WO2020175067A1 - Biaxially oriented polyester film, and production method for biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film, and production method for biaxially oriented polyester film Download PDF

Info

Publication number
WO2020175067A1
WO2020175067A1 PCT/JP2020/004372 JP2020004372W WO2020175067A1 WO 2020175067 A1 WO2020175067 A1 WO 2020175067A1 JP 2020004372 W JP2020004372 W JP 2020004372W WO 2020175067 A1 WO2020175067 A1 WO 2020175067A1
Authority
WO
WIPO (PCT)
Prior art keywords
biaxially oriented
polyester film
oriented polyester
film
resin
Prior art date
Application number
PCT/JP2020/004372
Other languages
French (fr)
Japanese (ja)
Inventor
昇 玉利
考道 後藤
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72238944&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020175067(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN202080016230.0A priority Critical patent/CN113498376B/en
Priority to KR1020217027038A priority patent/KR102612318B1/en
Priority to JP2020531795A priority patent/JP6826785B2/en
Publication of WO2020175067A1 publication Critical patent/WO2020175067A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • Biaxially oriented polyester film and method for producing biaxially oriented polyester film
  • the present invention relates to a biaxially oriented polyester film, and a method for producing a biaxially oriented polyester film.
  • Polyethylene terephthalate (hereinafter, polyethylene terephthalate may be abbreviated as "mending") resin is polyethylene terephthalate (hereinafter polyethylene terephthalate is abbreviated as "mending") resin
  • sending polyethylene terephthalate
  • Applications are being investigated in fields such as vacuum insulation exterior materials, drawing films, can inner bag films, and release films.
  • Patent Document 1 60% by weight of Mingko resin is used, yield stress in the longitudinal and width directions is 7 OMPa or more, breaking strength is 160 IV! 3 or more, and breaking elongation is It is disclosed that the content of 100% or more can be preferably used for nylon film and other flexible film applications.
  • Patent Document 2 a release layer containing an acid-modified olefin resin and a cross-linking agent is provided on one side of a polyester film containing substantially no particles, and a release layer having an easy-sliding layer is provided on the other outermost layer. Mold films are disclosed. Also, the arithmetic mean roughness of the release layer surface Below, the maximum height is 100 n or less, and the easy-sliding layer contains particles, the easy-sliding layer contains particles, and the arithmetic average roughness of the surface of the easy-sliding layer is 10 It is disclosed that it can be preferably used by setting it to less than.
  • Patent Document 3 the surface roughness is 0.05 to 0.
  • the difference in the thermal shrinkage ratio in the longitudinal direction at both ends of the film is 0 to 0.3%, and the difference in anisotropy is 0 to 0.
  • Patent Document 1 Patent No. 5 9 9 4 8 6 4
  • Patent Document 2 JP 2 0 1 6-2 2 1 7 3 7
  • Patent Document 3 Patent No. 3 0 3 1 5 2 0 Summary of Invention
  • the end portion of the film obtained by casting tends to be thicker than the center portion for manufacturing reasons. Therefore, crystallization becomes more remarkable at the edges of the film obtained by casting.
  • polyethylene terephthalate is preferably used as a release film by using it as a substrate film.
  • release film applications that involve molding, it may not be possible to support deep drawing due to the characteristics of the polyethylene terephthalate substrate.
  • an object of the present invention is to provide a biaxially oriented polyester film which has a good film quality that can be used for industrial applications and is also suitable as a release film accompanied by deep drawing. ⁇ 0 2020/175067 3 ⁇ (: 171? 2020 /004372
  • the present inventors have earnestly studied a biaxially oriented polyester film. As a result, they have found that a biaxially oriented polyester film having good deep drawability and excellent quality can be obtained by adopting the following constitution, and thus completed the present invention.
  • the number of layers is 7 or less
  • the intrinsic viscosity of the biaxially oriented polyester film is 0.7 ⁇ / 9 or more.
  • the degree of plane orientation ⁇ of biaxially oriented polyester film is ⁇ 0.145 to ⁇ 0.160 ⁇
  • the puncture strength of the biaxially oriented polyester film measured by the puncture test according to 1 3-7 1 7 0 7 is 0.401 1 ⁇ 1 / or above.
  • Thickness unevenness of the biaxially oriented polyester film is 0.70% or less.
  • the number of laminated layers is 7 or less, it is possible to manufacture without introducing a static mixer in the melt line. Therefore, it is possible to prevent the generation of fish eyes (small particle defects) in the film caused by the introduction of the static mixer. As a result, a film with high quality can be obtained.
  • the plane orientation degree is 0.145 or more, the plane orientation is suitably high, the puncture strength is sufficient, and the deep drawability is superior. Further, since the surface area is 0.160 or less, the heat shrinkage ratio can be kept low, and the thermal stability can be made better.
  • the puncture strength is 0.401 ⁇ 1/1 or more, the deep drawing formability can be improved.
  • the thickness variation is 0.70% or less, uniform molding can be performed when deep drawing is performed, and tearing of the film and pinholes are less likely to occur.
  • the polyester resin composition contains a polyester resin (Mitsumi) other than the polyethylene terephthalate resin (8).
  • the polyester resin composition contains a polyester resin (Mitsumi) other than the polypropylene terephthalate resin (8), the film formability during biaxial stretching and the mechanical properties of the obtained film should be adjusted.
  • the maximum diameter on the biaxially oriented polyester film is ⁇ .
  • the fish-eye When the fish-eye is a 5/2 or less, to one surface of the biaxially oriented polyester film, may have a release layer, when the winding storage, opposite to the release layer It is possible to suppress the transfer of unevenness to the release layer by the fish eyes on the surface. As a result, it is possible to make it difficult to impair the film quality. Also, the film can be provided with elaborate printing layers.
  • the three-dimensional average roughness on the one surface of the biaxially oriented polyester film is 3 3 and the three-dimensional average roughness on the other surface 3 It is preferable that the difference (absolute value) from 3 is 0.01 or less.
  • the sex can be more sufficient.
  • the heat shrinkage rate of the biaxially oriented polyester film after heating at 150°° for 15 minutes is It is preferable that the (direction) is 0 to 5%, and the lateral (direction) is 1...! 5%.
  • the heat shrinkage ratio of the biaxially oriented polyester film after heating at 150° in the IV!0 direction at 150° for 15 minutes is 5% or less, the film will not be formed when heat is applied in the post-processing. It is possible to suppress a large shrinkage, and the processing becomes easier.
  • the puncture strength can be increased and the bag puncture resistance. Can be kept high.
  • the heat shrinkage rate of the biaxially oriented polyester film is less than 5% after heating for 15 minutes at 150° in the 0 direction, the film shrinks greatly when heat is applied in the post-processing. This can be suppressed and processing becomes easier.
  • the puncture strength can be increased and the bag puncture resistance. Can be kept high.
  • the present invention also relates to the method for producing a biaxially oriented polyester film, which comprises a step of casting a resin composition for producing a biaxially oriented polyester film in a cooling port to form an unstretched sheet.
  • the unstretched sheet on the cooling port is blown with a wind of 5° or less, and the unstretched sheet has a mound surface (a surface opposite to the surface in contact with the cooling port) ) Is rapidly cooled, the difference in crystallinity from the surface (the surface in contact with the cooling port) becomes smaller. Further, the crystallinity of the entire unstretched sheet is low, and the unevenness of the crystallinity is reduced. As a result, it is possible to obtain a film that can be easily biaxially stretched, has a high degree of plane orientation and puncture strength, and has less unevenness in thickness. ⁇ 0 2020/175067 6 ⁇ (:171? 2020/004372 Effect of invention
  • Fig. 1 is a schematic front view for explaining a method of blowing cooling air from a multi-duct onto a mound surface of an unstretched sheet on a cooling port.
  • Fig. 2 is a side view of Fig. 1.
  • FIG. 3 A cross-sectional view of a mold used for evaluation of deep drawing formability.
  • FIG. 4 is a plan view of the mold shown in FIG.
  • the biaxially oriented polyester film according to the present embodiment includes
  • the number of layers is 7 or less
  • a biaxially oriented polyester film which satisfies the following requirements (1) to (4).
  • the intrinsic viscosity of the biaxially oriented polyester film is 0.7 ⁇ / 9 or more.
  • the degree of plane orientation ⁇ of biaxially oriented polyester film is ⁇ 0.145 to ⁇ 0.160 ⁇
  • the puncture strength of the biaxially oriented polyester film measured by the puncture test according to 1 3-7 1 7 0 7 is 0.401 1 ⁇ 1 / or above.
  • Thickness unevenness of the biaxially oriented polyester film is 0.70% or less.
  • the biaxially oriented polyester film according to the present embodiment contains a polyester resin composition containing 60 to 100% by mass of Mingko resin (8).
  • the content rate of the above-mentioned Mitsutsuki Kiju (8) is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. Improves puncture strength because it contains a polyester resin composition containing 60% or more of Mingko resin (8) ⁇ 0 2020/175067 7 ⁇ (: 171-1?2020/004372
  • the polyester resin composition containing 60% by mass or more of the Mitsuko resin (8) is contained, the drawability can be improved.
  • the Mingo resin (8) which is used as a main component, preferably contains terephthalic acid in an amount of 90 mol% or more, more preferably 95 mol% or more, and further preferably 98 mol%. % And more preferably 100 mol%.
  • 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more.
  • the lower limit of the intrinsic viscosity of the above Mitsuba resin (8) is preferably 0.8 ⁇ / 9 , more preferably ⁇ 9.5 ⁇ / 9 , and further preferably 1.0 ⁇ / 9 Is.
  • the upper limit of the intrinsic viscosity of the Mouto resin () is preferably 1.3 ⁇ / 9 . 1 With ⁇ / 9 or less, to suppress a high stress during film stretching Risugiru, the film-forming property can be improved. Furthermore, when using Mending resin with a high intrinsic viscosity, the melting temperature of the resin increases, so it is necessary to raise the extrusion temperature.However, the Mending resin with an intrinsic viscosity of 1.3 I/9 or less ( By using (8), it is not necessary to perform high temperature extrusion, and the generation of decomposition products can be suppressed.
  • the polyester resin composition contains a polyester resin (M) other than the Ming resin (8) for the purpose of adjusting film-forming properties during biaxial stretching and mechanical properties of the obtained film. Is preferred.
  • polyester resin examples include polyester, polyethylene naphthalate, polypropylene naphthalate, polypropylene terephthalate and the like, or isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid. Acid, adipic acid, azelaic acid and sebacic acid. ⁇ 0 2020/175067 8 ⁇ (: 171? 2020 /004372
  • the resin mainly composed of mitoba has a high melting point, is excellent in heat resistance, has good compatibility with mitoba resin and is excellent in transparency. Therefore, mitoba resin or copolymerized mitoba resin is preferable, Mingko resin is particularly preferable.
  • the addition amount of the polyester resin (M) is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass based on the whole polyester resin composition. It is not more than mass %.
  • the amount of the polyester resin (Mitsumi) added may be 0% by mass or more, 5% by mass or more, 10% by mass or more based on the whole polyester resin composition.
  • the lower limit of the intrinsic viscosity of the polyester resin (Mitsumi) is preferably 0.5 I/
  • the upper limit of the intrinsic viscosity of the polyester resin (Mitsumi) is preferably 1.3 ⁇ / 9 .
  • the biaxially oriented polyester film contains, in addition to the polyester resin composition, a conventionally known additive, for example, a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, an ultraviolet absorber and the like. It may be contained.
  • a conventionally known additive for example, a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, an ultraviolet absorber and the like. It may be contained.
  • the content of the polyester resin composition is preferably 99.5% by mass or more, and more preferably 99.6% by mass or more. , 99.7 mass% or more is more preferable.
  • the content of the polyester resin composition is preferably 100% by mass or less, when the total amount of the biaxially oriented polyester film is 100% by mass, and 99.
  • the lubricant is one that can adjust the dynamic friction coefficient of the film, and examples thereof include inorganic lubricants such as silica, calcium carbonate, and alumina, and organic lubricants. Silica and calcium carbonate are more preferable, and silica is particularly preferable because it reduces haze. By these, transparency and slipperiness can be exhibited.
  • the lower limit of the content of the lubricant in the biaxially oriented polyester film is preferably 100 mass, and more preferably 800 mass 111. When the amount is 100 mass or more, the slipperiness can be improved.
  • the upper limit of the lubricant content is preferably 2000 mass 111, more preferably 100 mass, and particularly preferably 180 mass 111. By setting the amount to be 200 mass% or less, transparency can be maintained.
  • the biaxially oriented polyester film has 7 or less laminated layers.
  • the number of laminated layers is more preferably 3 or less.
  • a single layer is most preferable.
  • a layer structure of 2 types 2 layers, 2 types 3 layers, or 3 types 3 layers in which a plurality of types of layers having different compositions are laminated is preferable.
  • Properties that improve include slipperiness, antistatic properties, ultraviolet cutability, and easy adhesion.
  • the improvement of these surface properties can be achieved by adding a lubricant, an antistatic agent, an ultraviolet absorber, a copolymer, and their auxiliaries to the surface layer of the plurality of layers.
  • the biaxially oriented polyester film has an intrinsic viscosity of 0.7 0.7 / 9 or more.
  • the intrinsic viscosity is more preferably 0.75 I And more preferably ⁇ .80 Particularly preferred is 0.90 / 9 .
  • the upper limit of the intrinsic viscosity of the obtained unstretched sheet is preferably 1.2 ⁇ / 9 , more preferably 1.1 ⁇ / 9 . ...! .2 ⁇ / 9 or less
  • the stress during stretching does not become too high, and the film-forming property becomes better.
  • the intrinsic viscosity of the unstretched sheet is almost the same as the intrinsic viscosity of the biaxially oriented polyester film, and the lower limit is preferably 0.7 I/9, more preferably 0.75. It is more preferably 0.80 / 9 , and particularly preferably 0.90 / 9 .
  • the extrusion temperature in order to set the intrinsic viscosity of the biaxially oriented polyester film in a preferable range, it is preferable to set the extrusion temperature as low as possible. Although the temperature changes depending on the intrinsic viscosity of the polyester resin used, the shape of the extruder, etc., lowering the intrinsic viscosity of the biaxially oriented polyester film can be suppressed by extrusion at a low temperature, and as a result, during stretching. Breakage tends to occur less easily.
  • the degree of plane orientation ⁇ of the biaxially oriented polyester film is 0.1 45 to ⁇ 0.1 ⁇ 02020/175067 11 11 (:171? 2020 /004372
  • the plane orientation degree is preferably 0.148 or more, more preferably 0.151 or more.
  • the plane orientation degree is preferably not more than 0.1 58, more preferably not more than 0.156, and even more preferably not more than 0.154. Since the plane orientation degree is 0.145 or more, the plane orientation is suitably high, the puncture strength is sufficient, and the deep drawability is superior. In addition, the degree of plane orientation Is less than 0.160, the heat shrinkage can be kept low and the thermal stability can be improved.
  • the puncture strength of the biaxially oriented polyester film measured by the puncture test according to 3 _ 1 707 is ⁇ .401 ⁇ 1/ or more.
  • the puncture strength is preferably 0.51 ⁇ 1/, and more preferably 0.61 ⁇ 1/. Since the puncture strength is ⁇ .401 ⁇ 1/ or more, the deep drawability can be improved.
  • the upper limit of the puncture strength is preferably 0.91 ⁇ 1/. More preferably ⁇ .
  • the lower limit of the thickness of the biaxially oriented polyester film is preferably 5. It is more preferably 70! and even more preferably 90!. When it is at least 50!, the strength as a film can be made sufficient.
  • the upper limit of the thickness of the biaxially oriented polyester film is preferably 40. It is more preferably 30, and even more preferably 20.
  • the thickness is thin.
  • the uneven thickness of the biaxially oriented polyester film is 0.7% or less.
  • the aforementioned thickness unevenness is preferably 0.6% or less, more preferably 0.5% or less. Since the thickness variation is 0.007% or less, uniform molding can be performed when deep drawing is performed, and tearing of the film and pinholes are less likely to occur.
  • the method for obtaining the thickness unevenness is according to the method described in Examples. ⁇ 0 2020/175067 12 12 (:171? 2020 /004372
  • the biaxially oriented polyester film is preferably the maximum diameter of the biaxially oriented polyester film 0. 3_Rei! ⁇ ! More fisheyes is 5 / ⁇ ! 2 below.
  • the fisheyes more preferably 4/2 or less, and more preferably 3/2 or less. If the number of fish eyes is not more than 5/2, even if the release layer is provided on one surface of the biaxially oriented polyester film, it is on the surface opposite to the release layer during winding and storage. Moreover, it is possible to suppress the transfer of unevenness onto the release layer by the fisheye. As a result, it is possible to make it difficult to deteriorate the film quality.
  • Three-dimensional average roughness 3 3 on the one surface of the biaxially oriented polyester film surface, and three-dimensional average roughness 3 on the other surface The difference (absolute value) from 3 is
  • the difference is preferably 0.01 or less.
  • the difference is more preferably 0.08 or less, and still more preferably 0.06 or less.
  • the difference is 0.010 or less, the difference between the laminating strength on the one surface and the laminating strength on the other surface is prevented from becoming too large. That is, it is possible to suppress the concentration of stress on the surface having a low laminate strength, and to make the bag puncture resistance sufficient.
  • the lower limit of 3 is preferably 0. 01. More preferably, it is 0.02, and even more preferably 0.03 111.
  • Three-dimensional average roughness of the one surface of the biaxially oriented polyester film 3 3 and three-dimensional average roughness of the other surface 3 The upper limit of 3 is preferably 0.10. It is more preferably 0.08, and further preferably 0.06.
  • the three-dimensional average roughness When it is 10 or less, it is possible to secure a sufficient contact area at the time of film bonding, and to improve the lamination strength. ⁇ 02020/175067 13 ⁇ (: 171-1? 2020 /004372
  • the upper limit of the heat shrinkage rate of the biaxially oriented polyester film after heating at 150°° for 15 minutes in the IV!0 direction for 15 minutes is preferably 5%. It is more preferably 3.0% and even more preferably 2.5%. When it is 5% or less, it is possible to prevent the film from shrinking significantly when heat is applied in the post-processing, and the processing becomes easier.
  • the lower limit of the heat shrinkage rate of the biaxially oriented polyester film after heating at 150° ⁇ for 15 minutes in the IV!0 direction is preferably ⁇ %. It is more preferably 0.8% and even more preferably 1.2%. When it is 0%% or more, the puncture strength can be increased and the bag puncture resistance can be maintained high.
  • the upper limit of the heat shrinkage rate of the biaxially oriented polyester film after heating for 15 minutes at 150° in the zero direction for 15 minutes is preferably 5%. It is more preferably 3.0% and even more preferably 2.5%. When it is 5% or less, it is possible to prevent the film from shrinking significantly when heat is applied in the post-processing, and the processing becomes easier.
  • the lower limit of the heat shrinkage rate of the biaxially oriented polyester film after heating for 15 minutes at 150° in the zero direction for 15 minutes is preferably 11%. It is more preferably 0.8% and even more preferably 1.2%. If it is more than 1% %, the puncture strength can be increased and the bag puncture resistance can be maintained high.
  • the lower limit of the impact strength of the biaxially oriented polyester film is preferably 0.65"/15. It is more preferably 0. 70"/15, and even more preferably 0. 75"/15.
  • the upper limit of impact strength of the biaxially oriented polyester film is preferably 1.20"/15. It is more preferably 1.10"/15, and even more preferably 1.00"/1501. ...! .20" / 1501 or less, ⁇ 0 2020/175067 14 ⁇ (:171? 2020/004372 The heat shrinkage is suppressed and the heat stability is superior.
  • the pinhole resistance of the biaxially oriented polyester film was determined by a pin test after a bending test using a Gelboflex tester (repeating 2000 cycles continuously at a rate of 40 cycles per minute at 5 ° ⁇ ).
  • the number of holes is preferably 15 or less.
  • the number is more preferably 10 or less, and further preferably 5 or less.
  • the biaxially oriented polyester film preferably satisfies the following requirement (X).
  • the difference (absolute value) between the ratio of one surface/Mitsumi and the ratio of the other surface/Mimi is 0. 1 or less.
  • the difference is more preferably 0.08 or less, still more preferably 0.06 or less.
  • Additional 1 4 5 0 ⁇ 1 0_Rei - 1 of the absorption intensity eighth peak is the absorption derived from the methylene group of the "type crystals Mihinoto, 1 4 1 0 ⁇ 1 0_Rei - absorption strength of 1 peak
  • the degree is absorption derived from the carbon bond of the benzene ring.
  • the value of the absorption intensity ratio of 8/M shows the orientation coefficient. The smaller the orientation coefficient, the lower the crystallinity, and the higher the orientation coefficient, the higher the crystallinity.
  • the biaxially oriented polyester film has the same crystallinity, and therefore the difference in the laminating strength between one surface and the other surface becomes small. As a result, it is possible to suppress the concentration of stress on the surface having a low laminate strength, and it is possible to make the bag puncture resistance sufficient.
  • the difference and the absorption intensity ratio of 8/Mn refer to the direction in which the measurement sample is set.
  • the measured value is used as the direction. This is, This is because the measured value of direction more clearly reflects the crystallinity.
  • a more detailed measuring method is according to the method described in the examples.
  • the biaxially oriented polyester film to be measured is a single-wafer film, ⁇ 0 2020/175067 15 ⁇ (: 171-1?2020/004372
  • the direction may be unknown.
  • the absorption intensity ratios of 8/M in the plural directions are obtained, and the direction in which the difference is the largest is the IV!0 direction.
  • the lower limit of the ratio of the absorption intensity to the absorption intensity and the value of the / is preferably 0.2 in any one of the one surface and the other surface. .. It is more preferably 0.3 and even more preferably 0.4.
  • the ratio 8/M is 0.2 or more, the orientation becomes higher, the crystallinity becomes higher, and the mechanical strength can be made more sufficient.
  • the upper limit of the value of the ratio Hachi/Mimi is preferably 0.9. More preferably, it is 0.8, and even more preferably 0.7.
  • the ratio 8/M is 0.9 or less, the orientation does not become too high and the crystallinity can be made moderate. As a result, the affinity with the adhesive can be increased, and the laminating strength can be made more sufficient. In addition, the bag-breaking resistance can be sufficient.
  • the lower limit of the value of the refractive index in the thickness direction of the one surface of the biaxially oriented polyester film and the value of the refractive index in the thickness direction of the other surface is preferably 1.480. .. It is more preferably 1.45, and even more preferably 1.
  • the upper limit of the value of the refractive index in the thickness direction of the one surface and the value of the refractive index in the thickness direction of the other surface of the biaxially oriented polyester film is preferably 1.510. It is more preferably 1.50, and even more preferably 1.
  • the puncture strength can be further increased, and as a result, the bag puncture resistance can be more sufficient.
  • Both the one surface of the biaxially oriented polyester film and the other surface have a laminating strength of 4.0.
  • the above is preferable. More preferably 5. And more preferably 6.0 1 ⁇ 1/1501 111.
  • a printing layer may be laminated on the biaxially oriented polyester film.
  • water-based and solvent-based resin-containing printing inks can be preferably used as the printing ink for forming the printing layer.
  • the resin used in the printing ink include acrylic resin, urethane resin, polyester resin, vinyl chloride resin, vinyl acetate copolymer resin, and mixtures thereof.
  • Printing inks include antistatic agents, light blocking agents, UV absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, defoamers, cross-linking agents, anti-blocking agents, antioxidants, etc. Known additives may be contained.
  • the printing method for providing the printing layer is not particularly limited, and known printing methods such as an offset printing method, a gravure printing method, and a screen printing method can be used.
  • known drying methods such as hot air drying, hot air drying, and infrared drying can be used.
  • the biaxially oriented polyester film may be subjected to corona discharge treatment, glow discharge treatment, flame treatment, and surface roughening treatment as long as the object of the present invention is not impaired.
  • Known anchor coat treatment, printing, decoration and the like may be applied.
  • a gas barrier layer such as an inorganic thin film layer or a metal foil such as an aluminum foil can be provided on at least one surface of the biaxially oriented polyester film.
  • the inorganic thin film layer is a thin film made of metal or inorganic oxide.
  • the material for forming the inorganic thin film layer is not particularly limited as long as it can form a thin film, but from the viewpoint of gas barrier properties, inorganic oxides such as silicon oxide (silica), aluminum oxide (alumina), and a mixture of silicon oxide and aluminum oxide. The thing is preferably mentioned. In particular, a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both flexibility and denseness of the thin film layer.
  • the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% in terms of mass ratio of metal content.
  • the degree is 20% or more, the water vapor gas barrier property can be further enhanced.
  • the content is 70% or less, the inorganic thin film layer can be softened, and it is possible to prevent the film from being destroyed during the secondary processing such as printing or laminating, thereby lowering the gas barrier property.
  • silicon oxide refers to various silicon oxides such as 3 O and 3 I 0 2 or a mixture thereof, and aluminum oxide refers to various aluminum oxides such as 8 O and 8 O 2 O 3 . Or a mixture thereof.
  • the thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 n.
  • the thickness of the inorganic thin film layer is 1 nm or more, more satisfactory gas barrier properties are likely to be obtained.
  • it is 100 or less, it is advantageous in terms of bending resistance and manufacturing cost.
  • the method for forming the inorganic thin film layer is not particularly limited, and examples thereof include physical vapor deposition methods such as vacuum vapor deposition method, sputtering method, ion plating method ( ⁇ method).
  • a known vapor deposition method such as a chemical vapor deposition method ( ⁇ 30 method) may be appropriately adopted.
  • a typical method for forming an inorganic thin film layer will be described by taking a silicon oxide/aluminum oxide thin film as an example.
  • a mixture of 3 ⁇ 2 and eight ⁇ 2 ⁇ 3 as evaporation raw material, or 3 ⁇ 2 and eight ⁇ mixtures are preferably used.
  • Particles are usually used as these vapor deposition raw materials. At that time, it is desirable that the size of each particle is such that the pressure during vapor deposition does not change. Is.
  • resistance heating, high frequency induction heating, electron beam heating, laser heating, and other methods can be adopted.
  • the reaction gas it is also possible to introduce oxygen, nitrogen, hydrogen, argon, carbon dioxide, water vapor or the like as the reaction gas, or employ reactive vapor deposition using means such as ozone addition or ion assist.
