部 2 2八が配置されており、 第 1の導電部 2 2八の表面上に第 2の導電部 2 2巳が配置されている。 導電性粒子 2 1は導電性の表面に、 複数の突起 2 1 3を有する。 導電部 2 2は外表面に複数の突起 2 2 3を有する。 第 1の導 電部 2 2八は外表面に、 複数の突起 2 2八 3を有する。 第 2の導電部 2 2巳 は外表面に、 複数の突起 2 2巳 3を有する。 The first conductive portion 22 8 is arranged between 2 and the second conductive portion 22. The first conductive portion 22 8 is in contact with the base particle 2. The second conductive part 22 is in contact with the first conductive part 22 8. Therefore, the first conductive portion 22 8 is arranged on the surface of the base particle 2, and the second conductive portion 22 2 is arranged on the surface of the first conductive portion 22 8. .. The conductive particles 21 have a plurality of protrusions 2 13 on the conductive surface. Conductive part 2 2 has a plurality of projections 2 2 3 on the outer surface. The first conducting portion 22 8 has a plurality of protrusions 22 8 3 on its outer surface. The second conductive portion 2 2 observed on the outer surface, having a plurality of projections 2 2 Serpent 3.
[0062] 以下、 導電性粒子の他の詳細について説明する。 [0062] Hereinafter, other details of the conductive particles will be described.
[0063] (基材粒子) (Substrate particles)
上記基材粒子の材料は特に限定されない。 上記基材粒子の材料は、 有機材 料であってもよく、 無機材料であってもよい。 上記有機材料のみより形成さ れた基材粒子としては、 樹脂粒子等が挙げられる。 上記無機材料のみにより 形成された基材粒子としては、 金属を除く無機粒子等が挙げられる。 上記有 機材料と上記無機材料との双方により形成された基材粒子としては、 有機無 機ハイブリッ ド粒子等が挙げられる。 基材粒子の圧縮特性をより一層良好に する観点からは、 上記基材粒子は、 樹脂粒子又は有機無機ハイブリッ ド粒子 であることが好ましく、 樹脂粒子であることがより好ましい。 The material of the base particles is not particularly limited. The material of the base particles may be an organic material or an inorganic material. Examples of the base material particles formed of only the organic material include resin particles. Examples of the base particles formed of only the above inorganic material include inorganic particles excluding metals. Examples of the base particles formed of both the organic material and the inorganic material include organic organic hybrid particles. From the viewpoint of further improving the compression characteristics of the base particles, the base particles are preferably resin particles or organic-inorganic hybrid particles, and more preferably resin particles.
[0064] 上記有機材料としては、 ポリエチレン、 ポリプロピレン、 ポリスチレン、 \¥02020/175691 12 卩(:171?2020/008458 [0064] Examples of the organic material include polyethylene, polypropylene, polystyrene, \¥02020/175691 12 ((171?2020/008458
ポリ塩化ビニル、 ポリ塩化ビニリデン、 ポリイソプチレン、 ポリブタジェン 等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリ レート等のアクリル樹脂;ポリカーボネート、 ポリアミ ド、 フェノールホル ムアルデヒド樹脂、 メラミンホルムアルデヒド樹脂、 ベンゾグアナミンホル ムアルデヒド樹脂、 尿素ホルムアルデヒド樹脂、 フェノール樹脂、 メラミン 樹脂、 ベンゾグアナミン樹脂、 尿素樹脂、 ェポキシ樹脂、 不飽和ポリェステ ル樹脂、 飽和ポリェステル樹脂、 ポリェチレンテレフタレート、 ポリスルホ ン、 ポリフェニレンオキサイ ド、 ポリアセタール、 ポリイミ ド、 ポリアミ ド イミ ド、 ポリエーテルエーテルケトン、 ポリエーテルスルホン、 ジビニルべ ンゼン重合体、 並びにジビニルベンゼン共重合体等が挙げられる。 上記ジビ ニルベンゼン共重合体等としては、 ジビニルベンゼンースチレン共重合体及 びジビニルベンゼンー (メタ) アクリル酸ェステル共重合体等が挙げられる 。 上記基材粒子の圧縮特性を好適な範囲に容易に制御できるので、 上記基材 粒子の材料は、 ェチレン性不飽和基を有する重合性単量体を 1種又は 2種以 上重合させた重合体であることが好ましい。 Polyolefin resins such as polyvinyl chloride, polyvinylidene chloride, polyisoptyrene, polybutadiene, etc.; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonates, polyamides, phenolformaldehyde resins, melamine formaldehyde resins, benzoguanamine formaldehyde resins, urea formaldehyde Resin, Phenol resin, Melamine resin, Benzoguanamine resin, Urea resin, Epoxy resin, Unsaturated polyester resin, Saturated polyester resin, Polyethylene terephthalate, Polysulfone, Polyphenylene oxide, Polyacetal, Polyimide, Polyamide imido, Examples thereof include polyether ether ketone, polyether sulfone, divinylbenzene polymer, and divinylbenzene copolymer. Examples of the divinyl benzene copolymer and the like include divinylbenzene-styrene copolymer and divinylbenzene-(meth)acrylic acid ester copolymer. Since the compression characteristics of the base particles can be easily controlled to a suitable range, the material of the base particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferable that they are united.
[0065] 上記基材粒子を、 ェチレン性不飽和基を有する重合性単量体を重合させて 得る場合、 上記ェチレン性不飽和基を有する重合性単量体としては、 非架橋 性の単量体と架橋性の単量体とが挙げられる。 [0065] When the base particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group is a non-crosslinkable monomer. Examples thereof include a body and a crosslinkable monomer.
[0066] 上記非架橋性の単量体としては、 ビニル化合物として、 スチレン、 《_メ チルスチレン、 クロルスチレン等のスチレン単量体; メチルビニルエーテル 、 ェチルビニルェーテル、 プロピルビニルェーテル等のビニルェーテル化合 物;酢酸ビニル、 酪酸ビニル、 ラウリン酸ビニル、 ステアリン酸ビニル等の 酸ビニルェステル化合物;塩化ビニル、 フッ化ビニル等のハロゲン含有単量 体; (メタ) アクリル化合物として、 メチル (メタ) アクリレート、 ェチル (メタ) アクリレート、 プロピル (メタ) アクリレート、 プチル (メタ) ア クリレート、 2—ェチルヘキシル (メタ) アクリレート、 ラウリル (メタ) アクリレート、 セチル (メタ) アクリレート、 ステアリル (メタ) アクリレ —卜、 シクロヘキシル (メタ) アクリレート、 イソボルニル (メタ) アクリ \¥02020/175691 13 卩(:171?2020/008458 レート等のアルキル (メタ) アクリレ—卜化合物; 2 -ヒドロキシェチル ( メタ) アクリレート、 グリセロール (メタ) アクリレート、 ポリオキシェチ レン (メタ) アクリレート、 グリシジル (メタ) アクリレート等の酸素原子 含有 (メタ) アクリレート化合物; (メタ) アクリロニトリル等の二トリル 含有単量体; トリフルオロメチル (メタ) アクリレート、 ペンタフルオロェ チル (メタ) アクリレート等のハロゲン含有 (メタ) アクリレート化合物; « -オレフィン化合物として、 ジイソプチレン、 イソプチレン、 リニアレン 、 ェチレン、 プロピレン等のオレフィン化合物;共役ジェン化合物として、 イソプレン、 ブタジェン等が挙げられる。 [0066] Examples of the non-crosslinkable monomer include vinyl compounds such as styrene, <<styrene monomer such as methylstyrene and chlorostyrene; methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, etc. Vinyl ether compounds; vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate, and other vinyl ester compounds; vinyl chloride, vinyl fluoride, and other halogen-containing monomers; (meth) acrylic compound, methyl (meth) acrylate , Ethyl (meth) acrylate, Propyl (meth) acrylate, Butyl (meth) acrylate, 2-Ethylhexyl (meth) acrylate, Lauryl (meth) acrylate, Cetyl (meth) acrylate, Stearyl (meth) acrylate, cyclohexyl (Meth)acrylate, isobornyl (meth)acry \\02020/175691 13 Alkyl (meth)acryloyl compound such as: (171?2020/008458 rate; 2-hydroxyethyl (meth)acrylate, glycerol (meth)acrylate, polyoxyethylene (meth)acrylate, glycidyl Oxygen atom-containing (meth)acrylate compounds such as (meth)acrylate; Nitrile-containing monomers such as (meth)acrylonitrile; Halogen-containing (meth)acrylates such as trifluoromethyl (meth)acrylate and pentafluoroethyl (meth)acrylate ) Acrylate compound; «-Olefin compounds such as diisobutylene, isoptylene, linearene, ethylene, and propylene; and olefin compounds such as conjugated gen compounds such as isoprene and butadiene.
[0067] 上記架橋性の単量体としては、 ビニル化合物として、 ジビニルベンゼン、 [0067] Examples of the crosslinkable monomer include vinyl compounds such as divinylbenzene and
1 , 4—ジビニロキシブタン、 ジビニルスルホン等のビニル単量体; (メタ ) アクリル化合物として、 テトラメチロールメタンテトラ (メタ) アクリレ —卜、 ポリテトラメチレングリコールジアクリレート、 テトラメチロールメ タントリ (メタ) アクリレート、 テトラメチロールメタンジ (メタ) アクリ レート、 トリメチロールプロパントリ (メタ) アクリレート、 ジペンタェリ スリ トールへキサ (メタ) アクリレート、 ジペンタェリスリ トールペンタ ( メタ) アクリレート、 グリセロールトリ (メタ) アクリレート、 グリセロー ルジ (メタ) アクリレート、 ポリェチレングリコールジ (メタ) アクリレー 卜、 ポリプロピレングリコールジ (メタ) アクリレート、 ポリテトラメチレ ングリコールジ (メタ) アクリレート、 1 , 4—ブタンジオールジ (メタ) アクリレート等の多官能 (メタ) アクリレ—卜化合物; アリル化合物として 、 トリアリル (イソ) シアヌレート、 トリアリルトリメリテート、 ジアリル フタレート、 ジアリルアクリルアミ ド、 ジアリルェーテル;シラン化合物と して、 テトラメ トキシシラン、 テトラェトキシシラン、 メチルトリメ トキシ シラン、 メチルトリェトキシシラン、 ェチルトリメ トキシシラン、 ェチルト リェトキシシラン、 イソプロピルトリメ トキシシラン、 イソプチルトリメ ト キシシラン、 シクロヘキシルトリメ トキシシラン、
Figure imgf000015_0001
ヘキシルトリメ トキ シシラン、 门一オクチルトリェトキシシラン、 门 _デシルトリメ トキシシラ \¥0 2020/175691 14 卩(:171? 2020 /008458
Vinyl monomers such as 1,4-divinyloxybutane and divinyl sulfone; (meth) as an acrylic compound, tetramethylolmethane tetra (meth) acrylate, polytetramethylene glycol diacrylate, tetramethylol methanetri (meth) Acrylate, tetramethylolmethane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, glycerol tri(meth)acrylate, glycerol di(meth)acrylate ) Acrylate, polyethylene glycol di(meth) acrylate, polypropylene glycol di(meth) acrylate, polytetramethylene glycol di(meth) acrylate, 1,4-butanediol di(meth) acrylate, etc. ) Acryle-toluene compound; As allyl compound, triallyl (iso)cyanurate, triallyl trimellitate, diallyl phthalate, diallyl acryl amide, diallyl ether; As silane compound, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, Methyltriethoxysilane, Ethyltrimethoxysilane, Ethyltriethoxysilane, Isopropyltrimethoxysilane, Isoputyltrimethoxysilane, Cyclohexyltrimethoxysilane,
Figure imgf000015_0001
Hexyl trimethyloxysilane, 门一octyltrioxysilane, _ _decyl trimethyloxysilane \¥0 2020/175691 14 卩 (: 171? 2020 /008458
ン、 フェニルトリメ トキシシラン、 ジメチルジメ トキシシラン、 ジメチルジ ェトキシシラン、 ジイソプロピルジメ トキシシラン、 トリメ トキシシリルス チレン、 7 - (メタ) アクリロキシプロピルトリメ トキシシラン、 1 , 3 - ジビニルテトラメチルジシロキサン、 メチルフェニルジメ トキシシラン、 ジ フェニルジメ トキシシラン等のシランアルコキシド化合物; ビニルトリメ ト キシシラン、 ビニルトリェトキシシラン、 ジメ トキシメチルビニルシシラン 、 ジメ トキシェチルビニルシラン、 ジェトキシメチルビニルシラン、 ジェト キシェチルビニルシラン、 ェチルメチルジビニルシラン、 メチルビニルジメ トキシシラン、 ェチルビニルジメ トキシシラン、 メチルビニルジェトキシシ ラン、 ェチルビニルジェトキシシラン、 _スチリルトリメ トキシシラン、Phenyltrimethoxysilane, dimethyldimethoxysilane, dimethyldioxysilane, diisopropyldimethoxysilane, trimethoxysilylstyrene, 7-(meth)acryloxypropyltrimethoxysilane, 1,3-divinyltetramethyldisiloxane, methylphenyldimethoxysilane, diphenyldimethoxysilane, etc. Silane alkoxide compounds; vinyltrimethoxysilane, vinyltrietoxysilane, dimethoxymethylvinylsisilane, dimethoxetylvinylsilane, jetoxymethylvinylsilane, jetoxetylvinylsilane, ethylmethyldivinylsilane, methylvinyldimethoxysilane, ethylvinyldime Toxysilane, Methyl vinyl jetoxy silane, Ethyl vinyl jetoxy silane, _Styryltrimethoxy silane,
3—メタクリロキシプロピルメチルジメ トキシシラン、 3—メタクリロキシ プロピルトリメ トキシシラン、 3—メタクリロキシプロピルメチルジェトキ シシラン、 3—メタクリロキシプロピルトリェトキシシラン、 3—アクリロ キシプロピルトリメ トキシシラン等の重合性二重結合含有シランアルコキシ ド;デカメチルシクロペンタシロキサン等の環状シロキサン;片末端変性シ リコーンオイル、 両末端シリコーンオイル、 側鎖型シリコーンオイル等の変 性 (反応性) シリコーンオイル; (メタ) アクリル酸、 マレイン酸、 無水マ レイン酸等のカルボキシル基含有単量体等が挙げられる。 Polymerizable double bond-containing 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyl jetoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane Silane alkoxides; Cyclic siloxanes such as decamethylcyclopentasiloxane; Modified silicone oil at one end, Silicone oil at both ends, Side chain type silicone oil, etc. (Reactive) Silicone oil; (Meth) Acrylic acid, Maleic acid Examples include carboxyl group-containing monomers such as maleic anhydride.
[0068] 上記基材粒子は、 上記ェチレン性不飽和基を有する重合性単量体を重合さ せることによって得ることができる。 上記の重合方法としては特に限定され ず、 ラジカル重合、 イオン重合、 重縮合 (縮合重合、 縮重合) 、 付加縮合、 リビング重合、 及びリビングラジカル重合等の公知の方法が挙げられる。 ま た、 他の重合方法としては、 ラジカル重合開始剤の存在下での懸濁重合が挙 げられる。 [0068] The base particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group. The above-mentioned polymerization method is not particularly limited, and examples thereof include known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, condensation polymerization), addition condensation, living polymerization, and living radical polymerization. Another polymerization method is suspension polymerization in the presence of a radical polymerization initiator.
[0069] 上記無機材料としては、 シリカ、 アルミナ、 チタン酸バリウム、 ジルコニ ア、 力ーボンブラック、 ケイ酸ガラス、 ホウケイ酸ガラス、 鉛ガラス、 ソー ダ石灰ガラス及びアルミナシリケートガラス等が挙げられる。 [0069] Examples of the above-mentioned inorganic materials include silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda lime glass, and alumina silicate glass.
[0070] 上記基材粒子は、 有機無機ハイブリッ ド粒子であってもよい。 上記基材粒 \¥0 2020/175691 15 卩(:171? 2020 /008458 [0070] The base particles may be organic-inorganic hybrid particles. Base material grain \¥0 2020/175691 15 卩 (: 171? 2020 /008458
子は、 コアシェル粒子であってもよい。 上記基材粒子が有機無機ハイブリッ ド粒子である場合に、 上記基材粒子の材料である無機物としては、 シリカ、 アルミナ、 チタン酸バリウム、 ジルコニア及び力ーボンブラック等が挙げら れる。 上記無機物は金属ではないことが好ましい。 上記シリカにより形成さ れた基材粒子としては特に限定されないが、 加水分解性のアルコキシシリル 基を 2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後 に、 必要に応じて焼成を行うことにより得られる基材粒子が挙げられる。 上 記有機無機ハイブリッ ド粒子としては、 架橋したアルコキシシリルポリマー とアクリル樹脂とにより形成された有機無機ハイブリッ ド粒子等が挙げられ る。 The child may be a core-shell particle. When the base particles are organic-inorganic hybrid particles, examples of the inorganic material that is a material of the base particles include silica, alumina, barium titanate, zirconia, and carbon black. It is preferable that the inorganic substance is not a metal. The substrate particles formed of the above silica are not particularly limited, but after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form a crosslinked polymer particle, if necessary, Base material particles obtained by performing firing are mentioned. Examples of the above-mentioned organic/inorganic hybrid particles include organic/inorganic hybrid particles formed by a crosslinked alkoxysilyl polymer and an acrylic resin.
[0071 ] 上記有機無機ハイブリッ ド粒子は、 コアと、 該コアの表面上に配置された シェルとを有するコアシェル型の有機無機ハイブリッ ド粒子であることが好 ましい。 上記コアは、 有機コアであることが好ましい。 上記シェルは、 無機 シェルであることが好ましい。 上記基材粒子は、 有機コアと上記有機コアの 表面上に配置された無機シェルとを有する有機無機ハイブリッ ド粒子である ことが好ましい。 [0071] The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell arranged on the surface of the core. The core is preferably an organic core. The shell is preferably an inorganic shell. The base material particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell arranged on the surface of the organic core.
[0072] 上記有機コアの材料としては、 上述した有機材料等が挙げられる。 [0072] Examples of the material of the organic core include the organic materials described above.
[0073] 上記無機シェルの材料としては、 上述した基材粒子の材料として挙げた無 機物が挙げられる。 上記無機シェルの材料は、 シリカであることが好ましい 。 上記無機シェルは、 上記コアの表面上で、 金属アルコキシドをゾルゲル法 によりシェル状物とした後、 該シェル状物を焼成させることにより形成され ていることが好ましい。 上記金属アルコキシドはシランアルコキシドである ことが好ましい。 上記無機シェルはシランアルコキシドにより形成されてい ることが好ましい。 [0073] Examples of the material of the inorganic shell include the inorganic materials listed as the materials of the base particle. The material of the inorganic shell is preferably silica. The inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material by a sol-gel method on the surface of the core, and then firing the shell-like material. The metal alkoxide is preferably silane alkoxide. The inorganic shell is preferably formed of silane alkoxide.
[0074] 上記基材粒子の巳巳丁比表面積は、 好ましくは 8 2 / 9以上、 より好まし くは 1 2 2 / 9以上であり、 好ましくは 1 2 0 0 2/ 9以下、 より好まし くは 1 0
Figure imgf000017_0001
以下である。 上記巳巳丁比表面積が、 上記下限以上及び 上記上限以下であると、 基材粒子の内部に導電性金属をより _層容易に含有 \¥0 2020/175691 16 卩(:171? 2020 /008458
[0074] The Mitsumi specific surface area of the base particles is preferably 8 2 /9 or more, more preferably 1 2 2 /9 or more, and preferably 1 2 0 2 /9 or less, more preferably More preferably 10
Figure imgf000017_0001
It is the following. When the above-mentioned specific surface area is not less than the above lower limit and not more than the above upper limit, the conductive metal can be contained more easily in the base particles. \¥0 2020/175691 16 卩 (: 171? 2020 /008458
させることができる。 上記巳巳丁比表面積が、 上記下限以上及び上記上限以 下であると、 電極間の接続抵抗をより一層効果的に低くすることができ、 導 電性粒子同士の凝集の発生をより一層効果的に抑制することができる。 また 、 上記巳巳丁比表面積が、 上記下限以上及び上記上限以下であると、 電極間 の絶縁信頼をより一層効果的に高めることができる。 また、 上記巳巳丁比表 面積が、 上記下限以上及び上記上限以下であると、 導電性粒子における導電 部の密着性をより一層効果的に高めることができ、 導電性粒子における導電 部の剥がれの発生をより一層効果的に抑制することができる。 Can be made. When the above-mentioned specific surface area is equal to or more than the lower limit and equal to or less than the upper limit, the connection resistance between the electrodes can be reduced more effectively, and the occurrence of aggregation of the conductive particles is further enhanced. Can be suppressed. Moreover, when the above-mentioned specific surface area is above the lower limit and below the upper limit, the insulation reliability between the electrodes can be more effectively enhanced. Further, when the above-mentioned Mitsumi ratio table area is not less than the above lower limit and not more than the above upper limit, the adhesion of the conductive part in the conductive particle can be more effectively enhanced, and the conductive part in the conductive particle is peeled off. Can be suppressed more effectively.
[0075] 上記基材粒子の巳巳丁比表面積は、 巳巳丁法に準拠して、 窒素の吸着等温 線から測定することができる。 上記基材粒子の巳日丁比表面積の測定装置と しては、 カンタクローム ·インスツルメンツ社製 「1\1〇 八 4 2 0 0 6」 等 が挙げられる。 [0075] The Mitsumi specific surface area of the base particles can be measured from the adsorption isotherm of nitrogen according to the Mitsumi method. Examples of a device for measuring the specific surface area of the Nitsubing Ding of the above-mentioned base particles include "1\10 8 4 2 0 0 6" manufactured by Kantachrome Instruments Co., Ltd.
[0076] 上記基材粒子の全細孔容積は、 好ましくは〇. 0 1 〇 3 / 9以上、 より好 ましくは〇.
