WO2020170617A1 - SEQUENTIAL-COMPARISON-TYPE AD CONVERTER, Iot SENSOR, AND BIOLOGICAL SENSOR - Google Patents

SEQUENTIAL-COMPARISON-TYPE AD CONVERTER, Iot SENSOR, AND BIOLOGICAL SENSOR Download PDF

Info

Publication number
WO2020170617A1
WO2020170617A1 PCT/JP2020/000063 JP2020000063W WO2020170617A1 WO 2020170617 A1 WO2020170617 A1 WO 2020170617A1 JP 2020000063 W JP2020000063 W JP 2020000063W WO 2020170617 A1 WO2020170617 A1 WO 2020170617A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
polarity
charge
integrated value
switch
Prior art date
Application number
PCT/JP2020/000063
Other languages
French (fr)
Japanese (ja)
Inventor
一徳 長谷部
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2021501660A priority Critical patent/JP7512246B2/en
Publication of WO2020170617A1 publication Critical patent/WO2020170617A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/40Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type

Definitions

  • the present technology relates to a successive approximation type AD converter, an Iot sensor, and a biometric sensor.
  • SAR ADC Successessive Application Register Analog Analog Converter
  • noise shaping is a technique for reducing quantization noise and comparator noise.
  • SNDR Signal to noise and distortion
  • Non-Patent Document 1 a simple and extremely efficient SAR ADC has been proposed (for example, Non-Patent Document 1).
  • SAR ADC unlike ⁇ ADC, is not suitable for increasing the order of noise shaping, so there is a limit to the accuracy of SNDR that can be achieved.
  • the present technology has been made in view of such a situation, and its main purpose is to provide a successive approximation type AD converter, an Iot sensor, and a biometric sensor that can achieve higher-order noise shaping.
  • the present inventor succeeded in providing a successive approximation type AD converter, an Iot sensor, and a biosensor capable of achieving higher-order noise shaping. , Has come to complete this technology.
  • Each of the first capacitor of the first polarity, the second capacitor of the first polarity, and the third capacitor of the first polarity has substantially the same capacitance
  • the first capacitor having the second polarity, the second capacitor having the second polarity, and the third capacitor having the second polarity have substantially the same capacitance
  • a predetermined charge is accumulated in each of the first capacitor of the first polarity and the first capacitor of the second polarity
  • the second capacitor of the first polarity accumulates the first charge of the input analog voltage and transfers the first charge to the third capacitor of the first polarity
  • the integrator amplifier integrates the first charge transferred to the third capacitor of the first polarity to generate a first integrated value
  • the first polarity may be positive and the second polarity may be negative.
  • the comparator compares the first integral value and the second integral value with respect to the least significant bit of the predetermined resolution, and the second capacitor of the first polarity is used. After the resetting of the second capacitor of the second polarity and before the redistribution of the second capacitor of the first polarity and the second capacitor of the second polarity is completed, the filter circuit is Sampling of the residual voltage may be started.
  • the filter circuit may be driven by the integrator amplifier.
  • the filter circuit may be an active type including an operational amplifier.
  • the filter circuit may be a passive type that includes a capacitor and does not include an operational amplifier.
  • the present technology also provides an IoT sensor including the successive approximation type AD converter.
  • the present technology provides a biometric sensor including the successive approximation type AD converter.
  • the successive approximation type AD converter, the Iot sensor, and the biometric sensor can realize higher-order noise shaping.
  • the effect of the present technology is not necessarily limited to the above effect, and may be any effect described in the present technology.
  • 9 is a timing chart showing the timing at which the Charge Share SAR ADC according to the first embodiment of the present technology turns on the switch. It is a figure showing the noise behavior model of Charge Share SAR ADC of a 1st embodiment concerning this art.
  • It is a circuit diagram in case Charge Charge SAR ADC of a 1st embodiment concerning this art has a filter circuit. It is explanatory drawing shown that the quantization noise located in a low frequency band is moved to a high frequency band by noise shaping. It is an explanatory view showing that the effect of noise shaping becomes high if the order becomes high.
  • FIG. 11 A general SAR ADC (Successive Application Register Analog Digital Converter) is shown in FIG. 11 is a circuit diagram in which a filter circuit FLT1 for executing noise shaping is added to the conventionally known Charge Redistribution SAR ADC.
  • the Charge Redistribution SAR ADC 101 shown in FIG. 11 includes a plurality of capacitors CP0 to CP6 (capacitor CP0, capacitor CP1,... Capacitor CP2, capacitor CP3, capacitor CP4, capacitor CP5, and capacitor CP6), and switches SW1 to SW1.
  • SW7 switch SW1, switch SW2,... Switch SW3, switch SW4, switch SW5, switch SW6, and switch SW7, a filter circuit FLT1, and a comparator CMP1.
  • the plurality of capacitors CP0 to CP6 included in the Charge Redistribution SAR ADC 101 form a capacitance array and have a binary weight configuration. Also, the Charge Redistribution SAR ADC 101 is implemented as a fully differential circuit, but here, for the sake of simplicity of explanation, it is configured as a single end.
  • the binary weight is a set of weights (capacity values) forming a geometric progression with a common ratio of 2.
  • the Charge Redistribution SAR ADC 101 can give the noise transfer function (NTF) a high-pass characteristic by inputting the residual voltage after successive approximation conversion to the filter circuit FLT1.
  • the Charge Redistribution SAR ADC 101 shown in FIG. 11 implements the filter circuit FLT1 shown in FIG. 12 as an example.
  • FIG. 12(A) shows a filter circuit FLT1 implemented in the Charge Redistribution SAR ADC 101. Further, FIG. 12B shows switching timings of the switch ⁇ 7 to the switch ⁇ 12 (the switch ⁇ 7a to the switch ⁇ 12a and the switch ⁇ 7b to the switch ⁇ 12b) included in the filter circuit FLT1.
  • the filter circuit FLT1 shown in FIG. 12A includes a buffer Abuf, a capacitor C41a, a capacitor C42a, a capacitor C43a, a capacitor C41b, a capacitor C42b, a capacitor C43b, a capacitor C5a, a capacitor C5b, a switch ⁇ 7 to a switch ⁇ 12 (a switch ⁇ 7a to a switch ⁇ 12a, and The switch ⁇ 7b to the switch ⁇ 12b) and the integrator amplifier IPF.
  • the capacitors C41a and C41b have substantially the same capacitance.
  • the substantially equal capacities are, for example, capacities that include the same capacity value and are within 95% to 105% of the same capacity value.
  • the capacitors C42a and C43a have a capacitance that is approximately 1/3 of that of the capacitor C41a. Further, the capacitors C42b and C43b have a capacitance that is approximately 1 ⁇ 3 of that of the capacitor C41b.
  • the capacity of about 1/3 means a capacity value including a capacity value of 1/3 and within 95% to 105% of the capacity value of 1/3.
  • FIG. 13 shows a noise behavior model of the Charge Redistribution SAR ADC 101 in this case.
  • FIG. 13 is a diagram showing a noise behavior model of Charge Redistribution SAR ADC 101.
  • the noise behavior model indicates the input/output characteristics of noise.
  • the noise behavior model of the Charge Redistribution SAR ADC 101 includes a subtractor SB1, a filter circuit FLT1, an adder AD1, and a SAR quantizer SQ1. Then, the noise transfer function NTF(z) of the Charge Redistribution SAR ADC 101 is expressed by the following equation (equation (2)).
  • the noise transfer function NTF(z) shown in Expression (2) has a first-order high-pass characteristic. Therefore, high-order Noise Shaping can be realized by making the transfer function L(z) of the filter circuit FLT1 complicated, but in the design of the Charge Redistribution SAR ADC 101, the occupied area, power consumption, and design difficulty are high. Etc. will increase.
  • the reference voltage in order for the Charge Redistribution SAR ADC 101 to obtain a high SNDR, the reference voltage must be stabilized.
  • ⁇ In order to stabilize the reference voltage it is common to improve the performance of the buffer amplifier that generates the reference voltage or to mount multiple capacitors to suppress voltage fluctuations. However, if the performance of the buffer amplifier is increased, or if a plurality of capacitors are mounted, the power consumption and the occupied area increase.
  • FIG. 14 shows the Charge Share SAR ADC 102 configured with a single end.
  • FIG. 14 is a circuit diagram showing the configuration of the Charge Share SAR ADC 102. Note that in FIG. 14, the Charge Share SAR ADC 102 is configured as a single end in order to simplify the description of the operation of the Charge Share SAR ADC.
  • the Charge Share SAR ADC 102 shown in FIG. 14 is a switch ⁇ 1x, a switch ⁇ 1y, a switch ⁇ 1z, a switch ⁇ 2, a switch ⁇ 3, a switch ⁇ 4, a capacitor C1P, a capacitor C1N, a capacitor C2, a capacitor C3, an integrator amplifier IP1, and a comparator CMP2. It is configured with.
  • FIG. 15 is a flowchart for explaining the operation of the Charge Share SAR ADC 102.
  • FIG. 16 shows the state of the circuit of the Charge Share SAR ADC 102 at the time of sampling (step S001).
  • the switch ⁇ 1x, the switch ⁇ 1y, the switch ⁇ 1z, and the switch ⁇ 2 are turned on (closed), and the voltage Vip, the voltage Vrefp, and the voltage Vrefn are sampled.
  • each charge of the capacitor C1P, the capacitor C1N, the capacitor C2, and the capacitor C3 is expressed by the following equations (Equations (3) to (6)).
  • FIG. 17 shows the state of total charge transfer (step S003).
  • the switch ⁇ 1x, the switch ⁇ 1y, the switch ⁇ 1z, and the switch ⁇ 2 are off (open), and the switches ⁇ 3 and ⁇ 4 are on (closed).
  • the electric charge Q2 stored in the capacitor C2 is transferred to the capacitor C3.
  • FIG. 18 shows the state of comparison judgment & C2 reset (step S005).
  • the Charge Share SAR ADC 102 turns off (opens) the switch ⁇ 4 and compares the integrated value of the charge Q3 with the ground potential in the comparator CMP2, and simultaneously turns on the switches ⁇ 2 and ⁇ 3 (closes them). ), and reset the capacitor C2.
  • the comparator CMP2 outputs the determination result D or the determination result DN as a result of comparing the integrated value of the charge Q3 and the ground potential.
  • FIG. 19 shows the state of comparison result feedback (step S007).
  • the Charge Share SAR ADC 102 outputs the determination result D in the comparator CMP2.
  • the switch D ⁇ 5 is turned on (closed).
  • step S009 The state of charge redistribution (step S009) is shown in FIG. In FIG. 20, the Charge Share SAR ADC 102 redistributes the charge Q1P of the capacitor C1P and the charge Q3 of the capacitor C3 in the capacitor C2.
  • the charge Q1P of the capacitor C1P is halved, and the voltage Vo in the formula (12) is the same voltage as the Charge Redistribution SAR ADC 101. Therefore, when the resolution is set to N bits in step 011 of FIG. 15 and the predetermined N-bit resolution is not obtained (No in step S011), the process returns to the comparison determination & C2 reset in step S005, and the steps from step S005 to step S005. By repeating S009, the resolution after (MSB-1) bit is acquired.
  • This active Charge Share SAR ADC 102 holds the previous SAR ADC conversion residual voltage in the capacitor C3, so that the noise transfer function has a first-order high-pass characteristic.
  • the transfer function L(z) of the capacitor C3 and the integrator amplifier IP1 is expressed by the following equation (equation (13)).
  • FIG. 21 shows the behavior model of the Charge Share SAR ADC 102 in this case.
  • FIG. 21 shows a noise behavior model of the Charge Share SAR ADC 102.
  • the Charge Share SAR ADC 102 shown in FIG. 21 includes a subtractor SB1, an integrator ITG1, an adder AD1, and a SAR quantizer SQ2. Then, the noise transfer function NTF(z) of the Charge Share SAR ADC 102 is expressed by the following equation (Equation (14)).
  • a Charge Share SAR ADC that can achieve higher-order noise shaping is provided.
  • the Charge Share SAR ADC can realize a high SNDR.
  • the successive approximation type AD converter according to the first embodiment of the present technology is a first capacitor having a first polarity, a second capacitor having a first polarity, a third capacitor having a first polarity, and a first capacitor having a second polarity.
  • a capacitor, a second capacitor having a second polarity, a third capacitor having a second polarity, an integrator amplifier, a comparator, and a filter circuit are provided.
  • the first capacitor having the first polarity, the second capacitor having the first polarity, and the third capacitor having the first polarity have substantially the same capacitance.
  • the first capacitor of the second polarity, the second capacitor of the second polarity, and the third capacitor of the second polarity have substantially the same capacitance.
  • a predetermined charge is accumulated in each of the first capacitor of the first polarity and the first capacitor of the second polarity.
  • the second capacitor of the first polarity stores the first charge of the input analog voltage and transfers the first charge to the third capacitor of the first polarity.
  • An integrator amplifier integrates the first charge transferred to the third capacitor of the first polarity to generate a first integrated value.
  • the second capacitor of the second polarity stores the second electric charge of the input analog voltage and transfers the second electric charge to the third capacitor of the second polarity.
  • An integrator amplifier integrates the second electric charge transferred to the third capacitor of the second polarity to generate a second integrated value.
  • the comparator compares the first integral value and the second integral value.
  • the second capacitor having the first polarity and the second capacitor having the second polarity are reset.
  • the charges accumulated in the third capacitor of the first polarity and the charges accumulated in the first capacitor of the first polarity are reset to the first polarity.
  • the charge accumulated in the third capacitor of the second polarity and the charge accumulated in the first capacitor of the second polarity are redistributed to the reset second capacitor of the second polarity. To do.
  • the electric charge accumulated in the third capacitor of the first polarity and the electric charge accumulated in the first capacitor of the second polarity are reset. While redistributing to the second capacitor of the first polarity, the charge accumulated in the third capacitor of the second polarity and the charge accumulated in the first capacitor of the first polarity are reset to the second capacitor of the second polarity. Redistribute to 2 capacitors.
  • the comparator compares the first integrated value and the second integrated value until the number of bits of a predetermined resolution is obtained, and the second capacitor of the first polarity and the second capacitor of the second polarity are reset. And redistribute to the reset second capacitors of the first polarity and the second capacitors of the second polarity are repeated.
  • the charge accumulated in the third capacitor of the first polarity by redistributing to the second capacitor of the first polarity and the second capacitor of the second polarity are redistributed in the filter circuit.
  • This is a successive approximation type AD converter that inputs the electric charges that are redistributed and accumulated in the third capacitor of the second polarity as a residual voltage.
  • FIG. 1 shows a Charge Share SAR ADC 100 that is an example of a successive approximation type AD converter according to the first embodiment of the present technology.
  • FIG. 1 is a block diagram showing a configuration example of a Charge Share SAR ADC 100 to which the present technology is applied.
  • the same components as those described above are designated by the same reference numerals, and description thereof will be omitted as appropriate.
  • the Charge Share SAR ADC 100 includes a first capacitor C1a having a first polarity, a second capacitor C2a having a first polarity, and a third capacitor C3a having a first polarity.
  • the first polarity is positive and the second polarity is negative.
  • the integrator ITG includes a switch ⁇ RESTa, a third capacitor having a first polarity, an integrator amplifier IP, a third capacitor C3b having a second polarity, and a switch ⁇ RESTb.
  • the Charge Share SAR ADC 100 performs an initial reset operation. After performing the initial reset operation, the Charge Share SAR ADC 100 turns off (opens) all the switches ⁇ . Note that the switch ⁇ RESTa and the switch ⁇ RESTb are kept off (open) until the Charge Share SAR ADC 100 is reset again after being turned off (after opening) by releasing the initial reset.
  • the Charge Share SAR ADC 100 turns on (closes) the switch ⁇ 1a1, the switch ⁇ 1a2, the switch ⁇ 2a, the switch ⁇ 1b2, and the switch ⁇ 2b, and the voltage Vip and the voltage Vip.
  • the voltages Vrefp, Vrefn, and Vin are sampled.
  • a predetermined charge is accumulated in each of the first capacitor C1a having the first polarity, the first capacitor C1b having the second polarity, the second capacitor C2a having the first polarity, and the second capacitor C2b having the second polarity. It The second capacitor C2a of the first polarity stores the first charge of the input analog voltage, and the second capacitor C2b of the second polarity stores the second charge of the input analog voltage. ..
  • Q1a C1a ⁇ Vrep (15)
  • Q1b C1b ⁇ Vren (16)
  • Q2a C2a ⁇ Vip (17)
  • Q2b C2b ⁇ Vin (18)
  • the Charge Share SAR ADC 100 turns off (opens) the switch ⁇ 1a1, the switch ⁇ 1a2, the switch ⁇ 2a, the switch ⁇ 1b1, the switch ⁇ 1b2, and the switch ⁇ 3a and the switch ⁇ 4a.
  • Switch ⁇ 3b and switch ⁇ 4b are turned on (closed).
  • the first charge stored in the second capacitor C2a of the first polarity is fully transferred to the third capacitor C3a of the first polarity and is stored in the second capacitor C2b of the second polarity.
  • the second charge is completely transferred to the third capacitor C3b having the second polarity.
  • the Charge Share SAR ADC 100 integrates the first charge transferred to the third capacitor C3a of the first polarity by the integrator amplifier IP to obtain the first integrated value.
  • the second charge generated and transferred to the third capacitor C3b of the second polarity is integrated to generate a second integrated value.
  • the comparator CMP compares the first integral value and the second integral value, and outputs the determination result D or the determination result DN as the comparison result.
  • the second capacitor C2a having the first polarity and the second capacitor C2b having the second polarity are reset.
  • step S007 it is assumed that the Charge Share SAR ADC 100 outputs the determination result D indicating that the first integrated value is larger than the second integrated value by the comparator CMP. In this case, the Charge Share SAR ADC 100 turns on (closes) the switch D ⁇ 5a and the switch D ⁇ 5b.
  • the Charge Share SAR ADC 100 resets the charge accumulated in the third capacitor C3a of the first polarity and the charge accumulated in the first capacitor C1a of the first polarity to the first reset state. It is redistributed to the polar second capacitor C2a. At the same time, the Charge Share SAR ADC 100 transfers the electric charge accumulated in the second capacitor C3b of the second polarity and the electric charge accumulated in the first capacitor C1b of the second polarity to the second capacitor C2b of the second polarity reset. Redistribute.
  • the first capacitor C1a having the first polarity, the second capacitor C2a having the first polarity, the third capacitor C3a having the first polarity, the first capacitor C1b having the second polarity, the second capacitor C2b having the second polarity, and the second capacitor C2b The respective charges of the third capacitor C3b having the polarity are expressed by the following formulas (formula (23) to formula (30)).
  • step S007 it is assumed that the Charge Share SAR ADC 100 outputs the determination result DN indicating that the first integrated value is substantially equal to or less than the second integrated value by the comparator CMP. To do. In this case, the Charge Share SAR ADC 100 turns on (closes) the switch DN ⁇ 5a and the switch DN ⁇ 5b.
  • the Charge Share SAR ADC 100 resets the charge accumulated in the third capacitor C3a of the first polarity and the charge accumulated in the first capacitor C1b of the second polarity to the first reset state. It is redistributed to the polar second capacitor C2a. At the same time, the Charge Share SAR ADC 100 transfers the charge accumulated in the third capacitor C3b of the second polarity and the charge accumulated in the first capacitor C1a of the first polarity to the second capacitor C2b of the reset second polarity. Redistribute.
  • the respective charges of the third capacitor C3b are expressed by the following formulas (formula (31) to formula (38)).
  • the comparator CMP compares the first integrated value and the second integrated value (Yes in step S005) until the number of bits with a predetermined resolution is obtained (step S011).
  • the second capacitor C2a and the second capacitor C2b having the second polarity are reset (step S005), and the redistributed to the reset second capacitor C2a having the first polarity and the second capacitor C2b having the second polarity. This is repeated (step S007 and step S009) (step S013).
  • the Charge Share SAR ADC 100 acquires the resolution after (MSB-1) bit by repeating steps S005 to S009.
  • the Charge Share SAR ADC 100 after obtaining the number of bits of the predetermined resolution, is redistributed to the second capacitor C2a of the first polarity and accumulated in the third capacitor C3a of the first polarity in the filter circuit FLT.
  • the charges and the charges redistributed to the second capacitor C2b of the second polarity and accumulated in the third capacitor C3b of the second polarity are input as the residual voltage.
  • FIG. 2 is a timing chart showing a timing at which the Charge Share SAR ADC 100 according to the first embodiment of the present technology turns on (closes) the switch ⁇ 6 (the switch ⁇ 6a and the switch ⁇ 6b).
  • the switch ⁇ 6 (the switch ⁇ 6a and the switch ⁇ 6b) feeds back the determination result of the least significant bit with a predetermined resolution to the Charge Share SAR ADC 100, and turns on (closes) before and after the timing of charge redistribution.
  • the Charge Share SAR ADC 100 turns on (closes) the switch ⁇ 6 (switch ⁇ 6a and switch ⁇ 6b) when the residual voltage after the redistribution of the least significant bit is sampled by the filter circuit FLT.
  • the comparator CMP compares the first integrated value and the second integrated value, and the second capacitor C2a of the first polarity and the second capacitor C2a of the second polarity. After the capacitor C2b is reset and before the redistribution of the second capacitor C2a of the first polarity and the second capacitor C2b of the second polarity is completed, the filter circuit FLT samples the residual voltage. Indicates that it is about to start.
  • the switch ⁇ 6 turns on (closes) the switch ⁇ 2 (switch ⁇ 2a and switch ⁇ 2b) and switch ⁇ 3 (switch ⁇ 3a and switch ⁇ 3b) for the least significant bit (LSB bit) of a predetermined resolution. Then, after the second capacitor C2a having the first polarity and the second capacitor C2b having the second polarity are reset, the switch ⁇ 4 (the switch ⁇ 4a and the switch ⁇ 4b) must be turned on (by opening) before being turned off. All you have to do is close it.
  • the integrator amplifier IP plays the role of a buffer for the input of the filter circuit FLT, there is a degree of freedom in the timing of turning on (closing) the switch ⁇ 6 (switch ⁇ 6a and switch ⁇ 6b). Therefore, in consideration of the voltage resolution and the amplifier buffering ability, the timing (close timing) for turning on the switch ⁇ 6 (switch ⁇ 6a and switch ⁇ 6b) can be optimized so that the settling becomes shortest.
  • FIG. 3 shows a behavior model of the Charge Share SAR ADC 100 shown in FIG.
  • FIG. 3 is a diagram showing a noise behavior model of the Charge Share SAR ADC 100 according to the first embodiment of the present technology.
  • the noise behavior model of the Charge Share SAR ADC 100 includes a subtractor SB, an integrator ITG, a filter circuit FLT, an adder AD, and a SAR quantizer SQ. Then, the noise transfer function NTF(z) of the Charge Share SAR ADC 100 is expressed by the following equation (equation (39)).
  • the Charge Share SAR ADC 100 can increase the order of noise shaping.
  • the transfer function L 1 (z) of the integrator ITG is the same as the expression (13).
  • the filter circuit FLT some embodiments are assumed.
  • the circuit topology of the filter circuit FLT is to directly apply the filter circuit FLT1 implemented in the Charge Redistribution SAR ADC shown in FIG.
  • the Charge Share SAR ADC 100 constitutes an active Charge Share SAR ADC in which the filter circuit FLT1 includes an operational amplifier (integrator amplifier IPF).
  • FIG. 4 is a circuit diagram in the case where the Charge Share SAR ADC 100 according to the first embodiment of the present technology has the filter circuit FLT1 shown in FIG.
  • the transfer function L 2 (z) and the noise transfer function NTF(z) of the filter circuit FLT1 in this case are represented by the following expressions (Expression (40) and Expression (41)).
  • FIG. 5 is an explanatory diagram showing that quantization noise located in a low frequency band is moved to a high frequency band by noise shaping.
  • the noise shaping can reduce the quantization noise and the comparator noise that are uniformly distributed in the frequency band in the low frequency band and increase them in the high frequency band. Note that FIG. 5 shows first-order noise shaping.
  • FIG. 6 is an explanatory diagram showing that the effect of noise shaping becomes higher as the order becomes higher.
  • the order is “q”.
  • the noise transfer function represented by the first order can be increased in order, the effect of removing noise can be enhanced.
  • the secondary can be achieved, more noise components (noise components) can be moved to the high frequency band than in the case of the primary, so a low-pass filter is applied to the output of the Charge Share SAR ADC 100.
  • the noise component (noise component) can be cut by applying.
  • the integrator ITG can be diverted for noise shaping, so that the noise shaping can be performed by one integrator amplifier IPF included in the filter circuit FLT.
  • the Charge Share SAR ADC 100 can remove a noise component (noise component) with high accuracy.
  • the successive approximation type AD converter according to the second embodiment of the present technology is a successive approximation type AD converter in which a filter circuit is driven by an integrator amplifier.
  • FIG. 7 shows a Charge Share SAR ADC 100a that is an example of a successive approximation type AD converter according to the second embodiment of the present technology.
  • FIG. 7 is a block diagram showing a configuration example of the Charge Share SAR ADC 100a to which the present technology is applied.
  • the same components as those described above are designated by the same reference numerals, and description thereof will be omitted as appropriate. Unless otherwise specified, “left” means the left direction in FIG. 7, and “up” means the upper direction in FIG. 7.
  • the Charge Share SAR ADC 100a of the second embodiment shown in FIG. 7 differs from the Charge Share SAR ADC 100 of the first embodiment shown in FIG. 1 in that the filter circuit FLT2 is a buffer Abuf and a switch ⁇ 6. (Switch ⁇ 6a and switch ⁇ 6b) is not provided.
  • the integrator amplifier IP functions as a buffer for the input of the filter circuit FLT2
  • the input buffer in the filter circuit FLT2 can be deleted.
  • the switches ⁇ 7 to ⁇ 12 switches ⁇ 7a to ⁇ 12a and switches ⁇ 7b to ⁇ 12b located on the left side of the sampling capacitors (capacitors C5a and C5b) in the filter circuit FLT2 can be used as sampling switches.
  • the switch ⁇ 6 switch ⁇ 6a and switch ⁇ 6b
  • the transfer function L 2 (z) and the noise transfer function NTF(z) of the filter circuit FLT2 in this case are represented by the following expressions (Expression (42) and Expression (43)).
  • the Charge Share SAR ADC 100a As shown in equation (43), the numerator (1-z ⁇ 1 ) 2 of the noise transfer function NTF(z) is maintained. As a result, the Charge Share SAR ADC 100a according to the second embodiment of the present technology can maintain the order of noise shaping at a high order.
  • the successive approximation type AD converter according to the third embodiment of the present technology is a successive approximation type AD converter in which the filter circuit includes a capacitor and does not include an operational amplifier.
  • FIG. 8 shows a Charge Share SAR ADC 100b that is an example of the successive approximation type AD converter according to the third embodiment of the present technology.
  • FIG. 8 is a block diagram showing a configuration example of the Charge Share SAR ADC 100b to which the present technology is applied.
  • the same components as those described above are designated by the same reference numerals, and description thereof will be omitted as appropriate. Unless otherwise specified, “left” means leftward in FIG. 8 and “upper” means upward in FIG. 8.
  • the difference between the Charge Share SAR ADC 100b of the third embodiment shown in FIG. 8 and the Charge Share SAR ADC 100 of the first embodiment shown in FIG. 1 is that the filter circuit FLT3 is a capacitor (capacitor CAa, capacitor). CAb, capacitor CBa, and capacitor CBb) are included and the operational amplifier is not included.
  • FIG. 8A shows a circuit diagram of the Charge Share SAR ADC 100b of the third embodiment
  • FIG. 8B shows a circuit diagram of the filter circuit FLT3
  • FIG. 8C shows a timing chart of the filter circuit FLT3.
  • the filter circuit FLT3 of the Charge Share SAR ADC 100b is configured to include a capacitor CAa, a capacitor CAb, a capacitor CBa, a capacitor CBb, a switch ⁇ 13 (switch ⁇ 13a and switch ⁇ 13b), and a switch ⁇ 14 (switch ⁇ 14a and switch ⁇ 14b).
  • the filter circuit FLT1 of the Charge Redistribution SAR ADC 101 shown in FIG. 11 is a passive type
  • charge redistribution occurs in the capacitance array (capacitors CP0 to CP6) and the capacitance of the filter circuit FLT1. .. Therefore, in the Charge Redistribution SAR ADC 101, the residual voltage after SAR ADC conversion is attenuated.
  • the integrator amplifier IP serves as a buffer for the input of the filter circuit FLT3, the residual voltage after SAR ADC conversion is attenuated. There is nothing to do. Specifically, since charge redistribution does not occur between the third capacitor C3a of the first polarity and the third capacitor C3b of the second polarity, and the capacitors CAa and CAb, the residual voltage after SAR ADC conversion is attenuated. There is no.
  • the SNDR of the Charge Share SAR ADC 100b according to the third embodiment of the present technology has a more advantageous value than the circuit configuration of the conventional Charge Redistribution SAR ADC 101. Further, in the Charge Share SAR ADC 100b of the third embodiment, the sampling of the filter circuit FLT3 does not depend on the charge redistribution, so that the capacitors CAa and CAb can be reduced within the range where the noise required specifications are satisfied.
  • the transfer function L 2 (z) and the noise transfer function NTF(z) of the filter circuit FLT3 in this case are represented by the following expressions (Expression (44) and Expression (45)).
  • the transfer function L 2 (z) of the filter circuit FLT3 is a first-order passive type, and the noise transfer function NTF(z) is near second-order noise shaping. The characteristics can be obtained.
  • the IoT (Internet of Things) sensor of the fourth embodiment according to the present technology is equipped with a successive approximation type AD converter, and the successive approximation type AD converter includes a first capacitor having a first polarity and a first capacitor having a first polarity. 2 capacitors, 1st polarity 3rd capacitor, 2nd polarity 1st capacitor, 2nd polarity 2nd capacitor, 2nd polarity 3rd capacitor, integrator amplifier, comparator, and filter circuit And IoT sensor. Further, the IoT sensor of the fourth embodiment according to the present technology may be an IoT sensor equipped with any one of the successive approximation type AD converters of the first to third embodiments of the present technology.
  • FIG. 9 shows a schematic configuration of the IoT sensor 200 as an example.
  • FIG. 9 is a block diagram showing a configuration example of an IoT sensor to which the present technology is applied.
  • the IoT sensor 200 includes a sensor element S1, a sensor element S2... A sensor element SN, a MUX (Multiplexer) 210, a PGA AMP (Programmable Gain Amplifier) 220, and a Charge Share SAR ADC 100 ( In FIG. 9, it is represented as ADC 100.), a signal processing block 230, an RF 240, an antenna 250, an LCD driver 260, a display 270, a Power Management 280, and a power supply 290.
  • the IoT sensor 200 has a large number of sensor elements (sensor element S1, sensor element S2... Sensor element SN).
  • the IoT sensor 200 can include a plurality of sensor elements as sensor elements, for example, the sensor element S1 is an acceleration sensor and the sensor element S2 is a gyro sensor. Further, as other sensors, a magnetic sensor, a temperature sensor, an atmospheric pressure sensor, a pressure sensitive sensor, etc. may be provided.
  • the MUX 210 is a multiplexer that selects from data (analog signals) acquired by a plurality of sensors (sensor element S1, sensor element S2... Sensor element SN).
  • the PGA AMP 220 is an amplifier that can adjust the gain required by the user.
  • the Charge Share SAR ADC 100 (ADC 100 in FIG. 9) is the successive approximation type AD converter described in the first embodiment according to the present technology.
  • the signal processing block 230 is a signal processing unit configured with a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), and the like, and processes data (digital signals).
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • RF (Radio Frequency) 240 is a wireless circuit that performs wireless communication at a high frequency.
  • the RF 240 transmits the signal (digital signal) processed by the signal processing block 230 to the communication terminal (not shown) via the antenna 250.
  • the LCD Driver 260 is a module that drives a display 270 including, for example, a liquid crystal display.
  • the LCD Driver 260 causes the display 260 to display the signal processed by the signal processing block 230.
  • the Power Management 280 supplies the power supplied from the power supply 290 to the signal processing block 230.
  • the IoT sensor 200 Since the IoT sensor 200 has such a configuration, the IoT sensor 200 converts data (analog signal) acquired by a large number of sensor elements (sensor element S1, sensor element S2... It is possible to execute the signal processing of (1) and send it to a communication terminal (not shown).
  • the fourth embodiment according to the present technology is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present technology.
  • a biosensor according to a fifth embodiment of the present technology is equipped with a successive approximation type AD converter, and the successive approximation type AD converter includes a first capacitor having a first polarity, a second capacitor having a first polarity, and a second capacitor.
  • the biosensor of the fifth embodiment according to the present technology may be a biosensor equipped with any one of the successive approximation AD converters of the first to third embodiments of the present technology.
  • FIG. 10 shows a schematic configuration of the biosensor 300 as an example thereof.
  • FIG. 10 is a block diagram showing a configuration example of a biosensor 300 to which the present technology is applied.
  • the same components as those of the IoT sensor shown in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the difference between the biosensor 00 of the fifth embodiment shown in FIG. 10 and the IoT sensor 200 of the fourth embodiment shown in FIG. 9 is that the PGA AMP 220 is replaced by an Analog Front-End 310, The data processed by the signal processing block 230 is output from the Serial I/F 330 to an information processing terminal (not shown).
  • the Analog Front-End 310 includes an amplifier and a filter, and has a function of adjusting data (analog signal) detected by the sensor elements (sensor element S1, sensor element S2... Sensor element SN). There is.
  • the sensor element S1 detects the body temperature and the sensor element S2 detects the heart rate. Then, the biological sensor 300 adjusts the detected body temperature and heart rate by the Analog Front-End 310, and performs signal processing in the signal processing block 230. Then, the biometric sensor 300 outputs the signal-processed body temperature and heart rate to the information processing terminal (not shown) via the Serial I/F 330.
  • first to fifth embodiments according to the present technology are not limited to the above-mentioned embodiments, and various modifications can be made without departing from the gist of the present technology.
  • the present technology may have the following configurations. (1) a first capacitor of a first polarity, A second capacitor of the first polarity, A third capacitor of the first polarity, A first capacitor of the second polarity, A second capacitor of the second polarity, A second capacitor of the second polarity, An integrator amplifier, A comparator, And a filter circuit, Each of the first capacitor of the first polarity, the second capacitor of the first polarity, and the third capacitor of the first polarity has substantially the same capacitance, The first capacitor having the second polarity, the second capacitor having the second polarity, and the third capacitor having the second polarity have substantially the same capacitance, A predetermined charge is accumulated in each of the first capacitor of the first polarity and the first capacitor of the second polarity, The second capacitor of the first polarity accumulates the first charge of the input analog voltage and transfers the first charge to the third capacitor of the first polarity, The integrator amplifier integrates the first charge transferred to the third capacitor of the first polarity to generate
  • the filter circuit After the number of bits of the predetermined resolution is obtained, in the filter circuit, the charge redistributed to the second capacitor of the first polarity and accumulated in the third capacitor of the first polarity, and the second capacitor A successive-approximation-type AD converter that inputs the electric charges accumulated in the third capacitor having the second polarity by being redistributed to the second capacitor having the polarity as a residual voltage.
  • the first polarity is a positive polarity
  • the comparator compares the first integrated value and the second integrated value, and the second capacitor of the first polarity and the second capacitor of the second polarity. After the resetting is performed, the filter circuit starts sampling the residual voltage until the reallocation of the second capacitor of the first polarity and the second capacitor of the second polarity is completed.
  • the successive approximation type AD converter according to (1) or (2) above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Analogue/Digital Conversion (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The present invention provides a Charge Share SAR ADC with which it is possible to raise the order of noise shaping. This sequential-comparison-type AD converter comprises a first-polarity first capacitor, a first-polarity second capacitor, a first-polarity third capacitor, a second-polarity first capacitor, a second-polarity second capacitor, a second-polarity third capacitor, an integrator amplifier, a comparator, and a filter circuit. The integrator amplifier generates a first integrated value and a second integrated value. The comparator compares the first integrated value and the second integrated value, and, on the basis of the comparison result, redistributes a charge accumulated in the first-polarity third capacitor and a charge accumulated in the second-polarity third capacitor to the first-polarity second capacitor or the second-polarity second capacitor. After the redistribution is repeated, the charge accumulated in the first-polarity third capacitor and the charge accumulated in the second-polarity third capacitor are inputted as residual voltage into the filter circuit.