  • the deposition conditions can be arbitrarily changed, such as applying a bias to the material to be vapor-deposited (a laminated film to be subjected to vapor deposition) or heating or cooling the material to be vapor-deposited.
  • the vapor deposition material, reaction gas, bias of the object to be vapor-deposited, heating/cooling, etc. can be similarly changed when the sputtering method or the zero method is adopted.
  • the layers may be laminated.
  • the gas barrier layer made of metal oxide is not a completely dense film, but has small defects.
  • the resin in the resin composition for the protective layer penetrates into the defective portion of the metal oxide layer.
  • the gas barrier property is stabilized.
  • the gas barrier performance of the laminated film will be greatly improved.
  • the protective layer includes a urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, polybutadiene-based resin, etc., to which a curing agent such as an epoxy-based, isocyanate-based, or melamine-based resin has been added. Can be mentioned.
  • solvent (solvent) used when forming the protective layer examples include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate; Ester solvents such as butyl acetate; polyhydric alcohol derivatives such as ethylene glycol monomethyl ether, etc. may be mentioned.
  • the above urethane resin has a polar group of a urethane bond interacting with the inorganic thin film layer and also has flexibility due to the presence of an amorphous portion, so that the inorganic thin film layer is also subjected to bending load. It is preferable because damage to the can be suppressed.
  • the acid value of urethane resin is 10 to 6 And more preferably within the range of When the acid value of the fat is within the above range, the liquid stability is improved when it is made into an aqueous dispersion, and the protective layer can be uniformly deposited on the highly polar inorganic thin film, resulting in a good coat appearance. Becomes
  • the urethane resin preferably has a glass transition temperature (Ding 9) is 8 0 ° ⁇ As, more preferably 9 0 ° ⁇ As.
  • Ding 9 glass transition temperature
  • the protective layer formed by molecular motion during the wet heat treatment process ⁇ 0 2020/175067 19 ⁇ (: 171-1?2020/004372
  • Swelling can be reduced.
  • urethane resin it is more preferable to use a urethane resin containing an aromatic or araliphatic diisocyanate component as a main constituent from the viewpoint of improving gas barrier properties.
  • the metaxylylene diisocyanate component it is particularly preferable to contain the metaxylylene diisocyanate component.
  • the proportion of the aromatic or araliphatic diisocyanate in the urethane resin is not less than 50 mol% in the polyisocyanate component () 100 mol% (50 to 100). Mol%) is preferable.
  • the proportion of the total amount of the aromatic or araliphatic diisocyanate is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, further preferably 80 to 100 mol%. is there.
  • "Yukerack (registered trademark) ⁇ ZV P B" series commercially available from Mitsui Chemicals, Inc. can be preferably used.
  • the proportion of the total amount of aromatic or araliphatic diisocyanate is 50 mol% or more, better gas barrier properties can be obtained.
  • the urethane resin preferably has a carboxylic acid group (carboxyl group).
  • carboxylic acid (salt) group for example, a polyol component having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid may be introduced as a copolymerization component. ..
  • a urethane resin of an aqueous dispersion can be obtained by synthesizing a carboxylic acid group-containing urethane resin and then neutralizing it with a salt forming agent.
  • the salt forming agent include ammonia, trimethylamine, triethylamine, triisopropylamine, tree 11-propylamine, tree 1!-trialkylamines such as butylamine, 1 ⁇ 1-methylmorpholine, 1 ⁇ 1.
  • — 1 ⁇ 1—Alkylmorpholines such as ethylmorpholine, 1 ⁇ 1—Dimethylethanolamine, 1 ⁇ 1 _ Dialkylethanolamine and other 1 ⁇ 1 _dialkylamines ⁇ 0 2020/175067 20 20 (:171? 2020 /004372
  • Examples thereof include lucanolamines. These may be used alone or in combination of two or more.
  • the biaxially oriented polyester film may be laminated with a layer made of another material, and as a method thereof, the biaxially oriented polyester film may be attached after being produced or may be attached during film formation.
  • the biaxially oriented polyester film is used, for example, as a packaging material by forming an inorganic vapor deposition layer on the biaxially oriented polyester film and further forming a heat-sealable resin layer (also referred to as a sealant layer) called a sealant. be able to.
  • the heat-sealable resin layer is usually formed by an extrusion laminating method or a dry laminating method.
  • the thermoplastic polymer forming the heat-sealable resin layer may be any one as long as it can sufficiently exhibit sealant adhesiveness, Polyethylene resin such as Mami and polypropylene resin. Ethylene-vinyl acetate copolymer, ethylene-olefin-random copolymer, ionomer resin and the like can be used.
  • the sealant layer may be a single-layer film or a multi-layer film, and may be selected according to the required function.
  • a multilayer film in which a resin such as an ethylene-cyclic olefin copolymer or polymethylpentene is interposed can be used.
  • the sealant layer may be mixed with various additives such as a flame retardant, a slip agent, an anti-blocking agent, an antioxidant, a light stabilizer and a tackifier.
  • the thickness of the sealant layer is preferably from 10 to 1001 and more preferably from 20 to 600!.
  • the biaxially oriented polyester film can be used as a base film (base layer) of a packaging laminate.
  • base layer is used to represent the layer boundary.
  • base layer/gas barrier layer/protective layer base layer/gas barrier layer/protective layer/adhesive layer/sealant layer
  • base material layer/adhesive layer/resin layer/gas barrier layer/protective layer/adhesive layer/sealant layer base Material layer/gas burr ⁇ 0 2020/175067 21 ⁇ (: 171-1? 2020 /004372
  • the laminate using the biaxially oriented polyester film can be suitably used for applications such as packaging products, various label materials, lid materials, sheet molded products, and laminated tubes.
  • it is used for packaging bags (eg pillow bags, standing pouches and ashameds such as 4-way pouches).
  • the thickness of the laminate can be appropriately determined according to its application. For example, it is used in the form of a film or sheet having a thickness of about 5 to 500, preferably about 10 to 300.
  • the die method is preferable from the viewpoint of thickness accuracy in the width direction.
  • the draw ratio is difficult to increase due to the manufacturing method, and thickness defects in the width direction may occur.
  • a layer structure of 2 types 2 layers, 2 types 3 layers, or 3 types 3 layers is preferable.
  • the lower limit of the intrinsic viscosity of the obtained unstretched sheet is preferably 0.77 / 9 , more preferably 0.75 / 9 , and further preferably 0. It is 80 / 9 , and particularly preferably 0.901 /9. ⁇ .
  • it is 70 70 ⁇ 1 /9 or more, crystallization during casting is suppressed and the yield stress of the unstretched sheet becomes low, and as a result, breakage tends not to occur during stretching.
  • the upper limit of the intrinsic viscosity of the obtained unstretched sheet is preferably 1.2 ⁇ / 9 , more preferably 1.1 ⁇ / 9 . ...! .2 ⁇ / 9 or less
  • the stress during stretching does not become too high, and the film-forming property becomes better.
  • the lower limit of the die temperature is preferably 240°, more preferably 245°, and particularly preferably 250°. If it is 240° or more, the discharge is more stable and the thickness can be made more uniform.
  • the upper limit of the resin melting temperature is preferably 275 ° , more preferably 270°, and most preferably 265°.
  • the upper limit of the die temperature is preferably 300 ° ⁇ , more preferably 290 ° ⁇ or less, more preferably 280 ° ⁇ below. When it is 300°° or less, it is possible to prevent the thickness from becoming uneven. Further, it is possible to prevent the appearance of the resin from being deteriorated due to stains on the die lip or the like.
  • the lower limit of the rotation number of the screw in the resin melt extrusion step is preferably 7
  • the upper limit of the number of rotations of the screw in the resin melt extrusion step is preferably 150 0 "01, more preferably 1 3 0 "01, and particularly preferably 1 1 0 ". If so, it is possible to prevent the decomposition of the molten resin from proceeding due to shearing heat generation, to suppress the decrease in the intrinsic viscosity of the obtained film, and to improve the film-forming property.
  • the upper limit of the cooling port temperature is preferably 40°, and more preferably 10° or less. If it is 40 ° C. or less, the crystallinity of the molten polyester resin composition upon cooling and solidification does not become too high, and the stretching becomes easier. In addition, the lamination strength can be increased, and the bag breaking resistance can be improved.
  • the lower limit of the cooling port temperature is preferably 0°. When it is 0° or more, the effect of suppressing crystallization when the molten polyester resin composition is cooled and solidified can be sufficiently exhibited. When the temperature of the cooling port is within the above range, it is preferable to reduce the humidity of the environment near the cooling port to prevent dew condensation.
  • the temperature of the surface of the cooling hole rises because the high temperature resin comes into contact with the surface.
  • the chill roll is cooled by injecting cooling water through the pipe inside, but to ensure a sufficient amount of cooling water, devise the arrangement of the pipe, and maintain the pipe so that sludge does not adhere to it. It is necessary to reduce the temperature difference across the width of the chill roll surface. In particular, unless the method of obtaining a uniform unstretched sheet by forming multiple layers of 8 layers or more is used, crystallization of the unstretched sheet is likely to proceed, so caution is required.
  • the thickness of the unstretched sheet is preferably in the range of 15 to 2500. It is more preferably 500 or less, and further preferably 300 or less.
  • a biaxially stretched film can be easily obtained, a high degree of plane orientation and a high puncture strength, and a film with less thickness unevenness can be obtained.
  • the method of quenching is not particularly limited, but a method of blowing cooling air with a multi-duct is preferable from the viewpoint of facility simplicity and maintainability.
  • the upper limit of the temperature of the cooling air is preferably 20 ° ⁇ , more preferably 5 ° ⁇ or less. When it is 20° or less, the crystallinity of the face of the unstretched sheet does not become high, the laminate strength can be maintained high, and the bag breaking resistance can be further improved.
  • the lower limit of the temperature of the cooling air is 15 °. When it is at least _ 5 ° ⁇ , the effect of suppressing the crystallization of the sapphire surface of the unstretched sheet is sufficiently obtained.
  • Fig. 1 is a schematic front view for explaining a method of blowing cooling air from a multi-duct onto a mound surface of an unstretched sheet on a cooling port
  • Fig. 2 is a side view thereof.
  • the die 10 is arranged so that the discharge port 12 faces the surface of the cooling port 20.
  • the distance (shortest distance) between the discharge port 12 and the surface of the cooling port 20 is not particularly limited, but is generally about 20 to 100.
  • a multi-duct 30 is arranged on the outer peripheral surface of the cooling port 20.
  • the position of the multi-duct 30 is the rotation of the cooling port 20 when the position of the die 10 is 0 ° with respect to the center of the cooling port 20. with respect to the direction (in FIG. 2 right rotation direction), ⁇ _ ⁇ 4 5 preferably Rukoto been installed in the range of °, preferable more that is installed in the range of 1 0 to 3 5 ° ⁇ 0 2020/175067 25 ⁇ (: 171-1? 2020 /004372
  • the multi-duct 30 is arranged within the above range, it is possible to cool the mound surface of the unstretched sheet 40 cast on the cooling port 20 immediately after casting.
  • the time from the time when the resin composition for producing the biaxially oriented polyester film is cast into the cooling port (the time when it is touched) to the time when the air is blown to the relevant part is within 2.0 seconds.
  • the time is preferably within 1.0 second, more preferably within 0.5 second.
  • the lateral width (length in the left-right direction in FIG. 1) of the multi-duct 30 is preferably greater than or equal to the width of the unstretched sheet 40 to be cast.
  • the vertical width of the multi-duct 30 (the length in the vertical direction in Fig. 1) is preferably not less than 30.01 and not more than 80000! The following is more preferable.
  • the speed at which the unstretched sheet 40 moves on the cooling port 20 is preferably 20
  • a suitable amount of cooling air can be blown to the bottom surface of the unstretched sheet 40. it can.
  • the upper limit of the height of the multi-duct 30 from the cooling port 20 is 200 or less, and more preferably 100 or less. Cooling efficiency is less than 200 ⁇ 0 2020/175067 26 ⁇ (: 171? 2020 /004372
  • the effect of suppressing crystallization of the unstretched sheet 40 can be sufficiently obtained, and the laminar strength can be increased.
  • the lower limit of the height of the multi-duct 30 from the cooling port 20 is not particularly limited, but is preferably within a range where it does not come into contact with the unstretched sheet 40.
  • the upper limit of the wind speed of the cooling air from the multi-duct 30 is preferably 2 It is 1 n, and more preferably 1800 1 /
  • the lower limit of the cooling air velocity is preferably 5 0 111 /111 ⁇ . When it is at least 5 01/
  • the method for producing a biaxially oriented polyester film includes a step of blowing air of 5° or less onto the unstretched sheet on the cooling port.
  • the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching, and is not particularly limited.
  • the lower limit of the stretching temperature in the longitudinal direction (hereinafter, also referred to as IV! 0 direction) is preferably 55°, and more preferably 60°. If it is at least 55°, fracture can be further suppressed. Further, it is possible to prevent the orientation in the vertical direction from becoming too strong, and to suppress an increase in the thermal shrinkage in the IV! IV! 0 direction of the upper limit of the extension Shin temperature is preferably 1 hundred ° ⁇ , more preferably 9 5 ° ⁇ .
  • the orientation can be sufficiently provided and the mechanical properties can be further enhanced.
  • the lower limit of the draw ratio in the IV!0 direction is preferably 2.5 times, and particularly preferably.
  • the upper limit of the stretching ratio in the IV!0 direction is preferably 3.8 times, more preferably 3.6 times, and particularly preferably 3.4 times. When it is not more than 8 times, the effect of improving mechanical strength and thickness unevenness can be sufficiently obtained.
  • the lower limit of the stretching temperature in the width direction (hereinafter, also referred to as the 0 direction) is preferably 55° ⁇ , and more preferably 60 ° ⁇ . If it is 55 ° or more, it is possible to make it difficult for fracture to occur. It also prevents the lateral orientation from becoming too strong,
  • the upper limit of the stretching temperature Ding 0 direction is preferably 1 00 ° ⁇ , more preferably 95 ° ⁇ . When it is 100 ° or less, the orientation can be sufficiently provided, and the mechanical properties can be further enhanced.
  • the lower limit of the draw ratio in the 0-direction is preferably 3.7 times, and more preferably
  • the upper limit of the draw ratio in the 0-direction is preferably 5.0 times, and more preferably
  • the lower limit of the heat setting temperature is preferably 185 ° ⁇ , more preferably 1 90 ° ⁇ . When it is 1 85° or more, the heat shrinkage rate can be further reduced.
  • the upper limit of the heat setting temperature is preferably 220° ⁇ . If it is 220° or less, it is possible to prevent the film from melting and becoming extremely brittle.
  • the heat setting temperature may be different between the face and the face. By varying the heat setting temperature between the face and the face, the crystallinity can be adjusted and the laminate strength can be further increased. As a result, the bag breaking resistance can be further enhanced.
  • the temperature difference is preferably 10° ⁇ or more and 30°° or less, and more preferably 10°° or more and 20°° or less. ⁇ 02020/175067 28 ⁇ (: 171-1? 2020 /004372
  • the lower limit of the relaxation rate is preferably 0.5%. ⁇ When it is more than 0.5%, the heat shrinkage in the direction of the neck can be kept low.
  • the upper limit of the relaxation rate is preferably 10%. When it is 10% or less, slack and the like can be prevented from occurring, and the flatness can be improved.
  • the lower limit of the temperature for the relaxation process is preferably 130°°, and more preferably 150°°. When it is at least 30°°, the film will be sufficiently shrunk when relaxing and the heat shrinkage reduction effect can be sufficiently obtained.
  • the upper limit of the relaxation temperature is preferably 190 ° ⁇ , more preferably 170° ⁇ . When it is 1 90° or less, it is possible to prevent the flatness of the film from being deteriorated due to wrinkles and the like.
  • the intrinsic viscosity of the sample was measured using an automatic viscosity measuring device "33_600_1_1" manufactured by Shiyama Scientific Instruments Co., Ltd.
  • the refractive index in the longitudinal direction of the film (father), the refractive index in the width direction (N7), the refractive index in the thickness direction Is measured by the following formula was calculated.
  • Length of film in length and width 1 width 40 Sampling into a long strip of, using a continuous contact type thickness gauge manufactured by Micron Measuring Instruments Co., Ltd.
  • the thickness variation (%) in the longitudinal direction and the thickness variation (%) in the width direction are calculated by the following formula 1 from the standard deviation of the measured thickness and the average value of the thickness, and the thickness variation (%) and the width in the longitudinal direction are calculated.
  • the average value of the thickness unevenness (%) in the direction was defined as the thickness unevenness (%).
  • Thickness variation ⁇ (standard deviation of thickness) / (average value of thickness)) X 100 (%)
  • the heat shrinkage rate of the polyester film was measured by the dimensional change test method described in "3-0-23 18" except that the test temperature was 150° and the heating time was 15 minutes.
  • the number of pinholes generated in the (The number of pinholes per 7 7 square inches was measured).
  • the medium crystal was brought into close contact with the film surface layer as diamond, and the spectral intensity was measured by the total reflection method while light was incident parallel to the IV!0 direction.
  • the resolution of the spectrometer 4_Rei - 1 spectrum accumulation number was measured as 6 4 times.
  • the spectral intensity is the absorbance at each wave number. It was calculated by the following formula.
  • Absorbance ratio (8/M) Absorbance 8 Peak spectrum intensity) / Absorbance value (1 4 1 0 ⁇ 1 0 0 0)
  • the spectrum intensity was also measured by the same method as the measurement in the IV!0 direction, with light incident parallel to the 0 direction.
  • the average roughness of the film surface was measured by the stylus method under the following conditions using a contact-type three-dimensional surface roughness meter (Model: Mending_40008) manufactured by Kosaka Laboratory Ltd.
  • the conditions are as follows, and the average value of three measurements was used as the value.
  • Stylus tip radius ⁇ 0.5
  • 13.5 1 (mass ratio of two-liquid urethane type adhesive (Takelac (registered trademark) 5253) and "Takenate (registered trademark) eight 50” manufactured by Mitsui Chemicals, Inc. on the face of the polyester film. )), and a non-stretched polypropylene film (“1 1 47” manufactured by Toyobo Co., Ltd.) with a thickness of 70 is bonded as a heat-sealable resin layer by a dry lamination method at 40° ⁇ .
  • a laminate film (laminate) was obtained by aging for 4 days. Note that the thickness of the adhesive layer formed of the urethane-based two-component curing type adhesive after drying was about 4 squares in all cases.
  • the obtained water-filled 4-side sealed bag was immersed in hot water at 130°C for 30 minutes to obtain a retort-treated bag.
  • a sealant heat-sealable resin layer
  • the puncture resistance is low. , It depends only on the laminating strength on the face side and not on the laminating strength on the face side.
  • the laminating strength on the face side is lower than the laminating strength on the face side, so if the bag in which the face sides of the polyester film are bonded together with a sealant is good
  • the bag-breaking resistance was evaluated only for the bag in which the facets of the polyester film were bonded together with the sealant.
  • the bag filled with the above-mentioned retort-treated water was placed at a room temperature of 5° and a relative humidity of 35% at a height of 100°.
  • the surface of the bag was dropped onto the concrete plate from position 10 and dropped 10 times, and the percentage of bags that did not tear when dropped in the horizontal direction was calculated.
  • the surface of the bag was made to fall vertically and dropped 10 times, and the percentage of bags that did not tear when dropped in the vertical direction was calculated.
  • the number of bags used in the test was 20 in both the horizontal and vertical directions.
  • Laminate strength was measured using a 1-chome 1-500 model. Laminate strength has a pull rate of 20 11"
  • the coating amount after drying on one side of the substrate is 0.0 5 / ⁇ ! 2 was coated with a release layer forming coating solution below. Then, the coated film was heated with hot air for 1300 ° ⁇ , 5 seconds for 10 seconds, 1700 ° ⁇ , hot air for 20/sec for 10 seconds, and 1300° ⁇ , 20/ It was dried with hot air for 10 seconds. As described above, the release layer was laminated on one surface of the base material. After that, it was rolled up as a mouth.
  • the number of transfer marks was visually counted using a bromolite in the range of 210.101 in the width direction and 300 in the longitudinal direction on the release layer side of the obtained film. Repeat 1 ⁇ times similar operation, by the following equation the average value of 1 0 times the number of counts, was calculated as the number of transfer marks of or 1 2 Ah, was determined by the number. The point to be counted was on the core side of the center of the mouth in the longitudinal direction.
  • the components were mixed in the composition shown below to obtain a release layer-forming coating liquid.
  • Acid-modified polyolefin resin solution 29.4% by mass
  • Hexamethylene diisocyanate-based blocked isocyanate compound 0.54% by mass
  • the method for producing the acid-modified polyolefin resin solution will be described below. 80 ° ⁇ the pressurized heated and oxidized wax in toluene 989 (manufactured by Nippon Rosha made 3-9 1 25 acid value 32 9 ⁇ ! ⁇ 1/9) 2 9 were charged, and stirred for 30 minutes to dissolve. After the dissolved acid-modified polyolefin resin solution was cooled to 25 ° ⁇ , it was filtered through a 300 mesh stainless steel filter (wire diameter ⁇ 0.035 ⁇ 101, plain weave) to obtain an acid-modified polyolefin resin solution. ..
  • FIG. 3 is a cross-sectional view of the mold used for evaluation of deep-drawing moldability
  • FIG. 4 is a plan view of the mold shown in FIG. Specifically, the film (Example and Comparative Example film) was placed on the mold 50 of length 89 ⁇ ! 01, width 54 ⁇ ! 01, size 3111111, and the film was suppressed with the film restraint 52. , A punch 54 having a shape corresponding to the die 50 was pressed. The squeezing speed was set to 60101/3.
  • the content of silica particles in the resin composition for producing the biaxially oriented polyester film is 0.16% by mass as the silica concentration.
  • the obtained unstretched sheet was stretched in the longitudinal direction (MD) at a temperature of 70°C.
  • Table 1 shows the resin composition of the polyester resin composition and the film forming conditions. The physical properties and evaluation results of the obtained film are shown in Tables 1 and 2.
  • a biaxially oriented polyester film having a thickness of 15 Mm was formed in the same manner as in Example 1 except that the resin composition of the polyester resin composition was changed as described in Table 1.
  • Got The physical properties and evaluation results of the obtained film are shown in Tables 1 and 2.
  • Example 1 the temperature of the hot air on the F side and B side in the heat setting process ⁇ 0 2020/175067 36 ⁇ (: 171-1? 2020 /004372
  • Example 1 In the same manner as in Example 1 except that the resin composition of the polyester resin composition and the film forming conditions are described in Table 1, a biaxially oriented film was formed in the same manner as in Example 1, and a biaxially oriented polyester film having a thickness of 15 was formed. Obtained. The physical properties and evaluation results of the obtained film are shown in Tables 1 and 2.
  • Example 1 except that the cold air was not blown from the face side by the multi-duct when the molten resin was brought into close contact with the cooling port, and the resin composition of the polyester resin composition and the film forming conditions were described in Table 1.
  • a biaxially oriented film was formed in the same manner as in 1 to obtain a biaxially oriented polyester film having a thickness of 15.
  • the obtained film had a large difference in crystallinity between the film surface and the Mitsumi surface, so the laminating strength was low, and the bag-breaking resistance after water leveling was poor.
  • Example 1 a biaxially oriented film was formed in the same manner as in Example 1 except that the resin composition of the polyester resin composition was changed as described in Table 1, and a biaxially oriented polyester film having a thickness of 15 was formed. Obtained. Since the obtained film had a large difference in crystallinity between the film surface and the Mitsumi surface, the lami-strength was low and the horizontal bag drop resistance was poor.
  • Example 1 except that the cold air was not blown from the face side by the multi-duct when the molten resin was brought into close contact with the cooling port, and the resin composition of the polyester resin composition and the film forming conditions were described in Table 1.
  • a biaxially oriented film was formed in the same manner as in 1 to obtain a biaxially oriented polyester film having a thickness of 15.
  • the obtained film had a large difference in crystallinity between the film surface and the Mitsumi surface, so the laminating strength was low, and not only was the bag-breaking resistance to water leveling unsatisfactory, but there was also a small proportion of Mitsumi and puncture strength. As the result was low, the bag resistance to vertical drop was poor.
  • Example 1 the resin composition of the polyester resin composition is shown in Table 1. ⁇ 0 2020/175067 37 ⁇ (: 171-1?2020/004372
  • a biaxially oriented film was formed in the same manner as in Example 1 except for the above to obtain a biaxially oriented polyester film having a thickness of 15. Since the obtained film had a small proportion of Mending, the piercing strength was low and the resistance to bag tearing when dropped vertically was poor. The results are shown in Tables 1 and 2.
  • An unstretched sheet was obtained in the same manner as in Example 2 except that the resin composition for producing a biaxially oriented polyester film was melted at 290° ⁇ and then cast from a die for 285° ⁇ . After that, a biaxially oriented film was formed to obtain a biaxially oriented polyester film having a thickness of 15.
  • the physical properties and evaluation results of the obtained film are shown in Tables 1 and 2.
  • the biaxially stretched polyester films (Examples 1 to 5) obtained according to the present invention have little thickness unevenness and have good deep drawing formability.
  • Comparative Examples 1 to 4 when the molten resin was brought into close contact with the cooling port, the cold air was not blown from the face side by the multi-duct, so that the obtained films had large thickness unevenness and deep drawing. The sex was inferior. In addition, since the difference in crystallinity between the film surface and the Mitsumi surface was large, the lami-strength was low and the horizontal bag drop resistance was poor.
  • Reference Example 1 a static mixer was introduced into the melt line to obtain a multilayer film having the same resin composition consisting of 10 2 4 layers.
  • the number of fish eyes of the obtained film was larger than that of the examples, and it was not suitable for applications requiring high quality.
  • the biaxially oriented polyester film of the present invention has a good film quality that can be used for industrial applications, and since it uses Ming as the main component, it is suitable as a release film accompanying deep drawing. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