Figure imgf000018_0001
以上であり、 好ましくは 3〇 3/ 9以下、 より好 ましくは 1 . 5〇〇! 3 / 9以下である。 上記全細孔容積が、 上記下限以上及び 上記上限以下であると、 基材粒子の内部に導電性金属をより _層容易に含有 させることができる。 上記全細孔容積が、 上記下限以上及び上記上限以下で あると、 電極間の接続抵抗をより一層効果的に低くすることができ、 導電性 粒子同士の凝集の発生をより一層効果的に抑制することができる。 また、 上 記全細孔容積が、 上記下限以上及び上記上限以下であると、 電極間の絶縁信 頼をより一層効果的に高めることができる。 また、 上記全細孔容積が、 上記 下限以上及び上記上限以下であると、 導電性粒子における導電部の密着性を より一層効果的に高めることができ、 導電性粒子における導電部の剥がれの 発生をより一層効果的に抑制することができる。
Total pore volume of [0076] the base particles is preferably 0.0 1 〇 3/9 or more, more favorable Mashiku 〇.
Figure imgf000018_0001
Or more, preferably 3_Rei 3/9 or less, and more favorable Mashiku is 1. 5_Rei_rei! 3/9 or less. When the total pore volume is not less than the lower limit and not more than the upper limit, the conductive metal can be more easily contained in the base particles. When the total pore volume is not less than the lower limit and not more than the upper limit, the connection resistance between the electrodes can be further effectively reduced, and the occurrence of aggregation of the conductive particles can be suppressed more effectively. can do. Moreover, when the above-mentioned total pore volume is not less than the above lower limit and not more than the above upper limit, the insulation reliability between the electrodes can be more effectively enhanced. Further, when the total pore volume is not less than the above lower limit and not more than the above upper limit, it is possible to further effectively enhance the adhesion of the conductive portion in the conductive particle, and the peeling of the conductive portion in the conductive particle occurs. Can be suppressed more effectively.
[0077] 上記基材粒子の全細孔容積は、 巳」 1~1法に準拠して、 窒素の吸着等温線か ら測定することができる。 上記基材粒子の全細孔容積の測定装置としては、 カンタクローム ·インスツルメンツ社製 「1\1〇 八 4 2 0 0 6」 等が挙げら れる。 \¥0 2020/175691 17 卩(:171? 2020 /008458 [0077] The total pore volume of the substrate particles, snake "compliant 1 to 1 method, it is possible to measure the adsorption isotherm or these nitrogen. An example of a device for measuring the total pore volume of the base particles is "1\10 8 4 2 0 0 6" manufactured by Kantachrome Instruments Co., Ltd. \¥0 2020/175691 17 卩 (: 171? 2020 /008458
[0078] 上記基材粒子の平均細孔径は、 好ましくは 1 0 n
Figure imgf000019_0001
以下、 より好ましくは
[0078] The average pore diameter of the base particles is preferably 10 n.
Figure imgf000019_0001
Or less, more preferably
5门 以下である。 上記基材粒子の平均細孔径の下限は特に限定されない。 上記基材粒子の平均細孔径は、 1
Figure imgf000019_0002
以上であってもよい。 上記平均細孔径 が、 上記下限以上及び上記上限以下であると、 基材粒子の内部に導電性金属 をより一層容易に含有させることができる。 上記平均細孔径が、 上記下限以 上及び上記上限以下であると、 電極間の接続抵抗をより一層効果的に低くす ることができ、 導電性粒子同士の凝集の発生をより一層効果的に抑制するこ とができる。 また、 上記平均細孔径が、 上記下限以上及び上記上限以下であ ると、 電極間の絶縁信頼をより一層効果的に高めることができる。 また、 上 記平均細孔径が、 上記下限以上及び上記上限以下であると、 導電性粒子にお ける導電部の密着性をより一層効果的に高めることができ、 導電性粒子にお ける導電部の剥がれの発生をより一層効果的に抑制することができる。
It is 5 or less. The lower limit of the average pore size of the base particles is not particularly limited. The average pore size of the base particles is 1
Figure imgf000019_0002
It may be more. When the average pore diameter is not less than the above lower limit and not more than the above upper limit, the conductive metal can be contained in the base material particles more easily. When the average pore diameter is equal to or more than the lower limit and equal to or less than the upper limit, the connection resistance between the electrodes can be further effectively reduced, and the aggregation of the conductive particles can be more effectively generated. Can be suppressed. Further, when the average pore diameter is equal to or more than the lower limit and equal to or less than the upper limit, insulation reliability between electrodes can be more effectively enhanced. Further, when the above average pore diameter is not less than the above lower limit and not more than the above upper limit, the adhesion of the conductive part in the conductive particle can be more effectively enhanced, and the conductive part in the conductive particle can be improved. The occurrence of peeling can be suppressed more effectively.
[0079] 上記基材粒子の平均細孔径は、 巳」 1~1法に準拠して、 窒素の吸着等温線か ら測定することができる。 上記基材粒子の平均細孔径の測定装置としては、 カンタクローム ·インスツルメンツ社製 「1\1〇 八 4 2 0 0 6」 等が挙げら れる。 [0079] The average pore diameter of the base particles, snake "compliant 1 to 1 method, it is possible to measure the adsorption isotherm or these nitrogen. An example of a device for measuring the average pore diameter of the base particles is "1\10 8 4 2 0 0 6" manufactured by Kantachrome Instruments Co., Ltd. and the like.
[0080] 上記基材粒子の空隙率は、 好ましくは 5 %以上、 より好ましくは 1 0 %以 上であり、 好ましくは 9 0 %以下、 より好ましくは 7 0 %以下である。 上記 空隙率が、 上記下限以上及び上記上限以下であると、 基材粒子の内部に導電 性金属をより一層容易に含有させることができる。 上記空隙率が、 上記下限 以上及び上記上限以下であると、 電極間の接続抵抗をより一層効果的に低く することができ、 導電性粒子同士の凝集の発生をより一層効果的に抑制する ことができる。 また、 上記空隙率が、 上記下限以上及び上記上限以下である と、 電極間の絶縁信頼をより一層効果的に高めることができる。 また、 上記 空隙率が、 上記下限以上及び上記上限以下であると、 導電性粒子における導 電部の密着性をより一層効果的に高めることができ、 導電性粒子における導 電部の剥がれの発生をより一層効果的に抑制することができる。 [0080] The porosity of the base particles is preferably 5% or more, more preferably 10% or more, preferably 90% or less, more preferably 70% or less. When the porosity is not less than the above lower limit and not more than the above upper limit, the conductive metal can be contained in the base material particles more easily. When the porosity is equal to or higher than the lower limit and equal to or lower than the upper limit, the connection resistance between the electrodes can be reduced more effectively, and the occurrence of aggregation of the conductive particles can be suppressed more effectively. You can Further, when the porosity is equal to or higher than the lower limit and equal to or lower than the upper limit, the insulation reliability between the electrodes can be more effectively enhanced. Further, when the porosity is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively enhance the adhesion of the conductive part in the conductive particle, and the peeling of the conductive part in the conductive particle occurs. Can be suppressed more effectively.
[0081 ] 上記基材粒子の空隙率は、 水銀圧入法により印加した圧力に対して水銀の \¥0 2020/175691 18 卩(:171? 2020 /008458 [0081] The porosity of the above-mentioned base particles is determined by measuring the mercury content against the pressure applied by the mercury penetration method. \¥0 2020/175691 18 卩 (: 171? 2020 /008458
積算侵入量を測定することで算出することができる。 上記基材粒子の空隙率 の測定装置としては、 カンタクローム ·インスツルメンツ社製の水銀ポロシ メーター 「ポアーマスター 6 0」 等が挙げられる。 It can be calculated by measuring the total intrusion amount. As a measuring device for the porosity of the base particles, a mercury porosimeter “Poremaster 60” manufactured by Kantachrome Instruments, Inc. may be mentioned.
[0082] 上記巳巳丁比表面積及び上記空隙率等の好ましい範囲を満足する基材粒子 は、 例えば、 下記の工程を備える基材粒子の製造方法により得ることができ る。 重合性モノマーと、 上記重合性モノマーとは反応しない有機溶剤とを混 合し、 重合性モノマー溶液を調整する工程。 上記重合性モノマー溶液と、 ア ニオン性分散安定剤とを極性溶媒に添加して乳化させて乳化液を得る工程。 上記乳化液を数回に分けて添加し、 種粒子にモノマーを吸収させて、 モノマ —が膨潤した種粒子を含む懸濁液を得る工程。 上記重合性モノマーを重合さ せて基材粒子を得る工程。 上記重合性モノマーとしては、 単官能性モノマー 、 及び多官能性モノマー等が挙げられる。 上記重合性モノマーとは反応しな い有機溶剤は、 重合系の媒体である水等の極性溶媒と相溶しないものであれ ば、 特に限定されない。 上記有機溶剤としては、 シクロヘキサン、 トルエン 、 キシレン、 酢酸エチル、 酢酸プチル、 酢酸アリル、 酢酸プロピル、 クロロ ホルム、 メチルシクロヘキサン、 及びメチルエチルケトン等が挙げられる。 上記有機溶剤の添加量は、 上記重合性モノマー成分 1 〇〇重量部に対して、 The base material particles satisfying the preferable ranges of the above-mentioned specific surface area and the porosity can be obtained, for example, by the method for producing base material particles including the following steps. A step of mixing the polymerizable monomer and an organic solvent that does not react with the polymerizable monomer to prepare a polymerizable monomer solution. A step of adding the above-mentioned polymerizable monomer solution and an anionic dispersion stabilizer to a polar solvent and emulsifying to obtain an emulsion. A step of adding the emulsion to the seed particles so that the seed particles absorb the monomer to obtain a suspension containing the seed particles in which the monomer is swollen. A step of polymerizing the polymerizable monomer to obtain base particles. Examples of the polymerizable monomer include monofunctional monomers and polyfunctional monomers. The organic solvent that does not react with the polymerizable monomer is not particularly limited as long as it is incompatible with a polar solvent such as water that is a polymerization medium. Examples of the organic solvent include cyclohexane, toluene, xylene, ethyl acetate, butyl acetate, allyl acetate, propyl acetate, chloroform, methylcyclohexane, and methylethylketone. The amount of the organic solvent added is 100 parts by weight of the polymerizable monomer component.
1 0 5重量部〜 2 1 5重量部であることが好ましく、 1 1 0重量部〜 2 1 0 重量部であることがより好ましい。 上記有機溶剤の添加量が、 上記の好まし い範囲であると、 巳巳丁比表面積、 及び空隙率等をより一層好適な範囲に制 御することができ、 粒子内部で緻密な細孔が得られやすくなる。 It is preferably from 105 parts by weight to 215 parts by weight, and more preferably from 110 parts by weight to 210 parts by weight. When the amount of the organic solvent added is in the above-mentioned preferred range, the Mitsumi specific surface area, the porosity, etc. can be controlled to a more suitable range, and the fine pores inside the particles can be controlled. It will be easier to obtain.
[0083] 上記巳巳丁比表面積及び上記空隙率等の好ましい範囲を満足する基材粒子 は、 基材粒子の内部に比較的多くの空隙が存在するため、 基材粒子の表面上 に導電部を形成する際に、 基材粒子の内部の微細な空隙に導電部が入り込み 、 基材粒子の内部に導電性金属を容易に含有させることができる。 さらに、 上記導電性粒子では、 上下方向の電極間の接続時に導電性粒子が圧縮される ことで、 基材粒子の内部の導電性金属が互いに接触することで導通経路が形 成されることが好ましい。 上記導電性粒子では、 導電性粒子の表面 (導電部 \¥0 2020/175691 19 卩(:171? 2020 /008458 [0083] The base material particles satisfying the preferable ranges such as the above-mentioned specific surface area of Mitsumi and the above-mentioned porosity have a relatively large number of voids inside the base material particles, so that the conductive part is present on the surface of the base material particles. At the time of forming, the conductive part enters into the fine voids inside the base material particles, and the conductive metal can be easily contained inside the base material particles. Furthermore, in the above-mentioned conductive particles, the conductive particles may be compressed when the electrodes are connected in the vertical direction, so that the conductive metals inside the base material particles may come into contact with each other to form a conduction path. preferable. In the above conductive particles, the surface of the conductive particles (conductive part \¥0 2020/175691 19 卩 (: 171? 2020 /008458
) に導通経路が形成されるだけではなく、 導電性粒子の内部 (導電性金属) にも導通経路が形成される。 結果として、 導電部の厚みが比較的薄い場合で も、 上下方向の電極間の接続抵抗を十分に低くすることができる。 また、 導 電部の厚みが比較的薄いので、 導電性粒子同士の凝集の発生を抑制すること ができ、 接続されてはならない横方向に隣接する電極間の絶縁信頼性を効果 的に高めることができる。 また、 上記導電性粒子では、 基材粒子の表面上に 導電部を形成する際に、 基材粒子の内部の微細な空隙に導電部が入り込むの で、 導電性粒子における導電部の密着性を効果的に高めることができ、 導電 性粒子における導電部の剥がれの発生を効果的に抑制することができる。 ), a conductive path is formed not only in the conductive particles but also in the conductive particles (conductive metal). As a result, the connection resistance between the electrodes in the vertical direction can be made sufficiently low even when the conductive portion is relatively thin. In addition, since the thickness of the conductive part is relatively thin, it is possible to suppress the occurrence of aggregation of conductive particles, and to effectively increase the insulation reliability between the electrodes that are not connected and are laterally adjacent to each other. You can Further, in the above-mentioned conductive particles, when forming the conductive part on the surface of the base material particle, the conductive part enters into the fine voids inside the base material particle, so that the adhesion of the conductive part in the conductive particle is improved. It can be effectively increased, and peeling of the conductive portion of the conductive particles can be effectively suppressed.
[0084] 上記基材粒子の粒子径は、 好ましくは 0 . 1 以上、 より好ましくは 1 以上である。 上記基材粒子の粒子径は、 好ましくは 1 0 0 0 以下、 より好ましくは 5 0 0 以下、 より一層好ましくは 3 0 0 以下、 さら に好ましくは 5 0 以下、 さらに一層好ましくは 1 〇 以下である。 上 記基材粒子の粒子径が上記下限以上であると、 導電性粒子と電極との接触面 積が大きくなるため、 電極間の導通信頼性をより一層高めることができ、 導 電性粒子を介して接続された電極間の接続抵抗をより一層低くすることがで きる。 さらに、 基材粒子の表面に導電部を無電解めっきにより形成する際に 、 凝集した導電性粒子を形成され難くすることができる。 上記基材粒子の粒 子径が上記上限以下であると、 導電性粒子が十分に圧縮されやすく、 電極間 の接続抵抗をより一層低くすることができ、 さらに電極間の間隔をより小さ くすることができる。 [0084] The particle diameter of the base particles is preferably 0.1 or more, and more preferably 1 or more. The particle size of the base particles is preferably 100 or less, more preferably 500 or less, even more preferably 300 or less, further preferably 50 or less, and still more preferably 10 or less. is there. When the particle diameter of the above-mentioned base material particles is not less than the above lower limit, the contact surface area between the conductive particles and the electrodes becomes large, so that the conduction reliability between the electrodes can be further enhanced, and the conductive particles can be It is possible to further lower the connection resistance between the electrodes connected through. Further, when the electroconductive portion is formed on the surface of the base material particle by electroless plating, it is possible to make it difficult for the aggregated electroconductive particles to be formed. When the particle size of the base material particles is equal to or less than the above upper limit, the conductive particles are easily compressed, the connection resistance between the electrodes can be further reduced, and the distance between the electrodes can be further reduced. be able to.
[0085] 上記基材粒子の粒子径は、 1 以上 3 以下であることが特に好まし い。 上記基材粒子の粒子径が、 1 以上 3 以下の範囲内であると、 基 材粒子の表面に導電部を形成する際に凝集し難くなり、 凝集した導電性粒子 が形成され難くなる。 [0085] It is particularly preferable that the particle diameter of the base particles is 1 or more and 3 or less. When the particle diameter of the base particles is in the range of 1 or more and 3 or less, it becomes difficult to aggregate when forming the conductive portion on the surface of the base particles, and it becomes difficult to form the aggregated conductive particles.
[0086] 上記基材粒子の粒子径は、 数平均粒子径を示す。 上記基材粒子の粒子径は 、 任意の基材粒子 5 0個を電子顕微鏡又は光学顕微鏡にて観察し、 各基材粒 子の粒子径の平均値を算出することや、 粒度分布測定装置を用いて求められ \¥02020/175691 20 卩(:171?2020/008458 [0086] The particle diameter of the above-mentioned base particles indicates the number average particle diameter. The particle diameter of the above-mentioned base particles is calculated by observing 50 arbitrary base material particles with an electron microscope or an optical microscope and calculating the average value of the particle diameters of each base material particle. Sought using \¥02020/175691 20 units (: 171?2020/008458
る。 電子顕微鏡又は光学顕微鏡での観察では、 1個当たりの基材粒子の粒子 径は、 円相当径での粒子径として求められる。 電子顕微鏡又は光学顕微鏡で の観察において、 任意の 5 0個の基材粒子の円相当径での平均粒子径は、 球 相当径での平均粒子径とほぼ等しくなる。 粒度分布測定装置では、 1個当た りの基材粒子の粒子径は、 球相当径での粒子径として求められる。 上記基材 粒子の平均粒子径は、 粒度分布測定装置を用いて算出することが好ましい。 導電性粒子において、 上記基材粒子の粒子径を測定する場合には、 例えば、 以下のようにして測定できる。 It When observed with an electron microscope or an optical microscope, the particle size of each base particle is determined as the particle size in terms of equivalent circle diameter. In the observation with an electron microscope or an optical microscope, the average particle size of the circle equivalent diameter of any 50 base particles is almost equal to the average particle diameter of the spherical equivalent diameter. With a particle size distribution measuring device, the particle size of each base particle is calculated as the particle size in terms of sphere equivalent diameter. The average particle size of the base material particles is preferably calculated using a particle size distribution measuring device. In the case of measuring the particle size of the above-mentioned base particles in the conductive particles, it can be measured as follows, for example.
[0087] 導電性粒子の含有量が 3 0重量%となるように、 リ 丨
Figure imgf000022_0001
「社製 「テク ノビッ ト 4 0 0 0」 に添加し、 分散させて、 導電性粒子検査用埋め込み樹脂 を作製する。 検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通る ようにイオンミリング装置 (日立ハイテクノロジーズ社製 「丨 1\/1 4 0 0 0」
[0087] The content of the conductive particles was adjusted to 30% by weight.
Figure imgf000022_0001
It is added to "Technobit 400 00 manufactured by the company" and dispersed to prepare an embedded resin for conductive particle inspection. Ion milling equipment (“Hitachi High Technologies Co., Ltd.” 1\/1400) so that it passes through the center of the conductive particles dispersed in the inspection resin
) を用いて、 導電性粒子の断面を切り出す。 そして、 電界放射型走査型電子 顕微鏡 ( 巳一3巳1\/1) を用いて、 画像倍率を 2 5 0 0 0倍に設定し、 5 0 個の導電性粒子を無作為に選択し、 各導電性粒子の基材粒子を観察する。 各 導電性粒子における基材粒子の粒子径を計測し、 それらを算術平均して基材 粒子の粒子径とする。 ) Is used to cut out the cross section of the conductive particle. Then, using a field emission scanning electron microscope (Minichi 3M 1\/1), the image magnification was set to 2,500, and 50 conductive particles were randomly selected. The base particles of each conductive particle are observed. The particle diameter of the base material particles in each conductive particle is measured, and they are arithmetically averaged to obtain the particle diameter of the base material particles.
[0088] (導電部及び導電性金属) [0088] (Conductive Part and Conductive Metal)
本発明に係る導電性粒子は、 基材粒子と、 上記基材粒子の表面上に配置さ れた導電部とを備える。 本発明に係る導電性粒子では、 上記基材粒子が、 上 記基材粒子の内部に導電性金属を含有する。 上記導電部は、 金属を含むこと が好ましい。 上記導電部を構成する金属は特に限定されない。 上記導電性金 属は特に限定されない。 上記導電部を構成する金属と上記導電性金属とは同 一の金属であってもよく、 異なる金属であってもよい。 上記導電部に最も多 く含まれる金属と上記導電性金属に最も多く含まれる金属とは、 同一である ことが好ましい。 The conductive particles according to the present invention include base particles and conductive parts arranged on the surfaces of the base particles. In the conductive particle according to the present invention, the base material particle contains a conductive metal inside the base material particle. The conductive portion preferably contains a metal. The metal forming the conductive part is not particularly limited. The conductive metal is not particularly limited. The metal forming the conductive part and the conductive metal may be the same metal or different metals. It is preferable that the metal most contained in the conductive portion and the metal most contained in the conductive metal are the same.
[0089] 上記導電部を構成する金属及び上記導電性金属としては、 金、 銀、 パラジ ウム、 銅、 白金、 亜鉛、 鉄、 錫、 鉛、 アルミニウム、 コバルト、 インジウム \¥02020/175691 21 卩(:171?2020/008458 [0089] Examples of the metal forming the conductive part and the conductive metal include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium. \¥02020/175691 21 卩 (: 171?2020/008458
、 ニッケル、 クロム、 チタン、 アンチモン、 ビスマス、 タリウム、 ゲルマニ ウム、 カドミウム、 ケイ素、 タングステン、 モリブデン及びこれらの合金等 が挙げられる。 また、 上記導電部を構成する金属及び上記導電性金属として は、 錫ドープ酸化インジウム (丨 丁〇) 及びはんだ等が挙げられる。 上記導 電部を構成する金属及び上記導電性金属は 1種のみが用いられてもよく、 2 種以上が併用されてもよい。 , Nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, silicon, tungsten, molybdenum, and alloys thereof. Further, examples of the metal and the conductive metal forming the conductive portion include tin-doped indium oxide (poor) and solder. Only one type of metal or the conductive metal may be used, or two or more types may be used in combination.
[0090] 電極間の接続抵抗をより一層効果的に低くする観点からは、 上記導電部は 、 ニッケル、 金、 パラジウム、 銀、 又は銅を含むことが好ましく、 ニッケル 、 金又はパラジウムを含むことがより好ましい。 From the viewpoint of further effectively reducing the connection resistance between the electrodes, the conductive portion preferably contains nickel, gold, palladium, silver, or copper, and may contain nickel, gold, or palladium. More preferable.
