WO2020175331A1 - Fluorine-containing elastomer composition, fluorine rubber molded article, method for producing fluorine-containing elastomer solution, and method for producing fluorine-containing elastomer composition - Google Patents

Fluorine-containing elastomer composition, fluorine rubber molded article, method for producing fluorine-containing elastomer solution, and method for producing fluorine-containing elastomer composition Download PDF

Info

Publication number
WO2020175331A1
WO2020175331A1 PCT/JP2020/006896 JP2020006896W WO2020175331A1 WO 2020175331 A1 WO2020175331 A1 WO 2020175331A1 JP 2020006896 W JP2020006896 W JP 2020006896W WO 2020175331 A1 WO2020175331 A1 WO 2020175331A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
containing elastomer
fibrous carbon
producing
average diameter
Prior art date
Application number
PCT/JP2020/006896
Other languages
French (fr)
Japanese (ja)
Inventor
慶久 武山
美信 山口
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2021502153A priority Critical patent/JP7505480B2/en
Publication of WO2020175331A1 publication Critical patent/WO2020175331A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • Fluorine-containing elastomer composition Fluorine-containing elastomer composition, fluororubber molded product, method for producing fluorine-containing elastomer solution, and method for producing fluorine-containing elastomer composition
  • the present invention relates to a fluoroelastomer composition, a fluororubber molded article, a method for producing a fluoroelastomer solution, and a method for producing a fluoroelastomer composition.
  • Fluorine rubber is widely used in various fields such as the automobile industry, the semiconductor industry, and the chemical industry because it has excellent chemical resistance, oil resistance, heat resistance, and the like.
  • a carbon nanotube having a predetermined average diameter, a predetermined average particle diameter and a mouthpiece are used for a fluoroelastomer (a ternary fluororubber).
  • a fluoroelastomer a ternary fluororubber.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2 0 1 6 _ 1 0 8 4 7 6
  • fluororubber moldings formed using a material containing fluororubber have not only heat resistance but also tensile strength and elongation in a high temperature environment exceeding 100 ° C, for example. High and durable due to a good balance between the two ⁇ 2020/175331 2 ⁇ (:171? 2020 /006896
  • an object of the present invention is to provide a technique capable of forming a fluororubber molded article having high tensile strength and high elongation in a high temperature environment.
  • the present inventors have conducted extensive studies to achieve the above object. Then, the present inventors have found that if a composition containing a fibrous carbon nanostructure containing a single-wall carbon nanotube bundle having a predetermined average diameter (mouth) in a predetermined ratio with respect to a fluoroelastomer, The inventors have found that a fluororubber molded article having high tensile strength and high elongation in a high temperature environment can be formed, and completed the present invention.
  • a fluorine-containing elastomer composition of the present invention is a fiber containing a fluorine-containing elastomer and a single-layer carbon nanotube.
  • the fibrous carbon nanostructure includes a single-wall force-bon nanotube bundle that is a bundle of the fibrous carbon nanostructure containing the single-wall force-carbon nanotubes.
  • the average diameter of the carbon nanotube bundle (the mouth is characterized by 20 nm or more and 600 n or less.
  • a single-wall force-bonded carbon nanotube bundle with a given average diameter (the mouth is By using the fluoroelastomer composition containing the fibrous carbon nanostructure containing at a predetermined ratio, it is possible to form a fluororubber molded article having high tensile strength and high elongation under high temperature environment. ..
  • the average diameter of the single-wall carbon nanotube bundle ((2) The average diameter of the fibrous carbon nanostructure containing the single-wall carbon nanotubes ( Ratio to (Hereafter, "ratio Is the average diameter of single-wall carbon nanotube bundles (mouth 8 ), average diameter of fibrous carbon nanostructures Ratio to May be abbreviated as "”. ) Is preferably 5 or more and 200 or less.
  • the fluororubber molded article formed by using the fluoroelastomer composition of the present invention should maintain a good balance of high tensile strength and high elongation in a high temperature environment.
  • the “average diameter of fibrous carbon nanostructures ()” is the diameter (outer diameter) of 100 fibrous carbon nanostructures randomly selected using a transmission electron microscope. It can be determined by measuring.
  • the fibrous carbon nanostructure containing the single-walled carbon nanotubes has a 1-plot obtained from an adsorption isotherm that has a convex shape upward. Is preferred.
  • the flexibility of the fluororubber molded article formed using the fluoroelastomer composition of the present invention can be improved. Can be improved.
  • the fibrous carbon nanostructure containing the single-walled carbon nanotubes has a Mitsumi specific surface area of 600 2 /9 or more. .. If ear Ding specific surface area of the fibrous carbon nanostructures comprising the monolayer force over carbon nanotubes 6 0 0_Rei_1 2/9 or more, fluororubber formed using a fluorine-containing-containing elastomer composition of the present invention The heat resistance of the molded product can be improved.
  • the “specific surface area of Mitsumi” means the nitrogen adsorption specific surface area measured by the method of Mitsumi. ⁇ 2020/175 331 4 ⁇ (: 171? 2020 /006896
  • the fluorine-containing elastomer composition of the present invention may further contain a crosslinking agent.
  • the fluorine-containing elastomer composition of the present invention preferably further contains carbon black.
  • carbon black By further containing carbon black, it is possible to improve the tensile strength of the fluororubber molded article formed by using the fluoroelastomer composition of the present invention while sufficiently ensuring high elongation in a high temperature environment. ..
  • the present invention has an object to advantageously solve the above-mentioned problems, and the fluororubber molded article of the present invention is formed by molding any one of the above-mentioned fluorine-containing elastomer compositions. It is characterized by being a fluororubber molded product.
  • the fluororubber molded article obtained by molding the above-mentioned fluoroelastomer composition has high tensile strength and high elongation under a high temperature environment, and thus can be suitably used for various applications.
  • the present invention has an object to advantageously solve the above-mentioned problems, and a method for producing a fluorine-containing elastomer solution of the present invention is: a fluorine-containing elastomer; A method for producing a fluorine-containing elastomer solution containing: a fibrous carbon nanostructure containing: a fibrous carbon nanostructure containing the fluorine-containing elastomer, a solvent, and the single-layer carbon nanotube.
  • It is a dispersion liquid in which fibrous carbon nanostructures containing carbon nanotubes are dispersed, and the dispersion liquid is a bundle of fibrous carbon nanostructures containing the above-mentioned single-layer carbon nanotubes. Including a carbon nanotube bundle, and the single-layer force-average diameter of the carbon nanotube bundle (mouth 8 ) It is characterized by the following.
  • the fluorine-containing elastomer of the present invention can be obtained by including the dispersion step of dispersing the fluorine-containing elastomer, the solvent, and the fibrous carbon nanostructure containing the single-layer carbon nanotubes using the dispersion medium.
  • the dispersion step of dispersing the fluorine-containing elastomer, the solvent, and the fibrous carbon nanostructure containing the single-layer carbon nanotubes using the dispersion medium.
  • a possible fluorine-containing elastomer solution can be efficiently produced.
  • the dispersing step includes a first step of dissolving the fluorinated elastomer in the solvent to obtain the fluorinated elastomer-dissolved solution, It is preferable that the method further includes a second step of performing the dispersion treatment on the fibrous single-layer nanostructure including the fluoroelastomer dissolving solution and the single-layer force-carbon nanotube.
  • the fluorine-containing elastomer solution can be produced more efficiently by the dispersion step including the step of.
  • the dispersion medium satisfies at least one of the following (1) and (2).
  • the dispersion medium has a Vickers hardness of 600 or more and 1500 or less.
  • the filling factor of the dispersion medium is 40% by volume or more and 70% by volume or less.
  • at least the Vickers hardness of the dispersion medium is 600 or more and 1500 or less, or
  • the filling rate is 40% by volume or more and 70% by volume or less, the fluorine-containing elastomer solution can be more efficiently produced.
  • the “Pickers hardness of the dispersion medium” and the “filling ratio of the dispersion medium” can be measured according to the methods described in the examples of this specification.
  • the dispersion medium has an average diameter of 0.1.
  • the following is preferable. Average diameter is 0.1
  • the “average diameter of the dispersion medium” is the term “implemented in this specification”. ⁇ 2020/175 331 6 ⁇ (: 171-1? 2020 /006896
  • the present invention has an object to advantageously solve the above problems, and a method for producing a fluorine-containing elastomer composition of the present invention is a method for producing any of the above fluorine-containing elastomer solutions.
  • the method is characterized by including a removal step of removing the solvent from the fluorine-containing elastomer solution obtained by.
  • the removal step of removing the solvent from the fluoroelastomer solution obtained by the method for producing a fluoroelastomer solution of the present invention the tensile strength in a high temperature environment is high and the elongation is high.
  • a fluoroelastomer composition that can be suitably used for producing a fluororubber molded article can be efficiently produced. Effect of the invention
  • a fluoroelastomer composition capable of forming a fluororubber molded article having high tensile strength and high elongation under a high temperature environment, and a fluororubber using the fluoroelastomer composition A molded body can be provided. Further, according to the present invention, it is possible to provide a method for producing a fluoroelastomer solution which can be used for producing a fluororubber molded article having a high tensile strength in a high temperature environment and a high elongation.
  • the fluorine-containing elastomer composition of the present invention can be used, for example, when forming the fluororubber molded article of the present invention. Further, the fluorine-containing elastomer composition of the present invention can be manufactured by using the method of manufacturing the fluorine-containing elastomer composition of the present invention. The method for producing a fluorine-containing elastomer composition of the present invention can be produced using the fluorine-containing elastomer solution obtained by the method for producing a fluorine-containing elastomer solution of the present invention.
  • the fluoroelastomer composition of the present invention contains a fluoroelastomer and a fibrous carbon nanostructure containing a single-layer carbon nanotube, and optionally further contains an additive such as a crosslinking agent or carbon black. obtain.
  • an additive such as a crosslinking agent or carbon black.
  • the fibrous carbon nanostructure a fibrous carbon nanostructure containing a single-walled carbon nanotube bundle having a predetermined average diameter (mouth) is prepared. It is used in a predetermined ratio with respect to.
  • the fluoroelastomer is not particularly limited, and known fluororubber can be used.
  • the fluorine-containing elastomer include vinylidene fluoride rubber ([ ⁇ 1 ⁇ /1), tetrafluoroethylene-propylene rubber (Miwa 1 ⁇ /1), tetrafluoroethylene-perme Fluoromethyl vinyl ether-based rubber ([ ⁇ 1 ⁇ /1]), tetrafluoroethylene-based rubber (Tingmi), etc. These may be used alone or in combination of two or more.
  • fluorine-containing elastomer vinylidene fluoride rubber ([ ⁇ 1 ⁇ /1) and tetrafluoroethylene-propylene rubber (Mitsumi 1 ⁇ /1) are preferable. Vinylidene rubber ([ ⁇ 1 ⁇ /1) is more preferable.
  • vinylidene fluoride rubber ([ ⁇ 1 ⁇ /1] is a fluorine-based rubber that has vinylidene fluoride as a main component and is excellent in heat resistance, oil resistance, chemical resistance, solvent resistance, processability, etc. It is rubber. [ ⁇ 1 ⁇ /1 is not particularly limited, but for example, a binary copolymer of vinylidene fluoride and hexafluoropropylene, a ternary copolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene can be used.
  • Examples thereof include a copolymer and a quaternary copolymer composed of vinylidene fluoride, hexafluoropropylene, tetrafluoroethylene, and a vulcanization site monomer.
  • Market products include, for example, “Byton (registered trademark)” from Kemmers Co., Ltd. and “Daiel (registered trademark) ⁇ ” from Daikinye Industry Co., Ltd.
  • a quaternary copolymer composed of and a vulcanized site monomer is preferable.
  • the quaternary copolymer is available, for example, as a commercially available product “Biton Omi 1_ _ 2 0 0 3” (manufactured by Kemers Co., Ltd.).
  • vinylidene fluoride as a main component means that the vinylidene fluoride unit contained in the vinylidene fluoride-based rubber is 50% by mass or more, preferably more than 50% by mass, and more preferably Means 100% by mass
  • the tetrafluoroethylene-propylene rubber (Min IV!) is based on an alternating copolymer of tetrafluoroethylene and propylene, and has heat resistance, chemical resistance, polar solvent resistance, steam resistance, etc. It is an excellent fluororubber.
  • the number 1 ⁇ /1 for example, a binary copolymer of tetrafluoroethylene and propylene, a terpolymer of tetrafluoroethylene, propylene, and vinylidene fluoride, and tetrafluoroethylene Examples thereof include terpolymers composed of ethylene, propylene, and a crosslinking point monomer.
  • Examples of commercially available binary copolymers composed of tetrafluoroethylene and propylene include "Aflas (registered trademark) 100" and “Aflas 150" of 8° ⁇ Co., Ltd., for example.
  • Commercially available terpolymers composed of tetrafluoroethylene, propylene, and vinylidene fluoride include, for example, 0(3) "Aflas 200". Tetrafluoroethylene, propylene, and bridges.
  • Examples of commercially available terpolymers containing point monomers include “Aflas 300” from 800,000 type company.
  • the content ratio of the fluorine-containing elastomer in the fluorine-containing elastomer composition is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more. It is more preferable that the content is 92% by mass or less, more preferably 90% by mass or less, and further preferably 86% by mass or less. If the content ratio of the fluorine-containing elastomer in the fluorine-containing elastomer composition is within the above range, a fluorine-containing elastomer formed by using the fluorine-containing elastomer composition is ⁇ 2020/175 331 9 ⁇ (: 171-1? 2020 /006896
  • fibrous carbon nanostructures include cylindrical carbon nanostructures such as force carbon nanotubes (hereinafter, also referred to as "0 ⁇ 1") and carbon six-membered ring networks.
  • a non-cylindrical carbon nanostructure such as a carbon nanostructure formed in a flat tubular shape, may be mentioned.
  • the fibrous carbon nanostructure containing a single layer 0 bundle having a predetermined average diameter (mouth 8 ) is used in a predetermined ratio with respect to the fluorine-containing elastomer.
  • the above-mentioned single layer 0 1 ⁇ 1 bundle is a bundle of fibrous carbon nanostructures including 0 single layer, and specifically, the single layer 0 1 ⁇ 1 bundle includes fibrous carbon nanostructures.
  • the structures are aggregated by the Van der Waalsker between the fibrous carbon nanostructures and formed into a bundle.
  • the tensile strength in a high temperature environment can be improved. It is possible to obtain a fluororubber elastomer composition capable of forming a fluororubber molded product having a high elongation and a high elongation.
  • the content ratio of the fibrous carbon nanostructure in the fluoroelastomer composition must be 0.1 part by mass or more per 100 parts by mass of the fluoroelastomer, and 1 part by mass. It is preferably not less than 6 parts by mass, preferably less than 6 parts by mass, and preferably not more than 5 parts by mass.
  • the fluororubber molded product formed by using the fluoroelastomer composition has a high high temperature environment. Both tensile strength and high elongation can be sufficiently ensured.
  • the content ratio of the fibrous carbon nanostructure is less than 6 parts by mass per 100 parts by mass of the fluorine-containing elastomer, the elongation of the fluororubber molded product formed by using the fluorine-containing elastomer composition of the present invention Can be suppressed.
  • the average diameter of the single-layer 0-bundle contained in the fibrous carbon nanostructure is ⁇ 2020/175331 10 ⁇ (: 171-1? 2020 /006896
  • Single layer ⁇ 1 ⁇ 1 bundle average diameter When the value is at least the above lower limit, the fluororubber formed by using the fluorine-containing elastomer composition of the present invention exhibits good elongation at room temperature. Further, the average diameter of the single layer 0 ⁇ 1 bundle (when 0 is not more than the above upper limit, good flexibility is maintained in the fluororubber molded article formed using the fluoroelastomer composition of the present invention. Be done.
  • a single layer ⁇ ! Average diameter (ratio to the average diameter () of the fibrous carbon nanostructure including the single layer ⁇ ! Is preferably 5 or more, more preferably 10 or more, still more preferably 30 or more, preferably 200 or less, more preferably 150 or less. , 100 or less is more preferable.
  • the average diameter () of the fibrous carbon nanostructure containing the single layer ⁇ 1 bundle is within the above range, in the fluororubber molded article formed using the fluoroelastomer composition of the present invention, Flexibility is improved.
  • the fibrous carbon nanostructure is It is a fibrous carbon nanostructure including a dent and is not particularly limited as long as it is a fibrous carbon nanostructure including a single layer 0 bunching having the above-mentioned predetermined average diameter (mouth). Therefore, the fibrous carbon nanostructure May further include, for example, a multi-layer 0 ⁇ 1 unit, or may further include a fibrous carbon structure other than O ⁇ 1 unit. ⁇ 2020/175 331 1 1 ⁇ (: 171? 2020 /006896
  • the content ratio of the single layer 0 1 ⁇ 1 is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more. More preferable.
  • the I-plot obtained from the adsorption isotherm has a convex shape. If the 1- plot obtained from the adsorption isotherm is a fibrous carbon nanostructure showing a convex shape, the flexibility of the fluororubber molded article formed by using the fluoroelastomer composition of the present invention can be improved. Can be improved.
  • the fibrous carbon nanostructure is not subjected to 0 opening treatment and the plot has a convex shape upward.
  • adsorption is a phenomenon in which gas molecules are removed from a gas phase to a solid surface, and is classified into physical adsorption and chemical adsorption based on the cause. Then, in the nitrogen gas adsorption method used to obtain 1-plot, physical adsorption is used. Generally, if the adsorption temperature is constant, the number of nitrogen gas molecules adsorbed on the fibrous carbon nanostructure increases as the pressure increases.
  • the abscissa is the relative pressure (the ratio between adsorption equilibrium pressure? And the saturated vapor pressure? ⁇ ), and the ordinate is the plot of nitrogen gas adsorption amount called “isothermal line”. The case of measuring the gas adsorption amount is called the “adsorption isotherm", and the case of measuring the nitrogen gas adsorption amount while reducing the pressure is called the "desorption isotherm”.
  • the plot is obtained by converting the relative pressure into the average thickness 1 (nm) of the nitrogen gas adsorption layer in the adsorption isotherm measured by the nitrogen gas adsorption method. That is, from the known standard isotherm obtained by plotting the average thickness 1 of the nitrogen gas adsorption layer with respect to the relative pressure / 0, the average thickness of the nitrogen gas adsorption layer corresponding to the relative pressure is obtained and the above conversion is performed. , Plots of fibrous carbon nanostructures can be obtained (( ⁇ 806 "et al. 1: _ plot method)).
  • the growth of the nitrogen gas adsorption layer was as follows. ⁇ 2020/175 331 12 ⁇ (: 171-1? 2020 /006896
  • the 1-plot of the fibrous carbon nanostructure including the single layer 0 has a position where the plot is located on a straight line passing through the origin in the region where the average thickness 1 of the nitrogen gas adsorption layer is small.
  • 1: becomes large it is preferable that the plot is located at a position displaced downward from the straight line and has a convex shape upward.
  • the 1:-shape of the plot indicates that the ratio of the internal specific surface area to the total specific surface area of the fibrous carbon nanostructure is large and many openings are formed in the fibrous carbon nanostructure.
  • the bending point of the I-plot of the fibrous carbon nanostructure including the single layer ⁇ ! ⁇ 1 unit is preferably in the range that satisfies 0.2 £ I ⁇ £1.5. More preferably, it is within a range satisfying 0.45 £ I (nm) £ 1.5, and 0.55 £ I More preferably, it is in the range satisfying £ 1.0. 1:—When the position of the bending point of the plot is within the above range, the characteristics of the fibrous carbon nanostructure are further improved.
  • the “position of the bending point” is the intersection of the approximate straight line of the above process (1) and the approximate straight line of the above process (3) in the plot.
  • the fibrous carbon nanostructure including the single layer 0 is The ratio of the internal specific surface area 3 2 to the total specific surface area 3 1 obtained from the plot (3 2/3 1) is ⁇ .
  • 3 2 is preferably 3 0_Rei ⁇ / 9 or more 5 4 0 2/9 or less.
  • the total specific surface area 31 and the internal specific surface area 32 of the fibrous carbon nanostructure including the claw can be obtained from the 1:_ plot. Specifically, first, the total specific surface area 31 can be obtained from the slope of the approximation line in the process of (1), and the external specific surface area 33 can be obtained from the slope of the approximation line in the process of (3). Then, the internal specific surface area 32 can be calculated by subtracting the external specific surface area 33 from the total specific surface area 31.
  • the surface area 32 is calculated using, for example, a commercially available measuring device.
  • a ratio (3/8) of a value (3 £7) obtained by multiplying the standard deviation () of the diameter by 3 with respect to the average diameter (8) is used. It is preferred to use fibrous carbon nanostructures with V) greater than 0.20 and less than 0.80, more preferably 3 £7 /8 with fibrous carbon nanostructures greater than 0.25. Preferably, it is more preferable to use a fibrous carbon nanostructure having 3/V of less than 0.70. If a fibrous carbon nanostructure containing a single layer 0 1 ⁇ 1 of 3 £7/8 is more than 0.20 and less than 0.80, it was formed using the fluorine-containing elastomer composition of the present invention.
  • the performance of the fluororubber molded article can be improved.
  • the “standard deviation of the diameter of fibrous carbon nanostructures (£7: sample standard deviation)” is the diameter of 100 fibrous carbon nanostructures randomly selected using a transmission electron microscope ( The outer diameter) can be measured and obtained.