Provided is a biaxially oriented polyester film characterized by: comprising a polyester resin composition that contains a polybutylene terephthalate resin (A) at a proportion of 60-100 mass%; having at most 7 layers; and satisfying requirements (1)-(4). (1) The intrinsic viscosity of the biaxially oriented polyester film is 0.7 dl/g or higher. (2) The planar orientation ΔP of the biaxially oriented polyester film is 0.145-0.160. (3) The puncture strength of the biaxially oriented polyester film as measured by a puncture test conforming to JIS-Z1707 is 0.40 N/μm or greater. (4) The thickness variation in the biaxially oriented polyester film is 0.7% or less.

Description

\¥0 2020/175067 1 卩(:17 2020 /004372 明 細 書 \¥0 2020/175067 1 卩 (: 17 2020 /004372 Clarification
発明の名称 : Title of invention:
二軸配向ポリエステルフィルム、 及び、 二軸配向ポリエステルフィルムの 製造方法 Biaxially oriented polyester film, and method for producing biaxially oriented polyester film
技術分野 Technical field
[0001 ] 本発明は、 二軸配向ポリエステルフィルム、 及び、 二軸配向ポリエステル フィルムの製造方法に関する。 The present invention relates to a biaxially oriented polyester film, and a method for producing a biaxially oriented polyester film.
背景技術 Background technology
[0002] ポリプチレンテレフタレート (以下、 ポリプチレンテレフタレートを 「 巳丁」 と略す場合がある) 樹脂は、 ポリエチレンテレフタレート (以下、 ポ リエチレンテレフタレートを 巳丁と略す) 樹脂より成型性が優れることか ら、 真空断熱材の外装材、 絞り成形用フィルム、 缶の内袋用フィルム、 離型 フィルムなどの分野において応用が検討されている。 [0002] Polyethylene terephthalate (hereinafter, polyethylene terephthalate may be abbreviated as "mending") resin is polyethylene terephthalate (hereinafter polyethylene terephthalate is abbreviated as "mending") resin Applications are being investigated in fields such as vacuum insulation exterior materials, drawing films, can inner bag films, and release films.
[0003] 例えば、 特許文献 1では、 巳丁樹脂が 6 0重量%以上であり、 長手方向 および幅方向の降伏応力が 7 O M P a以上、 破断強度が 1 6 0 IV! 3以上、 破断伸度が 1 〇〇%以上とすることでナイロンフィルムやその他柔軟フィル ム用途に好適に用いられることができると開示されている。 [0003] For example, in Patent Document 1, 60% by weight of Mingko resin is used, yield stress in the longitudinal and width directions is 7 OMPa or more, breaking strength is 160 IV! 3 or more, and breaking elongation is It is disclosed that the content of 100% or more can be preferably used for nylon film and other flexible film applications.
[0004] 特許文献 2では、 実質的に粒子を含有しないポリエステルフィルムの片面 に酸変性オレフィン樹脂および架橋剤が含有されてなる離型層を設け、 他方 の最外層に易滑層を設けた離型フィルムが開示されている。 また、 離型層表 面の算術平均粗
Figure imgf000003_0001
以下、 最大高さが 1 0 0 n 以下であり、 かつ 易滑層が粒子を含有し、 易滑層が粒子を含有し、 易滑層表面の算術平均粗さ が 1 0门
Figure imgf000003_0002
未満とすることで好適に用いることができると開示されている。
[0004] In Patent Document 2, a release layer containing an acid-modified olefin resin and a cross-linking agent is provided on one side of a polyester film containing substantially no particles, and a release layer having an easy-sliding layer is provided on the other outermost layer. Mold films are disclosed. Also, the arithmetic mean roughness of the release layer surface
Figure imgf000003_0001
Below, the maximum height is 100 n or less, and the easy-sliding layer contains particles, the easy-sliding layer contains particles, and the arithmetic average roughness of the surface of the easy-sliding layer is 10
Figure imgf000003_0002
It is disclosed that it can be preferably used by setting it to less than.
[0005] 特許文献 3では、 表面粗さが〇. 0 0 5〜〇. 0 5 0 であり、 3 0
Figure imgf000003_0003
以下であり、 フィルム両 端の長手方向の熱収縮率差が 0〜〇. 3 %であり、 かつ異方性差が 0〜〇.
[0005] In Patent Document 3, the surface roughness is 0.05 to 0.
Figure imgf000003_0003
The difference in the thermal shrinkage ratio in the longitudinal direction at both ends of the film is 0 to 0.3%, and the difference in anisotropy is 0 to 0.
2 0とすることにより離型用フィルムとして好適に用いることができると開 \¥0 2020/175067 2 卩(:17 2020 /004372 When it is set to 20, it is considered that it can be suitably used as a release film. \\0 2020/175067 2 卩 (: 17 2020 /004372
示されている。 It is shown.
先行技術文献 Prior art documents
特許文献 Patent literature
[0006] 特許文献 1 :特許第 5 9 9 4 8 6 4号公報 [0006] Patent Document 1: Patent No. 5 9 9 4 8 6 4
特許文献 2 :特開 2 0 1 6 - 2 2 1 7 3 7号公報 Patent Document 2: JP 2 0 1 6-2 2 1 7 3 7
特許文献 3 :特許第 3 0 3 1 5 2 0号公報 発明の概要 Patent Document 3: Patent No. 3 0 3 1 5 2 0 Summary of Invention
発明が解決しようとする課題 Problems to be Solved by the Invention
[0007] 巳丁樹脂は結晶化速度が速いため、 キャスト時にも結晶化が進行する。 [0007]Because the Mitomo resin has a high crystallization rate, crystallization proceeds even during casting.
特に、 キャストして得られたフィルムの端部は、 製造上の理由で中央部に比 較して厚くなる傾向にある。 そのため、 キャストして得られるフィルムの端 部において、 結晶化はより顕著となる。 In particular, the end portion of the film obtained by casting tends to be thicker than the center portion for manufacturing reasons. Therefore, crystallization becomes more remarkable at the edges of the film obtained by casting.
上記の特許文献 1ではスタティックミキサーを用いて溶融樹脂を丁ーダイ スから押し出す前に超多層している。 そのため、 層間で結晶が成長せずに結 果的にキャスト時の結晶化を抑制することができる。 一方でメルトラインに スタティックミキサーを導入したことによってデッ ド部分 (滞留部分) が増 え、 その部分にゲルが発生して、 結果的に得られたフィルム中のフィッシュ アイ (小さな粒子状欠陥) が増加して、 高い品位が求められる工業用途とし ては不十分な品位となる可能性がある。 In the above-mentioned Patent Document 1, a static mixer is used to form the super-multilayer before extruding the molten resin from the die. Therefore, crystals do not grow between the layers, and as a result, crystallization during casting can be suppressed. On the other hand, by introducing a static mixer in the melt line, the dead area (retention area) increased, and gel was generated in that area, resulting in the formation of fish eyes (small particle defects) in the film. There is a possibility that the number will increase and the quality will be insufficient for industrial applications requiring high quality.
上記の特許文献 2、 3では、 ポリエチレンテレフタレートを基材フィルム として用いることで離型フィルムとして好適に用いられている。 一方で、 成 型が伴う離型フィルム用途では、 基材であるポリエチレンテレフタレートの 特性に基づいて深い絞り成形には対応できない可能性がある。 In the above Patent Documents 2 and 3, polyethylene terephthalate is preferably used as a release film by using it as a substrate film. On the other hand, for release film applications that involve molding, it may not be possible to support deep drawing due to the characteristics of the polyethylene terephthalate substrate.
[0008] 本発明は、 上述した課題に鑑みてなされたものである。 すなわち、 本発明 の目的は、 工業用途にも対応できる良好なフィルム品位を有し、 且つ、 深絞 り成型が伴う離型フィルムにも好適な二軸配向ポリエステルフィルムを提供 することにある。 \¥0 2020/175067 3 卩(:171? 2020 /004372 [0008] The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a biaxially oriented polyester film which has a good film quality that can be used for industrial applications and is also suitable as a release film accompanied by deep drawing. \¥0 2020/175067 3 卩 (: 171? 2020 /004372
課題を解決するための手段 Means for solving the problem
[0009] 本発明者らは、 二軸配向ポリエステルフィルムについて鋭意検討を行った 。 その結果、 下記構成を採用することにより、 良好な深絞り成型性を有し、 且つ、 品位に優れる二軸配向ポリエステルフィルムが得られること見出し、 本発明を完成するに至った。 [0009] The present inventors have earnestly studied a biaxially oriented polyester film. As a result, they have found that a biaxially oriented polyester film having good deep drawability and excellent quality can be obtained by adopting the following constitution, and thus completed the present invention.
[0010] すなわち、 本発明に係る二軸配向ポリエステルフィルムは、 That is, the biaxially oriented polyester film according to the present invention,
ポリプチレンテレフタレート樹脂 (八) を 6 0〜 1 0 0質量%含有するポ リエステル樹脂組成物を含み、 A polyester resin composition containing 60 to 100 mass% of a poly(ethylene terephthalate) resin (eight),
積層数が 7層以下であり、 The number of layers is 7 or less,
下記要件 (1) 〜 (4) を満たすことを特徴とする。 It is characterized by satisfying the following requirements (1) to (4).
(1) 二軸配向ポリエステルフィルムの固有粘度が 0 . 7 丨 / 9以上。(1) The intrinsic viscosity of the biaxially oriented polyester film is 0.7 丨/ 9 or more.
(2) 二軸配向ポリエステルフィルムの面配向度△ が〇. 1 4 5〜〇. 1 6 0〇 (2) The degree of plane orientation △ of biaxially oriented polyester film is 〇 0.145 to 〇 0.160 〇
(3) 」 1 3 - 7 1 7 0 7に準じた突き刺し試験で測定した二軸配向ポリエ ステルフィルムの突刺し強さが 0 . 4 0 1\1 / 以上。 (3)” The puncture strength of the biaxially oriented polyester film measured by the puncture test according to 1 3-7 1 7 0 7 is 0.401 1\1 / or above.
(4) 二軸配向ポリエステルフィルムの厚み斑が〇. 7 0 %以下。 (4) Thickness unevenness of the biaxially oriented polyester film is 0.70% or less.
[001 1 ] 前記構成によれば、 ポリプチレンテレフタレート樹脂 (八) を 6 0質量% 以上含有するポリエステル樹脂組成物を含むため、 突刺し強さを向上させる ことができる。 また、 ポリプチレンテレフタレート樹脂 (八) を 6 0質量% 以上含有するポリエステル樹脂組成物を含むため、 絞り成型性を良好なもの とすることができる。 [001 1] According to the above-mentioned constitution, since the polyester resin composition containing 60% by mass or more of the polypropylene terephthalate resin (8) is contained, the puncture strength can be improved. In addition, since the polyester resin composition containing the poly(ethylene terephthalate) resin (8) in an amount of 60% by mass or more is included, the drawability can be improved.
また、 積層数が 7層以下であるため、 メルトラインにスタティックミキサ —を導入しなくても製造することが可能である。 従って、 スタティックミキ サーを導入することによって生じるフィルム中のフィッシュアイ (小さな粒 子状欠陥) の発生を防止することができる。 その結果、 高い品位を有するフ ィルムとすることができる。 Further, since the number of laminated layers is 7 or less, it is possible to manufacture without introducing a static mixer in the melt line. Therefore, it is possible to prevent the generation of fish eyes (small particle defects) in the film caused by the introduction of the static mixer. As a result, a film with high quality can be obtained.
また、 前記フィルムの固有粘度が、 〇. 7 0 ¢1 丨 / 9以上であるため、 キ ャスト時の結晶化が抑制され、 未延伸シートの降伏応力が低くなるため、 結 \¥0 2020/175067 4 卩(:171? 2020 /004372 In addition, since the intrinsic viscosity of the film is 0.70 ¢1丨/9 or more, crystallization during casting is suppressed, and the yield stress of the unstretched sheet is reduced, resulting in \¥0 2020/175067 4 卩 (: 171? 2020 /004372
果的に延伸時に破断が生じ難くなる傾向となる。 As a result, breakage tends not to occur during stretching.
また、 前記面配向度八 が〇. 1 4 5以上であるため、 面配向が好適に高 く、 突刺し強さが充分となり、 深絞り成型性により優れる。 また、 前記面配 が 0 . 1 6 0以下であるため、 熱収縮率を低く維持することができ 、 熱安定性をより良好なものとすることができる。 Further, since the plane orientation degree is 0.145 or more, the plane orientation is suitably high, the puncture strength is sufficient, and the deep drawability is superior. Further, since the surface area is 0.160 or less, the heat shrinkage ratio can be kept low, and the thermal stability can be made better.
また、 前記突刺し強さが〇. 4 0 1\1 / 以上であるため、 深絞り成型性 を良好なものとすることができる。 Further, since the puncture strength is 0.401\1/1 or more, the deep drawing formability can be improved.
また、 前記厚み斑が〇. 7 0 %以下であるため、 深絞り成型を行った際に 均一な成型ができ、 フィルムの裂けやピンホールが発生しにくい。 Further, since the thickness variation is 0.70% or less, uniform molding can be performed when deep drawing is performed, and tearing of the film and pinholes are less likely to occur.
[0012] 前記構成において、 前記ポリエステル樹脂組成物は、 ポリプチレンテレフ タレート樹脂 (八) 以外のポリエステル樹脂 (巳) を含有することが好まし い。 [0012] In the above structure, it is preferable that the polyester resin composition contains a polyester resin (Mitsumi) other than the polyethylene terephthalate resin (8).
[0013] 前記ポリエステル樹脂組成物が、 ポリプチレンテレフタレート樹脂 (八) 以外のポリエステル樹脂 (巳) を含有すると、 二軸延伸を行う時の製膜性や 得られたフィルムの力学特性を調整することができる。 [0013] When the polyester resin composition contains a polyester resin (Mitsumi) other than the polypropylene terephthalate resin (8), the film formability during biaxial stretching and the mechanical properties of the obtained film should be adjusted. You can
[0014] 前記構成においては、 二軸配向ポリエステルフィルム上の最大直径が〇. [0014] In the above configuration, the maximum diameter on the biaxially oriented polyester film is ◯.
3〇!〇!以上のフィッシュアイが 5個/〇1 2以下であることが好ましい。 It is preferable 3_Rei! 〇! Or more of the fish eye is five / Rei_1 2 or less.
[0015] 前記フィッシュアイが 5個/ 2以下であると、 当該二軸配向ポリエステル フィルムの一方の面に、 離型層を有していても、 巻き取り保管時に、 離型層 とは反対側の面上に、 フィッシュアイによる離型層への凹凸転写を抑制する ことができる。 その結果、 フィルム品位を損ない難くすることができる。 ま た、 フィルムに精巧な印刷層をも設けることができる。 [0015] When the fish-eye is a 5/2 or less, to one surface of the biaxially oriented polyester film, may have a release layer, when the winding storage, opposite to the release layer It is possible to suppress the transfer of unevenness to the release layer by the fish eyes on the surface. As a result, it is possible to make it difficult to impair the film quality. Also, the film can be provided with elaborate printing layers.
[0016] 前記構成においては、 二軸配向ポリエステルフィルムの前記一方の面での 三次元平均粗さ 3
Figure imgf000006_0001
3と、 前記他方の面での三次元平均粗さ 3
Figure imgf000006_0002
3との差 ( 絶対値) が 0 . 0 1 以下であることが好ましい。
[0016] In the above structure, the three-dimensional average roughness on the one surface of the biaxially oriented polyester film is 3
Figure imgf000006_0001
3 and the three-dimensional average roughness on the other surface 3
Figure imgf000006_0002
It is preferable that the difference (absolute value) from 3 is 0.01 or less.
[0017] 前記差が〇. 0 1 0 以下であると、 前記一方の面のラミネート強度と 前記他方の面のラミネート強度との差が大きくなりすぎることを抑制する。 すなわち、 ラミネート強度が低い面に応力が集中することを抑制し、 耐破袋 \¥0 2020/175067 5 卩(:171? 2020 /004372 When the difference is 0.010 or less, it is possible to prevent the difference between the laminating strength of the one surface and the laminating strength of the other surface from becoming too large. That is, it suppresses the concentration of stress on the surface with low laminate strength, \¥0 2020/175067 5 卩 (: 171? 2020 /004372
性をより充分なものとすることができる。 The sex can be more sufficient.
[0018] 前記構成においては、 二軸配向ポリエステルフィルムの 1 5 0 °〇で 1 5分 間加熱後の熱収縮率が、 縦方向
Figure imgf000007_0001
方向) が〇〜 5 %、 横方向 (丁〇方向 ) が一 ·!〜 5 %であることが好ましい。
[0018] In the above-mentioned constitution, the heat shrinkage rate of the biaxially oriented polyester film after heating at 150°° for 15 minutes is
Figure imgf000007_0001
It is preferable that the (direction) is 0 to 5%, and the lateral (direction) is 1...! 5%.
[0019] 前記二軸配向ポリエステルフィルムの IV! 0方向における 1 5 0 °〇で 1 5分 間加熱後の熱収縮率が 5 %以下であると、 後加工で熱を加えた際にフィルム が大きく縮んでしまうことを抑制でき、 加工がより容易となる。 [0019] If the heat shrinkage ratio of the biaxially oriented polyester film after heating at 150° in the IV!0 direction at 150° for 15 minutes is 5% or less, the film will not be formed when heat is applied in the post-processing. It is possible to suppress a large shrinkage, and the processing becomes easier.
前記二軸配向ポリエステルフィルムの IV! 0方向における 1 5 0 °〇で 1 5分 間加熱後の熱収縮率が〇 %以上であると、 突刺し強さを高めることができ、 耐破袋性を高く維持できる。 When the heat shrinkage rate of the biaxially oriented polyester film in the IV! 0 direction after heating for 15 minutes at 150° 〇 is 〇% or more, the puncture strength can be increased and the bag puncture resistance. Can be kept high.
前記二軸配向ポリエステルフィルムの丁 0方向における 1 5 0 °〇で 1 5分 間加熱後の熱収縮率が 5 %以下であると、 後加工で熱を加えた際にフィルム が大きく縮んでしまうことを抑制でき、 加工がより容易となる。 If the heat shrinkage rate of the biaxially oriented polyester film is less than 5% after heating for 15 minutes at 150° in the 0 direction, the film shrinks greatly when heat is applied in the post-processing. This can be suppressed and processing becomes easier.
前記二軸配向ポリエステルフィルムの丁 0方向における 1 5 0 °〇で 1 5分 間加熱後の熱収縮率が一 1 %以上であると、 突刺し強さを高めることができ 、 耐破袋性を高く維持できる。 When the heat shrinkage rate of the biaxially oriented polyester film in the 0 direction at 150°° for 15 minutes after heating is 11% or more, the puncture strength can be increased and the bag puncture resistance. Can be kept high.
[0020] また、 本発明は、 前記二軸配向ポリエステルフィルムの製造方法であって 二軸配向ポリエステルフィルム製造用の樹脂組成物を冷却口ールにキャス 卜して未延伸シートを形成する工程八と、 [0020] The present invention also relates to the method for producing a biaxially oriented polyester film, which comprises a step of casting a resin composition for producing a biaxially oriented polyester film in a cooling port to form an unstretched sheet. When,
前記冷却口ール上の前記未延伸シートに 5 °0以下の風を吹き付ける工程巳 とを有することを特徴とする。 And a step of blowing air of 5 ° 0 or less onto the unstretched sheet on the cooling port.
[0021 ] 前記構成によれば、 冷却口ール上の未延伸シートに 5 °〇以下の風を吹き付 け、 未延伸シートの巳面 (冷却口ールに接した面とは反対の面) を急冷する ことによって、 面 (冷却口ールに接した面) との結晶化度の差が小さくな る。 また、 未延伸シート全体の結晶化度が低く結晶化度の斑が少なくなる。 その結果、 2軸延伸が容易にでき、 面配向度と突刺し強さが高く、 厚み斑が 少ないフィルムを得ることができる。 \¥0 2020/175067 6 卩(:171? 2020 /004372 発明の効果 [0021] According to the above-mentioned configuration, the unstretched sheet on the cooling port is blown with a wind of 5° or less, and the unstretched sheet has a mound surface (a surface opposite to the surface in contact with the cooling port) ) Is rapidly cooled, the difference in crystallinity from the surface (the surface in contact with the cooling port) becomes smaller. Further, the crystallinity of the entire unstretched sheet is low, and the unevenness of the crystallinity is reduced. As a result, it is possible to obtain a film that can be easily biaxially stretched, has a high degree of plane orientation and puncture strength, and has less unevenness in thickness. \¥0 2020/175067 6 卩(:171? 2020/004372 Effect of invention
[0022] 本発明によれば、 良好な深絞り成型性を有し、 且つ、 品位に優れる二軸配 向ポリエステルフィルムを提供することができる。 [0022] According to the present invention, it is possible to provide a biaxially oriented polyester film having good deep-drawing moldability and excellent in quality.
図面の簡単な説明 Brief description of the drawings
[0023] [図 1]冷却口ール上の未延伸シートの巳面にマルチダクトからの冷却風を吹き 付ける方法を説明するための正面模式図である。 [0023] [Fig. 1] Fig. 1 is a schematic front view for explaining a method of blowing cooling air from a multi-duct onto a mound surface of an unstretched sheet on a cooling port.
[図 2]図 1の側面図である。 [Fig. 2] Fig. 2 is a side view of Fig. 1.
[図 3]深絞り成型性の評価に用いた金型の横断面図である。 [FIG. 3] A cross-sectional view of a mold used for evaluation of deep drawing formability.
[図 4]図 3に示した金型の平面図である。 FIG. 4 is a plan view of the mold shown in FIG.
発明を実施するための形態 MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、 本発明の実施形態について説明する。 [0024] Hereinafter, embodiments of the present invention will be described.
[0025] 本実施形態に係る二軸配向ポリエステルフィルムは、 巳丁樹脂 (八) を [0025] The biaxially oriented polyester film according to the present embodiment includes
6 0〜 1 0 0質量%含有するポリエステル樹脂組成物を含み、 Including a polyester resin composition containing 60 to 100 mass%,
積層数が 7層以下であり、 The number of layers is 7 or less,
下記要件 (1) 〜 (4) を満たすことを特徴とする二軸配向ポリエステル フイルム。 A biaxially oriented polyester film which satisfies the following requirements (1) to (4).
(1) 二軸配向ポリエステルフィルムの固有粘度が 0 . 7 丨 / 9以上。(1) The intrinsic viscosity of the biaxially oriented polyester film is 0.7 丨/ 9 or more.
(2) 二軸配向ポリエステルフィルムの面配向度△ が〇. 1 4 5〜〇. 1 6 0〇 (2) The degree of plane orientation △ of biaxially oriented polyester film is 〇 0.145 to 〇 0.160 〇
(3) 」 1 3 - 7 1 7 0 7に準じた突き刺し試験で測定した二軸配向ポリエ ステルフィルムの突刺し強さが 0 . 4 0 1\1 / 以上。 (3)” The puncture strength of the biaxially oriented polyester film measured by the puncture test according to 1 3-7 1 7 0 7 is 0.401 1\1 / or above.
(4) 二軸配向ポリエステルフィルムの厚み斑が〇. 7 0 %以下。 (4) Thickness unevenness of the biaxially oriented polyester film is 0.70% or less.
[0026] [二軸配向ポリエステルフィルムの組成] [0026] [Composition of Biaxially Oriented Polyester Film]
本実施形態に係る二軸配向ポリエステルフィルムは、 巳丁樹脂 (八) を 6 0〜 1 0 0質量%含有するポリエステル樹脂組成物を含む。 前記 巳丁樹 月旨 (八) の含有率は、 7 0質量%以上が好ましく、 8 0質量%以上がより好 ましく、 9 0質量%以上がさらに好ましい。 巳丁樹脂 (八) を 6 0質量% 以上含有するポリエステル樹脂組成物を含むため、 突刺し強さを向上させる \¥0 2020/175067 7 卩(:171? 2020 /004372 The biaxially oriented polyester film according to the present embodiment contains a polyester resin composition containing 60 to 100% by mass of Mingko resin (8). The content rate of the above-mentioned Mitsutsuki Kiju (8) is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. Improves puncture strength because it contains a polyester resin composition containing 60% or more of Mingko resin (8) \\0 2020/175067 7 卩(: 171-1?2020/004372
ことができる。 また、 巳丁樹脂 (八) を 6 0質量%以上含有するポリエス テル樹脂組成物を含むため、 絞り成型性を良好なものとすることができる。 主たる構成成分として用いる 巳丁樹脂 (八) は、 ジカルボン酸成分とし て、 テレフタル酸が 9 0モル%以上であることが好ましく、 より好ましくは 9 5モル%以上であり、 さらに好ましくは 9 8モル%以上であり最も好まし くは 1 0 0モル%である。 グリコール成分として 1 , 4—ブタンジオールが 9 0モル%以上であることが好ましく、 より好ましくは 9 5モル%以上であ る。 be able to. Further, since the polyester resin composition containing 60% by mass or more of the Mitsuko resin (8) is contained, the drawability can be improved. As the dicarboxylic acid component, the Mingo resin (8), which is used as a main component, preferably contains terephthalic acid in an amount of 90 mol% or more, more preferably 95 mol% or more, and further preferably 98 mol%. % And more preferably 100 mol%. As the glycol component, 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more.
[0027] 前記 巳丁樹脂 (八) の固有粘度の下限は好ましくは 0 . 8 丨 / 9であ り、 より好ましくは〇. 9 5 丨 / 9であり、 更に好ましくは 1 . 0 丨 / 9である。 巳丁樹脂 (八) の固有粘度を 0 . 8 丨 / 9以上とすることで 、 製膜して得られるフィルムの固有粘度を高くすることができ、 耐破袋性や 製膜性を向上させることができる。 [0027] The lower limit of the intrinsic viscosity of the above Mitsuba resin (8) is preferably 0.8 丨 / 9 , more preferably 〇 9.5 丨 / 9 , and further preferably 1.0 丨 / 9 Is. By setting the intrinsic viscosity of Mending resin (8) to 0.8 丨/ 9 or more, the intrinsic viscosity of the film obtained by film formation can be increased, and the bag-breaking resistance and the film forming property are improved. be able to.
前記 巳丁樹脂 ( ) の固有粘度の上限は好ましくは 1 . 3 丨 / 9であ る。 1 .
Figure imgf000009_0001
丨 / 9以下とすることにより、 フィルム延伸時の応力が高くな りすぎることを抑制し、 製膜性を良好とすることができる。 さらには、 固有 粘度の高い 巳丁樹脂を使用した場合、 樹脂の溶融粘度が高くなるため押出 し温度を高温にする必要があるが、 固有粘度が 1 . 3 I / 9以下の 巳丁 樹脂 (八) を用いることにより、 高温押出しなくてもよくなり、 分解物の発 生を抑制することできる。
The upper limit of the intrinsic viscosity of the Mouto resin () is preferably 1.3 丨/ 9 . 1
Figure imgf000009_0001
With丨/ 9 or less, to suppress a high stress during film stretching Risugiru, the film-forming property can be improved. Furthermore, when using Mending resin with a high intrinsic viscosity, the melting temperature of the resin increases, so it is necessary to raise the extrusion temperature.However, the Mending resin with an intrinsic viscosity of 1.3 I/9 or less ( By using (8), it is not necessary to perform high temperature extrusion, and the generation of decomposition products can be suppressed.
[0028] 前記ポリエステル樹脂組成物は二軸延伸を行う時の製膜性や得られたフィ ルムの力学特性を調整する目的で 巳丁樹脂 (八) 以外のポリエステル樹脂 (巳) を含有することが好ましい。 [0028] The polyester resin composition contains a polyester resin (M) other than the Ming resin (8) for the purpose of adjusting film-forming properties during biaxial stretching and mechanical properties of the obtained film. Is preferred.
前記ポリエステル樹脂 (巳) としては、 巳丁、 ポリエチレンナフタレー 卜、 ポリプチレンナフタレート、 ポリプロピレンテレフタレートなどのポリ エステル樹脂、 又はイソフタル酸、 オルソフタル酸、 ナフタレンジカルボン 酸、 ビフエニルジカルボン酸、 シクロへキサンジカルボン酸、 アジピン酸、 アゼライン酸及びセバシン酸からなる郡から選択される少なくとも 1種のジ \¥0 2020/175067 8 卩(:171? 2020 /004372 Examples of the polyester resin (Mitsumi) include polyester, polyethylene naphthalate, polypropylene naphthalate, polypropylene terephthalate and the like, or isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid. Acid, adipic acid, azelaic acid and sebacic acid. \¥0 2020/175067 8 卩 (: 171? 2020 /004372
カルボン酸が共重合された 巳丁樹脂、 エチレングリコール、 1 , 3 -プロ ピレングリコール、 1 , 2—プロピレングリコール、 ネオペンチルグリコー ル、 1 , 5—ペンタンジオール、 1 , 6—ヘキサンジオール、 ジエチレング リコール、 シクロヘキサンジオール、 ポリエチレングリコール、 ポリテトラ メチレングリコール及びポリカーボネートからなる郡から選択される少なく とも 1種のジオール成分が共重合された 巳丁樹脂、 イソフタル酸、 オルソ フタル酸、 ナフタレンジカルボン酸、 ビフエニルジカルボン酸、 シクロヘキ サンジカルボン酸、 アジピン酸、 アゼライン酸及びセバシン酸からなる郡か ら選択される少なくとも 1種のジカルボン酸が共重合された 巳丁樹脂、 若 しくは 1 , 3—ブタンジオール、 1 , 3—プロピレングリコール、 1 , 2— プロピレングリコール、 ネオペンチルグリコール、 1 , 5—ペンタンジオー ル、 1 , 6—ヘキサンジオール、 ジエチレングリコール、 シクロへキサンジ オール、 ポリエチレングリコール、 ポリテトラメチレングリコール及びポリ 力ーボネートからなる郡から選択される少なくとも 1種のジオール成分が共 重合された 巳丁樹脂から選ばれる少なくとも 1種の樹脂が挙げられる。 Mending resin copolymerized with carboxylic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol , Cyclohexanediol, Polyethylene glycol, Polytetramethylene glycol and Polycarbonate Copolymerized with at least one diol component, Mingko resin, Isophthalic acid, Orthophthalic acid, Naphthalenedicarboxylic acid, Biphenyldicarboxylic acid , Cyclohexane dicarboxylic acid, adipic acid, azelaic acid, and sebacic acid, and at least one dicarboxylic acid is copolymerized with Mitsuba resin, or 1, 3-butanediol, 1, 3 —Propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol and polycarbonate Examples of the resin include at least one resin selected from Mingo resins in which at least one diol component selected from the above is copolymerized.
[0029] 中でも 巳丁を主成分とする樹脂は融点が高く耐熱性に優れ、 巳丁樹脂 との相溶性が良く透明性に優れるので、 巳丁樹脂又は共重合された 巳丁 樹脂が好ましく、 特に 巳丁樹脂が好ましい。 [0029] Among them, the resin mainly composed of mitoba has a high melting point, is excellent in heat resistance, has good compatibility with mitoba resin and is excellent in transparency. Therefore, mitoba resin or copolymerized mitoba resin is preferable, Mingko resin is particularly preferable.
[0030] 前記ポリエステル樹脂 (巳) の添加量としては、 前記ポリエステル樹脂組 成物全体に対して 3 0質量%以下が好ましく、 より好ましくは 2 0質量%以 下であり、 さらに好ましくは 1 0質量%以下である。 前記ポリエステル樹脂 (巳) の添加量が 3 0質量%以下であると、 突刺し強さをより高めることが でき、 耐破袋性により優れる。 また、 透明性を高く保つことができる。 前記ポリエステル樹脂 (巳) の添加量は、 前記ポリエステル樹脂組成物全 体に対して 0質量%以上、 5質量%以上、 1 0質量%以上等とすることがで きる。 [0030] The addition amount of the polyester resin (M) is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass based on the whole polyester resin composition. It is not more than mass %. When the amount of the polyester resin (Mitsumi) added is 30% by mass or less, the puncture strength can be further increased, and the puncture resistance is excellent. Also, the transparency can be kept high. The amount of the polyester resin (Mitsumi) added may be 0% by mass or more, 5% by mass or more, 10% by mass or more based on the whole polyester resin composition.
[0031 ] 前記ポリエステル樹脂 (巳) の固有粘度の下限は好ましくは〇. 5 I / [0031] The lower limit of the intrinsic viscosity of the polyester resin (Mitsumi) is preferably 0.5 I/