[0091 ] ニッケルを含む導電部 1 0 0重量%中のニッケルの含有量は、 好ましくは [0091] The content of nickel in 100% by weight of the conductive portion containing nickel is preferably
1 0重量%以上、 より好ましくは 5 0重量%以上、 より一層好ましくは 6 0 重量%以上、 さらに好ましくは 7 0重量%以上、 特に好ましくは 9 0重量% 以上である。 上記ニッケルを含む導電部 1 0 0重量%中のニッケルの含有量 は、 9 7重量%以上であってもよく、 9 7 . 5重量%以上であってもよく、 The amount is 10% by weight or more, more preferably 50% by weight or more, even more preferably 60% by weight or more, further preferably 70% by weight or more, and particularly preferably 90% by weight or more. The content of nickel in 100% by weight of the conductive portion containing nickel may be 97% by weight or more, or 97.5% by weight or more,
9 8重量%以上であってもよい。 It may be 98% by weight or more.
[0092] なお、 導電部の表面には、 酸化により水酸基が存在することが多い。 一般 的に、 ニッケルにより形成された導電部の表面には、 酸化により水酸基が存 在する。 このような水酸基を有する導電部の表面 (導電性粒子の表面) に、 化学結合を介して、 絶縁性物質を配置できる。 [0092] Note that hydroxyl groups often exist on the surface of the conductive portion due to oxidation. Generally, hydroxyl groups are present on the surface of the conductive portion formed of nickel due to oxidation. An insulating substance can be arranged on the surface of the conductive part having such a hydroxyl group (the surface of the conductive particles) through a chemical bond.
[0093] 上記導電部は、 1つの層により形成されていてもよい。 上記導電部は、 複 数の層により形成されていてもよい。 すなわち、 上記導電部は、 2層以上の 積層構造を有していてもよい。 上記導電部が複数の層により形成されている 場合には、 最外層を構成する金属は、 金、 ニッケル、 パラジウム、 銅又は錫 と銀とを含む合金であることが好ましく、 金であることがより好ましい。 最 外層を構成する金属がこれらの好ましい金属である場合には、 電極間の接続 抵抗がより一層低くなる。 また、 最外層を構成する金属が金である場合には 、 耐腐食性がより一層高くなる。 The conductive section may be formed of one layer. The conductive part may be formed of a plurality of layers. That is, the conductive part may have a laminated structure of two or more layers. When the conductive part is formed of a plurality of layers, the metal forming the outermost layer is preferably gold, nickel, palladium, copper or an alloy containing tin and silver, and is preferably gold. More preferable. When the metal forming the outermost layer is one of these preferable metals, the connection resistance between the electrodes becomes even lower. Moreover, when the metal forming the outermost layer is gold, the corrosion resistance is further enhanced.
[0094] 上記基材粒子の表面上に導電部を形成する方法は特に限定されない。 上記 \¥0 2020/175691 22 卩(:171? 2020 /008458 [0094] The method for forming the conductive portion on the surface of the base particle is not particularly limited. the above \¥0 2020/175691 22 卩 (: 171? 2020 /008458
導電部を形成する方法としては、 無電解めっきによる方法、 電気めっきによ る方法、 物理的な衝突による方法、 メカノケミカル反応による方法、 物理的 蒸着又は物理的吸着による方法、 並びに金属粉末もしくは金属粉末とバイン ダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げら れる。 上記導電部を形成する方法は、 無電解めっき、 電気めっき又は物理的 な衝突による方法であることが好ましい。 上記物理的蒸着による方法として は、 真空蒸着、 イオンプレーティング及びイオンスパッタリング等の方法が 挙げられる。 また、 上記物理的な衝突による方法としては、 シーターコンポ —ザ (徳寿工作所社製) 等が用いられる。 As the method for forming the conductive part, a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, and a metal powder or metal. Examples thereof include a method of coating the surface of the base particles with a paste containing a powder and a binder. The method for forming the conductive portion is preferably electroless plating, electroplating, or physical collision. Examples of the physical vapor deposition method include vacuum vapor deposition, ion plating, and ion sputtering. As a method of the above physical collision, a sheet composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.
[0095] 上記基材粒子の内部に導電性金属を含有させる方法は特に限定されない。 [0095] The method of incorporating a conductive metal into the base particles is not particularly limited.
上記基材粒子の内部に導電性金属を含有させる方法としては、 多孔質粒子で ある基材粒子 (基材粒子本体) を用いて無電解めっきする方法、 及び多孔質 粒子である基材粒子 (基材粒子本体) を用いて電気めっきする方法等が挙げ られる。 多孔質粒子である基材粒子 (基材粒子本体) は、 基材粒子の内部に 比較的多くの空隙が存在するため、 基材粒子の表面上に導電部を形成する際 に、 基材粒子の内部の微細な空隙に導電部形成材料 (めっき液等) を入り込 ませることができる。 基材粒子の内部に入り込んだ導電部形成材料から導電 性金属を析出させることで、 基材粒子の内部に導電性金属を容易に含有させ ることができる。 多孔質粒子である基材粒子としては、 上記巳巳丁比表面積 及び上記空隙率等の好ましい範囲を満足する基材粒子等が挙げられる。 As a method of incorporating a conductive metal into the inside of the base material particles, a method of electroless plating using base material particles (base material body) that are porous particles, and a base material particle that is porous particles ( Examples of the method include electroplating using a base particle main body). Since the base particles (main body of the base particles), which are porous particles, have a relatively large number of voids inside the base particles, the base particles cannot be used when the conductive part is formed on the surface of the base particles. The conductive part forming material (plating solution, etc.) can enter into the minute voids inside. By depositing the conductive metal from the conductive part forming material that has entered the inside of the base material particle, the conductive metal can be easily contained inside the base material particle. Examples of the base particles that are porous particles include base particles that satisfy the preferable ranges of the above-mentioned specific surface area of Mitsumi and the above-mentioned porosity.
[0096] 上記導電部の厚みは、 好ましくは〇. 0 0 5 以上、 より好ましくは 0 . 0 1 以上であり、 好ましくは 1 0 以下、 より好ましくは 1 以 下、 さらに好ましくは〇. 3 以下である。 上記導電部の厚みは、 導電部 が多層である場合には導電部全体の厚みである。 導電部の厚みが、 上記下限 以上及び上記上限以下であると、 十分な導電性が得られ、 かつ導電性粒子が 硬くなりすぎずに、 電極間の接続の際に導電性粒子を十分に変形させること ができる。 [0096] The thickness of the conductive portion is preferably 0.005 or more, more preferably 0.01 or more, preferably 10 or less, more preferably 1 or less, still more preferably 0.3 or less. Is. The thickness of the conductive portion is the thickness of the entire conductive portion when the conductive portion is a multilayer. When the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed when connecting between electrodes. Can be done.
[0097] 上記導電部が複数の層により形成されている場合に、 最外層の導電部の厚 \¥0 2020/175691 23 卩(:171? 2020 /008458 [0097] When the conductive portion is formed of a plurality of layers, the thickness of the conductive portion of the outermost layer \¥0 2020/175691 23 卩 (: 171? 2020 /008458
みは、 好ましくは〇. 0 0 1 ^ 01以上、 より好ましくは〇. 0 1 ^ 01以上で あり、 好ましくは〇. 5 以下、 より好ましくは〇. 1 以下である。 上記最外層の導電部の厚みが、 上記下限以上及び上記上限以下であると、 最 外層の導電部による被覆が均一になり、 耐腐食性が十分に高くなり、 かつ電 極間の接続抵抗を十分に低くすることができる。 また、 上記最外層を構成す る金属が金である場合には、 最外層の厚みが薄いほど、 コストを低くするこ とができる。 Is preferably 0.01 or more, more preferably 0.01 ^ 01 or more, preferably 0.5 or less, and more preferably 0.1 or less. When the thickness of the conductive portion of the outermost layer is not less than the above lower limit and not more than the above upper limit, the coating of the conductive portion of the outermost layer is uniform, the corrosion resistance is sufficiently high, and the connection resistance between the electrodes is increased. Can be low enough. When the metal forming the outermost layer is gold, the thinner the outermost layer is, the lower the cost can be.
[0098] 上記導電部の厚みは、 例えば透過型電子顕微鏡 (丁巳1\/1) を用いて、 導電 性粒子の断面を観察することにより測定できる。 上記導電部の厚みについて は、 任意の導電部の厚み 5箇所の平均値を 1個の導電性粒子の導電部の厚み として算出することが好ましく、 導電部全体の厚みの平均値を 1個の導電性 粒子の導電部の厚みとして算出することがより好ましい。 上記導電部の厚み は、 任意の導電性粒子 1 0個について、 各導電性粒子の導電部の厚みの平均 値を算出することにより求めることが好ましい。 The thickness of the conductive part can be measured by observing the cross section of the conductive particle using, for example, a transmission electron microscope (Chome 1\/1). As for the thickness of the conductive portion, it is preferable to calculate the average value of the thicknesses of 5 portions of the conductive portion as the thickness of the conductive portion of one conductive particle, and the average value of the thickness of the entire conductive portion is 1 It is more preferable to calculate as the thickness of the conductive portion of the conductive particles. The thickness of the conductive portion is preferably obtained by calculating the average value of the thickness of the conductive portion of each conductive particle for 10 arbitrary conductive particles.
[0099] 導電性粒子 1 0 0体積%中、 上記導電性金属の含有量は、 好ましくは 5体 積%以上、 より好ましくは 1 0体積%以上であり、 好ましくは 7 0体積%以 下、 より好ましくは 5 0体積%以下である。 上記導電性金属の含有量が、 上 記下限以上及び上記上限以下であると、 電極間の接続抵抗をより一層効果的 に低くすることができ、 導電性粒子同士の凝集の発生をより一層効果的に抑 制することができる。 また、 上記導電性金属の含有量が、 上記下限以上及び 上記上限以下であると、 電極間の絶縁信頼をより一層効果的に高めることが できる。 また、 上記導電性金属の含有量が、 上記下限以上及び上記上限以下 であると、 導電性粒子における導電部の密着性をより一層効果的に高めるこ とができ、 導電性粒子における導電部の剥がれの発生をより一層効果的に抑 制することができる。 導電性粒子の圧縮特性をより一層良好にする観点から は、 導電性粒子 1 〇〇体積%中における上記導電性金属の含有量は、 好まし くは 5体積%以上、 より好ましくは 1 0体積%以上であり、 好ましくは 5 0 体積%以下、 より好ましくは 4 0体積%以下である。 電極間の接続抵抗をよ \¥0 2020/175691 24 卩(:171? 2020 /008458 [0099] In 100% by volume of the conductive particles, the content of the above conductive metal is preferably 5 volume% or more, more preferably 10 volume% or more, and preferably 70 volume% or less, It is more preferably 50% by volume or less. When the content of the conductive metal is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be reduced more effectively, and the occurrence of aggregation of conductive particles is further enhanced. Can be suppressed. Moreover, when the content of the conductive metal is not less than the lower limit and not more than the upper limit, the insulation reliability between the electrodes can be more effectively enhanced. Further, when the content of the conductive metal is not less than the above lower limit and not more than the above upper limit, it is possible to further effectively improve the adhesion of the conductive portion in the conductive particle, and the conductive portion in the conductive particle The occurrence of peeling can be suppressed even more effectively. From the viewpoint of further improving the compression characteristics of the conductive particles, the content of the conductive metal in 100% by volume of the conductive particles is preferably 5% by volume or more, more preferably 10% by volume. % Or more, preferably 50% by volume or less, more preferably 40% by volume or less. The connection resistance between the electrodes \¥0 2020/1756 91 24 卩 (: 171? 2020 /008458
り一層効果的に低くする観点からは、 導電性粒子 1 0 0体積%中における上 記導電性金属の含有量は、 好ましくは 1 〇体積%以上、 より好ましくは 2 0 体積%以上であり、 好ましくは 5 0体積%以下、 より好ましくは 4 0体積% 以下である。 導電性粒子 1 0 0体積%中、 上記導電性金属の含有量は、 1 〇 体積%以上 4 0体積%以下であることが特に好ましい。 上記導電性金属の含 有量が、 1 0体積%以上 4 0体積%以下の範囲内であると、 導電性粒子の圧 縮特性を良好にすることと、 電極間の接続抵抗を低くすることとの双方をよ り高いレベルで両立させることができる。 なお、 上記導電性金属の含有量は 、 上記導電部を構成する金属と基材粒子の内部に含有された上記導電性金属 との合計の含有量を意味する。 基材粒子の内部に導電性金属が含有されてい るか否かは、 後述する第 1の割合及び第 2の割合によって判断することが好 ましい。 From the viewpoint of further effectively lowering, the content of the above-mentioned conductive metal in 100% by volume of the conductive particles is preferably 10% by volume or more, more preferably 20% by volume or more, It is preferably 50% by volume or less, more preferably 40% by volume or less. The content of the conductive metal in 100% by volume of the conductive particles is particularly preferably 10% by volume or more and 40% by volume or less. When the content of the conductive metal is in the range of 10% by volume or more and 40% by volume or less, the compression characteristics of the conductive particles are improved and the connection resistance between the electrodes is reduced. Both can be achieved at a higher level. The content of the conductive metal means the total content of the metal forming the conductive portion and the conductive metal contained inside the base particles. It is preferable to judge whether or not the conductive metal is contained inside the base material particles by the first ratio and the second ratio described later.
[0100] 上記導電性金属の含有量は、 以下のようにして算出できる。 [0100] The content of the conductive metal can be calculated as follows.
[0101 ] 導電性金属の含有量 (体積%) = 0 X 1^/ 0 01 6 1 3 I X I 0 0 [0101] Conductive metal content (% by volume) = 0 X 1^/ 0 01 6 1 3 I X I 0 0
〇 :導電性粒子の比重 〇: Specific gravity of conductive particles
IV! :導電性粒子の金属化率 IV!: Metallization rate of conductive particles
0 01㊀ 8 丨 :導電性金属の比重 0 01㊀ 8丨: Specific gravity of conductive metal
[0102] なお、 導電性粒子の金属化率は丨 〇 発光分析等を用いて算出することが でき、 導電性粒子の比重は真比重計等を用いて測定することができる。 また 、 導電性金属の比重は金属固有の値を用いて算出することができる。 なお、 導電性粒子の金属化率とは、 導電性粒子 1 9に含まれる導電性金属の含有量 (9) を比で表したもの、 すなわち、 導電性粒子 1 9に含まれる導電性金属 の含有量 ( 9) /導電性粒子 1 9を指す。 [0102] The metallization rate of the conductive particles can be calculated by using optical emission analysis or the like, and the specific gravity of the conductive particles can be measured by using a true specific gravity meter or the like. Further, the specific gravity of the conductive metal can be calculated using a value specific to the metal. The metallization rate of the conductive particles is a ratio of the content (9) of the conductive metal contained in the conductive particles 19, that is, the metal content of the conductive metal contained in the conductive particles 19. Content (9) / Refers to conductive particles 19.
[0103] 上記導電性粒子 1 0 0体積%中、 上記基材粒子に含まれる上記導電性金属 の含有量は、 好ましくは 0 . 1体積%以上、 より好ましくは 1体積%以上で あり、 好ましくは 3 0体積%以下、 より好ましくは 2 0体積%以下である。 上記導電性金属の含有量が、 上記下限以上及び上記上限以下であると、 電極 間の接続抵抗をより一層効果的に低くすることができ、 導電性粒子同士の凝 \¥0 2020/175691 25 卩(:171? 2020 /008458 [0103] In 100% by volume of the conductive particles, the content of the conductive metal contained in the base material particles is preferably 0.1% by volume or more, more preferably 1% by volume or more, and preferably Is 30% by volume or less, more preferably 20% by volume or less. When the content of the conductive metal is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively reduced, and the coagulation of the conductive particles can be reduced. \\0 2020/1756 91 25 卩 (: 171? 2020 /008458
集の発生をより一層効果的に抑制することができる。 また、 上記導電性金属 の含有量が、 上記下限以上及び上記上限以下であると、 導電性粒子における 導電部の密着性をより一層効果的に高めることができ、 導電性粒子における 導電部の剥がれの発生をより一層効果的に抑制することができる。 It is possible to more effectively suppress the occurrence of clusters. Further, when the content of the conductive metal is not less than the lower limit and not more than the upper limit, the adhesion of the conductive part in the conductive particle can be more effectively enhanced, and the conductive part in the conductive particle is peeled off. Can be suppressed more effectively.
[0104] 導電性粒子の圧縮特性をより一層良好にする観点からは、 上記導電性粒子 [0104] From the viewpoint of further improving the compression characteristics of the conductive particles, the conductive particles are
1 0 0体積%中、 上記導電部に含まれる上記導電性金属の含有量は、 好まし くは〇. 1体積%以上、 より好ましくは 1体積%以上であり、 好ましくは 3 0体積%以下、 より好ましくは 2 0体積%以下である。 電極間の接続抵抗を より一層効果的に低くする観点からは、 上記導電性粒子 1 0 0体積%中、 上 記導電部に含まれる上記導電性金属の含有量は、 好ましくは 0 . 1体積%以 上、 より好ましくは 1体積%以上であり、 好ましくは 3 0体積%以下、 より 好ましくは 2 0体積%以下である。 In 100% by volume, the content of the above-mentioned conductive metal contained in the above-mentioned conductive portion is preferably 0.1% by volume or more, more preferably 1% by volume or more, and preferably 30% by volume or less. , And more preferably 20% by volume or less. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the content of the conductive metal contained in the conductive part in the conductive particles of 100% by volume is preferably 0.1 volume. % Or more, more preferably 1% by volume or more, preferably 30% by volume or less, more preferably 20% by volume or less.
[0105] (芯物質) [0105] (Core substance)
上記導電性粒子は、 上記導電部の外表面に突起を有することが好ましい。 上記導電性粒子は、 導電性の表面に突起を有することが好ましい。 上記突起 は、 複数であることが好ましい。 導電性粒子により接続される電極の表面に は、 酸化被膜が形成されていることが多い。 導電部の表面に突起を有する導 電性粒子を用いた場合には、 電極間に導電性粒子を配置して圧着させること により、 突起により上記酸化被膜を効果的に排除できる。 このため、 電極と 導電部とがより一層確実に接触し、 電極間の接続抵抗がより一層低くなる。 さらに、 導電性粒子が絶縁性物質を備える場合に、 又は導電性粒子がバイン ダー樹脂に分散されて導電材料として用いられる場合に、 導電性粒子の突起 によって、 導電性粒子と電極との間の絶縁性物質又はバインダー樹脂をより 一層効果的に排除できる。 このため、 電極間の接続抵抗をより一層低くする ことができる。 The conductive particles preferably have protrusions on the outer surface of the conductive portion. The conductive particles preferably have protrusions on the conductive surface. It is preferable that the protrusions are plural. An oxide film is often formed on the surface of the electrode connected by the conductive particles. When conductive particles having protrusions on the surface of the conductive portion are used, the oxide film can be effectively eliminated by the protrusions by disposing the conductive particles between the electrodes and pressing them. For this reason, the electrodes and the conductive portion are more surely brought into contact with each other, and the connection resistance between the electrodes is further reduced. Furthermore, when the conductive particles include an insulating material, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the protrusions of the conductive particles cause a gap between the conductive particles and the electrode. The insulating material or binder resin can be eliminated even more effectively. Therefore, the connection resistance between the electrodes can be further reduced.
[0106] 上記芯物質が金属により形成されており、 かつ上記芯物質が上記導電部内 に存在する場合に、 上記芯物質は、 上記導電部の一部とみなす。 [0106] When the core substance is formed of a metal and the core substance exists in the conductive part, the core substance is regarded as a part of the conductive part.
[0107] 上記突起を形成する方法としては、 基材粒子の表面に芯物質を付着させた \¥0 2020/175691 26 卩(:171? 2020 /008458 [0107] As a method for forming the protrusions, a core substance was attached to the surface of the base material particles. \¥0 2020/1756 91 26 卩 (: 171? 2020 /008458
後、 無電解めっきにより導電部を形成する方法、 並びに基材粒子の表面に無 電解めっきにより導電部を形成した後、 芯物質を付着させ、 さらに無電解め っきにより導電部を形成する方法等が挙げられる。 また、 上記突起を形成す るために、 上記芯物質を用いなくてもよい。 After that, a method of forming a conductive part by electroless plating, and a method of forming a conductive part on the surface of a base material particle by electroless plating, then attaching a core substance, and then forming a conductive part by electroless plating Etc. Further, the core substance may not be used to form the protrusion.
[0108] 上記突起を形成する他の方法としては、 基材粒子の表面上に導電部を形成 する途中段階で、 芯物質を添加する方法等が挙げられる。 また、 突起を形成 するために、 上記芯物質を用いずに、 基材粒子に無電解めっきにより導電部 を形成した後、 導電部の表面上に突起状にめっきを析出させ、 さらに無電解 めっきにより導電部を形成する方法等を用いてもよい。 [0108] As another method of forming the protrusions, a method of adding a core substance in the middle of forming the conductive portion on the surface of the base material particles may be mentioned. In order to form protrusions, the conductive material is formed on the base particles by electroless plating without using the above core substance, and then plating is deposited in the form of protrusions on the surface of the conductive portion. You may use the method of forming a conductive part by.
[0109] 基材粒子の表面に芯物質を付着させる方法としては、 基材粒子の分散液中 に、 芯物質を添加し、 基材粒子の表面に芯物質を、 ファンデルワールスカに より集積させ、 付着させる方法、 並びに基材粒子を入れた容器に、 芯物質を 添加し、 容器の回転等による機械的な作用により基材粒子の表面に芯物質を 付着させる方法等が挙げられる。 付着させる芯物質の量を制御する観点から は、 基材粒子の表面に芯物質を付着させる方法は、 分散液中の基材粒子の表 面に芯物質を集積させ、 付着させる方法であることが好ましい。 [0109] As a method of attaching the core substance to the surface of the base material particle, the core substance is added to the dispersion liquid of the base material particle, and the core substance is accumulated on the surface of the base material particle by Van der Waalsca. And a method of adhering the core substance to the surface of the base material particles by a mechanical action such as rotation of the container. From the viewpoint of controlling the amount of core substance to be attached, the method of attaching the core substance to the surface of the base material particles is a method of accumulating and attaching the core substance on the surface of the base material particles in the dispersion liquid. Is preferred.
