WO2020170613A1 - Radiographic device - Google Patents

Radiographic device Download PDF

Info

Publication number
WO2020170613A1
WO2020170613A1 PCT/JP2019/051465 JP2019051465W WO2020170613A1 WO 2020170613 A1 WO2020170613 A1 WO 2020170613A1 JP 2019051465 W JP2019051465 W JP 2019051465W WO 2020170613 A1 WO2020170613 A1 WO 2020170613A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
plate portion
radiation detection
detection panel
imaging apparatus
Prior art date
Application number
PCT/JP2019/051465
Other languages
French (fr)
Japanese (ja)
Inventor
啓吾 横山
渡辺 実
将人 大藤
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2020170613A1 publication Critical patent/WO2020170613A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Definitions

  • the present invention relates to a radiation imaging device.
  • the radiation imaging apparatus includes a radiation detection panel in which a plurality of radiation detection elements are arranged on a substrate, and some radiation detection panels configured to have flexibility for the purpose of weight reduction and the like. There is (see Patent Document 1). On the other hand, such bending of the radiation detection panel may cause a decrease in the reliability of the device such as disconnection of signal lines and power lines.
  • the present invention has an exemplary object to realize the weight reduction and the reliability improvement of the radiation imaging apparatus with a relatively simple configuration.
  • One aspect of the present invention relates to a radiation imaging apparatus, wherein the radiation imaging apparatus includes a flexible radiation detection panel in which a plurality of radiation detection elements are arranged on a substrate, and the radiation detection panel.
  • a radiation imaging apparatus comprising: a housing, wherein the housing includes a plate portion forming one surface, and the flexible radiation detection panel has a plate portion of the housing at a central portion thereof. Is supported via a cushioning member, and a reinforcing member for suppressing the bending of the radiation detection panel is provided at an edge portion outside the central portion.
  • the schematic diagram for demonstrating the structural example of a radiation imaging device The schematic diagram for demonstrating the structural example of a radiation imaging device.
  • the block diagram for explaining the example of composition of a radiation imaging device The schematic diagram for demonstrating the structural example of a radiation imaging device.
  • the schematic diagram for demonstrating the structural example of a radiation imaging device The schematic diagram for demonstrating the structural example of a radiation imaging device.
  • the schematic diagram for demonstrating the structural example of a radiation imaging device The schematic diagram for demonstrating the structural example of a radiation imaging device.
  • the schematic diagram for demonstrating the structural example of a radiation imaging device The schematic diagram for demonstrating the structural example of a radiation imaging device.
  • the schematic diagram for demonstrating the structural example of a radiation imaging device The schematic diagram for demonstrating the structural example of a radiation imaging device.
  • the schematic diagram for demonstrating the structural example of a radiation imaging device The figure for explaining the example of composition of a radiation imaging system.
  • FIG. 1A is a top view showing a configuration example of the radiation imaging apparatus 1 according to the first embodiment.
  • FIG. 1B shows a cross-sectional view of the radiation imaging apparatus 1 taken along the line d1-d1 shown in FIG. 1A.
  • the radiation imaging apparatus 1 includes a radiation detection panel 11, a printed circuit board 12, a flexible cable 13, a battery 14, a buffer member 15, a reinforcing member 16, a supporting plate member 17, and a housing 10 that houses these.
  • the housing 10 includes a first plate portion 101, a second plate portion 102, and a side wall portion 103.
  • the plate portion 101 is a top plate that is located on the radiation incident side and forms one surface.
  • the plate portion 102 is a bottom plate that faces the plate portion 101 and forms the other surface.
  • the side wall portion 103 is circumferentially provided so as to connect the plate portions 101 and 102, and in this embodiment, it is separable into an upper portion and a lower portion at the connecting portion 103a.
  • the casing 10 is preferably made of a material that is relatively lightweight and satisfies the desired rigidity, such as CFRP (Carbon Fiber Reinforced Plastics) with a thickness of about 1.0 [mm], and a synthetic resin, which causes plastic deformation. It is even better if it is made of a difficult material.
  • CFRP Carbon Fiber Reinforced Plastics
  • the radiation detection panel 11 includes a substrate 111, a scintillator 112, and a scintillator protective film 113.
  • the substrate 111 is made of a relatively lightweight material such as glass or PET (polyethylene terephthalate), and is relatively thin so as to have flexibility, and has a thickness of, for example, about 0.1 [mm]. To be done.
  • a plurality of radiation detection elements hereinafter referred to as radiation detection elements D1
  • switch elements T1 for reading signals from the radiation detection elements
  • a photoelectric conversion element such as a PIN sensor is used as the radiation detection element D1
  • a thin film transistor is used as the switch element T1 which are amorphous with a thickness of about 0.05 [mm], for example. Composed of silicon, etc.
  • the radiation detection panel 11 is configured to have flexibility.
  • the scintillator 112 is provided on the substrate 111 so as to cover the plurality of radiation detection elements D1.
  • a known phosphor material capable of converting radiation into light such as thallium-added cesium iodide and terbium-added dadolinium oxysulfide, may be used.