9であり、 より好ましくは 0 . 6 丨 / 9であり、 更に好ましくは 0 . 8 \¥0 2020/175067 9 卩(:171? 2020 /004372 9, more preferably 0.6 丨/ 9 , and even more preferably 0.8. \¥0 2020/175067 9 9 (171?2020/004372
丨 / 9である。 前記ポリエステル樹脂 (巳) の固有粘度の上限は好ましくは 1 . 3 丨 / 9である。 前記ポリエステル樹脂 (巳) の固有粘度を上記数値 範囲内とすることにより、 巳丁樹脂 (八) とより良好に混合することが可 能となる。 It is 丨/9. The upper limit of the intrinsic viscosity of the polyester resin (Mitsumi) is preferably 1.3 丨/ 9 . By setting the intrinsic viscosity of the polyester resin (Mitsumi) within the above numerical range, it becomes possible to mix the polyester resin (Mitsumi) with the Mitsuko resin (Hachi) better.
[0032] 前記二軸配向ポリエステルフィルムは、 前記ポリエステル樹脂組成物とは 別に、 従来公知の添加剤、 例えば、 滑剤、 安定剤、 着色剤、 酸化防止剤、 静 電防止剤、 紫外線吸収剤等を含有していてもよい。 [0032] The biaxially oriented polyester film contains, in addition to the polyester resin composition, a conventionally known additive, for example, a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, an ultraviolet absorber and the like. It may be contained.
[0033] 前記二軸配向ポリエステルフィルム全体を 1 0 0質量%としたとき、 前記 ポリエステル樹脂組成物の含有量は、 9 9 . 5質量%以上が好ましく、 9 9 . 6質量%以上がより好ましく、 9 9 . 7質量%以上がさらに好ましい。 前記ポリエステル樹脂組成物の含有量は、 前記二軸配向ポリエステルフィ ルム全体を 1 0 0質量%としたとき、 1 0 0質量%以下が好ましく、 9 9 . [0033] When the total amount of the biaxially oriented polyester film is 100% by mass, the content of the polyester resin composition is preferably 99.5% by mass or more, and more preferably 99.6% by mass or more. , 99.7 mass% or more is more preferable. The content of the polyester resin composition is preferably 100% by mass or less, when the total amount of the biaxially oriented polyester film is 100% by mass, and 99.
9質量%以下がより好ましく、 9 9 . 8質量%以下がさらに好ましい。 9 mass% or less is more preferable, and 99.8 mass% or less is further preferable.
[0034] 前記滑剤は、 フィルムの動摩擦係数を調整することができるものであり、 シリカ、 炭酸カルシウム、 アルミナなどの無機系滑剤、 有機系滑剤が挙げら れる。 シリカ、 炭酸カルシウムがより好ましく、 中でもシリカがヘイズを低 減する点で特に好ましい。 これらにより透明性と滑り性と発現することがで きる。 [0034] The lubricant is one that can adjust the dynamic friction coefficient of the film, and examples thereof include inorganic lubricants such as silica, calcium carbonate, and alumina, and organic lubricants. Silica and calcium carbonate are more preferable, and silica is particularly preferable because it reduces haze. By these, transparency and slipperiness can be exhibited.
[0035] 前記二軸配向ポリエステルフィルムにおける滑剤の含有量の下限は好まし くは 1 0 0質量 であり、 より好ましくは 8 0 0質量 111である。 1 0 0質量 以上とすることにより、 滑り性を向上させることができる。 前記滑剤の含有量の上限は好ましくは 2 0 0 0 0質量 111であり、 より 好ましくは 1 0 0 0質量 であり、 特に好ましくは 1 8 0 0質量 111 である。 2 0 0 0 0質量 以下とすることにより、 透明性を維持するこ とができる。 [0035] The lower limit of the content of the lubricant in the biaxially oriented polyester film is preferably 100 mass, and more preferably 800 mass 111. When the amount is 100 mass or more, the slipperiness can be improved. The upper limit of the lubricant content is preferably 2000 mass 111, more preferably 100 mass, and particularly preferably 180 mass 111. By setting the amount to be 200 mass% or less, transparency can be maintained.
[0036] [二軸配向ポリエステルフィルムの層構成] [0036] [Layer constitution of biaxially oriented polyester film]
前記二軸配向ポリエステルフィルムは、 積層数が 7層以下である。 前記積 層数は、 積層数は 3層以下がより好ましい。 フィッシュアイを低減させる観 \¥02020/175067 10 卩(:171? 2020 /004372 The biaxially oriented polyester film has 7 or less laminated layers. The number of laminated layers is more preferably 3 or less. View to reduce fish eyes \¥02020/175067 10 boxes (: 171? 2020 /004372
点からは、 単層が最も好ましい。 フィルムの表面の特性を改善したい場合は 、 組成の異なる複数種の層を積層させた 2種 2層、 2種 3層、 あるいは 3種 3層の層構成が好ましい。 改善する特性としては、 滑り性、 帯電防止性、 紫 外線カッ ト性、 易接着性などが挙げられる。 これらの表面特性の改善は、 複 数層のうちの表層に、 滑剤、 帯電防止剤、 紫外線吸収剤、 共重合ポリマー、 及びそれらの助剤を添加することで達成できる。 From the viewpoint, a single layer is most preferable. When it is desired to improve the surface properties of the film, a layer structure of 2 types 2 layers, 2 types 3 layers, or 3 types 3 layers in which a plurality of types of layers having different compositions are laminated is preferable. Properties that improve include slipperiness, antistatic properties, ultraviolet cutability, and easy adhesion. The improvement of these surface properties can be achieved by adding a lubricant, an antistatic agent, an ultraviolet absorber, a copolymer, and their auxiliaries to the surface layer of the plurality of layers.
[0037] [二軸配向ポリエステルフィルムの特性] [0037] [Characteristics of biaxially oriented polyester film]
( 1 ) 二軸配向ポリエステルフィルムの固有粘度 (1) Intrinsic viscosity of biaxially oriented polyester film
前記二軸配向ポリエステルフィルムの固有粘度は、 〇. 7 丨 /9以上で ある。 前記固有粘度は、 より好ましくは〇. 75 I
Figure imgf000012_0001
であり、 さらに好 ましくは〇. 80
Figure imgf000012_0002
特に好ましくは〇. 90 丨 /9である 。 〇. 70 丨 /9以上であるため、 キャスト時の結晶化が抑制され、 未延 伸シートの降伏応力が低くなるため、 結果的に延伸時に破断が生じ難くなる 傾向となる。
The biaxially oriented polyester film has an intrinsic viscosity of 0.7 0.7 / 9 or more. The intrinsic viscosity is more preferably 0.75 I
Figure imgf000012_0001
And more preferably 〇.80
Figure imgf000012_0002
Particularly preferred is 0.90 / 9 . ○ Since it is 70 70 / 9 or more, crystallization at the time of casting is suppressed and the yield stress of the unstretched sheet becomes low, and as a result, breakage tends not to occur during stretching.
得られる未延伸シートの固有粘度の上限は好ましくは 1. 2 丨 /9であ り、 さらに好ましくは 1. 1 丨 /9である。 ·! . 2 丨 /9以下であるとThe upper limit of the intrinsic viscosity of the obtained unstretched sheet is preferably 1.2 丨/ 9 , more preferably 1.1 丨/ 9 . ...! .2 丨/ 9 or less
、 延伸時の応力が高くなりすぎず、 製膜性がより良好となる。 The stress during stretching does not become too high, and the film-forming property becomes better.
なお、 未延伸シートの固有粘度は、 前記二軸配向ポリエステルフィルムの 固有粘度とほぼ同じであり、 下限は好ましくは〇. 7 I / 9であり、 より 好ましくは〇. 75
Figure imgf000012_0003
さらに好ましくは〇. 80 丨 /9で あり、 特に好ましくは〇. 90 丨 /9である。
The intrinsic viscosity of the unstretched sheet is almost the same as the intrinsic viscosity of the biaxially oriented polyester film, and the lower limit is preferably 0.7 I/9, more preferably 0.75.
Figure imgf000012_0003
It is more preferably 0.80 / 9 , and particularly preferably 0.90 / 9 .
なお、 前記二軸配向ポリエステルフィルムの固有粘度を好ましい範囲とす るためには、 可能な限り低温での押出温度とすることが好ましい。 使用する ポリエステル樹脂の固有粘度、 押出機の形状等により温度は変化するが、 低 温での押出により前記二軸配向ポリエステルフィルムの固有粘度の低下を抑 制することができ、 結果的に延伸時に破断が生じ難くなる傾向となる。 In addition, in order to set the intrinsic viscosity of the biaxially oriented polyester film in a preferable range, it is preferable to set the extrusion temperature as low as possible. Although the temperature changes depending on the intrinsic viscosity of the polyester resin used, the shape of the extruder, etc., lowering the intrinsic viscosity of the biaxially oriented polyester film can be suppressed by extrusion at a low temperature, and as a result, during stretching. Breakage tends to occur less easily.
[0038] (2) 二軸配向ポリエステルフィルムの面配向度△ (2) Degree of plane orientation of biaxially oriented polyester film Δ
前記二軸配向ポリエステルフィルムの面配向度△ は 0. 1 45〜〇. 1 \¥02020/175067 11 卩(:171? 2020 /004372 The degree of plane orientation Δ of the biaxially oriented polyester film is 0.1 45 to ○ 0.1 \¥02020/175067 11 11 (:171? 2020 /004372
60である。 前記面配向度八 は、 好ましくは〇. 1 48以上であり、 より 好ましくは 0. 1 5 1以上である。 前記面配向度八 は、 好ましくは 0. 1 58以下であり、 より好ましくは〇. 1 56以下であり、 さらに好ましくは 〇. 1 54以下である。 前記面配向度八 が 0. 1 45以上であるため、 面 配向が好適に高く、 突刺し強さが充分となり、 深絞り成型性により優れる。 また、 前記面配向度
Figure imgf000013_0001
が〇. 1 60以下であるため、 熱収縮率を低く維持 することができ、 熱安定性をより良好なものとすることができる。
60. The plane orientation degree is preferably 0.148 or more, more preferably 0.151 or more. The plane orientation degree is preferably not more than 0.1 58, more preferably not more than 0.156, and even more preferably not more than 0.154. Since the plane orientation degree is 0.145 or more, the plane orientation is suitably high, the puncture strength is sufficient, and the deep drawability is superior. In addition, the degree of plane orientation
Figure imgf000013_0001
Is less than 0.160, the heat shrinkage can be kept low and the thermal stability can be improved.
[0039] (3) 突刺し強さ [0039] (3) Puncture strength
」 丨 3 _ 1 707に準じた突き刺し試験で測定した前記二軸配向ポリエ ステルフィルムの突刺し強さは〇. 401\1/ 以上である。 前記突刺し強 さは、 好ましくは〇. 51\1/ であり、 より好ましくは〇. 61\1/ で ある。 前記突刺し強さが〇. 401\1/ 以上であるため、 深絞り成型性を 良好なものとすることができる。 The puncture strength of the biaxially oriented polyester film measured by the puncture test according to 3 _ 1 707 is 〇.401 \1/ or more. The puncture strength is preferably 0.51\1/, and more preferably 0.61\1/. Since the puncture strength is 〇.401 \1/ or more, the deep drawability can be improved.
前記突刺し強さの上限は〇. 91\1/ が好ましい。 より好ましくは〇. The upper limit of the puncture strength is preferably 0.91\1/. More preferably 〇.
81\1/ であり、 さらに好ましくは〇. 71\1/ である。 〇. 91\1/ 以下であると、 熱収縮率が抑制され、 熱安定性により優れる。 81\1/, and more preferably 〇.71\1/. 〇 When it is less than 91/1/, the heat shrinkage is suppressed and the thermal stability is superior.
[0040] (4) 二軸配向ポリエステルフィルムの厚み及び厚み斑 (4) Thickness and thickness unevenness of the biaxially oriented polyester film
前記二軸配向ポリエステルフィルムの厚みの下限は 5 が好ましい。 よ り好ましくは 7 〇!であり、 さらに好ましくは 9 〇!である。 5 〇!以上で あると、 フィルムとしての強度を充分なものとすることができる。 The lower limit of the thickness of the biaxially oriented polyester film is preferably 5. It is more preferably 70! and even more preferably 90!. When it is at least 50!, the strength as a film can be made sufficient.
前記二軸配向ポリエステルフィルムの厚みの上限は 40 が好ましい。 より好ましくは 30 であり、 さらに好ましくは 20 である。 The upper limit of the thickness of the biaxially oriented polyester film is preferably 40. It is more preferably 30, and even more preferably 20.
柔軟性や省資源の点からは、 厚みは薄い方が好ましい。 From the viewpoint of flexibility and resource saving, it is preferable that the thickness is thin.
[0041] 前記二軸配向ポリエステルフィルムの厚み斑は、 〇. 7%以下である。 前 記厚み斑は、 好ましくは〇. 6%以下であり、 より好ましくは〇. 5%以下 である。 前記厚み斑が〇. 007 %以下であるため、 深絞り成型を行った際 に均一な成型ができ、 フィルムの裂けやピンホールが発生しにくい。 前記厚 み斑の求め方は、 実施例に記載の方法による。 \¥0 2020/175067 12 卩(:171? 2020 /004372 [0041] The uneven thickness of the biaxially oriented polyester film is 0.7% or less. The aforementioned thickness unevenness is preferably 0.6% or less, more preferably 0.5% or less. Since the thickness variation is 0.007% or less, uniform molding can be performed when deep drawing is performed, and tearing of the film and pinholes are less likely to occur. The method for obtaining the thickness unevenness is according to the method described in Examples. \¥0 2020/175067 12 12 (:171? 2020 /004372
[0042] ( 5 ) フィッシュアイ [0042] (5) Fisheye
前記二軸配向ポリエステルフィルムは、 二軸配向ポリエステルフィルム上 の最大直径が 0 . 3〇!〇!以上のフィッシュアイが 5個/〇! 2以下であることが 好ましい。 前記フィッシュアイは、 4個/ 2以下であることがより好ましく 、 3個/ 2以下であることがさらに好ましい。 前記フィッシュアイが 5個/ 2以下であると、 当該二軸配向ポリエステルフィルムの一方の面に、 離型層 を有していても、 巻き取り保管時に、 離型層とは反対側の面上に、 フィッシ ュアイによる離型層への凹凸転写を抑制することができる。 その結果、 フィ ルム品位を損ない難くすることができる。 The biaxially oriented polyester film is preferably the maximum diameter of the biaxially oriented polyester film 0. 3_Rei! 〇! More fisheyes is 5 / 〇! 2 below. The fisheyes, more preferably 4/2 or less, and more preferably 3/2 or less. If the number of fish eyes is not more than 5/2, even if the release layer is provided on one surface of the biaxially oriented polyester film, it is on the surface opposite to the release layer during winding and storage. Moreover, it is possible to suppress the transfer of unevenness onto the release layer by the fisheye. As a result, it is possible to make it difficult to deteriorate the film quality.
[0043] ( 6 ) 三次元平均粗さ
Figure imgf000014_0001
[0043] (6) Three-dimensional average roughness
Figure imgf000014_0001
前記二軸配向ポリエステルフィルム表面の前記一方の面での三次元平均粗 さ 3 3と、 前記他方の面での三次元平均粗さ 3
Figure imgf000014_0002
3との差 (絶対値) は、
Three-dimensional average roughness 3 3 on the one surface of the biaxially oriented polyester film surface, and three-dimensional average roughness 3 on the other surface
Figure imgf000014_0002
The difference (absolute value) from 3 is
〇. 0 1 以下であることが好ましい。 前記差は、 より好ましくは 0 . 0 0 8 以下であり、 さらに好ましくは〇. 0 0 6 で以下ある。 前記差 が〇. 0 1 0 以下であると、 前記一方の面のラミネート強度と前記他方 の面のラミネート強度との差が大きくなりすぎることを抑制する。 すなわち 、 ラミネート強度が低い面に応力が集中することを抑制し、 耐破袋性を充分 なものとすることができる。 It is preferably 0.01 or less. The difference is more preferably 0.08 or less, and still more preferably 0.06 or less. When the difference is 0.010 or less, the difference between the laminating strength on the one surface and the laminating strength on the other surface is prevented from becoming too large. That is, it is possible to suppress the concentration of stress on the surface having a low laminate strength, and to make the bag puncture resistance sufficient.
[0044] 前記二軸配向ポリエステルフィルムの前記一方の面の三次元平均粗さ 3
Figure imgf000014_0003
[0044] Three-dimensional average roughness of the one surface of the biaxially oriented polyester film 3
Figure imgf000014_0003
3、 及び、 前記他方の面の三次元平均粗さ 3
Figure imgf000014_0004
3の下限は〇. 0 1 が好 ましい。 より好ましくは〇. 0 2 であり、 さらに好ましくは〇. 0 3 111である。 前記三次元平均粗さ
Figure imgf000014_0005
0 1 |^以上であると、 フィル ムの滑り性をより充分なものとすることができる。
3 and three-dimensional average roughness of the other surface 3
Figure imgf000014_0004
The lower limit of 3 is preferably 0. 01. More preferably, it is 0.02, and even more preferably 0.03 111. The three-dimensional average roughness
Figure imgf000014_0005
When it is 0 1 |^ or more, the slipperiness of the film can be made more sufficient.
前記二軸配向ポリエステルフィルムの前記一方の面の三次元平均粗さ 3
Figure imgf000014_0006
3、 及び、 前記他方の面の三次元平均粗さ 3
Figure imgf000014_0007
3の上限は〇. 1 0 が好 ましい。 より好ましくは〇. 0 8 であり、 さらに好ましくは〇. 0 6 である。 前記三次元平均粗さ
Figure imgf000014_0008
1 〇 以下であると、 フィル ム張り合わせ時の接触面積を充分に確保することができ、 ラミネート強度を \¥02020/175067 13 卩(:171? 2020 /004372
Three-dimensional average roughness of the one surface of the biaxially oriented polyester film 3
Figure imgf000014_0006
3 and three-dimensional average roughness of the other surface 3
Figure imgf000014_0007
The upper limit of 3 is preferably 0.10. It is more preferably 0.08, and further preferably 0.06. The three-dimensional average roughness
Figure imgf000014_0008
When it is 10 or less, it is possible to secure a sufficient contact area at the time of film bonding, and to improve the lamination strength. \¥02020/175067 13 卩 (: 171-1? 2020 /004372
より高め、 耐破袋性をより充分なものとすることができる。 Further, it is possible to further improve the bag breaking resistance.
[0045] (7) 熱収縮率 [0045] (7) Thermal shrinkage
前記二軸配向ポリエステルフィルムの IV! 0方向における 1 50°〇で 1 5分 間加熱後の熱収縮率の上限は 5 %が好ましい。 より好ましくは 3. 0 %であ り、 さらに好ましくは 2. 5%である。 5%以下であると、 後加工で熱を加 えた際にフィルムが大きく縮んでしまうことを抑制でき、 加工がより容易と なる。 The upper limit of the heat shrinkage rate of the biaxially oriented polyester film after heating at 150°° for 15 minutes in the IV!0 direction for 15 minutes is preferably 5%. It is more preferably 3.0% and even more preferably 2.5%. When it is 5% or less, it is possible to prevent the film from shrinking significantly when heat is applied in the post-processing, and the processing becomes easier.
前記二軸配向ポリエステルフィルムの IV! 0方向における 1 50°〇で 1 5分 間加熱後の熱収縮率の下限は〇 %が好ましい。 より好ましくは 0. 8 %であ り、 さらに好ましくは 1. 2%である。 0%%以上であると、 突刺し強さを 高めることができ、 耐破袋性を高く維持できる。 The lower limit of the heat shrinkage rate of the biaxially oriented polyester film after heating at 150° ◯ for 15 minutes in the IV!0 direction is preferably ◯%. It is more preferably 0.8% and even more preferably 1.2%. When it is 0%% or more, the puncture strength can be increased and the bag puncture resistance can be maintained high.
前記二軸配向ポリエステルフィルムの丁 0方向における 1 50°〇で 1 5分 間加熱後の熱収縮率の上限は 5 %が好ましい。 より好ましくは 3. 0 %であ り、 さらに好ましくは 2. 5%である。 5%以下であると、 後加工で熱を加 えた際にフィルムが大きく縮んでしまうことを抑制でき、 加工がより容易と なる。 The upper limit of the heat shrinkage rate of the biaxially oriented polyester film after heating for 15 minutes at 150° in the zero direction for 15 minutes is preferably 5%. It is more preferably 3.0% and even more preferably 2.5%. When it is 5% or less, it is possible to prevent the film from shrinking significantly when heat is applied in the post-processing, and the processing becomes easier.
前記二軸配向ポリエステルフィルムの丁 0方向における 1 50°〇で 1 5分 間加熱後の熱収縮率の下限は一 1 %が好ましい。 より好ましくは 0. 8 %で あり、 さらに好ましくは 1. 2%である。 一 1 %%以上であると、 突刺し強 さを高めることができ、 耐破袋性を高く維持できる。 The lower limit of the heat shrinkage rate of the biaxially oriented polyester film after heating for 15 minutes at 150° in the zero direction for 15 minutes is preferably 11%. It is more preferably 0.8% and even more preferably 1.2%. If it is more than 1% %, the puncture strength can be increased and the bag puncture resistance can be maintained high.
[0046] 前記二軸配向ポリエステルフィルムの衝撃強度の下限は〇. 65」/1 5 が好ましい。 より好ましくは〇. 70」/1 5 であり、 さらに好ま しくは〇. 75」/1 5 である。 [0046] The lower limit of the impact strength of the biaxially oriented polyester film is preferably 0.65"/15. It is more preferably 0. 70"/15, and even more preferably 0. 75"/15.
〇. 65」/1 5 以上であると、 深絞り成型性を良好なものとするこ とができる。 ○ If it is 65.15"/15 or more, the deep drawability can be improved.
前記二軸配向ポリエステルフィルムの衝撃強度の上限は 1. 20」 / 1 5 が好ましい。 より好ましくは 1. 1 0」/1 5 であり、 さらに好ま しくは 1. 00」/ 1 5 〇1である。 ·! . 20」 / 1 5 〇1以下であると、 \¥0 2020/175067 14 卩(:171? 2020 /004372 熱収縮率が抑制され、 熱安定性により優れる。 The upper limit of impact strength of the biaxially oriented polyester film is preferably 1.20"/15. It is more preferably 1.10"/15, and even more preferably 1.00"/1501. ...! .20" / 1501 or less, \\0 2020/175067 14 卩(:171? 2020/004372 The heat shrinkage is suppressed and the heat stability is superior.
[0047] 前記二軸配向ポリエステルフィルムの耐ピンホール性は、 ゲルボフレック ステスターによる屈曲テスト (5 °〇で 1分間あたり 4 0サイクルの速度で、 連続して 2 0 0 0サイクル繰り返す) 後に生じたピンホール数が 1 5個以下 が好ましい。 より好ましくは 1 〇個以下であり、 さらに好ましくは 5個以下 である。 [0047] The pinhole resistance of the biaxially oriented polyester film was determined by a pin test after a bending test using a Gelboflex tester (repeating 2000 cycles continuously at a rate of 40 cycles per minute at 5 ° 〇). The number of holes is preferably 15 or less. The number is more preferably 10 or less, and further preferably 5 or less.
[0048] 前記二軸配向ポリエステルフィルムは、 下記要件 (X) を満たすことが好 ましい。 [0048] The biaxially oriented polyester film preferably satisfies the following requirement (X).
(X) フーリエ変換型赤外分光法スぺクトル強度における全反射法を用い て得られる
Figure imgf000016_0001
(X) Fourier Transform Infrared Spectroscopy Obtained using total reflection method at spectrum intensity
Figure imgf000016_0001
Figure imgf000016_0002
巳の値において、 一方の面の比八/巳 と他方の面の比 /巳との差 (絶対値) が〇. 1以下。
Figure imgf000016_0002
The difference (absolute value) between the ratio of one surface/Mitsumi and the ratio of the other surface/Mimi is 0. 1 or less.
前記差は、 より好ましくは〇. 0 8以下であり、 さらに好ましくは 0 . 0 6以下である。 The difference is more preferably 0.08 or less, still more preferably 0.06 or less.
上記の 1 4 5 0 ± 1 0〇 - 1のピークの吸収強度八は 巳丁の《型結晶の メチレン基に由来する吸収であり、 1 4 1 0 ± 1 0〇 - 1のピークの吸収強 度巳はベンゼン環の炭素結合に由来する吸収である。 また、 吸収強度比八/ 巳の値は配向係数を示す。 配向係数は、 小さいほど結晶性が低く、 高いほど 結晶性が高いことを意味する。 Additional 1 4 5 0 ± 1 0_Rei - 1 of the absorption intensity eighth peak is the absorption derived from the methylene group of the "type crystals Mihinoto, 1 4 1 0 ± 1 0_Rei - absorption strength of 1 peak The degree is absorption derived from the carbon bond of the benzene ring. The value of the absorption intensity ratio of 8/M shows the orientation coefficient. The smaller the orientation coefficient, the lower the crystallinity, and the higher the orientation coefficient, the higher the crystallinity.
前記二軸配向ポリエステルフィルムは、 前記差が〇. 1以下であると、 結 晶性が同等であるため、 一方の面と他方の面とのラミネート強度の差が小さ くなる。 その結果、 ラミネート強度が低い面に応力が集中することを抑制す ることができ、 耐破袋性を充分なものとすることができる。 When the difference is 0.1 or less, the biaxially oriented polyester film has the same crystallinity, and therefore the difference in the laminating strength between one surface and the other surface becomes small. As a result, it is possible to suppress the concentration of stress on the surface having a low laminate strength, and it is possible to make the bag puncture resistance sufficient.
なお、 本明細書では、 前記差や前記吸収強度比八/巳は、 測定サンプルを セッ トする方向を
Figure imgf000016_0003
方向として測定した値を用いている。 これは、
Figure imgf000016_0004
向の測定値が結晶性をより明確に反映しているためである。 より詳細な測定 方法は、 実施例に記載の方法による。
In the present specification, the difference and the absorption intensity ratio of 8/Mn refer to the direction in which the measurement sample is set.
Figure imgf000016_0003
The measured value is used as the direction. this is,
Figure imgf000016_0004
This is because the measured value of direction more clearly reflects the crystallinity. A more detailed measuring method is according to the method described in the examples.
なお、 測定対象の二軸配向ポリエステルフィルムが枚葉のフィルムの場合 \¥0 2020/175067 15 卩(:171? 2020 /004372 If the biaxially oriented polyester film to be measured is a single-wafer film, \¥0 2020/175067 15 卩(: 171-1?2020/004372
、 IV! 0方向が不明な場合がある。 この場合は、 複数の方向に対して吸収強度 比八/巳を求め、 前記差が最も大きくなる方向を IV! 0方向とする。 , IV! 0 The direction may be unknown. In this case, the absorption intensity ratios of 8/M in the plural directions are obtained, and the direction in which the difference is the largest is the IV!0 direction.
[0049] 前記二軸配向ポリエステルフィルムは、 前記一方の面、 前記他方の面のい ずれもの面においても、 前記吸収強度 と前記吸収強度巳の比 /巳の値の 下限は〇. 2が好ましい。 より好ましくは〇. 3であり、 さらに好ましくは 〇. 4である。 前記比八/巳が〇. 2以上であると配向がより高くなり、 結 晶性が高くなり、 力学強度をより充分なものとすることができる。 [0049] In the biaxially oriented polyester film, the lower limit of the ratio of the absorption intensity to the absorption intensity and the value of the / is preferably 0.2 in any one of the one surface and the other surface. .. It is more preferably 0.3 and even more preferably 0.4. When the ratio 8/M is 0.2 or more, the orientation becomes higher, the crystallinity becomes higher, and the mechanical strength can be made more sufficient.
前記比八/巳の値の上限は〇. 9が好ましい。 より好ましくは〇. 8であ り、 さらに好ましくは〇. 7である。 前記比八/巳が〇. 9以下であると、 配向が高くなりすぎず、 結晶性を適度なものとすることができる。 その結果 、 接着剤との親和性を高めることができ、 ラミネート強度をより充分なもの とすることができる。 また、 耐破袋性も充分なものとすることができる。 The upper limit of the value of the ratio Hachi/Mimi is preferably 0.9. More preferably, it is 0.8, and even more preferably 0.7. When the ratio 8/M is 0.9 or less, the orientation does not become too high and the crystallinity can be made moderate. As a result, the affinity with the adhesive can be increased, and the laminating strength can be made more sufficient. In addition, the bag-breaking resistance can be sufficient.
[0050] 前記二軸配向ポリエステルフィルムの前記一方の面の厚み方向の屈折率 åの値、 及び、 前記他方の面の厚み方向の屈折率 åの値の下限は、 1 . 4 8 0が好ましい。 より好ましくは 1 . 4 8 5であり、 さらに好ましくは 1 .[0050] The lower limit of the value of the refractive index in the thickness direction of the one surface of the biaxially oriented polyester film and the value of the refractive index in the thickness direction of the other surface is preferably 1.480. .. It is more preferably 1.45, and even more preferably 1.
4 9 0である。 1 . 4 8 0以上であると、 熱収縮率が抑制され、 熱安定性に より優れる。 4 90. When it is at least 180, the heat shrinkage is suppressed, and the heat stability is more excellent.
前記二軸配向ポリエステルフィルムの前記一方の面の厚み方向の屈折率 åの値、 及び、 前記他方の面の厚み方向の屈折率 åの値の上限は、 1 . 5 1 0が好ましい。 より好ましくは 1 . 5 0 5であり、 さらに好ましくは 1 . The upper limit of the value of the refractive index in the thickness direction of the one surface and the value of the refractive index in the thickness direction of the other surface of the biaxially oriented polyester film is preferably 1.510. It is more preferably 1.50, and even more preferably 1.
5 0 0である。 1 . 5 1 0以下であると、 突刺し強さをより高めることがで き、 結果的に耐破袋性をより十分なものとすることができる。 It is 500. When it is 1.510 or less, the puncture strength can be further increased, and as a result, the bag puncture resistance can be more sufficient.
[0051 ] 前記二軸配向ポリエステルフィルムの前記一方の面、 及び、 前記他方の面 のラミネート強度がともに 4 . 0
Figure imgf000017_0001
以上であることが好ましい。 より好ましくは 5 .
Figure imgf000017_0002
であり、 より好ましくは 6 . 0 1\1 / 1 5 01 111である。
[0051] Both the one surface of the biaxially oriented polyester film and the other surface have a laminating strength of 4.0.
Figure imgf000017_0001
The above is preferable. More preferably 5.
Figure imgf000017_0002
And more preferably 6.0 1\1/1501 111.
4 . 0
Figure imgf000017_0003
以上であると、 袋を作製し、 床に対して平行に落とし た時にラミネート部分から破袋することを抑制でき、 耐破袋性により優れる \¥0 2020/175067 16 卩(:171? 2020 /004372
4.0
Figure imgf000017_0003
If the above is satisfied, it is possible to suppress the bag from being broken from the laminated part when the bag is manufactured and dropped parallel to the floor, and the bag is more resistant to bag breaking. \\0 2020/175067 16 卩 (: 171-1? 2020 /004372
[0052] 前記二軸配向ポリエステルフィルムには、 印刷層を積層していてもよい。 [0052] A printing layer may be laminated on the biaxially oriented polyester film.
印刷層を形成する印刷インクとしては、 水性及び溶媒系の樹脂含有印刷イン クが好ましく使用できる。 ここで印刷インクに使用される樹脂としては、 ア クリル系樹脂、 ウレタン系樹脂、 ポリエステル系樹脂、 塩化ビニル系樹脂、 酢酸ビニル共重合樹脂及びこれらの混合物が例示される。 印刷インクには、 帯電防止剤、 光線遮断剤、 紫外線吸収剤、 可塑剤、 滑剤、 フィラー、 着色剤 、 安定剤、 潤滑剤、 消泡剤、 架橋剤、 耐ブロッキング剤、 酸化防止剤等の公 知の添加剤を含有させてもよい。 As the printing ink for forming the printing layer, water-based and solvent-based resin-containing printing inks can be preferably used. Examples of the resin used in the printing ink include acrylic resin, urethane resin, polyester resin, vinyl chloride resin, vinyl acetate copolymer resin, and mixtures thereof. Printing inks include antistatic agents, light blocking agents, UV absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, defoamers, cross-linking agents, anti-blocking agents, antioxidants, etc. Known additives may be contained.
[0053] 印刷層を設けるための印刷方法としては、 特に限定されず、 オフセッ ト印 刷法、 グラビア印刷法、 スクリーン印刷法等の公知の印刷方法が使用できる 。 印刷後の溶媒の乾燥には、 熱風乾燥、 熱口ール乾燥、 赤外線乾燥等公知の 乾燥方法が使用できる。 [0053] The printing method for providing the printing layer is not particularly limited, and known printing methods such as an offset printing method, a gravure printing method, and a screen printing method can be used. For drying the solvent after printing, known drying methods such as hot air drying, hot air drying, and infrared drying can be used.