  • It may be adjusted by changing the production method or production conditions of the carbon nanostructures, or may be adjusted by combining a plurality of fibrous carbon nanostructures obtained by different production methods.
  • the fibrous carbon nanostructure containing 0 single layers must have a ratio of ⁇ band peak intensity to robo band peak intensity in Raman spectrum ( ⁇ / 0 ratio) of 1 or more and 20 or less. Is preferred.
  • the performance of the fluororubber molded article formed using the fluoroelastomer composition of the present invention can be further improved.
  • the ratio may be 2 or more, 3 or more, 10 or less, or 5 or less.
  • the average length of the fibrous carbon nanostructure at the time of synthesis is preferably 100 or more. Note that the longer the length of the fibrous carbon nanostructure during synthesis, the more easily the fibrous carbon nanostructure is damaged, such as breakage or cutting, during dispersion, so the average length of the structure during synthesis is 5 It is preferably 0 0 0 0 1 or less.
  • the aspect ratio (length/diameter) of the fibrous carbon nanostructure including the claw is preferably more than 10.
  • the aspect ratio of the fibrous carbon nanostructures was obtained by measuring the diameter and length of 100 randomly selected fibrous carbon nanostructures using a transmission electron microscope. It can be obtained by calculating the average value of the ratio (length/diameter) to the.
  • the specific surface area of the fibrous carbon nanostructure including the single layer 0 is 60
  • the specific surface area of the fibrous carbon nanostructure including the single layer 0 1 ⁇ 1 is 60 2 /9 or more, the fluororubber formed by using the fluorine-containing elastomer composition of the present invention The heat resistance of the molded product can be improved.
  • the specific surface area of the fibrous carbon nanostructure including the single-layer ⁇ 1 is less than 250 0 2 /9, ⁇ 0 2020/175 331 15 ⁇ (: 17 2020 /006896
  • a fluororubber molded article formed using a fluoroelastomer composition has a better balance of both high tensile strength and high elongation in a high temperature environment.
  • the fibrous carbon nanostructure including the single layer 0 having the above-mentioned properties is, for example, a raw material compound and a carrier gas on a base material having a catalyst layer for producing carbon nanotubes on its surface.
  • the catalyst layer In the method of dramatically improving the catalytic activity of the catalyst (super-growth method; see International Publication No. WO 206/011655), the formation of the catalyst layer on the surface of the base material is performed by a wet process. By doing so, it is possible to manufacture efficiently.
  • the force-bonded carbon nanotubes obtained by the super growth method may be referred to as "3,001 ⁇ 1".
  • the fibrous carbon nanostructure including the single layer ⁇ 1 pcs produced by the super growth method may be composed of only 3 ⁇ 1 pcs, or It may be composed of ⁇ 1 unit and a non-cylindrical carbon nanostructure.
  • a fibrous carbon nanostructure containing a single layer ⁇ ! ⁇ 1 unit includes a single-layer or multi-layered flat tubular carbon that has a tape-shaped portion with inner walls close to or bonded to each other over the entire length.
  • a nano structure hereinafter, also referred to as “Graph Ennano Tape (0 1 ⁇ 1)” may be included.
  • the fibrous carbon nanostructure including the single layer 0 obtained by the above method is formed into a bundle by aggregation of the fibrous carbon nanostructure due to Van der Waalsca between the fibrous carbon nanostructures. It contains a bundle of fibrous carbon nanostructures containing formed monolayers. Therefore, if the fibrous carbon nanostructure obtained by the above method is subjected to a dispersion treatment by an arbitrary method, the bundle of fibrous carbon nanostructures is unwoven, and the above-mentioned predetermined average diameter (single layer having a mouth is formed. You can get a bundle of 1!
  • the known additives such as a cross-linking agent, a cross-linking aid, an antioxidant, and a reinforcing material can be used without particular limitation.
  • a dispersant may be used for the purpose of suppressing excessive aggregation of the fibrous carbon nanostructure, but the fluorine-containing elastomer composition of the present invention contains the dispersant substantially. It is preferable that it is not included. By containing substantially no dispersant, a fluororubber molded article having higher tensile strength under a high temperature environment can be obtained by using the fluoroelastomer composition of the present invention. “Substantially free of” means that it is not actively compounded unless it is inevitably mixed.
  • the cross-linking agent is not particularly limited, and a known cross-linking agent capable of cross-linking the fluorine-containing elastomer contained in the fluorine-containing elastomer composition can be used. More specifically, as the cross-linking agent, for example, sulfur, 2,5-dimethyl-2,5-di(1:_pentylperoxy)hexane-based cross-linking agent such as hexane, triallyl isocyanurate, etc. may be used. You can
  • crosslinking aid is not particularly limited and, for example, zinc white can be used.
  • the antioxidant is not particularly limited, and an amine-based antioxidant, an imidazole-based antioxidant, or the like can be used.
  • the reinforcing material is not particularly limited, and carbon black, silica, or the like can be used.
  • examples of the force-black include furnace black, acetylene black, thermal black, channel black and graphite.
  • additives may be used alone or in combination of two or more.
  • the amount of the additive compounded may be any amount as long as the desired effect is not impaired.
  • the fluorine-containing elastomer composition comprises a fluorine-containing elastomer, a predetermined average diameter (a fibrous carbon nanostructure including a single layer 0 bundle having a mouth, and an additive as an optional component). It can be prepared by mixing or kneading at a ratio of.
  • the fluorine-containing elastomer composition is not particularly limited, and includes, for example, a fluorine-containing elastomer and a fibrous carbon nanostructure containing a single-layer circular bundle having a predetermined average diameter (mouth). It is possible to prepare the mixture by mixing the obtained mixture with the additive which is an optional component.
  • Preparation of a mixture with fibrous carbon nanostructures containing !1 bundles includes, for example, fibrous carbon nanostructures containing a single average layer of a fluorine-containing elastomer
  • the mixture can be carried out by using any mixing method that can disperse the body, specifically, the mixture is not particularly limited, and may be, for example, a fluorine-containing elastomer prepared by dissolving a fluorine-containing elastomer in a solvent.
  • the obtained dispersion liquid is used as a solvent or a dispersion medium.
  • the solvent or dispersion medium can be removed by, for example, a coagulation method, a casting method or a drying method.
  • the mixture and the additive can be kneaded by using, for example, a mixer, a single-screw kneader, a twin-screw kneader, a throat, a Brabender, an extruder or the like.
  • the fluorine-containing elastomer composition of the invention is preferably produced by using the fluorine-containing elastomer solution obtained by the method for producing a fluorine-containing elastomer solution of the present invention described below.
  • the method for producing a fluorine-containing elastomer solution of the present invention is a method for producing a fluorine-containing elastomer solution containing a fluorine-containing elastomer and a fibrous carbon nanostructure containing a single layer ⁇ !
  • the method for producing a fluorine-containing elastomer solution of the present invention comprises: a fluorine-containing elastomer; a solvent; And a fibrous carbon nanostructure including a knuckle are dispersed using a dispersion medium to obtain a dispersion.
  • the obtained dispersion liquid is a dispersion liquid in which the fibrous carbon nanostructure containing the monolayer 0 ! ⁇ ] is dispersed in the fluorine-containing elastomer dissolving solution obtained by dissolving the fluorine-containing elastomer in the solvent.
  • the dispersion includes a single layer ⁇ 1 ⁇ 1 Chotaba a bundle of the fibrous carbon nanostructures comprising Ding, and the average diameter of the single layer Rei_1 ⁇ 1 Chotaba ( ⁇ 6) 2 0 n 01 or more 6 0 It is less than 0 n 01.
  • the average straight diameter of the single layer ⁇ 1 ⁇ 1 bundle (the mouth is preferably not less than 50 n, more preferably not less than 100 n, preferably not more than 500 n, It is more preferably 400 n or less.
  • the solvent used in the method for producing a fluoroelastomer solution of the present invention is not particularly limited as long as it can dissolve the fluoroelastomer.
  • examples of such solvent include ketones such as methyl ethyl ketone and acetone, polar solvents such as ethers such as tetrahydrofuran, and the like. These solvents may be used alone or in combination of two or more at any ratio.
  • the concentration of the fluorine-containing elastomer in the solution containing the fluorine-containing elastomer obtained by dissolving the fluorine-containing elastomer in a solvent is not particularly limited, but the monolayer ⁇ 1 ⁇ 1 bundle is uniformly dispersed. From the viewpoint, the concentration of the fluoroelastomer in the fluoroelastomer solution is preferably 50% by mass or more, 6 ⁇ 2020/175 331 19 ⁇ (:171? 2020 /006896
  • the content is more preferably 0% by mass or more, preferably 92% by mass or less, and more preferably 90% by mass or less.
  • the dispersion step it is preferable to perform the dispersion treatment without using a dispersant.
  • a dispersant By not using a dispersant, it is possible to obtain a fluorine-containing elastomer solution that can be suitably used when molding a fluororubber molded article having a higher tensile strength in a high temperature environment.
  • the dispersion treatment using the dispersion medium can be suitably performed by using a known wet media dispersion device such as a bead mill.
  • the material forming the dispersion medium is not particularly limited, and examples thereof include glass, alumina, zircon (zirconia-silica ceramics), zirconia, and steel.
  • the dispersion step includes a first step of dissolving the fluoroelastomer in the solvent to obtain a fluoroelastomer solution. It is preferable that the method further comprises a second step of performing the above dispersion treatment on the fibrous carbon nanostructure including the fluoroelastomer solution and the monolayer 0 1 ⁇ 1.
  • the fibrous carbon nanostructure including the dents in an amount of 0.1 part by mass or more, more preferably 0.5 part by mass or more, preferably 6 parts by mass or less, and 4 parts by mass or less. Is more preferable. If the amount of the fibrous carbon nanostructure including the single layer 0 1 ⁇ 1 is within the above range, the bundle of the fibrous carbon nanostructure is well unwoven in the dispersing step, and the predetermined average diameter ( It is possible to efficiently produce a dispersion liquid containing a single-layer 0-bundle having a mouth.
  • the dispersion obtained in the dispersion step may be used as it is as the fluorine-containing elastomer solution of the present invention, or may be optionally mixed with, for example, the above-mentioned additives and used as a fluorine-containing elastomer solution. You may.
  • the distributed media used in the distributed processing are less than the following (1) and (2). ⁇ 2020/175 331 20 ⁇ (:171? 2020 /006896
  • the dispersion medium satisfies at least one of the following (1) and (2), the fluorine-containing elastomer solution can be produced more efficiently.
  • Dispersion media filling rate is 40% or more and 70% or less by volume.
  • the Pickers hardness of the dispersion medium used in the dispersion treatment is preferably 600 or more, more preferably 800 or more, and further preferably 100 or more. It is preferably 150 or less, more preferably 1300 or less.
  • the filling rate of the dispersion medium is preferably 40% by volume or more, more preferably 50% by volume or more, preferably 70% by volume or less, and 60% by volume or less. It is more preferable.
  • the average diameter of the dispersion media is Or more, more preferably 0.30!! or more, more preferably 10!!! or less, 0. The following is more preferable.
  • the average diameter of the dispersion medium is within the above range, the fluorine-containing elastomer solution can be produced more efficiently.
  • the method for producing a fluorine-containing elastomer composition of the present invention is a method for obtaining a fluorine-containing elastomer composition by removing a solvent from the fluorine-containing elastomer solution obtained by the method for producing a fluorine-containing elastomer solution. ..
  • a fluoroelastomer composition that can be suitably used for producing a fluororubber molded article having high tensile strength in a high temperature environment and high elongation can be efficiently prepared. Can be manufactured.
  • the method of removing the solvent from the fluorine-containing elastomer solution is not particularly limited, and, for example, a drying method can be used. ⁇ 2020/175 331 21 ⁇ (: 171? 2020 /006896
  • drying method known drying methods such as spray drying, vacuum drying, reduced pressure drying, and drying by circulating an inert gas can be used.
  • the mixture obtained by removing the solvent may be used as it is as the fluorine-containing elastomer composition of the present invention, or optionally, for example, the above-mentioned additives are mixed or kneaded to form a fluorine-containing elastomer composition. It may be used as an elastomer composition.
  • the fluororubber molded article of the present invention can be obtained by molding the fluoroelastomer composition of the present invention into a desired shape.
  • the fluororubber molded article can be formed, for example, by introducing the fluoroelastomer composition of the present invention into a mold and optionally crosslinking it.
  • the fluororubber molded article formed by using the fluoroelastomer composition of the present invention contains the components derived from the components contained in the fluoroelastomer composition in the same ratio as that of the fluoroelastomer composition. To do.
  • the fluoroelastomer composition of the present invention contains a crosslinking agent
  • the fluoroelastomer composition when the fluoroelastomer composition contains a crosslinking agent, the fluoroelastomer composition has a crosslinked fluoroelastomer and a predetermined average diameter (a single layer ⁇ 1 having a mouth).
  • ⁇ 1 Contains a fibrous carbon nanostructure containing a bundle in a predetermined ratio, and optionally further contains an additive.
  • the shape of the fluororubber molded article of the present invention may be any shape depending on the application, and the shape of the fluororubber molded article may be, for example, an annular shape, a tubular shape, a hollow disc shape, or a sheet shape. It can be belt-shaped.
  • the fluororubber molded article of the present invention comprises a crosslinked product obtained by crosslinking the fluoroelastomer composition of the present invention
  • the crosslinked product preferably has the following physical properties.
  • the crosslinked product preferably has a tensile strength of 6 IV! 3 or higher, more preferably 8 ⁇ 9 a or higher, under an environment at a temperature of 200° IV!
  • the crosslinked product has an elongation of 70% or more in an environment of a temperature of 200 °C. ⁇ 2020/175 331 22 ⁇ (: 171? 2020 /006896
  • the cross-linked product has a tensile product of preferably 600 or more, more preferably 70 or more, and further preferably 800 or more under an environment of a temperature of 200 °. It is more preferable that it is, and it is particularly preferable that it is 900 or more.
  • the breaking energy of the crosslinked product becomes sufficiently high, and thus the crosslinked product can be suitably used for various purposes.
  • the "tensile strength” and “elongation” of the crosslinked product can be measured according to the methods described in Examples of the present specification.
  • the “tensile product” of the crosslinked product can be calculated by the product of "tensile strength” and "elongation”.
  • the fluoroelastomer composition and the fluororubber molded article of the present invention can be used for various purposes.
  • the fluorine-containing elastomer composition of the present invention can be used as a rubber paint by dissolving or dispersing it in a solvent or a dispersion medium used for a conventionally known paint at an arbitrary ratio.
  • the fluorine-containing elastomer composition of the present invention can be used as a coating material by applying it to an arbitrary object to be coated such as an electric wire.
  • a fluorine rubber molded body formed by using the fluorine-containing elastomer composition of the present invention is, for example, an automobile part, an air conditioner, a control device, a water supply/hot water supply device, a high temperature steam device, a semiconductor device, a food processing.
  • the fluororubber molded article formed by using the fluorine-containing elastomer composition of the present invention is used as a hose, a sealant, a belt, a vibration-proof rubber, a diaphragm, a hollow rubber molded article, or the like. You can ⁇ 2020/175 331 23 ⁇ (:171? 2020 /006896
  • the hose is not particularly limited, and examples thereof include fuel hose, evening hose, oil hose, radiator hose, heater hose, water hose, vacuum brake hose, control hose, air con hose, brake hose. , Various types of hoses such as power steering hoses, air hoses, marine hoses, risers and flow lines.
  • the above-mentioned sealing material is not particularly limited, and examples thereof include a ring, a packing, an oil seal, a shaft seal, a bearing seal, a mechanical seal, a well head seal, a seal for electric/electronic equipment, There are various types of seals such as seals for pneumatic equipment.
  • the belt is not particularly limited, and examples thereof include various belts such as a power transmission belt and a conveyance belt.
  • the vibration-proof rubber is not particularly limited, and examples thereof include various vibration-proof rubbers such as a vibration-proof rubber for automobiles.
  • the diaphragm is not particularly limited and includes, for example, diaphragms for automobile engines such as fuel system, exhaust system, brake system, drive system, ignition system, diaphragms for pumps, diaphragms for valves, filter presses.
  • diaphragms such as diaphragms; diaphragms for blowers;
  • the hollow rubber molded body is not particularly limited, and examples thereof include various bladders such as tire manufacturing bladders and tire vulcanizing bladders; various joints such as flexible joints and expansion joints; joints. Boots, rack and pinion steering boots, pin boots, piston boots and other boots; primer valves and other valves;
  • the Pickers hardness of the dispersing medium, the filling factor and the average diameter, and the tensile strength, elongation and tensile product of the crosslinked product were measured or evaluated using the following methods, respectively.
  • cryomicrotome (Le ⁇ ⁇ a company, product name "!_ 6 I ⁇ 3 ⁇ IV! ⁇ 7”) in which the prepared sheet-shaped cross-linked product was cooled to 100 ° ⁇ , use a diamond knife. I made a cross-section. Using a field emission scanning electron microscope (Hitachi High-Tech, product name “3470”), observe the secondary electron image of the cross section obtained under the conditions of accelerating voltage 5 ! ⁇ and magnification of 20,000 times. did. Image analysis software from the obtained secondary electron image (Olympus, product name “A n 3 I I 3”) to randomly measure the diameter of 100 single layer 0 1 ⁇ 1 bundles, and the average diameter of the single layer 0 1 ⁇ 1 bundles ) Asked.
  • Dispersion media of uniform particle size were embedded in thermosetting resin, and the resin was polished until the cut surface of the dispersion media was visible.
  • Measure the Vitzkers hardness of the dispersion media used in the bead mill by arbitrarily selecting 5 dispersion media, measuring any one of the sections of each dispersion media with a Pitzkers hardness tester, and obtaining the average value. ⁇ 2020/175 331 25 ⁇ (:171? 2020 /006896
  • the volume of the dispersion medium was calculated by dividing the filling amount of the dispersion medium by the specific gravity of the dispersion medium. Next, the volume of the dispersion medium was divided by the vessel volume of the bead mill and expressed as a percentage, which was taken as the filling rate of the dispersion medium used in the bead mill.
  • the produced sheet-shaped cross-linked product was punched out in a dumbbell-shaped No. 3 shape to obtain a test piece. Then, with respect to the obtained test piece, the tensile strength at 200° was measured according to “3 [ ⁇ 6 2 5 1 ”.
  • the produced sheet-shaped cross-linked product was punched out in a dumbbell-shaped No. 3 shape to obtain a test piece. Then, with respect to the obtained test piece, the elongations at break at 23° and 200° were measured in accordance with “3 [ ⁇ 6 25 1 ”, and the elongation of the crosslinked product was determined.
  • the elongation at break is a value which is 100% at the initial stage (that is, before the sheet-like crosslinked product is pulled).
  • the tensile product of the produced sheet-shaped crosslinked product was determined.
  • the tensile product is shown as a value rounded to the nearest whole number.
  • Methyl ethyl ketone 900 as a solvent and fluorine-containing elastomer as [ ⁇ 1 ⁇ /1 (Kemers Co., Ltd., trade name "Baiton ⁇ !_-6003")
  • the stoma was dissolved to obtain a fluorine-containing elastomer dissolved solution.
  • the obtained dispersion was added dropwise to methanol of 40009 and solidified to obtain a black solid. Then, the obtained black solid was dried under reduced pressure at 60 ° for 12 hours to obtain a mixture of the fluorine-containing elastomer and 31,000 ⁇ .
  • the obtained fluoroelastomer composition was put into a mold and crosslinked at a temperature of 160 ° ⁇ and a pressure of 101/13 for 20 minutes to obtain a sheet-like crosslinked product (length:
  • the average diameter of the single-layer 0-bundle bundle (mouth) contained in the obtained sheet-like crosslinked product was determined. Using the average diameter of the carbon nanostructures (), and the average diameter of the single layer ⁇ 1 ⁇ 1 bundle (0
  • a bead mill was used instead of a jet mill (manufactured by Yoshida Kikai Kogyo Co., Ltd., trade name "I-_ _ 3 0 0 7") for dispersion processing (dispersion processing conditions: pressure 100 IV!
  • a sheet-like crosslinked product was produced in the same manner as in Example 1 except that the number of passes was 5 times. Then, various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
  • a sheet-like crosslinked product was produced in the same manner as in Example 1 except that the condition of the dispersion treatment was changed to the peripheral speed of 10/3. Then, various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
  • a bead mill was used instead of a homogenizer ([3 ⁇ 4 ⁇ IV!
  • a sheet-like crosslinked product was prepared in the same manner as in Example 1 except that the treatment time was 30 minutes), and various measurements were performed in the same manner as in Example 1. It is shown in Table 1.
  • a fluoroelastomer composition capable of forming a fluororubber molded article having high tensile strength and high elongation under a high temperature environment, and a fluororubber using the fluoroelastomer composition
  • a molded article and a method for producing the fluorine-containing elastomer composition can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A fluorine-containing elastomer composition containing fibrous carbon nanostructures in a proportion of 0.1 mass part to less than 6 mass parts per 100 mass parts of fluorine-containing elastomer. The fibrous carbon nanostructures include single-walled carbon nanotube bundles which are bundles of fibrous carbon nanostructures including single-walled carbon nanotubes. The average diameter (DB) of the single-walled carbon nanotube bundles is 20 to 600 nm inclusive.