[01 10] 上記芯物質を構成する物質としては、 導電性物質及び非導電性物質が挙げ られる。 上記導電性物質としては、 金属、 金属の酸化物、 黒鉛等の導電性非 金属及び導電性ポリマー等が挙げられる。 上記導電性ポリマーとしては、 ポ リアセチレン等が挙げられる。 上記非導電性物質としては、 シリカ、 アルミ ナ及びジルコニア等が挙げられる。 酸化被膜をより一層効果的に排除する観 点からは、 上記芯物質は硬い方が好ましい。 電極間の接続抵抗をより一層効 果的に低くする観点からは、 上記芯物質は、 金属であることが好ましい。 [0110] Examples of the substance forming the core substance include a conductive substance and a non-conductive substance. Examples of the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene. Examples of the non-conductive substance include silica, alumina and zirconia. From the viewpoint of more effectively eliminating the oxide film, the core substance is preferably hard. From the viewpoint of effectively lowering the connection resistance between the electrodes, the core substance is preferably a metal.
[01 1 1 ] 上記金属は特に限定されない。 上記金属としては、 金、 銀、 銅、 白金、 亜 鉛、 鉄、 鉛、 錫、 アルミニウム、 コバルト、 インジウム、 ニッケル、 クロム 、 チタン、 アンチモン、 ビスマス、 ゲルマニウム及びカドミウム等の金属、 並びに錫一鉛合金、 錫一銅合金、 錫一銀合金、 錫一鉛一銀合金及び炭化タン グステン等の 2種類以上の金属で構成される合金等が挙げられる。 電極間の \¥02020/175691 27 卩(:171?2020/008458 [01 11] The above metal is not particularly limited. Examples of the metal include gold, silver, copper, platinum, lead, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead alloys. , Tin-copper alloy, tin-silver alloy, tin-lead-silver alloy, and tungsten carbide alloys composed of two or more metals. Between electrodes \¥02020/175691 27 卩 (: 171?2020/008458
接続抵抗をより一層効果的に低くする観点からは、 上記金属は、 ニッケル、 銅、 銀又は金であることが好ましい。 上記金属は、 上記導電部 (導電層) を 構成する金属と同じであってもよく、 異なっていてもよい。 From the viewpoint of further effectively lowering the connection resistance, the metal is preferably nickel, copper, silver or gold. The metal may be the same as or different from the metal forming the conductive part (conductive layer).
[01 12] 上記芯物質の形状は特に限定されない。 芯物質の形状は塊状であることが 好ましい。 芯物質としては、 粒子状の塊、 複数の微小粒子が凝集した凝集塊 、 及び不定形の塊等が挙げられる。 [0112] The shape of the core substance is not particularly limited. The shape of the core substance is preferably massive. Examples of the core substance include particulate lumps, agglomerates of a plurality of fine particles, and amorphous lumps.
[01 13] 上記芯物質の粒子径は、 好ましくは〇. 0 0 1 以上、 より好ましくは 〇. 0 5 01以上、 好ましくは〇. 9 〇!以下、 より好ましくは〇. 2 〇! 以下である。 上記芯物質の粒子径が、 上記下限以上及び上限以下であると、 電極間の接続抵抗をより一層効果的に低くすることができる。 [0113] The particle diameter of the core substance is preferably 〇 0.011 or more, more preferably 〇 0.0501 or more, preferably 〇 0.9 〇! or less, more preferably 〇 0.2 〇! is there. When the particle size of the core substance is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be lowered more effectively.
[01 14] 上記芯物質の粒子径は、 平均粒子径であることが好ましく、 数平均粒子径 であることがより好ましい。 芯物質の粒子径は、 任意の芯物質 5 0個を電子 顕微鏡又は光学顕微鏡にて観察し、 各芯物質の粒子径の平均値を算出するこ とや、 粒度分布測定装置を用いて求められる。 電子顕微鏡又は光学顕微鏡で の観察では、 1個当たりの芯物質の粒子径は、 円相当径での粒子径として求 められる。 電子顕微鏡又は光学顕微鏡での観察において、 任意の 5 0個の芯 物質の円相当径での平均粒子径は、 球相当径での平均粒子径とほぼ等しくな る。 粒度分布測定装置では、 1個当たりの芯物質の粒子径は、 球相当径での 粒子径として求められる。 上記芯物質の平均粒子径は、 粒度分布測定装置を 用いて算出することが好ましい。 [0114] The particle diameter of the core substance is preferably an average particle diameter, and more preferably a number average particle diameter. The particle size of the core substance can be obtained by observing 50 arbitrary core substances with an electron microscope or an optical microscope and calculating the average value of the particle size of each core substance, or by using a particle size distribution measuring device. .. When observed with an electron microscope or an optical microscope, the particle size of each core substance can be calculated as the particle size at the equivalent circle diameter. When observed with an electron microscope or an optical microscope, the average particle diameter of any 50 core substances at the circle equivalent diameter is almost equal to the average particle diameter at the sphere equivalent diameter. With a particle size distribution analyzer, the particle size of each core substance is calculated as the particle size in terms of sphere equivalent diameter. The average particle size of the core substance is preferably calculated using a particle size distribution measuring device.
[01 15] 上記導電性粒子 1個当たりの上記突起の数は、 好ましくは 3個以上、 より 好ましくは 5個以上である。 上記突起の数の上限は特に限定されない。 上記 突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。 上記突 起の数が、 上記下限以上であると、 電極間の接続抵抗をより一層効果的に低 くすることができる。 [0115] The number of the protrusions per one conductive particle is preferably 3 or more, more preferably 5 or more. The upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the conductive particles and the like. When the number of protrusions is equal to or more than the lower limit, the connection resistance between the electrodes can be reduced more effectively.
[01 16] 上記突起の数は、 任意の導電性粒子を電子顕微鏡又は光学顕微鏡にて観察 して算出することができる。 上記突起の数は、 任意の導電性粒子 5 0個を電 子顕微鏡又は光学顕微鏡にて観察し、 各導電性粒子における突起の数の平均 \¥0 2020/175691 28 卩(:171? 2020 /008458 値を算出することにより求めることが好ましい。 The number of protrusions can be calculated by observing arbitrary conductive particles with an electron microscope or an optical microscope. The number of protrusions is the average of the number of protrusions in each conductive particle when 50 conductive particles are observed with an electron microscope or an optical microscope. \¥0 2020/175691 28 (:171? 2020/008458) It is preferable to obtain by calculating the value.
[01 17] 上記突起の高さは、 好ましくは〇. 0 0 1 以上、 より好ましくは〇. [0117] The height of the protrusions is preferably ◯0.01 or more, more preferably ◯.
0 5 以上であり、 好ましくは〇. 9 以下、 より好ましくは〇. 2 以下である。 上記突起の高さが、 上記下限以上及び上記上限以下であると 、 電極間の接続抵抗をより一層効果的に低くすることができる。 It is 0 5 or more, preferably 0.9 or less, and more preferably 0.2 or less. When the height of the protrusion is equal to or more than the lower limit and equal to or less than the upper limit, the connection resistance between the electrodes can be reduced more effectively.
[01 18] 上記突起の高さは、 任意の導電性粒子における突起を電子顕微鏡又は光学 顕微鏡にて観察して算出することができる。 上記突起の高さは、 導電性粒子 1個当たりのすべての突起の高さの平均値を 1個の導電性粒子の突起の高さ として算出することが好ましい。 上記突起の高さは、 任意の導電性粒子 5 0 個について、 各導電性粒子の突起の高さの平均値を算出することにより求め ることが好ましい。 [0118] The height of the protrusions can be calculated by observing the protrusions in arbitrary conductive particles with an electron microscope or an optical microscope. The height of the projections is preferably calculated by taking the average value of the heights of all the projections per conductive particle as the height of the projection of one conductive particle. The height of the projections is preferably obtained by calculating an average value of the heights of the projections of the conductive particles for 50 arbitrary conductive particles.
[01 19] (絶縁性物質) [01 19] (Insulating material)
上記導電性粒子は、 上記導電部の外表面上に配置された絶縁性物質を備え ることが好ましい。 この場合には、 上記導電性粒子を電極間の接続に用いる と、 隣接する電極間の短絡をより一層効果的に防止できる。 具体的には、 複 数の導電性粒子が接触したときに、 複数の電極間に絶縁性物質が存在するの で、 上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。 な お、 電極間の接続の際に、 2つの電極で導電性粒子を加圧することにより、 導電性粒子の導電部と電極との間の絶縁性物質を容易に排除できる。 さらに 、 導電部の外表面に突起を有する導電性粒子である場合には、 導電性粒子の 導電部と電極との間の絶縁性物質をより一層容易に排除できる。 The conductive particles preferably include an insulating substance arranged on the outer surface of the conductive portion. In this case, if the conductive particles are used for connecting the electrodes, a short circuit between adjacent electrodes can be prevented more effectively. Specifically, when a plurality of conductive particles come into contact with each other, an insulating substance exists between the plurality of electrodes, so that it is possible to prevent a short circuit between laterally adjacent electrodes instead of between the upper and lower electrodes. In addition, when connecting the electrodes, the conductive particles are pressed by the two electrodes, so that the insulating substance between the conductive portion of the conductive particles and the electrodes can be easily eliminated. Furthermore, in the case of conductive particles having protrusions on the outer surface of the conductive portion, the insulating substance between the conductive portion of the conductive particles and the electrode can be more easily eliminated.
[0120] 電極間の圧着時に上記絶縁性物質をより一層容易に排除できることから、 上記絶縁性物質は、 絶縁性粒子であることが好ましい。 [0120] The insulating substance is preferably insulating particles because the insulating substance can be more easily removed during pressure bonding between the electrodes.
[0121 ] 上記絶縁性物質の材料としては、 上述した有機材料、 上述した無機材料、 及び上述した基材粒子の材料として挙げた無機物等が挙げられる。 上記絶縁 性物質の材料は、 上述した有機材料であることが好ましい。 [0121] Examples of the material of the insulating substance include the above-mentioned organic materials, the above-mentioned inorganic materials, and the above-mentioned inorganic materials as the material of the base particles. The material of the insulating substance is preferably the organic material described above.
[0122] 上記絶縁性物質の他の材料としては、 ポリオレフィン化合物、 (メタ) ア クリレート重合体、 (メタ) アクリレート共重合体、 ブロックポリマー、 熱 \¥0 2020/175691 29 卩(:171? 2020 /008458 [0122] Examples of other materials of the above insulating material include polyolefin compounds, (meth)acrylate polymers, (meth)acrylate copolymers, block polymers, and heat. \¥0 2020/175691 29 卩 (: 171? 2020 /008458
可塑性樹脂、 熱可塑性樹脂の架橋物、 熱硬化性樹脂及び水溶性樹脂等が挙げ られる。 上記絶縁性物質の材料は、 1種のみが用いられてもよく、 2種以上 が併用されてもよい。 Examples thereof include a plastic resin, a crosslinked product of a thermoplastic resin, a thermosetting resin, and a water-soluble resin. As the material of the insulating material, only one kind may be used, or two or more kinds may be used in combination.
[0123] 上記ポリオレフィン化合物としては、 ポリエチレン、 エチレンー酢酸ビニ ル共重合体及びエチレンーアクリル酸エステル共重合体等が挙げられる。 上 記 (メタ) アクリレート重合体としては、 ポリメチル (メタ) アクリレート 、 ポリ ドデシル (メタ) アクリレート及びポリステアリル (メタ) アクリレ —卜等が挙げられる。 上記ブロックポリマーとしては、 ポリスチレン、 スチ レンーアクリル酸エステル共重合体、 3巳型スチレンーブタジエンブロック 共重合体、 及び 3
Figure imgf000031_0001
型スチレンーブタジエンブロック共重合体、 並びにこ れらの水素添加物等が挙げられる。 上記熱可塑性樹脂としては、 ビニル重合 体及びビニル共重合体等が挙げられる。 上記熱硬化性樹脂としては、 エポキ シ樹脂、 フエノール樹脂及びメラミン樹脂等が挙げられる。 上記熱可塑性樹 脂の架橋物としては、 ポリエチレングリコールメタクリレート、 アルコキシ 化トリメチロールプロパンメタクリレートやアルコキシ化ペンタエリスリ ト —ルメタクリレート等の導入が挙げられる。 上記水溶性樹脂としては、 ポリ ビニルアルコール、 ポリアクリル酸、 ポリアクリルアミ ド、 ポリビニルピロ リ ドン、 ポリエチレンオキシド及びメチルセルロース等が挙げられる。 また 、 重合度の調整に、 連鎖移動剤を使用してもよい。 連鎖移動剤としては、 チ オールや四塩化炭素等が挙げられる。
[0123] Examples of the above-mentioned polyolefin compounds include polyethylene, ethylene-vinyl acetate copolymers, ethylene-acrylic acid ester copolymers, and the like. Examples of the above-mentioned (meth)acrylate polymer include polymethyl (meth)acrylate, polydodecyl (meth)acrylate, and polystearyl (meth)acrylate. Examples of the block polymer include polystyrene, a styrene-acrylic acid ester copolymer, a 3 type styrene-butadiene block copolymer, and 3
Figure imgf000031_0001
Examples thereof include type styrene-butadiene block copolymers, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. Examples of the thermosetting resin include epoxy resin, phenol resin and melamine resin. Examples of the crosslinked product of the thermoplastic resin include introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, alkoxylated pentaerythritol methacrylate and the like. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylic amide, polyvinyl pyrrolidone, polyethylene oxide and methyl cellulose. A chain transfer agent may be used to adjust the degree of polymerization. Examples of chain transfer agents include thiol and carbon tetrachloride.
[0124] 上記導電部の表面上に上記絶縁性物質を配置する方法としては、 化学的方 法、 及び物理的もしくは機械的方法等が挙げられる。 上記化学的方法として は、 界面重合法、 粒子存在下での懸濁重合法及び乳化重合法等が挙げられる 。 上記物理的もしくは機械的方法としては、 スプレードライ、 ハイプリダイ ゼーション、 静電付着法、 噴霧法、 ディッビング及び真空蒸着による方法等 が挙げられる。 電極間を電気的に接続した場合に、 絶縁信頼性及び導通信頼 性をより一層効果的に高める観点からは、 上記導電部の表面上に上記絶縁性 物質を配置する方法は、 物理的方法であることが好ましい。 \¥0 2020/175691 30 卩(:171? 2020 /008458 [0124] Examples of the method of disposing the insulating substance on the surface of the conductive portion include a chemical method and a physical or mechanical method. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the above-mentioned physical or mechanical method include spray drying, high pridization, electrostatic adhesion method, spraying method, diving and vacuum deposition. From the viewpoint of further effectively improving the insulation reliability and conduction reliability when the electrodes are electrically connected, the method of arranging the insulating material on the surface of the conductive portion is a physical method. Preferably. \¥0 2020/175691 30 卩 (: 171? 2020 /008458
[0125] 上記導電部の外表面、 及び上記絶縁性物質の外表面はそれぞれ、 反応性官 能基を有する化合物によって被覆されていてもよい。 上記導電部の外表面と 上記絶縁性物質の外表面とは、 直接化学結合していなくてもよく、 反応性官 能基を有する化合物によって間接的に化学結合していてもよい。 上記導電部 の外表面にカルボキシル基を導入した後、 該カルボキシル基がポリエチレン イミン等の高分子電解質を介して絶縁性物質の外表面の官能基と化学結合し ていても構わない。 [0125] The outer surface of the conductive part and the outer surface of the insulating substance may be coated with a compound having a reactive functional group. The outer surface of the conductive part and the outer surface of the insulating substance may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group. After introducing a carboxyl group to the outer surface of the conductive part, the carboxyl group may be chemically bonded to a functional group on the outer surface of the insulating substance through a polymer electrolyte such as polyethyleneimine.
[0126] 上記絶縁性物質が絶縁性粒子である場合、 上記絶縁性粒子の粒子径は、 導 電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。 上記絶 縁性粒子の粒子径は、 好ましくは 1 0门 01以上、 より好ましくは 1 0 0 n 01 以上、 さらに好ましくは 3 0 0 n
Figure imgf000032_0001
以上、 特に好ましくは 5 0 0 n 以上で あり、 好ましくは 4 0 0 0 n 以下、 より好ましくは 2 0 0 0 n 以下、 さ らに好ましくは 1 5 0 0门
Figure imgf000032_0002
以下、 特に好ましくは 1 0 0 0门
Figure imgf000032_0003
以下である 。 絶縁性粒子の粒子径が上記下限以上であると、 導電性粒子がバインダー樹 脂中に分散されたときに、 複数の導電性粒子における導電部同士が接触し難 くなる。 絶縁性粒子の粒子径が上記上限以下であると、 電極間の接続の際に 、 電極と導電性粒子との間の絶縁性粒子を排除するために、 圧力を高く しす ぎる必要がなくなり、 高温に加熱する必要もなくなる。
When the insulating substance is insulating particles, the particle size of the insulating particles can be appropriately selected depending on the particle size of the conductive particles, the use of the conductive particles, and the like. The particle size of the insulating particles is preferably 10 or more, more preferably 100 or more, and even more preferably 300 or more.
Figure imgf000032_0001
Or more, particularly preferably 5 00 n or more, preferably 4 00 0 n or less, more preferably 2 00 0 n or less, and further preferably 1 5 0 0
Figure imgf000032_0002
The following are particularly preferred
Figure imgf000032_0003
It is below. When the particle diameter of the insulating particles is not less than the above lower limit, it becomes difficult for the conductive portions of the plurality of conductive particles to contact each other when the conductive particles are dispersed in the binder resin. When the particle size of the insulating particles is less than or equal to the above upper limit, it is not necessary to increase the pressure to eliminate the insulating particles between the electrodes and the conductive particles when connecting the electrodes, There is no need to heat to a high temperature.
[0127] 上記絶縁性粒子の粒子径は、 平均粒子径であることが好ましく、 数平均粒 子径であることが好ましい。 絶縁性粒子の粒子径は、 任意の絶縁性粒子 5 0 個を電子顕微鏡又は光学顕微鏡にて観察し、 各絶縁性粒子の粒子径の平均値 を算出することや、 粒度分布測定装置を用いて求められる。 電子顕微鏡又は 光学顕微鏡での観察では、 1個当たりの絶縁性粒子の粒子径は、 円相当径で の粒子径として求められる。 電子顕微鏡又は光学顕微鏡での観察において、 任意の 5 0個の絶縁性粒子の円相当径での平均粒子径は、 球相当径での平均 粒子径とほぼ等しくなる。 粒度分布測定装置では、 1個当たりの絶縁性粒子 の粒子径は、 球相当径での粒子径として求められる。 上記絶縁性粒子の平均 粒子径は、 粒度分布測定装置を用いて算出することが好ましい。 上記導電性 \¥02020/175691 31 卩(:171?2020/008458 [0127] The particle size of the insulating particles is preferably an average particle size, and more preferably a number average particle size. The particle diameter of the insulating particles can be calculated by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope and calculating the average value of the particle diameter of each insulating particle, or by using a particle size distribution measuring device. Desired. In the observation with an electron microscope or an optical microscope, the particle size of each insulating particle is calculated as the particle size in equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 insulating particles in terms of equivalent circle diameter is approximately equal to the average particle diameter in equivalent sphere diameter. With a particle size distribution analyzer, the particle size of each insulating particle is calculated as the particle size in terms of a sphere equivalent diameter. The average particle size of the insulating particles is preferably calculated using a particle size distribution measuring device. Conductivity above \¥02020/175691 31 卩 (: 171?2020/008458
粒子において、 上記絶縁性粒子の粒子径を測定する場合には、 例えば、 以下 のようにして測定できる。 In the case of measuring the particle diameter of the above-mentioned insulating particles, for example, it can be measured as follows.
[0128] 導電性粒子を含有量が 3 0重量%となるように、 リ 丨
Figure imgf000033_0001
「社製 「テク ノビッ ト 4 0 0 0」 に添加し、 分散させて、 導電性粒子検査用埋め込み樹脂 を作製する。 その検査用埋め込み樹脂中の分散した導電性粒子の中心付近を 通るようにイオンミリング装置 (日立ハイテクノロジーズ社製 「丨 1\/1 4 0 0 0」 ) を用いて、 導電性粒子の断面を切り出す。 そして、 電界放射型走査型 電子顕微鏡 ( 巳一3巳1\/1) を用いて、 画像倍率 5万倍に設定し、 5 0個の 導電性粒子を無作為に選択し、 各導電性粒子の絶縁性粒子を観察する。 各導 電性粒子における絶縁性粒子の粒子径を計測し、 それらを算術平均して絶縁 性粒子の粒子径とする。
[0128] Reconstitute the conductive particles so that the content is 30% by weight.
Figure imgf000033_0001
It is added to "Technobit 400 00 manufactured by the company" and dispersed to prepare an embedded resin for conductive particle inspection. Using an ion milling device (“Hitachi High Technologies Co., Ltd., 丨 1\140 0 0 ”) so that it passes through the center of the dispersed conductive particles in the embedded resin for inspection, cross-section the conductive particles. break the ice. Then, using a field emission scanning electron microscope (Minichi 3M 1\/1), the image magnification was set to 50,000 times, and 50 conductive particles were randomly selected. Observe the insulating particles of. Measure the particle size of the insulating particles in each conductive particle and arithmetically average them to obtain the particle size of the insulating particles.
[0129] 上記導電性粒子の粒子径の、 上記絶縁性粒子の粒子径に対する比 (導電性 粒子の粒子径/絶縁性粒子の粒子径) は、 好ましくは 4以上、 より好ましく は 8以上であり、 好ましくは 2 0 0以下、 より好ましくは 1 0 0以下である 。 上記比 (導電性粒子の粒子径/絶縁性粒子の粒子径) が、 上記下限以上及 び上記上限以下であると、 電極間を電気的に接続した場合に、 絶縁信頼性及 び導通信頼性をより一層効果的に高めることができる。 [0129] The ratio of the particle diameter of the conductive particles to the particle diameter of the insulating particles (particle diameter of conductive particles/particle diameter of insulating particles) is preferably 4 or more, more preferably 8 or more. , Preferably 200 or less, more preferably 100 or less. When the above ratio (particle diameter of conductive particles/particle diameter of insulating particles) is not less than the above lower limit and not more than the above upper limit, insulation reliability and continuity reliability are obtained when electrodes are electrically connected. Can be more effectively increased.