[0054] また、 前記二軸配向ポリエステルフィルムには、 本発明の目的を損なわな い限りにおいて、 コロナ放電処理、 グロー放電処理、 火炎処理、 表面粗面化 処理が施されてもよく、 また、 公知のアンカーコート処理、 印刷、 装飾など が施されてもよい。 [0054] The biaxially oriented polyester film may be subjected to corona discharge treatment, glow discharge treatment, flame treatment, and surface roughening treatment as long as the object of the present invention is not impaired. Known anchor coat treatment, printing, decoration and the like may be applied.
[0055] 前記二軸配向ポリエステルフィルムの少なくとも片面に無機薄膜層やアル ミ箔のような金属箔などのガスバリア層を設けることができる。 [0055] A gas barrier layer such as an inorganic thin film layer or a metal foil such as an aluminum foil can be provided on at least one surface of the biaxially oriented polyester film.
[0056] ガスバリア層として無機薄膜層を用いる場合の無機薄膜層としては、 金属 又は無機酸化物からなる薄膜である。 無機薄膜層を形成する材料は、 薄膜に できるものなら特に制限はないが、 ガスバリア性の観点から、 酸化ケイ素 ( シリカ) 、 酸化アルミニウム (アルミナ) 、 酸化ケイ素と酸化アルミニウム との混合物等の無機酸化物が好ましく挙げられる。 特に、 薄膜層の柔軟性と 緻密性を両立できる点からは、 酸化ケイ素と酸化アルミニウムとの複合酸化 物が好ましい。 When the inorganic thin film layer is used as the gas barrier layer, the inorganic thin film layer is a thin film made of metal or inorganic oxide. The material for forming the inorganic thin film layer is not particularly limited as long as it can form a thin film, but from the viewpoint of gas barrier properties, inorganic oxides such as silicon oxide (silica), aluminum oxide (alumina), and a mixture of silicon oxide and aluminum oxide. The thing is preferably mentioned. In particular, a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both flexibility and denseness of the thin film layer.
[0057] この複合酸化物において、 酸化ケイ素と酸化アルミニウムとの混合比は、 金属分の質量比で八 丨が 2 0〜 7 0 %の範囲であることが好ましい。 八 丨濃 \¥0 2020/175067 17 卩(:171? 2020 /004372 [0057] In this composite oxide, the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% in terms of mass ratio of metal content. Hachiro \¥0 2020/175067 17 卩 (: 171? 2020 /004372
度を 2 0 %以上であると、 水蒸気ガスバリア性をより高くすることができる 。 一方、 7 0 %以下であると、 無機薄膜層を柔らかくすることができ、 印刷 やラミネートといった二次加工の際に膜が破壊されてガスバリア性が低下す ることを抑制することができる。 なお、 ここでいう酸化ケイ素とは 3 丨 〇や 3 I 〇2等の各種珪素酸化物又はそれらの混合物であり、 酸化アルミニウムと は、 八 丨 〇や八 丨 23等の各種アルミニウム酸化物又はそれらの混合物であ る。 When the degree is 20% or more, the water vapor gas barrier property can be further enhanced. On the other hand, when the content is 70% or less, the inorganic thin film layer can be softened, and it is possible to prevent the film from being destroyed during the secondary processing such as printing or laminating, thereby lowering the gas barrier property. The term "silicon oxide" as used herein refers to various silicon oxides such as 3 O and 3 I 0 2 or a mixture thereof, and aluminum oxide refers to various aluminum oxides such as 8 O and 8 O 2 O 3 . Or a mixture thereof.
[0058] 無機薄膜層の膜厚は、 通常 1〜 1 0 0 n m、 好ましくは 5〜 5 0 n であ る。 無機薄膜層の膜厚が 1 n m以上であると、 より満足のいくガスバリア性 が得られやすくなる。 一方、 1 〇〇门 以下であると、 耐屈曲性や製造コス 卜の点で有利となる。 The thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 n. When the thickness of the inorganic thin film layer is 1 nm or more, more satisfactory gas barrier properties are likely to be obtained. On the other hand, when it is 100 or less, it is advantageous in terms of bending resistance and manufacturing cost.
[0059] 無機薄膜層を形成する方法としては、 特に制限はなく、 例えば真空蒸着法 、 スパッタリング法、 イオンプレーティング法等の物理蒸着法 ( 〇法) The method for forming the inorganic thin film layer is not particularly limited, and examples thereof include physical vapor deposition methods such as vacuum vapor deposition method, sputtering method, ion plating method (○ method).
、 あるいは化学蒸着法 (<3 0法) 等、 公知の蒸着法を適宜採用すればよい 。 以下、 無機薄膜層を形成する典型的な方法を、 酸化ケイ素 ·酸化アルミニ ウム系薄膜を例に説明する。 例えば、 真空蒸着法を採用する場合は、 蒸着原 料として 3 丨 〇2と八 丨 23の混合物、 あるいは 3 丨 〇2と八 丨の混合物等が 好ましく用いられる。 これら蒸着原料としては通常粒子が用いられるが、 そ の際、 各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであること が望ましく、 好ましい粒子径は 1
Figure imgf000019_0001
である。 加熱には、 抵抗加熱 、 高周波誘導加熱、 電子ビーム加熱、 レーザー加熱などの方式を採用するこ とができる。 また、 反応ガスとして酸素、 窒素、 水素、 アルゴン、 炭酸ガス 、 水蒸気等を導入したり、 オゾン添加、 イオンアシスト等の手段を用いた反 応性蒸着を採用することも可能である。 さらに、 被蒸着体 (蒸着に供する積 層フィルム) にバイアスを印加したり、 被蒸着体を加熱もしくは冷却するな ど、 成膜条件も任意に変更することができる。 このような蒸着材料、 反応ガ ス、 被蒸着体のバイアス、 加熱 ·冷却等は、 スパッタリング法や〇 0法を 採用する場合にも同様に変更可能である。 さらに、 上記無機薄膜層上に印刷 \¥0 2020/175067 18 卩(:171? 2020 /004372
Alternatively, a known vapor deposition method such as a chemical vapor deposition method (<30 method) may be appropriately adopted. Hereinafter, a typical method for forming an inorganic thin film layer will be described by taking a silicon oxide/aluminum oxide thin film as an example. For example, when employing the vacuum evaporation method, a mixture of 3丨〇 2 and eight丨23 as evaporation raw material, or 3丨〇 2 and eight丨mixtures are preferably used. Particles are usually used as these vapor deposition raw materials. At that time, it is desirable that the size of each particle is such that the pressure during vapor deposition does not change.
Figure imgf000019_0001
Is. For heating, resistance heating, high frequency induction heating, electron beam heating, laser heating, and other methods can be adopted. It is also possible to introduce oxygen, nitrogen, hydrogen, argon, carbon dioxide, water vapor or the like as the reaction gas, or employ reactive vapor deposition using means such as ozone addition or ion assist. Furthermore, the deposition conditions can be arbitrarily changed, such as applying a bias to the material to be vapor-deposited (a laminated film to be subjected to vapor deposition) or heating or cooling the material to be vapor-deposited. The vapor deposition material, reaction gas, bias of the object to be vapor-deposited, heating/cooling, etc. can be similarly changed when the sputtering method or the zero method is adopted. Furthermore, printing on the above-mentioned inorganic thin film layer \\0 2020/175067 18 卩 (: 171-1? 2020 /004372
層を積層していてもよい。 The layers may be laminated.
[0060] 本実施形態においては、 前記ガスバリア層の上に保護層を設けることが好 ましい。 金属酸化物からなるガスバリア層は完全に密な膜ではなく、 微小な 欠損部分が点在している。 金属酸化物層上に後述する特定の保護層用樹脂組 成物を塗工して保護層を形成することにより、 金属酸化物層の欠損部分に保 護層用樹脂組成物中の樹脂が浸透し、 結果としてガスバリア性が安定すると いう効果が得られる。 加えて、 保護層そのものにもガスバリア性を持つ材料 を使用することで、 積層フィルムのガスバリア性能も大きく向上することに なる。 [0060] In the present embodiment, it is preferable to provide a protective layer on the gas barrier layer. The gas barrier layer made of metal oxide is not a completely dense film, but has small defects. By coating the metal oxide layer with a specific resin composition for the protective layer, which will be described later, to form the protective layer, the resin in the resin composition for the protective layer penetrates into the defective portion of the metal oxide layer. As a result, the gas barrier property is stabilized. In addition, by using a material with gas barrier properties for the protective layer itself, the gas barrier performance of the laminated film will be greatly improved.
[0061 ] 前記保護層としては、 ウレタン系、 ポリエステル系、 アクリル系、 チタン 系、 イソシアネート系、 イミン系、 ポリブタジエン系等の樹脂に、 エポキシ 系、 イソシアネート系、 メラミン系等の硬化剤を添加したものが挙げられる 。 保護層を形成させる際に使用する溶媒 (溶剤) としては、 例えば、 ベンゼ ン、 トルエン等の芳香族系溶剤; メタノール、 エタノール等のアルコール系 溶剤; アセトン、 メチルエチルケトン等のケトン系溶剤;酢酸エチル、 酢酸 プチル等のエステル系溶剤;エチレングリコ—ルモノメチルエ—テル等の多 価アルコール誘導体等が挙げられる。 [0061] The protective layer includes a urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, polybutadiene-based resin, etc., to which a curing agent such as an epoxy-based, isocyanate-based, or melamine-based resin has been added. Can be mentioned. Examples of the solvent (solvent) used when forming the protective layer include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate; Ester solvents such as butyl acetate; polyhydric alcohol derivatives such as ethylene glycol monomethyl ether, etc. may be mentioned.
[0062] 前記のウレタン樹脂は、 ウレタン結合の極性基が無機薄膜層と相互作用す るとともに、 非晶部分の存在により柔軟性をも有するため、 屈曲負荷がかか つた際にも無機薄膜層へのダメージを抑えることができるため好ましい。 ウレタン樹脂の酸価は 1 〇〜 6
Figure imgf000020_0001
の範囲内であるのが好ま さらに好ましく
Figure imgf000020_0002
脂の酸価が前記範 囲であると、 水分散液とした際に液安定性が向上し、 また保護層は高極性の 無機薄膜上に均一に堆積することができるため、 コート外観が良好となる。
[0062] The above urethane resin has a polar group of a urethane bond interacting with the inorganic thin film layer and also has flexibility due to the presence of an amorphous portion, so that the inorganic thin film layer is also subjected to bending load. It is preferable because damage to the can be suppressed. The acid value of urethane resin is 10 to 6
Figure imgf000020_0001
And more preferably within the range of
Figure imgf000020_0002
When the acid value of the fat is within the above range, the liquid stability is improved when it is made into an aqueous dispersion, and the protective layer can be uniformly deposited on the highly polar inorganic thin film, resulting in a good coat appearance. Becomes
[0063] 前記のウレタン樹脂は、 ガラス転移温度 (丁 9) が 8 0 °〇以上であること が好ましく、 より好ましくは 9 0 °〇以上である。 丁 9を 8 0 °〇以上にするこ とで、 湿熱処理過程 (昇温〜保温〜降温) における分子運動による保護層の \¥0 2020/175067 19 卩(:171? 2020 /004372 [0063] The urethane resin preferably has a glass transition temperature (Ding 9) is 8 0 ° ● As, more preferably 9 0 ° ● As. By setting Ding 9 above 80 ° 〇, the protective layer formed by molecular motion during the wet heat treatment process (temperature increase-heat retention-temperature decrease) \\0 2020/175067 19 卩(: 171-1?2020/004372
膨潤を低減できる。 Swelling can be reduced.
[0064] 前記のウレタン樹脂は、 ガスバリア性向上の面から、 芳香族又は芳香脂肪 族ジイソシアネート成分を主な構成成分として含有するウレタン樹脂を用い ることがより好ましい。 As the urethane resin, it is more preferable to use a urethane resin containing an aromatic or araliphatic diisocyanate component as a main constituent from the viewpoint of improving gas barrier properties.
その中でも、 メタキシリレンジイソシアネート成分を含有することが特に 好ましい。 上記樹脂を用いることで、 芳香環同士のスタッキング効果により ウレタン結合の凝集力を一層高めることができ、 結果として良好なガスバリ ア性が得られる。 Among them, it is particularly preferable to contain the metaxylylene diisocyanate component. By using the above resin, the cohesive force of the urethane bond can be further increased by the stacking effect of the aromatic rings, and as a result, good gas barrier properties can be obtained.
[0065] 本実施形態においては、 ウレタン樹脂中の芳香族又は芳香脂肪族ジイソシ アネートの割合を、 ポリイソシアネート成分 ( ) 1 0 0モル%中、 5 0モ ル%以上 (5 0 ~ 1 0 0モル%) の範囲とすることが好ましい。 芳香族又は 芳香脂肪族ジイソシアネートの合計量の割合は、 6 0〜 1 0 0モル%が好ま しく、 より好ましくは 7 0〜 1 0 0モル%、 さらに好ましくは 8 0〜 1 0 0 モル%である。 このような樹脂として、 三井化学社から市販されている 「夕 ケラック (登録商標) \ZV P B」 シリーズは好適に用いることができる。 芳香 族又は芳香脂肪族ジイソシアネートの合計量の割合が 5 0モル%以上である と、 より良好なガスバリア性が得られる。 [0065] In the present embodiment, the proportion of the aromatic or araliphatic diisocyanate in the urethane resin is not less than 50 mol% in the polyisocyanate component () 100 mol% (50 to 100). Mol%) is preferable. The proportion of the total amount of the aromatic or araliphatic diisocyanate is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, further preferably 80 to 100 mol%. is there. As such a resin, "Yukerack (registered trademark) \ZV P B" series commercially available from Mitsui Chemicals, Inc. can be preferably used. When the proportion of the total amount of aromatic or araliphatic diisocyanate is 50 mol% or more, better gas barrier properties can be obtained.
[0066] 前記ウレタン樹脂は、 無機薄膜層との親和性向上の観点から、 カルボン酸 基 (カルボキシル基) を有することが好ましい。 ウレタン樹脂にカルボン酸 (塩) 基を導入するためには、 例えば、 ポリオール成分として、 ジメチロー ルプロピオン酸、 ジメチロールブタン酸等のカルボン酸基を有するポリオー ル化合物を共重合成分として導入すればよい。 また、 カルボン酸基含有ウレ タン樹脂を合成後、 塩形成剤により中和すれば、 水分散体のウレタン樹脂を 得ることができる。 塩形成剤の具体例としては、 アンモニア、 トリメチルア ミン、 トリエチルアミン、 トリイソプロピルアミン、 トリー 11—プロピルア ミン、 トリー 1·! -ブチルアミン等のトリアルキルアミン類、 1\1 -メチルモル ホリン、 1\1—エチルモルホリン等の 1\1—アルキルモルホリン類、 1\1—ジメチ ルエタノールアミン、 1\1 _ジエチルエタノールアミン等の 1\1 _ジアルキルア \¥0 2020/175067 20 卩(:171? 2020 /004372 From the viewpoint of improving the affinity with the inorganic thin film layer, the urethane resin preferably has a carboxylic acid group (carboxyl group). In order to introduce the carboxylic acid (salt) group into the urethane resin, for example, a polyol component having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid may be introduced as a copolymerization component. .. Further, a urethane resin of an aqueous dispersion can be obtained by synthesizing a carboxylic acid group-containing urethane resin and then neutralizing it with a salt forming agent. Specific examples of the salt forming agent include ammonia, trimethylamine, triethylamine, triisopropylamine, tree 11-propylamine, tree 1!-trialkylamines such as butylamine, 1\1-methylmorpholine, 1\1. — 1\1—Alkylmorpholines such as ethylmorpholine, 1\1—Dimethylethanolamine, 1\1 _ Dialkylethanolamine and other 1\1 _dialkylamines \¥0 2020/175067 20 20 (:171? 2020 /004372
ルカノールアミン類等が挙げられる。 これらは単独で使用してもよいし、 2 種以上を併用してもよい。 Examples thereof include lucanolamines. These may be used alone or in combination of two or more.
[0067] 前記二軸配向ポリエステルフィルムには他素材の層を積層しても良く、 そ の方法として、 二軸配向ポリエステルフィルムを作製後に貼り合わせるか、 製膜中に貼り合わせることができる。 [0067] The biaxially oriented polyester film may be laminated with a layer made of another material, and as a method thereof, the biaxially oriented polyester film may be attached after being produced or may be attached during film formation.
[0068] 前記二軸配向ポリエステルフィルムは、 例えば、 前記二軸配向ポリエステ ルフィルムに無機蒸着層を設け、 更にシーラントと呼ばれるヒートシール性 樹脂層 (シーラント層ともいう) を形成し、 包装材料として使用することが できる。 ヒートシール性樹脂層の形成は、 通常、 押出しラミネート法あるい はドライラミネート法によりなされる。 ヒートシール性樹脂層を形成する熱 可塑性重合体としては、 シーラント接着性が充分に発現できるものであれば よく、
Figure imgf000022_0001
巳などのポリエチレン樹脂類、 ポリプ ロピレン樹脂。 エチレンー酢酸ビニル共重合体、 エチレンー « -オレフィン ランダム共重合体、 アイオノマー樹脂等を使用できる。
[0068] The biaxially oriented polyester film is used, for example, as a packaging material by forming an inorganic vapor deposition layer on the biaxially oriented polyester film and further forming a heat-sealable resin layer (also referred to as a sealant layer) called a sealant. be able to. The heat-sealable resin layer is usually formed by an extrusion laminating method or a dry laminating method. The thermoplastic polymer forming the heat-sealable resin layer may be any one as long as it can sufficiently exhibit sealant adhesiveness,
Figure imgf000022_0001
Polyethylene resin such as Mami and polypropylene resin. Ethylene-vinyl acetate copolymer, ethylene-olefin-random copolymer, ionomer resin and the like can be used.
[0069] シーラント層は、 単層フィルムであってもよく、 多層フィルムであっても よく、 必要とされる機能に応じて選択すればよい。 例えば、 防湿性を付与す る点では、 エチレンー環状オレフィン共重合体やポリメチルペンテン等の樹 脂を介在させた多層フィルムが使用できる。 [0069] The sealant layer may be a single-layer film or a multi-layer film, and may be selected according to the required function. For example, from the viewpoint of imparting moisture resistance, a multilayer film in which a resin such as an ethylene-cyclic olefin copolymer or polymethylpentene is interposed can be used.
また、 シーラント層は、 難燃剤、 スリップ剤、 アンチブロッキング剤、 酸 化防止剤、 光安定剤、 粘着付与剤等の各種添加剤が配合されてもよい。 シーラント層の厚さは、 1 0〜 1 0 0 〇1が好ましく、 2 0〜 6 0 〇!が より好ましい。 Further, the sealant layer may be mixed with various additives such as a flame retardant, a slip agent, an anti-blocking agent, an antioxidant, a light stabilizer and a tackifier. The thickness of the sealant layer is preferably from 10 to 1001 and more preferably from 20 to 600!.
[0070] 前記二軸配向ポリエステルフィルムは、 包装用積層体の基材フィルム (基 材層) として使用することができる。 包装用積層体の層構成としては、 /で 層の境界を表わすと、 例えば、 基材層/ガスバリア層/保護層、 基材層/ガ スバリア層/保護層/接着剤層/シーラント層、 基材層/ガスバリア層/保 護層/接着剤層/樹脂層/接着剤層/シーラント層、 基材層/接着剤層/樹 脂層/ガスバリア層/保護層/接着剤層/シーラント層、 基材層/ガスバリ \¥0 2020/175067 21 卩(:171? 2020 /004372 The biaxially oriented polyester film can be used as a base film (base layer) of a packaging laminate. In the layer structure of the packaging laminate, / is used to represent the layer boundary.For example, base layer/gas barrier layer/protective layer, base layer/gas barrier layer/protective layer/adhesive layer/sealant layer, base layer Material layer/gas barrier layer/protective layer/adhesive layer/resin layer/adhesive layer/sealant layer, base material layer/adhesive layer/resin layer/gas barrier layer/protective layer/adhesive layer/sealant layer, base Material layer/gas burr \¥0 2020/175067 21 卩 (: 171-1? 2020 /004372
ア層/保護層/印刷層/接着剤層/シーラント層、 基材層/印刷層/ガスバ リア層/保護層/接着剤層/シーラント層、 基材層/ガスバリア層/保護層 /接着剤層/樹脂層/印刷層/接着剤層/シーラント層、 基材層/接着剤層 /樹脂層/印刷層/ガスバリア層/保護層/接着剤層/シーラント層、 基材 層/印刷層/ガスバリア層/保護層/接着剤層/樹脂層/接着剤層/シーラ ント層、 基材層/印刷層/接着剤層/樹脂層/ガスバリア層/保護層/接着 剤層/シーラント層、 基材層/接着剤層/樹脂層/ガスバリア層/保護層/ 印刷層/接着剤層/シーラント層、 等が挙げられる。 A layer/protective layer/printing layer/adhesive layer/sealant layer, base material layer/printing layer/gas barrier layer/protective layer/adhesive layer/sealant layer, base material layer/gas barrier layer/protective layer/adhesive layer / Resin layer / Printing layer / Adhesive layer / Sealant layer, Base material layer / Adhesive layer / Resin layer / Printing layer / Gas barrier layer / Protective layer / Adhesive layer / Sealant layer, Base material layer / Printing layer / Gas barrier layer /Protective layer/adhesive layer/resin layer/adhesive layer/sealant layer, substrate layer/printing layer/adhesive layer/resin layer/gas barrier layer/protective layer/adhesive layer/sealant layer, substrate layer/ Examples include adhesive layer/resin layer/gas barrier layer/protective layer/printing layer/adhesive layer/sealant layer.
[0071 ] 前記二軸配向ポリエステルフィルムを用いた積層体は、 包装製品、 各種ラ ベル材料、 蓋材、 シート成型品、 ラミネートチューブ等の用途に好適に使用 することができる。 特に、 包装用袋 (例えば、 ピロー袋、 スタンディングパ ウチや 4方バウチ等のバウチ) に用いられる。 積層体の厚さは、 その用途に 応じて、 適宜決定することができる。 例えば、 5〜 5 0 0 、 好ましくは 1 0〜 3 0 0 程度の厚みのフィルムないしシート状の形態で用いられる The laminate using the biaxially oriented polyester film can be suitably used for applications such as packaging products, various label materials, lid materials, sheet molded products, and laminated tubes. In particular, it is used for packaging bags (eg pillow bags, standing pouches and bouches such as 4-way pouches). The thickness of the laminate can be appropriately determined according to its application. For example, it is used in the form of a film or sheet having a thickness of about 5 to 500, preferably about 10 to 300.
[0072] [二軸配向ポリエステルフィルムの製造方法] [0072] [Method for producing biaxially oriented polyester film]
前記二軸配向ポリエステルフィルムを得るための好適な方法として、 幅方 向の厚み精度の観点から丁ダイ方式が好ましい。 インフレーション方式では その製造方法に起因して延伸倍率が上がりにくく、 幅方向の厚み不良が生じ ることがある。 As a suitable method for obtaining the biaxially oriented polyester film, the die method is preferable from the viewpoint of thickness accuracy in the width direction. In the inflation method, the draw ratio is difficult to increase due to the manufacturing method, and thickness defects in the width direction may occur.
また前記二軸配向ポリエステルフィルムを得るための好適な方法として、 溶融ポリエステル樹脂組成物を冷却口ールにキャストする時に、 従来はスタ ティックミキサーなどで同一組成の樹脂を 8層以上に多層化することによつ て結晶化を抑えて均一な未延伸シートを得る方法が提案されているが、 高い 品位を有するフィルムが得られる観点、 及び、 設備の簡便さや保守性の観点 から以下に記載する均質な未延伸シートを得るキャスト方法で、 溶融押出し する際に 7層以下の積層にすることが好ましい。 積層数は 3層以下が更に好 ましい。 設備のメンテナンスの面では、 単層が最も好ましい。 フィルムの表 \¥02020/175067 22 卩(:171? 2020 /004372 As a preferred method for obtaining the biaxially oriented polyester film, when a molten polyester resin composition is cast in a cooling port, conventionally, a resin having the same composition is multilayered into eight layers or more by a static mixer or the like. Therefore, a method for suppressing crystallization and obtaining a uniform unstretched sheet has been proposed, but it is described below from the viewpoint of obtaining a film with high quality, and from the viewpoint of facility simplicity and maintainability. It is a casting method for obtaining a uniform unstretched sheet, and it is preferable to form a laminate of 7 layers or less at the time of melt extrusion. More preferably, the number of layers is 3 or less. In terms of equipment maintenance, single layer is the most preferable. Film table \¥02020/175067 22 22 (:171? 2020 /004372
面の特性を改善したい場合は、 2種 2層、 2種 3層、 あるいは 3種 3層の層 構成が好ましい。 When it is desired to improve the surface characteristics, a layer structure of 2 types 2 layers, 2 types 3 layers, or 3 types 3 layers is preferable.
巳丁樹脂は結晶化速度が速いため、 得られる未延伸シートの固有粘度の 下限は好ましくは〇. 7 丨 /9であり、 より好ましくは〇. 75 丨 /9 であり、 さらに好ましくは〇. 80 丨 /9であり、 特に好ましくは 0. 9 0〇1 丨 /9である。 〇. 70 ¢1 丨 /9以上であると、 キャスト時の結晶化が 抑制され、 未延伸シートの降伏応力が低くなるため、 結果的に延伸時に破断 が生じ難くなる傾向となる。 Since Mitsuko resin has a high crystallization rate, the lower limit of the intrinsic viscosity of the obtained unstretched sheet is preferably 0.77 / 9 , more preferably 0.75 / 9 , and further preferably 0. It is 80 / 9 , and particularly preferably 0.901 /9. ◯. When it is 70 70 ¢1 /9 or more, crystallization during casting is suppressed and the yield stress of the unstretched sheet becomes low, and as a result, breakage tends not to occur during stretching.
得られる未延伸シートの固有粘度の上限は好ましくは 1. 2 丨 /9であ り、 さらに好ましくは 1. 1 丨 /9である。 ·! . 2 丨 /9以下であるとThe upper limit of the intrinsic viscosity of the obtained unstretched sheet is preferably 1.2 丨/ 9 , more preferably 1.1 丨/ 9 . ...! .2 丨/ 9 or less
、 延伸時の応力が高くなりすぎず、 製膜性がより良好となる。 The stress during stretching does not become too high, and the film-forming property becomes better.
[0073] ダイス温度の下限は好ましくは 240°〇であり、 より好ましくは 245°〇 であり、 特に好ましくは 250°〇である。 240°〇以上であると、 吐出がよ り安定し、 厚みをより均一とすることができる。 The lower limit of the die temperature is preferably 240°, more preferably 245°, and particularly preferably 250°. If it is 240° or more, the discharge is more stable and the thickness can be made more uniform.
また、 240°〇以上であると、 樹脂の溶融押出し工程内で滞留した 巳丁 樹脂が未溶融物となってフィルム中に混入し、 フィルムの品位を損ねてしま うことを防止することできる。 樹脂溶融温度の上限は好ましくは 275°〇で あり、 より好ましくは 270°〇であり、 最も好ましくは 265°〇である。 2 75°〇以下であると、 樹脂の分解を抑制することができ、 フィルムが脆くな ってしまうことを防止することができる。 また、 得られるフィルムの固有粘 度を高く維持することができ、 製膜性をより良好とすることができる。 ダイス温度の上限は好ましくは 300 °〇であり、 より好ましくは 290 °〇 以下であり、 さらに好ましくは 280°◦以下である。 300°◦以下であると 、 厚みが不均一となることを抑制することができる。 また、 樹脂の劣化が起 こり、 ダイリツプ汚れなどで外観不良となることを抑制することができる。 Further, when the temperature is 240° or more, it is possible to prevent the resin remaining in the resin melt extrusion step from becoming an unmelted substance and being mixed into the film, thereby impairing the quality of the film. The upper limit of the resin melting temperature is preferably 275 ° , more preferably 270°, and most preferably 265°. When the temperature is 2 75 ° or less, the decomposition of the resin can be suppressed and the film can be prevented from becoming brittle. Further, the inherent viscosity of the obtained film can be maintained high, and the film-forming property can be further improved. The upper limit of the die temperature is preferably 300 ° 〇, more preferably 290 ° 〇 or less, more preferably 280 ° ◦ below. When it is 300°° or less, it is possible to prevent the thickness from becoming uneven. Further, it is possible to prevent the appearance of the resin from being deteriorated due to stains on the die lip or the like.
[0074] 樹脂の溶融押出し工程におけるスクリユーの回転数の下限は好ましくは 7 [0074] The lower limit of the rotation number of the screw in the resin melt extrusion step is preferably 7
0 「 であり、 より好ましくは 80 「 であり、 特に好ましくは 90 「 〇1である。 70 「 01以上であると吐出がより安定し、 厚みがより均一と \¥0 2020/175067 23 卩(:171? 2020 /004372 0 ", more preferably 80 ", and particularly preferably 90 "01. 70 "01 or more results in more stable discharge and more uniform thickness. \\0 2020/175067 23 23 (:171? 2020 /004372
なる。 また、 樹脂の混ざりがより十分となり、 外観不良をより抑制すること ができる。 Become. In addition, the mixing of the resin becomes more sufficient, and the appearance defect can be further suppressed.
樹脂の溶融押し出し工程におけるスクリューの回転数の上限は好ましくは 1 5 0 「 01であり、 より好ましくは 1 3 0 「 01であり、 特に好ましくは 1 1 0 「 である。 1 5 0 「 以下であると、 せん断発熱により溶融樹 脂の分解が進行することを抑制することができ、 得られるフィルムの固有粘 度の低下を抑制でき、 製膜性をより良好とすることができる。 The upper limit of the number of rotations of the screw in the resin melt extrusion step is preferably 150 0 "01, more preferably 1 3 0 "01, and particularly preferably 1 1 0 ". If so, it is possible to prevent the decomposition of the molten resin from proceeding due to shearing heat generation, to suppress the decrease in the intrinsic viscosity of the obtained film, and to improve the film-forming property.
[0075] 冷却口ール温度の上限は好ましくは 4 0 °〇であり、 より好ましくは 1 0 °〇 以下である。 4 0 °〇以下であると、 溶融したポリエステル樹脂組成物が冷却 固化する際の結晶化度が高くなりすぎず、 延伸がより容易となる。 また、 ラ ミネート強度を高くすることができ、 耐破袋性をより良好とすることができ る。 [0075] The upper limit of the cooling port temperature is preferably 40°, and more preferably 10° or less. If it is 40 ° C. or less, the crystallinity of the molten polyester resin composition upon cooling and solidification does not become too high, and the stretching becomes easier. In addition, the lamination strength can be increased, and the bag breaking resistance can be improved.
冷却口ール温度の下限は好ましくは 0 °〇である。 0 °〇以上であると、 溶融 したポリエステル樹脂組成物が冷却固化する際の結晶化抑制の効果を充分に 発揮できる。 また冷却口ールの温度を上記の範囲とする場合、 結露防止のた め冷却口ール付近の環境の湿度を下げておくことが好ましい。 The lower limit of the cooling port temperature is preferably 0°. When it is 0° or more, the effect of suppressing crystallization when the molten polyester resin composition is cooled and solidified can be sufficiently exhibited. When the temperature of the cooling port is within the above range, it is preferable to reduce the humidity of the environment near the cooling port to prevent dew condensation.