  • the scintillator protective film 113 is provided so as to seal the scintillator 112, and can prevent deliquescent of the scintillator 112.
  • a material having moisture resistance for example, a metal such as aluminum may be used.
  • the printed board 12 is a rigid board on which one or more electronic components are mounted. Although details will be described later, the printed circuit board 12 functions as a control unit that drives and controls the radiation detection panel 11, and also as a processing unit that can generate image data based on a signal group received from the radiation detection panel 11. Also works.
  • the flexible cable 13 is a wiring portion including a signal line and a power supply line, and electrically connects the radiation detection panel 11 and the printed circuit board 12. Additionally, an electronic component 131 such as a semiconductor IC (Integrated Circuit) is arranged on the flexible cable 13.
  • the battery 14 is a power source for driving each element included in the radiation imaging apparatus 1, and can be configured to be replaceable or rechargeable.
  • the cushioning member 15 is installed at a predetermined position in the housing 10 to reduce or reduce the influence of external shock that can be applied to the housing 10 on the elements inside the housing 10.
  • the cushioning member 15 is preferably made of a relatively lightweight material, and further has a heat insulating property so that the influence of the temperature outside the housing 10 on the inside of the housing 10 can be reduced.
  • the cushioning member 15 is made of, for example, expanded polyethylene, silicone resin or the like having a thickness of about 2.0 [mm].
  • the reinforcing member 16 is provided at the edge of the flexible radiation detection panel 11 so that the posture of the radiation detection panel 11 can be maintained.
  • the reinforcing member 16 is made of a material having a relatively high rigidity, for example, a metal plate having a thickness of about 0.5 [mm], CFRP, or the like.
  • the supporting plate material 17 is laid across the side wall portion 103 of the housing 10.
  • the connecting portion 103a is provided with a rib, and the plate member 17 is fixed to the rib by, for example, fastening, bonding or the like.
  • the plate member 17 is supported and fixed from the plate portion 102 by one or more columns 191.
  • Several elements of the radiation imaging apparatus 1 are supported on the plate member 17 by fastening, bonding, or the like, and thereby indirectly fixed to the housing 10.
  • a plate member made of metal such as molybdenum or stainless steel is used, which makes it possible to reduce the influence of radiation noise between the elements of the device 1 and to suppress the influence of accidental radiation scattering. ..
  • the radiation imaging apparatus 1 has a back-illuminated structure, that is, in the radiation detection panel 11, the substrate 111 is on the radiation incident side with respect to the scintillator 112 (the scintillator 112 and the plate portion 101 with respect to the substrate 111). Are placed so that they are on the opposite side).
  • the radiation detection panel 11 is located between the plate portion 101 and the plate material 17 of the housing 10, and is supported by the plate portion 101 via the cushioning member 15 at the central portion.
  • the cushioning member 15 is the only element that directly supports the radiation detection panel 11, but other elements that additionally support the radiation detection panel 11 are additionally added. Good.
  • the reinforcing member 16 is provided at the edge of the radiation detection panel 11.
  • the printed circuit board 12 is fixed to the lower surface side of the plate material 17.
  • An opening OP1 is provided in the plate member 17, and the flexible cable 13 is arranged so as to pass through the opening OP1 and electrically connects the radiation detection panel 11 and the printed circuit board 12 located on the opposite sides of the plate member 17.
  • the plate member 17 is made of a metal such as molybdenum or stainless steel, so that the influence of radiation noise between the radiation detection panel 11 and the printed circuit board 12 can be reduced.
  • the battery 14 is fixed between the plate portion 102 of the housing 10 and the plate material 17, and can supply electric power to the printed circuit board 12 via a cable (not shown).
  • the radiation imaging apparatus 1 is configured to be relatively lightweight while maintaining desired strength, and can be easily carried by a user such as a doctor.
  • FIG. 2 is a block diagram showing the system configuration of the radiation imaging apparatus 1.
  • the radiation imaging apparatus 1 includes a plurality of sensor units S1, a driving unit U1, a reading unit U2, a control unit U3, and a power supply unit U4 according to each element described with reference to FIGS. 1A and 1B. Can also be said.
  • Each sensor unit S1 includes a radiation detection element D1 and a switch element T1.
  • the plurality of sensor units S1 are arranged in a matrix in the imaging region (effective pixel region) R1 of the radiation detection panel 11.
  • the radiation incident on the sensor unit S1 is converted into light by the scintillator 112 (see FIGS. 1A to 1B), and then photoelectrically converted by the photoelectric conversion element which is the radiation detection element D1.
  • the drive unit U1 can drive a plurality of sensor units S1 in units of rows (or columns) via the signal line L1, and here, the switch element T1 can be controlled to be in a conductive state or a non-conductive state.
  • the electrical signal obtained by the photoelectric conversion is output as a pixel signal by the switch element T1.
  • the readout unit U2 can read out pixel signals from the plurality of sensor units S1 in units of columns (or rows) via the signal line L2.
  • the readout unit U2 reads out the pixel signals from each of the driven sensor units S1 and outputs the pixel signals.
  • a predetermined signal processing is incidentally performed on the.