Description

逐次比較型ADコンバータ、Iotセンサ、及び生体センサSuccessive Approximation Type AD Converter, Iot Sensor, and Biometric Sensor
 本技術は、逐次比較型ADコンバータ、Iotセンサ、及び生体センサに関する。 The present technology relates to a successive approximation type AD converter, an Iot sensor, and a biometric sensor.
 従来、SAR ADC(Successive Approximation Resister Analog Digital Converter:逐次比較型AD変換器)が知られている。SAR ADCは、容量DA変換器の残差電圧を保持し、保持した残差電圧を次の変換サイクルで容量DA変換器に加算してノイズシェーピングを行っている。 Conventionally, SAR ADC (Successive Application Register Analog Analog Converter) is known. The SAR ADC holds the residual voltage of the capacitive DA converter and adds the retained residual voltage to the capacitive DA converter in the next conversion cycle to perform noise shaping.
 ここで、ノイズシェーピングとは、量子化ノイズとコンパレータノイズを削減するための技術である。ノイズシェーピングを行うことにより、信号を測定したときの信号とノイズとの比を示すSNDR(Signal to noise and distortion)が向上する。 Here, noise shaping is a technique for reducing quantization noise and comparator noise. By performing noise shaping, SNDR (Signal to noise and distortion), which indicates the ratio of signal to noise when the signal is measured, is improved.
 SNDRの値を高くするためには、ノイズシェーピングの次数を高くすることが望まれる。上述したSAR ADCに関し、単純で、非常に効率的なSAR ADCが提案されている(例えば、非特許文献1)。 In order to increase the value of SNDR, it is desirable to increase the order of noise shaping. Regarding the above-mentioned SAR ADC, a simple and extremely efficient SAR ADC has been proposed (for example, Non-Patent Document 1).
 一般的に、SAR ADCは、ΔΣADCと異なり、ノイズシェーピングの次数を上げることが不向きであるため、達成できるSNDRの精度には限界があった。 Generally, SAR ADC, unlike ΔΣ ADC, is not suitable for increasing the order of noise shaping, so there is a limit to the accuracy of SNDR that can be achieved.
 本技術は、このような状況に鑑みてなされたものであり、ノイズシェーピングの高次化を図ることができる逐次比較型ADコンバータ、Iotセンサ、及び生体センサを提供することを主目的とする。 The present technology has been made in view of such a situation, and its main purpose is to provide a successive approximation type AD converter, an Iot sensor, and a biometric sensor that can achieve higher-order noise shaping.
 本発明者は、上述の目的を解決するために鋭意研究を行った結果、ノイズシェーピングの高次化を図ることができる逐次比較型ADコンバータ、Iotセンサ、及び生体センサを提供することに成功し、本技術を完成するに至った。 As a result of earnest research for solving the above-mentioned object, the present inventor succeeded in providing a successive approximation type AD converter, an Iot sensor, and a biosensor capable of achieving higher-order noise shaping. , Has come to complete this technology.
 すなわち、本技術では、 第1極性の第1コンデンサと、
 第1極性の第2コンデンサと、
 第1極性の第3コンデンサと、
 第2極性の第1コンデンサと、
 第2極性の第2コンデンサと、
 第2極性の第3コンデンサと、
 積分器アンプと、
 コンパレータと、
 フィルタ回路と、を備え、
 前記第1極性の第1コンデンサと、前記第1極性の第2コンデンサと、前記第1極性の第3コンデンサのそれぞれが、略同一の容量を有し、
 前記第2極性の第1コンデンサと、前記第2極性の第2コンデンサと、前記第2極性の第3コンデンサのそれぞれが、略同一の容量を有し、
前記第1極性の第1コンデンサ及び前記第2極性の第1コンデンサのそれぞれに、所定の電荷が蓄積され、
 前記第1極性の第2コンデンサが、入力されるアナログ電圧の第1電荷を蓄積するとともに、当該第1電荷を前記第1極性の第3コンデンサに転送し、
 前記積分器アンプが、前記第1極性の第3コンデンサに転送された前記第1電荷を積分して、第1積分値を生成し、
 前記第2極性の第2コンデンサが、入力されるアナログ電圧の第2電荷を蓄積するとともに、当該第2電荷を前記第2極性の第3コンデンサに転送し、
 前記積分器アンプが、前記第2極性の第3コンデンサに転送された前記第2電荷を積分して、第2積分値を生成し、
 前記コンパレータが、前記第1積分値と前記第2積分値とを比較し、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとがリセットされ、
 前記第1積分値が前記第2積分値よりも大きいときは、
 前記第1極性の第3コンデンサに蓄積された電荷と前記第1極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第1極性の第2コンデンサに再配分するとともに、
 前記第2極性の第3コンデンサに蓄積された電荷と前記第2極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第2極性の第2コンデンサに再配分し、
 前記第1積分値が前記第2積分値よりも略同等以下であるときは、
 前記第1極性の第3コンデンサに蓄積された電荷と前記第2極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第1極性の第2のコンデンサに再配分するとともに、
 前記第2極性の第3コンデンサに蓄積された電荷と前記第1極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第2極性の第2コンデンサに再配分し、
 所定の分解能のビット数が得られるまで、前記コンパレータが前記第1積分値と前記第2積分値とを前記比較することと、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとが前記リセットされることと、前記リセットされた、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとに前記再配分することと、を繰り返し、
 前記所定の分解能のビット数が得られた後、前記フィルタ回路に、前記第1極性の第2コンデンサに前記再配分して前記第1極性の第3コンデンサに蓄積された電荷と、前記第2極性の第2コンデンサに前記再配分して前記第2極性の第3コンデンサに蓄積された電荷とを、残差電圧として入力する、逐次比較型ADコンバータを提供する。
That is, in the present technology, the first capacitor of the first polarity,
A second capacitor of the first polarity,
A third capacitor of the first polarity,
A first capacitor of the second polarity,
A second capacitor of the second polarity,
A second capacitor of the second polarity,
An integrator amplifier,
A comparator,
And a filter circuit,
Each of the first capacitor of the first polarity, the second capacitor of the first polarity, and the third capacitor of the first polarity has substantially the same capacitance,
The first capacitor having the second polarity, the second capacitor having the second polarity, and the third capacitor having the second polarity have substantially the same capacitance,
A predetermined charge is accumulated in each of the first capacitor of the first polarity and the first capacitor of the second polarity,
The second capacitor of the first polarity accumulates the first charge of the input analog voltage and transfers the first charge to the third capacitor of the first polarity,
The integrator amplifier integrates the first charge transferred to the third capacitor of the first polarity to generate a first integrated value,
The second capacitor of the second polarity accumulates the second charge of the input analog voltage and transfers the second charge to the third capacitor of the second polarity,
The integrator amplifier integrates the second charge transferred to the third capacitor of the second polarity to generate a second integrated value,
The comparator compares the first integrated value with the second integrated value, resets the second capacitor of the first polarity and the second capacitor of the second polarity,
When the first integrated value is larger than the second integrated value,
While redistributing the charge accumulated in the third capacitor of the first polarity and the charge accumulated in the first capacitor of the first polarity to the reset second capacitor of the first polarity,
The charge accumulated in the second capacitor of the second polarity and the charge accumulated in the first capacitor of the second polarity are redistributed to the reset second capacitor of the second polarity,
When the first integrated value is substantially equal to or less than the second integrated value,
The charge accumulated in the third capacitor of the first polarity and the charge accumulated in the first capacitor of the second polarity are redistributed to the reset second capacitor of the first polarity, and
The charge accumulated in the third capacitor of the second polarity and the charge accumulated in the first capacitor of the first polarity are redistributed to the reset second capacitor of the second polarity,
The comparator compares the first integrated value with the second integrated value until a bit number with a predetermined resolution is obtained, and the second capacitor of the first polarity and the second capacitor of the second polarity are compared. Is reset, and the redistributed to the reset second capacitor of the first polarity and the second capacitor of the second polarity,
After the number of bits of the predetermined resolution is obtained, in the filter circuit, the charge redistributed to the second capacitor of the first polarity and accumulated in the third capacitor of the first polarity, and the second capacitor Provided is a successive approximation type AD converter which inputs the electric charges accumulated in the second capacitor of the second polarity which is redistributed to the second capacitor of the polarity as a residual voltage.
 本技術に係る逐次比較型ADコンバータにおいて、前記第1極性が、正極性であって、前記第2極性が、負極性であってもよい。 In the successive approximation type AD converter according to the present technology, the first polarity may be positive and the second polarity may be negative.
 本技術に係る逐次比較型ADコンバータにおいて、前記所定の分解能の最下位ビットについて、前記コンパレータが、前記第1積分値と前記第2積分値とを比較し、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとが前記リセットされた後、当該第1極性の第2コンデンサと第2極性の第2コンデンサとについて前記再配分が完了するまでの間に、前記フィルタ回路が、前記残差電圧のサンプリングを開始してもよい。 In the successive approximation type AD converter according to the present technology, the comparator compares the first integral value and the second integral value with respect to the least significant bit of the predetermined resolution, and the second capacitor of the first polarity is used. After the resetting of the second capacitor of the second polarity and before the redistribution of the second capacitor of the first polarity and the second capacitor of the second polarity is completed, the filter circuit is Sampling of the residual voltage may be started.
 本技術に係る逐次比較型ADコンバータにおいて、前記フィルタ回路が、前記積分器アンプによって駆動されるようにしてもよい。 In the successive approximation type AD converter according to the present technology, the filter circuit may be driven by the integrator amplifier.
 本技術に係る逐次比較型ADコンバータにおいて、前記フィルタ回路が、オペアンプを含んで構成されるアクティブ型であってもよい。 In the successive approximation type AD converter according to the present technology, the filter circuit may be an active type including an operational amplifier.
 本技術に係る逐次比較型ADコンバータにおいて、前記フィルタ回路が、コンデンサを含み、オペアンプを含まないで構成されるパッシブ型であってもよい。 In the successive approximation type AD converter according to the present technology, the filter circuit may be a passive type that includes a capacitor and does not include an operational amplifier.
 また、本技術では、前記逐次比較型ADコンバータを備える、IoTセンサを提供する。 The present technology also provides an IoT sensor including the successive approximation type AD converter.
 また、本技術では、前記逐次比較型ADコンバータを備える、生体センサを提供する。 Also, the present technology provides a biometric sensor including the successive approximation type AD converter.
 本技術によれば、逐次比較型ADコンバータ、Iotセンサ、及び生体センサは、ノイズシェーピングの高次化を実現することができる。なお、本技術の効果は、必ずしも上記の効果に限定されるものではなく、本技術に記載されたいずれかの効果であってもよい。 According to the present technology, the successive approximation type AD converter, the Iot sensor, and the biometric sensor can realize higher-order noise shaping. Note that the effect of the present technology is not necessarily limited to the above effect, and may be any effect described in the present technology.
本技術に係る第1の実施形態の逐次比較型ADコンバータの一例であるCharge Share SAR ADCの構成の例を示すブロック図である。It is a block diagram showing an example of composition of Charge Share SAR ADC which is an example of a successive approximation type AD converter of a 1st embodiment concerning this art. 本技術に係る第1の実施形態のCharge Share SAR ADCが、スイッチをオンにするタイミングを示したタイミングチャートである。9 is a timing chart showing the timing at which the Charge Share SAR ADC according to the first embodiment of the present technology turns on the switch. 本技術に係る第1の実施形態のCharge Share SAR ADCのノイズビヘイビアモデルを示した図である。It is a figure showing the noise behavior model of Charge Share SAR ADC of a 1st embodiment concerning this art. 本技術に係る第1の実施形態のCharge Share SAR ADCが、フィルタ回路を有している場合の回路図である。It is a circuit diagram in case Charge Charge SAR ADC of a 1st embodiment concerning this art has a filter circuit. ノイズシェーピングにより、低周波帯域に位置する量子化雑音を高周波帯域に移動させることを示した説明図である。It is explanatory drawing shown that the quantization noise located in a low frequency band is moved to a high frequency band by noise shaping. 次数が高くなると、ノイズシェーピングの効果が高くなることを示した説明図である。It is an explanatory view showing that the effect of noise shaping becomes high if the order becomes high. 本技術を適用したCharge Share SAR ADCの構成例を示すブロック図である。It is a block diagram showing an example of composition of Charge Share SAR ADC to which this art is applied. 本技術を適用したCharge Share SAR ADCの構成例を示すブロック図である。It is a block diagram showing an example of composition of Charge Share SAR ADC to which this art is applied. 本技術を適用したIoTセンサの構成例を示すブロック図である。It is a block diagram showing an example of composition of an IoT sensor to which this art is applied. 本技術を適用した生体センサの構成例を示すブロック図である。It is a block diagram showing an example of composition of a living body sensor to which this art is applied. 従来から知られているCharge Redistribution SAR ADCに、ノイズシェーピングを実行するためのフィルタ回路が追加された回路図である。It is a circuit diagram in which a filter circuit for executing noise shaping is added to a conventionally known Charge Redistribution SAR ADC. Charge Redistribution SAR ADCに実装されるフィルタ回路の例である。This is an example of a filter circuit implemented in a Charge Redistribution SAR ADC. Charge Redistribution SAR ADCのノイズビヘイビアモデルを示した図である。It is the figure which showed the noise behavior model of Charge Redistribution SAR ADC. Charge Share SAR ADCの構成を示した回路図である。It is a circuit diagram showing a configuration of a Charge Share SAR ADC. Charge Share SAR ADCの動作を説明するためのフローチャートである。It is a flowchart for explaining the operation of the Charge Share SAR ADC. Charge Share SAR ADCのサンプリング時の状態を示した回路図である。It is a circuit diagram showing the state at the time of sampling of Charge Share SAR ADC. Charge Share SAR ADCの全電荷転送の状態を示した回路図である。It is the circuit diagram which showed the state of the total charge transfer of Charge Share SAR ADC. Charge Share SAR ADCの比較判定&C2リセットの状態を示した回路図である。It is a circuit diagram showing the state of comparison judgment & C2 reset of Charge Share SAR ADC. Charge Share SAR ADCの比較結果フィードバックの状態を示した回路図である。It is the circuit diagram which showed the state of the comparison result feedback of Charge Share SAR ADC. Charge Share SAR ADCの電荷再配分の状態を示した回路図である。It is a circuit diagram showing the state of charge redistribution of Charge Share SAR ADC. Charge Share SAR ADCのノイズビヘイビアモデルである。It is a noise behavior model of Charge Share SAR ADC.
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。 Hereinafter, a suitable mode for carrying out the present technology will be described with reference to the drawings. The embodiments described below are examples of typical embodiments of the present technology, and the scope of the present technology should not be construed narrowly.
 なお、説明は以下の順序で行う。
1.本技術の概要
2.第1の実施形態(逐次比較型ADコンバータの例1)
3.第2の実施形態(逐次比較型ADコンバータの例2)
4.第3の実施形態(逐次比較型ADコンバータの例3)
5.第4の実施形態(IoTセンサの例)
6.第5の実施形態(生体センサの例)
The description will be given in the following order.
1. Outline of the present technology 2. First Embodiment (Example 1 of Successive Approximation Type AD Converter)
3. Second embodiment (example 2 of successive approximation type AD converter)
4. Third embodiment (example 3 of successive approximation type AD converter)
5. Fourth embodiment (example of IoT sensor)
6. Fifth embodiment (example of biometric sensor)
<1.本技術の概要>
 一般的なSAR ADC(Successive Approximation Resister Analog Digital Converter)を、図11に示す。図11に示されるSAR ADCは、従来から知られているCharge Redistribution SAR ADCに、ノイズシェーピングを実行するためのフィルタ回路FLT1が追加された回路図である。
<1. Overview of this technology>
A general SAR ADC (Successive Application Register Analog Digital Converter) is shown in FIG. The SAR ADC shown in FIG. 11 is a circuit diagram in which a filter circuit FLT1 for executing noise shaping is added to the conventionally known Charge Redistribution SAR ADC.
 図11に示されるCharge Redistribution SAR ADC101は、複数のコンデンサCP0~コンデンサCP6(コンデンサCP0、コンデンサCP1、・・・コンデンサCP2、コンデンサCP3、コンデンサCP4、コンデンサCP5、及びコンデンサCP6)と、スイッチSW1~スイッチSW7(スイッチSW1、スイッチSW2、・・・スイッチSW3、スイッチSW4、スイッチSW5、スイッチSW6、及びスイッチSW7)と、フィルタ回路FLT1と、コンパレータCMP1とを備えている。 The Charge Redistribution SAR ADC 101 shown in FIG. 11 includes a plurality of capacitors CP0 to CP6 (capacitor CP0, capacitor CP1,... Capacitor CP2, capacitor CP3, capacitor CP4, capacitor CP5, and capacitor CP6), and switches SW1 to SW1. SW7 (switch SW1, switch SW2,... Switch SW3, switch SW4, switch SW5, switch SW6, and switch SW7), a filter circuit FLT1, and a comparator CMP1.
 Charge Redistribution SAR ADC101が有する複数のコンデンサCP0~CP6は、容量アレイを構成し、バイナリウエイト(Binary Weight)構成となっている。また、Charge Redistribution SAR ADC101は、完全差動回路で実装されるが、ここでは、説明を簡略化するため、シングルエンドで構成されている。なお、バイナリウエイトとは、公比2の等比数列をなす重み(容量値)の集合である。 The plurality of capacitors CP0 to CP6 included in the Charge Redistribution SAR ADC 101 form a capacitance array and have a binary weight configuration. Also, the Charge Redistribution SAR ADC 101 is implemented as a fully differential circuit, but here, for the sake of simplicity of explanation, it is configured as a single end. The binary weight is a set of weights (capacity values) forming a geometric progression with a common ratio of 2.
 Charge Redistribution SAR ADC101は、逐次比較変換後の残差電圧をフィルタ回路FLT1に入力することにより、ノイズ伝達関数(NTF)にハイパス特性を持たせることができる。図11に示されるCharge Redistribution SAR ADC101は、一例として、図12に示されたフィルタ回路FLT1を実装する。 The Charge Redistribution SAR ADC 101 can give the noise transfer function (NTF) a high-pass characteristic by inputting the residual voltage after successive approximation conversion to the filter circuit FLT1. The Charge Redistribution SAR ADC 101 shown in FIG. 11 implements the filter circuit FLT1 shown in FIG. 12 as an example.