[0130] (導電材料) [0130] (Conductive material)
本発明に係る導電材料は、 上述した導電性粒子と、 バインダー樹脂とを含 む。 上記導電性粒子は、 バインダー樹脂中に分散されて用いられることが好 ましく、 バインダー樹脂中に分散されて導電材料として用いられることが好 ましい。 上記導電材料は、 異方性導電材料であることが好ましい。 上記導電 材料は、 電極間の電気的な接続に用いられることが好ましい。 上記導電材料 は回路接続用導電材料であることが好ましい。 上記導電材料では、 上述した 導電性粒子が用いられているので、 電極間の接続抵抗をより一層効果的に低 くすることができ、 導電性粒子同士の凝集の発生をより一層効果的に抑制す ることができる。 上記導電材料では、 上述した導電性粒子が用いられている ので、 電極間の絶縁信頼性をより一層効果的に高めることができる。 \¥0 2020/175691 32 卩(:171? 2020 /008458 The conductive material according to the present invention contains the conductive particles described above and a binder resin. The conductive particles are preferably dispersed in a binder resin for use, and are preferably dispersed in a binder resin for use as a conductive material. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably used for electrical connection between electrodes. The conductive material is preferably a conductive material for circuit connection. Since the above-mentioned conductive particles are used in the above-mentioned conductive material, the connection resistance between the electrodes can be reduced more effectively, and the occurrence of aggregation of conductive particles can be suppressed more effectively. can do. Since the above-mentioned conductive particles are used in the above-mentioned conductive material, the insulation reliability between the electrodes can be more effectively enhanced. \¥0 2020/175691 32 卩 (: 171? 2020 /008458
[0131 ] 上記導電材料は、 複数の上記導電性粒子を含むことが好ましい。 上記基材 粒子の外表面から中心に向かって、 上記基材粒子の粒子径の 1 / 2の距離の 領域を領域
Figure imgf000034_0001
としたときに、 上記導電性粒子の全個数 1 0 0 %中、 上記基 材粒子の上記領域 1 に上記導電性金属が存在する導電性粒子の個数の割合 (以下、 第 1の割合と記載することがある) は、 好ましくは 5 0 %以上、 よ り好ましくは 6 0 %以上である。 上記第 1の割合の上限は特に限定されない 。 上記第 1の割合は 1 0 0 %以下であってもよい。 上記第 1の割合が、 上記 下限以上であると、 電極間の接続抵抗をより一層効果的に低くすることがで き、 導電性粒子同士の凝集の発生をより一層効果的に抑制することができる 。 また、 上記第 1の割合が、 上記下限以上であると、 電極間の絶縁信頼をよ り一層効果的に高めることができる。 また、 上記第 1の割合が、 上記下限以 上及び上記上限以下であると、 導電性粒子における導電部の密着性をより一 層効果的に高めることができ、 導電性粒子における導電部の剥がれの発生を より一層効果的に抑制することができる。 上記第 1の割合が 0 %を超えてい ると、 基材粒子の内部に導電性金属が含有されていると判断することができ る。 上記領域 1は、 図 4において、 基材粒子 2の破線 !_ 1 よりも外側の領 域である。 上記領域
Figure imgf000034_0002
は、 上記基材粒子の外表面部分である。 上記領域 1は、 上記基材粒子の中心部分とは異なる領域である。
[0131] The conductive material preferably contains a plurality of the conductive particles. From the outer surface of the base material particle toward the center, a region of a distance of 1/2 of the particle diameter of the base material particle
Figure imgf000034_0001
When, the ratio of the number of conductive particles in which the conductive metal is present in the region 1 of the base particles in the total number of the conductive particles of 100% (hereinafter referred to as the first ratio) Is preferably 50% or more, more preferably 60% or more. The upper limit of the first ratio is not particularly limited. The first percentage may be 100% or less. When the first ratio is at least the above lower limit, the connection resistance between the electrodes can be reduced more effectively, and the occurrence of aggregation of conductive particles can be suppressed more effectively. it can . Further, when the first ratio is equal to or higher than the lower limit, the insulation reliability between the electrodes can be more effectively enhanced. Further, when the first ratio is equal to or higher than the lower limit and equal to or lower than the upper limit, it is possible to more effectively enhance the adhesiveness of the conductive portion in the conductive particle, and peeling of the conductive portion in the conductive particle. It is possible to more effectively suppress the occurrence of When the first ratio exceeds 0%, it can be judged that the conductive metal is contained inside the base material particles. The above-mentioned region 1 is a region outside the broken line !_ 1 of the base particle 2 in FIG. Above area
Figure imgf000034_0002
Is the outer surface portion of the base particles. The region 1 is a region different from the central part of the base particle.
[0132] 上記基材粒子の中心から外表面に向かって、 上記基材粒子の粒子径の 1 / [0132] From the center of the base material particle to the outer surface, 1 / particle diameter of the base material particle
2の距離の領域を領域 2としたときに、 上記導電性粒子の全個数 1 0 0 % 中、 上記基材粒子の上記領域 2に上記導電性金属が存在する導電性粒子の 個数の割合 (以下、 第 2の割合と記載することがある) は、 好ましくは 5 % 以上、 より好ましくは 1 0 %以上である。 上記第 2の割合の上限は特に限定 されない。 上記第 2の割合は 1 0 0 %以下であってもよい。 上記第 2の割合 が、 上記下限以上であると、 電極間の接続抵抗をより一層効果的に低くする ことができ、 導電性粒子同士の凝集の発生をより一層効果的に抑制すること ができる。 また、 上記第 2の割合が、 上記下限以上であると、 電極間の絶縁 信頼をより一層効果的に高めることができる。 また、 上記第 2の割合が、 上 \¥0 2020/175691 33 卩(:171? 2020 /008458 When the region of the distance of 2 is set to the region 2, the ratio of the number of the conductive particles in which the conductive metal is present in the region 2 of the base material particles in 100% of the total number of the conductive particles ( Hereinafter, it may be described as a second ratio) is preferably 5% or more, more preferably 10% or more. The upper limit of the second ratio is not particularly limited. The second ratio may be 100% or less. When the second ratio is at least the above lower limit, the connection resistance between the electrodes can be reduced more effectively, and the occurrence of aggregation of conductive particles can be suppressed more effectively. .. Further, when the second ratio is not less than the lower limit, the insulation reliability between the electrodes can be more effectively enhanced. In addition, the second ratio above is \¥ 2020/175691 33 卩 (: 171? 2020 /008458
記下限以上及び上記上限以下であると、 導電性粒子における導電部の密着性 をより一層効果的に高めることができ、 導電性粒子における導電部の剥がれ の発生をより一層効果的に抑制することができる。 上記第 2の割合が 0 %を 超えていると、 基材粒子の内部に導電性金属が含有されていると判断するこ とができる。 上記領域 2は、 図 4において、 基材粒子 2の破線 !_ 1 よりも 内側の領域である。 上記領域 2は、 上記基材粒子の中心部分である。 上記 領域 2は、 上記基材粒子の外表面部分とは異なる領域である。 When the content is not less than the lower limit and not more than the above upper limit, the adhesion of the conductive part in the conductive particle can be more effectively enhanced, and the occurrence of peeling of the conductive part in the conductive particle can be suppressed more effectively. You can When the second ratio exceeds 0%, it can be determined that the conductive metal is contained inside the base material particles. The region 2 is a region inside the broken line !_ 1 of the base particle 2 in FIG. The region 2 is the central portion of the base material particles. The region 2 is a region different from the outer surface portion of the base particle.
[0133] 上記第 1の割合及び上記第 2の割合は、 以下のようにして算出できる。 [0133] The first ratio and the second ratio can be calculated as follows.
[0134] 導電材料からろ過等により導電性粒子を回収する。 回収した導電性粒子の 含有量が 3 0重量%となるように、 Xリ 丨 å㊀ 「社製 「テクノビッ ト 4 0 0 0」 に添加し、 分散させて、 導電性粒子検査用埋め込み樹脂を作製する。 検 査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミ リング装置 (日立ハイテクノロジーズ社製 「丨 1\/1 4 0 0 0」 ) を用いて、 1 個の導電性粒子の断面を切り出す。 そして、 電界放射型透過電子顕微鏡 (日 本電子社製 「」 巳1\/1 - 2 0 1 0 巳 」 ) を用いて、 エネルギー分散型 X線 分析装置 (巳 0 3) により、 基材粒子の断面における導電性金属の有無を測 定することで、 基材粒子の粒子径方向における導電性金属の分布結果が得ら れる。 上記第 1の割合及び上記第 2の割合は、 任意に選択された 2 0個の導 電性粒子における導電性金属の分布結果から算出することができる。 [0134] The conductive particles are collected from the conductive material by filtration or the like. An embedded resin for conductive particle inspection was prepared by adding and dispersing the recovered conductive particles to X-recon ㊀ “Technobit 400 0” manufactured by the company so that the content of the conductive particles was 30% by weight. To do. Using an ion milling device (“Hitachi High-Technologies Inc. “丨 1\/140 0 0”) so that it passes through the center of the conductive particles dispersed in the resin for inspection, one conductive particle is used. Cut out the cross section. Then, using a field emission transmission electron microscope (“”Mimi 1\/1-2 0 1 0m” manufactured by Nihon Denshi Co., Ltd.), an energy dispersive X-ray analyzer (Mm 0 3) was used to measure the base material particles. By measuring the presence or absence of the conductive metal in the cross section of, the distribution result of the conductive metal in the particle diameter direction of the base material particle can be obtained. The first ratio and the second ratio can be calculated from the distribution result of the conductive metal in the arbitrarily selected 20 conductive particles.
[0135] 上記バインダー樹脂は特に限定されない。 上記バインダー樹脂として、 公 知の絶縁性の樹脂が用いられる。 上記バインダー樹脂は、 熱可塑性成分 (熱 可塑性化合物) 又は硬化性成分を含むことが好ましく、 硬化性成分を含むこ とがより好ましい。 上記硬化性成分としては、 光硬化性成分及び熱硬化性成 分が挙げられる。 上記光硬化性成分は、 光硬化性化合物及び光重合開始剤を 含むことが好ましい。 上記熱硬化性成分は、 熱硬化性化合物及び熱硬化剤を 含むことが好ましい。 [0135] The binder resin is not particularly limited. As the binder resin, a known insulating resin is used. The binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component. Examples of the curable component include a photocurable component and a thermosetting component. The photocurable component preferably contains a photocurable compound and a photopolymerization initiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
[0136] 上記バインダー樹脂としては、 ビニル樹脂、 熱可塑性樹脂、 硬化性樹脂、 熱可塑性ブロック共重合体及びエラストマー等が挙げられる。 上記バインダ \¥0 2020/175691 34 卩(:171? 2020 /008458 [0136] Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers and elastomers. Above binder \¥0 2020/175691 34 卩 (: 171? 2020 /008458
—樹脂は 1種のみが用いられてもよく、 2種以上が併用されてもよい。 — Only one type of resin may be used, or two or more types may be used in combination.
[0137] 上記ビニル樹脂としては、 酢酸ビニル樹脂、 アクリル樹脂及びスチレン樹 脂等が挙げられる。 上記熱可塑性樹脂としては、 ポリオレフィン樹脂、 ェチ レンー酢酸ビニル共重合体及びポリアミ ド樹脂等が挙げられる。 上記硬化性 樹脂としては、 ェポキシ樹脂、 ウレタン樹脂、 ポリイミ ド樹脂及び不飽和ポ リェステル樹脂等が挙げられる。 なお、 上記硬化性樹脂は、 常温硬化型樹脂 、 熱硬化型樹脂、 光硬化型樹脂又は湿気硬化型樹脂であってもよい。 上記硬 化性樹脂は、 硬化剤と併用されてもよい。 上記熱可塑性ブロック共重合体と しては、 スチレンーブタジェンースチレンブロック共重合体、 スチレンーイ ソプレンースチレンブロック共重合体、 スチレンーブタジェンースチレンブ ロック共重合体の水素添加物、 及びスチレンーイソプレンースチレンブロッ ク共重合体の水素添加物等が挙げられる。 上記ェラストマーとしては、 スチ レンーブタジェン共重合ゴム、 及びアクリロニトリルースチレンブロック共 重合ゴム等が挙げられる。 [0137] Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin. Examples of the thermoplastic resin include a polyolefin resin, an ethylene-vinyl acetate copolymer, and a polyamide resin. Examples of the curable resin include epoxy resin, urethane resin, polyimide resin and unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated product of styrene-butadiene-styrene block copolymer, and Examples thereof include hydrogenated products of styrene-isoprene-styrene block copolymers. Examples of the elastomer include styrene-butadiene copolymer rubber, and acrylonitrile-styrene block copolymer rubber.
[0138] 上記導電材料は、 上記導電性粒子及び上記バインダー樹脂の他に、 例えば 、 充填剤、 増量剤、 軟化剤、 可塑剤、 重合触媒、 硬化触媒、 着色剤、 酸化防 止剤、 熱安定剤、 光安定剤、 紫外線吸収剤、 滑剤、 帯電防止剤及び難燃剤等 の各種添加剤を含んでいてもよい。 [0138] The conductive material may be, for example, a filler, a filler, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, in addition to the conductive particles and the binder resin. It may contain various additives such as agents, light stabilizers, ultraviolet absorbers, lubricants, antistatic agents and flame retardants.
[0139] 上記バインダー樹脂中に上記導電性粒子を分散させる方法は、 従来公知の 分散方法を用いることができ、 特に限定されない。 上記バインダー樹脂中に 上記導電性粒子を分散させる方法としては、 以下の方法等が挙げられる。 上 記バインダー樹脂中に上記導電性粒子を添加した後、 ブラネタリーミキサー 等で混練して分散させる方法。 上記導電性粒子を水又は有機溶剤中にホモジ ナイザー等を用いて均 _に分散させた後、 上記バインダー樹脂中に添加し、 プラネタリ—ミキサ—等で混練して分散させる方法。 上記バインダー樹脂を 水又は有機溶剤等で希釈した後、 上記導電性粒子を添加し、 プラネタリーミ キサー等で混練して分散させる方法。 [0139] As a method of dispersing the conductive particles in the binder resin, a conventionally known dispersion method can be used and is not particularly limited. Examples of the method for dispersing the conductive particles in the binder resin include the following methods. A method in which the above conductive particles are added to the binder resin and then kneaded and dispersed by a planetary mixer or the like. After the conductive particles are dispersed evenly _ using Homoji in water or an organic solvent Naiza etc., added to the binder resin, planetary - mixers - How kneaded to disperse the like. A method in which the above binder resin is diluted with water, an organic solvent or the like, and then the above conductive particles are added and kneaded and dispersed by a planetary mixer or the like.
[0140] 上記導電材料の 2 5 °〇での粘度 (7? 2 5) は、 好ましくは 3 0 3 3以 \¥0 2020/175691 35 卩(:171? 2020 /008458 [0140] The viscosity (7 to 25) of the above conductive material at 25 ° 〇 is preferably 3 0 3 3 or more. \¥0 2020/175691 35 卩 (: 171? 2020 /008458
上、 より好ましくは 5 0 3 3以上であり、 好ましくは 4 0 0 3 3以 下、 より好ましくは 3 0 0 3 3以下である。 上記導電材料の 2 5 °〇での 粘度が、 上記下限以上及び上記上限以下であると、 電極間の絶縁信頼性をよ り一層効果的に高めることができ、 電極間の導通信頼性をより一層効果的に 高めることができる。 上記粘度 (7] 2 5) は、 配合成分の種類及び配合量に より適宜調整することができる。 The upper limit is more preferably 5033 or more, preferably 4003 or less, and more preferably 3003 or less. When the viscosity of the above conductive material at 25° is not less than the above lower limit and not more than the above upper limit, the insulation reliability between the electrodes can be more effectively enhanced, and the conduction reliability between the electrodes can be further improved. It can be increased more effectively. The viscosity (7] 25) can be appropriately adjusted depending on the kind and the amount of the components to be mixed.
[0141 ] 上記粘度 (7? 2 5) は、 例えば、 巳型粘度計 (東機産業社製 「丁 巳 2 2 [0141] The above-mentioned viscosity (7 to 25) can be calculated, for example, from a Mitsumi-type viscometer ("Tokimi 2 2
I -」 ) 等を用いて、 2 5 °〇及び 5 「 の条件で測定することができる。 I-”) etc. can be used to measure under the conditions of 25 ° and 5 ”.
[0142] 本発明に係る導電材料は、 導電ペースト及び導電フィルム等として使用さ れ得る。 本発明に係る導電材料が、 導電フィルムである場合には、 導電性粒 子を含む導電フィルムに、 導電性粒子を含まないフィルムが積層されていて もよい。 上記導電べーストは、 異方性導電ペーストであることが好ましい。 上記導電フィルムは、 異方性導電フィルムであることが好ましい。 [0142] The conductive material according to the present invention can be used as a conductive paste, a conductive film, or the like. When the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on a conductive film containing conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
[0143] 上記導電材料 1 0 0重量%中、 上記バインダー樹脂の含有量は、 好ましく は 1 0重量%以上、 より好ましくは 3 0重量%以上、 さらに好ましくは 5 0 重量%以上、 特に好ましくは 7 0重量%以上であり、 好ましくは 9 9 . 9 9 重量%以下、 より好ましくは 9 9 . 9重量%以下である。 上記バインダー樹 脂の含有量が、 上記下限以上及び上記上限以下であると、 電極間に導電性粒 子が効率的に配置され、 導電材料により接続された接続対象部材の接続信頼 性をより一層高めることができる。 [0143] In 100% by weight of the conductive material, the content of the binder resin is preferably 10% by weight or more, more preferably 30% by weight or more, further preferably 50% by weight or more, particularly preferably It is 70% by weight or more, preferably 99.99% by weight or less, and more preferably 99.9% by weight or less. When the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further improved. Can be increased.
[0144] 上記導電材料 1 0 0重量%中、 上記導電性粒子の含有量は、 好ましくは 0 . 0 1重量%以上、 より好ましくは 0 . 1重量%以上であり、 好ましくは 8 0重量%以下、 より好ましくは 6 0重量%以下、 さらに好ましくは 4 0重量 %以下、 特に好ましくは 2 0重量%以下、 最も好ましくは 1 0重量%以下で ある。 上記導電性粒子の含有量が、 上記下限以上及び上記上限以下であると 、 電極間の接続抵抗をより一層効果的に低くすることができる。 上記導電性 粒子の含有量が、 上記下限以上及び上記上限以下であると、 電極間の導通信 頼性及び絶縁信頼性をより一層高めることができる。 \¥0 2020/175691 36 卩(:171? 2020 /008458 [0144] In 100% by weight of the conductive material, the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and preferably 80% by weight. The amount is below, more preferably 60% by weight or less, further preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less. When the content of the conductive particles is at least the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be lowered even more effectively. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, it is possible to further enhance the communication reliability between electrodes and the insulation reliability. \¥0 2020/175691 36 卩 (: 171? 2020 /008458
[0145] (接続構造体) [0145] (Connection structure)
本発明に係る接続構造体は、 第 1の電極を表面に有する第 1の接続対象部 材と、 第 2の電極を表面に有する第 2の接続対象部材と、 上記第 1の接続対 象部材と上記第 2の接続対象部材とを接続している接続部とを備える。 本発 明に係る接続構造体では、 上記接続部の材料が、 上述した導電性粒子である か、 又は上記導電性粒子とバインダー樹脂とを含む導電材料である。 本発明 に係る接続構造体では、 上記第 1の電極と上記第 2の電極とが上記導電性粒 子により電気的に接続されている。 The connection structure according to the present invention includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, and the first connection target member. And a connection portion connecting the second connection target member. In the connection structure according to the present invention, the material of the connection portion is the above-mentioned conductive particles or a conductive material containing the above-mentioned conductive particles and a binder resin. In the connection structure according to the present invention, the first electrode and the second electrode are electrically connected by the conductive particles.
[0146] 上記接続構造体は、 上記第 1の接続対象部材と上記第 2の接続対象部材と の間に、 上記導電性粒子又は上記導電材料を配置する工程と、 熱圧着するこ とにより導電接続する工程とを経て、 得ることができる。 上記導電性粒子が 上記絶縁性物質を有する場合には、 上記熱圧着時に、 上記絶縁性物質が上記 導電性粒子から脱離することが好ましい。 [0146] The connection structure is formed by placing the conductive particles or the conductive material between the first connection target member and the second connection target member, and conducting thermocompression bonding to achieve conductivity. It can be obtained through the step of connecting. When the conductive particles have the insulating substance, it is preferable that the insulating substance be desorbed from the conductive particles during the thermocompression bonding.
[0147] 上記導電性粒子が単独で用いられた場合には、 接続部自体が導電性粒子で ある。 即ち、 上記第 1の接続対象部材と上記第 2の接続対象部材とが上記導 電性粒子により接続される。 上記接続構造体を得るために用いられる上記導 電材料は、 異方性導電材料であることが好ましい。 [0147] When the above-mentioned conductive particles are used alone, the connection portion itself is the conductive particles. That is, the first connection target member and the second connection target member are connected by the conductive particles. The conductive material used to obtain the connection structure is preferably an anisotropic conductive material.
[0148] 図 5に、 本発明の第 1の実施形態に係る導電性粒子を用いた接続構造体を 模式的に正面断面図で示す。 [0148] Fig. 5 is a schematic front sectional view of a connection structure using conductive particles according to the first embodiment of the present invention.
[0149] 図 5に示す接続構造体 5 1は、 第 1の接続対象部材 5 2と、 第 2の接続対 象部材 5 3と、 第 1 , 第 2の接続対象部材 5 2 , 5 3を接続している接続部 5 4とを備える。 接続部 5 4は、 導電性粒子 1 を含む導電材料を硬化させる ことにより形成されている。 なお、 図 5では、 導電性粒子 1は、 図示の便宜 上、 略図的に示されている。 導電性粒子 1 に代えて、 導電性粒子 1 1 , 2 1 等の他の導電性粒子を用いてもよい。 [0149] The connection structure 5 1 shown in Fig. 5 includes a first connection target member 52, a second connection target member 5 3 and first and second connection target members 5 2, 5 3. And a connecting portion 5 4 connected thereto. The connection portion 54 is formed by curing a conductive material containing the conductive particles 1. In addition, in FIG. 5, the conductive particles 1 are schematically illustrated for convenience of illustration. Instead of the conductive particles 1, other conductive particles such as the conductive particles 11 and 21 may be used.