  • a predetermined bias is applied to each sensor unit S1 via the power supply line L3.
  • the control unit U3 performs synchronous control of the driving unit U1 and the reading unit U2, and generates image data based on the pixel signals read by the reading unit U2 from the plurality of sensor units S1.
  • the image data thus generated is output to an external image display unit (for example, a liquid crystal display or the like) and displayed as a radiation image.
  • the power supply unit U4 generates and supplies a voltage corresponding to each unit based on the power of the battery 14.
  • the drive unit U1, the reading unit U2, the control unit U3, and the power supply unit U4 are provided on the printed circuit board 12. Part of the functions of the driving unit U1 and/or the reading unit U2 may be provided in the electronic component 131 or the radiation detection panel 11.
  • FIG. 3A is an enlarged schematic view of the area K described in FIG. 1A.
  • FIG. 3B is a cross-sectional view of the radiation imaging apparatus 1 taken along the line d2-d2 shown in FIG. 3A.
  • the radiation detection panel 11 is located between the plate portion 101 and the plate material 17 of the housing 10, and is supported by the plate portion 101 via the cushioning member 15 at the central portion.
  • the buffer member 15 is adhered and fixed to each of the radiation detection panel 11 and the plate portion 101 by a predetermined adhesive member.
  • a conductive sheet for example, a grounded metal sheet
  • the cushioning member 15 may be provided so that its outer edge is located outside the imaging region R1. That is, the cushioning member 15 may be extended to the outside of the end of the imaging region R1 shown by the broken line in FIG. 3B. From the viewpoint of the sensor unit S1 described with reference to FIG. 2, it can be said that all of the plurality of sensor units S1 are preferably located inside the outer edge of the cushioning member 15 in plan view. With such a structure, the entire imaging region R1 can be maintained in a substantially horizontal state, and, for example, distortion of the radiation image based on the image data described above can be suppressed, and the quality of the radiation image can be improved.
  • the reinforcing member 16 is provided at the edge of the radiation detection panel 11.
  • the edge portion corresponds to a portion outside the central portion where the cushioning member 15 is fixed.
  • the reinforcing member 16 is bonded and fixed to the surface (first surface) of the radiation detection panel 11 on the plate portion 101 side of the substrate 111 by a predetermined adhesive member.
  • the reinforcing member 16 may be adjacent to the buffer member 15 so that substantially all of the radiation detection panel 11 can be maintained in a substantially horizontal state.
  • the reinforcing member 16 is provided individually on each side of the radiation detection panel 11 having a substantially rectangular shape in a plan view, but the installation mode of the reinforcing member 16 is not limited to this.
  • some/all of the plurality of reinforcing members 16 respectively provided on the plurality of sides may be integrally provided, and as an example, the frame-shaped reinforcing member 16 is integrally provided at the peripheral edge of the radiation detection panel 11. You may be asked.
  • a plurality of reinforcing members 16 may be installed apart from each other along a certain side portion.
  • the substrate 111 of the radiation detection panel 11 includes a plurality of electrodes 1111 at the edge of the surface (second surface) opposite to the surface on the plate portion 101 side.
  • Each electrode 1111 is electrically connected to the sensor unit S1 via the corresponding signal line L2.
  • the same applies to other edge portions that is, the electrodes 1111 at the other edge portions are electrically connected to the sensor portion S1 via, for example, the corresponding signal line L1.
  • the individual electrodes 1111 are electrically connected to the flexible cable 13 by thermocompression bonding in the connection region R2 using an ACF (Anisotropic Conductive Film).
  • the reinforcing member 16 is provided so as to overlap the connection region R2 in a plan view. According to such a structure, the flexible radiation detection panel 11 is prevented from being bent, and it is possible to prevent the disconnection between the flexible cable 13 and the electrode 1111 and the occurrence of connection failure. The reliability can be improved.
  • a gap is formed between the plate portion 101 of the housing 10 and the reinforcing member 16, and the influence of the impact or the load from the plate portion 101 to the connection region R2 is substantially caused. Absent. Therefore, it can be said that it is advantageous for further improving the reliability of the radiation imaging apparatus 1.
  • the reinforcing member 16 is provided on the side wall rather than the end of the substrate 111 so that the substrate 111 of the radiation detection panel 11 does not interfere with the side wall portion 103 when an impact is applied to the housing 10. It extends to the part 103 side. Therefore, it can be said that it is further advantageous in further improving the reliability of the radiation imaging apparatus 1.
  • the flexible radiation detection panel 11 is supported by the plate portion 101 via the cushioning member 15 in the central portion, and it is possible to reduce the influence of the external impact from the plate portion 101. Has become.
  • the cushioning member 15 may be configured so as to be more easily expanded and contracted than the plate portion 101.
  • a reinforcing member 16 is provided at the edge of the radiation detection panel 11 so that the radiation detection panel can be prevented from bending.
  • the reinforcing member 16 may be configured to have higher rigidity than the cushioning member 15. According to the present embodiment, it is possible to reduce the weight of the radiation imaging apparatus 1 and improve the reliability with a relatively simple configuration.