[0076] 冷却口ール表面に溶融ポリエステル樹脂組成物をキャストした時、 表面に 高温の樹脂が接触するため冷却口ール表面の温度が上昇する。 通常、 チルロ —ルは内部に配管を通して冷却水を流して冷却するが、 充分な冷却水量を確 保する、 配管の配置を工夫する、 配管にスラツジが付着しないようメンテナ ンスを行う、 などして、 チルロール表面の幅方向の温度差を少なくする必要 がある。 特に 8層以上に多層化することによって均一な未延伸シートを得る 方法を用いない場合には、 未延伸シートの結晶化が進みやすいので注意が必 要である。 [0076] When the molten polyester resin composition is cast on the surface of the cooling hole, the temperature of the surface of the cooling hole rises because the high temperature resin comes into contact with the surface. Normally, the chill roll is cooled by injecting cooling water through the pipe inside, but to ensure a sufficient amount of cooling water, devise the arrangement of the pipe, and maintain the pipe so that sludge does not adhere to it. It is necessary to reduce the temperature difference across the width of the chill roll surface. In particular, unless the method of obtaining a uniform unstretched sheet by forming multiple layers of 8 layers or more is used, crystallization of the unstretched sheet is likely to proceed, so caution is required.
このとき、 未延伸シートの厚みは 1 5〜 2 5 0 0 〇1の範囲が好適である 。 より好ましくは 5 0 0 以下であり、 さらに好ましくは 3 0 0 以下 である。 At this time, the thickness of the unstretched sheet is preferably in the range of 15 to 2500. It is more preferably 500 or less, and further preferably 300 or less.
[0077] 未延伸シートの 面 (冷却口ールに接する面) と巳面 (冷却口ールに接し \¥0 2020/175067 24 卩(:171? 2020 /004372 [0077] The surface of the unstretched sheet (the surface in contact with the cooling hole) and the surface of the unstretched sheet (in contact with the cooling hole) \¥0 2020/175067 24 卩 (: 171? 2020 /004372
た面とは反対側の面) の結晶化度の差を小さくする観点から、 二軸配向ポリ エステルフィルム製造用の樹脂組成物を冷却口ールにキャストした後 (工程 八の後) 、 冷却口ール上の未延伸シートの巳面も急冷することが好ましい。 巳面を急冷することによって、 面との結晶化度の差が小さくなる。 また、 未延伸シート全体の結晶化度が低く結晶化度の斑が少なくなる。 その結果、(The surface opposite to the surface on the opposite side) from the viewpoint of reducing the difference in crystallinity, after casting the resin composition for producing the biaxially oriented polyester film in the cooling port (after step 8), cooling It is also preferable to rapidly cool the face of the unstretched sheet on the mouth. By quenching the face, the difference in crystallinity from the face is reduced. Further, the crystallinity of the entire unstretched sheet is low, and the unevenness of the crystallinity is reduced. as a result,
2軸延伸が容易にでき、 面配向度と突刺し強さが高く、 厚み斑が少ないフィ ルムを得ることができる。 急冷する方法は特に限定されないが、 設備の簡便 さや保守性の面から、 マルチダクトによる冷却風を吹き付ける方法が好まし い。 A biaxially stretched film can be easily obtained, a high degree of plane orientation and a high puncture strength, and a film with less thickness unevenness can be obtained. The method of quenching is not particularly limited, but a method of blowing cooling air with a multi-duct is preferable from the viewpoint of facility simplicity and maintainability.
冷却風の温度の上限は好ましくは 2 0 °〇であり、 より好ましくは 5 °〇以下 である。 2 0 °〇以下であると、 未延伸シートの巳面の結晶化度が高くなりす ぎず、 ラミネート強度を高く維持でき、 耐破袋性をより良好とすることがで きる。 The upper limit of the temperature of the cooling air is preferably 20 ° 〇, more preferably 5 ° 〇 or less. When it is 20° or less, the crystallinity of the face of the unstretched sheet does not become high, the laminate strength can be maintained high, and the bag breaking resistance can be further improved.
冷却風の温度の下限は一 5 °〇である。 _ 5 °〇以上であると、 未延伸シート の巳面の結晶化抑制効果が充分に得られる。 The lower limit of the temperature of the cooling air is 15 °. When it is at least _ 5 ° 〇, the effect of suppressing the crystallization of the sapphire surface of the unstretched sheet is sufficiently obtained.
[0078] 図 1は、 冷却口ール上の未延伸シートの巳面にマルチダクトからの冷却風 を吹き付ける方法を説明するための正面模式図であり、 図 2は、 その側面図 である。 [0078] Fig. 1 is a schematic front view for explaining a method of blowing cooling air from a multi-duct onto a mound surface of an unstretched sheet on a cooling port, and Fig. 2 is a side view thereof.
図 1、 図 2に示すように、 ダイス 1 0は、 吐出口 1 2が冷却口ール 2 0の 面に対向するように配置されている。 吐出口 1 2と冷却口ール 2 0の面との 距離 (最短距離) は、 特に限定されないが、 一般的に、 2〇 〜 1 〇〇 程 度である。 As shown in FIGS. 1 and 2, the die 10 is arranged so that the discharge port 12 faces the surface of the cooling port 20. The distance (shortest distance) between the discharge port 12 and the surface of the cooling port 20 is not particularly limited, but is generally about 20 to 100.
また、 冷却口ール 2 0の外周面上には、 マルチダクト 3 0が配設されてい る。 Further, a multi-duct 30 is arranged on the outer peripheral surface of the cooling port 20.
マルチダクト 3 0の位置は、 側面図 (図 2) において、 冷却口ール 2 0の 中心に対して、 ダイス 1 0の位置を 0 ° としたときに、 冷却口ール 2 0の回 転方向 (図 2では右回転方向) に対して、 〇〜 4 5 ° の範囲に設置されてい ることが好ましく、 1 0〜 3 5 ° の範囲内に設置されていることがより好ま \¥0 2020/175067 25 卩(:171? 2020 /004372 In the side view (Fig. 2), the position of the multi-duct 30 is the rotation of the cooling port 20 when the position of the die 10 is 0 ° with respect to the center of the cooling port 20. with respect to the direction (in FIG. 2 right rotation direction), 〇_~ 4 5 preferably Rukoto been installed in the range of °, preferable more that is installed in the range of 1 0 to 3 5 ° \¥0 2020/175067 25 卩 (: 171-1? 2020 /004372
しい。 マルチダクト 3 0が前記範囲内に配置されていると、 冷却口ール 2 0 上にキャストされる未延伸シート 4 0の巳面を、 キャスト後すぐに冷却する ことが可能となる。 Good When the multi-duct 30 is arranged within the above range, it is possible to cool the mound surface of the unstretched sheet 40 cast on the cooling port 20 immediately after casting.
また、 二軸配向ポリエステルフィルム製造用の樹脂組成物が冷却口ールに キャストされた時点 (触れた時点) から、 当該部分に前記風が吹き付けられ るまでの時間は、 2 . 0秒以内が好ましく 1 . 0秒以内がより好ましく、 0 . 5秒以内がさらに好ましい。 二軸配向ポリエステルフィルム製造用の樹脂 組成物が冷却口ールにキャストされた時点 (触れた時点) から、 当該部分に 前記風が吹き付けられるまでの時間 (当該部分がマルチダクト 3 0の直下に 移動するまでの時間) が、 2 . 0秒以内であると、 未延伸シート 4 0の巳面 を、 キャスト後すぐに冷却することが可能となる。 Further, the time from the time when the resin composition for producing the biaxially oriented polyester film is cast into the cooling port (the time when it is touched) to the time when the air is blown to the relevant part is within 2.0 seconds. The time is preferably within 1.0 second, more preferably within 0.5 second. The time from the time when the resin composition for producing a biaxially oriented polyester film was cast into the cooling port (the time when it was touched) until the wind was blown to the relevant part (the relevant part was placed directly under the multi-duct 30). If the time (before moving) is within 2.0 seconds, it becomes possible to cool the Mitsumi face of the unstretched sheet 40 immediately after casting.
[0079] マルチダクト 3 0の横幅 (図 1 における左右方向の長さ) は、 キャストさ れる未延伸シート 4 0の幅以上となるものであることが好ましい。 マルチダ クト 3 0の横幅を、 キャストされる未延伸シート 4 0の幅以上とすることに より、 未延伸シート 4 0の巳面の端部まで充分に結晶化抑制効果が得られや すくなる。 その結果、 端部のラミネート強度と中央部のラミネート強度とを 同等に高くすることが可能となる。 The lateral width (length in the left-right direction in FIG. 1) of the multi-duct 30 is preferably greater than or equal to the width of the unstretched sheet 40 to be cast. By setting the width of the multi-duct 30 to be equal to or larger than the width of the unstretched sheet 40 to be cast, it becomes easy to obtain a sufficient crystallization suppressing effect up to the end of the mound face of the unstretched sheet 40. As a result, the laminating strength at the end portion and the laminating strength at the central portion can be made equally high.
[0080] マルチダクト 3 0の縦幅 (図 1 における上下方向の長さ) は、 3 0〇〇1以 上 8 0〇〇!以下であることが好ましく、
Figure imgf000027_0001
以下であるこ とがより好ましい。
[0080] The vertical width of the multi-duct 30 (the length in the vertical direction in Fig. 1) is preferably not less than 30.01 and not more than 80000!
Figure imgf000027_0001
The following is more preferable.
また、 冷却口ール 2 0上において未延伸シート 4 0が移動する速度は、 2 〇|^ /分〜 1 0 0 01 /分であることが好ましく、 4 0 01 /分〜 8 0 01 /分で あることがより好ましい。 The speed at which the unstretched sheet 40 moves on the cooling port 20 is preferably 20 |^/min to 100001/min, and 4001/min to 8001/ More preferably, it is minutes.
マルチダクト 3 0の縦幅を前記数値範囲内とし、 未延伸シート 4 0の速度 を前記数値範囲内とすることにより、 好適な量の冷却風を未延伸シート 4 0 の巳面に吹き付けることができる。 By setting the vertical width of the multi-duct 30 within the above numerical range and the speed of the unstretched sheet 40 within the above numerical range, a suitable amount of cooling air can be blown to the bottom surface of the unstretched sheet 40. it can.
[0081 ] マルチダクト 3 0の冷却口ール 2 0からの高さの上限は 2 0〇 以下であ り、 より好ましくは 1 〇〇 以下である。 2 0〇 以下であると冷却効率が \¥0 2020/175067 26 卩(:171? 2020 /004372 [0081] The upper limit of the height of the multi-duct 30 from the cooling port 20 is 200 or less, and more preferably 100 or less. Cooling efficiency is less than 200 \¥0 2020/175067 26 卩 (: 171? 2020 /004372
向上し、 未延伸シート 4 0の巳面の結晶化抑制効果が充分に得られ、 ラミネ -卜強度を大きくすることができる。 As a result, the effect of suppressing crystallization of the unstretched sheet 40 can be sufficiently obtained, and the laminar strength can be increased.
マルチダクト 3 0の冷却口ール 2 0からの高さの下限は特に制限されない が、 未延伸シート 4 0に接触しない範囲が望ましい。 The lower limit of the height of the multi-duct 30 from the cooling port 20 is not particularly limited, but is preferably within a range where it does not come into contact with the unstretched sheet 40.
[0082] マルチダクト 3 0からの冷却風の風速の上限は好ましくは 2
Figure imgf000028_0001
1 nであり、 より好ましくは 1 8 0〇1 / |11 丨 以下である。 2 0 0 111 / 111 I 1^ 以下であると、 溶融したシート形成用樹脂組成物をキャストする際の接地点 が冷却風によりぶれることを抑制することができる。
[0082] The upper limit of the wind speed of the cooling air from the multi-duct 30 is preferably 2
Figure imgf000028_0001
It is 1 n, and more preferably 1800 1 / | 11 or less. When it is not more than 2 0 0 111/111 I 1^, it is possible to prevent the ground contact point when casting the molten sheet-forming resin composition from being shaken by cooling air.
冷却風の風速の下限は 5 0 111 / 111 丨 が好ましい。 5 0〇1 / |11 丨 以上で あると、 未延伸シート 4 0の巳面の結晶化抑制効果が充分に得られ、 ラミネ -卜強度を高くすることができる。 The lower limit of the cooling air velocity is preferably 5 0 111 /111 丨. When it is at least 5 01/|11, it is possible to sufficiently obtain the effect of suppressing the crystallization of the non-stretched sheet 40 at the pit plane, and it is possible to increase the laminar strength.
[0083] 上述した中でも、 本実施形態に係る二軸配向ポリエステルフィルムの製造 方法は、 二軸配向ポリエステルフィルム製造用の樹脂組成物を冷却口ールに キャストして未延伸シートを形成する工程 と、 前記冷却口ール上の前記未 延伸シートに 5 °〇以下の風を吹き付ける工程巳とを有することが好ましい。 Among the above, the method for producing a biaxially oriented polyester film according to the present embodiment, the step of casting the resin composition for producing a biaxially oriented polyester film in a cooling port to form an unstretched sheet, It is preferable that the method includes a step of blowing air of 5° or less onto the unstretched sheet on the cooling port.
[0084] 次に延伸方法について説明する。 延伸方法は、 同時二軸延伸でも逐次二軸 延伸でも可能であり、 特に限定されない。 Next, the stretching method will be described. The stretching method may be simultaneous biaxial stretching or sequential biaxial stretching, and is not particularly limited.
[0085] 長手方向 (以下、 IV! 0方向ともいう) の延伸温度の下限は好ましくは 5 5 °〇であり、 より好ましくは 6 0 °〇である。 5 5 °〇以上であると、 破断をより 抑制することができる。 また、 縦方向の配向が強くなりすぎるのを防ぎ、 IV! 〇方向の熱収縮率が大きくなることを抑制することができる。 IV! 0方向の延 伸温度の上限は好ましくは 1 〇〇°〇であり、 より好ましくは 9 5 °〇である。[0085] The lower limit of the stretching temperature in the longitudinal direction (hereinafter, also referred to as IV! 0 direction) is preferably 55°, and more preferably 60°. If it is at least 55°, fracture can be further suppressed. Further, it is possible to prevent the orientation in the vertical direction from becoming too strong, and to suppress an increase in the thermal shrinkage in the IV! IV! 0 direction of the upper limit of the extension Shin temperature is preferably 1 hundred ° 〇, more preferably 9 5 ° 〇.
1 0 0 °〇以下であると、 配向を充分に持たせることができ、 力学特性をより 高めることができる。 When it is 100 ° or less, the orientation can be sufficiently provided and the mechanical properties can be further enhanced.
[0086] IV! 0方向の延伸倍率の下限は好ましくは 2 . 5倍であり、 特に好ましくは [0086] The lower limit of the draw ratio in the IV!0 direction is preferably 2.5 times, and particularly preferably.
2 . 7倍である。 2 . 5倍以上であると、 配向を充分に持たせることができ 、 力学特性をより高めることができる。 また、 2 . 5倍以上であると、 厚み ムラを抑制することができ、 フィルムロールの弛みを防止することができる \¥02020/175067 27 卩(:171? 2020 /004372 2.7 times. When it is 2.5 times or more, the orientation can be sufficiently provided and the mechanical properties can be further enhanced. Further, when it is 2.5 times or more, the thickness unevenness can be suppressed and the slack of the film roll can be prevented. \¥02020/175067 27 卩 (: 171? 2020 /004372
IV! 0方向の延伸倍率の上限は好ましくは 3. 8倍であり、 より好ましくは 3. 6倍であり、 特に好ましくは 3. 4倍である。 3. 8倍以下であると、 力学強度や厚みムラ改善の効果が充分に得られる。 The upper limit of the stretching ratio in the IV!0 direction is preferably 3.8 times, more preferably 3.6 times, and particularly preferably 3.4 times. When it is not more than 8 times, the effect of improving mechanical strength and thickness unevenness can be sufficiently obtained.
[0087] 幅方向 (以下、 丁 0方向ともいう) の延伸温度の下限は好ましくは 55°〇 であり、 より好ましくは 60°〇である。 55 °〇以上であると、 破断を起こり にくくすることができる。 また、 横方向の配向が強くなりすぎるのを防ぎ、[0087] The lower limit of the stretching temperature in the width direction (hereinafter, also referred to as the 0 direction) is preferably 55° 〇, and more preferably 60 ° 〇. If it is 55 ° or more, it is possible to make it difficult for fracture to occur. It also prevents the lateral orientation from becoming too strong,
70方向の熱収縮率が大きくなることを抑制することができる。 It is possible to prevent the heat shrinkage in the 70 direction from increasing.
丁 0方向の延伸温度の上限は好ましくは 1 00°〇であり、 より好ましくは 95°〇である。 1 00°〇以下であると、 配向を充分に持たせることができ、 力学特性をより高めることができる。 The upper limit of the stretching temperature Ding 0 direction is preferably 1 00 ° 〇, more preferably 95 ° 〇. When it is 100 ° or less, the orientation can be sufficiently provided, and the mechanical properties can be further enhanced.
[0088] 丁 0方向の延伸倍率の下限は好ましくは 3. 7倍であり、 より好ましくは [0088] The lower limit of the draw ratio in the 0-direction is preferably 3.7 times, and more preferably
3. 8倍であり、 特に好ましくは 3. 9倍である。 3. 7倍以上であると幅 方向の配向度を大きくすることができ、 力学強度を高くすることができる。 丁 0方向の延伸倍率の上限は好ましくは 5. 0倍であり、 より好ましくは It is 3.8 times, and particularly preferably 3.9 times. If it is 3.7 times or more, the degree of orientation in the width direction can be increased and the mechanical strength can be increased. The upper limit of the draw ratio in the 0-direction is preferably 5.0 times, and more preferably
4. 6倍であり、 特に好ましくは 4. 3倍である。 5. 0倍以下であると、 フィルムの破断が少なく、 かつ力学強度や厚みムラ改善の効果が充分得られ る。 It is 4.6 times, particularly preferably 4.3 times. When it is 5.0 times or less, the film is less ruptured, and the effect of improving mechanical strength and thickness unevenness is sufficiently obtained.
[0089] 熱固定温度の下限は好ましくは 1 85 °〇であり、 より好ましくは 1 90°〇 である。 1 85°〇以上であると熱収縮率をより小さくすることができる。 熱固定温度の上限は好ましくは 220°〇である。 220°〇以下であると、 フィルムが融けてしまうことや、 著しく脆くなることを防止することができ る。 [0089] The lower limit of the heat setting temperature is preferably 185 ° 〇, more preferably 1 90 ° 〇. When it is 1 85° or more, the heat shrinkage rate can be further reduced. The upper limit of the heat setting temperature is preferably 220°○. If it is 220° or less, it is possible to prevent the film from melting and becoming extremely brittle.
熱固定温度は、 巳面と 面とで異なる温度としてもよい。 巳面と 面とで 熱固定温度を異ならせることにより、 結晶性を調整してラミネート強度をよ り高めることができる。 その結果、 耐破袋性をより高めることができる。 熱 固定温度を、 巳面と 面とで異ならせる場合、 その温度差は、 1 0°〇以上 3 0 °〇以下が好ましく、 1 0 °〇以上 20 °〇以下がより好ましい。 \¥02020/175067 28 卩(:171? 2020 /004372 The heat setting temperature may be different between the face and the face. By varying the heat setting temperature between the face and the face, the crystallinity can be adjusted and the laminate strength can be further increased. As a result, the bag breaking resistance can be further enhanced. When the heat fixing temperature is different between the face and the face, the temperature difference is preferably 10° 〇 or more and 30°° or less, and more preferably 10°° or more and 20°° or less. \¥02020/175067 28 卩 (: 171-1? 2020 /004372
[0090] リラックス率の下限は好ましくは〇. 5%である。 〇. 5%以上であると 丁口方向の熱収縮率を低く保つことができる。 [0090] The lower limit of the relaxation rate is preferably 0.5%. ○ When it is more than 0.5%, the heat shrinkage in the direction of the neck can be kept low.
リラックス率の上限は好ましくは 1 0%である。 1 0%以下であるとたる みなどが生じることを防止でき、 平面性を向上させることができる。 The upper limit of the relaxation rate is preferably 10%. When it is 10% or less, slack and the like can be prevented from occurring, and the flatness can be improved.
[0091] リラックスエ程の温度の下限は好ましくは 1 30°〇であり、 より好ましく は 1 50°◦である。 1 30°◦以上であるとリラックスを行った際にフィルム が十分に縮み、 熱収縮率低減効果を十分に得ることが可能となる。 [0091] The lower limit of the temperature for the relaxation process is preferably 130°°, and more preferably 150°°. When it is at least 30°°, the film will be sufficiently shrunk when relaxing and the heat shrinkage reduction effect can be sufficiently obtained.
リラックスエ程温度の上限は好ましくは 1 90 °〇であり、 より好ましくは 1 70°〇である。 1 90°〇以下であると、 シワ等によりフィルムの平面性の 悪化が生じることを抑制することができる。 The upper limit of the relaxation temperature is preferably 190 ° 〇, more preferably 170° 〇. When it is 1 90° or less, it is possible to prevent the flatness of the film from being deteriorated due to wrinkles and the like.
[0092] 以上、 本実施形態に係る二軸配向ポリエステルフィルムの製造方法を説明 した。 [0092] The method for producing the biaxially oriented polyester film according to the present embodiment has been described above.
実施例 Example
[0093] 次に、 実施例により本発明をさらに詳細に説明するが、 本発明は以下の例 に限定されるものではない。 なお、 フィルムの評価は次の測定法によって行 った。 [0093] Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples. The film was evaluated by the following measuring method.
[0094] [フィルムの固有粘度] [0094] [Intrinsic viscosity of film]
実施例、 比較例で作製したフィルムから、 フィルム幅方向の中央位置を中 心とする縦 5
Figure imgf000030_0001
のサンプルをそれぞれ切り出した。
From the films produced in the Examples and Comparative Examples, the vertical direction with the center position in the film width direction as the center
Figure imgf000030_0001
Each sample was cut out.
サンプルについて、 固有粘度は (株) 紫山科学機器製作所社製、 自動粘度 測定装置 「33_600_1_ 1」 を使用して測定した。 溶媒液としては、 —クロロフェノール/ 1 , 1 , 2, 2—テトラクロロエタン = 6/4 (質量 比) の混合液を使用した。 The intrinsic viscosity of the sample was measured using an automatic viscosity measuring device "33_600_1_1" manufactured by Shiyama Scientific Instruments Co., Ltd. As the solvent liquid, a mixed liquid of —chlorophenol/1,1,2,2-tetrachloroethane=6/4 (mass ratio) was used.
[0095] [フィルムの面配向度△ ] [0095] [The degree of plane orientation of the film Δ]
実施例、 比較例で作製したフィルムから、 フィルム幅方向の中央位置を中 心とする縦 5
Figure imgf000030_0002
のサンプルをそれぞれ切り出した。
From the films produced in the examples and comparative examples, the longitudinal direction with the center position in the film width direction as the center
Figure imgf000030_0002
Each sample was cut out.
サンプルについて」 丨 3 < 7 1 42- 1 996 八法により、 ナトリ ウムロ線を光源として接触液としてジヨードメタンを用いてアッベ屈折率計 \¥02020/175067 29 卩(:171? 2020 /004372 Samples” 丨 3 <7 1 42- 1 996 According to the eight method, the Abbe refractometer using sodium triode as the light source and diiodomethane as the contact liquid. \¥02020/175067 29 卩(: 171-1? 2020/004372
によりフィルム長手方向の屈折率 ( 父) 、 幅方向の屈折率 (N 7) 、 厚み 方向の屈折率
Figure imgf000031_0002
を測定し、 下式により
Figure imgf000031_0001
を算出した。
The refractive index in the longitudinal direction of the film (father), the refractive index in the width direction (N7), the refractive index in the thickness direction
Figure imgf000031_0002
Is measured by the following formula
Figure imgf000031_0001
Was calculated.
面配向度 (△?) = [ ( 父十 1\17) /2] -N 2 Degree of plane orientation (△?) = [(Fujyu 1\1 7 )/2] -N 2
[0096] [フィルムの突刺し強さ] [0096] [Strength of film piercing]
実施例、 比較例で作製したフィルムから、 フィルム幅方向の中央位置を中 心とする縦 5
Figure imgf000031_0003
のサンプルをそれぞれ切り出した。
From the films produced in the Examples and Comparative Examples, the vertical direction with the center position in the film width direction as the center
Figure imgf000031_0003
Each sample was cut out.
サンプルについて、 」 1 3-71 707に記載の試験法で測定した値を下 式により 1 換算で算出した。 For the sample, the value measured by the test method described in "1 3-71 707" was calculated as 1 by the following formula.
突刺し強さ (1\1/ ^0 =突刺し強さ実測値/フィルムの厚み Puncture strength (1\1/^0 = measured puncture strength/film thickness
[0097] [フィルムの厚み及び厚み斑] [0097] [Film thickness and thickness unevenness]
長手方向及び幅方向にフィルムを長さ 1 幅 40
Figure imgf000031_0004
の長尺な短冊状に サンプリングし、 ミクロン測定器株式会社製の連続接触式厚み計を用いて、
Length of film in length and width 1 width 40
Figure imgf000031_0004
Sampling into a long strip of, using a continuous contact type thickness gauge manufactured by Micron Measuring Instruments Co., Ltd.
5 /分の速度で測定した。 Measured at a speed of 5/min.
測定された厚みの標準偏差及び厚みの平均値から下式 1で長手方向の厚み 斑 (%) と幅方向の厚み斑 (%) とを算出し、 さらに長手方向の厚み斑 (% ) 及び幅方向の厚み斑 (%) の平均値を厚み斑 (%) とした。 The thickness variation (%) in the longitudinal direction and the thickness variation (%) in the width direction are calculated by the following formula 1 from the standard deviation of the measured thickness and the average value of the thickness, and the thickness variation (%) and the width in the longitudinal direction are calculated. The average value of the thickness unevenness (%) in the direction was defined as the thickness unevenness (%).
厚み斑 = { (厚みの標準偏差) / (厚みの平均値) ) X 1 00 (%) Thickness variation = {(standard deviation of thickness) / (average value of thickness)) X 100 (%)
- 式 1 -Formula 1
[0098] [フィルムの 1 50°〇で 1 5分間加熱後の熱収縮率] [0098] [The heat shrinkage rate of the film after being heated at 150° 〇 for 15 minutes]
ポリエステルフィルムの熱収縮率は、 試験温度 1 50°〇、 加熱時間 1 5分 間とした以外は、 」 丨 3-0-23 1 8記載の寸法変化試験法で測定した。 The heat shrinkage rate of the polyester film was measured by the dimensional change test method described in "3-0-23 18" except that the test temperature was 150° and the heating time was 15 minutes.
[0099] [フィルムの衝撃強度] [0099] [Impact strength of film]
東洋精機製作所株式会社製のフィルムインパクトテスターを使用し、 温度 23°〇、 相対湿度 65%の環境下で 1 0回測定し、 その平均値で評価した。 衝撃球面は、 直径 1 /2インチのものを用いた。 単位は」 /1 5 を用い た。 Using a film impact tester manufactured by Toyo Seiki Seisaku-sho, Ltd., measurement was performed 10 times in an environment of a temperature of 23 ° and a relative humidity of 65%, and the average value was evaluated. The impact sphere used had a diameter of 1/2 inch. The unit used was /15.
[0100] [耐ピンホール性] [0100] [Pinhole resistance]
実施例、 比較例にかかるフィルムを、 20. 3〇 01 (8インチ) X 27. \¥0 2020/175067 30 卩(:171? 2020 /004372 Films according to Examples and Comparative Examples were prepared as 20.3 01 (8 inches) x 27. \¥0 2020/175067 30 卩 (: 171? 2020 /004372
9 ( 1 1インチ) の大きさに切断し、 その切断後の長方形テストフィル ムを、 温度 2 3 °〇の相対湿度 5 0〇/〇の条件下に、 2 4時間以上放置してコン ディシヨニングした。 しかる後、 その長方形テストフィルムを巻架して長さ 2 0 . 3 2〇〇! (8インチ) の円筒状にした。 そして、 その円筒状フィルム の一端を、 ゲルボフレックステスター (理学工業社製、 N 0 . 9 0 1型) ( IV! 丨 1_ -巳一 1 3 1 〇の規格に準拠) の円盤状固定へッ ドの外周に固定し、 円筒状フィルムの他端を、 固定ヘッ ドと 1 7 . 8〇〇! (7インチ) 隔てて対 向したテスターの円盤状可動ヘッ ドの外周に固定した。 そして、 可動ヘッ ド を固定ヘッ ドの方向に、 平行に対向した両ヘッ ドの軸に沿って 7 . 6〇
Figure imgf000032_0001
( 3 . 5インチ) 接近させる間に 4 4 0 ° 回転させ、 続いて回転させることな く 6 . 4〇〇! (2 . 5インチ) 直進させた後、 それらの動作を逆向きに実行 させて可動へッ ドを最初の位置に戻すという 1サイクルの屈曲テストを、 1 分間あたり 4 0サイクルの速度で、 連続して 2 0 0 0サイクル繰り返した。 実施は 5 °〇で行った。 しかる後に、 テストしたフィルムの固定ヘッ ドおよび 可動ヘッ ドの外周に固定した部分を除く 1 7 . 8〇〇! (7インチ) X 2 7 .
Cut into a size of 9 (11 inches), and leave the rectangular test film after cutting for 24 hours or more under the condition of a relative humidity of 500°/° at a temperature of 23°°. did. After that, the rectangular test film was rolled up into a cylindrical shape with a length of 20.3! Then, fix one end of the cylindrical film to a disk-shaped fixing of Gelbo Flex Tester (Rigaku Kogyo Co., Ltd. N 0.901 type) (IV! _ 1_-Mitsuichi 1 13 10 compliant standard). It was fixed to the outer circumference of the head, and the other end of the cylindrical film was fixed to the outer circumference of the disk-shaped movable head of the tester facing the fixed head at 17.8! Then, move the movable head in the direction of the fixed head along the axis of both heads that are parallel and facing each other.
Figure imgf000032_0001
(3.5 inches) Rotate 440 ° while approaching, and then continue to rotate 6.4 〇 〇! (2.5 inches) straight ahead, then perform those actions in the opposite direction. The 1-cycle bending test, in which the movable head was returned to the initial position by means of the test, was repeated 200 0 cycles continuously at a speed of 40 cycles per minute. Implementation was carried out at 5 ° . Then, except for the fixed head of the film tested and the portion fixed to the outer circumference of the movable head, 17.8.00! (7 inches) x 27.
ンチ) 内の部分に生じたピンホール数を計測した (すなわち 、
Figure imgf000032_0002
7 7平方インチ) 当たりのピンホール数を計測した) 。
The number of pinholes generated in the
Figure imgf000032_0002
(The number of pinholes per 7 7 square inches was measured).
[0101 ] [フーリエ変換型赤外分光法 (全反射法) ] [0101] [Fourier transform infrared spectroscopy (total reflection method)]
Figure imgf000032_0003
を用い、 媒質結晶を ダイヤモンドとしてフィルム表層に密着させ、 IV! 0方向に平行に光を入射し つつ、 全反射法によってスペクトル強度を測定した。 分光器の分解能は 4〇 - 1、 スペクトル積算回数は 6 4回として測定した。 スペクトル強度は各波 数での吸光度とする。 下式により算出した。
Figure imgf000032_0003
Using, the medium crystal was brought into close contact with the film surface layer as diamond, and the spectral intensity was measured by the total reflection method while light was incident parallel to the IV!0 direction. The resolution of the spectrometer 4_Rei - 1, spectrum accumulation number was measured as 6 4 times. The spectral intensity is the absorbance at each wave number. It was calculated by the following formula.
吸光度比 (八/巳) =吸光度八
Figure imgf000032_0004
ピークのスぺク トル強度) /吸光度巳 ( 1 4 1 0 ± 1 0〇
Figure imgf000032_0005
のピークのスぺクトル強度) また、 丁 0方向に平行に光を入射しつつ、 IV! 0方向での測定と同様の方法 にてスぺクトル強度の測定も行った。
Absorbance ratio (8/M) = Absorbance 8
Figure imgf000032_0004
Peak spectrum intensity) / Absorbance value (1 4 1 0 ± 1 0 0 0)
Figure imgf000032_0005