Description

\¥0 2020/175331 1 ?01/^2020/006896 \\0 2020/175331 1 ?01/^2020/006896
明 細 書 Specification
発明の名称 : Title of invention:
含フッ素エラストマー組成物、 フッ素ゴム成形体、 含フッ素エラストマー 溶液の製造方法、 及び含フッ素エラストマー組成物の製造方法 Fluorine-containing elastomer composition, fluororubber molded product, method for producing fluorine-containing elastomer solution, and method for producing fluorine-containing elastomer composition
技術分野 Technical field
[0001 ] 本発明は、 含フッ素エラストマー組成物、 フッ素ゴム成形体、 含フッ素エ ラストマー溶液の製造方法、 及び含フッ素エラストマー組成物の製造方法に 関するものである。 The present invention relates to a fluoroelastomer composition, a fluororubber molded article, a method for producing a fluoroelastomer solution, and a method for producing a fluoroelastomer composition.
背景技術 Background technology
[0002] フッ素ゴムは、 耐薬品性、 耐油性、 耐熱性などに優れることから、 自動車 工業、 半導体工業、 化学工業などの各種分野において広く用いられている。 Fluorine rubber is widely used in various fields such as the automobile industry, the semiconductor industry, and the chemical industry because it has excellent chemical resistance, oil resistance, heat resistance, and the like.
[0003] そして、 フッ素ゴムを含む材料として、 例えば特許文献 1では、 フッ素エ ラストマー (3元系フッ素ゴム) に対して、 所定の平均直径を有するカーボ ンナノチューブと、 所定の平均粒径及び口 巳吸収量 ( 法) を有するハイ ストラクチヤーカーボンブラックとをそれぞれ所定の割合で含有することに より、 高価な力ーボンナノチューブの使用量を削減してコスト競争力を高め ると共に、 力ーボンナノチューブを用いながら従来よりもゴム硬度の調節が 容易な炭素繊維複合材料を提供している。 As a material containing fluororubber, for example, in Patent Document 1, a carbon nanotube having a predetermined average diameter, a predetermined average particle diameter and a mouthpiece are used for a fluoroelastomer (a ternary fluororubber). By including high-structural carbon black having a specific absorption amount (method) and a predetermined ratio, respectively, the amount of expensive carbon nanotubes used can be reduced and cost competitiveness can be increased, while We are providing carbon fiber composite materials whose rubber hardness can be adjusted more easily than before using nanotubes.
先行技術文献 Prior art documents
特許文献 Patent literature
[0004] 特許文献 1 :特開 2 0 1 6 _ 1 0 8 4 7 6号公報 [0004] Patent Document 1: Japanese Unexamined Patent Publication No. 2 0 1 6 _ 1 0 8 4 7 6
発明の概要 Summary of the invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0005] また近年では、 フッ素ゴムを含む材料を用いて形成したフッ素ゴム成形体 は、 例えば 1 0 0 °〇を超える高温環境下において、 耐熱性だけではなく、 引 張強度と伸びとが共に高く、 両者のバランスがとれていることにより耐久性 〇 2020/175331 2 卩(:171? 2020 /006896 [0005] In recent years, fluororubber moldings formed using a material containing fluororubber have not only heat resistance but also tensile strength and elongation in a high temperature environment exceeding 100 ° C, for example. High and durable due to a good balance between the two 〇 2020/175331 2 卩 (:171? 2020 /006896
にも優れていることが求められている。 しかし、 特許文献 1 に記載の炭素繊 維複合材料を用いて形成したフッ素ゴム成形体は、 高温環境下において引張 強度と伸びとがトレードオフの関係にある。 そのため、 高温環境下における 引張強度が高く、 且つ、 伸びが高いフッ素ゴム成形体を形成し得る技術が求 められていた。 Is also required to be excellent. However, in the fluororubber molded article formed by using the carbon fiber composite material described in Patent Document 1, tensile strength and elongation have a trade-off relationship in a high temperature environment. Therefore, there has been a demand for a technique capable of forming a fluororubber molded article having high tensile strength and high elongation under a high temperature environment.
[0006] そこで、 本発明は、 高温環境下における引張強度が高く、 且つ、 伸びが高 いフッ素ゴム成形体を形成し得る技術を提供することを目的とする。 [0006] Therefore, an object of the present invention is to provide a technique capable of forming a fluororubber molded article having high tensile strength and high elongation in a high temperature environment.
課題を解決するための手段 Means for solving the problem
[0007] 本発明者らは、 上記目的を達成するために鋭意検討を行った。 そして、 本 発明者らは、 所定の平均直径 (口 を有する単層力ーボンナノチューブ束を 含む繊維状炭素ナノ構造体を含フッ素エラストマーに対して所定の割合で含 有する組成物を用いれば、 高温環境下における引張強度及び伸びの双方が高 いフッ素ゴム成形体を形成できることを見出し、 本発明を完成させた。 [0007] The present inventors have conducted extensive studies to achieve the above object. Then, the present inventors have found that if a composition containing a fibrous carbon nanostructure containing a single-wall carbon nanotube bundle having a predetermined average diameter (mouth) in a predetermined ratio with respect to a fluoroelastomer, The inventors have found that a fluororubber molded article having high tensile strength and high elongation in a high temperature environment can be formed, and completed the present invention.
[0008] 即ち、 この発明は、 上記課題を有利に解決することを目的とするものであ り、 本発明の含フッ素エラストマー組成物は、 含フッ素エラストマーと、 単 層力ーボンナノチューブを含む繊維状炭素ナノ構造体と、 を含有する含フッ 素エラストマー組成物であって、 前記含フッ素エラストマー 1 0 0質量部当 たり、 前記繊維状炭素ナノ構造体を〇 . 1質量部以上 6質量部未満の割合で 含有し、 前記繊維状炭素ナノ構造体は、 前記単層力ーボンナノチューブを含 む繊維状炭素ナノ構造体の束である単層力ーボンナノチューブ束を含み、 前 記単層力ーボンナノチューブ束の平均直径 (口 は、 2 0 n m以上 6 0 0 n 以下であることを特徴とする。 このように、 所定の平均直径 (口 を有す る単層力ーボンナノチューブ束を含む繊維状炭素ナノ構造体を、 所定の割合 で含有させた含フッ素エラストマー組成物を用いれば、 高温環境下における 引張強度が高く、 且つ、 伸びが高いフッ素ゴム成形体を形成することができ る。 [0008] That is, the present invention is intended to advantageously solve the above problems, and a fluorine-containing elastomer composition of the present invention is a fiber containing a fluorine-containing elastomer and a single-layer carbon nanotube. A carbon-containing nanostructure, and a fluorine-containing elastomer composition containing: 100 parts by mass of the fluoroelastomer, or 0.1 parts by mass or more and less than 6 parts by mass of the fibrous carbon nanostructure. And the fibrous carbon nanostructure includes a single-wall force-bon nanotube bundle that is a bundle of the fibrous carbon nanostructure containing the single-wall force-carbon nanotubes. The average diameter of the carbon nanotube bundle (the mouth is characterized by 20 nm or more and 600 n or less. Thus, a single-wall force-bonded carbon nanotube bundle with a given average diameter (the mouth is By using the fluoroelastomer composition containing the fibrous carbon nanostructure containing at a predetermined ratio, it is possible to form a fluororubber molded article having high tensile strength and high elongation under high temperature environment. ..
なお、 本発明において、 「単層力ーボンナノチューブ束の平均直径 (口 In the present invention, “average diameter of single-wall force-bonn nanotube bundle (port
」 は、 本明細書の実施例に記載の方法に従って測定することができる。 〇 2020/175331 3 卩(:171? 2020 /006896 Can be measured according to the methods described in the examples herein. 〇 2020/175331 3 卩 (:171? 2020 /006896
[0009] ここで、 本発明の含フッ素エラストマー組成物において、 前記単層カーボ ンナノチューブ束の平均直径 (ロ の、 前記単層力ーボンナノチューブを含 む繊維状炭素ナノ構造体の平均直径 (八 ) に対する比
Figure imgf000004_0001
(以下 、 「比
Figure imgf000004_0002
」 を、 「単層力ーボンナノチューブ束の平均直径 (口8) の、 繊維状炭素ナノ構造体の平均直径
Figure imgf000004_0003
に対する比
Figure imgf000004_0004
」 と略 して記載する場合もある。 ) が、 5以上 2 0 0以下であることが好ましい。 単層力ーボンナノチューブ束の平均直径 (ロ の、 繊維状炭素ナノ構造体の 平均直径 (/^) に対する比
Figure imgf000004_0005
が 5以上 2 0 0以下であれば、 本 発明の含フッ素エラストマー組成物を用いて形成したフッ素ゴム成形体にお いて、 高温環境下における高い引張強度及び高い伸びのバランスを良好に保 つことができる。
[0009] Here, in the fluorine-containing elastomer composition of the present invention, the average diameter of the single-wall carbon nanotube bundle ((2) The average diameter of the fibrous carbon nanostructure containing the single-wall carbon nanotubes ( Ratio to
Figure imgf000004_0001
(Hereafter, "ratio
Figure imgf000004_0002
Is the average diameter of single-wall carbon nanotube bundles (mouth 8 ), average diameter of fibrous carbon nanostructures
Figure imgf000004_0003
Ratio to
Figure imgf000004_0004
May be abbreviated as "". ) Is preferably 5 or more and 200 or less. Single-wall force-the average diameter of the carbon nanotube bundle (r is the ratio to the average diameter of the fibrous carbon nanostructure (/^)
Figure imgf000004_0005
Is 5 or more and 200 or less, the fluororubber molded article formed by using the fluoroelastomer composition of the present invention should maintain a good balance of high tensile strength and high elongation in a high temperature environment. You can
なお、 本発明において、 「繊維状炭素ナノ構造体の平均直径 ( ) 」 は 、 透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体 1 〇〇 本の直径 (外径) を測定して求めることができる。 In the present invention, the “average diameter of fibrous carbon nanostructures ()” is the diameter (outer diameter) of 100 fibrous carbon nanostructures randomly selected using a transmission electron microscope. It can be determined by measuring.
[0010] そして、 本発明の含フッ素エラストマー組成物において、 前記単層カーボ ンナノチューブを含む繊維状炭素ナノ構造体は、 吸着等温線から得られる 1 —プロッ トが上に凸な形状を示すことが好ましい。 吸着等温線から得られる I—プロッ トが上に凸な形状を示す繊維状炭素ナノ構造体を用いれば、 本発 明の含フッ素エラストマー組成物を用いて形成したフッ素ゴム成形体の柔軟 性を向上させることができる。 [0010] In the fluorine-containing elastomer composition of the present invention, the fibrous carbon nanostructure containing the single-walled carbon nanotubes has a 1-plot obtained from an adsorption isotherm that has a convex shape upward. Is preferred. By using a fibrous carbon nanostructure in which the I-plot obtained from the adsorption isotherm has an upward convex shape, the flexibility of the fluororubber molded article formed using the fluoroelastomer composition of the present invention can be improved. Can be improved.
[001 1 ] また、 本発明の含フッ素エラストマー組成物において、 前記単層力ーボン ナノチューブを含む繊維状炭素ナノ構造体は、 巳巳丁比表面積が 6 0 0 2 / 9以上であることが好ましい。 単層力ーボンナノチューブを含む繊維状炭素 ナノ構造体の巳巳丁比表面積が 6 0 0〇1 2 / 9以上であれば、 本発明の含フッ 素エラストマー組成物を用いて形成したフッ素ゴム成形体の耐熱性を向上さ せることができる。 [001 1] Further, in the fluorine-containing elastomer composition of the present invention, it is preferable that the fibrous carbon nanostructure containing the single-walled carbon nanotubes has a Mitsumi specific surface area of 600 2 /9 or more. .. If ear Ding specific surface area of the fibrous carbon nanostructures comprising the monolayer force over carbon nanotubes 6 0 0_Rei_1 2/9 or more, fluororubber formed using a fluorine-containing-containing elastomer composition of the present invention The heat resistance of the molded product can be improved.
なお、 本発明において、 「巳巳丁比表面積」 とは、 巳巳丁法を用いて測定 した窒素吸着比表面積を指す。 〇 2020/175331 4 卩(:171? 2020 /006896 In the present invention, the “specific surface area of Mitsumi” means the nitrogen adsorption specific surface area measured by the method of Mitsumi. 〇 2020/175 331 4 卩 (: 171? 2020 /006896
[0012] そして、 本発明の含フッ素エラストマー組成物は、 架橋剤を更に含有する ことができる。 [0012]The fluorine-containing elastomer composition of the present invention may further contain a crosslinking agent.
[0013] 更に、 本発明の含フッ素エラストマー組成物は、 力ーボンブラックを更に 含有することが好ましい。 力ーボンブラックを更に含有させれば、 本発明の 含フッ素エラストマー組成物を用いて形成したフッ素ゴム成形体において、 高温環境下での高い伸びを十分に確保しつつ、 引張強度を向上させることが できる。 Further, the fluorine-containing elastomer composition of the present invention preferably further contains carbon black. By further containing carbon black, it is possible to improve the tensile strength of the fluororubber molded article formed by using the fluoroelastomer composition of the present invention while sufficiently ensuring high elongation in a high temperature environment. ..
[0014] また、 この発明は、 上記課題を有利に解決することを目的とするものであ り、 本発明のフッ素ゴム成形体は、 上述した含フッ素エラストマー組成物の いずれかを成形してなるフッ素ゴム成形体であることを特徴とする。 上述し た含フッ素エラストマー組成物を成形してなるフッ素ゴム成形体は、 高温環 境下において、 引張強度が高く、 且つ、 伸びが高いため、 種々の用途に好適 に用いることができる。 [0014] Further, the present invention has an object to advantageously solve the above-mentioned problems, and the fluororubber molded article of the present invention is formed by molding any one of the above-mentioned fluorine-containing elastomer compositions. It is characterized by being a fluororubber molded product. The fluororubber molded article obtained by molding the above-mentioned fluoroelastomer composition has high tensile strength and high elongation under a high temperature environment, and thus can be suitably used for various applications.
[0015] 更に、 この発明は、 上記課題を有利に解決することを目的とするものであ り、 本発明の含フッ素エラストマー溶液の製造方法は、 含フッ素エラストマ 一と、 単層力ーボンナノチューブを含む繊維状炭素ナノ構造体と、 を含有す る含フッ素エラストマー溶液の製造方法であって、 前記含フッ素エラストマ 一と、 溶媒と、 前記単層力ーボンナノチューブを含む繊維状炭素ナノ構造体 とを、 分散メディァを用いて分散処理することにより分散液を得る分散工程 を含み、 前記分散液は、 前記含フッ素エラストマーが前記溶媒に溶解してな る含フッ素エラストマー溶解溶液中に前記単層力ーボンナノチューブを含む 繊維状炭素ナノ構造体が分散した分散液であるとともに、 前記分散液は、 前 記単層力ーボンナノチューブを含む繊維状炭素ナノ構造体の束である単層力 —ボンナノチューブ束を含み、 且つ、 前記単層力ーボンナノチューブ束の平 均直径 (口 8
Figure imgf000005_0001
以下であることを特徴とする。 この ように、 含フッ素エラストマーと、 溶媒と、 単層力ーボンナノチューブを含 む繊維状炭素ナノ構造体とを、 分散メディァを用いて分散処理する分散工程 を含むことにより、 本発明の含フッ素エラストマー組成物を製造する際に用 〇 2020/175331 5 卩(:171? 2020 /006896
[0015] Further, the present invention has an object to advantageously solve the above-mentioned problems, and a method for producing a fluorine-containing elastomer solution of the present invention is: a fluorine-containing elastomer; A method for producing a fluorine-containing elastomer solution containing: a fibrous carbon nanostructure containing: a fibrous carbon nanostructure containing the fluorine-containing elastomer, a solvent, and the single-layer carbon nanotube. And a dispersion step of obtaining a dispersion by performing a dispersion treatment with a dispersion medium, wherein the dispersion has the monolayer in the fluorine-containing elastomer solution obtained by dissolving the fluorine-containing elastomer in the solvent. It is a dispersion liquid in which fibrous carbon nanostructures containing carbon nanotubes are dispersed, and the dispersion liquid is a bundle of fibrous carbon nanostructures containing the above-mentioned single-layer carbon nanotubes. Including a carbon nanotube bundle, and the single-layer force-average diameter of the carbon nanotube bundle (mouth 8 )
Figure imgf000005_0001
It is characterized by the following. Thus, the fluorine-containing elastomer of the present invention can be obtained by including the dispersion step of dispersing the fluorine-containing elastomer, the solvent, and the fibrous carbon nanostructure containing the single-layer carbon nanotubes using the dispersion medium. For use in producing elastomer compositions 〇 2020/175 331 5 卩 (: 171-1? 2020 /006896
い得る含フッ素エラストマー溶液を効率的に製造することができる。 A possible fluorine-containing elastomer solution can be efficiently produced.
[0016] また、 本発明の含フッ素エラストマー溶液の製造方法において、 前記分散 工程は、 前記含フッ素エラストマーを前記溶媒に溶解させて前記含フッ素エ ラストマー溶解溶液を得る第一のステップと、 前記含フッ素エラストマー溶 解溶液及び前記単層力ーボンナノチューブを含む繊維状単層ナノ構造体に対 して前記分散処理を行う第二のステップとを含むことが好ましい。 含フッ素 エラストマーを溶媒に溶解させて含フッ素エラストマー溶解溶液を得る第一 のステップと、 含フッ素エラストマー溶解溶液及び単層力ーボンナノチュー ブを含む繊維状炭素ナノ構造体に対して分散処理を行う第二のステップとを 含む分散工程とすることで、 含フッ素エラストマー溶液をより効率的に製造 することができる。 [0016] In the method for producing a fluorinated elastomer solution of the present invention, the dispersing step includes a first step of dissolving the fluorinated elastomer in the solvent to obtain the fluorinated elastomer-dissolved solution, It is preferable that the method further includes a second step of performing the dispersion treatment on the fibrous single-layer nanostructure including the fluoroelastomer dissolving solution and the single-layer force-carbon nanotube. The first step of dissolving the fluoroelastomer in a solvent to obtain a solution of the fluoroelastomer, and the second step of performing a dispersion treatment on the fibrous carbon nanostructure containing the fluoroelastomer solution and the single-layer carbon nanotube. The fluorine-containing elastomer solution can be produced more efficiently by the dispersion step including the step of.
[0017] 更に、 本発明の含フッ素エラストマー溶液の製造方法において、 前記分散 メディアは、 下記 ( 1 ) 及び ( 2 ) の少なくとも一方を満たすことが好まし い。 Further, in the method for producing a fluorine-containing elastomer solution of the present invention, it is preferable that the dispersion medium satisfies at least one of the following (1) and (2).
( 1 ) 前記分散メディアのビッカース硬度が 6 0 0以上 1 5 0 0以下 (1) The dispersion medium has a Vickers hardness of 600 or more and 1500 or less.
( 2 ) 前記分散メディアの充填率が 4 0体積%以上 7 0体積%以下 分散工程において、 少なくとも分散メディアのビッカース硬度が 6 0〇以 上 1 5 0 0以下であるか、 または、 分散メディアの充填率が 4 0体積%以上 7 0体積%以下であれば、 含フッ素エラストマー溶液を更に効率的に製造す ることができる。 (2) The filling factor of the dispersion medium is 40% by volume or more and 70% by volume or less. In the dispersion step, at least the Vickers hardness of the dispersion medium is 600 or more and 1500 or less, or When the filling rate is 40% by volume or more and 70% by volume or less, the fluorine-containing elastomer solution can be more efficiently produced.
なお、 本発明において、 「分散メディアのピッカース硬度」 及び 「分散メ ディアの充填率」 は、 本明細書の実施例に記載の方法に従って測定すること ができる。 In the present invention, the “Pickers hardness of the dispersion medium” and the “filling ratio of the dispersion medium” can be measured according to the methods described in the examples of this specification.
[0018] そして、 本発明の含フッ素エラストマー溶液の製造方法において、 前記分 散メディアの平均直径が 0 . 1
Figure imgf000006_0001
以下であることが好ましい。 平均直径が〇. 1
Figure imgf000006_0002
以下の分散メディアを用いれば、 含フッ素 エラストマー溶液をより一層効率的に製造することができる。
[0018] In the method for producing a fluorine-containing elastomer solution of the present invention, the dispersion medium has an average diameter of 0.1.
Figure imgf000006_0001
The following is preferable. Average diameter is 0.1
Figure imgf000006_0002
By using the following dispersion media, the fluorine-containing elastomer solution can be produced more efficiently.
なお、 本発明において、 「分散メディアの平均直径」 は、 本明細書の実施 〇 2020/175331 6 卩(:171? 2020 /006896 In addition, in the present invention, the “average diameter of the dispersion medium” is the term “implemented in this specification”. 〇 2020/175 331 6 卩 (: 171-1? 2020 /006896
例に記載の方法に従って測定することができる。 It can be measured according to the method described in the examples.
[0019] また、 この発明は、 上記課題を有利に解決することを目的とするものであ り、 本発明の含フッ素エラストマー組成物の製造方法は、 上記いずれかの含 フッ素エラストマー溶液の製造方法により得られた含フッ素エラストマー溶 液から前記溶媒を除去する除去工程を含むことを特徴とする。 このように、 本発明の含フッ素エラストマー溶液の製造方法により得られた含フッ素エラ ストマー溶液から溶媒を除去する除去工程を含むことにより、 高温環境下に おける引張強度が高く、 且つ、 伸びが高いフッ素ゴム成形体の製造に好適に 用い得る含フッ素エラストマー組成物を効率的に製造することができる。 発明の効果 [0019] Further, the present invention has an object to advantageously solve the above problems, and a method for producing a fluorine-containing elastomer composition of the present invention is a method for producing any of the above fluorine-containing elastomer solutions. The method is characterized by including a removal step of removing the solvent from the fluorine-containing elastomer solution obtained by. Thus, by including the removal step of removing the solvent from the fluoroelastomer solution obtained by the method for producing a fluoroelastomer solution of the present invention, the tensile strength in a high temperature environment is high and the elongation is high. A fluoroelastomer composition that can be suitably used for producing a fluororubber molded article can be efficiently produced. Effect of the invention
[0020] 本発明によれば、 高温環境下における引張強度が高く、 且つ、 伸びが高い フッ素ゴム成形体を形成可能な含フッ素エラストマー組成物と、 当該含フッ 素エラストマー組成物を用いたフッ素ゴム成形体を提供することができる。 また、 本発明によれば、 高温環境下における引張強度が高く、 且つ、 伸び が高いフッ素ゴム成形体の製造に用い得る含フッ素エラストマー溶液の製造 方法を提供することができる。 According to the present invention, a fluoroelastomer composition capable of forming a fluororubber molded article having high tensile strength and high elongation under a high temperature environment, and a fluororubber using the fluoroelastomer composition A molded body can be provided. Further, according to the present invention, it is possible to provide a method for producing a fluoroelastomer solution which can be used for producing a fluororubber molded article having a high tensile strength in a high temperature environment and a high elongation.