  • the cushioning member 15 is a separate body from the plate portion 101, but may be integrally formed with the plate portion 101.
  • the cushioning member 15 may have a structure that is deformable by having a cavity inside, for example, a honeycomb structure.
  • FIG. 4A shows an enlarged top view of a radiation imaging apparatus 1 according to a modified example of this embodiment
  • FIG. 4B shows a sectional view thereof.
  • the first modified example is different from the structure of FIGS. 1A and 1B in that another reinforcing member 16 ′ is further provided.
  • the reinforcing member 16 is provided along the edge of the radiation detection panel 11, while the reinforcing member 16′ is an area in which the reinforcing member 16 is installed so as to cover at least the connection area R2. Is provided over a smaller area.
  • the reinforcing member 16 is installed to suppress the bending of the flexible radiation detection panel 11 due to its own weight, whereas the reinforcing member 16 ′ has a disconnection between the flexible cable 13 and the electrode 1111 and a connection failure. It is installed to suppress the occurrence of
  • the reinforcing members 16 and 16 ′ may be made of different materials, or may be made of the same material and different dimensions (width, length, thickness).
  • the reinforcing member 16 may be made of a relatively lightweight material such as PET, and the reinforcing member 16 ′ may be made of a material having higher rigidity than the reinforcing member 16 such as metal. As described above, it is possible to further reduce the weight by changing the installation mode of the reinforcing members 16 and 16' according to the purpose.
  • FIG. 5 shows a cross-sectional view of a radiation imaging apparatus 1 according to another example.
  • the plurality of electrodes 1111 may be provided on the surface of the substrate 111 on the plate portion 101 side (that is, on the side opposite to the example in FIG. 3B).
  • the electrical connection by the flexible cable 13 is realized on the surface of the substrate 111 on the plate portion 101 side, and the reinforcing member 16 is opposite to the surface of the substrate 111 on the plate portion 101 side. It may be installed on the side surface.
  • FIG. 6 is a cross-sectional view showing a configuration example of the radiation imaging apparatus 1′ according to the second embodiment.
  • the radiation imaging apparatus 1 ′ has a surface irradiation type structure, that is, in the radiation detection panel 11, the scintillator 112 is on the radiation incident side with respect to the substrate 111 (the scintillator 112 is the substrate 111). With respect to the plate portion 101 side).
  • the flexible cable 13 is electrically connected to the radiation detection panel 11 on the surface of the board 111 on the plate portion 101 side (radiation incidence side), and the reinforcing member 16 is installed on the opposite surface. ..
  • the other contents follow the contents of the first embodiment described above, and the description thereof is omitted here.
  • FIG. 7 shows a cross-sectional view of the radiation imaging apparatus 1'according to this embodiment.
  • the cushioning member 15 may be provided such that the outer edge thereof is located outside the imaging region R1 in a plan view, that is, the cushioning member 15 is the imaging region R1 indicated by a broken line in FIG. 7. It is good to extend to the outside of the end of.
  • the reinforcing member 16 is installed on the surface of the substrate 111 opposite to the plate portion 101 side.
  • the cushioning member 15 and the reinforcing member 16 partially overlap each other in a plan view.
  • the reinforcing member 16 is preferably located outside the imaging region R1 in a plan view, whereby the influence on the imaging region R1 due to the scattering of radiation from the reinforcing member 16 can be reduced, and the radiation image can be reduced. Can be advantageous for improving the quality of
  • FIG. 8 shows a sectional view of a radiation imaging apparatus 1'according to another example, similarly to FIG.
  • the plurality of electrodes 1111 may be provided on the surface of the substrate 111 on the side opposite to the plate portion 101 side (that is, on the side opposite to the example of FIG. 7 ).
  • the electrical connection by the flexible cable 13 is realized on the surface of the substrate 111 opposite to the plate portion 101 side, and the reinforcing member 16 is provided on the plate portion 101 side of the substrate 111. It may be installed on the surface.
  • FIG. 9 shows a configuration example of an imaging system used for a medical examination or the like as an application example of the contents of the embodiment.
  • Radiation 611 generated by the radiation source 610 passes through a chest 621 of a subject 620 such as a patient and enters a radiation detection device 630.
  • the radiation 611 that has entered the device 630 includes information on the inside of the body of the subject 620, and the device 630 acquires electrical information according to the radiation 611. This electrical information is converted into a digital signal and then subjected to predetermined signal processing, for example, by the processor 640.
  • a user such as a doctor can observe the radiation image corresponding to this electrical information on the display 650 in the control room, for example.
  • the user can transfer the radiation image or the data thereof to a remote place by a predetermined communication means 660, and can also observe the radiation image on the display 651 of the doctor room which is another place.
  • the user can also record this radiographic image or data thereof on a predetermined recording medium, for example, the processor 670 to record it on the film 671.