[0150] 第 1の接続対象部材 5 2は表面 (上面) に、 複数の第 1の電極 5 2 3を有 する。 第 2の接続対象部材 5 3は表面 (下面) に、 複数の第 2の電極 5 3 3 を有する。 第 1の電極 5 2 3と第 2の電極 5 3 3とが、 1つ又は複数の導電 \¥0 2020/175691 37 卩(:171? 2020 /008458 [0150] The first connection object member 5 2 on the surface (upper surface) to have a plurality of first electrode 5 2 3. The second connection target member 5 3 has a plurality of second electrodes 5 33 on the front surface (lower surface). The first electrode 5 2 3 and the second electrode 5 3 3 have one or more conductive \\0 2020/1756 91 37 卩 (: 171? 2020 /008458
性粒子 1 により電気的に接続されている。 従って、 第 1 , 第 2の接続対象部 材 5 2 , 5 3が導電性粒子 1 により電気的に接続されている。 It is electrically connected by the conductive particles 1. Therefore, the first and second connection target members 5 2 and 5 3 are electrically connected by the conductive particles 1.
[0151 ] 上記接続構造体の製造方法は特に限定されない。 接続構造体の製造方法の _例としては、 第 1の接続対象部材と第 2の接続対象部材との間に上記導電 材料を配置し、 積層体を得た後、 該積層体を加熱及び加圧する方法等が挙げ られる。 上記熱圧着の圧力は好ましくは 4 0 1\/1 3以上、 より好ましくは 6 以上であり、 好ましくは 9 0 IV! 3以下、 より好ましくは 7 0 IV! 3以下である。 上記熱圧着の加熱の温度は、 好ましくは 8 0 °〇以上、 より好 ましくは 1 0 0 °〇以上であり、 好ましくは 1 4 0 °〇以下、 より好ましくは 1 2 0 °〇以下である。 上記熱圧着の圧力及び温度が、 上記下限以上及び上記上 限以下であると、 電極間の導通信頼性及び絶縁信頼性をより一層高めること ができる。 また、 上記導電性粒子が上記絶縁性粒子を有する場合には、 導電 接続時に導電性粒子の表面から絶縁性粒子が容易に脱離できる。 [0151] The method for producing the connection structure is not particularly limited. As an example of the method for manufacturing a connection structure, the conductive material is arranged between the first connection target member and the second connection target member to obtain a laminated body, and then the laminated body is heated and heated. A method of applying pressure may be used. The pressure for the thermocompression bonding is preferably 4 0 1\/1 3 or more, more preferably 6 or more, preferably 90 0 IV! 3 or less, more preferably 70 0 IV! 3 or less. The temperature of the heating of the thermo-compression bonding is preferably 8 0 ° 〇 or more, more favorable Mashiku is 1 0 0 ° ● As, preferably 1 4 0 ° 〇 less, more preferably 1 2 0 ° 〇 less is there. When the pressure and temperature of the thermocompression bonding are not less than the lower limit and not more than the upper limit, the conduction reliability and insulation reliability between the electrodes can be further enhanced. When the conductive particles have the insulating particles, the insulating particles can be easily detached from the surface of the conductive particles during conductive connection.
[0152] 上記導電性粒子が上記絶縁性粒子を有する場合には、 上記積層体を加熱及 び加圧する際に、 上記導電性粒子と、 上記第 1の電極及び上記第 2の電極と の間に存在している上記絶縁性粒子を排除することができる。 例えば、 上記 加熱及び加圧の際には、 上記導電性粒子と、 上記第 1の電極及び上記第 2の 電極との間に存在している上記絶縁性粒子が、 上記導電性粒子の表面から容 易に脱離する。 なお、 上記加熱及び加圧の際には、 上記導電性粒子の表面か ら_部の上記絶縁性粒子が脱離して、 上記導電部の表面が部分的に露出する ことがある。 上記導電部の表面が露出した部分が、 上記第 1の電極及び上記 第 2の電極に接触することにより、 上記導電性粒子を介して第 1の電極と第 2の電極とを電気的に接続することができる。 [0152] In the case where the conductive particles have the insulating particles, between the conductive particles and the first electrode and the second electrode when the laminate is heated and pressed. It is possible to eliminate the above-mentioned insulating particles existing in the. For example, during the heating and pressurization, the insulating particles present between the conductive particles and the first electrode and the second electrode are removed from the surface of the conductive particles. Easily detach. In addition, during the heating and pressurization, a part of the insulating particles may be detached from the surface of the conductive particles, and the surface of the conductive portion may be partially exposed. The exposed portion of the surface of the conductive portion comes into contact with the first electrode and the second electrode to electrically connect the first electrode and the second electrode through the conductive particles. can do.
[0153] さらに、 本発明に係る接続構造体では、 上述した導電性粒子が用いられて いるので、 上記加熱及び加圧の際には、 導電性粒子が圧縮されることで、 導 電性粒子の表面 (導電部) に導通経路が形成されるだけではなく、 導電性粒 子の内部の導電性金属が互いに接触することで導通経路が形成される。 結果 として、 導電部の厚みが比較的薄い場合でも、 上下方向の電極間の接続抵抗 \¥0 2020/175691 38 卩(:171? 2020 /008458 [0153] Furthermore, in the connection structure according to the present invention, since the above-mentioned conductive particles are used, the conductive particles are compressed during the heating and pressurization, so that the conductive particles are A conductive path is not only formed on the surface (conductive portion) of the conductive particles, but also a conductive path is formed by the conductive metals inside the conductive particles contacting each other. As a result, even if the conductive part is relatively thin, the connection resistance between the electrodes in the vertical direction \¥0 2020/175691 38 卩 (: 171? 2020 /008458
を十分に低くすることができる。 また、 導電部の厚みが比較的薄いので、 導 電性粒子同士の凝集の発生を抑制することができ、 接続されてはならない横 方向に隣接する電極間の絶縁信頼性を効果的に高めることができる。 Can be sufficiently low. In addition, since the thickness of the conductive portion is relatively thin, it is possible to suppress the occurrence of aggregation of conductive particles, and to effectively improve the insulation reliability between the electrodes that are laterally adjacent and must not be connected. You can
[0154] 上記第 1の接続対象部材及び第 2の接続対象部材は、 特に限定されない。 [0154] The first connection target member and the second connection target member are not particularly limited.
上記第 1の接続対象部材及び第 2の接続対象部材としては、 具体的には、 半 導体チップ、 半導体パッケージ、 !_巳 0チップ、 !_巳 0パッケージ、 コンデ ンサ及びダイオード等の電子部品、 並びに樹脂フィルム、 プリント基板、 フ レキシブルプリント基板、 フレキシブルフラッ トケーブル、 リジッ ドフレキ シブル基板、 ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品 等が挙げられる。 上記第 1の接続対象部材及び第 2の接続対象部材は、 電子 部品であることが好ましい。 Specific examples of the first connection target member and the second connection target member include a semiconductor chip, a semiconductor package, and a! _ _ 0 chips,! _ _ 0 Electronic components such as packages, capacitors and diodes, and electronic components such as resin films, printed circuit boards, flexible printed circuit boards, flexible flat cables, rigid flexible boards, circuit boards such as glass epoxy boards and glass boards Etc. It is preferable that the first connection target member and the second connection target member are electronic components.
[0155] 上記接続対象部材に設けられている電極としては、 金電極、 ニッケル電極 、 錫電極、 アルミニウム電極、 銅電極、 モリブデン電極、 銀電極、 3 II 3電 極、 及びタングステン電極等の金属電極が挙げられる。 上記接続対象部材が フレキシブルプリント基板である場合には、 上記電極は金電極、 ニッケル電 極、 錫電極、 銀電極又は銅電極であることが好ましい。 上記接続対象部材が ガラス基板である場合には、 上記電極はアルミニウム電極、 銅電極、 モリブ デン電極、 銀電極又はタングステン電極であることが好ましい。 なお、 上記 電極がアルミニウム電極である場合には、 アルミニウムのみで形成された電 極であってもよく、 金属酸化物層の表面にアルミニウム層が積層された電極 であってもよい。 上記金属酸化物層の材料としては、 3価の金属元素がドー プされた酸化インジウム及び 3価の金属元素がドープされた酸化亜鉛等が挙 げられる。 上記 3価の金属元素としては、 S n、 八 丨及び◦ 3等が挙げられ る。 [0155] The electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, 3 II 3 electrodes, and tungsten electrodes. Is mentioned. When the member to be connected is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode or a copper electrode. When the member to be connected is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode or a tungsten electrode. When the above electrode is an aluminum electrode, it may be an electrode formed of only aluminum or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the above-mentioned trivalent metal element include Sn, Hachijo, and ◦3.
[0156] 以下、 実施例及び比較例を挙げて、 本発明を具体的に説明する。 本発明は 、 以下の実施例のみに限定されない。 [0156] Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.
[0157] (実施例 1 ) [0157] (Example 1)
( 1 ) 基材粒子の作製 \¥0 2020/175691 39 卩(:171? 2020 /008458 (1) Preparation of base particles \\0 2020/1756 91 39 卩 (: 171? 2020 /008458
種粒子として平均粒子径〇. 5 のポリスチレン粒子を用意した。 上記 ポリスチレン粒子 3 . 9重量部と、 イオン交換水 5 0 0重量部と、 5重量% ポリビニルアルコール水溶液 1 2 0重量部とを混合し、 混合液を調製した。 上記混合液を超音波により分散させた後、 セパラブルフラスコに入れて、 均 一に撹拌した。 Polystyrene particles having an average particle size of 0.5 were prepared as seed particles. A mixture solution was prepared by mixing 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion-exchanged water, and 120 parts by weight of a 5% by weight aqueous solution of polyvinyl alcohol. After the above mixed solution was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly.
[0158] 次に、 ジビニルベンゼン (モノマー成分) 1 5 0重量部と、 2 , 2, ーア ゾビス (イソ酪酸メチル) (和光純薬工業社製 「 _ 6 0 1」 ) 2重量部と 、 過酸化ベンゾイル (日油社製 「ナイパー巳 」 ) 2重量部とを混合した。 さらに、 ラウリル硫酸トリエタノールアミン 9重量部と、 トルエン (溶媒) [0158] Next, 150 parts by weight of divinylbenzene (monomer component) and 2 parts by weight of 2,2,-azobis (methyl isobutyrate) ("_601" manufactured by Wako Pure Chemical Industries, Ltd.), 2 parts by weight of benzoyl peroxide (“Nypermi” manufactured by NOF CORPORATION) was mixed. Furthermore, 9 parts by weight of triethanolamine lauryl sulfate and toluene (solvent)
5 0重量部と、 イオン交換水 1 1 0 0重量部とを添加し、 乳化液を調製した An emulsion was prepared by adding 50 parts by weight and 110 parts by weight of ion-exchanged water.
[0159] セパラブルフラスコ中の上記混合液に、 上記乳化液を数回に分けて添加し 、 1 2時間撹拌し、 種粒子にモノマーを吸収させて、 モノマーが膨潤した種 粒子を含む懸濁液を得た。 [0159] To the above mixed solution in a separable flask, the above emulsion was added in several times, and the mixture was stirred for 12 hours to allow the seed particles to absorb the monomer, and the suspension containing the swollen seed particles A liquid was obtained.
[0160] その後、 5重量%ポリビニルアルコール水溶液 4 9 0重量部を添加し、 加 熱を開始して 8 5 °〇で 9時間反応させ、 粒子径 2 . 〇 の基材粒子を得た [0160] Thereafter, 490 parts by weight of a 5% by weight aqueous solution of polyvinyl alcohol was added, heating was started, and the reaction was allowed to proceed at 85 ° for 9 hours to obtain base particles having a particle diameter of 2.0.
[0161 ] (2) 導電性粒子の作製 [0161] (2) Preparation of conductive particles
得られた基材粒子を洗浄し、 乾燥した後、 パラジウム触媒液を 5重量%含 むアルカリ溶液 1 0 0 0重量部に、 基材粒子 1 〇重量部を、 超音波分散器を 用いて分散させた後、 溶液をろ過することにより、 基材粒子を取り出した。 次いで、 基材粒子をジメチルアミンボラン 1重量%溶液 1 0 0重量部に添加 し、 基材粒子の表面を活性化させた。 表面が活性化された基材粒子を十分に 水洗した後、 蒸留水 5 0 0重量部に加え、 分散させることにより、 分散液を 得た。 次に、 ニッケル粒子スラリー (平均粒子径 1 0 0 n ) 1 9を 3分間 かけて上記分散液に添加し、 芯物質が付着された基材粒子を含む懸濁液を得 た。 The obtained base particles are washed and dried, and then 10 parts by weight of the base particles are dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser. After that, the base material particles were taken out by filtering the solution. Next, the base particles were added to 100 parts by weight of a 1 wt% solution of dimethylamine borane to activate the surface of the base particles. After thoroughly washing the surface-activated base material particles with water, the dispersion liquid was obtained by adding to 500 parts by weight of distilled water and dispersing. Next, nickel particle slurry (average particle size 100 n) 19 was added to the above dispersion over 3 minutes to obtain a suspension containing base material particles to which the core substance was attached.
[0162] また、 硫酸ニッケル〇. 3 5〇1〇 丨 / 1_、 ジメチルアミンボラン 1 . 3 8 \¥0 2020/175691 40 卩(:171? 2020 /008458 [0162] Also, nickel sulphate 0.35 〇1 丨/1_, dimethylamine borane 1.3 8 \¥0 2020/1756 91 40 卩 (: 171? 2020 /008458
01〇 丨
Figure imgf000042_0001
-及びクエン酸ナトリウム〇. 5〇1〇 丨 / ! -を含むニッケルめっき 液 ( 1~1 8 . 5) を用意した。
01 〇
Figure imgf000042_0001
A nickel plating solution (1 to 18.5) containing -and sodium citrate 0. 05 1 0 丨 /!-was prepared.
[0163] 得られた懸濁液を 6 0 °〇にて攪拌しながら、 上記ニッケルめっき液 3 0 0 重量部を懸濁液に徐々に滴下し、 無電解ニッケルめっきを行った。 その後、 懸濁液をろ過することにより、 粒子を取り出し、 水洗し、 乾燥することによ り、 基材粒子の表面にニッケルーボロン導電層が形成され、 導電部を表面に 有する導電性粒子を得た。 [0163] While stirring the obtained suspension at 600°, 300 parts by weight of the above nickel plating solution was gradually added dropwise to the suspension to perform electroless nickel plating. Then, the suspension is filtered to remove the particles, washed with water, and dried to form a nickel-boron conductive layer on the surface of the base material particles, and to obtain conductive particles having a conductive part on the surface. Obtained.
[0164] (3) 導電材料 (異方性導電べースト) の作製 [0164] (3) Fabrication of conductive material (anisotropic conductive paste)
得られた導電性粒子 7重量部と、 ビスフエノール八型フエノキシ樹脂 2 5 重量部と、 フルオレン型エポキシ樹脂 4重量部と、 フエノールノボラック型 エポキシ樹脂 3 0重量部と、 3 丨 _ 6 0 !_ (三新化学工業社製) とを配合し て、 3分間脱泡及び攪拌することで、 導電材料 (異方性導電べースト) を得 た。 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol octa-type phenoxy resin, 25 parts by weight of fluorene-type epoxy resin, 30 parts by weight of phenol-novolak-type epoxy resin, and 3 _ 660!_ (Manufactured by Sanshin Kagaku Kogyo Co., Ltd.) was mixed and defoamed and stirred for 3 minutes to obtain a conductive material (anisotropic conductive paste).
[0165] (4) 接続構造体の作製 [0165] (4) Fabrication of connection structure
!_ / 3が 1 0 / 1 0 である 丨 〇電極バターン (第 1の電極、 電 極表面の金属のピッカース硬度 1 0 0 ! !▽) が上面に形成された透明ガラス 基板を用意した。 また、 !_ / 3が 1 0 / 1 〇 である八リ電極バター ン (第 2の電極、 電極表面の金属のビッカース硬度 5 0 1~1 V) が下面に形成 された半導体チップを用意した。 上記透明ガラス基板上に、 得られた異方性 導電ペーストを厚さ 3〇 となるように塗工し、 異方性導電ペースト層を 形成した。 次に、 異方性導電ペースト層上に上記半導体チップを、 電極同士 が対向するように積層した。 その後、 異方性導電ペースト層の温度が 1 〇〇 °〇となるようにへッ ドの温度を調整しながら、 半導体チップの上面に加圧加 熱ヘッ ドを載せ、 8 5 IV! 3の圧力をかけて異方性導電ペースト層を 1 0 0 °〇で硬化させ、 接続構造体を得た。 A transparent glass substrate with an electrode pattern (1st electrode, metal pickers hardness of the electrode surface of 100 0 !!▽) formed on the upper surface was prepared. Also, ! A semiconductor chip was prepared on the lower surface of which an eight-electrode electrode pattern (the second electrode, the Vickers hardness of the metal of the electrode surface was 5 01 to 1 V) whose _ / 3 was 10/10 was formed. The obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 to form an anisotropic conductive paste layer. Next, the semiconductor chip was laminated on the anisotropic conductive paste layer so that the electrodes face each other. After that, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100°C, place a heating head under pressure on the top surface of the semiconductor chip, and A pressure was applied to cure the anisotropic conductive paste layer at 100° and a connection structure was obtained.
[0166] (実施例 2) [0166] (Example 2)
基材粒子の作製の際に、 溶媒の配合量を 1 0重量部としたこと以外は、 実 施例 1 と同様にして、 導電性粒子、 導電材料及び接続構造体を得た。 \¥0 2020/175691 41 卩(:171? 2020 /008458 Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the amount of the solvent used was 10 parts by weight during the production of the base particles. \¥0 2020/175691 41 卩(: 171? 2020/008458
[0167] (実施例 3) [0167] (Example 3)
基材粒子の作製の際に、 溶媒の配合量を 7 0重量部としたこと以外は、 実 施例 1 と同様にして、 導電性粒子、 導電材料及び接続構造体を得た。 Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the amount of the solvent used was 70 parts by weight when the base particles were prepared.
[0168] (実施例 4) [0168] (Example 4)
導電性粒子の作製の際に、 基材粒子の配合量を 5重量部としたこと以外は 、 実施例 1 と同様にして、 導電材料及び接続構造体を得た。 A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the amount of the base particles blended was 5 parts by weight when the conductive particles were produced.
[0169] (実施例 5) [0169] (Example 5)
導電性粒子の作製の際に、 基材粒子の配合量を 2 . 5重量部としたこと以 外は、 実施例 1 と同様にして、 導電材料及び接続構造体を得た。 A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the amount of the base particles mixed was 2.5 parts by weight in the production of the conductive particles.
[0170] (実施例 6) [0170] (Example 6)
実施例 1で得られた導電性粒子を用意した。 また、 1 0 9 / !_エチレンジ アミン 4酢酸ナトリウムと 1 0 9 / 1_クエン酸ナトリウムとを含む溶液 5 0 〇 9に、 シアン化金カリウム 5 9を添加して金めっき液を用意した。 実施例 1で得られた導電性粒子 1 0重量部を、 金めっき液 5 0 0重量部に入れて、 The conductive particles obtained in Example 1 were prepared. Further, a gold plating solution was prepared by adding potassium gold cyanide 59 to a solution 5009 containing 109/!_ sodium ethylenediamine tetraacetate and 109/1_ sodium citrate. 100 parts by weight of the conductive particles obtained in Example 1, was added to 500 parts by weight of the gold plating solution,
7 0 °〇で 3 0分間浸潰させ、 無電解金めっきを行った。 その後、 懸濁液をろ 過することにより、 粒子を取り出し、 水洗し、 乾燥することにより、 基材粒 子の表面にニッケルーボロンー金導電層が形成され、 導電部を表面に有する 導電性粒子を得た。 得られた導電性粒子を用いたこと以外は、 実施例 1 と同 様にして、 導電材料及び接続構造体を得た。 It was immersed for 30 minutes at 70 ° and electroless gold plating was performed. Then, the suspension is filtered to remove the particles, washed with water, and dried to form a nickel-boron-gold conductive layer on the surface of the base material particle, and a conductive part is provided on the surface. The particles were obtained. A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles were used.
[0171 ] (実施例 7) [0171] (Example 7)
実施例 1で得られた導電性粒子 1 〇重量部を、 蒸留水 2 0 0重量部に加え 、 分散させることにより、 懸濁液を得た。 また、 1 〇 9 / 1_エチレンジアミ ン、 3 . 0 9 / 1 -硫酸パラジウム、 5 . 0 9 / 1 -ギ酸ナトリウムを含むパラ ジウムめっき液を用意した。 上記懸濁液を 7 0 °〇に加熱した後、 上記パラジ ウムめっき液 7 0 0重量部を 1 0分間で滴下することで、 無電解パラジウム めっきを行った。 その後、 懸濁液をろ過することにより、 粒子を取り出し、 水洗し、 乾燥することにより、 基材粒子の表面にニッケルーボロンーパラジ ウム導電層が形成され、 導電部を表面に有する導電性粒子を得た。 得られた \¥02020/175691 42 卩(:171?2020/008458 A suspension was obtained by adding 10 parts by weight of the conductive particles obtained in Example 1 to 200 parts by weight of distilled water and dispersing them. Also, a palladium plating solution containing 109/1_ ethylene diamine, 3.09/1-palladium sulfate, 5.09/1-sodium formate was prepared. After heating the suspension to 700 ° C., 700 parts by weight of the palladium plating solution was added dropwise over 10 minutes to carry out electroless palladium plating. Then, the suspension is filtered to remove the particles, washed with water, and dried to form a nickel-boron-palladium conductive layer on the surface of the base particles, and conductive particles having a conductive portion on the surface. Got Got \¥02020/175691 42 ((171?2020/008458
導電性粒子を用いたこと以外は、 実施例 1 と同様にして、 導電材料及び接続 構造体を得た。 A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the conductive particles were used.