更に、 本発明によれば、 高温環境下における引張強度が高く、 且つ、 伸び が高いフッ素ゴム成形体を形成可能な含フッ素エラストマー組成物の製造方 法を提供することができる。 Furthermore, according to the present invention, it is possible to provide a method for producing a fluoroelastomer composition capable of forming a fluororubber molded article having a high tensile strength in a high temperature environment and a high elongation.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0021 ] 以下、 本発明の実施の形態について、 詳細に説明する。 [0021] Hereinafter, embodiments of the present invention will be described in detail.
ここで、 本発明の含フッ素エラストマー組成物は、 例えば、 本発明のフッ 素ゴム成形体を形成する際に用いることができる。 また、 本発明の含フッ素 エラストマー組成物は、 本発明の含フッ素エラストマー組成物の製造方法を 用いて製造することができる。 そして、 本発明の含フッ素エラストマー組成 物の製造方法では、 本発明の含フッ素エラストマー溶液の製造方法により得 られる含フッ素エラストマー溶液を用いて製造することができる。 Here, the fluorine-containing elastomer composition of the present invention can be used, for example, when forming the fluororubber molded article of the present invention. Further, the fluorine-containing elastomer composition of the present invention can be manufactured by using the method of manufacturing the fluorine-containing elastomer composition of the present invention. The method for producing a fluorine-containing elastomer composition of the present invention can be produced using the fluorine-containing elastomer solution obtained by the method for producing a fluorine-containing elastomer solution of the present invention.
[0022] (含フッ素エラストマー組成物) 〇 2020/175331 7 卩(:171? 2020 /006896 (Fluorine-containing elastomer composition) 〇 2020/175 331 7 卩 (: 171-1? 2020 /006896
本発明の含フッ素エラストマー組成物は、 含フッ素エラストマーと、 単層 力ーボンナノチューブを含む繊維状炭素ナノ構造体とを含有し、 任意に、 架 橋剤や力ーボンブラックなどの添加剤を更に含み得る。 そして、 本発明の含 フッ素エラストマー組成物では、 上記繊維状炭素ナノ構造体として、 所定の 平均直径 (口 を有する単層力ーボンナノチューブ束を含む繊維状炭素ナノ 構造体を、 上記含フッ素エラストマーに対して所定の割合で使用する。 The fluoroelastomer composition of the present invention contains a fluoroelastomer and a fibrous carbon nanostructure containing a single-layer carbon nanotube, and optionally further contains an additive such as a crosslinking agent or carbon black. obtain. In the fluoroelastomer composition of the present invention, as the fibrous carbon nanostructure, a fibrous carbon nanostructure containing a single-walled carbon nanotube bundle having a predetermined average diameter (mouth) is prepared. It is used in a predetermined ratio with respect to.
[0023] <含フッ素エラストマー> [0023] <Fluorine-containing elastomer>
そして、 含フッ素エラストマーとしては、 特に限定されることなく、 既知 のフッ素ゴムを用いることができる。 具体的には、 含フッ素エラストマーと しては、 例えば、 フッ化ビニリデン系ゴム ( [<1\/1) 、 四フッ化エチレンー プロピレン系ゴム ( 巳 1\/1) 、 四フッ化エチレンーパーフルオロメチルビ ニルエーテル系ゴム ( [<1\/1) 、 テトラフルオロエチレン系ゴム (丁 巳 ) などが挙げられる。 これらは、 1種単独で使用してもよいし、 2種以上を 併用してもよい。 The fluoroelastomer is not particularly limited, and known fluororubber can be used. Specifically, examples of the fluorine-containing elastomer include vinylidene fluoride rubber ([<1\/1), tetrafluoroethylene-propylene rubber (Miwa 1\/1), tetrafluoroethylene-perme Fluoromethyl vinyl ether-based rubber ([<1\/1]), tetrafluoroethylene-based rubber (Tingmi), etc. These may be used alone or in combination of two or more.
[0024] 上述した中でも、 含フッ素エラストマーとしては、 フッ化ビニリデン系ゴ ム ( [<1\/1) 、 四フッ化エチレンープロピレン系ゴム ( 巳 1\/1) が好まし く、 フッ化ビニリデン系ゴム ( [<1\/1) がより好ましい。 [0024] Among the above, as the fluorine-containing elastomer, vinylidene fluoride rubber ([<1\/1) and tetrafluoroethylene-propylene rubber (Mitsumi 1\/1) are preferable. Vinylidene rubber ([<1\/1) is more preferable.
い。 Yes.
[0025] ここで、 フッ化ビニリデン系ゴム ( [<1\/1) は、 フッ化ビニリデンを主成 分とし、 耐熱性、 耐油性、 耐薬品性、 耐溶剤性、 加工性などに優れるフッ素 ゴムである。 [<1\/1としては、 特に限定されないが、 例えば、 フッ化ビニリ デンとヘキサフルオロプロピレンとからなる二元共重合体、 フッ化ビニリデ ンとヘキサフルオロプロピレンとテトラフルオロエチレンとからなる三元共 重合体、 フッ化ビニリデンとヘキサフルオロプロピレンとテトラフルオロエ チレンと加硫サイ トモノマーとからなる四元共重合体などが挙げられる。 市 販品としては、 例えば、 ケマーズ株式会社の 「バイ トン (登録商標) 」 、 ダ イキンエ業株式会社の 「ダイエル (登録商標) ◦」 などが挙げられる。 中で もフッ化ビニリデンとヘキサフルオロプロピレンとテトラフルオロエチレン 〇 2020/175331 8 卩(:171? 2020 /006896 [0025] Here, vinylidene fluoride rubber ([<1\/1] is a fluorine-based rubber that has vinylidene fluoride as a main component and is excellent in heat resistance, oil resistance, chemical resistance, solvent resistance, processability, etc. It is rubber. [<1\/1 is not particularly limited, but for example, a binary copolymer of vinylidene fluoride and hexafluoropropylene, a ternary copolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene can be used. Examples thereof include a copolymer and a quaternary copolymer composed of vinylidene fluoride, hexafluoropropylene, tetrafluoroethylene, and a vulcanization site monomer. Market products include, for example, “Byton (registered trademark)” from Kemmers Co., Ltd. and “Daiel (registered trademark) ◦” from Daikinye Industry Co., Ltd. Among them, vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene 〇 2020/175 331 8 卩 (: 171-1? 2020 /006896
と加硫サイ トモノマーとからなる四元共重合体が好ましい。 当該四元共重合 体は、 例えば、 市販品 「バイ トン 〇巳 1_ _ 2 0 0 3」 (ケマーズ株式会社 製) として入手可能である。 A quaternary copolymer composed of and a vulcanized site monomer is preferable. The quaternary copolymer is available, for example, as a commercially available product “Biton Omi 1_ _ 2 0 0 3” (manufactured by Kemers Co., Ltd.).
なお、 本明細書において、 「フッ化ビニリデンを主成分」 とするとは、 フ ッ化ビニリデン系ゴム中に含まれるフッ化ビニリデン単位が 5 0質量%以上 、 好ましくは 5 0質量%超、 より好ましくは 1 0 0質量%であることをいう In the present specification, the term “vinylidene fluoride as a main component” means that the vinylidene fluoride unit contained in the vinylidene fluoride-based rubber is 50% by mass or more, preferably more than 50% by mass, and more preferably Means 100% by mass
[0026] また、 四フッ化エチレンープロピレン系ゴム ( 巳 IV!) は、 テトラフル オロエチレンとプロピレンとの交互共重合体をベースとし、 耐熱性、 耐薬品 性、 耐極性溶剤性、 耐スチーム性などに優れるフッ素ゴムである。 巳 1\/1 としては、 特に限定されないが、 例えば、 テトラフルオロエチレンとプロピ レンとからなる二元共重合体、 テトラフルオロエチレンとプロピレンとフッ 化ビニリデンとからなる三元共重合体、 テトラフルオロエチレンとプロピレ ンと架橋点モノマーとからなる三元共重合体などが挙げられる。 テトラフル オロエチレンとプロピレンとからなる二元共重合体の市販品としては、 例え ば、 八◦〇株式会社の 「アフラス (登録商標) 1 0 0」 及び 「アフラス 1 5 〇」 が挙げられる。 テトラフルオロエチレンとプロピレンとフッ化ビニリデ ンとからなる三元共重合体の市販品としては、 例えば、 0(3株式会社の 「 アフラス 2 0 0」 が挙げられる。 テトラフルオロエチレンとプロピレンと架 橋点モノマーとからなる三元共重合体の市販品としては、 例えば、 八〇〇株 式会社の 「アフラス 3 0 0」 が挙げられる。 [0026] Further, the tetrafluoroethylene-propylene rubber (Min IV!) is based on an alternating copolymer of tetrafluoroethylene and propylene, and has heat resistance, chemical resistance, polar solvent resistance, steam resistance, etc. It is an excellent fluororubber. Although there is no particular limitation on the number 1\/1, for example, a binary copolymer of tetrafluoroethylene and propylene, a terpolymer of tetrafluoroethylene, propylene, and vinylidene fluoride, and tetrafluoroethylene Examples thereof include terpolymers composed of ethylene, propylene, and a crosslinking point monomer. Examples of commercially available binary copolymers composed of tetrafluoroethylene and propylene include "Aflas (registered trademark) 100" and "Aflas 150" of 8°○ Co., Ltd., for example. Commercially available terpolymers composed of tetrafluoroethylene, propylene, and vinylidene fluoride include, for example, 0(3) "Aflas 200". Tetrafluoroethylene, propylene, and bridges. Examples of commercially available terpolymers containing point monomers include “Aflas 300” from 800,000 type company.
[0027] そして、 含フッ素エラストマー組成物中の含フッ素エラストマーの含有割 合は、 5 0質量%以上であることが好ましく、 6 0質量%以上であることが より好ましく、 7 0質量%以上であることが更に好ましく、 9 2質量%以下 であることが好ましく、 9 0質量%以下であることがより好ましく、 8 6質 量%以下であることが更に好ましい。 含フッ素エラストマー組成物中の含フ ッ素エラストマーの含有割合が上記範囲内であれば、 含フッ素エラストマー 組成物を用いて形成したフッ素ゴム成形体において、 含フッ素エラストマー 〇 2020/175331 9 卩(:171? 2020 /006896 [0027] The content ratio of the fluorine-containing elastomer in the fluorine-containing elastomer composition is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more. It is more preferable that the content is 92% by mass or less, more preferably 90% by mass or less, and further preferably 86% by mass or less. If the content ratio of the fluorine-containing elastomer in the fluorine-containing elastomer composition is within the above range, a fluorine-containing elastomer formed by using the fluorine-containing elastomer composition is 〇 2020/175 331 9 卩 (: 171-1? 2020 /006896
の優れた効果が十分に発揮され得る。 The excellent effect of can be fully exhibited.
[0028] <繊維状炭素ナノ構造体> [0028] <Fibrous carbon nanostructure>
また、 繊維状炭素ナノ構造体としては、 例えば、 力ーボンナノチューブ ( 以下、 「〇1\1丁」 ともいう。 ) 等の円筒形状の炭素ナノ構造体や、 炭素の六 員環ネッ トワークが扁平筒状に形成されてなる炭素ナノ構造体等の非円筒形 状の炭素ナノ構造体が挙げられる。 そして、 本発明の含フッ素エラストマー 組成物では、 所定の平均直径 (口8) を有する単層 0 丁束を含む繊維状炭素 ナノ構造体を、 含フッ素エラストマーに対して所定の割合で使用する。 Examples of fibrous carbon nanostructures include cylindrical carbon nanostructures such as force carbon nanotubes (hereinafter, also referred to as "0\1") and carbon six-membered ring networks. A non-cylindrical carbon nanostructure, such as a carbon nanostructure formed in a flat tubular shape, may be mentioned. Then, in the fluorine-containing elastomer composition of the present invention, the fibrous carbon nanostructure containing a single layer 0 bundle having a predetermined average diameter (mouth 8 ) is used in a predetermined ratio with respect to the fluorine-containing elastomer.
ここで、 上記単層〇1\1丁束は、 単層 0 丁を含む繊維状炭素ナノ構造体の 束であって、 具体的には、 単層〇1\1丁を含む繊維状炭素ナノ構造体が、 繊維 状炭素ナノ構造体間のファンデルワールスカによって凝集して、 バンドル ( 束) 状に形成されたものである。 Here, the above-mentioned single layer 0 1 \1 bundle is a bundle of fibrous carbon nanostructures including 0 single layer, and specifically, the single layer 0 1 \1 bundle includes fibrous carbon nanostructures. The structures are aggregated by the Van der Waalsker between the fibrous carbon nanostructures and formed into a bundle.
このように、 所定の平均直径 (口8) を有する単層 0 丁束を含む繊維状炭 素ナノ構造体を含フッ素エラストマーに対して所定の割合で使用することで 、 高温環境下における引張強度が高く、 且つ、 伸びが高いフッ素ゴム成形体 を形成可能な含フッ素ゴムエラストマー組成物を得ることができる。 Thus, by using a fibrous carbon nanostructure containing a single-layer 0-bundle with a specified average diameter (neck 8 ) in a specified ratio with respect to the fluoroelastomer, the tensile strength in a high temperature environment can be improved. It is possible to obtain a fluororubber elastomer composition capable of forming a fluororubber molded product having a high elongation and a high elongation.
[0029] そして、 含フッ素エラストマー組成物中の繊維状炭素ナノ構造体の含有割 合は、 含フッ素エラストマー 1 0 0質量部当たり、 〇. 1質量部以上である ことが必要であり、 1質量部以上であることが好ましく、 6質量部未満であ ることが必要であり、 5質量部以下であることが好ましい。 繊維状炭素ナノ 構造体の含有割合が含フッ素エラストマー 1 〇〇質量部当たり〇. 1質量部 以上であれば、 含フッ素エラストマー組成物を用いて形成したフッ素ゴム成 形体において、 高温環境下における高い引張強度及び高い伸びの双方を十分 に確保することができる。 また、 繊維状炭素ナノ構造体の含有割合が含フッ 素エラストマー 1 0 0質量部当たり 6質量部未満であれば、 本発明の含フッ 素エラストマー組成物を用いて形成したフッ素ゴム成形体の伸びが悪化する ことを抑制することができる。 [0029] The content ratio of the fibrous carbon nanostructure in the fluoroelastomer composition must be 0.1 part by mass or more per 100 parts by mass of the fluoroelastomer, and 1 part by mass. It is preferably not less than 6 parts by mass, preferably less than 6 parts by mass, and preferably not more than 5 parts by mass. When the content ratio of the fibrous carbon nanostructure is 0.1 part by mass or more per 100 parts by mass of the fluoroelastomer, the fluororubber molded product formed by using the fluoroelastomer composition has a high high temperature environment. Both tensile strength and high elongation can be sufficiently ensured. Further, when the content ratio of the fibrous carbon nanostructure is less than 6 parts by mass per 100 parts by mass of the fluorine-containing elastomer, the elongation of the fluororubber molded product formed by using the fluorine-containing elastomer composition of the present invention Can be suppressed.
[0030] また、 繊維状炭素ナノ構造体に含まれる単層 0 丁束の平均直径 は 〇 2020/175331 10 卩(:171? 2020 /006896 [0030] Further, the average diameter of the single-layer 0-bundle contained in the fibrous carbon nanostructure is 〇 2020/175331 10 卩 (: 171-1? 2020 /006896
、 2 0 01以上であることが必要であり、 5 0 01以上であることが好まし く、 1 0 0门 以上であることがより好ましく、 6 0 0 n 以下であること が必要であり、 5 0 0门 以下であることが好ましく、 4 0 0 n 以下であ ることがより好ましく、 3 0 0 n
Figure imgf000011_0001
以下であることが特に好ましい。 単層〇 1\1丁束の平均直径
Figure imgf000011_0002
が上記下限以上であれば、 本発明の含フッ素エラス トマー組成物を用いて形成したフッ素ゴムは、 室温での良好な伸びを発揮す る。 また、 単層〇1\1丁束の平均直径 (0 が上記上限以下であれば、 本発明 の含フッ素エラストマー組成物を用いて形成したフッ素ゴム成形体において 、 良好な可撓性が保たれる。
, 2001 or more, preferably 5001 or more, more preferably 100 or more, more preferably 600 n or less, It is preferably not more than 500 doors, more preferably not more than 400 n, and not more than 300 n
Figure imgf000011_0001
The following is particularly preferable. Single layer 〇 1\1 bundle average diameter
Figure imgf000011_0002
When the value is at least the above lower limit, the fluororubber formed by using the fluorine-containing elastomer composition of the present invention exhibits good elongation at room temperature. Further, the average diameter of the single layer 0\1 bundle (when 0 is not more than the above upper limit, good flexibility is maintained in the fluororubber molded article formed using the fluoroelastomer composition of the present invention. Be done.
[0031 ] そして、 含フッ素エラストマー組成物を用いて形成したフッ素ゴム成形体 の、 高温環境下における高い引張強度及び高い伸びのバランスを良好に保つ 観点からは、 単層〇!\1丁束の平均直径 (口 の、 単層〇!\1丁を含む繊維状炭 素ナノ構造体の平均直径 ( ) に対する比
Figure imgf000011_0003
は、 5以上である ことが好ましく、 1 0以上であることがより好ましく、 3 0以上であること が更に好ましく、 2 0 0以下であることが好ましく、 1 5 0以下であること がより好ましく、 1 0 0以下であることが更に好ましい。
[0031] From the viewpoint of maintaining a good balance of high tensile strength and high elongation in a high temperature environment of a fluororubber molded article formed using the fluoroelastomer composition, a single layer ◯! Average diameter (ratio to the average diameter () of the fibrous carbon nanostructure including the single layer ○!
Figure imgf000011_0003
Is preferably 5 or more, more preferably 10 or more, still more preferably 30 or more, preferably 200 or less, more preferably 150 or less. , 100 or less is more preferable.
[0032] ここで、 単層〇!\1丁を含む繊維状炭素ナノ構造体の平均直径 ( ) は、 [0032] Here, the average diameter () of the fibrous carbon nanostructure including the single layer ◯!
1 门 01以上であることが好ましく、 3 01以上であることがより好ましく、 It is preferably 1 or more 01, more preferably 301 or more,
1 0门 以下であることが好ましく、 8门 以下であることがより好ましく 、 5 n 以下であることが更に好ましい。 単層〇1\1丁束を含む繊維状炭素ナ ノ構造体の平均直径 ( ) が上記範囲内であれば、 本発明の含フッ素エラ ストマー組成物を用いて形成したフッ素ゴム成形体において、 可撓性が向上 する。 It is preferably 10 or less, more preferably 8 or less, and further preferably 5 n or less. If the average diameter () of the fibrous carbon nanostructure containing the single layer 〇\1 bundle is within the above range, in the fluororubber molded article formed using the fluoroelastomer composition of the present invention, Flexibility is improved.
[0033] ここで、 繊維状炭素ナノ構造体は、
Figure imgf000011_0004
丁を含む繊維状炭素ナノ構造 体であって、 上記所定の平均直径 (口 を有する単層 0 丁束を含む繊維状 炭素ナノ構造体であれば特に限定されない。 従って、 繊維状炭素ナノ構造体 は、 例えば、 多層〇 1\1丁を更に含むものであってもよく、 〇1\1丁以外の繊維 状炭素構造体を更に含むものであってもよい。 〇 2020/175331 1 1 卩(:171? 2020 /006896
[0033] Here, the fibrous carbon nanostructure is
Figure imgf000011_0004
It is a fibrous carbon nanostructure including a dent and is not particularly limited as long as it is a fibrous carbon nanostructure including a single layer 0 bunching having the above-mentioned predetermined average diameter (mouth). Therefore, the fibrous carbon nanostructure May further include, for example, a multi-layer 0\1 unit, or may further include a fibrous carbon structure other than O\\1 unit. 〇 2020/175 331 1 1 卩 (: 171? 2020 /006896
[0034] そして、 本発明の含フッ素エラストマー組成物を用いて形成したフッ素ゴ ム成形体の、 高温環境下における高い引張強度及び高い伸びの双方のバラン スを向上させる観点からは、 繊維状炭素ナノ構造体中、 単層〇1\1丁の含有割 合は、 5 0質量%以上であることが好ましく、 7 0質量%以上であることが より好ましく、 9 0質量%以上であることが更に好ましい。 [0034] From the viewpoint of improving both the balance of high tensile strength and high elongation in a high-temperature environment of a fluorine rubber molding formed using the fluorine-containing elastomer composition of the present invention, fibrous carbon is used. In the nanostructure, the content ratio of the single layer 0 1 \1 is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more. More preferable.
[0035] また、 単層 0 丁を含む繊維状炭素ナノ構造体は、 吸着等温線から得られ る I—プロッ トが上に凸な形状を示すことが好ましい。 吸着等温線から得ら れる 1—プロッ トが上に凸な形状を示す繊維状炭素ナノ構造体であれば、 本 発明の含フッ素エラストマー組成物を用いて形成したフッ素ゴム成形体の柔 軟性を向上させることができる。 [0035] Further, in the fibrous carbon nanostructure containing 0 single layers, it is preferable that the I-plot obtained from the adsorption isotherm has a convex shape. If the 1- plot obtained from the adsorption isotherm is a fibrous carbon nanostructure showing a convex shape, the flexibility of the fluororubber molded article formed by using the fluoroelastomer composition of the present invention can be improved. Can be improved.
なお、 上記繊維状炭素ナノ構造体は、 0 丁の開口処理が施されておらず 、 ープロッ トが上に凸な形状を示すことがより好ましい。 In addition, it is more preferable that the fibrous carbon nanostructure is not subjected to 0 opening treatment and the plot has a convex shape upward.
[0036] ここで、 一般に、 吸着とは、 ガス分子が気相から固体表面に取り去られる 現象であり、 その原因から、 物理吸着と化学吸着に分類される。 そして、 1 —プロッ トの取得に用いられる窒素ガス吸着法では、 物理吸着を利用する。 なお、 通常、 吸着温度が一定であれば、 繊維状炭素ナノ構造体に吸着する窒 素ガス分子の数は、 圧力が大きいほど多くなる。 また、 横軸に相対圧 (吸着 平衡状態の圧力?と飽和蒸気圧?〇の比) 、 縦軸に窒素ガス吸着量をプロッ 卜したものを 「等温線」 といい、 圧力を増加させながら窒素ガス吸着量を測 定した場合を 「吸着等温線」 、 圧力を減少させながら窒素ガス吸着量を測定 した場合を 「脱着等温線」 という。 [0036] Here, in general, adsorption is a phenomenon in which gas molecules are removed from a gas phase to a solid surface, and is classified into physical adsorption and chemical adsorption based on the cause. Then, in the nitrogen gas adsorption method used to obtain 1-plot, physical adsorption is used. Generally, if the adsorption temperature is constant, the number of nitrogen gas molecules adsorbed on the fibrous carbon nanostructure increases as the pressure increases. The abscissa is the relative pressure (the ratio between adsorption equilibrium pressure? And the saturated vapor pressure? 〇), and the ordinate is the plot of nitrogen gas adsorption amount called "isothermal line". The case of measuring the gas adsorption amount is called the "adsorption isotherm", and the case of measuring the nitrogen gas adsorption amount while reducing the pressure is called the "desorption isotherm".
[0037] そして、
Figure imgf000012_0001
プロッ トは、 窒素ガス吸着法により測定された吸着等温線に おいて、 相対圧を窒素ガス吸着層の平均厚み 1 (n m) に変換することによ り得られる。 即ち、 窒素ガス吸着層の平均厚み 1を相対圧 / 0に対して プロッ トした、 既知の標準等温線から、 相対圧に対応する窒素ガス吸着層の 平均厚み を求めて上記変換を行うことにより、 繊維状炭素ナノ構造体の —プロッ トが得られる ((^ 8〇6「らによる 1: _プロッ ト法) 。
[0037] And
Figure imgf000012_0001
The plot is obtained by converting the relative pressure into the average thickness 1 (nm) of the nitrogen gas adsorption layer in the adsorption isotherm measured by the nitrogen gas adsorption method. That is, from the known standard isotherm obtained by plotting the average thickness 1 of the nitrogen gas adsorption layer with respect to the relative pressure / 0, the average thickness of the nitrogen gas adsorption layer corresponding to the relative pressure is obtained and the above conversion is performed. , Plots of fibrous carbon nanostructures can be obtained ((^ 806 "et al. 1: _ plot method)).
[0038] ここで、 表面に細孔を有する試料では、 窒素ガス吸着層の成長は、 次の ( 〇 2020/175331 12 卩(:171? 2020 /006896 [0038] Here, in the sample having pores on the surface, the growth of the nitrogen gas adsorption layer was as follows. 〇 2020/175 331 12 卩 (: 171-1? 2020 /006896