  • Reference numeral 1 radiation imaging device, 10: housing, 101: plate portion, 11: radiation detection panel, 15: buffer member, 16: reinforcing member.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention reduces the weight of a radiographic device and improves the reliability of the radiographic device through a comparatively simple configuration. The radiographic device according to the present invention comprises a flexible radiation-detecting panel formed by a plurality of radiation-detecting elements being arrayed on a substrate, and a casing for accommodating the radiation-detecting panel. The casing includes a plate part forming one surface. The flexible radiation-detecting panel is supported at a center part by the plate part of the casing with a buffer material interposed therebetween. A reinforcing member for suppressing flexing of the radiation-detecting panel is provided to an edge part positioned outward from the center part.

Description

放射線撮像装置Radiation imaging device
 本発明は、放射線撮像装置に関する。 The present invention relates to a radiation imaging device.
 放射線撮像装置は、基板上に複数の放射線検出素子が配列された放射線検出パネルを備えており、放射線検出パネルのなかには、軽量化等を目的として、可撓性を有するように構成されたものがある(特許文献1参照)。一方、このような放射線検出パネルの撓みは、信号線や電源線の断線等、装置の信頼性の低下の原因となる場合があった。 The radiation imaging apparatus includes a radiation detection panel in which a plurality of radiation detection elements are arranged on a substrate, and some radiation detection panels configured to have flexibility for the purpose of weight reduction and the like. There is (see Patent Document 1). On the other hand, such bending of the radiation detection panel may cause a decrease in the reliability of the device such as disconnection of signal lines and power lines.
特開2018-159611号公報JP, 2008-159611, A 特開2014-132703号公報JP, 2014-132703, A
 ところで、放射線撮像装置の信頼性の向上を目的として該装置の筐体内に緩衝部材を設け、それにより外部衝撃に起因する放射線検出パネルへの影響を低減することが考えられる(特許文献2参照)。上記可撓性の放射線検出パネルを備える放射線撮像装置においては、このような緩衝部材をどのように設置するか、構造上の工夫が求められる。 By the way, for the purpose of improving the reliability of the radiation imaging apparatus, it is conceivable to provide a cushioning member in the housing of the apparatus to reduce the influence on the radiation detection panel due to an external impact (see Patent Document 2). .. In the radiation imaging apparatus including the flexible radiation detection panel, it is required to devise a structure how to install such a cushioning member.
 本発明は、放射線撮像装置の軽量化および信頼性の向上を比較的簡素な構成で実現することを例示的目的とする。 The present invention has an exemplary object to realize the weight reduction and the reliability improvement of the radiation imaging apparatus with a relatively simple configuration.
 本発明の一つの側面は放射線撮像装置にかかり、前記放射線撮像装置は、基板上に複数の放射線検出素子が配列されて成る可撓性の放射線検出パネルと、前記放射線検出パネルを収容するための筐体と、を備える放射線撮像装置であって、前記筐体は、一方面を形成する板部を含み、前記可撓性の前記放射線検出パネルは、その中央部において前記筐体の前記板部により緩衝部材を介して支持されており、前記中央部より外側の縁部には、前記放射線検出パネルの撓みを抑制するための補強部材が設けられていることを特徴とする。 One aspect of the present invention relates to a radiation imaging apparatus, wherein the radiation imaging apparatus includes a flexible radiation detection panel in which a plurality of radiation detection elements are arranged on a substrate, and the radiation detection panel. A radiation imaging apparatus comprising: a housing, wherein the housing includes a plate portion forming one surface, and the flexible radiation detection panel has a plate portion of the housing at a central portion thereof. Is supported via a cushioning member, and a reinforcing member for suppressing the bending of the radiation detection panel is provided at an edge portion outside the central portion.
 本発明によれば、放射線撮像装置の軽量化および信頼性の向上を比較的簡素な構成で実現可能となる。 According to the present invention, it is possible to reduce the weight of the radiation imaging apparatus and improve the reliability with a relatively simple configuration.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will be apparent from the following description with reference to the accompanying drawings. Note that, in the accompanying drawings, the same or similar configurations are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
放射線撮像装置の構成例を説明するための模式図。 放射線撮像装置の構成例を説明するための模式図。 放射線撮像装置の構成例を説明するためのブロック図。 放射線撮像装置の構成例を説明するための模式図。 放射線撮像装置の構成例を説明するための模式図。 放射線撮像装置の構成例を説明するための模式図。 放射線撮像装置の構成例を説明するための模式図。 放射線撮像装置の構成例を説明するための模式図。 放射線撮像装置の構成例を説明するための模式図。 放射線撮像装置の構成例を説明するための模式図。 放射線撮像装置の構成例を説明するための模式図。 放射線撮像システムの構成例を説明するための図。
The accompanying drawings are included in and constitute a part of the specification, illustrate the embodiments of the present invention, and together with the description, serve to explain the principles of the present invention.
The schematic diagram for demonstrating the structural example of a radiation imaging device. The schematic diagram for demonstrating the structural example of a radiation imaging device. The block diagram for explaining the example of composition of a radiation imaging device. The schematic diagram for demonstrating the structural example of a radiation imaging device. The schematic diagram for demonstrating the structural example of a radiation imaging device. The schematic diagram for demonstrating the structural example of a radiation imaging device. The schematic diagram for demonstrating the structural example of a radiation imaging device. The schematic diagram for demonstrating the structural example of a radiation imaging device. The schematic diagram for demonstrating the structural example of a radiation imaging device. The schematic diagram for demonstrating the structural example of a radiation imaging device. The schematic diagram for demonstrating the structural example of a radiation imaging device. The figure for explaining the example of composition of a radiation imaging system.