In addition, the spectrum intensity was also measured by the same method as the measurement in the IV!0 direction, with light incident parallel to the 0 direction.
[0102] [フィルムの三次元平均粗さ \¥02020/175067 31 卩(:171? 2020 /004372 [0102] [Three-dimensional average roughness of film \¥02020/175067 31 卩 (: 171-1? 2020 /004372
株式会社小坂研究所製の接触式三次元表面粗計 (型式巳丁_ 4000八) を用いて、 フィルムの表面の平均粗さ を下記の条件で触針法によ り測定した。 条件は下記の通りであり、 3回の測定の平均値をもって値とし た。 The average roughness of the film surface was measured by the stylus method under the following conditions using a contact-type three-dimensional surface roughness meter (Model: Mending_40008) manufactured by Kosaka Laboratory Ltd. The conditions are as follows, and the average value of three measurements was used as the value.
触針先端半径: 〇 . 5 Stylus tip radius: ○ 0.5
触針圧: 50 Stylus pressure: 50
カツ トオフイ直: 800 〇! Kattooi directly: 800 〇!
測定長: 500 〇! Measurement length: 500 〇!
測定速度: 0. 1 /秒 Measuring speed: 0.1/sec
測定間隔: 5 Measurement interval: 5
[0103] [フィルムの厚み方向の屈折率 å] [Refractive index in thickness direction of film]
サンプルについて」 丨 3 < 7 1 42- 1 996 八法により、 ナトリ ウムロ線を光源として接触液としてジヨードメタンを用いてアッベ屈折率計 で測定した。 Samples” 丨 3 <7 1 42- 1 996 Eighth method was used to measure with an Abbe refractometer using sodium triode as a light source and diiodomethane as a contact liquid.
[0104] [評価用ラミネートフィルム (積層体) の作製] [Production of Evaluation Laminate Film (Laminate)]
ポリエステルフィルムの巳面側にウレタン系 2液効果型接着剤 (三井化学 株式会社製 「タケラック (登録商標) 5253」 と 「タケネート (登録商 標) 八50」 を 1 3. 5 : 1 (質量比) の割合で配合) を用いてドライラミ ネート法により、 ヒートシール性樹脂層として厚さ 7〇 の無延伸ポリプ ロピレンフィルム (東洋紡株式会社製 「 1 1 47」 ) を貼り合わせ、 40 °〇にて 4日間エージングを施すことにより、 ラミネートフィルム (積層体) を得た。 なお、 ウレタン系 2液硬化型接着剤で形成される接着剤層の乾燥後 の厚みはいずれも約 4仰 であった。 13.5: 1 (mass ratio of two-liquid urethane type adhesive (Takelac (registered trademark) 5253) and "Takenate (registered trademark) eight 50" manufactured by Mitsui Chemicals, Inc. on the face of the polyester film. )), and a non-stretched polypropylene film (“1 1 47” manufactured by Toyobo Co., Ltd.) with a thickness of 70 is bonded as a heat-sealable resin layer by a dry lamination method at 40° 〇. A laminate film (laminate) was obtained by aging for 4 days. Note that the thickness of the adhesive layer formed of the urethane-based two-component curing type adhesive after drying was about 4 squares in all cases.
[0105] [評価用レトルト処理済み製袋品の作製] [0105] [Preparation of retort-processed bag-making product for evaluation]
前記のラミネートフィルムを 1 5〇 四方の大きさにカッ トし、 シーラン 卜が内側になるように 2枚を重ね合わせ、 3方を 1 60°〇のシール温度、 シ —ル幅 1.
Figure imgf000033_0001
ヒートシールすることで内寸
Figure imgf000033_0002
Cut the above-mentioned laminated film to a size of 150 squares, stack the two so that the seal run is on the inside, and seal the three sides with a sealing temperature of 1600° and a seal width of 1.
Figure imgf000033_0001
Inner size by heat sealing
Figure imgf000033_0002
を得た。 \¥0 2020/175067 32 卩(:171? 2020 /004372 Got \\0 2020/175067 32 卩 (: 171-1? 2020 /004372
得られた 3方シール袋に水 2 5 0〇! 1_を充填した後、 ヒートシールにて 4 方目の口を閉じ、 水が充填された 4方シール袋を作製した。 After filling the obtained three-way sealed bag with water 250 0! 1_, the fourth side mouth was closed by heat sealing to prepare a water-filled four-way sealed bag.
得られた水が充填された 4方シール袋を、 1 3 0 °〇の熱水中に 3 0分間浸 潰してレトルト処理済みの袋を得た。 なお、 本実施例ではポリエステルフィ ルムの巳面側にシーラント (ヒートシール性樹脂層) を形成しており、 ポリ エステルフィルムの巳面同士をシーラントを介して貼り合わせた場合、 耐破 袋性は、 巳面側のラミネート強度にのみ依存し、 面側のラミネート強度に は依存しない。 The obtained water-filled 4-side sealed bag was immersed in hot water at 130°C for 30 minutes to obtain a retort-treated bag. In this example, a sealant (heat-sealable resin layer) is formed on the face of the polyester film, and when the faces of the polyester film are attached to each other via the sealant, the puncture resistance is low. , It depends only on the laminating strength on the face side and not on the laminating strength on the face side.
ポリエステルフィルムにおいては、 巳面側のラミネート強度の方が 面側 のラミネート強度よりも低いため、 ポリエステルフィルムの巳面同士をシー ラントを介して貼り合わせた袋について耐破袋性が良好であれば、 当然に、 ポリエステルフィルムの 面同士をシーラントを介して貼り合わせた袋につ いてもて耐破袋性は良好となる。 従って、 以下では、 ポリエステルフィルム の巳面同士をシーラントを介して貼り合わせた袋についてのみ耐破袋性を評 価した。 In the case of polyester film, the laminating strength on the face side is lower than the laminating strength on the face side, so if the bag in which the face sides of the polyester film are bonded together with a sealant is good Of course, even a bag in which the faces of polyester films are bonded together with a sealant, provides good bag breakage resistance. Therefore, in the following, the bag-breaking resistance was evaluated only for the bag in which the facets of the polyester film were bonded together with the sealant.
[0106] [耐破袋性の評価] [0106] [Evaluation of bag breaking resistance]
前記のレトルト処理済みの水が充填された袋を室温 5 °〇、 相対湿度 3 5 % の環境下、 高さ 1 0 0〇
Figure imgf000034_0001
の位置からコンクリート板の上に袋の面を水平に して 1 0回落下させ、 水平方向での落下で破れが発生しなかった袋の割合を 算出した。 同様に袋の面を垂直にして 1 0回落下させ、 垂直方向での落下で 破れが発生しなかった袋の割合を算出した。 なお、 試験に用いた袋の数は水 平方向、 垂直方向ともに 2 0個ずつとした。
The bag filled with the above-mentioned retort-treated water was placed at a room temperature of 5° and a relative humidity of 35% at a height of 100°.
Figure imgf000034_0001
The surface of the bag was dropped onto the concrete plate from position 10 and dropped 10 times, and the percentage of bags that did not tear when dropped in the horizontal direction was calculated. Similarly, the surface of the bag was made to fall vertically and dropped 10 times, and the percentage of bags that did not tear when dropped in the vertical direction was calculated. The number of bags used in the test was 20 in both the horizontal and vertical directions.
[0107] [ラミネート強度] [0107] [Lamination strength]
前記のラミネートフィルムから幅
Figure imgf000034_0002
長さ 2 0 0 01 01で試験片を切 り出して、 温度 2 3 °〇、 相対湿度 6 5 %の条件下で、 テンシロン万能材料試 験機 (東洋ボールドウイン社製 「テンシロン 11 1\/1丁一 丨 丨 一5 0 0型」 ) を 用いてラミネート強度を測定した。 ラミネート強度は、 引張速度を 2 0
Figure imgf000034_0003
11"| /分とし、 ポリエステルフィルムとヒートシール性樹脂層との間を、 剥離 \¥0 2020/175067 33 卩(:171? 2020 /004372
Width from the laminated film
Figure imgf000034_0002
A test piece was cut out with a length of 200 1 01, and a Tensilon universal material testing machine (Tensilon 11 1// manufactured by Toyo Baldwin Co., Ltd. was used under the conditions of temperature of 23 ° and relative humidity of 65%. Laminate strength was measured using a 1-chome 1-500 model. Laminate strength has a pull rate of 20
Figure imgf000034_0003
11"|/min and peel between polyester film and heat sealable resin layer \¥0 2020/175067 33 卩(: 171-1?2020/004372
角度 9 0度で剥離させたときの強度を測定した。 The strength when peeled at an angle of 90 degrees was measured.
[0108] [製膜性の評価] [0108] [Evaluation of film-forming property]
各実施例、 比較例のフィルムの作製時に、 3 0分以上破断無く、 連続製膜 が可能であった場合を〇、 3 0分以内に少なくとも 1回破断が生じた場合を Xとして評価した。 When the films of Examples and Comparative Examples were produced, the case where continuous film formation was possible without break for 30 minutes or more was evaluated as ◯, and the case where breakage occurred at least once within 30 minutes was evaluated as X.
[0109] [フィッシュアイの評価] [0109] [Evaluation of fish eyes]
実施例、 比較例で作製したフィルムから、 幅方向に 2 1 0
Figure imgf000035_0001
長手方向 に 3 0 0 のサンプルを切り出し、 東海産業社製ルーペ (I - - 1 〇乂) (観 測倍率 1 0倍) を用いて、 偏向下、 フィッシュアイの個数をカウントした。 同様の操作を 1 〇回繰り返して、 1 0回のカウント数の平均値を下式により 、 1 2あたりのフィッシュアイの個数として算出した。
From the films prepared in Examples and Comparative Examples, 210
Figure imgf000035_0001
300 samples were cut out in the longitudinal direction, and the number of fish eyes was counted under deflection by using a Tokai Sangyo Co., Ltd. loupe (I--1 0) (observation magnification: 10 times). Repeat 1 〇 times the same operation, by the following equation the average value of 1 0 times the number of counts was calculated as the number of fish eyes per 2.
[フィッシュアイ (個/〇! 2) ] = [フィッシュアイの平均カウント数 (個 ) ] / [測定範囲 (6 3〇^) ] [Fish eyes (pieces/〇! 2 )] = [Average count of fish eyes (pieces)] / [Measurement range (6 30,000^)]
[01 10] [離型層への転写の評価] [01 10] [Evaluation of transfer to release layer]
基材の一方の面に乾燥後の塗布量が〇. 0 5 /〇! 2になるように、 下記の 離型層形成用塗布液を塗工した。 次いで、 塗工後のフィルムを 1 3 0 °〇、 5 秒の熱風で 1 0秒間、 1 7 0 °〇、 2 0 /秒の熱風で 1 0秒間、 さらに 1 3 0 °〇、 2 0 /秒の熱風で 1 0秒間乾燥させた。 以上により、 基材の一 方の面に離型層を積層した。 その後、 口ールとして巻き取った。 As the coating amount after drying on one side of the substrate is 0.0 5 / 〇! 2 was coated with a release layer forming coating solution below. Then, the coated film was heated with hot air for 1300 ° 〇, 5 seconds for 10 seconds, 1700 ° 〇, hot air for 20/sec for 10 seconds, and 1300° 〇, 20/ It was dried with hot air for 10 seconds. As described above, the release layer was laminated on one surface of the base material. After that, it was rolled up as a mouth.
得られた口ールの離型層側を幅方向に 2 1 0〇1〇1、 長手方向に 3 0 0 の 範囲でブロモライ トを用いて目視で転写痕の個数をカウントした。 同様の操 作を 1 〇回繰り返して、 1 0回のカウント数の平均値を下式により、 1 2あ たりの転写痕の個数として算出し、 個数によって判定をした。 カウントの対 象となる箇所は、 口ールの長手方向中央よりも卷芯側とした。 The number of transfer marks was visually counted using a bromolite in the range of 210.101 in the width direction and 300 in the longitudinal direction on the release layer side of the obtained film. Repeat 1 〇 times similar operation, by the following equation the average value of 1 0 times the number of counts, was calculated as the number of transfer marks of or 1 2 Ah, was determined by the number. The point to be counted was on the core side of the center of the mouth in the longitudinal direction.
[転写痕 (個/
Figure imgf000035_0002
] = [平均転写痕のカウント数 (個) ] / [測定範囲 ( 6 3〇! 2) ]
[Transfer marks (pieces/
Figure imgf000035_0002
] = [Average transfer mark count (pieces)] / [Measurement range (63 0! 2 )]
判定 3個/ 0! 2以下:〇、 4個/ 0! 2以上: X Judgment 3 pieces / 0! 2 or less: ○, 4 pieces / 0! 2 or more: X
[01 1 1] [離型層形成用塗布液の作製] \¥02020/175067 34 卩(:171? 2020 /004372 [01 11] [Preparation of release layer forming coating liquid] \¥02020/175067 34 卩 (: 171-1? 2020 /004372
以下に示す組成で各成分を混合し、 離型層形成用塗布液を得た。 The components were mixed in the composition shown below to obtain a release layer-forming coating liquid.
トルエン = 56. 05質量% Toluene = 56.05 mass%
イソプロパノール : 1 4. 01質量% Isopropanol: 1 4.01 mass%
酸変性ポリオレフィン樹脂溶解液 = 29. 4質量% Acid-modified polyolefin resin solution = 29.4% by mass
ヘキサメチレンジイソシアネート系ブロックイソシアネート化合物: 0 . 54質量% Hexamethylene diisocyanate-based blocked isocyanate compound: 0.54% by mass
(旭化成ケミカルズ社製デュラネート (登録商標) 1\/1 _[<60巳 固形分 濃度 60 % 1\1〇〇%= 6. 5 %) (Asahi Kasei Chemicals Duranate (registered trademark) 1\/1 _[<60 solid concentration 60% 1\100% = 6.5%)
なお、 酸変性ポリオレフィン樹脂溶液の作製方法を次に示す。 80°〇に加 熱したトルエン 989に酸化ワックス (日本製蝋社製 3-9 1 25 酸価 32 9 <〇!~1/9) 29を投入し、 30分間攪拌し、 溶解させた。 溶 解した酸変性ポリオレフィン樹脂溶解液を 25 °〇まで冷却したのち、 300 メッシュのステンレス製フィルター (線径〇. 035〇1〇1、 平織) でろ過し 、 酸変性ポリオレフィン樹脂溶解液を得た。 The method for producing the acid-modified polyolefin resin solution will be described below. 80 ° 〇 the pressurized heated and oxidized wax in toluene 989 (manufactured by Nippon Rosha made 3-9 1 25 acid value 32 9 <〇! ~ 1/9) 2 9 were charged, and stirred for 30 minutes to dissolve. After the dissolved acid-modified polyolefin resin solution was cooled to 25 ° 〇, it was filtered through a 300 mesh stainless steel filter (wire diameter 〇0.035 〇 101, plain weave) to obtain an acid-modified polyolefin resin solution. ..
[0112] [深絞り成型性の評価] [0112] [Evaluation of deep drawability]
実施例、 比較例で作製したフィルムから、 縦 (長手方向) 1 5〇〇1 横 ( 幅方向) 1 〇〇 のサンプルを切り出した。 このサンプルを図 3、 図 4に示 す金型にセッ トし、 上からプレスをして絞り成形を行った。 図 3は、 深絞り 成型性の評価に用いた金型の横断面図であり、 図 4は、 図 3に示した金型の 平面図である。 具体的には、 縦 89〇! 01、 横 54〇! 01、 サイズ 3111111の金 型 50上にフィルム (実施例、 比較例のフィルム) を配置し、 フィルム抑 え 52でフィルム を抑えた状態で、 金型 50に対応する形状のパンチ 54 でプレスした。 絞り速度は 60101/3とした。 From the films produced in Examples and Comparative Examples, samples with a length (longitudinal direction) of 1500 1 and a width (width direction) of 100 were cut out. This sample was set in the mold shown in Fig. 3 and Fig. 4, and pressed from above to perform draw forming. FIG. 3 is a cross-sectional view of the mold used for evaluation of deep-drawing moldability, and FIG. 4 is a plan view of the mold shown in FIG. Specifically, the film (Example and Comparative Example film) was placed on the mold 50 of length 89 〇! 01, width 54 〇! 01, size 3111111, and the film was suppressed with the film restraint 52. , A punch 54 having a shape corresponding to the die 50 was pressed. The squeezing speed was set to 60101/3.
各絞り深さに対して N= 1 0で実施し、 N= 1 0でフィルムの裂けやピン ホールが発生しなかった時の最大の絞り深さをそのサンプルの深絞り成型値 とした。 N = 10 was performed for each drawing depth, and the maximum drawing depth when no film tearing or pinholes occurred at N = 10 was taken as the deep drawing molding value of the sample.
[0113] [実施例 1 ] [0113] [Example 1]
—軸押出機を用い、 巳丁樹脂 (1 1 00-2 1 1 X0 (〇!~1八 〇 〇 H U N P LAST I CS CO. , LTD. % 固有粘度 1. 28 d 丨 / g ) ) とテレフタル酸//エチレングリコール = 1 00// 1 00 (モル%) からなる固有粘度 0. 62 d 丨 /gの P E T樹脂を表 1の記載の通りの比率 としたポリエステル樹脂組成物と、 平均粒径 2. 4 Mmのシリカ粒子とを配 合した二軸配向ポリエステルフィルム製造用の樹脂組成物を 290°Cで溶融 させた後、 250°Cの T—ダイスからキャストし、 1 0°Cの冷却口ールに静 電密着法により密着させながら、 図 1 に示すように未延伸シート全幅に冷風 がかかるように冷却口ールから 1 5 c mの高さにマルチダクトを設置して、 5°C、 1 50 m/m i nの冷風を B面に吹き付けて未延伸シートを得た。 こ の際、 マルチダクトの縦幅は、 5 O c mであり、 未延伸シートの移動速度は 、 60 m/分であった。 また、 前記樹脂組成物が冷却口ールにキャストされ た時点から、 当該部分に冷風が吹き付けられるまでの時間は、 0. 6秒であ った。 — Using a shaft extruder, use the Ming resin (1 1 00-2 1 1 X0 (○! ~ 1 8 〇 〇 HUNP LAST I CS CO., LTD. % Intrinsic viscosity 1.28 d 丨/g)) and terephthalic acid //ethylene glycol = 100//100 (mol%) Intrinsic viscosity 0.62 d 丨/g 290 ° C was used to prepare a resin composition for the production of biaxially oriented polyester film, which was obtained by mixing the polyester resin composition of the above PET resin in the ratio shown in Table 1 with silica particles having an average particle size of 2.4 Mm . After being melted by the method, it is cast from a T-die of 250°C, and while being adhered to the cooling port of 10°C by the electrostatic contact method, cold air is applied to the entire width of the unstretched sheet as shown in Fig. 1. As described above, a multi-duct was installed at a height of 15 cm from the cooling port, and cold air at 5°C and 150 m/min was blown on the B side to obtain an unstretched sheet. At this time, the vertical width of the multi-duct was 5 O cm, and the moving speed of the unstretched sheet was 60 m/min. Further, the time from when the resin composition was cast in the cooling port to when the cold air was blown to the portion was 0.6 seconds.
なお、 二軸配向ポリエステルフィルム製造用の樹脂組成物中のシリカ粒子 の含有量は、 シリカ濃度として〇. 1 6質量%である。 The content of silica particles in the resin composition for producing the biaxially oriented polyester film is 0.16% by mass as the silica concentration.
[0114] 次いで、 得られた未延伸シートを 70°Cの温度で長手方向 (MD) に 3. [0114] Next, the obtained unstretched sheet was stretched in the longitudinal direction (MD) at a temperature of 70°C.
3倍で延伸し、 次いで、 テンターに通して 80°Cで幅方向 (TD) に 4. 0 倍で延伸し、 200°Cで 3秒間の熱固定処理と 1秒間 9 %の緩和処理を実施 して、 厚さ 1 5
Figure imgf000037_0001
の二軸配向ポリエステルフィルムを得た。 ポリエステル 樹脂組成物の樹脂組成、 および、 製膜条件を表 1 に示した。 また、 得られた フィルムの物性及び評価結果を表 1、 表 2に示した。
Stretched at 3 times, then stretched through a tenter at 80 °C in the width direction (TD) at 4.0 times, heat set at 200 °C for 3 seconds and relaxed at 9% for 1 second. Then thickness 1 5
Figure imgf000037_0001
A biaxially oriented polyester film of was obtained. Table 1 shows the resin composition of the polyester resin composition and the film forming conditions. The physical properties and evaluation results of the obtained film are shown in Tables 1 and 2.
[0115] [実施例 2、 3、 5] [0115] [Examples 2, 3, 5]
実施例 1 において、 ポリエステル樹脂組成物の樹脂組成を表 1 に記載した とおり変えた以外は実施例 1 と同様に二軸配向フィルムを製膜して、 厚さ 1 5 Mmの二軸配向ポリエステルフィルムを得た。 得られたフィルムの物性及 び評価結果を表 1、 表 2に示した。 A biaxially oriented polyester film having a thickness of 15 Mm was formed in the same manner as in Example 1 except that the resin composition of the polyester resin composition was changed as described in Table 1. Got The physical properties and evaluation results of the obtained film are shown in Tables 1 and 2.
[0116] [実施例 4] [0116] [Example 4]
実施例 1 において、 熱固定処理工程において F面側と B面側の温風の温度 \¥0 2020/175067 36 卩(:171? 2020 /004372 In Example 1, the temperature of the hot air on the F side and B side in the heat setting process \¥0 2020/175067 36 卩 (: 171-1? 2020 /004372
を変えて、 ポリエステル樹脂組成物の樹脂組成および製膜条件を表 1 に記載 した以外は実施例 1 と同様に二軸配向フィルムを製膜して、 厚さ 1 5 の 二軸配向ポリエステルフィルムを得た。 得られたフィルムの物性及び評価結 果を表 1、 表 2に示した。 In the same manner as in Example 1 except that the resin composition of the polyester resin composition and the film forming conditions are described in Table 1, a biaxially oriented film was formed in the same manner as in Example 1, and a biaxially oriented polyester film having a thickness of 15 was formed. Obtained. The physical properties and evaluation results of the obtained film are shown in Tables 1 and 2.
[01 17] [比較例 1〜 4 ] [01 17] [Comparative Examples 1 to 4]
実施例 1 において、 溶融樹脂を冷却口ールに密着させる際に巳面側からマ ルチダクトで冷風を吹き付けず、 ポリエステル樹脂組成物の樹脂組成および 製膜条件を表 1 に記載した以外は実施例 1 と同様に二軸配向フィルムを製膜 して、 厚さ 1 5 の二軸配向ポリエステルフィルムを得た。 得られたフィ ルムはフィルム 面と巳面の結晶性の差が大きいため、 ラミ強度が低く、 水 平落としの耐破袋性が不良であった。 In Example 1, except that the cold air was not blown from the face side by the multi-duct when the molten resin was brought into close contact with the cooling port, and the resin composition of the polyester resin composition and the film forming conditions were described in Table 1. A biaxially oriented film was formed in the same manner as in 1 to obtain a biaxially oriented polyester film having a thickness of 15. The obtained film had a large difference in crystallinity between the film surface and the Mitsumi surface, so the laminating strength was low, and the bag-breaking resistance after water leveling was poor.
[01 18] [比較例 5 ] [01 18] [Comparative Example 5]
実施例 1 において、 ポリエステル樹脂組成物の樹脂組成を表 1 に記載した とおり変えた以外は実施例 1 と同様に二軸配向フィルムを製膜して、 厚さ 1 5 の二軸配向ポリエステルフィルムを得た。 得られたフィルムはフィル ム 面と巳面の結晶性の差が大きいため、 ラミ強度が低く、 水平落としの耐 破袋性が不良であった。 In Example 1, a biaxially oriented film was formed in the same manner as in Example 1 except that the resin composition of the polyester resin composition was changed as described in Table 1, and a biaxially oriented polyester film having a thickness of 15 was formed. Obtained. Since the obtained film had a large difference in crystallinity between the film surface and the Mitsumi surface, the lami-strength was low and the horizontal bag drop resistance was poor.
[01 19] [比較例 6 ] [01 19] [Comparative Example 6]
実施例 1 において、 溶融樹脂を冷却口ールに密着させる際に巳面側からマ ルチダクトで冷風を吹き付けず、 ポリエステル樹脂組成物の樹脂組成および 製膜条件を表 1 に記載した以外は実施例 1 と同様に二軸配向フィルムを製膜 して、 厚さ 1 5 の二軸配向ポリエステルフィルムを得た。 得られたフィ ルムはフィルム 面と巳面の結晶性の差が大きいため、 ラミ強度が低く、 水 平落としの耐破袋性が不良であったばかりか、 巳丁比率が少なく、 突刺し 強さが低いため、 垂直落としの耐破袋性が不良であった。 結果を表 1、 表 2 に示した。 In Example 1, except that the cold air was not blown from the face side by the multi-duct when the molten resin was brought into close contact with the cooling port, and the resin composition of the polyester resin composition and the film forming conditions were described in Table 1. A biaxially oriented film was formed in the same manner as in 1 to obtain a biaxially oriented polyester film having a thickness of 15. The obtained film had a large difference in crystallinity between the film surface and the Mitsumi surface, so the laminating strength was low, and not only was the bag-breaking resistance to water leveling unsatisfactory, but there was also a small proportion of Mitsumi and puncture strength. As the result was low, the bag resistance to vertical drop was poor. The results are shown in Tables 1 and 2.
[0120] [比較例 7 ] [0120] [Comparative Example 7]
実施例 1 において、 ポリエステル樹脂組成物の樹脂組成を表 1 に記載した \¥0 2020/175067 37 卩(:171? 2020 /004372 In Example 1, the resin composition of the polyester resin composition is shown in Table 1. \¥0 2020/175067 37 卩(: 171-1?2020/004372
以外は実施例 1 と同様に二軸配向フィルムを製膜して、 厚さ 1 5 の二軸 配向ポリエステルフィルムを得た。 得られたフィルムは 巳丁の比率が少な いため、 突刺し強さが低く、 垂直落としの耐破袋性が不良であった。 結果を 表 1、 表 2に示した。 A biaxially oriented film was formed in the same manner as in Example 1 except for the above to obtain a biaxially oriented polyester film having a thickness of 15. Since the obtained film had a small proportion of Mending, the piercing strength was low and the resistance to bag tearing when dropped vertically was poor. The results are shown in Tables 1 and 2.
[0121 ] [参考例 1 ] [0121] [Reference example 1]
—軸押出機を用い、 巳丁樹脂を 8 0質量%と 巳丁樹脂を 2 0質量%混 合したものに、 不活性粒子として平均粒径 2 . 4 のシリカ粒子をシリカ 濃度として混合樹脂に対して 9 0 0 となるように配合したものを 2 9 〇°〇で溶融させた後、 メルトラインを 1 0エレメントのスタティックミキサ 一に導入した。 これにより、 ポリエステル樹脂溶融体の分割 ·積層を行い、 同 _の原料からなる多層溶融体を得た後、 2 5 0 の丁ーダイスからキャス 卜し、 1 0 °〇の冷却口ールに静電密着法により密着させながら、 未延伸シー 卜を得たこと以外は、 実施例 2と同様にして二軸配向フィルムを製膜して、 厚さ 1 5 の二軸配向ポリエステルフィルムを得た。 得られたフィルムの 物性及び評価結果を表 1、 表 2に示した — Using a screw extruder, mix 80% by weight of Mending resin and 20% by weight of Mending resin, and use silica particles with an average particle size of 2.4 as inert particles in the mixed resin. was melted at 9 0 0 become as those formulated 2 9 〇 ° 〇 in contrast, the introduction of melt line static mixers one 1 0 element. This performs division-lamination of the polyester resin melt, after obtaining the multi-layer melt consisting of the _ raw material, 2 5 0 Cass and Bok from Ding Daisu of static to 1 0 ° 〇 of cooling holes Lumpur A biaxially oriented polyester film having a thickness of 15 was obtained by forming a biaxially oriented film in the same manner as in Example 2 except that an unstretched sheet was obtained while closely adhering by an electroadhesive method. The physical properties and evaluation results of the obtained film are shown in Tables 1 and 2.
[0122] [参考例 2 ] [0122] [Reference example 2]
二軸配向ポリエステルフィルム製造用の樹脂組成物を 2 9 0 °〇で溶融させ た後、 2 8 5 °〇の丁ーダイスからキャストしたこと以外は、 実施例 2と同様 にして未延伸シートを得た後、 二軸配向フィルムを製膜して、 厚さ 1 5 の二軸配向ポリエステルフィルムを得た。 得られたフィルムの物性及び評価 結果を表 1、 表 2に示した。 An unstretched sheet was obtained in the same manner as in Example 2 except that the resin composition for producing a biaxially oriented polyester film was melted at 290° 〇 and then cast from a die for 285° 〇. After that, a biaxially oriented film was formed to obtain a biaxially oriented polyester film having a thickness of 15. The physical properties and evaluation results of the obtained film are shown in Tables 1 and 2.
[0123] 〔¾二 [0123] [¾ji
Figure imgf000040_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000041_0002
Figure imgf000041_0003
Figure imgf000041_0001
Figure imgf000041_0002
Figure imgf000041_0003
\¥0 2020/175067 40 卩(:171? 2020 /004372 \¥0 2020/175067 40 40 (:171?2020/004372
[0125] 表 1、 表 2に示すように、 本発明によって得られた二軸延伸ポリエステル フィルム (実施例 1〜 5) は、 厚み斑が少なく、 良好な深絞り成型性を有し[0125] As shown in Tables 1 and 2, the biaxially stretched polyester films (Examples 1 to 5) obtained according to the present invention have little thickness unevenness and have good deep drawing formability.
、 且つ、 品位に優れる二軸配向ポリエステルフィルムが得られた。 In addition, a biaxially oriented polyester film having excellent quality was obtained.
—方、 比較例 1〜 4においては、 溶融樹脂を冷却口ールに密着させる際に 巳面側からマルチダクトで冷風を吹き付けなかったため、 得られたフィルム は、 厚み斑が大きく、 深絞り成型性が劣っていた。 また、 フィルム 面と巳 面の結晶性の差が大きいため、 ラミ強度が低く、 水平落としの耐破袋性が不 良であった。 On the other hand, in Comparative Examples 1 to 4, when the molten resin was brought into close contact with the cooling port, the cold air was not blown from the face side by the multi-duct, so that the obtained films had large thickness unevenness and deep drawing. The sex was inferior. In addition, since the difference in crystallinity between the film surface and the Mitsumi surface was large, the lami-strength was low and the horizontal bag drop resistance was poor.
また、 比較例 6及び 7は、 巳丁の比率が低いため突き刺し強度が悪かっ た。 Further, in Comparative Examples 6 and 7, the piercing strength was poor because the ratio of Mitsuo was low.
参考例 1では、 メルトラインにスタティックミキサーを導入して 1 0 2 4 層からなる同一樹脂組成の多層フィルムを得た。 得られたフィルムのフィッ シュアイの個数は、 実施例に比べて多く、 高品位が要求される用途には適さ なかった。 In Reference Example 1, a static mixer was introduced into the melt line to obtain a multilayer film having the same resin composition consisting of 10 2 4 layers. The number of fish eyes of the obtained film was larger than that of the examples, and it was not suitable for applications requiring high quality.
参考例 2では、 樹脂を溶融し押し出す温度が高すぎたためフィルムの固有 粘度が低くなり、 幅方向の延伸工程でフィルムが破断してフィルムの評価を するためのサンプルが得られなかった。 In Reference Example 2, since the temperature at which the resin was melted and extruded was too high, the intrinsic viscosity of the film became low, and the film broke during the stretching process in the width direction, and a sample for evaluating the film could not be obtained.
産業上の利用可能性 Industrial availability
[0126] 本発明の二軸配向ポリエステルフィルムは、 工業用途にも対応できる良好 なフィルム品位を有し、 且つ、 巳丁を主成分にしているので深絞り成型が 伴う離型フィルムとして好適である。 [0126] The biaxially oriented polyester film of the present invention has a good film quality that can be used for industrial applications, and since it uses Ming as the main component, it is suitable as a release film accompanying deep drawing. ..
符号の説明 Explanation of symbols
[0127] 1 0 ダイス [0127] 1 0 Dice
1 2 吐出口 1 2 Discharge port
2 0 冷却口ール 20 Cooling port
3 0 マルチダクト 3 0 multi duct
4 0 未延伸シ _卜 \¥02020/175067 41 卩(:171? 2020 /004372 4 0 unstretched sheet _ Bok \¥02020/175067 41 卩 (: 171? 2020 /004372
50 深絞り成型用の金型 50 Deep drawing mold
52 フイルム抑え 52 Film suppression
54 パンチ 54 punch
フイルム Film