1) 〜 (3) の過程に分類される。 そして、 下記の (1) 〜 (3) の過程に よって、 I—プロッ トの傾きに変化が生じる。 It is classified into the processes of 1) to (3). Then, the inclinations of the I-plot change due to the following processes (1) to (3).
( 1) 全表面への窒素分子の単分子吸着層形成過程 (1) Formation process of monomolecular adsorption layer of nitrogen molecules on the entire surface
(2) 多分子吸着層形成とそれに伴う細孔内での毛管凝縮充填過程 (2) Formation of multi-molecular adsorbed layer and accompanying capillarity condensation filling process in pores
(3) 細孔が窒素によって満たされた見かけ上の非多孔性表面への多分子吸 着層形成過程 (3) Formation process of multi-molecular adsorption layer on the apparent non-porous surface whose pores are filled with nitrogen
[0039] そして、 単層 0 丁を含む繊維状炭素ナノ構造体の 1—プロッ トは、 窒素 ガス吸着層の平均厚み 1が小さい領域では、 原点を通る直線上にプロッ トが 位置するのに対し、 1:が大きくなると、 プロッ トが当該直線から下にずれた 位置となり、 上に凸な形状を示すことが好ましい。 かかる 1:—プロッ トの形 状は、 繊維状炭素ナノ構造体の全比表面積に対する内部比表面積の割合が大 きく、 繊維状炭素ナノ構造体に多数の開口が形成されていることを示してい る。 [0039] The 1-plot of the fibrous carbon nanostructure including the single layer 0 has a position where the plot is located on a straight line passing through the origin in the region where the average thickness 1 of the nitrogen gas adsorption layer is small. On the other hand, when 1: becomes large, it is preferable that the plot is located at a position displaced downward from the straight line and has a convex shape upward. The 1:-shape of the plot indicates that the ratio of the internal specific surface area to the total specific surface area of the fibrous carbon nanostructure is large and many openings are formed in the fibrous carbon nanostructure. It
[0040] なお、 単層〇!\1丁を含む繊維状炭素ナノ構造体の I -プロッ トの屈曲点は 、 〇. 2 £ I 〇〇 £ 1 . 5を満たす範囲にあることが好ましく、 0 . 4 5 £ I (n m) £ 1 . 5を満たす範囲にあることがより好ましく、 0 . 5 5 £ I
Figure imgf000013_0001
£ 1 . 0を満たす範囲にあることが更に好ましい。 1:—プロッ 卜の屈曲点の位置が上記範囲内にあると、 繊維状炭素ナノ構造体の特性が更 に向上する。
[0040] In addition, the bending point of the I-plot of the fibrous carbon nanostructure including the single layer 〇!\1 unit is preferably in the range that satisfies 0.2 £ I 〇○ £1.5. More preferably, it is within a range satisfying 0.45 £ I (nm) £ 1.5, and 0.55 £ I
Figure imgf000013_0001
More preferably, it is in the range satisfying £ 1.0. 1:—When the position of the bending point of the plot is within the above range, the characteristics of the fibrous carbon nanostructure are further improved.
ここで、 「屈曲点の位置」 とは、 ープロッ トにおける、 前述した (1) の過程の近似直線 と、 前述した (3) の過程の近似直線巳との交点である Here, the “position of the bending point” is the intersection of the approximate straight line of the above process (1) and the approximate straight line of the above process (3) in the plot.
[0041 ] 更に、 単層 0 丁を含む繊維状炭素ナノ構造体は、
Figure imgf000013_0002
プロッ トから得ら れる全比表面積 3 1 に対する内部比表面積 3 2の比 (3 2 / 3 1) が、 〇.
[0041] Furthermore, the fibrous carbon nanostructure including the single layer 0 is
Figure imgf000013_0002
The ratio of the internal specific surface area 3 2 to the total specific surface area 3 1 obtained from the plot (3 2/3 1) is 〇.
0 5以上であることが好ましく、 〇. 0 6以上であることがより好ましく、 〇. 0 8以上であることが更に好ましく、 〇. 3 0以下であることが好まし い。 3 2 / 3 1が〇. 0 5以上〇. 3 0以下であれば、 繊維状炭素ナノ構造 体の特性を更に向上させることができる。 〇 2020/175331 13 卩(:171? 2020 /006896 It is preferably 0 5 or more, more preferably 0.0 6 or more, still more preferably 0.0 8 or more, and preferably 0.30 or less. When 3 2 /3 1 is greater than or equal to 0.05 and less than or equal to 0.30, the characteristics of the fibrous carbon nanostructure can be further improved. 〇 2020/175 331 13 卩 (: 171? 2020 /006896
Figure imgf000014_0003
Figure imgf000014_0003
2 / 9以下であることがより好ましい。 一方、 3 2は、 3 0〇^/ 9以上 5 4 0 2 / 9以下であることが好ましい。 More preferably 2/9 or less. On the other hand, 3 2 is preferably 3 0_Rei ^ / 9 or more 5 4 0 2/9 or less.
ここで、
Figure imgf000014_0001
丁を含む繊維状炭素ナノ構造体の全比表面積 3 1及び内 部比表面積 3 2は、 その 1: _プロッ トから求めることができる。 具体的には 、 まず、 (1) の過程の近似直線の傾きから全比表面積 3 1 を、 (3) の過 程の近似直線の傾きから外部比表面積 3 3を、 それぞれ求めることができる 。 そして、 全比表面積 3 1から外部比表面積 3 3を差し引くことにより、 内 部比表面積 3 2を算出することができる。
here,
Figure imgf000014_0001
The total specific surface area 31 and the internal specific surface area 32 of the fibrous carbon nanostructure including the claw can be obtained from the 1:_ plot. Specifically, first, the total specific surface area 31 can be obtained from the slope of the approximation line in the process of (1), and the external specific surface area 33 can be obtained from the slope of the approximation line in the process of (3). Then, the internal specific surface area 32 can be calculated by subtracting the external specific surface area 33 from the total specific surface area 31.
[0042] 因みに、 単層 0 丁を含む繊維状炭素ナノ構造体の吸着等温線の測定、 I —プロッ トの作成、 及び、 1—プロッ トの解析に基づく全比表面積 3 1 と内 部比表面積 3 2との算出は、 例えば、 市販の測定装置である
Figure imgf000014_0002
[0042] Incidentally, the measurement of the adsorption isotherm of the fibrous carbon nanostructure containing 0 monolayer, I — plotting, and 1 — total specific surface area 3 1 and internal ratio based on the analysis of the plot The surface area 32 is calculated using, for example, a commercially available measuring device.
Figure imgf000014_0002
(登録商標) 一 丨 n 丨」 (日本べル (株) 製) を用いて行うことができ る。 (Registered trademark) Ichi n n " (manufactured by Nippon Bell Co., Ltd.).
[0043] また、 単層 0 丁を含む繊維状炭素ナノ構造体としては、 平均直径 (八 ) に対する、 直径の標準偏差 ( ) に 3を乗じた値 (3 £7) の比 (3 /八 V) が〇. 2 0超〇. 8 0未満の繊維状炭素ナノ構造体を用いることが好ま しく、 3 £7 /八 が〇. 2 5超の繊維状炭素ナノ構造体を用いることがより 好ましく、 3 / Vが〇. 7 0未満の繊維状炭素ナノ構造体を用いること が更に好ましい。 3 £7 /八 が〇. 2 0超〇. 8 0未満の単層 0 1\1丁を含む 繊維状炭素ナノ構造体を使用すれば、 本発明の含フッ素エラストマー組成物 を用いて形成したフッ素ゴム成形体の性能を向上させることができる。 なお、 「繊維状炭素ナノ構造体の直径の標準偏差 (£7 :標本標準偏差) 」 は、 透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体 1 〇 0本の直径 (外径) を測定して求めることができる。 そして、 単層〇1\1丁を 含む繊維状炭素ナノ構造体の平均直径 及び標準偏差 (£7) は、 繊維 〇 2020/175331 14 卩(:171? 2020 /006896 [0043] Further, as a fibrous carbon nanostructure including 0 single layers, a ratio (3/8) of a value (3 £7) obtained by multiplying the standard deviation () of the diameter by 3 with respect to the average diameter (8) is used. It is preferred to use fibrous carbon nanostructures with V) greater than 0.20 and less than 0.80, more preferably 3 £7 /8 with fibrous carbon nanostructures greater than 0.25. Preferably, it is more preferable to use a fibrous carbon nanostructure having 3/V of less than 0.70. If a fibrous carbon nanostructure containing a single layer 0 1 \1 of 3 £7/8 is more than 0.20 and less than 0.80, it was formed using the fluorine-containing elastomer composition of the present invention. The performance of the fluororubber molded article can be improved. The “standard deviation of the diameter of fibrous carbon nanostructures (£7: sample standard deviation)” is the diameter of 100 fibrous carbon nanostructures randomly selected using a transmission electron microscope ( The outer diameter) can be measured and obtained. And the average diameter and standard deviation (£7) of the fibrous carbon nanostructure containing a single layer of 0 〇 2020/175 331 14 卩 (: 171? 2020 /006896
状炭素ナノ構造体の製造方法や製造条件を変更することにより調整してもよ いし、 異なる製法で得られた繊維状炭素ナノ構造体を複数種類組み合わせる ことにより調整してもよい。 It may be adjusted by changing the production method or production conditions of the carbon nanostructures, or may be adjusted by combining a plurality of fibrous carbon nanostructures obtained by different production methods.
[0044] 更に、 単層 0 丁を含む繊維状炭素ナノ構造体は、 ラマンスペクトルにお けるロバンドピーク強度に対する◦バンドピーク強度の比 (◦/ 0比) が 1 以上 2 0以下であることが好ましい。
Figure imgf000015_0001
[0044] Furthermore, the fibrous carbon nanostructure containing 0 single layers must have a ratio of ◦ band peak intensity to robo band peak intensity in Raman spectrum (◦ / 0 ratio) of 1 or more and 20 or less. Is preferred.
Figure imgf000015_0001
本発明の含フッ素エラストマー組成物を用いて形成したフッ素ゴム成形体の 性能をより向上させることができる。 なお、
Figure imgf000015_0002
比は、 2以上であっ てもよいし、 3以上であってもよく、 また、 1 0以下であってもよいし、 5 以下であってもよい。
The performance of the fluororubber molded article formed using the fluoroelastomer composition of the present invention can be further improved. In addition,
Figure imgf000015_0002
The ratio may be 2 or more, 3 or more, 10 or less, or 5 or less.
[0045] また、 単層 0 丁を含む繊維状炭素ナノ構造体は、 合成時における繊維状 炭素ナノ構造体の平均長さが 1 〇〇 以上であることが好ましい。 なお、 合成時の繊維状炭素ナノ構造体の長さが長いほど、 分散時に繊維状炭素ナノ 構造体に破断や切断などの損傷が発生し易いので、 合成時の構造体の平均長 さは 5 0 0 0 〇1以下であることが好ましい。 [0045] Further, in the fibrous carbon nanostructure including the single layer 0, the average length of the fibrous carbon nanostructure at the time of synthesis is preferably 100 or more. Note that the longer the length of the fibrous carbon nanostructure during synthesis, the more easily the fibrous carbon nanostructure is damaged, such as breakage or cutting, during dispersion, so the average length of the structure during synthesis is 5 It is preferably 0 0 0 0 1 or less.
そして、
Figure imgf000015_0003
丁を含む繊維状炭素ナノ構造体のアスペクト比 (長さ/ 直径) は、 1 0を超えることが好ましい。 なお、 繊維状炭素ナノ構造体のア スぺクト比は、 透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ 構造体 1 0 0本の直径及び長さを測定し、 直径と長さとの比 (長さ/直径) の平均値を算出することにより求めることができる。
And
Figure imgf000015_0003
The aspect ratio (length/diameter) of the fibrous carbon nanostructure including the claw is preferably more than 10. In addition, the aspect ratio of the fibrous carbon nanostructures was obtained by measuring the diameter and length of 100 randomly selected fibrous carbon nanostructures using a transmission electron microscope. It can be obtained by calculating the average value of the ratio (length/diameter) to the.
[0046] 更に、 単層 0 丁を含む繊維状炭素ナノ構造体の巳巳丁比表面積は、 6 0 [0046] Furthermore, the specific surface area of the fibrous carbon nanostructure including the single layer 0 is 60
0 2 / 9以上であることが好ましく、 8 0 0〇! 2/ 9以上であることがより 好ましく、 2 5 0 0 2 / 9以下であることが好ましく、 1 5 0 0〇^/ 9以 下であることがより好ましく、 1 2
Figure imgf000015_0004
以下であることが更に好まし い。 単層 0 1\1丁を含む繊維状炭素ナノ構造体の巳巳丁比表面積が 6 0 0 2 / 9以上であれば、 本発明の含フッ素エラストマー組成物を用いて形成したフ ッ素ゴム成形体の耐熱性を向上させることができる。 また、 単層〇1\1丁を含 む繊維状炭素ナノ構造体の巳巳丁比表面積が 2 5 0 0 2 / 9以下であれば、 \¥0 2020/175331 15 卩(:17 2020 /006896
It is preferably 0 2 /9 or more, more preferably 800 0! 2/9 or more, more preferably 2 500 0 2 /9 or less, 1 500 0 ^ / 9 or more More preferably below, 1 2
Figure imgf000015_0004
The following is more preferable. If the specific surface area of the fibrous carbon nanostructure including the single layer 0 1 \1 is 60 2 /9 or more, the fluororubber formed by using the fluorine-containing elastomer composition of the present invention The heat resistance of the molded product can be improved. In addition, if the specific surface area of the fibrous carbon nanostructure including the single-layer 〇\\1 is less than 250 0 2 /9, \¥0 2020/175 331 15 卩 (: 17 2020 /006896
含フッ素エラストマー組成物中を用いて形成したフッ素ゴム成形体において 、 高温環境下での高い引張強度及び高い伸びの双方のバランスがより優れる A fluororubber molded article formed using a fluoroelastomer composition has a better balance of both high tensile strength and high elongation in a high temperature environment.
[0047] そして、 上述した性状を有する単層 0 丁を含む繊維状炭素ナノ構造体は 、 例えば、 力ーボンナノチューブ製造用の触媒層を表面に有する基材上に、 原料化合物及びキャリアガスを供給して、 化学的気相成長法 (<3 0法) に より〇1\1丁を合成する際に、 系内に微量の酸化剤 (触媒賦活物質) を存在さ せることで、 触媒層の触媒活性を飛躍的に向上させるという方法 (スーパー グロース法;国際公開第 2 0 0 6 / 0 1 1 6 5 5号参照) において、 基材表 面への触媒層の形成をウエッ トプロセスにより行うことで、 効率的に製造す ることができる。 なお、 以下では、 スーパーグロース法により得られる力一 ボンナノチューブを 「3〇〇1\1丁」 と称することがある。 [0047] Then, the fibrous carbon nanostructure including the single layer 0 having the above-mentioned properties is, for example, a raw material compound and a carrier gas on a base material having a catalyst layer for producing carbon nanotubes on its surface. By supplying and supplying a small amount of oxidant (catalyst activating substance) in the system when synthesizing 001\1 by the chemical vapor deposition method (<30 method), the catalyst layer In the method of dramatically improving the catalytic activity of the catalyst (super-growth method; see International Publication No. WO 206/011655), the formation of the catalyst layer on the surface of the base material is performed by a wet process. By doing so, it is possible to manufacture efficiently. In the following, the force-bonded carbon nanotubes obtained by the super growth method may be referred to as "3,001\1".
[0048] なお、 スーパーグロース法により製造した単層〇1\1丁を含む繊維状炭素ナ ノ構造体は、 3〇〇1\1丁のみから構成されていてもよいし、 3〇〇1\1丁と、 非円筒形状の炭素ナノ構造体とから構成されていてもよい。 具体的には、 単 層〇 !\1丁を含む繊維状炭素ナノ構造体には、 内壁同士が近接または接着した テープ状部分を全長に亙って有する単層または多層の扁平筒状の炭素ナノ構 造体 (以下、 「グラフエンナノテープ (〇1\1丁) 」 と称することがある。 ) が含まれていてもよい。 [0048] Note that the fibrous carbon nanostructure including the single layer 〇\1 pcs produced by the super growth method may be composed of only 3 〇\1 pcs, or It may be composed of \1 unit and a non-cylindrical carbon nanostructure. Specifically, a fibrous carbon nanostructure containing a single layer 〇!\1 unit includes a single-layer or multi-layered flat tubular carbon that has a tape-shaped portion with inner walls close to or bonded to each other over the entire length. A nano structure (hereinafter, also referred to as “Graph Ennano Tape (0 1 \ 1)”) may be included.
[0049] そして、 上記方法によって得られる単層 0 丁を含む繊維状炭素ナノ構造 体は、 繊維状炭素ナノ構造体間のファンデルワールスカによって繊維状炭素 ナノ構造体が凝集することによりバンドル状に形成された、 単層 0 1\1丁を含 む繊維状炭素ナノ構造体の束を含んでいる。 そこで、 上記方法によって得ら れる繊維状炭素ナノ構造体を任意の方法で分散処理すれば、 繊維状炭素ナノ 構造体の束を解織して、 上述した所定の平均直径 (口 を有する単層〇!\1丁 束を得ることができる。 [0049] Then, the fibrous carbon nanostructure including the single layer 0 obtained by the above method is formed into a bundle by aggregation of the fibrous carbon nanostructure due to Van der Waalsca between the fibrous carbon nanostructures. It contains a bundle of fibrous carbon nanostructures containing formed monolayers. Therefore, if the fibrous carbon nanostructure obtained by the above method is subjected to a dispersion treatment by an arbitrary method, the bundle of fibrous carbon nanostructures is unwoven, and the above-mentioned predetermined average diameter (single layer having a mouth is formed. You can get a bundle of 1!
[0050] <添加剤> [0050] <Additive>
そして、 含フッ素エラストマー組成物に任意に配合し得る添加剤としては 〇 2020/175331 16 卩(:171? 2020 /006896 And, as an additive which can be arbitrarily blended with the fluorine-containing elastomer composition, 〇 2020/175 331 16 卩 (: 171-1? 2020 /006896
、 特に限定されることなく、 架橋剤、 架橋助剤、 酸化防止剤、 補強材などの 既知の添加剤を用いることができる。 The known additives such as a cross-linking agent, a cross-linking aid, an antioxidant, and a reinforcing material can be used without particular limitation.
なお、 添加剤として、 繊維状炭素ナノ構造体が過度に凝集することを抑制 するなどの目的で、 分散剤を用いてもよいが、 本発明の含フッ素エラストマ —組成物は、 分散剤を実質的に含まないことが好ましい。 分散剤を実質的に 含まないことにより、 本発明の含フッ素エラストマー組成物を用いることで 、 高温環境下での引張強度がより高いフッ素ゴム成形体を得ることができる なお、 本明細書において、 「実質的に含まない」 とは、 不可避的に混入す る場合を除いて、 能動的に配合はしないことをいう。 As the additive, a dispersant may be used for the purpose of suppressing excessive aggregation of the fibrous carbon nanostructure, but the fluorine-containing elastomer composition of the present invention contains the dispersant substantially. It is preferable that it is not included. By containing substantially no dispersant, a fluororubber molded article having higher tensile strength under a high temperature environment can be obtained by using the fluoroelastomer composition of the present invention. “Substantially free of” means that it is not actively compounded unless it is inevitably mixed.
[0051 ] 具体的には、 架橋剤としては、 特に限定されることなく、 含フッ素エラス トマー組成物に含まれている含フッ素エラストマーを架橋可能な既知の架橋 剤を用いることができる。 より具体的には、 架橋剤としては、 例えば、 硫黄 、 2 , 5—ジメチルー 2 , 5—ジ (1: _プチルぺルオキシ) ヘキサンなどの パーオキサイ ド系架橋剤、 トリアリルイソシアヌレートなどを用いることが できる。 [0051] Specifically, the cross-linking agent is not particularly limited, and a known cross-linking agent capable of cross-linking the fluorine-containing elastomer contained in the fluorine-containing elastomer composition can be used. More specifically, as the cross-linking agent, for example, sulfur, 2,5-dimethyl-2,5-di(1:_pentylperoxy)hexane-based cross-linking agent such as hexane, triallyl isocyanurate, etc. may be used. You can
[0052] また、 架橋助剤としては、 特に限定されることなく、 例えば亜鉛華などを 用いることができる。 [0052] Further, the crosslinking aid is not particularly limited and, for example, zinc white can be used.
[0053] 更に、 酸化防止剤としては、 特に限定されることなく、 アミン系酸化防止 剤やイミダゾール系酸化防止剤などを用いることができる。 [0053] Furthermore, the antioxidant is not particularly limited, and an amine-based antioxidant, an imidazole-based antioxidant, or the like can be used.
[0054] そして、 補強材としては、 特に限定されることなく、 力ーボンブラックや シリカなどを用いることができる。 ここで、 力ーボンブラックとしては、 フ ァーネスブラック、 アセチレンブラック、 サーマルブラック、 チヤンネルブ ラック、 グラファイ トなどを挙げることができる。 [0054] The reinforcing material is not particularly limited, and carbon black, silica, or the like can be used. Here, examples of the force-black include furnace black, acetylene black, thermal black, channel black and graphite.
[0055] そして、 本発明の含フッ素エラストマー組成物を用いて形成したフッ素ゴ ム成形体において、 高温環境下での高い伸びを十分に確保しつつ、 引張強度 を向上させる観点からは、 添加剤として、 力ーボンブラックを使用すること が好ましい。 〇 2020/175331 17 卩(:171? 2020 /006896 [0055] Then, in the fluorine rubber molded body formed by using the fluorine-containing elastomer composition of the present invention, from the viewpoint of improving tensile strength while sufficiently ensuring high elongation in a high temperature environment, an additive For this reason, it is preferable to use force black. 〇 2020/175 331 17 卩(: 171-1? 2020/006896
これらの添加剤は、 1種類単独で使用してもよいし、 2種以上を併用して もよい。 また、 添加剤の配合量は、 所望の効果の発現が阻害されない限り、 任意の量とすることができる。 These additives may be used alone or in combination of two or more. The amount of the additive compounded may be any amount as long as the desired effect is not impaired.
[0056] <含フッ素エラストマー組成物の調製> <Preparation of Fluorine-Containing Elastomer Composition>
ここで、 含フッ素エラストマー組成物は、 含フッ素エラストマーと、 所定 の平均直径 (口 を有する単層 0 丁束を含む繊維状炭素ナノ構造体と、 任 意成分である添加剤とを、 上記所定の割合で混合または混練することにより 調製することができる。 Here, the fluorine-containing elastomer composition comprises a fluorine-containing elastomer, a predetermined average diameter (a fibrous carbon nanostructure including a single layer 0 bundle having a mouth, and an additive as an optional component). It can be prepared by mixing or kneading at a ratio of.
[0057] 具体的には、 含フッ素エラストマー組成物は、 特に限定されることなく、 例えば、 含フッ素エラストマーと、 所定の平均直径 (口 を有する単層〇 丁束を含む繊維状炭素ナノ構造体との混合物を得た後、 得られた混合物と任 意成分である添加剤とを混練することにより、 調製することができる。 [0057]Specifically, the fluorine-containing elastomer composition is not particularly limited, and includes, for example, a fluorine-containing elastomer and a fibrous carbon nanostructure containing a single-layer circular bundle having a predetermined average diameter (mouth). It is possible to prepare the mixture by mixing the obtained mixture with the additive which is an optional component.
[0058] そして、 含フッ素エラストマーと、 所定の平均直径 (口 を有する単層〇 [0058] Then, a fluorine-containing elastomer and a predetermined average diameter (a single layer having a mouth