 図12(A)に、Charge Redistribution SAR ADC101に実装されるフィルタ回路FLT1を示す。また、図12(B)に、フィルタ回路FLT1が有するスイッチΦ7~スイッチΦ12(スイッチΦ7a~スイッチΦ12a、及びスイッチΦ7b~スイッチΦ12b)の切り替えタイミングを示す。 FIG. 12(A) shows a filter circuit FLT1 implemented in the Charge Redistribution SAR ADC 101. Further, FIG. 12B shows switching timings of the switch Φ7 to the switch Φ12 (the switch Φ7a to the switch Φ12a and the switch Φ7b to the switch Φ12b) included in the filter circuit FLT1.
 図12Aに示されるフィルタ回路FLT1は、バッファAbuf、コンデンサC41a、コンデンサC42a、コンデンサC43a、コンデンサC41b、コンデンサC42b、コンデンサC43b、コンデンサC5a、コンデンサC5b、スイッチΦ7~スイッチΦ12(スイッチΦ7a~スイッチΦ12a、及びスイッチΦ7b~スイッチΦ12b)、及び積分器アンプIPFを備えて構成されている。なお、コンデンサC41a及びコンデンサC41bは、略同等の容量となっている。ここで、略同等の容量とは、例えば、同一の容量値を含み、同一の容量値に対して、95%~105%以内にある容量値のことをいう。また、コンデンサC42a及びコンデンサC43aは、コンデンサC41aの略1/3の容量となっている。また、コンデンサC42b及びコンデンサC43bは、コンデンサC41bの略1/3の容量となっている。ここで、略1/3の容量とは、1/3の容量値を含み、1/3の容量値に対して、95%~105%以内にある容量値のことをいう。 The filter circuit FLT1 shown in FIG. 12A includes a buffer Abuf, a capacitor C41a, a capacitor C42a, a capacitor C43a, a capacitor C41b, a capacitor C42b, a capacitor C43b, a capacitor C5a, a capacitor C5b, a switch Φ7 to a switch Φ12 (a switch Φ7a to a switch Φ12a, and The switch Φ7b to the switch Φ12b) and the integrator amplifier IPF. The capacitors C41a and C41b have substantially the same capacitance. Here, the substantially equal capacities are, for example, capacities that include the same capacity value and are within 95% to 105% of the same capacity value. Further, the capacitors C42a and C43a have a capacitance that is approximately 1/3 of that of the capacitor C41a. Further, the capacitors C42b and C43b have a capacitance that is approximately ⅓ of that of the capacitor C41b. Here, the capacity of about 1/3 means a capacity value including a capacity value of 1/3 and within 95% to 105% of the capacity value of 1/3.
 この場合、フィルタ回路FLT1の伝達関数L(z)は、次式(式(1))で表される。 In this case, the transfer function L(z) of the filter circuit FLT1 is expressed by the following equation (equation (1)).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、この場合のCharge Redistribution SAR ADC101のノイズビヘイビアモデルを、図13に示す。図13は、Charge Redistribution SAR ADC101のノイズビヘイビアモデルを示した図である。なお、ノイズビヘイビアモデルとは、ノイズの入出力特性を示したものである。 Further, FIG. 13 shows a noise behavior model of the Charge Redistribution SAR ADC 101 in this case. FIG. 13 is a diagram showing a noise behavior model of Charge Redistribution SAR ADC 101. The noise behavior model indicates the input/output characteristics of noise.
 Charge Redistribution SAR ADC101のノイズビヘイビアモデルは、減算器SB1、フィルタ回路FLT1、加算器AD1、及びSAR量子化器SQ1を備えている。そして、Charge Redistribution SAR ADC101のノイズ伝達関数NTF(z)は、次式(式(2))で表される。 The noise behavior model of the Charge Redistribution SAR ADC 101 includes a subtractor SB1, a filter circuit FLT1, an adder AD1, and a SAR quantizer SQ1. Then, the noise transfer function NTF(z) of the Charge Redistribution SAR ADC 101 is expressed by the following equation (equation (2)).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)に示されたノイズ伝達関数NTF(z)は、1次のハイパス特性を有している。このため、フィルタ回路FLT1の伝達関数L(z)を複雑にすることで、高次のNoise Shapingを実現することができるが、Charge Redistribution SAR ADC101の設計において、占有面積・消費電力・設計難易度等が増加する。 The noise transfer function NTF(z) shown in Expression (2) has a first-order high-pass characteristic. Therefore, high-order Noise Shaping can be realized by making the transfer function L(z) of the filter circuit FLT1 complicated, but in the design of the Charge Redistribution SAR ADC 101, the occupied area, power consumption, and design difficulty are high. Etc. will increase.
 ここで、Charge Redistribution SAR ADC101が高いSNDRを得るためには、リファレンス電圧を安定させなければならない。 Here, in order for the Charge Redistribution SAR ADC 101 to obtain a high SNDR, the reference voltage must be stabilized.
 リファレンス電圧を安定させるためには、リファレンス電圧を生成しているバッファアンプを高性能化するか、又は、コンデンサを複数搭載し、電圧変動を抑えることが一般的である。しかしながら、バッファアンプを高性能化すると、又は、コンデンサを複数搭載すると、消費電力の増加や占有面積の増加が生じてしまう。 ㆍIn order to stabilize the reference voltage, it is common to improve the performance of the buffer amplifier that generates the reference voltage or to mount multiple capacitors to suppress voltage fluctuations. However, if the performance of the buffer amplifier is increased, or if a plurality of capacitors are mounted, the power consumption and the occupied area increase.
 そこで、消費電力の増加や占有面積の増加を回避すべく、Charge Share SAR ADCに関するCharge Share SAR ADC102の回路を用いることを検討する。ここで、シングルエンドで構成されたCharge Share SAR ADC102を、図14に示す。図14は、Charge Share SAR ADC102の構成を示した回路図である。なお、図14では、Charge Share SAR  ADCの動作の説明を簡略化するため、Charge Share SAR ADC102が、シングルエンドで構成されている。 Therefore, in order to avoid an increase in power consumption and an increase in occupied area, we will consider using the circuit of the Charge Share SAR ADC 102 related to the Charge Share SAR ADC. Here, FIG. 14 shows the Charge Share SAR ADC 102 configured with a single end. FIG. 14 is a circuit diagram showing the configuration of the Charge Share SAR ADC 102. Note that in FIG. 14, the Charge Share SAR ADC 102 is configured as a single end in order to simplify the description of the operation of the Charge Share SAR ADC.
 図14に示されたCharge Share SAR ADC102は、スイッチΦ1x、スイッチΦ1y、スイッチΦ1z、スイッチΦ2、スイッチΦ3、スイッチΦ4、コンデンサC1P、コンデンサC1N、コンデンサC2、コンデンサC3、積分器アンプIP1、及びコンパレータCMP2を備えて構成されている。 The Charge Share SAR ADC 102 shown in FIG. 14 is a switch Φ1x, a switch Φ1y, a switch Φ1z, a switch Φ2, a switch Φ3, a switch Φ4, a capacitor C1P, a capacitor C1N, a capacitor C2, a capacitor C3, an integrator amplifier IP1, and a comparator CMP2. It is configured with.
 このCharge Share SAR ADC102の動作について、図15に示されるフローチャートを用いて説明する。図15は、Charge Share SAR ADC102の動作を説明するためのフローチャートである。 The operation of this Charge Share SAR ADC 102 will be described using the flowchart shown in FIG. FIG. 15 is a flowchart for explaining the operation of the Charge Share SAR ADC 102.
 まず、サンプリング時(ステップS001)のCharge Share SAR ADC102の回路の状態を、図16に示す。図16では、Charge Share SAR ADC102は、スイッチΦ1x、スイッチΦ1y、スイッチΦ1z、及びスイッチΦ2がオンとなり(閉じており)、電圧Vip、電圧Vrefp、及び電圧Vrefnの電圧がサンプリングされる。 First, FIG. 16 shows the state of the circuit of the Charge Share SAR ADC 102 at the time of sampling (step S001). In FIG. 16, in the Charge Share SAR ADC 102, the switch Φ1x, the switch Φ1y, the switch Φ1z, and the switch Φ2 are turned on (closed), and the voltage Vip, the voltage Vrefp, and the voltage Vrefn are sampled.
 この場合、コンデンサC1P、コンデンサC1N、コンデンサC2、及びコンデンサC3の各電荷は、次式(式(3)から式(6))で表される。 In this case, each charge of the capacitor C1P, the capacitor C1N, the capacitor C2, and the capacitor C3 is expressed by the following equations (Equations (3) to (6)).
 Q1P=C1P × Vrep           ・・・(3)
 Q1N=C1N × Vren           ・・・(4)
 Q2 =C2  × Vip            ・・・(5)
 Q3 =0                    ・・・(6)
Q1P=C1P×Vrep (3)
Q1N=C1N×Vren (4)
Q2=C2×Vip (5)
Q3 =0 (6)
 次に、全電荷転送(ステップS003)の状態を、図17に示す。図17では、Charge Share SAR ADC102は、スイッチΦ1x、スイッチΦ1y、スイッチΦ1z、及びスイッチΦ2がオフとなり(開き)、スイッチΦ3及びスイッチΦ4がオンとなっている(閉じている)。これにより、コンデンサC2に蓄えられていた電荷Q2が、コンデンサC3に全電荷転送される。 Next, FIG. 17 shows the state of total charge transfer (step S003). In FIG. 17, in the Charge Share SAR ADC 102, the switch Φ1x, the switch Φ1y, the switch Φ1z, and the switch Φ2 are off (open), and the switches Φ3 and Φ4 are on (closed). As a result, the electric charge Q2 stored in the capacitor C2 is transferred to the capacitor C3.
 この場合、コンデンサC1P、コンデンサC1N、コンデンサC2、及びコンデンサC3の各電荷は、次式(式(3)、式(4)、式(7)、式(8))のようになる。 In this case, the electric charges of the capacitors C1P, C1N, C2, and C3 are expressed by the following equations (equation (3), equation (4), equation (7), and equation (8)).
 Q1P=C1P × Vrep           ・・・(3)
 Q1N=C1N × Vren           ・・・(4)
 Q2 =0                    ・・・(7)
 Q3 =C2  × Vip            ・・・(8)
 ∵C2P=C3P
Q1P=C1P×Vrep (3)
Q1N=C1N×Vren (4)
Q2 =0 (7)
Q3=C2×Vip (8)
∵C2P=C3P
 次に、比較判定&C2リセット(ステップS005)の状態を、図18に示す。図18では、Charge Share SAR ADC102は、スイッチΦ4をオフにして(開いて)、コンパレータCMP2において、電荷Q3の積分値と接地電位とを比較すると同時に、スイッチΦ2及びスイッチΦ3をオンにして(閉じて)、コンデンサC2をリセットする。コンパレータCMP2は、電荷Q3の積分値と接地電位とを比較した結果として、判定結果D又は判定結果DNを出力する。 Next, FIG. 18 shows the state of comparison judgment & C2 reset (step S005). In FIG. 18, the Charge Share SAR ADC 102 turns off (opens) the switch Φ4 and compares the integrated value of the charge Q3 with the ground potential in the comparator CMP2, and simultaneously turns on the switches Φ2 and Φ3 (closes them). ), and reset the capacitor C2. The comparator CMP2 outputs the determination result D or the determination result DN as a result of comparing the integrated value of the charge Q3 and the ground potential.
 次に、比較結果フィードバック(ステップS007)の状態を、図19に示す。図19では、Charge Share SAR ADC102は、コンパレータCMP2において、判定結果Dが出力されたと仮定する。この場合、スイッチDΦ5がオンとなる(閉じる)。 Next, FIG. 19 shows the state of comparison result feedback (step S007). In FIG. 19, it is assumed that the Charge Share SAR ADC 102 outputs the determination result D in the comparator CMP2. In this case, the switch DΦ5 is turned on (closed).
 電荷再配分(ステップS009)の状態を、図20に示す。図20では、Charge Share SAR ADC102は、コンデンサC2において、コンデンサC1Pの電荷Q1PとコンデンサC3の電荷Q3との電荷再配分を行う。 The state of charge redistribution (step S009) is shown in FIG. In FIG. 20, the Charge Share SAR ADC 102 redistributes the charge Q1P of the capacitor C1P and the charge Q3 of the capacitor C3 in the capacitor C2.
 この場合、コンデンサC1P、コンデンサC2、及びコンデンサC3の各電荷は、次式(式(9)から式(12))のようになる。 In this case, the electric charges of the capacitors C1P, C2, and C3 are as in the following formulas (formula (9) to formula (12)).
 Q1P= C1P × Vrefp/2        ・・・(9)
 Q2 = C1P × Vrefp/2        ・・・(10)
 Q3 = C2 × Vip - C1P × Vrefp/2
                           ・・・(11)
 Vo = Q3/C3 = Vip - Vrefp/2・・・(12)
 ∵C1P=C1N=C2=C3 
Q1P=C1P×Vrefp/2 (9)
Q2=C1P×Vrefp/2 (10)
Q3=C2×Vip−C1P×Vrefp/2
...(11)
Vo=Q3/C3=Vip−Vrefp/2 (12)
∵ C1P=C1N=C2=C3
 式(9)では、コンデンサC1Pの電荷Q1Pが半分になっており、式(12)の電圧Voでは、Charge Redistribution SAR ADC101と同じ電圧になっている。そのため、図15のステップ011において、分解能をNビットとした場合、所定のNビットの分解能が得られていなければ(ステップS011のNo)、ステップS005の比較判定&C2リセットに戻り、ステップS005からステップS009を繰り返すことにより、(MSB-1)bit以降の分解能を取得する。 In the formula (9), the charge Q1P of the capacitor C1P is halved, and the voltage Vo in the formula (12) is the same voltage as the Charge Redistribution SAR ADC 101. Therefore, when the resolution is set to N bits in step 011 of FIG. 15 and the predetermined N-bit resolution is not obtained (No in step S011), the process returns to the comparison determination & C2 reset in step S005, and the steps from step S005 to step S005. By repeating S009, the resolution after (MSB-1) bit is acquired.
 このアクティブ型のCharge Share SAR ADC102は、コンデンサC3に前回のSAR ADC変換残差電圧を保持することにより、ノイズ伝達関数は、1次のハイパス特性を有している。コンデンサC3と積分器アンプIP1の伝達関数L(z)は、次式(式(13))で表される。 This active Charge Share SAR ADC 102 holds the previous SAR ADC conversion residual voltage in the capacitor C3, so that the noise transfer function has a first-order high-pass characteristic. The transfer function L(z) of the capacitor C3 and the integrator amplifier IP1 is expressed by the following equation (equation (13)).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、この場合のCharge Share SAR ADC102のビヘイビアモデルを、図21に示す。図21は、Charge Share SAR ADC102のノイズビヘイビアモデルを示したものである。 Further, FIG. 21 shows the behavior model of the Charge Share SAR ADC 102 in this case. FIG. 21 shows a noise behavior model of the Charge Share SAR ADC 102.
 図21に示されたCharge Share SAR ADC102は、減算器SB1、積分器ITG1、加算器AD1、及びSAR量子化器SQ2を備えている。そして、Charge Share SAR ADC102のノイズ伝達関数NTF(z)は、次式(式(14))で表される。 The Charge Share SAR ADC 102 shown in FIG. 21 includes a subtractor SB1, an integrator ITG1, an adder AD1, and a SAR quantizer SQ2. Then, the noise transfer function NTF(z) of the Charge Share SAR ADC 102 is expressed by the following equation (Equation (14)).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(14)に示されるように、アクティブ型のCharge Share SAR ADC102では、ノイズシェーピングの次数は、1次にとどまっていた。 As shown in the equation (14), in the active type Charge Share SAR ADC 102, the order of noise shaping was limited to the first order.
 そこで、本技術によれば、ノイズシェーピングの高次化を図ることができるCharge Share SAR ADCを提供する。これにより、Charge Share SAR ADCは、高いSNDRを実現することができる。 Therefore, according to the present technology, a Charge Share SAR ADC that can achieve higher-order noise shaping is provided. As a result, the Charge Share SAR ADC can realize a high SNDR.
<2.第1の実施形態(逐次比較型ADコンバータの例1)>
 本技術に係る第1の実施形態の逐次比較型ADコンバータは、第1極性の第1コンデンサと、第1極性の第2コンデンサと、第1極性の第3コンデンサと、第2極性の第1コンデンサと、第2極性の第2コンデンサと、第2極性の第3コンデンサと、積分器アンプと、コンパレータと、フィルタ回路と、を備えている。
<2. First Embodiment (Example 1 of Successive Approximation Type AD Converter)>
The successive approximation type AD converter according to the first embodiment of the present technology is a first capacitor having a first polarity, a second capacitor having a first polarity, a third capacitor having a first polarity, and a first capacitor having a second polarity. A capacitor, a second capacitor having a second polarity, a third capacitor having a second polarity, an integrator amplifier, a comparator, and a filter circuit are provided.
 本技術に係る第1の実施形態の逐次比較型ADコンバータは、第1極性の第1コンデンサと、第1極性の第2コンデンサと、第1極性の第3コンデンサのそれぞれが、略同一の容量を有し、第2極性の第1コンデンサと、第2極性の第2コンデンサと、第2極性の第3コンデンサのそれぞれが、略同一の容量を有している。第1極性の第1コンデンサ及び第2極性の第1コンデンサのそれぞれに、所定の電荷が蓄積される。 In the successive approximation A/D converter according to the first embodiment of the present technology, the first capacitor having the first polarity, the second capacitor having the first polarity, and the third capacitor having the first polarity have substantially the same capacitance. And the first capacitor of the second polarity, the second capacitor of the second polarity, and the third capacitor of the second polarity have substantially the same capacitance. A predetermined charge is accumulated in each of the first capacitor of the first polarity and the first capacitor of the second polarity.
 第1極性の第2コンデンサが、入力されるアナログ電圧の第1電荷を蓄積するとともに、当該第1電荷を第1極性の第3コンデンサに転送する。積分器アンプが、第1極性の第3コンデンサに転送された第1電荷を積分して、第1積分値を生成する。 The second capacitor of the first polarity stores the first charge of the input analog voltage and transfers the first charge to the third capacitor of the first polarity. An integrator amplifier integrates the first charge transferred to the third capacitor of the first polarity to generate a first integrated value.
 第2極性の第2コンデンサが、入力されるアナログ電圧の第2電荷を蓄積するとともに、当該第2電荷を第2極性の第3コンデンサに転送する。積分器アンプが、第2極性の第3コンデンサに転送された第2電荷を積分して、第2積分値を生成する。 The second capacitor of the second polarity stores the second electric charge of the input analog voltage and transfers the second electric charge to the third capacitor of the second polarity. An integrator amplifier integrates the second electric charge transferred to the third capacitor of the second polarity to generate a second integrated value.
 コンパレータが、第1積分値と第2積分値とを比較する。第1極性の第2コンデンサと第2極性の第2コンデンサとがリセットされる。第1積分値が第2積分値よりも大きいときは、第1極性の第3コンデンサに蓄積された電荷と第1極性の第1コンデンサに蓄積された電荷とを、リセットされた第1極性の第2コンデンサに再配分するとともに、第2極性の第3コンデンサに蓄積された電荷と第2極性の第1コンデンサに蓄積された電荷とを、リセットされた第2極性の第2コンデンサに再配分する。 The comparator compares the first integral value and the second integral value. The second capacitor having the first polarity and the second capacitor having the second polarity are reset. When the first integrated value is larger than the second integrated value, the charges accumulated in the third capacitor of the first polarity and the charges accumulated in the first capacitor of the first polarity are reset to the first polarity. While redistributing to the second capacitor, the charge accumulated in the third capacitor of the second polarity and the charge accumulated in the first capacitor of the second polarity are redistributed to the reset second capacitor of the second polarity. To do.
 第1積分値が第2積分値よりも略同等以下であるときは、第1極性の第3コンデンサに蓄積された電荷と第2極性の第1コンデンサに蓄積された電荷とを、リセットされた第1極性の第2のコンデンサに再配分するとともに、第2極性の第3コンデンサに蓄積された電荷と第1極性の第1コンデンサに蓄積された電荷とを、リセットされた第2極性の第2コンデンサに再配分する。 When the first integrated value is substantially equal to or less than the second integrated value, the electric charge accumulated in the third capacitor of the first polarity and the electric charge accumulated in the first capacitor of the second polarity are reset. While redistributing to the second capacitor of the first polarity, the charge accumulated in the third capacitor of the second polarity and the charge accumulated in the first capacitor of the first polarity are reset to the second capacitor of the second polarity. Redistribute to 2 capacitors.