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものでない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The following embodiments do not limit the invention according to the claims. Although a plurality of features are described in the embodiment, not all of the plurality of features are essential to the invention, and the plurality of features may be arbitrarily combined. Further, in the accompanying drawings, the same or similar components are designated by the same reference numerals, and duplicated description will be omitted.
  (第1実施形態)
 図1Aは、第1実施形態に係る放射線撮像装置1の構成例を示す上面図を示す。図1Bは、図1A記載の線d1-d1における放射線撮像装置1の断面図を示す。放射線撮像装置1は、放射線検出パネル11、プリント基板12、フレキシブルケーブル13、バッテリ14、緩衝部材15、補強部材16、支持用板材17、及び、これらを収容する筐体10を備える。
(First embodiment)
FIG. 1A is a top view showing a configuration example of the radiation imaging apparatus 1 according to the first embodiment. FIG. 1B shows a cross-sectional view of the radiation imaging apparatus 1 taken along the line d1-d1 shown in FIG. 1A. The radiation imaging apparatus 1 includes a radiation detection panel 11, a printed circuit board 12, a flexible cable 13, a battery 14, a buffer member 15, a reinforcing member 16, a supporting plate member 17, and a housing 10 that houses these.
 筐体10は、第1板部101、第2板部102および側壁部103を含む。板部101は、放射線の入射側に位置して一方面を形成する天板である。板部102は、板部101に対向して他方面を形成する底板である。側壁部103は、板部101及び102を接続するように周設されており、本実施形態では、連結部103aにおいて上部と下部とに分離可能となっている。筐体10は、例えば1.0[mm]程度の厚さのCFRP(Carbon Fiber Reinforced Plastics)、合成樹脂等、比較的軽量かつ所望の剛性を満たす材料で構成されるとよく、塑性変形の生じ難い材料で構成されると更によい。 The housing 10 includes a first plate portion 101, a second plate portion 102, and a side wall portion 103. The plate portion 101 is a top plate that is located on the radiation incident side and forms one surface. The plate portion 102 is a bottom plate that faces the plate portion 101 and forms the other surface. The side wall portion 103 is circumferentially provided so as to connect the plate portions 101 and 102, and in this embodiment, it is separable into an upper portion and a lower portion at the connecting portion 103a. The casing 10 is preferably made of a material that is relatively lightweight and satisfies the desired rigidity, such as CFRP (Carbon Fiber Reinforced Plastics) with a thickness of about 1.0 [mm], and a synthetic resin, which causes plastic deformation. It is even better if it is made of a difficult material.
 放射線検出パネル11は、基板111、シンチレータ112、及び、シンチレータ保護膜113を含む。基板111は、例えばガラス、PET(ポリエチレンテレフタラート)等、比較的軽量の材料で構成され、また、可撓性を有するように比較的薄く、例えば0.1[mm]程度の厚さで構成される。詳細については後述とするが、基板111上には、複数の放射線検出素子(放射線検出素子D1とする。)およびそれらの信号を読み出すための複数のスイッチ素子(スイッチ素子T1とする。)が設けられる。本実施形態においては、放射線検出素子D1にはPIN型センサ等の光電変換素子が用いられ、スイッチ素子T1には薄膜トランジスタが用いられ、それらは、例えば0.05[mm]程度の厚さのアモルファスシリコン等で構成される。このような構造により、放射線検出パネル11は可撓性を有するよう構成されている。 The radiation detection panel 11 includes a substrate 111, a scintillator 112, and a scintillator protective film 113. The substrate 111 is made of a relatively lightweight material such as glass or PET (polyethylene terephthalate), and is relatively thin so as to have flexibility, and has a thickness of, for example, about 0.1 [mm]. To be done. Although details will be described later, a plurality of radiation detection elements (hereinafter referred to as radiation detection elements D1) and a plurality of switch elements (hereinafter referred to as switch elements T1) for reading signals from the radiation detection elements are provided on the substrate 111. To be In the present embodiment, a photoelectric conversion element such as a PIN sensor is used as the radiation detection element D1, and a thin film transistor is used as the switch element T1, which are amorphous with a thickness of about 0.05 [mm], for example. Composed of silicon, etc. With such a structure, the radiation detection panel 11 is configured to have flexibility.
 シンチレータ112は、上記複数の放射線検出素子D1を覆うように基板111上に設けられる。シンチレータ112には、タリウム添加ヨウ化セシウム、テルビウム添加酸硫化ダドリニウム等、放射線を光に変換可能な公知の蛍光体材料が用いられればよい。シンチレータ保護膜113は、シンチレータ112を封止するように設けられ、シンチレータ112の潮解を防止可能とする。シンチレータ保護膜113には、防湿性を有する材料、例えばアルミニウム等の金属が用いられればよい。 The scintillator 112 is provided on the substrate 111 so as to cover the plurality of radiation detection elements D1. For the scintillator 112, a known phosphor material capable of converting radiation into light, such as thallium-added cesium iodide and terbium-added dadolinium oxysulfide, may be used. The scintillator protective film 113 is provided so as to seal the scintillator 112, and can prevent deliquescent of the scintillator 112. For the scintillator protective film 113, a material having moisture resistance, for example, a metal such as aluminum may be used.