!\1丁束を含む繊維状炭素ナノ構造体との混合物の調製は、 例えば、 含フッ素 エラストマー中に所定の平均直径 (口 を有する単層〇1\1丁束を含む繊維状 炭素ナノ構造体を分散させることが可能な任意の混合方法を用いて行うこと ができる。 具体的には、 上記混合物は、 特に限定されることなく、 例えば、 溶媒に含フッ素エラストマーを溶解させてなる含フッ素エラストマー溶解溶 液、 又は、 分散媒に含フッ素エラストマーを分散させてなる含フッ素エラス トマー分散液に対し、 単層 0 丁を含む繊維状炭素ナノ構造体を添加し、 更 にビーズミルやジェッ トミルなどの分散装置を用いることで繊維状炭素ナノ 構造体中に含まれる単層 0 丁束の平均直径が所定の平均直径 (0 となる まで分散処理した後、 得られた分散液から溶媒または分散媒を除去すること により、 調製することができる。 なお、 溶媒または分散媒の除去には、 例え ば凝固法、 キャスト法または乾燥法を用いることができる。 Preparation of a mixture with fibrous carbon nanostructures containing !1 bundles includes, for example, fibrous carbon nanostructures containing a single average layer of a fluorine-containing elastomer The mixture can be carried out by using any mixing method that can disperse the body, specifically, the mixture is not particularly limited, and may be, for example, a fluorine-containing elastomer prepared by dissolving a fluorine-containing elastomer in a solvent. Add a fibrous carbon nanostructure containing a single layer to an elastomer solution or a fluoroelastomer dispersion prepared by dispersing a fluoroelastomer in a dispersion medium, and further add a bead mill or jet mill. When the average diameter of the monolayer 0 bundles contained in the fibrous carbon nanostructure is dispersed to a predetermined average diameter (0 by using the dispersing device of No. 1), the obtained dispersion liquid is used as a solvent or a dispersion medium. The solvent or dispersion medium can be removed by, for example, a coagulation method, a casting method or a drying method.
[0059] また、 混合物と添加剤との混練は、 例えば、 ミキサー、 一軸混練機、 二軸 混練機、 口ール、 ブラベンダー、 押出機などを用いて行うことができる。 The mixture and the additive can be kneaded by using, for example, a mixer, a single-screw kneader, a twin-screw kneader, a throat, a Brabender, an extruder or the like.
[0060] なお、 含フッ素エラストマー組成物の生産性を向上させる観点からは、 本 〇 2020/175331 18 卩(:171? 2020 /006896 [0060] From the viewpoint of improving the productivity of the fluorine-containing elastomer composition, 〇 2020/175 331 18 卩 (: 171-1? 2020 /006896
発明の含フッ素エラストマー組成物は、 以下に述べる本発明の含フッ素エラ ストマー溶液の製造方法によって得られる含フッ素エラストマー溶液を用ぃ て製造することが好ましぃ。 The fluorine-containing elastomer composition of the invention is preferably produced by using the fluorine-containing elastomer solution obtained by the method for producing a fluorine-containing elastomer solution of the present invention described below.
[0061 ] (含フッ素エラストマー溶液の製造方法) (Method for producing fluorine-containing elastomer solution)
本発明の含フッ素エラストマー溶液の製造方法は、 含フッ素エラストマー と、 単層〇!\1丁を含む繊維状炭素ナノ構造体とを含有する含フッ素エラスト マー溶液の製造方法である。 The method for producing a fluorine-containing elastomer solution of the present invention is a method for producing a fluorine-containing elastomer solution containing a fluorine-containing elastomer and a fibrous carbon nanostructure containing a single layer ◯!
[0062] そして、 本発明の含フッ素エラストマー溶液の製造方法は、 含フッ素エラ ストマーと、 溶媒と、
Figure imgf000019_0001
丁を含む繊維状炭素ナノ構造体とを、 分散メ ディアを用ぃて分散処理することにより分散液を得る分散工程を含む。 そし て、 得られた分散液は、 含フッ素エラストマーが溶媒に溶解してなる含フッ 素エラストマー溶解溶液中に単層 0 !\]丁を含む繊維状炭素ナノ構造体が分散 した分散液であるとともに、 当該分散液は、
Figure imgf000019_0002
丁を含む繊維状炭素ナ ノ構造体の束である単層〇 1\1丁束を含み、 且つ、 単層〇1\1丁束の平均直径 ( 〇6) が 2 0 n 01以上 6 0 0 n 01以下である。 ここで、 単層〇1\1丁束の平均直 径 (口 は、 好ましくは 5 0 n 以上であり、 より好ましくは 1 0 0 n 以 上であり、 好ましくは 5 0 0 n 以下であり、 より好ましくは 4 0 0 n 以 下である。
[0062] Then, the method for producing a fluorine-containing elastomer solution of the present invention comprises: a fluorine-containing elastomer; a solvent;
Figure imgf000019_0001
And a fibrous carbon nanostructure including a knuckle are dispersed using a dispersion medium to obtain a dispersion. The obtained dispersion liquid is a dispersion liquid in which the fibrous carbon nanostructure containing the monolayer 0 !\] is dispersed in the fluorine-containing elastomer dissolving solution obtained by dissolving the fluorine-containing elastomer in the solvent. Together with the dispersion,
Figure imgf000019_0002
It includes a single layer 〇 1 \ 1 Chotaba a bundle of the fibrous carbon nanostructures comprising Ding, and the average diameter of the single layer Rei_1 \ 1 Chotaba (〇 6) 2 0 n 01 or more 6 0 It is less than 0 n 01. Here, the average straight diameter of the single layer 〇1\1 bundle (the mouth is preferably not less than 50 n, more preferably not less than 100 n, preferably not more than 500 n, It is more preferably 400 n or less.
[0063] なお、 本発明の含フッ素エラストマー溶液の製造方法で用ぃる溶媒として は、 含フッ素エラストマーを溶解可能な溶媒であれば特に限定されなぃ。 こ のような溶媒として、 例えば、 メチルエチルケトンやアセトンなどのケトン 類、 テトラヒドロフランなどのエーテル類等の極性溶媒等が挙げられる。 これらの溶媒は、 1種単独で使用してもよぃし、 2種類以上を任意の比率 で組み合わせて用ぃてもよぃ。 [0063] The solvent used in the method for producing a fluoroelastomer solution of the present invention is not particularly limited as long as it can dissolve the fluoroelastomer. Examples of such solvent include ketones such as methyl ethyl ketone and acetone, polar solvents such as ethers such as tetrahydrofuran, and the like. These solvents may be used alone or in combination of two or more at any ratio.
[0064] そして、 含フッ素エラストマーを溶媒に溶解してなる含フッ素エラストマ —溶解溶液中の含フッ素エラストマーの濃度は、 特に限定されなぃが、 単層 〇 1\1丁束を均一に分散させる観点からは、 フッ素エラストマー溶解溶液中の 含フッ素エラストマーの濃度は、 5 0質量%以上であることが好ましく、 6 〇 2020/175331 19 卩(:171? 2020 /006896 [0064] The concentration of the fluorine-containing elastomer in the solution containing the fluorine-containing elastomer obtained by dissolving the fluorine-containing elastomer in a solvent is not particularly limited, but the monolayer 〇1\1 bundle is uniformly dispersed. From the viewpoint, the concentration of the fluoroelastomer in the fluoroelastomer solution is preferably 50% by mass or more, 6 〇 2020/175 331 19 卩 (:171? 2020 /006896
0質量%以上であることがより好ましく、 9 2質量%以下であることが好ま しく、 9 0質量%以下であることがより好ましい。 The content is more preferably 0% by mass or more, preferably 92% by mass or less, and more preferably 90% by mass or less.
[0065] ここで、 上記分散工程では、 分散剤を用いずに分散処理を行うことが好ま しい。 分散剤を用いないことにより、 高温環境下での引張強度がより高いフ ッ素ゴム成形体を成形する際に好適に用い得る含フッ素エラストマー溶液を 得ることができる。 [0065] Here, in the dispersion step, it is preferable to perform the dispersion treatment without using a dispersant. By not using a dispersant, it is possible to obtain a fluorine-containing elastomer solution that can be suitably used when molding a fluororubber molded article having a higher tensile strength in a high temperature environment.
[0066] また、 分散メディアを用いた分散処理は、 例えば、 ビーズミルなどの既知 の湿式メディア分散装置を用いることで好適に行うことができる。 そして、 分散メディアを構成する材質は、 特に限定されず、 例えば、 ガラス、 アルミ ナ、 ジルコン (ジルコニア ·シリカ系セラミックス) 、 ジルコニア、 スチー ルなどが挙げられる。 [0066] Further, the dispersion treatment using the dispersion medium can be suitably performed by using a known wet media dispersion device such as a bead mill. The material forming the dispersion medium is not particularly limited, and examples thereof include glass, alumina, zircon (zirconia-silica ceramics), zirconia, and steel.
[0067] そして、 含フッ素エラストマー溶液をより効率的に製造する観点からは、 上記分散工程は、 含フッ素エラストマーを上記溶媒に溶解させて含フッ素エ ラストマー溶解溶液を得る第一のステップと、 含フッ素エラストマー溶解溶 液及び単層 0 1\1丁を含む繊維状炭素ナノ構造体に対して上記分散処理を行う 第二のステップとを含むことが好ましい。 [0067] From the viewpoint of more efficiently producing the fluoroelastomer solution, the dispersion step includes a first step of dissolving the fluoroelastomer in the solvent to obtain a fluoroelastomer solution. It is preferable that the method further comprises a second step of performing the above dispersion treatment on the fibrous carbon nanostructure including the fluoroelastomer solution and the monolayer 0 1 \1.
[0068] そして、 第二のステップでは、 第一のステップで得られた含フッ素エラス トマー溶解溶液 1 〇〇質量部に対して、
Figure imgf000020_0001
丁を含む繊維状炭素ナノ構 造体を〇. 1質量部以上用いることが好ましく、 〇. 5質量部以上用いるこ とがより好ましく、 6質量部以下用いることが好ましく、 4質量部以下用い ることがより好ましい。 単層 0 1\1丁を含む繊維状炭素ナノ構造体の使用量を 上記範囲内とすれば、 分散工程において繊維状炭素ナノ構造体の束を良好に 解織して、 所定の平均直径 (口 を有する単層 0 丁束を含む分散液を効率 的に製造することができる。
[0068] Then, in the second step, with respect to 100 parts by mass of the fluorine-containing elastomer dissolution solution obtained in the first step,
Figure imgf000020_0001
It is preferable to use the fibrous carbon nanostructure including the dents in an amount of 0.1 part by mass or more, more preferably 0.5 part by mass or more, preferably 6 parts by mass or less, and 4 parts by mass or less. Is more preferable. If the amount of the fibrous carbon nanostructure including the single layer 0 1\1 is within the above range, the bundle of the fibrous carbon nanostructure is well unwoven in the dispersing step, and the predetermined average diameter ( It is possible to efficiently produce a dispersion liquid containing a single-layer 0-bundle having a mouth.
[0069] そして、 分散工程で得られた分散液は、 そのまま本発明の含フッ素エラス トマー溶液として使用してもよいし、 任意に、 例えば上述した添加剤を混合 し、 含フッ素エラストマー溶液として使用してもよい。 [0069] The dispersion obtained in the dispersion step may be used as it is as the fluorine-containing elastomer solution of the present invention, or may be optionally mixed with, for example, the above-mentioned additives and used as a fluorine-containing elastomer solution. You may.
[0070] ここで、 分散処理で用いる分散メディアは、 下記 (1) 及び (2) の少な 〇 2020/175331 20 卩(:171? 2020 /006896 [0070] Here, the distributed media used in the distributed processing are less than the following (1) and (2). 〇 2020/175 331 20 卩 (:171? 2020 /006896
くとも一方を満たすことが好ましく、 下記 (1) 及び (2) の双方を満たす ことがより好ましい。 分散メディアが、 下記 ( 1) 及び ( 2) の少なくとも —方を満たしていれば、 含フッ素エラストマー溶液を更に効率的に製造する ことができる。 It is preferable that at least one of them be satisfied, and it is more preferable that both of the following (1) and (2) be satisfied. When the dispersion medium satisfies at least one of the following (1) and (2), the fluorine-containing elastomer solution can be produced more efficiently.
( 1) 分散メディアのビッカース硬度が 6 0 0以上 1 5 0 0以下 (1) Vickers hardness of dispersed media is 600 or more and 150 or less
(2) 分散メディアの充填率が 4 0体積%以上 7 0体積%以下 (2) Dispersion media filling rate is 40% or more and 70% or less by volume.
[0071 ] 具体的には、 分散処理で用いる分散メディアのピッカース硬度は、 6 0 0 以上であることが好ましく、 8 0 0以上であることがより好ましく、 1 0 0 0以上であることが更に好ましく、 1 5 0 0以下であることが好ましく、 1 3 0 0以下であることがより好ましい。 また、 上記分散メディアの充填率は 、 4 0体積%以上であることが好ましく、 5 0体積%以上であることがより 好ましく、 7 0体積%以下であることが好ましく、 6 0体積%以下であるこ とがより好ましい。 [0071] Specifically, the Pickers hardness of the dispersion medium used in the dispersion treatment is preferably 600 or more, more preferably 800 or more, and further preferably 100 or more. It is preferably 150 or less, more preferably 1300 or less. The filling rate of the dispersion medium is preferably 40% by volume or more, more preferably 50% by volume or more, preferably 70% by volume or less, and 60% by volume or less. It is more preferable.
[0072] 更に、 分散メディアの平均直径は、 〇. 1
Figure imgf000021_0001
以上であることが好ましく 、 〇. 3〇!〇!以上であることがより好ましく、 1 〇!〇!以下であることが好ま しく、 〇.
Figure imgf000021_0002
以下であることがより好ましい。 分散メディアの平均直径 が上記範囲内であれば、 含フッ素エラストマー溶液をより一層効率良く製造 することができる。
[0072] Furthermore, the average diameter of the dispersion media is
Figure imgf000021_0001
Or more, more preferably 0.30!! or more, more preferably 10!!! or less, 0.
Figure imgf000021_0002
The following is more preferable. When the average diameter of the dispersion medium is within the above range, the fluorine-containing elastomer solution can be produced more efficiently.
[0073] (含フッ素エラストマー組成物の製造方法) (Method for producing fluorine-containing elastomer composition)
そして、 本発明の含フッ素エラストマー組成物の製造方法は、 含フッ素エ ラストマー溶液の製造方法により得られた含フッ素エラストマー溶液から溶 媒を除去することで、 含フッ素エラストマー組成物を得る方法である。 本発 明の含フッ素エラストマー組成物の製造方法によれば、 高温環境下での引張 強度が高く、 且つ、 伸びが高いフッ素ゴム成形体の製造に好適に用い得る含 フッ素エラストマー組成物を効率的に製造することができる。 The method for producing a fluorine-containing elastomer composition of the present invention is a method for obtaining a fluorine-containing elastomer composition by removing a solvent from the fluorine-containing elastomer solution obtained by the method for producing a fluorine-containing elastomer solution. .. According to the method for producing a fluoroelastomer composition of the present invention, a fluoroelastomer composition that can be suitably used for producing a fluororubber molded article having high tensile strength in a high temperature environment and high elongation can be efficiently prepared. Can be manufactured.
[0074] なお、 本発明の含フッ素エラストマー組成物の製造方法において、 含フッ 素エラストマー溶液から溶媒を除去する方法は特に限定されず、 例えば、 乾 燥法などを用いることができる。 〇 2020/175331 21 卩(:171? 2020 /006896 [0074] In the method for producing the fluorine-containing elastomer composition of the present invention, the method of removing the solvent from the fluorine-containing elastomer solution is not particularly limited, and, for example, a drying method can be used. 〇 2020/175 331 21 卩 (: 171? 2020 /006896
[0075] そして、 乾燥法としては、 スプレードライ方式による乾燥、 真空乾燥、 減 圧乾燥、 不活性ガスの流通による乾燥などの既知の乾燥法を使用することが できる。 As the drying method, known drying methods such as spray drying, vacuum drying, reduced pressure drying, and drying by circulating an inert gas can be used.
[0076] ここで、 溶媒を除去して得られる混合物は、 そのまま本発明の含フッ素エ ラストマー組成物として使用してもよいし、 任意に、 例えば上述した添加剤 を混合または混練し、 含フッ素エラストマー組成物として使用してもよい。 [0076] Here, the mixture obtained by removing the solvent may be used as it is as the fluorine-containing elastomer composition of the present invention, or optionally, for example, the above-mentioned additives are mixed or kneaded to form a fluorine-containing elastomer composition. It may be used as an elastomer composition.
[0077] (フッ素ゴム成形体) [0077] (Fluororubber molded product)
そして、 本発明のフッ素ゴム成形体は、 本発明の含フッ素エラストマー組 成物を、 所望の形状に成形して得ることができる。 具体的には、 フッ素ゴム 成形体は、 例えば、 本発明の含フッ素エラストマー組成物を金型に投入し、 任意に架橋させて形成することができる。 そして、 本発明の含フッ素エラス トマー組成物を用いて形成したフッ素ゴム成形体は、 含フッ素エラストマー 組成物に含まれていた成分に由来する成分を、 含フッ素エラストマー組成物 と同様の比率で含有する。 即ち、 本発明のフッ素ゴム成形体は、 例えば、 含 フッ素エラストマー組成物が架橋剤を含有していた場合には、 架橋された含 フッ素エラストマーと、 所定の平均直径 (口 を有する単層〇1\1丁束を含む 繊維状炭素ナノ構造体とを所定の比率で含有し、 任意に添加剤を更に含有す る。 The fluororubber molded article of the present invention can be obtained by molding the fluoroelastomer composition of the present invention into a desired shape. Specifically, the fluororubber molded article can be formed, for example, by introducing the fluoroelastomer composition of the present invention into a mold and optionally crosslinking it. The fluororubber molded article formed by using the fluoroelastomer composition of the present invention contains the components derived from the components contained in the fluoroelastomer composition in the same ratio as that of the fluoroelastomer composition. To do. That is, when the fluoroelastomer composition of the present invention contains a crosslinking agent, for example, when the fluoroelastomer composition contains a crosslinking agent, the fluoroelastomer composition has a crosslinked fluoroelastomer and a predetermined average diameter (a single layer ◯1 having a mouth). \1 Contains a fibrous carbon nanostructure containing a bundle in a predetermined ratio, and optionally further contains an additive.
[0078] なお、 本発明のフッ素ゴム成形体の形状は、 用途に応じた任意の形状とす ることができ、 フッ素ゴム成形体の形状は、 例えば、 環状、 管状、 中空円盤 状、 シート状、 ベルト状などとすることができる。 The shape of the fluororubber molded article of the present invention may be any shape depending on the application, and the shape of the fluororubber molded article may be, for example, an annular shape, a tubular shape, a hollow disc shape, or a sheet shape. It can be belt-shaped.
[0079] そして、 本発明のフッ素ゴム成形体が本発明の含フッ素エラストマー組成 物を架橋してなる架橋物からなる場合、 当該架橋物は以下の物性を有するこ とが好ましい。 When the fluororubber molded article of the present invention comprises a crosslinked product obtained by crosslinking the fluoroelastomer composition of the present invention, the crosslinked product preferably has the following physical properties.
[0080] 即ち、 架橋物は、 温度 2 0 0 °〇の環境下において、 引張強度が 6 IV! 3以 上であることが好ましく、 8 ^\ 9 a以上であることがより好ましく、 1 0 IV! That is, the crosslinked product preferably has a tensile strength of 6 IV! 3 or higher, more preferably 8 ^\ 9 a or higher, under an environment at a temperature of 200° IV!
9 3であることが更に好ましい。 More preferably, it is 93.
[0081 ] また、 架橋物は、 温度 2 0 0 °〇の環境下において、 伸びが 7 0 %以上であ 〇 2020/175331 22 卩(:171? 2020 /006896 [0081] Further, the crosslinked product has an elongation of 70% or more in an environment of a temperature of 200 °C. 〇 2020/175 331 22 卩 (: 171? 2020 /006896
ることが好ましく、 8 0 %以上であることがより好ましく、 9 0 %以上であ ることが更に好ましい。 Is preferable, 80% or more is more preferable, and 90% or more is further preferable.
[0082] 更に、 架橋物は、 温度 2 0 0 °〇の環境下において、 抗張積が 6 0 0以上で あることが好ましく、 7 0 0以上であることがより好ましく、 8 0 0以上で あることが更に好ましく、 9 0 0以上であることが特に好ましい。 抗張積が 6 0 0以上であれば、 架橋物の破壊エネルギーが十分に高くなるため、 当該 架橋物を各種用途に好適に用いることができる。 [0082] Further, the cross-linked product has a tensile product of preferably 600 or more, more preferably 70 or more, and further preferably 800 or more under an environment of a temperature of 200 °. It is more preferable that it is, and it is particularly preferable that it is 900 or more. When the tensile product is 600 or more, the breaking energy of the crosslinked product becomes sufficiently high, and thus the crosslinked product can be suitably used for various purposes.
[0083] ここで、 架橋物の 「引張強度」 及び 「伸び」 は、 本明細書の実施例に記載 の方法に従って測定することができる。 また、 架橋物の 「抗張積」 は、 「引 張強度」 と 「伸び」 との積により求めることができる。 [0083] Here, the "tensile strength" and "elongation" of the crosslinked product can be measured according to the methods described in Examples of the present specification. The "tensile product" of the crosslinked product can be calculated by the product of "tensile strength" and "elongation".
[0084] <用途> [0084] <Use>
本発明の含フッ素エラストマー組成物及びフッ素ゴム成形体は、 種々の用 途に利用できる。 The fluoroelastomer composition and the fluororubber molded article of the present invention can be used for various purposes.
[0085] «含フッ素エラストマー組成物の用途》 [0085] «Use of the fluorine-containing elastomer composition»
本発明の含フッ素エラストマー組成物は、 例えば、 従来公知の塗料に用い られる溶媒又は分散媒に任意の割合で溶解又は分散させて、 ゴム塗料として 用いることができる。 The fluorine-containing elastomer composition of the present invention can be used as a rubber paint by dissolving or dispersing it in a solvent or a dispersion medium used for a conventionally known paint at an arbitrary ratio.
[0086] また、 本発明の含フッ素エラストマー組成物は、 例えば、 電線などの任意 の被塗布物に塗布することで、 被覆材として用いることができる。 [0086] Further, the fluorine-containing elastomer composition of the present invention can be used as a coating material by applying it to an arbitrary object to be coated such as an electric wire.
[0087] そして、 本発明の含フッ素エラストマー組成物を用いて形成したフッ素ゴ ム成形体は、 例えば、 自動車部品、 空調機器、 制御機器、 給水 ·給湯機器、 高温蒸気装置、 半導体装置、 食品加工処理装置、 液体貯蔵装置及び圧カスイ ッチ装置、 並びに、 石油掘削分野及び医療分野などの分野で使用される、 高 温環境下において高い引張強度及び高い伸びが要求される各種部品として好 適に用いることができる。 [0087] And, a fluorine rubber molded body formed by using the fluorine-containing elastomer composition of the present invention is, for example, an automobile part, an air conditioner, a control device, a water supply/hot water supply device, a high temperature steam device, a semiconductor device, a food processing. Suitable for processing equipment, liquid storage equipment, pressure cascading equipment, and various parts that require high tensile strength and high elongation under high temperature environment used in fields such as oil drilling and medical fields. Can be used.
[0088] 具体的には、 本発明の含フッ素エラストマー組成物を用いて形成したフッ 素ゴム成形体は、 ホース、 シール材、 ベルト、 防振ゴム、 ダイヤフラム、 中 空ゴム成形体などとして用いることができる。 〇 2020/175331 23 卩(:171? 2020 /006896 [0088] Specifically, the fluororubber molded article formed by using the fluorine-containing elastomer composition of the present invention is used as a hose, a sealant, a belt, a vibration-proof rubber, a diaphragm, a hollow rubber molded article, or the like. You can 〇 2020/175 331 23 卩 (:171? 2020 /006896