 所定の分解能のビット数が得られるまで、コンパレータが第1積分値と第2積分値とを比較することと、第1極性の第2コンデンサと第2極性の第2コンデンサとがリセットされることと、リセットされた、第1極性の第2コンデンサと第2極性の第2コンデンサとに再配分することと、を繰り返す。 The comparator compares the first integrated value and the second integrated value until the number of bits of a predetermined resolution is obtained, and the second capacitor of the first polarity and the second capacitor of the second polarity are reset. And redistribute to the reset second capacitors of the first polarity and the second capacitors of the second polarity are repeated.
 所定の分解能のビット数が得られた後、フィルタ回路に、第1極性の第2コンデンサに再配分して第1極性の第3コンデンサに蓄積された電荷と、第2極性の第2コンデンサに再配分して第2極性の第3コンデンサに蓄積された電荷とを、残差電圧として入力する、逐次比較型ADコンバータである。 After the number of bits of a predetermined resolution is obtained, the charge accumulated in the third capacitor of the first polarity by redistributing to the second capacitor of the first polarity and the second capacitor of the second polarity are redistributed in the filter circuit. This is a successive approximation type AD converter that inputs the electric charges that are redistributed and accumulated in the third capacitor of the second polarity as a residual voltage.
 本技術に係る第1の実施形態の逐次比較型ADコンバータによれば、ノイズシェーピングの高次化を図ることができる。 According to the successive approximation type AD converter of the first embodiment according to the present technology, higher order noise shaping can be achieved.
[逐次比較型ADコンバータの構成]
 図1に、本技術に係る第1の実施形態の逐次比較型ADコンバータの一例であるCharge Share SAR ADC100を示す。図1は、本技術を適用したCharge Share SAR ADC100の構成例を示すブロック図である。なお、上述した構成と同一の構成要素については同一の符号を付し、説明を適宜、省略する。
[Configuration of successive approximation type AD converter]
FIG. 1 shows a Charge Share SAR ADC 100 that is an example of a successive approximation type AD converter according to the first embodiment of the present technology. FIG. 1 is a block diagram showing a configuration example of a Charge Share SAR ADC 100 to which the present technology is applied. The same components as those described above are designated by the same reference numerals, and description thereof will be omitted as appropriate.
 図1に示されるように、本技術に係る第1の実施形態のCharge Share SAR ADC100は、第1極性の第1コンデンサC1a、第1極性の第2コンデンサC2a、第1極性の第3コンデンサC3a、スイッチΦ1a1、スイッチΦ1a2、スイッチΦ2a、スイッチΦ3a、スイッチΦ4a、スイッチDΦ5a、スイッチDNΦ5a、スイッチΦ6a、スイッチΦRESTa、第2極性の第1コンデンサC1b、第2極性の第2コンデンサC2b、第2極性の第3コンデンサC3b、スイッチΦ1b1、スイッチΦ1b2、スイッチΦ2b、スイッチΦ3b、スイッチΦ4b、スイッチDΦ5b、スイッチDNΦ5b、スイッチΦ6b、スイッチΦRESTb、積分器アンプIP、フィルタ回路FLT、及びコンパレータCMPを備えて構成されている。 As shown in FIG. 1, the Charge Share SAR ADC 100 according to the first embodiment of the present technology includes a first capacitor C1a having a first polarity, a second capacitor C2a having a first polarity, and a third capacitor C3a having a first polarity. , Switch Φ1a1, switch Φ1a2, switch Φ2a, switch Φ3a, switch Φ4a, switch DΦ5a, switch DNΦ5a, switch Φ6a, switch ΦRESTa, second polarity first capacitor C1b, second polarity second capacitor C2b, second polarity. A third capacitor C3b, a switch Φ1b1, a switch Φ1b2, a switch Φ2b, a switch Φ3b, a switch Φ4b, a switch DΦ5b, a switch DNΦ5b, a switch Φ6b, a switch ΦRESTb, an integrator amplifier IP, a filter circuit FLT, and a comparator CMP. There is.
 本技術に係る第1の実施形態のCharge Share SAR ADC100は、例えば、一例として、第1極性が正極性であって、第2極性が負極性である。また、積分器ITGは、スイッチΦRESTa、第1極性の第3コンデンサ、積分器アンプIP、第2極性の第3コンデンサC3b、スイッチΦRESTbを備えて構成されている。 In the Charge Share SAR ADC 100 of the first embodiment according to the present technology, for example, the first polarity is positive and the second polarity is negative. The integrator ITG includes a switch ΦRESTa, a third capacitor having a first polarity, an integrator amplifier IP, a third capacitor C3b having a second polarity, and a switch ΦRESTb.
[逐次比較型ADコンバータの動作]
 次に、第1の実施形態のCharge Share SAR ADC100の動作について、上述した図15のフローチャートを用いて説明する。
[Operation of successive approximation type AD converter]
Next, the operation of the Charge Share SAR ADC 100 of the first embodiment will be described using the flowchart of FIG. 15 described above.
 まず、Charge Share SAR ADC100は、初期リセット動作を行う。初期リセット動作を行った後、Charge Share SAR ADC100は、全てのスイッチΦをオフにする(開く)。なお、スイッチΦRESTa及びスイッチΦRESTbは、初期リセットの解除によってオフになった後は(開いた後は)、Charge Share SAR ADC100が再びリセットされるまでオフの状態(開いた状態)を継続する。 First, the Charge Share SAR ADC 100 performs an initial reset operation. After performing the initial reset operation, the Charge Share SAR ADC 100 turns off (opens) all the switches Φ. Note that the switch ΦRESTa and the switch ΦRESTb are kept off (open) until the Charge Share SAR ADC 100 is reset again after being turned off (after opening) by releasing the initial reset.
 次に、サンプリング時(図15のステップS001)において、Charge Share SAR ADC100は、スイッチΦ1a1、スイッチΦ1a2、スイッチΦ2a、スイッチΦ1b1、スイッチΦ1b2、及びスイッチΦ2bがオンとなり(閉じて)、電圧Vip、電圧Vrefp、電圧Vrefn、及び電圧Vinの電圧がサンプリングされる。 Next, at the time of sampling (step S001 in FIG. 15), the Charge Share SAR ADC 100 turns on (closes) the switch Φ1a1, the switch Φ1a2, the switch Φ2a, the switch Φ1b2, and the switch Φ2b, and the voltage Vip and the voltage Vip. The voltages Vrefp, Vrefn, and Vin are sampled.
 これにより、第1極性の第1コンデンサC1a、第2極性の第1コンデンサC1b、第1極性の第2のコンデンサC2a、第2極性の第2のコンデンサC2bのそれぞれに、所定の電荷が蓄積される。また、第1極性の第2のコンデンサC2aは、入力されるアナログ電圧の第1電荷を蓄積するとともに、第2極性の第2のコンデンサC2bは、入力されるアナログ電圧の第2電荷を蓄積する。 As a result, a predetermined charge is accumulated in each of the first capacitor C1a having the first polarity, the first capacitor C1b having the second polarity, the second capacitor C2a having the first polarity, and the second capacitor C2b having the second polarity. It The second capacitor C2a of the first polarity stores the first charge of the input analog voltage, and the second capacitor C2b of the second polarity stores the second charge of the input analog voltage. ..
 この場合、第1極性の第1コンデンサC1a、第2極性の第1コンデンサC1b、第1極性の第2のコンデンサC2a、及び第2極性の第2のコンデンサC2bの各電荷は、次式(式(15)から式(18))のようになる。 In this case, the respective charges of the first capacitor C1a of the first polarity, the first capacitor C1b of the second polarity, the second capacitor C2a of the first polarity, and the second capacitor C2b of the second polarity are expressed by the following formula (equation: From (15), the equation (18) is obtained.
 Q1a=C1a × Vrep           ・・・(15)
 Q1b=C1b × Vren           ・・・(16)
 Q2a=C2a × Vip            ・・・(17)
 Q2b=C2b × Vin            ・・・(18)
Q1a=C1a×Vrep (15)
Q1b=C1b×Vren (16)
Q2a=C2a×Vip (17)
Q2b=C2b×Vin (18)
 次に、全電荷転送(ステップS003)において、Charge Share SAR ADC100は、スイッチΦ1a1、スイッチΦ1a2、スイッチΦ2a、スイッチΦ1b1、スイッチΦ1b2、及びスイッチΦ2bをオフにする(開く)とともに、スイッチΦ3a、スイッチΦ4a、スイッチΦ3b、及びスイッチΦ4bをオンにする(閉じる)。これにより、第1極性の第2のコンデンサC2aに蓄えられた第1電荷は、第1極性の第3のコンデンサC3aに全電荷転送されるとともに、第2極性の第2のコンデンサC2bに蓄えられた第2電荷は、第2極性の第3のコンデンサC3bに全電荷転送される。 Next, in the total charge transfer (step S003), the Charge Share SAR ADC 100 turns off (opens) the switch Φ1a1, the switch Φ1a2, the switch Φ2a, the switch Φ1b1, the switch Φ1b2, and the switch Φ3a and the switch Φ4a. , Switch Φ3b and switch Φ4b are turned on (closed). As a result, the first charge stored in the second capacitor C2a of the first polarity is fully transferred to the third capacitor C3a of the first polarity and is stored in the second capacitor C2b of the second polarity. The second charge is completely transferred to the third capacitor C3b having the second polarity.
 この場合、第1極性の第1コンデンサC1a、第1極性の第2のコンデンサC2a、第2極性の第1コンデンサC1b、及び第2極性の第2のコンデンサC2bの各電荷は、次式(式(15)、式(16)、式(19)から式(22))のようになる。 In this case, the respective charges of the first capacitor C1a of the first polarity, the second capacitor C2a of the first polarity, the first capacitor C1b of the second polarity, and the second capacitor C2b of the second polarity are expressed by the following equation (equation: (15), Expression (16), Expression (19) to Expression (22).
 Q1a=C1a × Vrep           ・・・(15)
 Q1b=C1b × Vren           ・・・(16)
 Q2a=0                    ・・・(19)
 Q2b=0                    ・・・(20)
 Q3a=C2a × Vin            ・・・(21)
 Q3b=C2b × Vin            ・・・(22)
 ∵C1a=C2a=C3a=C1b=C2b=C3b
Q1a=C1a×Vrep (15)
Q1b=C1b×Vren (16)
Q2a=0 (19)
Q2b=0 (20)
Q3a=C2a×Vin (21)
Q3b=C2b×Vin (22)
∵C1a=C2a=C3a=C1b=C2b=C3b
 次に、比較判定&C2リセット(ステップS005)において、Charge Share SAR ADC100は、積分器アンプIPにより、第1極性の第3コンデンサC3aに転送された第1電荷を積分して、第1積分値を生成し、第2極性の第3コンデンサC3bに転送された第2電荷を積分して、第2積分値を生成する。そして、コンパレータCMPは、第1積分値と第2積分値とを比較し、比較した結果として判定結果D又は判定結果DNを出力する。また、同時に、第1極性の第2コンデンサC2aと第2極性の第2コンデンサC2bとがリセットされる。 Next, in the comparison determination & C2 reset (step S005), the Charge Share SAR ADC 100 integrates the first charge transferred to the third capacitor C3a of the first polarity by the integrator amplifier IP to obtain the first integrated value. The second charge generated and transferred to the third capacitor C3b of the second polarity is integrated to generate a second integrated value. Then, the comparator CMP compares the first integral value and the second integral value, and outputs the determination result D or the determination result DN as the comparison result. At the same time, the second capacitor C2a having the first polarity and the second capacitor C2b having the second polarity are reset.
 次に、比較結果フィードバック(ステップS007)において、Charge Share SAR ADC100は、コンパレータCMPにより、第1積分値が第2積分値よりも大きいことを示す判定結果Dが出力されたと仮定する。この場合、Charge Share SAR ADC100は、スイッチDΦ5a及びスイッチDΦ5bをオンにする(閉じる)。 Next, in the comparison result feedback (step S007), it is assumed that the Charge Share SAR ADC 100 outputs the determination result D indicating that the first integrated value is larger than the second integrated value by the comparator CMP. In this case, the Charge Share SAR ADC 100 turns on (closes) the switch DΦ5a and the switch DΦ5b.
 電荷再配分(ステップS009)において、Charge Share SAR ADC100は、第1極性の第3コンデンサC3aに蓄積された電荷と第1極性の第1コンデンサC1aに蓄積された電荷とを、リセットされた第1極性の第2コンデンサC2aに再配分する。同時に、Charge Share SAR ADC100は、第2極性の第3コンデンサC3bに蓄積された電荷と第2極性の第1コンデンサC1bに蓄積された電荷とを、リセットされた第2極性の第2コンデンサC2bに再配分する。 In the charge redistribution (step S009), the Charge Share SAR ADC 100 resets the charge accumulated in the third capacitor C3a of the first polarity and the charge accumulated in the first capacitor C1a of the first polarity to the first reset state. It is redistributed to the polar second capacitor C2a. At the same time, the Charge Share SAR ADC 100 transfers the electric charge accumulated in the second capacitor C3b of the second polarity and the electric charge accumulated in the first capacitor C1b of the second polarity to the second capacitor C2b of the second polarity reset. Redistribute.
 この場合、第1極性の第1コンデンサC1a、第1極性の第2コンデンサC2a、第1極性の第3コンデンサC3a、第2極性の第1コンデンサC1b、第2極性の第2コンデンサC2b、第2極性の第3コンデンサC3bの各電荷は、次式(式(23)から式(30))のようになる。 In this case, the first capacitor C1a having the first polarity, the second capacitor C2a having the first polarity, the third capacitor C3a having the first polarity, the first capacitor C1b having the second polarity, the second capacitor C2b having the second polarity, and the second capacitor C2b The respective charges of the third capacitor C3b having the polarity are expressed by the following formulas (formula (23) to formula (30)).
 Q1a = C1a × Vrefp/2       ・・・(23)
 Q1b = C1b × Vrefn/2       ・・・(24)
 Q2a = C1a × Vrefp/2       ・・・(25)
 Q2b = C1b × Vrefn/2       ・・・(26)
 Q3a = C2a × Vip - C1a × Vrefp/2
                           ・・・(27)
 Q3b = C2b × Vin - C1b × Vrefn/2
                           ・・・(28)
 Vop = Q3a/C3a = Vip - Vrefp/2
                           ・・・(29)
 Von = Q3b/C3b = Vin - Vrefn/2
                           ・・・(30)
 ∵C1a=C2a=C3a=C1b=C2b=C3b 
Q1a=C1a×Vrefp/2 (23)
Q1b=C1b×Vrefn/2 (24)
Q2a=C1a×Vrefp/2 (25)
Q2b=C1b×Vrefn/2 (26)
Q3a=C2a×Vip−C1a×Vrefp/2
(27)
Q3b=C2b×Vin−C1b×Vrefn/2
(28)
Vop=Q3a/C3a=Vip−Vrefp/2
...(29)
Von = Q3b/C3b = Vin-Vrefn/2
...(30)
∵C1a=C2a=C3a=C1b=C2b=C3b
 これに対し、比較結果フィードバック(ステップS007)において、Charge Share SAR ADC100は、コンパレータCMPにより、第1積分値が第2積分値よりも略同等以下であることを示す判定結果DNが出力されたと仮定する。この場合、Charge Share SAR ADC100は、スイッチDNΦ5a及びスイッチDNΦ5bをオンにする(閉じる)。 On the other hand, in the comparison result feedback (step S007), it is assumed that the Charge Share SAR ADC 100 outputs the determination result DN indicating that the first integrated value is substantially equal to or less than the second integrated value by the comparator CMP. To do. In this case, the Charge Share SAR ADC 100 turns on (closes) the switch DNΦ5a and the switch DNΦ5b.
 電荷再配分(ステップS009)において、Charge Share SAR ADC100は、第1極性の第3コンデンサC3aに蓄積された電荷と第2極性の第1コンデンサC1bに蓄積された電荷とを、リセットされた第1極性の第2コンデンサC2aに再配分する。同時に、Charge Share SAR ADC100は、第2極性の第3コンデンサC3bに蓄積された電荷と第1極性の第1コンデンサC1aに蓄積された電荷とを、リセットされた第2極性の第2コンデンサC2bに再配分する。 In the charge redistribution (step S009), the Charge Share SAR ADC 100 resets the charge accumulated in the third capacitor C3a of the first polarity and the charge accumulated in the first capacitor C1b of the second polarity to the first reset state. It is redistributed to the polar second capacitor C2a. At the same time, the Charge Share SAR ADC 100 transfers the charge accumulated in the third capacitor C3b of the second polarity and the charge accumulated in the first capacitor C1a of the first polarity to the second capacitor C2b of the reset second polarity. Redistribute.
 この場合、第1極性の第1コンデンサC1a、第1極性の第2コンデンサC2a、第1極性の第3コンデンサC3a、第2極性の第1コンデンサC1b、第2極性の第コンデンサC2b、第2極性の第3コンデンサC3bの各電荷は、次式(式(31)から式(38))のようになる。 In this case, the first capacitor C1a of the first polarity, the second capacitor C2a of the first polarity, the third capacitor C3a of the first polarity, the first capacitor C1b of the second polarity, the second capacitor C2b of the second polarity, the second polarity. The respective charges of the third capacitor C3b are expressed by the following formulas (formula (31) to formula (38)).
 Q1a = C1a × Vrefp/2       ・・・(31)
 Q1b = C1b × Vrefn/2       ・・・(32)
 Q2a = C1b × Vrefn/2       ・・・(33)
 Q2b = C1a × Vrefp/2       ・・・(34)
 Q3a = C2a × Vip - C1b × Vrefn/2
                           ・・・(35)
 Q3b = C2b × Vin - C1a × Vrefp/2
                           ・・・(36)
 Vop = Q3a/C3a = Vip-(Vrefn/2)  
                           ・・・(37)
 Von = Q3b/C3b = Vin-(Vrefp/2)
                           ・・・(38)
 ∵C1a=C2a=C3a=C1b=C2b=C3b 
Q1a=C1a×Vrefp/2 (31)
Q1b=C1b×Vrefn/2 (32)
Q2a=C1b×Vrefn/2 (33)
Q2b=C1a×Vrefp/2 (34)
Q3a=C2a×Vip−C1b×Vrefn/2
...(35)
Q3b=C2b×Vin−C1a×Vrefp/2
...(36)
Vop = Q3a/C3a = Vip-(Vrefn/2)
...(37)
Von = Q3b/C3b = Vin-(Vrefp/2)
(38)
∵C1a=C2a=C3a=C1b=C2b=C3b
 Charge Share SAR ADC100は、所定の分解能のビット数が得られるまで(ステップS011)、コンパレータCMPが第1積分値と第2積分値とを比較することと(ステップS005のYes)、第1極性の第2コンデンサC2aと第2極性の第2コンデンサC2bとがリセットされることと(ステップS005)、リセットされた、第1極性の第2コンデンサC2aと第2極性の第2コンデンサC2bとに再配分することと(ステップS007及びステップS009)、を繰り返す(ステップS013)。 In the Charge Share SAR ADC 100, the comparator CMP compares the first integrated value and the second integrated value (Yes in step S005) until the number of bits with a predetermined resolution is obtained (step S011). The second capacitor C2a and the second capacitor C2b having the second polarity are reset (step S005), and the redistributed to the reset second capacitor C2a having the first polarity and the second capacitor C2b having the second polarity. This is repeated (step S007 and step S009) (step S013).
 Charge Share SAR ADC100は、ステップS005からステップS009を繰り返すことにより、(MSB-1)bit以降の分解能を取得する。 The Charge Share SAR ADC 100 acquires the resolution after (MSB-1) bit by repeating steps S005 to S009.
 そして、Charge Share SAR ADC100は、所定の分解能のビット数が得られた後、フィルタ回路FLTに、第1極性の第2コンデンサC2aに再配分して第1極性の第3コンデンサC3aに蓄積された電荷と、第2極性の第2コンデンサC2bに再配分して第2極性の第3コンデンサC3bに蓄積された電荷とを、残差電圧として入力する。 Then, the Charge Share SAR ADC 100, after obtaining the number of bits of the predetermined resolution, is redistributed to the second capacitor C2a of the first polarity and accumulated in the third capacitor C3a of the first polarity in the filter circuit FLT. The charges and the charges redistributed to the second capacitor C2b of the second polarity and accumulated in the third capacitor C3b of the second polarity are input as the residual voltage.
 図2は、本技術に係る第1の実施形態のCharge Share SAR ADC100が、スイッチΦ6(スイッチΦ6a及びスイッチΦ6b)をオンにする(閉じる)タイミングを示したタイミングチャートである。スイッチΦ6(スイッチΦ6a及びスイッチΦ6b)は、所定の分解能の最下位ビットの判定結果をCharge Share SAR ADC100にフィードバックし、電荷再配分するタイミングの前後でオンになる(閉じられる)。 FIG. 2 is a timing chart showing a timing at which the Charge Share SAR ADC 100 according to the first embodiment of the present technology turns on (closes) the switch Φ6 (the switch Φ6a and the switch Φ6b). The switch Φ6 (the switch Φ6a and the switch Φ6b) feeds back the determination result of the least significant bit with a predetermined resolution to the Charge Share SAR ADC 100, and turns on (closes) before and after the timing of charge redistribution.