[0172] (実施例 8) [0172] (Example 8)
実施例 1で得られた導電性粒子 1 〇重量部を、 蒸留水 2 0 0重量部に加え 、 分散させることにより、 懸濁液を得た。 また、 1 0 9 / ! -シアン化銀カリ ウム、 8 0 9 / 1_シアン化カリウム、 5 9 / 1_エチレンジアミン四酢酸、 及 び 2 0 9 / !_水酸化ナトリウムを含む混合液を、 水酸化ナトリウムにて 1~1 6に調整した銀めっき液を用意した。 上記懸濁液を 5 0 °〇に加熱した後、 上 記銀めっき液 7 0 0重量部を 3 0分間で滴下することで、 無電解銀めっきを 行った。 その後、 懸濁液をろ過することにより、 粒子を取り出し、 水洗し、 乾燥することにより、 基材粒子の表面にニッケルーボロンー銀導電層が形成 され、 導電部を表面に有する導電性粒子を得た。 得られた導電性粒子を用い たこと以外は、 実施例 1 と同様にして、 導電材料及び接続構造体を得た。 A suspension was obtained by adding 10 parts by weight of the conductive particles obtained in Example 1 to 200 parts by weight of distilled water and dispersing them. In addition, a mixed solution containing 109/!-Ca silver cyanide, 809/1_ potassium cyanide, 59/1_ ethylenediaminetetraacetic acid, and 209/!_ sodium hydroxide was added to A silver plating solution adjusted to 1 to 16 with sodium was prepared. After the above suspension was heated to 500°, electroless silver plating was performed by dropping 700 parts by weight of the above silver plating solution over 30 minutes. Then, the suspension is filtered to take out the particles, washed with water, and dried to form a nickel-boron-silver conductive layer on the surface of the base material particles, and to form conductive particles having conductive parts on the surface. Obtained. A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles were used.
[0173] (実施例 9) [0173] (Example 9)
基材粒子の作製の際に、 種粒子径を変更することにより、 粒子径 1 . 〇 01の基材粒子を得た。 得られた基材粒子を用いたこと、 及び得られた基材粒 子の仕込み量を 5重量部に変更したこと以外は、 実施例 1 と同様にして、 導 電性粒子、 導電材料及び接続構造体を得た。 The base particles having a particle diameter of 1.001 were obtained by changing the seed particle diameter during the preparation of the base particles. Conductive particles, a conductive material and a connecting material were obtained in the same manner as in Example 1 except that the obtained base material particles were used and the amount of the obtained base material particles was changed to 5 parts by weight. The structure was obtained.
[0174] (実施例 1 0) [0174] (Example 10)
基材粒子の作製の際に、 種粒子径を変更することにより、 粒子径 2 . 5 01の基材粒子を得た。 得られた基材粒子を用いたこと、 及び得られた基材粒 子の仕込み量を 1 2 . 5重量部に変更したこと以外は、 実施例 1 と同様にし て、 導電性粒子、 導電材料及び接続構造体を得た。 The base particles having a particle diameter of 2.501 were obtained by changing the seed particle diameter during the preparation of the base particles. Conductive particles and conductive material were prepared in the same manner as in Example 1 except that the obtained base material particles were used and the amount of the obtained base material particles was changed to 12.5 parts by weight. And a connection structure was obtained.
[0175] (実施例 1 1) [0175] (Example 11)
基材粒子の作製の際に、 種粒子径を変更することにより、 粒子径 3 . 〇 01の基材粒子を得た。 得られた基材粒子を用いたこと、 及び得られた基材粒 子の仕込み量を 1 5重量部に変更したこと以外は、 実施例 1 と同様にして、 導電性粒子、 導電材料及び接続構造体を得た。 \¥02020/175691 43 卩(:171?2020/008458 By changing the seed particle size during the preparation of the base particles, base particles having a particle size of 3.001 were obtained. Conductive particles, a conductive material and a connecting material were obtained in the same manner as in Example 1 except that the obtained base material particles were used and the amount of the obtained base material particles was changed to 15 parts by weight. The structure was obtained. \¥02020/175691 43 卩 (: 171?2020/008458
[0176] (実施例 1 2) [0176] (Example 12)
基材粒子の作製の際に、 種粒子径を変更することにより、 粒子径 5 . 〇 01の基材粒子を得た。 得られた基材粒子を用いたこと、 及び得られた基材粒 子の仕込み量を 2 5重量部に変更したこと以外は、 実施例 1 と同様にして、 導電性粒子、 導電材料及び接続構造体を得た。 By changing the seed particle size when preparing the base particles, base particles having a particle size of 5.001 were obtained. Conductive particles, a conductive material and a connecting material were obtained in the same manner as in Example 1 except that the obtained base material particles were used and the amount of the obtained base material particles was changed to 25 parts by weight. The structure was obtained.
[0177] (実施例 1 3) [0177] (Example 13)
基材粒子の作製の際に、 種粒子径を変更することにより、 粒子径 1 0 . 0 の基材粒子を得た。 得られた基材粒子を用いたこと、 及び得られた基材 粒子の仕込み量を 5 0重量部に変更したこと以外は、 実施例 1 と同様にして 、 導電性粒子、 導電材料及び接続構造体を得た。 By changing the seed particle size during the preparation of the base particles, base particles having a particle size of 10.0 were obtained. Conductive particles, conductive material and connection structure were obtained in the same manner as in Example 1 except that the obtained base material particles were used, and the amount of the obtained base material particles was changed to 50 parts by weight. Got the body
[0178] (実施例 1 4) [0178] (Example 14)
( 1) 絶縁性粒子の作製 (1) Preparation of insulating particles
4つロセパラブルカバー、 攪拌翼、 三方コック、 冷却管及び温度プローブ を取り付けた 1 0 0 0 1_セパラブルフラスコに、 下記のモノマー組成物を 入れた後、 下記モノマー組成物の固形分が 1 0重量%となるように蒸留水を 入れ、 2 0 0 「 で攪拌し、 窒素雰囲気下 6 0 °◦で 2 4時間重合を行った 。 上記モノマー組成物は、 メタクリル酸メチル 3 6 0
Figure imgf000045_0001
〇 丨、 メタクリル 酸グリシジル 4 5 01 01〇 丨、 パラスチリルジェチルホスフィン 2 0 01 01〇 I 、 ジメタクリル酸ェチレングリコール 1
Figure imgf000045_0002
丨、 ポリビニルピロリ ドン 〇.
Figure imgf000045_0003
及び 2 , 2’ ーアゾビス {2 - [ 1\1 - (2 -カルボキシェ チル) アミジノ] プロパン} 1
Figure imgf000045_0004
I を含む。 反応終了後、 凍結乾燥して 、 パラスチリルジェチルホスフィンに由来するリン原子を表面に有する絶縁 性粒子 (粒子径 3 6 0 n ) を得た。
After putting the following monomer composition into a 100 0 0 1_ separable flask equipped with four separate separable covers, stirring blades, three-way cocks, cooling tubes and temperature probes, the solid content of the following monomer composition Distilled water was added so that the concentration became 10% by weight, the mixture was stirred at 200 ", and polymerization was carried out at 60 °C for 24 hours under a nitrogen atmosphere. The above monomer composition was methyl methacrylate
Figure imgf000045_0001
〇 丨, glycidyl methacrylate 4 5 01 01 〇 丨, parastyryl ethylphosphine 2 0 01 01 〇 I, Ethylene glycol dimethacrylate 1
Figure imgf000045_0002
丨, polyvinylpyrrolidone 〇.
Figure imgf000045_0003
And 2, 2'-azobis {2-[1\1-(2-carboxyethyl) amidino] propane} 1
Figure imgf000045_0004
Contains I. After the completion of the reaction, it was freeze-dried to obtain insulating particles (particle diameter 360 n) having a phosphorus atom derived from parastyryljetylphosphine on the surface.
[0179] (2) 絶縁性粒子付き導電性粒子の作製 [0179] (2) Preparation of conductive particles with insulating particles
上記 (1) で得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、 絶 縁性粒子の 1 〇重量%水分散液を得た。 実施例 1で得られた導電性粒子 1 0 9を蒸留水 5 0 0 !_に分散させ、 絶縁性粒子の 1 0重量%水分散液 1 9を 添加し、 室温で 8時間攪拌した。 3 のメッシュフィルターで濾過した後 \¥02020/175691 44 卩(:171?2020/008458 The insulating particles obtained in (1) above were dispersed in distilled water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles. The conductive particles 109 obtained in Example 1 were dispersed in distilled water 500!, 10% by weight aqueous dispersion of insulating particles 19 was added, and the mixture was stirred at room temperature for 8 hours. After filtering with 3 mesh filter \\02020/175691 44 卩 (: 171?2020/008458
、 さらにメタノールで洗浄、 乾燥し、 絶縁性粒子付き導電性粒子を得た。 得 られた絶縁性粒子付き導電性粒子を用いたこと以外は、 実施例 1 と同様にし て、 導電材料及び接続構造体を得た。 Further, it was washed with methanol and dried to obtain conductive particles with insulating particles. A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles with insulating particles were used.
[0180] (実施例 1 5) [0180] (Example 15)
導電性粒子の作製の際に、 ニッケル粒子スラリー (平均粒子径 1 0 0门
Figure imgf000046_0001
) を用いなかったこと以外は、 実施例 1 と同様にして、 導電性粒子、 導電材 料及び接続構造体を得た。
During the production of conductive particles, nickel particle slurry (average particle size 100
Figure imgf000046_0001
Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the above was not used.
[0181 ] (実施例 1 6) [0181] (Example 16)
導電性粒子の作製の際に、 触媒液量を 2 0 0重量部に変更したこと以外は 、 実施例 1 と同様にして、 導電性粒子、 導電材料及び接続構造体を得た。 Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the amount of the catalyst liquid was changed to 200 parts by weight when producing the conductive particles.
[0182] (実施例 1 7) [0182] (Example 17)
導電性粒子の作製の際に、 触媒液量を 5 0 0重量部に変更したこと以外は 、 実施例 1 と同様にして、 導電性粒子、 導電材料及び接続構造体を得た。 Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the amount of the catalyst liquid was changed to 500 parts by weight in the production of the conductive particles.
[0183] (実施例 1 8) [0183] (Example 18)
実施例 1 5で得られた導電性粒子を用意した。 実施例 1 5で得られた導電 性粒子を用いて、 実施例 1 4と同様にして、 絶縁性粒子付き導電性粒子を得 た。 得られた絶縁性粒子付き導電性粒子を用いたこと以外は、 実施例 1 と同 様にして、 導電材料及び接続構造体を得た。 The conductive particles obtained in Example 15 were prepared. Using the conductive particles obtained in Example 15 and in the same manner as in Example 14, conductive particles with insulating particles were obtained. A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles with insulating particles were used.
[0184] (比較例 1) [0184] (Comparative Example 1)
基材粒子の作製の際に、 溶媒をトルエンからエタノールに変更したこと以 外は、 実施例 1 と同様にして、 導電性粒子、 導電材料及び接続構造体を得た Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Example 1 except that the solvent was changed from toluene to ethanol during the production of the base particles.
[0185] (比較例 2) [0185] (Comparative Example 2)
導電性粒子の作製の際に、 基材粒子の配合量を 5重量部としたこと以外は 、 比較例 1 と同様にして、 導電性粒子、 導電材料及び接続構造体を得た。 Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Comparative Example 1 except that the amount of the base particles blended was 5 parts by weight in the production of the conductive particles.
[0186] (比較例 3) [0186] (Comparative Example 3)
比較例 2で得られた導電性粒子を用意した。 比較例 2で得られた導電性粒 子を用いて、 実施例 1 4と同様にして、 絶縁性粒子付き導電性粒子を得た。 \¥02020/175691 45 卩(:171? 2020 /008458 The conductive particles obtained in Comparative Example 2 were prepared. Conductive particles with insulating particles were obtained in the same manner as in Example 14 using the conductive particles obtained in Comparative Example 2. \¥02020/175691 45 卩 (: 171? 2020 /008458
得られた絶縁性粒子付き導電性粒子を用いたこと以外は、 実施例 1 と同様に して、 導電材料及び接続構造体を得た。 A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles with insulating particles were used.
[0187] (比較例 4) [0187] (Comparative Example 4)
導電性粒子の作製の際に、 基材粒子の配合量を 20重量部としたこと以外 は、 比較例 1 と同様にして、 導電性粒子、 導電材料及び接続構造体を得た。 Conductive particles, a conductive material, and a connection structure were obtained in the same manner as in Comparative Example 1 except that the amount of the base particles blended was 20 parts by weight during the production of the conductive particles.
[0188] (評価) [0188] (Evaluation)
( 1 ) 基材粒子及び導電性粒子の粒子径 (1) Particle size of base particles and conductive particles
得られた基材粒子及び導電性粒子について、 粒度分布測定装置 (ベックマ ンコールター社製 「1\/1リ 丨 1: 丨 3 丨 26 「 4」 ) を用いて、 基材粒子及び導 電性粒子の粒子径を算出した。 具体的には、 約 1 00000個の基材粒子又 は導電性粒子の粒子径を測定し、 平均値を算出することにより求めた。 About the obtained base particles and conductive particles, using the particle size distribution measuring device (Beckman Coulter Inc. "1\/1 Li 1: 1: 丨 3 丨 26 "4"), The particle size of the particles was calculated. Specifically, it was determined by measuring the particle size of about 100,000 base particles or conductive particles and calculating the average value.
[0189] (2) 基材粒子の巳巳丁比表面積 [0189] (2) Specific surface area of base material particles
得られた基材粒子について、 カンタクローム ·インスツルメンツ社製 「 〇 4200
Figure imgf000047_0001
を用いて、 窒素の吸着等温線を測定した。 測定結果から 、 巳巳丁法に準拠して、 基材粒子の比表面積を算出した。
Regarding the obtained base material particles, "○ 4200" manufactured by Kantachrome Instruments Co., Ltd.
Figure imgf000047_0001
Was used to measure the adsorption isotherm of nitrogen. From the measurement results, the specific surface area of the base particles was calculated according to the Mitsumi method.
[0190] (3) 基材粒子の全細孔容積 [0190] (3) Total pore volume of base particles
得られた基材粒子について、 カンタクローム インスツルメンツ 「1\1〇 八 4200
Figure imgf000047_0002
を用いて、 窒素の吸着等温線を測定した。 測定結果から、 巳 」 1~1法に準拠して、 基材粒子の全細孔容積を算出した。
Regarding the obtained base particles, Kantachrome Instruments "1 \ 108 8200
Figure imgf000047_0002
Was used to measure the adsorption isotherm of nitrogen. From the measurement results, snake "in conformity with 1-1 method to calculate the total pore volume of the substrate particles.
[0191] (4) 基材粒子の平均細孔径 [0191] (4) Average Pore Size of Base Particles
得られた基材粒子について、 カンタクローム インスツルメンツ 「1\1〇 八 4200
Figure imgf000047_0003
を用いて、 窒素の吸着等温線を測定した。 測定結果から、 巳 」 1~1法に準拠して、 基材粒子の全細孔容積を算出した。
Regarding the obtained base particles, Kantachrome Instruments "1 \ 108 8200
Figure imgf000047_0003
Was used to measure the adsorption isotherm of nitrogen. From the measurement results, snake "in conformity with 1-1 method to calculate the total pore volume of the substrate particles.
[0192] (5) 基材粒子の空隙率 [0192] (5) Porosity of base particles
得られた基材粒子について、 カンタクローム ·インスツルメンツ社製の水 銀ポロシメーター 「ポアーマスター 60」 を用いて、 水銀圧入法により印加 した圧力に対して水銀の積算侵入量を測定した。 測定結果から、 基材粒子の 空隙率を算出した。 \¥02020/175691 46 卩(:171? 2020 /008458 With respect to the obtained base particles, the cumulative penetration amount of mercury was measured with respect to the pressure applied by the mercury porosimetry, using a silver-silver porosimeter “Poremaster 60” manufactured by Kantachrome Instruments. From the measurement results, the porosity of the base particles was calculated. \¥02020/175691 46 卩 (: 171? 2020 /008458
[0193] (6) 導電性粒子 1 00体積%中の導電性金属の含有量 [0193] (6) Content of conductive metal in 100% by volume of conductive particles
得られた導電性粒子について、 導電性粒子 1 〇〇体積%中の導電性金属の 含有量を以下のようにして算出した。 Regarding the obtained conductive particles, the content of the conductive metal in 100% by volume of the conductive particles was calculated as follows.
[0194] 導電性粒子 1 00体積%中の導電性金属の含有量 (体積%) =0 1\/1/0
Figure imgf000048_0001
[0194] Content of conductive metal in 100% by volume of conductive particles (volume %) = 0 1\/1/0
Figure imgf000048_0001
0 :導電性粒子の比重 0: Specific gravity of conductive particles
IV! :導電性粒子の金属化率 IV!: Metallization rate of conductive particles
001㊀ 8 丨 :導電性金属の比重 001㊀ 8丨: Specific gravity of conductive metal
[0195] なお、 導電性粒子の金属化率は、 丨 〇 発光分析装置 (堀場製作所社製 「 [0195] Note that the metallization ratio of the conductive particles was measured by using an optical emission spectrometer (“Horiba Seisakusho”).
I
Figure imgf000048_0002
) を用いて算出した。 導電性粒子の比重は、 真比重計 (島 津製作所社製 「アキユピック」 ) を用いて測定した。 また、 導電性金属の比 重は金属固有の値を用いて算出した。
I
Figure imgf000048_0002
) Was calculated. The specific gravity of the conductive particles was measured using a true specific gravity meter (“Akiyupic” manufactured by Shimadzu Corporation). The specific gravity of the conductive metal was calculated using the value specific to the metal.
[0196] (7) 導電性粒子 1 00体積%中の基材粒子に含まれる導電性金属の含有 量、 及び、 導電性粒子 1 〇〇体積%中の導電部に含まれる導電性金属の含有 量 [0196] (7) Content of conductive metal contained in base material particle in 100 volume% of conductive particle, and content of conductive metal contained in conductive part in 100 volume% of conductive particle Quantity
得られた導電性粒子について、 導電性粒子 1 〇〇体積%中の導電部に含ま れる導電性金属の含有量を以下のようにして算出した。 Regarding the obtained conductive particles, the content of the conductive metal contained in the conductive portion in 100% by volume of the conductive particles was calculated as follows.
[0197] 導電性粒子 1 00体積%中の導電部に含まれる導電性金属の含有量 (体積 %) =0X1^1/011161 8 I X I 00 [0197] Content of conductive metal contained in conductive part in 100% by volume of conductive particles (volume %) = 0X1^ 1 /011161 8 IXI 00
1\/11 :導電部の金属化率 1\/1 1 :Metalization rate of conductive part
001㊀ 8 丨 :導電性金属の比重 001㊀ 8丨: Specific gravity of conductive metal
[0198] なお、 導電部の金属化率
Figure imgf000048_0003
とは、 導電性粒子 1 9に含まれる導電部中の導 電性金属の含有量 (9) を比で表したもの、 すなわち、 導電性粒子 1 9に含 まれる導電部中の導電性金属の含有量 (9) /導電性粒子 1 9を指す。
[0198] The metallization rate of the conductive part
Figure imgf000048_0003
Is a ratio (9) of the content of the conductive metal in the conductive part contained in the conductive particles 19, that is, the conductive metal contained in the conductive part contained in the conductive particles 19. Content (9) / refers to conductive particles 19
[0199] なお、 導電部の金属化率 IV! 1は以下の 2つの関係式を用いて算出した。 [0199] The metallization rate IV! 1 of the conductive portion was calculated using the following two relational expressions.
八= [ (「十 ) 3_ 「
Figure imgf000048_0004
( 1)
Eight = [("Ten) 3 _"
Figure imgf000048_0004
(1)
八二!^/ ( 1 - 1^) (2) Hachi! ^/ (1-1^) (2)
「 :基材粒子の半径 \¥02020/175691 47 卩(:171?2020/008458 “: Radius of base particles \¥02020/175691 47 卩 (: 171?2020/008458
1: :導電部の厚み 1:: Thickness of conductive part
導電性金属の比重 Specific gravity of conductive metal
〇1 2 :基材粒子の比重 12 : Specific gravity of base particles
1\/1 1 :導電部の金属化率 1\/1 1 :Metalization rate of conductive part
[0200] 次に、 得られた導電性粒子について、 導電性粒子 1 0 0体積%中の基材粒 子に含まれる導電性金属の含有量を以下のようにして算出した。 [0200] Next, for the obtained conductive particles, the content of the conductive metal contained in the base material particles in 100% by volume of the conductive particles was calculated as follows.
[0201 ] 導電性粒子 1 0 0体積%中の基材粒子に含まれる導電性金属の含有量 (体 積%) =導電性粒子 1 〇〇体積%中の導電性金属の含有量 (体積%) —導電 性粒子 1 0 0体積%中の導電部に含まれる導電性金属の含有量 (体積%) =
Figure imgf000049_0001
[0201] Content of conductive metal contained in base material particles in 100% by volume of conductive particles (volume %) = content of conductive metal in 100% by volume of conductive particles (volume% ) — Content of conductive metal contained in the conductive part in 100% by volume of conductive particles (volume %) =
Figure imgf000049_0001
— 1^) / 0〇1 6 8 I X I 0 0 — 1^) / 0 ○ 1 6 8 I X I 0 0
0 :導電性粒子の比重 0: Specific gravity of conductive particles
IV! :導電性粒子の金属化率 IV!: Metallization rate of conductive particles
1\/1 1 :導電部の金属化率 1\/1 1 :Metalization rate of conductive part
0 01㊀ 8 丨 :導電性金属の比重 0 01㊀ 8丨: Specific gravity of conductive metal
[0202] (8) 導電性金属が存在する導電性粒子の個数の割合 (第 1の割合及び第 [0202] (8) Ratio of number of conductive particles in which conductive metal is present (first ratio and
2の割合) 2 ratio)
得られた導電材料を用いて、 上記基材粒子の外表面から中心に向かって、 上記基材粒子の粒子径の 1 / 2の距離の領域を領域 1 としたときに、 上記 導電性粒子の全個数 1 0 0 %中、 上記基材粒子の上記領域 1 に上記導電性 金属が存在する導電性粒子の個数の割合 (第 1の割合) を、 以下のようにし て算出した。 また、 得られた導電材料を用いて、 上記基材粒子の中心から外 表面に向かって、 上記基材粒子の粒子径の 1 / 2の距離の領域を領域 2と したときに、 上記導電性粒子の全個数 1 0 0 %中、 上記基材粒子の上記領域 2に上記導電性金属が存在する導電性粒子の個数の割合 (第 2の割合) を 、 以下のようにして算出した。 Using the obtained conductive material, from the outer surface of the base material particle toward the center, when the area having a distance of 1/2 of the particle diameter of the base material particle is defined as the area 1, The ratio (first ratio) of the number of conductive particles in which the conductive metal is present in the region 1 of the base particle in the total number of 100% was calculated as follows. Further, using the obtained conductive material, when the area of the distance of 1/2 of the particle diameter of the base material particle is set to the area 2 from the center of the base material particle toward the outer surface, The ratio (second ratio) of the number of conductive particles in which the conductive metal is present in the region 2 of the base material particle in 100% of the total number of particles was calculated as follows.