[0089] ここで、 上記ホースとしては、 特に限定されず、 例えば、 燃料ホース、 夕 —ボェアーホース、 オイルホース、 ラジェーターホース、 ヒーターホース、 ウォーターホース、 バキュームブレーキホース、 コントロールホース、 ェア コンホース、 ブレーキホース、 パワーステアリングホース、 ェアーホース、 マリンホース、 ライザー、 フローラインなどの各種ホースが挙げられる。 [0089] Here, the hose is not particularly limited, and examples thereof include fuel hose, evening hose, oil hose, radiator hose, heater hose, water hose, vacuum brake hose, control hose, air con hose, brake hose. , Various types of hoses such as power steering hoses, air hoses, marine hoses, risers and flow lines.
[0090] また、 上記シール材としては、 特に限定されず、 例えば、 〇ーリング、 パ ッキン、 オイルシール、 シャフトシール、 ベアリングシール、 メカニカルシ —ル、 ウェルへッ ドシール、 電気 ·電子機器用シール、 空気圧機器用シール などの各種シールが挙げられる。 [0090] Further, the above-mentioned sealing material is not particularly limited, and examples thereof include a ring, a packing, an oil seal, a shaft seal, a bearing seal, a mechanical seal, a well head seal, a seal for electric/electronic equipment, There are various types of seals such as seals for pneumatic equipment.
[0091 ] また、 上記べルトとしては、 特に限定されず、 例えば、 動力伝達べルト、 搬送べルトなどの各種べルトが挙げられる。 [0091] Further, the belt is not particularly limited, and examples thereof include various belts such as a power transmission belt and a conveyance belt.
[0092] また、 上記防振ゴムとしては、 特に限定されず、 例えば、 自動車用防振ゴ ムなどの各種防振ゴムが挙げられる。 [0092] Further, the vibration-proof rubber is not particularly limited, and examples thereof include various vibration-proof rubbers such as a vibration-proof rubber for automobiles.
[0093] また、 上記ダイヤフラムとしては、 特に限定されず、 例えば、 燃料系、 排 気系、 ブレーキ系、 駆動系、 点火系などの自動車ェンジン用ダイヤフラム; ポンプ用ダイヤフラム;バルブ用ダイヤフラム; フィルタープレス用ダイヤ フラム; ブロワー用ダイヤフラム;などの各種ダイヤフラムが挙げられる。 [0093] Further, the diaphragm is not particularly limited and includes, for example, diaphragms for automobile engines such as fuel system, exhaust system, brake system, drive system, ignition system, diaphragms for pumps, diaphragms for valves, filter presses. Various diaphragms such as diaphragms; diaphragms for blowers;
[0094] また、 上記中空ゴム成形体としては、 特に限定されず、 例えば、 タイヤ製 造用ブラダー、 タイヤ加硫用ブラダーなどの各種ブラダー; フレキシブルジ ョイント、 ェキスパンションジョイントなどの各種ジョイント ;ジョイント ブーツ、 ラックアンドピニオンステアリングブーツ、 ピンブーツ、 ピストン ブーツなどの各種ブーツ ; プライマーバルブなどの各種バルブ;等が挙げら れる。 The hollow rubber molded body is not particularly limited, and examples thereof include various bladders such as tire manufacturing bladders and tire vulcanizing bladders; various joints such as flexible joints and expansion joints; joints. Boots, rack and pinion steering boots, pin boots, piston boots and other boots; primer valves and other valves;
実施例 Example
[0095] 以下、 本発明について実施例に基づき具体的に説明するが、 本発明はこれ ら実施例に限定されるものではない。 なお、 以下の説明において、 量を表す 「%」 及び 「部」 は、 特に断らない限り、 質量基準である。 Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to these Examples. In the following description, "%" and "parts" representing amounts are based on mass unless otherwise specified.
実施例及び比較例において、 単層〇!\1丁束の平均直径 単層〇!\1丁 〇 2020/175331 24 卩(:171? 2020 /006896 In the examples and comparative examples, the average diameter of a single layer 〇!\1 bunch Single layer 〇! 〇 2020/175 331 24 卩 (: 171-1? 2020 /006896
を含む繊維状炭素ナノ構造体の平均直径 ( ) 、 単層〇1\1丁束の平均直径 (口 の、 繊維状炭素ナノ構造体の平均直径 ( ) に対する比 (口8/八 V) 、 分散メディアのピツカース硬度、 充填率及び平均直径、 並びに、 架橋 物の引張強度、 伸び及び抗張積は、 それぞれ以下の方法を使用して測定また は評価した。 The average diameter of the fibrous carbon nanostructure containing (), the average diameter of the single layer Rei_1 \ 1 Chotaba (mouth, the average diameter of the fibrous carbon nanostructure () ratio (mouth 8 / eight V), The Pickers hardness of the dispersing medium, the filling factor and the average diameter, and the tensile strength, elongation and tensile product of the crosslinked product were measured or evaluated using the following methods, respectively.
[0096] <単層〇1\1丁束の平均直径 (口 > [0096] <Average diameter of single layer 0\1 bundle (mouth>
作製したシート状の架橋物を一 1 〇 0 °〇に冷却したクライオミクロトーム (Le \ 〇 a社製、 製品名 「 !_ 6 I 〇 3 巳 IV! 〇 7」 ) を用い、 ダイヤ モンドナイフにより断面出しをした。 電界放出形走査電子顕微鏡 (日立ハイ テク社製、 製品名 「3 4 7 0 0」 ) を用い、 加速電圧 5 !< 、 倍率 2万倍の 条件で得られた断面の二次電子像を観察した。 得られた二次電子像から画像 解析ソフト (オリンパス社製、 製品名 「A n 3 I
Figure imgf000025_0001
I 3」 ) を用い、 無作 為に 1 0 0本の単層 0 1\1丁束の直径を測定し、 単層〇1\1丁束の平均直径
Figure imgf000025_0002
) を求めた。
Using the cryomicrotome (Le \ 〇a company, product name "!_ 6 I 〇3 跳 IV! 〇 7") in which the prepared sheet-shaped cross-linked product was cooled to 100 ° 〇, use a diamond knife. I made a cross-section. Using a field emission scanning electron microscope (Hitachi High-Tech, product name “3470”), observe the secondary electron image of the cross section obtained under the conditions of accelerating voltage 5 !< and magnification of 20,000 times. did. Image analysis software from the obtained secondary electron image (Olympus, product name “A n 3 I
Figure imgf000025_0001
I 3”) to randomly measure the diameter of 100 single layer 0 1\1 bundles, and the average diameter of the single layer 0 1\1 bundles
Figure imgf000025_0002
) Asked.
[0097] <単層 0 丁を含む繊維状炭素ナノ構造体の平均直径 (/^) > <Average diameter (/^) of fibrous carbon nanostructure containing 0 single layers>
透過型電子顕微鏡を用いて無作為に選択した 3〇〇!\1丁 (単層〇!\1丁を含 む繊維状炭素〇構造体) 1 0 0本の直径 (外径) を測定し、 3〇〇1\1丁の平 均直径 (八 ) を求めた。 Measure the diameter (outer diameter) of 100 randomly selected 30000!\1 (a fibrous carbon structure including a single layer 〇!\1) using a transmission electron microscope. , The average diameter (8) of 3 001 \ 1 was calculated.
[0098] <単層〇!\1丁束の平均直径 (口 の、 繊維状炭素ナノ構造体の平均直径 (八 [0098] <Average diameter of single layer 〇!\1 bundle (average diameter of fibrous carbon nanostructure of mouth (8
V) に対する比
Figure imgf000025_0003
Ratio to V)
Figure imgf000025_0003
>
単層〇!\1丁束の平均直径
Figure imgf000025_0004
及び繊維状炭素ナノ構造体の平均直径 (八 V) を用いて、 単層〇!\1丁束の平均直径 (口 の、 繊維状炭素ナノ構造体の 平均直径 (八 ) に対する比
Figure imgf000025_0005
を求めた。
Single layer 〇!\1 bun average diameter
Figure imgf000025_0004
And the average diameter of the fibrous carbon nanostructures (8 V), the average diameter of the monolayer 〇!\1 bundle (the ratio of the mouth to the average diameter of the fibrous carbon nanostructures (8))
Figure imgf000025_0005
I asked.
[0099] <分散メディアのピツカース硬度> <Pitters hardness of dispersion media>
粒径を揃えた分散メディアを熱硬化性樹脂に埋め込み、 分散メディアの断 面が見えるまで樹脂を研磨した。 分散メディア 5個を任意に選び、 各分散メ ディアの断面の任意の 1か所をピツカース硬さ計で測定し、 平均値を求める ことによって、 ビーズミルで使用した分散メディアのビツカース硬度を測定 〇 2020/175331 25 卩(:171? 2020 /006896 Dispersion media of uniform particle size were embedded in thermosetting resin, and the resin was polished until the cut surface of the dispersion media was visible. Measure the Vitzkers hardness of the dispersion media used in the bead mill by arbitrarily selecting 5 dispersion media, measuring any one of the sections of each dispersion media with a Pitzkers hardness tester, and obtaining the average value. 〇 2020/175 331 25 卩 (:171? 2020 /006896
した。 did.
[0100] <分散メディアの充填率> [0100] <Filling ratio of dispersion media>
分散メディアの充填量を分散メディアの比重で割り、 分散メディアの体積 を計算した。 次いで、 分散メディアの体積をビーズミルのベッセル容量で割 り百分率で表し、 ビーズミルで使用した分散メディアの充填率とした。 The volume of the dispersion medium was calculated by dividing the filling amount of the dispersion medium by the specific gravity of the dispersion medium. Next, the volume of the dispersion medium was divided by the vessel volume of the bead mill and expressed as a percentage, which was taken as the filling rate of the dispersion medium used in the bead mill.
[0101 ] <分散メディアの平均直径> [0101] <Average diameter of dispersion media>
試料台に極微量の分散メディアを散布した後、 デジタルマイクロスコープ (キーエンス社製、 製品名 「 !~1乂一9 0 0」 ) を用いて倍率 1 0 0倍で観 察し、 分散メディア 5個を任意に選んだ。 各分散メディアの直径を計測し、 その平均値を、 ビーズミルで使用した分散メディアの平均直径とした。 After spraying an extremely small amount of dispersion media on the sample table, observe with a digital microscope (Keyence Co., product name "!~1 乂 910") at a magnification of 100, and 5 dispersion media. Was arbitrarily selected. The diameter of each dispersion medium was measured, and the average value was used as the average diameter of the dispersion medium used in the bead mill.
[0102] <引張強度> [0102] <Tensile strength>
作製したシート状の架橋物をダンべル状 3号形で打ち抜き、 試験片を得た 。 そして、 得られた試験片について、 」 丨 3 [< 6 2 5 1 に準拠し、 2 0 0 °〇 における引張強度を測定した。 The produced sheet-shaped cross-linked product was punched out in a dumbbell-shaped No. 3 shape to obtain a test piece. Then, with respect to the obtained test piece, the tensile strength at 200° was measured according to “3 [<6 2 5 1 ”.
[0103] <伸び> [0103] <Elongation>
作製したシート状の架橋物をダンべル状 3号形で打ち抜き、 試験片を得た 。 そして、 得られた試験片について、 」 丨 3 [< 6 2 5 1 に準拠し、 2 3 °〇及 び 2 0 0 °〇における切断時伸びを測定し、 架橋物の伸びとした。 なお、 切断 時伸びは、 初期 (即ち、 シート状の架橋物を引っ張る前) を 1 0 0 %とした 値である。 The produced sheet-shaped cross-linked product was punched out in a dumbbell-shaped No. 3 shape to obtain a test piece. Then, with respect to the obtained test piece, the elongations at break at 23° and 200° were measured in accordance with “3 [<6 25 1 ”, and the elongation of the crosslinked product was determined. The elongation at break is a value which is 100% at the initial stage (that is, before the sheet-like crosslinked product is pulled).
[0104] <抗張積> [0104] <Tensile product>
上記のようにして得られた引張強度と伸びとの積から、 作製したシート状 の架橋物の抗張積を求めた。 なお、 抗張積は、 小数点以下を四捨五入した値 として示す。 From the product of the tensile strength and the elongation obtained as described above, the tensile product of the produced sheet-shaped crosslinked product was determined. The tensile product is shown as a value rounded to the nearest whole number.
[0105] (実施例 1) [0105] (Example 1)
溶媒としてのメチルエチルケトン 9 0 0 9に、 含フッ素エラストマーとし ての [<1\/1 (ケマーズ株式会社製、 商品名 「バイ トン〇巳 !_ - 6 0 0 3」 ) Methyl ethyl ketone 900 as a solvent and fluorine-containing elastomer as [<1\/1 (Kemers Co., Ltd., trade name "Baiton 〇巳 !_-6003")
1 0 0部 (1 0 0 9) を加え、 温度 2 0 °〇で 1 2時間撹拌して含フッ素エラ 〇 2020/175331 26 卩(:171? 2020 /006896 Add 100 parts (1009) and stir at a temperature of 20 ° for 12 hours to obtain a fluorine-containing gel. 〇 2020/175 331 26 卩 (:171? 2020 /006896
ストマーを溶解させて、 含フッ素エラストマー溶解溶液を得た。 The stoma was dissolved to obtain a fluorine-containing elastomer dissolved solution.
次に、 含フッ素エラストマー溶解溶液に対し、 単層〇1\1丁を含む繊維状炭 素ナノ構造体としての 3〇〇1\1丁 (ゼオンナノテクノロジー社製、 製品名 「 巳〇 八 〇 301 01」 、 平均直径 (口3) : 4 n ms 6 º丁比表面積Next, with respect to the fluorine-containing elastomer dissolved solution, as a fibrous carbon nanostructure containing a single layer of 0 1 \ 1 \ 3 \ 1 \ 1 (Zeon Nano Technology Co., Ltd., product name "M 301 01”, average diameter (mouth 3 ): 4 nm s 6 ºC specific surface area
= 1 29 1 m2Xgs t -プロッ トは上に凸) 4部 (49) を加え、 撹拌機 ( I IV! I X製、 ラボ · リユーシヨン (登録商標) 、 撹拌部:ホモディスバ -) を用いて温度 20°〇で 30分間撹拌した。 更に、 ビーズミル (淺田鉄工 社製、 商品名 「ナノミル 1\/1-〇 1. 4 !_」 、 分散メディアとしてジルコ ニアビーズ (分散メディアのピッカース硬度: 1 250、 分散メディアの充 填率: 48%、 分散メディアの平均直径: 〇.
Figure imgf000027_0001
を用いて、 3〇〇 丁を加えた含フッ素エラストマー溶解溶液を、 温度 44 °〇で 3パス分散処理 した (分散処理の条件:周速 1 2.
Figure imgf000027_0002
吐出量 729/分) 。
= 1 29 1 m 2 Xg s t - plot is convex) 4 parts on (4 9) was added, stirrer (I IV manufactured IX, Lab Riyushiyon (R!), Stirred unit: Homodisuba -) a It was stirred for 30 minutes at a temperature of 20°. In addition, a beads mill (trade name “Nanomill 1\/1-〇1.4!_” manufactured by Asada Iron Works Co., Ltd.), zirconia beads as a dispersion medium (Pickers hardness of dispersion medium: 1 250, filling rate of dispersion medium: 48% , Average diameter of dispersed media: 〇.
Figure imgf000027_0001
Was used to perform a 3-pass dispersion treatment of the fluorine-containing elastomer solution containing 300 cc at a temperature of 44 ° 〇 (dispersion condition: peripheral speed 12.
Figure imgf000027_0002
Discharge rate 729/min).
その後、 得られた分散液を 40009のメタノールへ滴下し、 凝固させて 黒色固体を得た。 そして、 得られた黒色固体を 60°◦で 1 2時間減圧乾燥し 、 含フッ素エラストマーと 3〇〇1\1丁との混合物を得た。 Then, the obtained dispersion was added dropwise to methanol of 40009 and solidified to obtain a black solid. Then, the obtained black solid was dried under reduced pressure at 60 ° for 12 hours to obtain a mixture of the fluorine-containing elastomer and 31,000\.
[0106] [混練] [0106] [Kneading]
その後、 20°〇の才ープンロールを用いて、 含フッ素エラストマーと 3◦ 〇1\1丁との混合物 1 04部と、 架橋助剤としての酸化亜鉛 (亜鉛華二種) 3 部と、 架橋剤としてのトリアリルイソシアヌレート (日本化成社製、 製品名 「丁八 丨 〇 (登録商標) 」 3部及び 2, 5 -ジメチルー 2, 5 -ジ (1: -ブ チルべルオキシ) ヘキサン (日本油脂製、 商品名 「パーへキサ (登録商標) Then, using a 20° 〇 peony roll, 104 parts of a mixture of a fluorine-containing elastomer and 3° 〇 1\1, and 3 parts of zinc oxide (two kinds of zinc flower) as a crosslinking aid, and a crosslinking agent. Triallyl isocyanurate as a product (manufactured by Nippon Kasei Co., Ltd., product name "Choha Hokujo (registered trademark)" 3 parts and 2,5-dimethyl-2,5-di (1:-butyl benzyloxy) hexane (NOF Corporation) Product name "Perhexa (registered trademark)"
25巳_40」 ) 2部とを混練し、 含フッ素エラストマー組成物を得た。 25 _40") 2 parts were kneaded to obtain a fluorine-containing elastomer composition.
[0107] <シ_卜状架橋物の作製> [0107] <Preparation of cross-linked crosslinked product>
得られた含フッ素エラストマー組成物を金型に投入し、 温度 1 60°〇、 圧 力 1 01\/1 3で 20分間架橋させてシート状の架橋物 (長さ :
Figure imgf000027_0003
The obtained fluoroelastomer composition was put into a mold and crosslinked at a temperature of 160 ° 〇 and a pressure of 101/13 for 20 minutes to obtain a sheet-like crosslinked product (length:
Figure imgf000027_0003
幅: 1 50〇1111、 厚さ : 2〇1111) を得た。 Width: 1501111, thickness: 201111) was obtained.
そして、 得られたシート状の架橋物を用いて架橋物の引張強度及び伸びを 測定し、 抗張積を求めた。 結果を表 1 に示す。 〇 2020/175331 27 卩(:171? 2020 /006896 Then, the tensile strength and elongation of the crosslinked product were measured using the obtained sheet-shaped crosslinked product to determine the tensile product. The results are shown in Table 1. 〇 2020/175 331 27 卩 (:171? 2020 /006896
また、 得られたシート状の架橋物中に含まれている単層 0 丁束の平均直 径 (口 を求めた。 更に、 単層〇1\1丁束の平均直径 (口 と、 繊維状炭素 ナノ構造体の平均直径 ( ) とを用いて、 単層〇1\1丁束の平均直径 (0In addition, the average diameter of the single-layer 0-bundle bundle (mouth) contained in the obtained sheet-like crosslinked product was determined. Using the average diameter of the carbon nanostructures (), and the average diameter of the single layer 〇1\1 bundle (0
、 繊維状炭素ナノ構造体の平均直径
Figure imgf000028_0001
に対する比
Figure imgf000028_0002
を求め た。 これらの結果を表 1 に示す。
, Average diameter of fibrous carbon nanostructures
Figure imgf000028_0001
Ratio to
Figure imgf000028_0002
Asked. The results are shown in Table 1.
[0108] (実施例 2) [0108] (Example 2)
ビーズミルに替えてジェッ トミル (吉田機械興業社製、 商品名 「I - _巳3 0 0 7」 ) を用いて分散処理 (分散処理条件:圧力 1 0 0 IV!
Figure imgf000028_0003
パス回数 5回) を行った以外は実施例 1 と同様にして、 シート状架橋物を作製した。 そして、 実施例 1 と同様にして各種測定を行った。 結果を表 1 に示す。
A bead mill was used instead of a jet mill (manufactured by Yoshida Kikai Kogyo Co., Ltd., trade name "I-_ _ 3 0 0 7") for dispersion processing (dispersion processing conditions: pressure 100 IV!
Figure imgf000028_0003
A sheet-like crosslinked product was produced in the same manner as in Example 1 except that the number of passes was 5 times. Then, various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
[0109] (実施例 3) [0109] (Example 3)
混合物を調製する際に、 含フッ素エラストマー溶解溶液に対して添加する 3〇〇1\1丁の量を 2部 (2 9) に変更した以外は実施例 1 と同様にして、 シ —卜状架橋物を作製した。 そして、 実施例 1 と同様にして各種測定を行った 。 結果を表 1 に示す。 Mixture in the preparation of, except for changing the amount of 3_Rei_rei_1 \ 1 chome adding the fluoroelastomer dissolved solution into two parts (2 9) in the same manner as in Example 1, sheet - Bok shape A crosslinked product was prepared. Then, various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
[01 10] (実施例 4) [01 10] (Example 4)
分散処理の条件を周速 1 〇 / 3に変更した以外は実施例 1 と同様にして 、 シート状架橋物を作製した。 そして、 実施例 1 と同様にして各種測定を行 った。 結果を表 1 に示す。 A sheet-like crosslinked product was produced in the same manner as in Example 1 except that the condition of the dispersion treatment was changed to the peripheral speed of 10/3. Then, various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
[01 1 1] (比較例 1) [01 1 1] (Comparative example 1)
ビーズミルに替えてホモジナイザー ( [¾ 丨 IV! 丨 X社製、 商品名 「ラポ - リューション (登録商標) 」 ) を用いて分散処理 (分散条件は、 撹拌部:ネ オミクサー、 回転数: 5 0 0 0 「 、 処理時間: 3 0分) を行った以外は 実施例 1 と同様にして、 シート状架橋物を作製した。 そして、 実施例 1 と同 様にして各種測定を行った。 結果を表 1 に示す。 A bead mill was used instead of a homogenizer ([¾丨 IV! A sheet-like crosslinked product was prepared in the same manner as in Example 1 except that the treatment time was 30 minutes), and various measurements were performed in the same manner as in Example 1. It is shown in Table 1.
[01 12] (比較例 2) [01 12] (Comparative example 2)
混合物を調製する際に、 含フッ素エラストマー溶液に対して添加する 3 0 〇!\1丁の量を〇. 0 5部 (〇. 0 5 9) に変更した以外は実施例 2と同様に 〇 2020/175331 28 卩(:171? 2020 /006896 When preparing the mixture, the same as Example 2 except that the amount of 300!\\1 to be added to the fluorine-containing elastomer solution was changed to 0. 05 parts (0. 059). 〇 2020/175 331 28 卩 (: 171? 2020 /006896
して、 シート状架橋物を作製した。 そして、 実施例 1 と同様にして各種測定 を行った。 結果を表 1 に示す。 Then, a sheet-shaped crosslinked product was produced. Then, various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
[01 13] (比較例 3 ) [01 13] (Comparative Example 3)
混合物を調製する際に、 含フッ素エラストマー溶液に対して添加する 3 0 〇1\1丁の量を 6部 ( 6 9 ) に変更した以外は実施例 2と同様にして、 シート 状架橋物を作製した。 そして、 実施例 1 と同様にして各種測定を行った。 結 果を表 1 に示す。 Mixture in the preparation of, except for changing the amount of 3 0 Rei_1 \ 1 chome adding the fluoroelastomer solution 6 parts (6-9) in the same manner as in Example 2, a sheet-like crosslinked product It was made. Then, various measurements were performed in the same manner as in Example 1. The results are shown in Table 1.
[01 14] [01 14]
〔¾二 [¾ji
Figure imgf000030_0001
Figure imgf000030_0001
〇 2020/175331 30 卩(:171? 2020 /006896 〇 2020/175 331 30 卩 (:171? 2020 /006896
[01 15] 表 1 より、 所定の平均直径 (口8) を有する単層 0 丁束を所定の割合で配 合した実施例 1〜 4では、 所定の平均直径 (口8) を有する単層〇1\1丁束を所 定の割合で配合しなかった比較例 1〜 3と比較し、 温度 2 0 0 °〇の高温環境 下において引張強度及び伸びが高く、 抗張積が大きいシート状架橋物が得ら れることが分かる。 [0115] From Table 1, in Examples 1 to 4 in which monolayer 0 bundles having a predetermined average diameter (mouth 8 ) were combined at a predetermined ratio, a single layer having a predetermined average diameter (mouth 8 ) was obtained. 〇 Sheets with high tensile strength and elongation and high tensile product in a high temperature environment of 200 ° C compared with Comparative Examples 1 to 3 in which 1\1 bundle was not compounded in a certain ratio. It can be seen that a crosslinked product is obtained.
特に、 表 1の実施例 1〜 2より、 ビーズミルを用いて分散処理を行うこと により、 抗張積が大きいシート状架橋物が得られることが分かる。 In particular, it can be seen from Examples 1 and 2 in Table 1 that a sheet-like crosslinked product having a large tensile product can be obtained by performing the dispersion treatment using a bead mill.
産業上の利用可能性 Industrial availability
[01 16] 本発明によれば、 高温環境下での高い引張強度及び高い伸びを有するフッ 素ゴム成形体を形成可能な含フッ素エラストマー組成物、 及び当該含フッ素 エラストマー組成物を用いたフッ素ゴム成形体、 並びに当該含フッ素エラス トマー組成物の製造方法を提供することができる。 According to the present invention, a fluoroelastomer composition capable of forming a fluororubber molded article having high tensile strength and high elongation under a high temperature environment, and a fluororubber using the fluoroelastomer composition A molded article and a method for producing the fluorine-containing elastomer composition can be provided.
また、 本発明によれば、 本発明の含フッ素エラストマー組成物の製造方法 に用いることが可能な含フッ素エラストマー溶液の製造方法を提供すること ができる。 Further, according to the present invention, it is possible to provide a method for producing a fluorine-containing elastomer solution which can be used in the method for producing a fluorine-containing elastomer composition of the present invention.