 プリント基板12は、1以上の電子部品が実装されたリジッド基板である。詳細については後述とするが、プリント基板12は、放射線検出パネル11を駆動制御する制御部として機能し、また、放射線検出パネル11から受け取った信号群に基づいて画像データを生成可能な処理部としても機能する。フレキシブルケーブル13は、信号線および電源線を含む配線部であり、放射線検出パネル11とプリント基板12とを電気接続する。付随的にフレキシブルケーブル13には半導体IC(Integrated Circuit)等の電子部品131が配置される。バッテリ14は、放射線撮像装置1が備える各要素を駆動するための電力源であり、交換可能または充電可能に構成されうる。 The printed board 12 is a rigid board on which one or more electronic components are mounted. Although details will be described later, the printed circuit board 12 functions as a control unit that drives and controls the radiation detection panel 11, and also as a processing unit that can generate image data based on a signal group received from the radiation detection panel 11. Also works. The flexible cable 13 is a wiring portion including a signal line and a power supply line, and electrically connects the radiation detection panel 11 and the printed circuit board 12. Additionally, an electronic component 131 such as a semiconductor IC (Integrated Circuit) is arranged on the flexible cable 13. The battery 14 is a power source for driving each element included in the radiation imaging apparatus 1, and can be configured to be replaceable or rechargeable.
 詳細については後述とするが、緩衝部材15は、筐体10内の所定位置に設置され、筐体10に加わりうる外部衝撃による筐体10内の要素への影響を低減ないし緩和する。緩衝部材15は、比較的軽量な材料で構成され、また、筐体10外の温度による筐体10内への影響を低減可能となるように、断熱性を更に有しているとよい。緩衝部材15は、例えば2.0[mm]程度の厚さの発砲ポリエチレン、シリコン樹脂等で構成される。 Although details will be described later, the cushioning member 15 is installed at a predetermined position in the housing 10 to reduce or reduce the influence of external shock that can be applied to the housing 10 on the elements inside the housing 10. The cushioning member 15 is preferably made of a relatively lightweight material, and further has a heat insulating property so that the influence of the temperature outside the housing 10 on the inside of the housing 10 can be reduced. The cushioning member 15 is made of, for example, expanded polyethylene, silicone resin or the like having a thickness of about 2.0 [mm].
 また、詳細については後述とするが、補強部材16は、上記可撓性の放射線検出パネル11の姿勢を維持可能となるように、該パネル11の縁部に設けられる。補強部材16は、比較的高い剛性の材料で構成され、例えば0.5[mm]程度の厚さの金属板、CFRP等で構成される。 Further, as will be described later in detail, the reinforcing member 16 is provided at the edge of the flexible radiation detection panel 11 so that the posture of the radiation detection panel 11 can be maintained. The reinforcing member 16 is made of a material having a relatively high rigidity, for example, a metal plate having a thickness of about 0.5 [mm], CFRP, or the like.
 支持用板材17は、筐体10の側壁部103に跨設される。本実施形態では、連結部103aにリブが設けられ、板材17は、このリブに対して、例えば締結、接着等により固定される。また、板材17は、板部102から1以上の支柱191で支持され固定される。板材17には、放射線撮像装置1の幾つかの要素が、締結、接着等により支持され、これにより筐体10に対して間接的に固定される。板材17には、モリブデン、ステンレス等の金属の板材が用いられ、これにより、装置1の要素間での放射ノイズの影響を低減可能とし、また、不測の放射線の散乱による影響を抑制可能とする。 The supporting plate material 17 is laid across the side wall portion 103 of the housing 10. In the present embodiment, the connecting portion 103a is provided with a rib, and the plate member 17 is fixed to the rib by, for example, fastening, bonding or the like. Further, the plate member 17 is supported and fixed from the plate portion 102 by one or more columns 191. Several elements of the radiation imaging apparatus 1 are supported on the plate member 17 by fastening, bonding, or the like, and thereby indirectly fixed to the housing 10. As the plate member 17, a plate member made of metal such as molybdenum or stainless steel is used, which makes it possible to reduce the influence of radiation noise between the elements of the device 1 and to suppress the influence of accidental radiation scattering. ..