 換言すれば、Charge Share SAR ADC100は、スイッチΦ6(スイッチΦ6a及びスイッチΦ6b)を、最下位ビットの再配分後の残差電圧をフィルタ回路FLTでサンプリングする際にオンにする(閉じる)。 In other words, the Charge Share SAR ADC 100 turns on (closes) the switch Φ6 (switch Φ6a and switch Φ6b) when the residual voltage after the redistribution of the least significant bit is sampled by the filter circuit FLT.
 図2では、所定の分解能の最下位ビット(LSB bit)について、コンパレータCMPが、第1積分値と第2積分値とを比較し、第1極性の第2コンデンサC2aと第2極性の第2コンデンサC2bとがリセットされた後、当該第1極性の第2コンデンサC2aと第2極性の第2コンデンサC2bとについて再配分が完了するまでの間に、フィルタ回路FLTが、残差電圧のサンプリングを開始することを示している。 In FIG. 2, for the least significant bit (LSB bit) of a predetermined resolution, the comparator CMP compares the first integrated value and the second integrated value, and the second capacitor C2a of the first polarity and the second capacitor C2a of the second polarity. After the capacitor C2b is reset and before the redistribution of the second capacitor C2a of the first polarity and the second capacitor C2b of the second polarity is completed, the filter circuit FLT samples the residual voltage. Indicates that it is about to start.
 すなわち、スイッチΦ6(スイッチΦ6a及びスイッチΦ6b)は、所定の分解能の最下位ビット(LSB bit)について、スイッチΦ2(スイッチΦ2a及びスイッチΦ2b)及びスイッチΦ3(スイッチΦ3a及びスイッチΦ3b)がオンとなり(閉じて)、第1極性の第2コンデンサC2aと第2極性の第2コンデンサC2bとがリセットされてから、スイッチΦ4(スイッチΦ4a及びスイッチΦ4b)がオフするまでに(開くまでに)、オンになればよい(閉じればよい)。 That is, the switch Φ6 (switch Φ6a and switch Φ6b) turns on (closes) the switch Φ2 (switch Φ2a and switch Φ2b) and switch Φ3 (switch Φ3a and switch Φ3b) for the least significant bit (LSB bit) of a predetermined resolution. Then, after the second capacitor C2a having the first polarity and the second capacitor C2b having the second polarity are reset, the switch Φ4 (the switch Φ4a and the switch Φ4b) must be turned on (by opening) before being turned off. All you have to do is close it.
 また、積分器アンプIPは、フィルタ回路FLTの入力に対してバッファの役割を果たしているため、スイッチΦ6(スイッチΦ6a及びスイッチΦ6b)をオンする(閉じる)タイミングには、自由度がある。そのため、電圧分解能やアンプバッファリング能力を考慮して、セトリングが最短となるように、スイッチΦ6(スイッチΦ6a及びスイッチΦ6b)をオンにするタイミング(閉じるタイミング)を最適化することができる。 Further, since the integrator amplifier IP plays the role of a buffer for the input of the filter circuit FLT, there is a degree of freedom in the timing of turning on (closing) the switch Φ6 (switch Φ6a and switch Φ6b). Therefore, in consideration of the voltage resolution and the amplifier buffering ability, the timing (close timing) for turning on the switch Φ6 (switch Φ6a and switch Φ6b) can be optimized so that the settling becomes shortest.
 次に、図1に示すCharge Share SAR ADC100のビヘイビアモデルを、図3に示す。図3は、本技術に係る第1の実施形態のCharge Share SAR ADC100のノイズビヘイビアモデルを示した図である。 Next, FIG. 3 shows a behavior model of the Charge Share SAR ADC 100 shown in FIG. FIG. 3 is a diagram showing a noise behavior model of the Charge Share SAR ADC 100 according to the first embodiment of the present technology.
 Charge Share SAR ADC100のノイズビヘイビアモデルは、減算器SB、積分器ITG、フィルタ回路FLT、加算器AD、及びSAR量子化器SQを備えている。そして、Charge Share SAR ADC100のノイズ伝達関数NTF(z)は、次式(式(39))で表される。 The noise behavior model of the Charge Share SAR ADC 100 includes a subtractor SB, an integrator ITG, a filter circuit FLT, an adder AD, and a SAR quantizer SQ. Then, the noise transfer function NTF(z) of the Charge Share SAR ADC 100 is expressed by the following equation (equation (39)).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 これにより、Charge Share SAR ADC100は、ノイズシェーピングの次数を高次にすることができる。例えば、積分器ITGの伝達関数L(z)は、式(13)と同様である。 As a result, the Charge Share SAR ADC 100 can increase the order of noise shaping. For example, the transfer function L 1 (z) of the integrator ITG is the same as the expression (13).
 一方、フィルタ回路FLTについては、いくつかの実施形態が想定される。まず、フィルタ回路FLTの回路トポロジとして考えらえるのは、図12示されたCharge Redistribution SAR ADCに実装されるフィルタ回路FLT1をそのまま適用することである。この場合、Charge Share SAR ADC100は、フィルタ回路FLT1が、オペアンプ(積分器アンプIPF)を含んで構成される、アクティブ型のCharge Share SAR ADCを構成する。 On the other hand, with regard to the filter circuit FLT, some embodiments are assumed. First, what can be considered as the circuit topology of the filter circuit FLT is to directly apply the filter circuit FLT1 implemented in the Charge Redistribution SAR ADC shown in FIG. In this case, the Charge Share SAR ADC 100 constitutes an active Charge Share SAR ADC in which the filter circuit FLT1 includes an operational amplifier (integrator amplifier IPF).
 図4は、本技術に係る第1の実施形態のCharge Share SAR ADC100が、図12に示されたフィルタ回路FLT1を有している場合の回路図を示したものである。この場合のフィルタ回路FLT1の伝達関数L(z)とノイズ伝達関数NTF(z)は、次式(式(40)、式(41))で表される。 FIG. 4 is a circuit diagram in the case where the Charge Share SAR ADC 100 according to the first embodiment of the present technology has the filter circuit FLT1 shown in FIG. The transfer function L 2 (z) and the noise transfer function NTF(z) of the filter circuit FLT1 in this case are represented by the following expressions (Expression (40) and Expression (41)).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 よって、アクティブ型のCharge Share SAR ADC100で使用している積分器ITGをノイズシェーピングに流用することにより、フィルタ回路FLT1内の積分器アンプIPF1つでノイズシェーピングを2次化することができる。 Therefore, by diverting the integrator ITG used in the active Charge Share SAR ADC 100 for noise shaping, it is possible to make noise shaping secondary with one integrator amplifier IPF in the filter circuit FLT1.
 図5は、ノイズシェーピングにより、低周波帯域に位置する量子化雑音を高周波帯域に移動させることを示した説明図である。図5に示されるように、ノイズシェーピングは、周波数帯で一様に分布する量子化雑音とコンパレータ雑音を、低周波帯域で減少させるとともに高周波帯域で上昇させることができる。なお、図5では、1次のノイズシェーピングを示している。 FIG. 5 is an explanatory diagram showing that quantization noise located in a low frequency band is moved to a high frequency band by noise shaping. As shown in FIG. 5, the noise shaping can reduce the quantization noise and the comparator noise that are uniformly distributed in the frequency band in the low frequency band and increase them in the high frequency band. Note that FIG. 5 shows first-order noise shaping.
 図6は、次数が高くなると、ノイズシェーピングの効果が高くなることを示した説明図である。なお、図6では、次数を「q」とする。図6に示されるように、1次で示されたノイズ伝達関数を高次化できると、ノイズを除去する効果を高めることができることを示している。例えば、2次化できた場合には、1次の場合よりも、より多くの雑音成分(ノイズ成分)を高周波帯域に移動させることができるので、Charge Share SAR ADC100の出力に対して、ローパスフィルタを適用することにより雑音成分(ノイズ成分)をカットすることができる。 FIG. 6 is an explanatory diagram showing that the effect of noise shaping becomes higher as the order becomes higher. In FIG. 6, the order is “q”. As shown in FIG. 6, it is shown that if the noise transfer function represented by the first order can be increased in order, the effect of removing noise can be enhanced. For example, if the secondary can be achieved, more noise components (noise components) can be moved to the high frequency band than in the case of the primary, so a low-pass filter is applied to the output of the Charge Share SAR ADC 100. The noise component (noise component) can be cut by applying.
 以上説明したように、本技術に係る第1の実施形態のCharge Share SAR ADC100は、積分器ITGをノイズシェーピングに流用することができるので、フィルタ回路FLTが有する積分器アンプIPF1つで、ノイズシェーピングを2次化することができる。 As described above, in the Charge Share SAR ADC 100 according to the first embodiment of the present technology, the integrator ITG can be diverted for noise shaping, so that the noise shaping can be performed by one integrator amplifier IPF included in the filter circuit FLT. Can be quadratic.
 これにより、本技術に係る第1の実施形態のCharge Share SAR ADC100は、高精度に雑音成分(ノイズ成分)を除去することができる。 With this, the Charge Share SAR ADC 100 according to the first embodiment of the present technology can remove a noise component (noise component) with high accuracy.
<3.第2の実施形態(逐次比較型ADコンバータの例2)>
 本技術に係る第2の実施形態の逐次比較型ADコンバータは、フィルタ回路が、積分器アンプによって駆動される、逐次比較型ADコンバータである。
<3. Second Embodiment (Example 2 of Successive Approximation Type AD Converter)>
The successive approximation type AD converter according to the second embodiment of the present technology is a successive approximation type AD converter in which a filter circuit is driven by an integrator amplifier.
 図7に、本技術に係る第2の実施形態の逐次比較型ADコンバータの一例であるCharge Share SAR ADC100aを示す。図7は、本技術を適用したCharge Share SAR ADC100aの構成例を示すブロック図である。なお、上述した構成と同一の構成要素については同一の符号を付し、説明を適宜、省略する。なお、特に断りがない限り、「左」とは、図7中の左方向を意味し、「上」とは、図7中の上方向を意味するものとする。 FIG. 7 shows a Charge Share SAR ADC 100a that is an example of a successive approximation type AD converter according to the second embodiment of the present technology. FIG. 7 is a block diagram showing a configuration example of the Charge Share SAR ADC 100a to which the present technology is applied. The same components as those described above are designated by the same reference numerals, and description thereof will be omitted as appropriate. Unless otherwise specified, “left” means the left direction in FIG. 7, and “up” means the upper direction in FIG. 7.
 図7に示された第2の実施形態のCharge Share SAR ADC100aが、図1に示された第1の実施形態のCharge Share SAR ADC100と異なる点は、フィルタ回路FLT2が、バッファAbufと、スイッチΦ6(スイッチΦ6a及びスイッチΦ6b)とを有さない点である。 The Charge Share SAR ADC 100a of the second embodiment shown in FIG. 7 differs from the Charge Share SAR ADC 100 of the first embodiment shown in FIG. 1 in that the filter circuit FLT2 is a buffer Abuf and a switch Φ6. (Switch Φ6a and switch Φ6b) is not provided.
 第2の実施形態のCharge Share SAR ADC100aは、積分器アンプIPがフィルタ回路FLT2の入力に対してバッファとして機能するため、フィルタ回路FLT2における入力バッファを削除することができる。また、フィルタ回路FLT2内のサンプリング容量(コンデンサC5a、コンデンサC5b)の左側に位置するスイッチΦ7~スイッチΦ12(スイッチΦ7a~スイッチΦ12a、及びスイッチΦ7b~スイッチΦ12b)をサンプリングスイッチとして使うことができるため、スイッチΦ6(スイッチΦ6a及びスイッチΦ6b)を削除することができる。 In the Charge Share SAR ADC 100a of the second embodiment, since the integrator amplifier IP functions as a buffer for the input of the filter circuit FLT2, the input buffer in the filter circuit FLT2 can be deleted. Further, the switches Φ7 to Φ12 (switches Φ7a to Φ12a and switches Φ7b to Φ12b) located on the left side of the sampling capacitors (capacitors C5a and C5b) in the filter circuit FLT2 can be used as sampling switches. The switch Φ6 (switch Φ6a and switch Φ6b) can be deleted.
 この場合のフィルタ回路FLT2の伝達関数L(z)とノイズ伝達関数NTF(z)は、次式(式(42)、式(43))で表される。 The transfer function L 2 (z) and the noise transfer function NTF(z) of the filter circuit FLT2 in this case are represented by the following expressions (Expression (42) and Expression (43)).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 式(43)に示されるように、ノイズ伝達関数NTF(z)の分子の(1-z-1は、維持されている。これにより、本技術に係る第2の実施形態のCharge Share SAR ADC100aは、ノイズシェーピングの次数を高次で維持することができる。 As shown in equation (43), the numerator (1-z −1 ) 2 of the noise transfer function NTF(z) is maintained. As a result, the Charge Share SAR ADC 100a according to the second embodiment of the present technology can maintain the order of noise shaping at a high order.
<4.第3の実施形態(逐次比較型ADコンバータの例3)>
 本技術に係る第3の実施形態の逐次比較型ADコンバータは、フィルタ回路が、コンデンサを含み、オペアンプを含まないで構成されるパッシブ型である、逐次比較型ADコンバータである。
<4. Third Embodiment (Example 3 of Successive Approximation Type AD Converter)>
The successive approximation type AD converter according to the third embodiment of the present technology is a successive approximation type AD converter in which the filter circuit includes a capacitor and does not include an operational amplifier.
 図8に、本技術に係る第3の実施形態の逐次比較型ADコンバータの一例であるCharge Share SAR ADC100bを示す。図8は、本技術を適用したCharge Share SAR ADC100bの構成例を示すブロック図である。なお、上述した構成と同一の構成要素については同一の符号を付し、説明を適宜、省略する。なお、特に断りがない限り、「左」とは、図8中の左方向を意味し、「上」とは、図8中の上方向を意味するものとする。 FIG. 8 shows a Charge Share SAR ADC 100b that is an example of the successive approximation type AD converter according to the third embodiment of the present technology. FIG. 8 is a block diagram showing a configuration example of the Charge Share SAR ADC 100b to which the present technology is applied. The same components as those described above are designated by the same reference numerals, and description thereof will be omitted as appropriate. Unless otherwise specified, “left” means leftward in FIG. 8 and “upper” means upward in FIG. 8.
 図8に示された第3の実施形態のCharge Share SAR ADC100bが、図1に示された第1の実施形態のCharge Share SAR ADC100と異なる点は、フィルタ回路FLT3が、コンデンサ(コンデンサCAa、コンデンサCAb、コンデンサCBa、及びコンデンサCBb)を含み、オペアンプを含まないで構成されるパッシブ型である点である。 The difference between the Charge Share SAR ADC 100b of the third embodiment shown in FIG. 8 and the Charge Share SAR ADC 100 of the first embodiment shown in FIG. 1 is that the filter circuit FLT3 is a capacitor (capacitor CAa, capacitor). CAb, capacitor CBa, and capacitor CBb) are included and the operational amplifier is not included.
 図8Aには、第3の実施形態のCharge Share SAR ADC100bの回路図を示し、図8Bには、フィルタ回路FLT3の回路図を示し、図8Cには、フィルタ回路FLT3のタイミングチャートを示す。 FIG. 8A shows a circuit diagram of the Charge Share SAR ADC 100b of the third embodiment, FIG. 8B shows a circuit diagram of the filter circuit FLT3, and FIG. 8C shows a timing chart of the filter circuit FLT3.
 Charge Share SAR ADC100bのフィルタ回路FLT3は、コンデンサCAa、コンデンサCAb、コンデンサCBa、コンデンサCBb、スイッチΦ13(スイッチΦ13a及びスイッチΦ13b)、スイッチΦ14(スイッチΦ14a及びスイッチΦ14b)を備えて構成されている。 The filter circuit FLT3 of the Charge Share SAR ADC 100b is configured to include a capacitor CAa, a capacitor CAb, a capacitor CBa, a capacitor CBb, a switch Φ13 (switch Φ13a and switch Φ13b), and a switch Φ14 (switch Φ14a and switch Φ14b).
 ここで、例えば、図11に示されたCharge Redistribution SAR ADC101のフィルタ回路FLT1をパッシブ型にした場合、容量アレイ(複数のコンデンサCP0~CP6)とフィルタ回路FLT1の容量とにおいて、電荷再配分が起こる。このため、Charge Redistribution SAR ADC101では、SAR ADC変換後の残差電圧が減衰する。 Here, for example, when the filter circuit FLT1 of the Charge Redistribution SAR ADC 101 shown in FIG. 11 is a passive type, charge redistribution occurs in the capacitance array (capacitors CP0 to CP6) and the capacitance of the filter circuit FLT1. .. Therefore, in the Charge Redistribution SAR ADC 101, the residual voltage after SAR ADC conversion is attenuated.
 これに対し、本技術に係る第3の実施形態のCharge Share SAR ADC100bは、積分器アンプIPがフィルタ回路FLT3の入力に対してバッファとなっているため、SAR ADC変換後の残差電圧が減衰することがない。具体的には、第1極性の第3コンデンサC3a及び第2極性の第3コンデンサC3bと、コンデンサCAa及びコンデンサCAbとにおいて電荷再配分が起らないため、SAR ADC変換後の残差電圧に減衰がない。 On the other hand, in the Charge Share SAR ADC 100b according to the third embodiment of the present technology, since the integrator amplifier IP serves as a buffer for the input of the filter circuit FLT3, the residual voltage after SAR ADC conversion is attenuated. There is nothing to do. Specifically, since charge redistribution does not occur between the third capacitor C3a of the first polarity and the third capacitor C3b of the second polarity, and the capacitors CAa and CAb, the residual voltage after SAR ADC conversion is attenuated. There is no.
 このため、SNDRは、本技術に係る第3の実施形態のCharge Share SAR ADC100bは、従来のCharge Redistribution SAR ADC101の回路構成よりも有利な値となる。また、第3の実施形態のCharge Share SAR ADC100bは、フィルタ回路FLT3のサンプリングが電荷再配分に依存しないため、コンデンサCAa及びコンデンサCAbを、ノイズの要求仕様が満たす範囲で小さくすることができる。 Therefore, the SNDR of the Charge Share SAR ADC 100b according to the third embodiment of the present technology has a more advantageous value than the circuit configuration of the conventional Charge Redistribution SAR ADC 101. Further, in the Charge Share SAR ADC 100b of the third embodiment, the sampling of the filter circuit FLT3 does not depend on the charge redistribution, so that the capacitors CAa and CAb can be reduced within the range where the noise required specifications are satisfied.
 この場合のフィルタ回路FLT3の伝達関数L(z)とノイズ伝達関数NTF(z)は、次式(式(44)、式(45))で表される。 The transfer function L 2 (z) and the noise transfer function NTF(z) of the filter circuit FLT3 in this case are represented by the following expressions (Expression (44) and Expression (45)).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 このように、第3の実施形態のCharge Share SAR ADC100bは、フィルタ回路FLT3の伝達関数L(z)が、1次パッシブ型で、ノイズ伝達関数NTF(z)が、2次に近いノイズシェーピング特性を得ることができる。 As described above, in the Charge Share SAR ADC 100b of the third embodiment, the transfer function L 2 (z) of the filter circuit FLT3 is a first-order passive type, and the noise transfer function NTF(z) is near second-order noise shaping. The characteristics can be obtained.
<5.第4の実施形態(IoTセンサの例)>
 本技術に係る第4の実施形態のIoT(Internet of Things)センサは、逐次比較型ADコンバータが搭載されて、逐次比較型ADコンバータが、第1極性の第1コンデンサと、第1極性の第2コンデンサと、第1極性の第3コンデンサと、第2極性の第1コンデンサと、第2極性の第2コンデンサと、第2極性の第3コンデンサと、積分器アンプと、コンパレータと、フィルタ回路と、を備える、IoTセンサである。また、本技術に係る第4の実施形態のIoTtセンサは、本技術に係る第1乃至第3の実施形態のいずれか1つの逐次比較型ADコンバータが搭載されたIoTセンサであってもよい。
<5. Fourth embodiment (example of IoT sensor)>