[0203] 得られた導電材料をろ過することにより導電性粒子を回収した。 回収した 導電性粒子の含有量が 3 0重量%となるように、
Figure imgf000049_0002
「テクノ \¥0 2020/175691 48 卩(:171? 2020 /008458
[0203] Conductive particles were collected by filtering the obtained conductive material. Set the content of the recovered conductive particles to 30% by weight,
Figure imgf000049_0002
"techno \\0 2020/175 969 1 48 (: 171? 2020/008458
ビッ ト 4 0 0 0」 に添加し、 分散させて、 導電性粒子検査用埋め込み樹脂を 作製した。 検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るよ うにイオンミリング装置 (日立ハイテクノロジーズ社製 「丨 1\/1 4 0 0 0」 ) を用いて、 1個の導電性粒子の断面を切り出した。 そして、 電界放射型透過 電子顕微鏡 (日本電子社製 「」 巳1\/1 - 2 0 1 〇 巳 」 ) を用いて、 エネル ギー分散型 X線分析装置 (巳 0 3) により、 基材粒子の断面における導電性 金属の有無を測定することで、 基材粒子の粒子径方向における導電性金属の 分布結果を得た。 上記第 1の割合及び上記第 2の割合は、 任意に選択された 2 0個の導電性粒子における導電性金属の分布結果から算出した。 Bit 400” and dispersed to prepare an embedded resin for conductive particle inspection. Using an ion milling device (“Hitachi High-Technologies Inc. “丨/ 1/400”) that passes through the vicinity of the center of the conductive particles dispersed in the test embedded resin, A cross section was cut out. Then, using a field emission transmission electron microscope (“Jitsu Electronics Co., Ltd.,” “Misumi 1\/1-2 0 1 〇Mi” ), an energy dispersive X-ray analyzer (MiMi 0 3) was used to measure the base particles. By measuring the presence or absence of the conductive metal in the cross section, the distribution result of the conductive metal in the particle diameter direction of the base material particles was obtained. The first ratio and the second ratio were calculated from the distribution result of the conductive metal in 20 arbitrarily selected conductive particles.
[0204] (9) 導電性粒子の圧縮弾性率 [0204] (9) Compressive elastic modulus of conductive particles
得られた導電性粒子について、 上記圧縮弾性率 (1 〇% <値及び 3 0 % < 値) を、 上述した方法により、 微小圧縮試験機 (フィッシャー社製 「フィッ シャースコープ1~1 _ 1 0 0」 ) を用いて測定した。 測定結果から、 1 0 % < 値及び 3 0 % <値を算出した。 With respect to the obtained conductive particles, the compression elastic modulus (10% <value and 30% <value) was measured by the above-described method using a micro compression tester (“Fisher Scope 1 to 1 _ 1 0 by Fisher”). 0"). From the measurement results, 10% <value and 30% <value were calculated.
[0205] (1 0) 導電性粒子の凝集 [0205] (10) Aggregation of conductive particles
得られた導電材料を観察し、 導電性粒子の凝集が発生しているか否かを確 認した。 導電性粒子の凝集を下記の条件で判定した。 The obtained conductive material was observed and it was confirmed whether or not aggregation of conductive particles had occurred. Aggregation of the conductive particles was judged under the following conditions.
[0206] [導電性粒子の凝集の判定基準] [0206] [Criteria for Aggregation of Conductive Particles]
〇:導電性粒子の凝集が発生していない ◯: No aggregation of conductive particles has occurred
△ :導電性粒子の凝集が僅かに発生している Δ: Aggregation of conductive particles is slightly generated
X :導電性粒子の凝集が発生している X: Aggregation of conductive particles has occurred
[0207] (1 1) 導電性粒子における導電部の密着性 [0207] (11) Adhesion of conductive part in conductive particles
得られた導電性粒子 1 . 0 9と直径 1
Figure imgf000050_0001
のジルコニアビーズ 5 0 9とを 1 0 0 1_のマヨネーズビンに入れた。 さらに、 マヨネーズビンにトルエン
Obtained conductive particles 1.09 and diameter 1
Figure imgf000050_0001
The zirconia beads of 509 and 1 are put in a mayonnaise bottle of 001. Further, add mayonnaise to toluene.
1 〇 !_を加えた。 撹拌機 (スリーワンモーター) を用いて、 マヨネーズビ ン内を 3 0 0 「 で1 0分間撹拌した。 撹拌後、 導電性粒子とジルコニア ビーズとを分別し、 走査型電子顕微鏡 (3巳1\/〇 を用いて導電性粒子を観察 し、 導電性粒子における導電部に剥がれが発生しているか否かを確認した。 \¥0 2020/175691 49 卩(:171? 2020 /008458 Added 10! Using a stirrer (three-one motor), the mayonnaise bin was stirred for 10 minutes at 300". After stirring, the conductive particles and zirconia beads were separated, and a scanning electron microscope (3 x 1\/ The conductive particles were observed using ◯, and it was confirmed whether or not peeling occurred in the conductive portion of the conductive particles. \\0 2020/1756 91 49 卩 (: 171? 2020 /008458
導電性粒子における導電部の密着性を下記の条件で判定した。 The adhesion of the conductive part in the conductive particles was judged under the following conditions.
[0208] [導電性粒子における導電部の密着性の判定基準] [0208] [Criteria for Adhesion of Conductive Part in Conductive Particle]
〇:導電性粒子における導電部に剥がれが発生していない ◯: No peeling occurred in the conductive part of the conductive particles
X :導電性粒子における導電部に剥がれが発生している X: Peeling has occurred in the conductive part of the conductive particles
[0209] (1 2) 接続抵抗 (上下の電極間) [0209] (1 2) Connection resistance (between upper and lower electrodes)
得られた 2 0個の接続構造体の上下の電極間の接続抵抗をそれぞれ、 4端 子法により測定した。 接続抵抗の平均値を算出した。 なお、 電圧 =電流 抵 抗の関係から、 一定の電流を流した時の電圧を測定することにより接続抵抗 を求めることができる。 接続抵抗を下記の基準で判定した。 The connection resistance between the upper and lower electrodes of the obtained 20 connection structures was measured by the 4-terminal method. The average value of the connection resistance was calculated. From the relationship of voltage = current resistance, the connection resistance can be obtained by measuring the voltage when a constant current is applied. The connection resistance was judged according to the following criteria.
[0210] [接続抵抗の判定基準] [0210] [Criteria for connection resistance]
〇〇〇 :接続抵抗の平均値が 1 . 5 0以下 ○ ○ ○: The average value of the connection resistance is 1.50 or less
〇〇:接続抵抗の平均値が 1 . 5 0を超え 2 . 0 0以下 ○ ○: The average value of the connection resistance is more than 1.5 and not more than 2.0.
〇:接続抵抗の平均値が 2 . 0 0を超え 5 . 0 0以下 ◯: The average value of connection resistance is more than 2.0 and not more than 5.00
△ :接続抵抗の平均値が 5 . 0 0を超え 1 0 0以下 △: The average value of the connection resistance exceeds 5.0 and 100 or less
X :接続抵抗の平均値が 1 〇〇を超える X: The average value of connection resistance exceeds 100
[021 1 ] (1 3) 絶縁信頼性 (横方向に隣り合う電極間) [021 1] (13) Insulation reliability (between laterally adjacent electrodes)
上記 (1 2) 接続信頼性の評価で得られた 2 0個の接続構造体において、 隣接する電極間のリークの有無を、 テスターで抵抗値を測定することにより 評価した。 絶縁信頼性を下記の基準で評価した。 In 20 connection structures obtained in (12) Evaluation of connection reliability, the presence or absence of leakage between adjacent electrodes was evaluated by measuring the resistance value with a tester. The insulation reliability was evaluated according to the following criteria.
[0212] [絶縁信頼性の判定基準] [0212] [Criteria for insulation reliability]
〇〇〇 :抵抗値が 1 〇 8〇以上の接続構造体の個数が 2 0個 Thousand: the number of resistance 1 〇 8 ● As a connecting structure 2 0
〇〇 :抵抗値が 1 〇 8〇以上の接続構造体の個数が 1 8個以上 2 0個未満 〇:抵抗値が 1 〇 8〇以上の接続構造体の個数が 1 5個以上 1 8個未満 △ :抵抗値が 1 〇 8〇以上の接続構造体の個数が 1 〇個以上 1 5個未満 X :抵抗値が 1 〇 8〇以上の接続構造体の個数が 1 〇個未満 Hundred: number of resistance 1 〇 8 ● As a connection structure 1 8 or more 2 0 less than ○: 1 8 number is 1 5 or more resistance 1 〇 8 ● As a connection structure Less than △: The number of connection structures with a resistance value of 1 80 or more is 10 or more and less than 15 X: The number of connection structures with a resistance value of 1 80 or more is less than 10
[0213] 結果を下記の表 1〜 4に示す。 [0213] The results are shown in Tables 1 to 4 below.
[0214] \¥0 2020/175691 50 卩(:17 2020 /008458[0214] \\0 2020/175 969 1 50 (: 17 2020/008458
[表 1 ][table 1 ]
Figure imgf000052_0001
Figure imgf000052_0001
[0215] [0215]
\¥02020/175691 51 卩(:17 2020/008458\¥02020/175691 51 卩(: 17 2020/008458
[表 2][Table 2]
Figure imgf000053_0001
Figure imgf000053_0001
[0216] [0216]
\¥02020/175691 52 卩(:17 2020/008458\¥02020/175691 52 卩(: 17 2020/008458
[表 3][Table 3]
Figure imgf000054_0001
Figure imgf000054_0001
[0217] [0217]
\¥02020/175691 53 卩(:171? 2020 /008458 \¥02020/175691 53 卩 (: 171? 2020 /008458
[表 4] [Table 4]
Figure imgf000055_0001
Figure imgf000055_0001
符号の説明 Explanation of symbols
[0218] 1 導電性粒子 [0218] 1 Conductive particles
2 基材粒子 2 Base material particles
3 導電部 3 Conductive part
1 1 導電性粒子 1 1 Conductive particles
1 1 3 突起 1 1 3 protrusion
1 2 導電部 1 2 Conductive part
1 23 突起 1 23 Protrusion
1 3 芯物質 1 3 Core substance
1 4 絶縁性物質 \¥0 2020/175691 54 卩(:171? 2020 /008458 1 4 Insulating material \¥0 2020/175 969 1 54 (: 171? 2020/008458
2 1 導電性粒子 21 conductive particles
2 1 3 突起 2 1 3 protrusion
2 2 導電部 2 2 Conductive part
2 2 3 突起 2 2 3 protrusion
2 2八 第 1の導電部 2 2 8 1st conductive part
2 2 3 突起 2 2 3 protrusion
2 2巳 第 2の導電部 2 2 Min 2nd conductive part
2 2巳 3 突起 2 2 Mi 3 Protrusion
5 1 接続構造体 5 1 Connection structure
5 2 第 1の接続対象部材 5 2 1st connection target member
5 2 3 第 1の電極 5 2 3 1st electrode
5 3 第 2の接続対象部材 5 3 Second connection target member
5 3 8 第 2の電極 5 3 8 2nd electrode

Claims

\¥0 2020/175691 55 卩(:17 2020 /008458 請求の範囲 \¥0 2020/175 969 1 55 (: 17 2020/008458 Claims
[請求項 1 ] 基材粒子と、 前記基材粒子の表面上に配置された導電部とを備え、 前記基材粒子が、 前記基材粒子の内部に導電性金属を含有する、 導 電性粒子。 [Claim 1] A substrate particle, and a conductive portion arranged on a surface of the substrate particle, wherein the substrate particle contains a conductive metal inside the substrate particle, particle.
[請求項 2] 前記基材粒子の空隙率が、 1 0 %以上である、 請求項 1 に記載の導 電性粒子。 2. The conductive particles according to claim 1, wherein the base particles have a porosity of 10% or more.
[請求項 3] 前記導電性金属が、 ニッケル、 金、 パラジウム、 銀、 又は銅を含む [Claim 3] The conductive metal contains nickel, gold, palladium, silver, or copper
、 請求項 1又は 2に記載の導電性粒子。 The conductive particle according to claim 1 or 2.
[請求項 4] 前記導電部が、 ニッケル、 金、 パラジウム、 銀、 又は銅を含む、 請 求項 1〜 3のいずれか 1項に記載の導電性粒子。 [Claim 4] The conductive particle according to any one of claims 1 to 3, wherein the conductive portion contains nickel, gold, palladium, silver, or copper.
[請求項 5] 前記導電性粒子の 1 0 %<値が、
Figure imgf000057_0001
[Claim 5] 10% <value of the conductive particles is
Figure imgf000057_0001
Figure imgf000057_0002
以下である、 請求項 1〜 4のいずれか 1項に記載の導電性 粒子。
Figure imgf000057_0002
The conductive particles according to any one of claims 1 to 4, which are as follows.
[請求項 6] 前記導電性粒子の 3 0 %<値が、
Figure imgf000057_0003
[Claim 6] 30% <value of the conductive particles,
Figure imgf000057_0003
Figure imgf000057_0004
以下である、 請求項 1〜 5のいずれか 1項に記載の導電性 粒子。
Figure imgf000057_0004
The conductive particles according to any one of claims 1 to 5, which are as follows.
[請求項 7] 前記導電性粒子の 1 0 %<値の、 前記導電性粒子の 3 0 %<値に対 する比が、 1 . 5以上 5以下である、 請求項 1〜 6のいずれか 1項に 記載の導電性粒子。 [Claim 7] The ratio of 10% <value of the conductive particles to 30% <value of the conductive particles is 1.5 or more and 5 or less. The conductive particles according to item 1.
[請求項 8] 前記導電性粒子の粒子径が、 〇. 1 以上 1 0 0 0 以下であ る、 請求項 1〜 7のいずれか 1項に記載の導電性粒子。 [Claim 8] The conductive particle according to any one of claims 1 to 7, wherein a particle diameter of the conductive particle is 0.1 or more and 100 or less.
[請求項 9] 前記導電性粒子 1 〇〇体積%中、 前記基材粒子に含まれる前記導電 性金属の含有量が、 〇. 1体積%以上 3 0体積%以下である、 請求項 1〜 8のいずれか 1項に記載の導電性粒子。 [Claim 9] In 100% by volume of the conductive particles, the content of the conductive metal contained in the base particles is from 0.1% by volume to 30% by volume. 9. The conductive particle according to any one of items 8.
[請求項 10] 前記導電部の外表面に突起を有する、 請求項 1〜 9のいずれか 1項 に記載の導電性粒子。 [10] The conductive particle according to any one of [1] to [9], which has a protrusion on an outer surface of the conductive portion.
[請求項 1 1 ] 前記導電部の外表面上に配置された絶縁性物質を備える、 請求項 1 [Claim 11] The method further comprises an insulating substance disposed on the outer surface of the conductive portion.
〜 1 0のいずれか 1項に記載の導電性粒子。 \¥0 2020/175691 56 卩(:171? 2020 /008458 ~ The conductive particles according to any one of 1 to 10. \\0 2020/1756 91 56 卩 (: 171? 2020 /008458
[請求項 12] 請求項 1〜 1 1のいずれか 1項に記載の導電性粒子と、 バインダー 樹脂とを含む、 導電材料。 [Claim 12] A conductive material comprising the conductive particles according to any one of claims 1 to 11 and a binder resin.
[請求項 13] 複数の前記導電性粒子を含み、 [Claim 13] comprising a plurality of the conductive particles,
前記基材粒子の外表面から中心に向かって、 前記基材粒子の粒子径 の 1 / 2の距離の領域を領域 1 としたときに、 前記導電性粒子の全 個数 1 0 0 %中、 前記基材粒子の前記領域 1 に前記導電性金属が存 在する導電性粒子の個数の割合が、 5 0 %以上である、 請求項 1 2に 記載の導電材料。 From the outer surface of the base material particle toward the center, when the area having a distance of 1/2 of the particle diameter of the base material particle is defined as the area 1, the total number of the conductive particles is 100%, and The conductive material according to claim 12, wherein the ratio of the number of conductive particles in which the conductive metal is present in the region 1 of the base material particles is 50% or more.
[請求項 14] 複数の前記導電性粒子を含み、 [Claim 14] comprising a plurality of the conductive particles,
前記基材粒子の中心から外表面に向かって、 前記基材粒子の粒子径 の 1 / 2の距離の領域を領域 2としたときに、 前記導電性粒子の全 個数 1 0 0 %中、 前記基材粒子の前記領域 2に前記導電性金属が存 在する導電性粒子の個数の割合が、 5 %以上である、 請求項 1 2又は 1 3に記載の導電材料。 From the center of the base material particle toward the outer surface, when the area having a distance of 1/2 of the particle diameter of the base material particle is defined as the area 2, the total number of the conductive particles is 100%, and The conductive material according to claim 12, wherein the ratio of the number of conductive particles in which the conductive metal is present in the region 2 of the base material particles is 5% or more.
[請求項 15] 第 1の電極を表面に有する第 1の接続対象部材と、 [Claim 15] A first connection target member having a first electrode on the surface,
第 2の電極を表面に有する第 2の接続対象部材と、 A second connection target member having a second electrode on the surface,
前記第 1の接続対象部材と前記第 2の接続対象部材とを接続してい る接続部とを備え、 A first connection target member and a connection portion connecting the second connection target member,
前記接続部の材料が、 請求項 1〜 1 1のいずれか 1項に記載の導電 性粒子であるか、 又は前記導電性粒子とバインダー樹脂とを含む導電 材料であり、 The material of the connecting portion is the conductive particles according to any one of claims 1 to 11, or a conductive material containing the conductive particles and a binder resin,
前記第 1の電極と前記第 2の電極とが前記導電性粒子により電気的 に接続されている、 接続構造体。 A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
PCT/JP2020/008458 2019-02-28 2020-02-28 Conductive particles, conductive material, and connection structure WO2020175691A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020538860A JPWO2020175691A1 (en) 2019-02-28 2020-02-28 Conductive particles, conductive materials and connecting structures
CN202080017319.9A CN113519031A (en) 2019-02-28 2020-02-28 Conductive particle, conductive material, and connection structure
KR1020217027053A KR20210130152A (en) 2019-02-28 2020-02-28 Electroconductive particle, electrically-conductive material, and bonded structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019035986 2019-02-28
JP2019-035986 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020175691A1 true WO2020175691A1 (en) 2020-09-03

Family

ID=72239848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008458 WO2020175691A1 (en) 2019-02-28 2020-02-28 Conductive particles, conductive material, and connection structure

Country Status (5)

Country Link
JP (1) JPWO2020175691A1 (en)
KR (1) KR20210130152A (en)
CN (1) CN113519031A (en)
TW (1) TW202044283A (en)
WO (1) WO2020175691A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092188A1 (en) * 2020-10-28 2022-05-05 積水化学工業株式会社 Electroconductive particles, electroconductive material, and connection structure
WO2023189000A1 (en) * 2022-03-29 2023-10-05 デクセリアルズ株式会社 Connection structure and method of producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044987A (en) * 2013-08-02 2015-03-12 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
JP2016015312A (en) * 2014-06-11 2016-01-28 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
JP2016085988A (en) * 2014-10-28 2016-05-19 積水化学工業株式会社 Insulative particle-adhered conductive particle and production method thereof, conductive material, and connection structure
WO2016080407A1 (en) * 2014-11-17 2016-05-26 積水化学工業株式会社 Conductive particle, conductive material, and connection structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684439B2 (en) * 2001-03-06 2011-05-18 富士通株式会社 Conductive particles, conductive composition, and method for manufacturing electronic device
JP4391836B2 (en) * 2004-01-19 2009-12-24 積水化学工業株式会社 Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP4957695B2 (en) 2007-10-02 2012-06-20 日立化成工業株式会社 Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film
JP2013020721A (en) 2011-07-07 2013-01-31 Hitachi Chem Co Ltd Conductive particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044987A (en) * 2013-08-02 2015-03-12 積水化学工業株式会社 Base particle, conductive particle, conductive material, and connection structure
JP2016015312A (en) * 2014-06-11 2016-01-28 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
JP2016085988A (en) * 2014-10-28 2016-05-19 積水化学工業株式会社 Insulative particle-adhered conductive particle and production method thereof, conductive material, and connection structure
WO2016080407A1 (en) * 2014-11-17 2016-05-26 積水化学工業株式会社 Conductive particle, conductive material, and connection structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092188A1 (en) * 2020-10-28 2022-05-05 積水化学工業株式会社 Electroconductive particles, electroconductive material, and connection structure
WO2023189000A1 (en) * 2022-03-29 2023-10-05 デクセリアルズ株式会社 Connection structure and method of producing same

Also Published As

Publication number Publication date
TW202044283A (en) 2020-12-01
KR20210130152A (en) 2021-10-29
CN113519031A (en) 2021-10-19
JPWO2020175691A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
JP6475805B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
WO2020175691A1 (en) Conductive particles, conductive material, and connection structure
JP5530571B1 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6431411B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
KR20200140809A (en) Conductive particles, conductive materials and connection structures having insulating particles
JP6151990B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP7463069B2 (en) Conductive particles, conductive material, connection structure, and method for producing connection structure
JP2014026971A (en) Conductive particle, conductive material, and connection structure
JP6577723B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP7180981B2 (en) Conductive particles, conductive materials and connecting structures
WO2021182617A1 (en) Conductive particles, conductive material and connection structure
WO2022092188A1 (en) Electroconductive particles, electroconductive material, and connection structure
JP7328856B2 (en) Conductive particles, conductive materials and connecting structures
TWI807064B (en) Conductive particles with insulating particles, conductive material and connection structure
WO2022131359A2 (en) Conductive particles, socket, conducting material, and connection structure
WO2022260159A1 (en) Coated particles, coated particle production method, resin composition, and connection structure
TW202114307A (en) Conductive particles and connection structure
KR20200140808A (en) Conductive particles having insulating particles, manufacturing method of conductive particles having insulating particles, conductive material and connection structure
KR20200140807A (en) Conductive particles having insulating particles, manufacturing method of conductive particles having insulating particles, conductive material and connection structure
JP2020013787A (en) Conductive material and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020538860

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763904

Country of ref document: EP

Kind code of ref document: A1