Claims

〇 2020/175331 31 卩(:171? 2020 /006896 請求の範囲 〇 2020/175331 31 卩(:171? 2020/006896 Claims
[請求項 1 ] 含フッ素エラストマーと、 単層力ーボンナノチューブを含む繊維状 炭素ナノ構造体と、 を含有する含フッ素エラストマー組成物であって 前記含フッ素エラストマー 1 〇〇質量部当たり、 前記繊維状炭素ナ ノ構造体を 0 . 1質量部以上 6質量部未満の割合で含有し、 [Claim 1] A fluorine-containing elastomer, a fibrous carbon nanostructure containing a single-layer carbon nanotube, and a fluorine-containing elastomer composition containing: per 100 parts by mass of the fluorine-containing elastomer, the fiber -Like carbon nanostructures in a proportion of 0.1 parts by mass or more and less than 6 parts by mass,
前記繊維状炭素ナノ構造体は、 前記単層力ーボンナノチューブを含 む繊維状炭素ナノ構造体の束である単層力ーボンナノチューブ束を含 み、 The fibrous carbon nanostructures include single-wall force-carbon nanotube bundles, which are bundles of the fibrous carbon nanostructures containing the single-wall force-carbon nanotubes,
前記単層力ーボンナノチューブ束の平均直径 (口 は、 2 0 n m 以上 6 0 0 n 以下である、 含フッ素エラストマー組成物。 An average diameter of the single-wall force-bonn nanotube bundle (the mouth is 20 nm or more and 600 n or less, a fluorine-containing elastomer composition.
[請求項 2] 前記単層力ーボンナノチューブ束の平均直径 (ロ の、 前記単層 力ーボンナノチューブを含む繊維状炭素ナノ構造体の平均直径 (八 V ) に対する比
Figure imgf000032_0001
が、 5以上 2 0 0以下である、 請求項 1 に記載の含フッ素エラストマー組成物。
[Claim 2] The ratio of the average diameter of the bundle of single-walled carbon nanotubes (b to the average diameter of the fibrous carbon nanostructure containing the single-walled carbon nanotubes (8 V))
Figure imgf000032_0001
Is 5 or more and 200 or less, The fluorine-containing elastomer composition according to claim 1.
[請求項 3] 前記単層力ーボンナノチューブを含む繊維状炭素ナノ構造体は、 吸 着等温線から得られる 1—プロッ トが上に凸な形状を示す、 請求項 1 または 2に記載の含フッ素エラストマー組成物。 [Claim 3] The fibrous carbon nanostructure containing the single-walled carbon nanotubes has a 1-plot obtained from an adsorption isotherm that has a convex shape upward, Fluorine-containing elastomer composition.
[請求項 4] 前記単層力ーボンナノチューブを含む繊維状炭素ナノ構造体は、 巳 巳丁比表面積が 6 0
Figure imgf000032_0002
以上である、 請求項 1〜 3のいずれか
[Claim 4] The single-wall carbon nanotube-containing fibrous carbon nanostructure has a specific surface area of 60
Figure imgf000032_0002
The above is any one of claims 1 to 3.
1項に記載の含フッ素エラストマー組成物。 The fluorine-containing elastomer composition according to item 1.
[請求項 5] 架橋剤を更に含有する、 請求項 1〜 4のいずれか 1項に記載の含フ ッ素エラストマー組成物。 [Claim 5] The fluorine-containing elastomer composition according to any one of claims 1 to 4, further comprising a crosslinking agent.
[請求項 6] 力ーボンブラックを更に含有する、 請求項 1〜 5のいずれか 1項に 記載の含フッ素エラストマー組成物。 [Claim 6] The fluorine-containing elastomer composition according to any one of claims 1 to 5, further containing carbon black.
[請求項 7] 請求項 1〜 6のいずれか 1項に記載の含フッ素エラストマー組成物 を成形してなる、 フッ素ゴム成形体。 [Claim 7] A fluororubber molded article obtained by molding the fluoroelastomer composition according to any one of claims 1 to 6.
[請求項 8] 含フッ素エラストマーと、 単層力ーボンナノチューブを含む繊維状 〇 2020/175331 32 卩(:171? 2020 /006896 [Claim 8] Fluorine-containing elastomer and fibrous material containing single-layer carbon nanotubes 〇 2020/175 331 32 卩 (: 171-1? 2020 /006896
炭素ナノ構造体と、 を含有する含フッ素エラストマー溶液の製造方法 であって、 A method for producing a fluorine-containing elastomer solution containing a carbon nanostructure, comprising:
前記含フッ素エラストマーと、 溶媒と、 前記単層力ーボンナノチュ —ブを含む繊維状炭素ナノ構造体とを、 分散メディアを用いて分散処 理することにより分散液を得る分散工程を含み、 A dispersion step of obtaining a dispersion by subjecting the fluorine-containing elastomer, a solvent, and the fibrous carbon nanostructure containing the single-layer carbon nanotube to a dispersion treatment using a dispersion medium;
前記分散液は、 前記含フッ素エラストマーが前記溶媒に溶解してな る含フッ素エラストマー溶解溶液中に前記単層力ーボンナノチューブ を含む繊維状炭素ナノ構造体が分散した分散液であるとともに、 前記分散液は、 前記単層力ーボンナノチューブを含む繊維状炭素ナ ノ構造体の束である単層力ーボンナノチューブ束を含み、 且つ、 前記 単層力ーボンナノチューブ束の平均直径 (口
Figure imgf000033_0001
The dispersion liquid is a dispersion liquid in which the fibrous carbon nanostructure containing the single-walled carbon nanotubes is dispersed in a fluorine-containing elastomer dissolving solution in which the fluorine-containing elastomer is dissolved in the solvent, and The dispersion liquid contains a single-wall force-bon nanotube bundle, which is a bundle of the fibrous carbon nano-structures containing the single-wall force-bon nanotube, and has an average diameter (mouth)
Figure imgf000033_0001
0门 以下である、 含フッ素エラストマー溶液の製造方法。 A method for producing a fluorine-containing elastomer solution, which is 0 or less.
[請求項 9] 前記分散工程は、 前記含フッ素エラストマーを前記溶媒に溶解させ て前記含フッ素エラストマー溶解溶液を得る第一のステップと、 前記含フッ素エラストマー溶解溶液及び前記単層力ーボンナノチュ —ブを含む繊維状単層ナノ構造体に対して前記分散処理を行う第二の ステップとを含む、 請求項 8に記載の含フッ素エラストマー溶液の製 造方法。 [Claim 9] The dispersing step comprises the first step of dissolving the fluorine-containing elastomer in the solvent to obtain the fluorine-containing elastomer solution, and the fluorine-containing elastomer solution and the single-layer carbon nanotube. 9. The method for producing a fluorine-containing elastomer solution according to claim 8, further comprising a second step of performing the dispersion treatment on the containing fibrous single-layer nanostructure.
[請求項 10] 前記分散メディアは、 下記 (1) 及び (2) の少なくとも一方を満 たす、 請求項 8または 9に記載の含フッ素エラストマー溶液の製造方 法。 10. The method for producing a fluoroelastomer solution according to claim 8 or 9, wherein the dispersion medium satisfies at least one of the following (1) and (2).
(1) 前記分散メディアのビッカース硬度が 6 0 0以上 1 5 0 0以下 (1) Vickers hardness of the dispersion medium is 600 or more and 150 or less
(2) 前記分散メディアの充填率が 4 0体積%以上 7 0体積%以下(2) The filling rate of the dispersion medium is 40% by volume or more and 70% by volume or less
[請求項 1 1 ] 前記分散メディアの平均直径が 0 . 1
Figure imgf000033_0002
以下である、 請求項 8〜 1 0のいずれか 1項に記載の含フッ素エラストマー溶液の 製造方法。
[Claim 11] The average diameter of the dispersion medium is 0.1.
Figure imgf000033_0002
The method for producing the fluoroelastomer solution according to any one of claims 8 to 10, which is the following.
[請求項 12] 含フッ素エラストマー組成物の製造方法であって、 [Claim 12] A method for producing a fluorine-containing elastomer composition, comprising:
請求項 8〜 1 1のいずれか 1項に記載の含フッ素エラストマー溶液 \¥0 2020/175331 33 卩(:17 2020 /006896 The fluorine-containing elastomer solution according to any one of claims 8 to 11. \¥0 2020/175 331 33 卩 (: 17 2020 /006896
の製造方法により得られた含フッ素エラストマー溶液から前記溶媒を 除去する除去工程を含む、 含フッ素エラストマー組成物の製造方法。 A method for producing a fluorine-containing elastomer composition, comprising a removal step of removing the solvent from the fluorine-containing elastomer solution obtained by the method for producing.
PCT/JP2020/006896 2019-02-28 2020-02-20 Fluorine-containing elastomer composition, fluorine rubber molded article, method for producing fluorine-containing elastomer solution, and method for producing fluorine-containing elastomer composition WO2020175331A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021502153A JP7505480B2 (en) 2019-02-28 2020-02-20 Fluorine-containing elastomer composition, fluororubber molded product, method for producing fluorine-containing elastomer solution, and method for producing fluorine-containing elastomer composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-036032 2019-02-28
JP2019036032 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020175331A1 true WO2020175331A1 (en) 2020-09-03

Family

ID=72239151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006896 WO2020175331A1 (en) 2019-02-28 2020-02-20 Fluorine-containing elastomer composition, fluorine rubber molded article, method for producing fluorine-containing elastomer solution, and method for producing fluorine-containing elastomer composition

Country Status (2)

Country Link
JP (1) JP7505480B2 (en)
WO (1) WO2020175331A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181193A1 (en) * 2021-02-26 2022-09-01 日本ゼオン株式会社 Composite material and vulcanized rubber molded body
WO2023054716A1 (en) * 2021-09-30 2023-04-06 日本ゼオン株式会社 Fluororubber composition and shaped object

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024800A (en) * 2006-07-20 2008-02-07 Nissin Kogyo Co Ltd Carbon fiber composite material
JP2011197596A (en) * 2010-03-24 2011-10-06 Tokai Rubber Ind Ltd Conductive composition for electrophotographic apparatus and member for electrophotographic apparatus using the same
JP2013227694A (en) * 2012-04-25 2013-11-07 Mitsuuma:Kk Conductive three-dimensional fiber structure and method for producing the same
JP2016108476A (en) * 2014-12-08 2016-06-20 日信工業株式会社 Carbon fiber composite material
WO2017175807A1 (en) * 2016-04-07 2017-10-12 日本ゼオン株式会社 Fluorinated elastomer composition and molded article
WO2018225789A1 (en) * 2017-06-06 2018-12-13 日本ゼオン株式会社 Rubber crosslinked product and method for manufacturing for same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024800A (en) * 2006-07-20 2008-02-07 Nissin Kogyo Co Ltd Carbon fiber composite material
JP2011197596A (en) * 2010-03-24 2011-10-06 Tokai Rubber Ind Ltd Conductive composition for electrophotographic apparatus and member for electrophotographic apparatus using the same
JP2013227694A (en) * 2012-04-25 2013-11-07 Mitsuuma:Kk Conductive three-dimensional fiber structure and method for producing the same
JP2016108476A (en) * 2014-12-08 2016-06-20 日信工業株式会社 Carbon fiber composite material
WO2017175807A1 (en) * 2016-04-07 2017-10-12 日本ゼオン株式会社 Fluorinated elastomer composition and molded article
WO2018225789A1 (en) * 2017-06-06 2018-12-13 日本ゼオン株式会社 Rubber crosslinked product and method for manufacturing for same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181193A1 (en) * 2021-02-26 2022-09-01 日本ゼオン株式会社 Composite material and vulcanized rubber molded body
WO2023054716A1 (en) * 2021-09-30 2023-04-06 日本ゼオン株式会社 Fluororubber composition and shaped object

Also Published As

Publication number Publication date
JPWO2020175331A1 (en) 2020-09-03
JP7505480B2 (en) 2024-06-25

Similar Documents

Publication Publication Date Title
JP7056556B2 (en) Fluorine-containing elastomer composition and molded product
JP5207351B2 (en) Melt-kneaded product, resin molded product and method for producing the same
FR3047486A1 (en)
WO2020175331A1 (en) Fluorine-containing elastomer composition, fluorine rubber molded article, method for producing fluorine-containing elastomer solution, and method for producing fluorine-containing elastomer composition
WO2020195799A1 (en) Elastomer composition and molded body
JP2017186476A (en) Manufacturing method of fluorine-containing elastomer composition and manufacturing method of oil seal member
WO2018225789A1 (en) Rubber crosslinked product and method for manufacturing for same
TWI816861B (en) Sealing material
JP5800746B2 (en) Seal member
JP6473588B2 (en) Carbon fiber composite material and method for producing carbon fiber composite material
JP7306641B2 (en) Composition for gas seal member, gas seal member for high-pressure hydrogen equipment, and high-pressure hydrogen equipment
CN116057122B (en) Elastomer composition, method for producing elastomer composition, crosslinked product, and molded body
JP2021070767A (en) Elastomer molding
JP2022086825A (en) Elastomer composition and method for producing elastomer composition
CN111051414B (en) Rubber composition
WO2022181193A1 (en) Composite material and vulcanized rubber molded body
JP7243710B2 (en) Method for producing fibrous carbon nanostructure dispersion and method for producing composite material
WO2023054716A1 (en) Fluororubber composition and shaped object
WO2019188051A1 (en) Uncrosslinked elastomer composition and crosslinked product of same
JP7468062B2 (en) Method for producing an elastomer composition
JP7476613B2 (en) Elastomer molded body, method for using same, and semiconductor manufacturing device
JP2022086911A (en) Carbon nanotube dispersion, and method of producing elastomer composition
WO2004052987A1 (en) Fluororesin composition, process for producing the same, semiconductor producing apparatus and coated wire
WO2020209233A1 (en) Crosslinked product for endoscopes, endoscope, and composition for forming crosslinked product for endoscopes
WO2023162783A1 (en) Elastomer composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502153

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762343

Country of ref document: EP

Kind code of ref document: A1