The IoT (Internet of Things) sensor of the fourth embodiment according to the present technology is equipped with a successive approximation type AD converter, and the successive approximation type AD converter includes a first capacitor having a first polarity and a first capacitor having a first polarity. 2 capacitors, 1st polarity 3rd capacitor, 2nd polarity 1st capacitor, 2nd polarity 2nd capacitor, 2nd polarity 3rd capacitor, integrator amplifier, comparator, and filter circuit And IoT sensor. Further, the IoT sensor of the fourth embodiment according to the present technology may be an IoT sensor equipped with any one of the successive approximation type AD converters of the first to third embodiments of the present technology.
 例えば、上述で説明されたCharge Share SAR ADC100を、IoTセンサに適用することができる。図9に、その一例として、IoTセンサ200の概略構成を示す。図9は、本技術を適用したIoTセンサの構成例を示すブロック図である。 For example, the Charge Share SAR ADC 100 described above can be applied to the IoT sensor. FIG. 9 shows a schematic configuration of the IoT sensor 200 as an example. FIG. 9 is a block diagram showing a configuration example of an IoT sensor to which the present technology is applied.
 図9に示される第4の実施形態のIoTセンサ200は、センサ素子S1、センサ素子S2・・・センサ素子SN、MUX(Multiplexer)210、PGA AMP(Programmable Gain Amplifier)220、Charge Share SAR ADC100(図9では、ADC100と表記する。)、信号処理ブロック230、RF240、アンテナ250、LCD Driver260、ディスプレイ270、Power Management280、及び電源290を有している。 The IoT sensor 200 according to the fourth embodiment shown in FIG. 9 includes a sensor element S1, a sensor element S2... A sensor element SN, a MUX (Multiplexer) 210, a PGA AMP (Programmable Gain Amplifier) 220, and a Charge Share SAR ADC 100 ( In FIG. 9, it is represented as ADC 100.), a signal processing block 230, an RF 240, an antenna 250, an LCD driver 260, a display 270, a Power Management 280, and a power supply 290.
 IoTセンサ200は、多数のセンサ素子(センサ素子S1、センサ素子S2・・・センサ素子SN)を有している。IoTセンサ200は、センサ素子として、例えば、センサ素子S1が加速度センサであり、センサ素子S2がジャイロセンサとして、複数のセンサ素子を備えることができる。また、他のセンサとして、磁気センサ、温度センサ、気圧センサ、感圧センサなどを備えるようにしてもよい。 The IoT sensor 200 has a large number of sensor elements (sensor element S1, sensor element S2... Sensor element SN). The IoT sensor 200 can include a plurality of sensor elements as sensor elements, for example, the sensor element S1 is an acceleration sensor and the sensor element S2 is a gyro sensor. Further, as other sensors, a magnetic sensor, a temperature sensor, an atmospheric pressure sensor, a pressure sensitive sensor, etc. may be provided.
 MUX210は、複数のセンサ(センサ素子S1、センサ素子S2・・・センサ素子SN)によって取得したデータ(アナログ信号)の中から選択するマルチプレクサである。 The MUX 210 is a multiplexer that selects from data (analog signals) acquired by a plurality of sensors (sensor element S1, sensor element S2... Sensor element SN).
 PGA AMP220は、ユーザにより必要なゲインを調整できる増幅器である。 The PGA AMP 220 is an amplifier that can adjust the gain required by the user.
 Charge Share SAR ADC100(図9のADC100)は、本技術に係る第1の実施形態で説明した逐次比較型ADコンバータである。 The Charge Share SAR ADC 100 (ADC 100 in FIG. 9) is the successive approximation type AD converter described in the first embodiment according to the present technology.
 信号処理ブロック230は、DSP(Digital Signal Processor)やFPGA(Field Programmable Gate Array)などで構成され、データ(デジタル信号)を処理する信号処理部である。 The signal processing block 230 is a signal processing unit configured with a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), and the like, and processes data (digital signals).
 RF(Radio Frequency)240は、高周波で無線通信を行う無線回路である。RF240は、アンテナ250を介して、信号処理ブロック230で処理された信号(デジタル信号)を、図示しない通信端末に送信する。 RF (Radio Frequency) 240 is a wireless circuit that performs wireless communication at a high frequency. The RF 240 transmits the signal (digital signal) processed by the signal processing block 230 to the communication terminal (not shown) via the antenna 250.
 LCD Driver260は、例えば、液晶ディスプレイで構成されるディスプレイ270を駆動するモジュールである。LCD Driver260は、信号処理ブロック230で処理された信号をディスプレイ260に表示させる。 The LCD Driver 260 is a module that drives a display 270 including, for example, a liquid crystal display. The LCD Driver 260 causes the display 260 to display the signal processed by the signal processing block 230.
 Power Management280は、電源290から供給される電力を信号処理ブロック230に供給する。 The Power Management 280 supplies the power supplied from the power supply 290 to the signal processing block 230.
 IoTセンサ200は、このような構成を備えることにより、多数のセンサ素子(センサ素子S1、センサ素子S2・・・センサ素子SN)で取得したデータ(アナログ信号)をデジタル信号に変換した後に、所定の信号処理を実行し、図示しない通信端末に送信することができるようになっている。 Since the IoT sensor 200 has such a configuration, the IoT sensor 200 converts data (analog signal) acquired by a large number of sensor elements (sensor element S1, sensor element S2... It is possible to execute the signal processing of (1) and send it to a communication terminal (not shown).
 なお、本技術に係る第4の実施形態は、上述した実施形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 The fourth embodiment according to the present technology is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present technology.
<6.第5の実施形態(生体センサの例)>
 本技術に係る第5の実施形態の生体センサは、逐次比較型ADコンバータが搭載されて、逐次比較型ADコンバータが、第1極性の第1コンデンサと、第1極性の第2コンデンサと、第1極性の第3コンデンサと、第2極性の第1コンデンサと、第2極性の第2コンデンサと、第2極性の第3コンデンサと、積分器アンプと、コンパレータと、フィルタ回路と、を備える、生体センサである。また、本技術に係る第5の実施形態の生体センサは、本技術に係る第1乃至第3の実施形態のいずれか1つの逐次比較型ADコンバータが搭載された生体センサであってもよい。
<6. Fifth embodiment (example of biosensor)>
A biosensor according to a fifth embodiment of the present technology is equipped with a successive approximation type AD converter, and the successive approximation type AD converter includes a first capacitor having a first polarity, a second capacitor having a first polarity, and a second capacitor. A third capacitor having one polarity, a first capacitor having second polarity, a second capacitor having second polarity, a third capacitor having second polarity, an integrator amplifier, a comparator, and a filter circuit, It is a biometric sensor. The biosensor of the fifth embodiment according to the present technology may be a biosensor equipped with any one of the successive approximation AD converters of the first to third embodiments of the present technology.
 例えば、上述で説明されたCharge Share SAR ADC100を、生体センサに適用することができる。図10に、その一例として、生体センサ300の概略構成を示す。図10は、本技術を適用した生体センサ300の構成例を示すブロック図である。なお、図9に示されたIoTセンサと同一の構成については同一の符号を付し、説明を適宜、省略する。 For example, the Charge Share SAR ADC 100 described above can be applied to a biosensor. FIG. 10 shows a schematic configuration of the biosensor 300 as an example thereof. FIG. 10 is a block diagram showing a configuration example of a biosensor 300 to which the present technology is applied. The same components as those of the IoT sensor shown in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図10に示された第5の実施形態の生体センサ00が図9に示された第4の実施形態のIoTセンサ200と異なる点は、PGA AMP220の代わりにAnalog Front-End310を備えており、信号処理ブロック230で信号処理したデータを、Serial I/F330から、図示しない情報処理端末に出力するようになっている点である。 The difference between the biosensor 00 of the fifth embodiment shown in FIG. 10 and the IoT sensor 200 of the fourth embodiment shown in FIG. 9 is that the PGA AMP 220 is replaced by an Analog Front-End 310, The data processed by the signal processing block 230 is output from the Serial I/F 330 to an information processing terminal (not shown).
 Analog Front-End310は、アンプやフィルタを備えて構成されており、センサ素子(センサ素子S1、センサ素子S2・・・センサ素子SN)で検出したデータ(アナログ信号)を調整する機能を有している。 The Analog Front-End 310 includes an amplifier and a filter, and has a function of adjusting data (analog signal) detected by the sensor elements (sensor element S1, sensor element S2... Sensor element SN). There is.
 生体センサ300では、例えば、センサ素子S1に体温を検知させ、センサ素子S2に心拍数を検知させる。そして、生体センサ300は、検知された体温や心拍数を、Analog Front-End310で調整し、信号処理ブロック230において信号処理を行う。そして、生体センサ300は、信号処理された体温や心拍数を、Serial I/F330を介して、図示しない情報処理端末に出力する。 In the biometric sensor 300, for example, the sensor element S1 detects the body temperature and the sensor element S2 detects the heart rate. Then, the biological sensor 300 adjusts the detected body temperature and heart rate by the Analog Front-End 310, and performs signal processing in the signal processing block 230. Then, the biometric sensor 300 outputs the signal-processed body temperature and heart rate to the information processing terminal (not shown) via the Serial I/F 330.
 なお、本技術に係る第5の実施形態は、上述した実施形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the fifth embodiment according to the present technology is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present technology.
 また、本技術に係る第1乃至第5の実施形態は、上述した実施形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Further, the first to fifth embodiments according to the present technology are not limited to the above-mentioned embodiments, and various modifications can be made without departing from the gist of the present technology.
 また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 Also, the effects described in the present specification are merely examples and are not limited, and there may be other effects.
 また、本技術は、以下のような構成を取ることができる。
(1)第1極性の第1コンデンサと、
 第1極性の第2コンデンサと、
 第1極性の第3コンデンサと、
 第2極性の第1コンデンサと、
 第2極性の第2コンデンサと、
 第2極性の第3コンデンサと、
 積分器アンプと、
 コンパレータと、
 フィルタ回路と、を備え、
 前記第1極性の第1コンデンサと、前記第1極性の第2コンデンサと、前記第1極性の第3コンデンサのそれぞれが、略同一の容量を有し、
 前記第2極性の第1コンデンサと、前記第2極性の第2コンデンサと、前記第2極性の第3コンデンサのそれぞれが、略同一の容量を有し、
前記第1極性の第1コンデンサ及び前記第2極性の第1コンデンサのそれぞれに、所定の電荷が蓄積され、
 前記第1極性の第2コンデンサが、入力されるアナログ電圧の第1電荷を蓄積するとともに、当該第1電荷を前記第1極性の第3コンデンサに転送し、
 前記積分器アンプが、前記第1極性の第3コンデンサに転送された前記第1電荷を積分して、第1積分値を生成し、
 前記第2極性の第2コンデンサが、入力されるアナログ電圧の第2電荷を蓄積するとともに、当該第2電荷を前記第2極性の第3コンデンサに転送し、
 前記積分器アンプが、前記第2極性の第3コンデンサに転送された前記第2電荷を積分して、第2積分値を生成し、
 前記コンパレータが、前記第1積分値と前記第2積分値とを比較し、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとがリセットされ、
 前記第1積分値が前記第2積分値よりも大きいときは、
 前記第1極性の第3コンデンサに蓄積された電荷と前記第1極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第1極性の第2コンデンサに再配分するとともに、
 前記第2極性の第3コンデンサに蓄積された電荷と前記第2極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第2極性の第2コンデンサに再配分し、
 前記第1積分値が前記第2積分値よりも略同等以下であるときは、
 前記第1極性の第3コンデンサに蓄積された電荷と前記第2極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第1極性の第2のコンデンサに再配分するとともに、
 前記第2極性の第3コンデンサに蓄積された電荷と前記第1極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第2極性の第2コンデンサに再配分し、
 所定の分解能のビット数が得られるまで、前記コンパレータが前記第1積分値と前記第2積分値とを前記比較することと、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとが前記リセットされることと、前記リセットされた、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとに前記再配分することと、を繰り返し、
 前記所定の分解能のビット数が得られた後、前記フィルタ回路に、前記第1極性の第2コンデンサに前記再配分して前記第1極性の第3コンデンサに蓄積された電荷と、前記第2極性の第2コンデンサに前記再配分して前記第2極性の第3コンデンサに蓄積された電荷とを、残差電圧として入力する、逐次比較型ADコンバータ。
(2)前記第1極性が、正極性であって、
 前記第2極性が、負極性である、前記(1)に記載の逐次比較型ADコンバータ。
(3)前記所定の分解能の最下位ビットについて、前記コンパレータが、前記第1積分値と前記第2積分値とを比較し、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとが前記リセットされた後、当該第1極性の第2コンデンサと第2極性の第2コンデンサとについて前記再配分が完了するまでの間に、前記フィルタ回路が、前記残差電圧のサンプリングを開始する、前記(1)又は(2)に記載の逐次比較型ADコンバータ。
(4)前記フィルタ回路が、前記積分器アンプによって駆動される、前記(1)乃至(3)のいずれか1つに記載の逐次比較型ADコンバータ。
(5)前記フィルタ回路が、オペアンプを含んで構成されるアクティブ型である、前記(1)乃至(4)のいずれか1つに記載の逐次比較型ADコンバータ。
(6)前記フィルタ回路が、コンデンサを含み、オペアンプを含まないで構成されるパッシブ型である、前記(1)乃至(4)のいずれか1つに記載の逐次比較型ADコンバータ。
(7)前記(1)乃至(6)のいずれか1つに記載の逐次比較型ADコンバータを備える、IoTセンサ。
(8)前記(1)乃至(6)のいずれか1つに記載の逐次比較型ADコンバータを備える、生体センサ。
Further, the present technology may have the following configurations.
(1) a first capacitor of a first polarity,
A second capacitor of the first polarity,
A third capacitor of the first polarity,
A first capacitor of the second polarity,
A second capacitor of the second polarity,
A second capacitor of the second polarity,
An integrator amplifier,
A comparator,
And a filter circuit,
Each of the first capacitor of the first polarity, the second capacitor of the first polarity, and the third capacitor of the first polarity has substantially the same capacitance,
The first capacitor having the second polarity, the second capacitor having the second polarity, and the third capacitor having the second polarity have substantially the same capacitance,
A predetermined charge is accumulated in each of the first capacitor of the first polarity and the first capacitor of the second polarity,
The second capacitor of the first polarity accumulates the first charge of the input analog voltage and transfers the first charge to the third capacitor of the first polarity,
The integrator amplifier integrates the first charge transferred to the third capacitor of the first polarity to generate a first integrated value,
The second capacitor of the second polarity accumulates the second charge of the input analog voltage and transfers the second charge to the third capacitor of the second polarity,
The integrator amplifier integrates the second charge transferred to the third capacitor of the second polarity to generate a second integrated value,
The comparator compares the first integrated value with the second integrated value, resets the second capacitor of the first polarity and the second capacitor of the second polarity,
When the first integrated value is larger than the second integrated value,
While redistributing the charge accumulated in the third capacitor of the first polarity and the charge accumulated in the first capacitor of the first polarity to the reset second capacitor of the first polarity,
The charge accumulated in the second capacitor of the second polarity and the charge accumulated in the first capacitor of the second polarity are redistributed to the reset second capacitor of the second polarity,
When the first integrated value is substantially equal to or less than the second integrated value,
The charge accumulated in the third capacitor of the first polarity and the charge accumulated in the first capacitor of the second polarity are redistributed to the reset second capacitor of the first polarity, and
The charge accumulated in the third capacitor of the second polarity and the charge accumulated in the first capacitor of the first polarity are redistributed to the reset second capacitor of the second polarity,
The comparator compares the first integrated value with the second integrated value until a bit number with a predetermined resolution is obtained, and the second capacitor of the first polarity and the second capacitor of the second polarity are compared. Is reset, and the redistributed to the reset second capacitor of the first polarity and the second capacitor of the second polarity,
After the number of bits of the predetermined resolution is obtained, in the filter circuit, the charge redistributed to the second capacitor of the first polarity and accumulated in the third capacitor of the first polarity, and the second capacitor A successive-approximation-type AD converter that inputs the electric charges accumulated in the third capacitor having the second polarity by being redistributed to the second capacitor having the polarity as a residual voltage.
(2) The first polarity is a positive polarity,
The successive approximation type AD converter according to (1), wherein the second polarity is negative.
(3) For the least significant bit of the predetermined resolution, the comparator compares the first integrated value and the second integrated value, and the second capacitor of the first polarity and the second capacitor of the second polarity. After the resetting is performed, the filter circuit starts sampling the residual voltage until the reallocation of the second capacitor of the first polarity and the second capacitor of the second polarity is completed. The successive approximation type AD converter according to (1) or (2) above.
(4) The successive approximation AD converter according to any one of (1) to (3), wherein the filter circuit is driven by the integrator amplifier.
(5) The successive approximation AD converter according to any one of (1) to (4), wherein the filter circuit is an active type including an operational amplifier.
(6) The successive approximation type AD converter according to any one of (1) to (4), wherein the filter circuit is a passive type including a capacitor and not including an operational amplifier.
(7) An IoT sensor including the successive approximation type AD converter according to any one of (1) to (6).
(8) A biosensor, comprising the successive approximation type AD converter according to any one of (1) to (6).
C1a 第1極性の第1コンデンサ
C2a 第1極性の第2コンデンサ
C3a 第1極性の第3コンデンサ
C1b 第2極性の第1コンデンサ
C2b 第2極性の第2コンデンサ
C3b 第2極性の第3コンデンサ
IP、IP1 積分器アンプ
CMP、CMP1 コンパレータ
FLT、FLT1 フィルタ回路
ITG、ITG1 積分器
C1a first capacitor C1a of first polarity second capacitor C3a of first polarity third capacitor C1b of first polarity second capacitor C2b of second polarity second capacitor C3b of second polarity third capacitor IP of second polarity, IP1 integrator amplifier CMP, CMP1 comparator FLT, FLT1 filter circuit ITG, ITG1 integrator