Claims

\¥0 2020/175067 42 卩(:171? 2020 /004372 請求の範囲 \¥0 2020/175067 42 卩(:171? 2020/004372 Claims
[請求項 1 ] ポリプチレンテレフタレート樹脂 (八) を 6 0〜 1 0 0質量%含有 するポリエステル樹脂組成物を含み、 [Claim 1] comprising a polyester resin composition containing 60 to 100% by mass of a polyethylene terephthalate resin (8),
積層数が 7層以下であり、 The number of layers is 7 or less,
下記要件 (1) 〜 (4) を満たすことを特徴とする二軸配向ポリエ ステルフイルム。 A biaxially oriented polyester film characterized by satisfying the following requirements (1) to (4).
(1) 二軸配向ポリエステルフィルムの固有粘度が 0 . 7 丨 / 9以 上。 (1) The intrinsic viscosity of the biaxially oriented polyester film is 0.7 7/9 or more.
(2) 二軸配向ポリエステルフィルムの面配向度△ が〇. 1 4 5〜 〇. 1 6 0〇 (2) The degree of plane orientation △ of biaxially oriented polyester film is 〇 0.145 to 〇 0.160 〇
(3) 」 1 3 - 7 1 7 0 7に準じた突き刺し試験で測定した二軸配向 ポリエステルフィルムの突刺し強さが 0 . 4 0 1\1 / 以上。 (3) ”The puncture strength of the biaxially oriented polyester film measured by the puncture test according to 1 3-7 1 7 0 7 is 0.401\1/1 or more.
(4) 二軸配向ポリエステルフィルムの厚み斑が〇. 7 %以下。 (4) Thickness unevenness of the biaxially oriented polyester film is 0.7% or less.
[請求項 2] 前記ポリエステル樹脂組成物は、 ポリブチレンテレフタレート樹脂 [Claim 2] The polyester resin composition is a polybutylene terephthalate resin.
(八) 以外のポリエステル樹脂 (巳) を含有することを特徴とする請 求項 1 に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1, which contains a polyester resin (Mitsumi) other than (8).
[請求項 3] 二軸配向ポリエステルフィルム上の最大直径が〇. 3
Figure imgf000044_0001
以上のフ ィッシュアイが 5個/ 2以下であることを特徴とする請求項 1又は 2に記載の二軸配向ポリエステルフィルム。
[Claim 3] The maximum diameter on a biaxially oriented polyester film is 0.3.
Figure imgf000044_0001
The biaxially oriented polyester film according to claim 1 or 2, characterized in that more than off Isshuai is 5/2 or less.
[請求項 4] 二軸配向ポリエステルフィルムの前記一方の面での三次元平均粗さ [Claim 4] Three-dimensional average roughness on the one surface of the biaxially oriented polyester film
3
Figure imgf000044_0002
、 3との差 (絶対値) が 0 . 0 1 以下であることを特徴とする請求項 1〜 3のいずれか 1 に記載の二軸配向ポリエステルフィルム。
3
Figure imgf000044_0002
3, the biaxially oriented polyester film according to any one of claims 1 to 3, which has a difference (absolute value) of 0.01 or less.
[請求項 5] 二軸配向ポリエステルフィルムの 1 5 0 °〇で 1 5分間加熱後の熱収 縮率が、 縦方向が〇〜 5 %、 横方向が一 1〜 5 %であることを特徴と する請求項 1〜 4いずれかに記載の二軸配向ポリエステルフィルム。 [Claim 5] The heat shrinkage rate of the biaxially oriented polyester film after heating for 15 minutes at 150 ° 〇 is 0 to 5% in the longitudinal direction and 11 to 5% in the lateral direction. The biaxially oriented polyester film according to any one of claims 1 to 4.
[請求項 6] 請求項 1〜 5のいずれか 1 に記載の二軸配向ポリエステルフィルム の製造方法であって、 \¥0 2020/175067 43 卩(:17 2020 /004372 [Claim 6] A method for producing the biaxially oriented polyester film according to any one of claims 1 to 5, \¥0 2020/175067 43 卩(: 17 2020/004372
二軸配向ポリエステルフィルム製造用の樹脂組成物を冷却口ールに キャストして未延伸シートを形成する工程八と、 Step 8 of casting a resin composition for producing a biaxially oriented polyester film in a cooling port to form an unstretched sheet,
前記冷却口ール上の前記未延伸シートに 5 以下の風を吹き付ける 工程巳とを有することを特徴とする二軸配向ポリエステルフィル厶の 製造方法。 A method for producing a biaxially oriented polyester film container, which comprises:
PCT/JP2020/004372 2019-02-26 2020-02-05 Biaxially oriented polyester film, and production method for biaxially oriented polyester film WO2020175067A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080016230.0A CN113498376B (en) 2019-02-26 2020-02-05 Biaxially oriented polyester film and method for producing biaxially oriented polyester film
KR1020217027038A KR102612318B1 (en) 2019-02-26 2020-02-05 Biaxially oriented polyester film and method for producing the biaxially oriented polyester film
JP2020531795A JP6826785B2 (en) 2019-02-26 2020-02-05 Biaxially oriented polyester film and method for producing biaxially oriented polyester film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019032400 2019-02-26
JP2019-032400 2019-02-26
JP2019-138219 2019-07-26
JP2019138219 2019-07-26
JP2019-144668 2019-08-06
JP2019144668 2019-08-06
JP2020-011501 2020-01-28
JP2020011501 2020-01-28

Publications (1)

Publication Number Publication Date
WO2020175067A1 true WO2020175067A1 (en) 2020-09-03

Family

ID=72238944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004372 WO2020175067A1 (en) 2019-02-26 2020-02-05 Biaxially oriented polyester film, and production method for biaxially oriented polyester film

Country Status (4)

Country Link
JP (1) JP6826785B2 (en)
KR (1) KR102612318B1 (en)
CN (1) CN113498376B (en)
WO (1) WO2020175067A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7514436B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Gas barrier film, laminate, and packaging container
JP7514434B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Biaxially oriented polyester film, laminate, and packaging container
JP7514438B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Biaxially oriented polyester film, laminate, and packaging container
JP7514435B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Gas barrier film, laminate, and packaging container
JP7514437B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Gas barrier film, laminate, and packaging container
JP7514433B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Biaxially oriented polyester film, laminate, and packaging container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060617A (en) * 2003-08-19 2005-03-10 Toyobo Co Ltd Polyester film
JP2007185898A (en) * 2006-01-16 2007-07-26 Toray Ind Inc Biaxially oriented polyester film and its manufacturing process
WO2013172214A1 (en) * 2012-05-14 2013-11-21 東洋紡株式会社 Polyester film and method for producing same
JP2019056109A (en) * 2017-09-21 2019-04-11 東レ株式会社 Polyester film and method for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3031520B2 (en) 1994-02-16 2000-04-10 東レ株式会社 Biaxially stretched polyester film roll for mold release
JP2006188049A (en) * 2004-12-09 2006-07-20 Toray Ind Inc Biaxially oriented polyester film and packaging bag
US9688826B2 (en) 2012-11-16 2017-06-27 Toyobo Co., Ltd. Biaxially stretched polyester film and method for producing same
EP3069849A4 (en) * 2013-11-13 2017-06-28 Toyobo Co., Ltd. Biaxially stretched polyester film and method for producing same
EP3147313A4 (en) * 2014-05-21 2017-12-20 Toyobo Co., Ltd. Biaxially stretched polybutylene terephthalate film, manufacturing method therefor, and gas barrier laminate film
JP6642070B2 (en) * 2015-02-18 2020-02-05 東レ株式会社 Biaxially oriented polyester film
EP3287258A4 (en) * 2015-04-24 2018-12-19 Toyobo Co., Ltd. Biaxially stretched polyester film, and production method therefor
JP2016221737A (en) 2015-05-28 2016-12-28 東洋紡株式会社 Release film
JPWO2017126563A1 (en) * 2016-01-22 2018-11-08 東洋紡株式会社 Biaxially stretched polyester film, laminate and packaging bag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060617A (en) * 2003-08-19 2005-03-10 Toyobo Co Ltd Polyester film
JP2007185898A (en) * 2006-01-16 2007-07-26 Toray Ind Inc Biaxially oriented polyester film and its manufacturing process
WO2013172214A1 (en) * 2012-05-14 2013-11-21 東洋紡株式会社 Polyester film and method for producing same
JP2019056109A (en) * 2017-09-21 2019-04-11 東レ株式会社 Polyester film and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7514436B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Gas barrier film, laminate, and packaging container
JP7514434B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Biaxially oriented polyester film, laminate, and packaging container
JP7514438B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Biaxially oriented polyester film, laminate, and packaging container
JP7514435B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Gas barrier film, laminate, and packaging container
JP7514437B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Gas barrier film, laminate, and packaging container
JP7514433B2 (en) 2022-07-29 2024-07-11 東洋紡株式会社 Biaxially oriented polyester film, laminate, and packaging container

Also Published As

Publication number Publication date
CN113498376B (en) 2023-02-17
KR102612318B1 (en) 2023-12-12
JPWO2020175067A1 (en) 2021-03-11
CN113498376A (en) 2021-10-12
KR20210121129A (en) 2021-10-07
JP6826785B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
WO2020175067A1 (en) Biaxially oriented polyester film, and production method for biaxially oriented polyester film
US11312830B2 (en) Polyester film
TW201736453A (en) Biaxially-stretched polyester film, laminate and packaging bag
KR20200016901A (en) Biaxially oriented polyester film
TW201406831A (en) Polyester film and production method thereof
JP6962364B2 (en) Laminated film
JP6819816B2 (en) Polyester film roll
EP3831599A1 (en) Laminate and packaging bag comprising same
JPWO2020031712A1 (en) Gas barrier laminated film and method for producing the same
JP6879473B2 (en) Biaxially oriented polyester film
JP7024645B2 (en) Polyester film roll
JP5266655B2 (en) Biaxially oriented polyester film for packaging
JP6826784B2 (en) Biaxially oriented polyester film and method for producing biaxially oriented polyester film
WO2020080131A1 (en) Layered film
WO2020203105A1 (en) Polyester film and production method therefor
WO2020175066A1 (en) Biaxially oriented polyester film, and production method for biaxially oriented polyester film
TW201936734A (en) Biaxially oriented polyester film
JP7365569B2 (en) Biaxially oriented polyester film and method for producing biaxially oriented polyester film
JP7444177B2 (en) Biaxially oriented polyester films and laminates
TW202128823A (en) Biaxially oriented polyester film, and production method for biaxially oriented polyester film
TW202138438A (en) Biaxially oriented polyester film, and production method for biaxially oriented polyester film
TW202112922A (en) Biaxially oriented polyester film and method of producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020531795

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217027038

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762284

Country of ref document: EP

Kind code of ref document: A1