Claims (8)

  1.  第1極性の第1コンデンサと、
     第1極性の第2コンデンサと、
     第1極性の第3コンデンサと、
     第2極性の第1コンデンサと、
     第2極性の第2コンデンサと、
     第2極性の第3コンデンサと、
     積分器アンプと、
     コンパレータと、
     フィルタ回路と、を備え、
     前記第1極性の第1コンデンサと、前記第1極性の第2コンデンサと、前記第1極性の第3コンデンサのそれぞれが、略同一の容量を有し、
     前記第2極性の第1コンデンサと、前記第2極性の第2コンデンサと、前記第2極性の第3コンデンサのそれぞれが、略同一の容量を有し、
     前記第1極性の第1コンデンサ及び前記第2極性の第1コンデンサのそれぞれに、所定の電荷が蓄積され、
     前記第1極性の第2コンデンサが、入力されるアナログ電圧の第1電荷を蓄積するとともに、当該第1電荷を前記第1極性の第3コンデンサに転送し、
     前記積分器アンプが、前記第1極性の第3コンデンサに転送された前記第1電荷を積分して、第1積分値を生成し、
     前記第2極性の第2コンデンサが、入力されるアナログ電圧の第2電荷を蓄積するとともに、当該第2電荷を前記第2極性の第3コンデンサに転送し、
     前記積分器アンプが、前記第2極性の第3コンデンサに転送された前記第2電荷を積分して、第2積分値を生成し、
     前記コンパレータが、前記第1積分値と前記第2積分値とを比較し、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとがリセットされ、
     前記第1積分値が前記第2積分値よりも大きいときは、
     前記第1極性の第3コンデンサに蓄積された電荷と前記第1極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第1極性の第2コンデンサに再配分するとともに、
     前記第2極性の第3コンデンサに蓄積された電荷と前記第2極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第2極性の第2コンデンサに再配分し、
     前記第1積分値が前記第2積分値よりも略同等以下であるときは、
     前記第1極性の第3コンデンサに蓄積された電荷と前記第2極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第1極性の第2のコンデンサに再配分するとともに、
     前記第2極性の第3コンデンサに蓄積された電荷と前記第1極性の第1コンデンサに蓄積された電荷とを、リセットされた前記第2極性の第2コンデンサに再配分し、
     所定の分解能のビット数が得られるまで、前記コンパレータが前記第1積分値と前記第2積分値とを前記比較することと、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとが前記リセットされることと、前記リセットされた、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとに前記再配分することと、を繰り返し、
     前記所定の分解能のビット数が得られた後、前記フィルタ回路に、前記第1極性の第2コンデンサに前記再配分して前記第1極性の第3コンデンサに蓄積された電荷と、前記第2極性の第2コンデンサに前記再配分して前記第2極性の第3コンデンサに蓄積された電荷とを、残差電圧として入力する、逐次比較型ADコンバータ。
    A first capacitor of a first polarity,
    A second capacitor of the first polarity,
    A third capacitor of the first polarity,
    A first capacitor of the second polarity,
    A second capacitor of the second polarity,
    A second capacitor of the second polarity,
    An integrator amplifier,
    A comparator,
    And a filter circuit,
    Each of the first capacitor of the first polarity, the second capacitor of the first polarity, and the third capacitor of the first polarity has substantially the same capacitance,
    The first capacitor having the second polarity, the second capacitor having the second polarity, and the third capacitor having the second polarity have substantially the same capacitance,
    A predetermined charge is accumulated in each of the first capacitor of the first polarity and the first capacitor of the second polarity,
    The second capacitor of the first polarity accumulates the first charge of the input analog voltage and transfers the first charge to the third capacitor of the first polarity,
    The integrator amplifier integrates the first charge transferred to the third capacitor of the first polarity to generate a first integrated value,
    The second capacitor of the second polarity accumulates the second charge of the input analog voltage and transfers the second charge to the third capacitor of the second polarity,
    The integrator amplifier integrates the second charge transferred to the third capacitor of the second polarity to generate a second integrated value,
    The comparator compares the first integrated value with the second integrated value, resets the second capacitor of the first polarity and the second capacitor of the second polarity,
    When the first integrated value is larger than the second integrated value,
    While redistributing the charge accumulated in the third capacitor of the first polarity and the charge accumulated in the first capacitor of the first polarity to the reset second capacitor of the first polarity,
    The charge accumulated in the second capacitor of the second polarity and the charge accumulated in the first capacitor of the second polarity are redistributed to the reset second capacitor of the second polarity,
    When the first integrated value is substantially equal to or less than the second integrated value,
    The charge accumulated in the third capacitor of the first polarity and the charge accumulated in the first capacitor of the second polarity are redistributed to the reset second capacitor of the first polarity, and
    The charge accumulated in the third capacitor of the second polarity and the charge accumulated in the first capacitor of the first polarity are redistributed to the reset second capacitor of the second polarity,
    The comparator compares the first integrated value with the second integrated value until a bit number with a predetermined resolution is obtained, and the second capacitor of the first polarity and the second capacitor of the second polarity are compared. Is reset, and the redistributed to the reset second capacitor of the first polarity and the second capacitor of the second polarity,
    After the number of bits of the predetermined resolution is obtained, in the filter circuit, the charge redistributed to the second capacitor of the first polarity and accumulated in the third capacitor of the first polarity, and the second capacitor A successive-approximation-type AD converter that inputs the electric charges accumulated in the third capacitor having the second polarity by being redistributed to the second capacitor having the polarity as a residual voltage.
  2.  前記第1極性が、正極性であって、
     前記第2極性が、負極性である、請求項1に記載の逐次比較型ADコンバータ。
    The first polarity is positive,
    The successive approximation type AD converter according to claim 1, wherein the second polarity has a negative polarity.
  3.  前記所定の分解能の最下位ビットについて、前記コンパレータが、前記第1積分値と前記第2積分値とを比較し、前記第1極性の第2コンデンサと前記第2極性の第2コンデンサとが前記リセットされた後、当該第1極性の第2コンデンサと当該第2極性の第2コンデンサとについて前記再配分が完了するまでの間に、前記フィルタ回路が、前記残差電圧のサンプリングを開始する、請求項1に記載の逐次比較型ADコンバータ。 For the least significant bit of the predetermined resolution, the comparator compares the first integrated value and the second integrated value, and the second capacitor of the first polarity and the second capacitor of the second polarity are the After being reset, the filter circuit starts sampling the residual voltage until the redistribution of the second capacitor of the first polarity and the second capacitor of the second polarity is completed. The successive approximation type AD converter according to claim 1.
  4.  前記フィルタ回路が、前記積分器アンプによって駆動される、請求項1に記載の逐次比較型ADコンバータ。 The successive approximation type AD converter according to claim 1, wherein the filter circuit is driven by the integrator amplifier.
  5.  前記フィルタ回路が、オペアンプを含んで構成されるアクティブ型である請求項1に記載の逐次比較型ADコンバータ。 The successive approximation type AD converter according to claim 1, wherein the filter circuit is an active type including an operational amplifier.
  6.  前記フィルタ回路が、コンデンサを含み、オペアンプを含まないで構成されるパッシブ型である請求項1に記載の逐次比較型ADコンバータ。 The successive approximation type AD converter according to claim 1, wherein the filter circuit is a passive type that includes a capacitor and does not include an operational amplifier.
  7.  請求項1に記載の逐次比較型ADコンバータを備える、IoTセンサ。 An IoT sensor including the successive approximation type AD converter according to claim 1.
  8.  請求項1に記載の逐次比較型ADコンバータを備える、生体センサ。 A biometric sensor comprising the successive approximation type AD converter according to claim 1.
PCT/JP2020/000063 2019-02-20 2020-01-06 SEQUENTIAL-COMPARISON-TYPE AD CONVERTER, Iot SENSOR, AND BIOLOGICAL SENSOR WO2020170617A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021501660A JP7512246B2 (en) 2019-02-20 2020-01-06 Successive approximation type AD converter, IoT sensor, and biosensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-028210 2019-02-20
JP2019028210 2019-02-20

Publications (1)

Publication Number Publication Date
WO2020170617A1 true WO2020170617A1 (en) 2020-08-27

Family

ID=72144407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000063 WO2020170617A1 (en) 2019-02-20 2020-01-06 SEQUENTIAL-COMPARISON-TYPE AD CONVERTER, Iot SENSOR, AND BIOLOGICAL SENSOR

Country Status (1)

Country Link
WO (1) WO2020170617A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050830A (en) * 2021-10-20 2022-02-15 浙江大学 Low power consumption low switch leakage delta-sigma analog-to-digital converter for integrated temperature sensor
WO2022064787A1 (en) * 2020-09-28 2022-03-31 パナソニックIpマネジメント株式会社 Ad converter, and sensor system provided with same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129570A1 (en) * 2006-11-03 2008-06-05 Samsung Electronics Co., Ltd. Correlated double-sampling circuit and cyclic analog-to-digital converter including the same
US20080258951A1 (en) * 2007-04-23 2008-10-23 Taxas Instruments Incorporated Hybrid Delta-Sigma/SAR Analog to Digital Converter and Methods for Using Such
WO2009088041A1 (en) * 2008-01-09 2009-07-16 National University Corporation Shizuoka University Cyclic analog /digital converter
JP2010517327A (en) * 2007-01-18 2010-05-20 アイメック Charge domain successive approximation A / D converter
JP2012074919A (en) * 2010-09-29 2012-04-12 Handotai Rikougaku Kenkyu Center:Kk Ad conversion device
US20150109159A1 (en) * 2013-10-17 2015-04-23 Global Unichip Corporation Analog to digital converter
JP2016025552A (en) * 2014-07-23 2016-02-08 旭化成エレクトロニクス株式会社 Successive approximation AD converter and successive approximation AD conversion method
JP2018125652A (en) * 2017-01-31 2018-08-09 旭化成エレクトロニクス株式会社 Incremental delta-sigma ad converter and adjustment method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129570A1 (en) * 2006-11-03 2008-06-05 Samsung Electronics Co., Ltd. Correlated double-sampling circuit and cyclic analog-to-digital converter including the same
JP2010517327A (en) * 2007-01-18 2010-05-20 アイメック Charge domain successive approximation A / D converter
US20080258951A1 (en) * 2007-04-23 2008-10-23 Taxas Instruments Incorporated Hybrid Delta-Sigma/SAR Analog to Digital Converter and Methods for Using Such
WO2009088041A1 (en) * 2008-01-09 2009-07-16 National University Corporation Shizuoka University Cyclic analog /digital converter
JP2012074919A (en) * 2010-09-29 2012-04-12 Handotai Rikougaku Kenkyu Center:Kk Ad conversion device
US20150109159A1 (en) * 2013-10-17 2015-04-23 Global Unichip Corporation Analog to digital converter
JP2016025552A (en) * 2014-07-23 2016-02-08 旭化成エレクトロニクス株式会社 Successive approximation AD converter and successive approximation AD conversion method
JP2018125652A (en) * 2017-01-31 2018-08-09 旭化成エレクトロニクス株式会社 Incremental delta-sigma ad converter and adjustment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064787A1 (en) * 2020-09-28 2022-03-31 パナソニックIpマネジメント株式会社 Ad converter, and sensor system provided with same
CN114050830A (en) * 2021-10-20 2022-02-15 浙江大学 Low power consumption low switch leakage delta-sigma analog-to-digital converter for integrated temperature sensor

Also Published As

Publication number Publication date
JPWO2020170617A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
CN111327323B (en) Passive noise shaping oversampling successive approximation analog-to-digital converter and control method
US9385740B2 (en) SAR ADC and method thereof
US10158369B2 (en) A/D converter
US8947285B2 (en) ADC with noise-shaping SAR
US10250277B1 (en) SAR-type analog-digital converter using residue integration
WO2017006297A2 (en) Hybrid charge-sharing charge-redistribution dac for successive approximation analog-to-digital converters
US9698805B1 (en) Electrical noise reduction in an analog-to-digital converter
CN111211783B (en) Double-feedback-loop noise shaping oversampling successive approximation analog-to-digital converter and method
JP2012165088A (en) Δς modulator and signal processing system
JP2016225840A (en) Amplifier circuit, ad converter, radio communication device, and sensor system
JP2006303671A (en) Integrator and cyclic a/d converter using same
WO2020170617A1 (en) SEQUENTIAL-COMPARISON-TYPE AD CONVERTER, Iot SENSOR, AND BIOLOGICAL SENSOR
CN111342840A (en) Precision current-to-digital converter
KR101680081B1 (en) 2nd-order noise-shaping Successive Approximation Register Analog to Digital Converter
Brewer et al. A 100dB SNR 2.5 MS/s output data rate/spl Delta//spl Sigma/ADC
Leene et al. A 0.016 mm2 12 b $\Delta\Sigma $ SAR With 14 fJ/conv. for Ultra Low Power Biosensor Arrays
JP2020088500A (en) A/D converter
EP1398880A2 (en) Analog-digital conversion circuit
JP2017168930A (en) Switched capacitor circuit
JP5609684B2 (en) AD converter and signal processing system
CN115801003B (en) Multi-step analog-to-digital converter and implementation method thereof
JP2008028855A (en) Semiconductor integrated circuit device
JP7512246B2 (en) Successive approximation type AD converter, IoT sensor, and biosensor
Chen et al. History, present state-of-art and future of incremental ADCs
Temes Micropower data converters: A tutorial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501660

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759174

Country of ref document: EP

Kind code of ref document: A1