 放射線撮像装置1は裏面照射型の構造であり、即ち、放射線検出パネル11は、基板111がシンチレータ112に対して放射線の入射側となるように(シンチレータ112が基板111に対して板部101とは反対側に位置するように)配置される。放射線検出パネル11は、筐体10の板部101と板材17との間に位置し、また、中央部において板部101により緩衝部材15を介して支持される。本実施形態においては、放射線検出パネル11を直接的に支持する要素は緩衝部材15のみとなっているが、付随的に、放射線検出パネル11を補助的に支持する他の要素が更に加えられてもよい。補強部材16は、放射線検出パネル11の縁部に設けられる。 The radiation imaging apparatus 1 has a back-illuminated structure, that is, in the radiation detection panel 11, the substrate 111 is on the radiation incident side with respect to the scintillator 112 (the scintillator 112 and the plate portion 101 with respect to the substrate 111). Are placed so that they are on the opposite side). The radiation detection panel 11 is located between the plate portion 101 and the plate material 17 of the housing 10, and is supported by the plate portion 101 via the cushioning member 15 at the central portion. In the present embodiment, the cushioning member 15 is the only element that directly supports the radiation detection panel 11, but other elements that additionally support the radiation detection panel 11 are additionally added. Good. The reinforcing member 16 is provided at the edge of the radiation detection panel 11.
 プリント基板12は、板材17の下面側に固定される。板材17には開口OP1が設けられており、フレキシブルケーブル13は、この開口OP1を挿通して配置され、板材17に対して互いに反対側に位置する放射線検出パネル11とプリント基板12とを電気接続する。本実施形態では、板材17は、モリブデン、ステンレス等の金属で構成されており、それにより、放射線検出パネル11及びプリント基板12間の放射ノイズの影響が低減されうる。 The printed circuit board 12 is fixed to the lower surface side of the plate material 17. An opening OP1 is provided in the plate member 17, and the flexible cable 13 is arranged so as to pass through the opening OP1 and electrically connects the radiation detection panel 11 and the printed circuit board 12 located on the opposite sides of the plate member 17. To do. In the present embodiment, the plate member 17 is made of a metal such as molybdenum or stainless steel, so that the influence of radiation noise between the radiation detection panel 11 and the printed circuit board 12 can be reduced.
 また、バッテリ14は、筐体10の板部102と板材17との間に固定され、不図示のケーブルを介してプリント基板12に電力を供給可能とする。 Further, the battery 14 is fixed between the plate portion 102 of the housing 10 and the plate material 17, and can supply electric power to the printed circuit board 12 via a cable (not shown).
 上述の構造により、放射線撮像装置1は、所望の強度を維持しながら比較的軽量に構成され、医師等のユーザにより容易に持運び可能となっている。 With the above structure, the radiation imaging apparatus 1 is configured to be relatively lightweight while maintaining desired strength, and can be easily carried by a user such as a doctor.
 図2は、放射線撮像装置1のシステム構成を示すブロック図である。他の観点において、放射線撮像装置1は、図1A~図1Bを参照しながら述べた各要素により、複数のセンサ部S1、駆動部U1、読出部U2、制御部U3および電力供給部U4を備える、とも云える。個々のセンサ部S1は、放射線検出素子D1およびスイッチ素子T1を含む。複数のセンサ部S1は、放射線検出パネル11の撮像領域(有効画素領域)R1において行列状に配列される。センサ部S1に入射した放射線は、シンチレータ112(図1A~図1B参照)により光に変換された後、放射線検出素子D1である光電変換素子により光電変換される。 FIG. 2 is a block diagram showing the system configuration of the radiation imaging apparatus 1. From another point of view, the radiation imaging apparatus 1 includes a plurality of sensor units S1, a driving unit U1, a reading unit U2, a control unit U3, and a power supply unit U4 according to each element described with reference to FIGS. 1A and 1B. Can also be said. Each sensor unit S1 includes a radiation detection element D1 and a switch element T1. The plurality of sensor units S1 are arranged in a matrix in the imaging region (effective pixel region) R1 of the radiation detection panel 11. The radiation incident on the sensor unit S1 is converted into light by the scintillator 112 (see FIGS. 1A to 1B), and then photoelectrically converted by the photoelectric conversion element which is the radiation detection element D1.
 駆動部U1は、信号線L1を介して複数のセンサ部S1を行(又は列)単位で駆動可能であり、ここではスイッチ素子T1を導通状態または非導通状態に制御可能である。上記光電変換により得られる電気信号は、スイッチ素子T1により画素信号として出力される。読出部U2は、信号線L2を介して複数のセンサ部S1から列(又は行)単位で画素信号を読出し可能であり、上記駆動されたセンサ部S1の個々から画素信号を読み出すと共に該画素信号に対して付随的に所定の信号処理を行う。尚、各センサ部S1には電源線L3を介して所定のバイアスが加えられる。制御部U3は、駆動部U1及び読出部U2の同期制御を行い、読出部U2により複数のセンサ部S1から読み出された画素信号に基づいて画像データを生成する。このようにして生成される画像データは、外部の画像表示部(例えば液晶ディスプレイ等)に出力され、放射線画像として表示される。電力供給部U4は、バッテリ14の電力に基づいて、各ユニットに対応の電圧を生成して供給する。 The drive unit U1 can drive a plurality of sensor units S1 in units of rows (or columns) via the signal line L1, and here, the switch element T1 can be controlled to be in a conductive state or a non-conductive state. The electrical signal obtained by the photoelectric conversion is output as a pixel signal by the switch element T1. The readout unit U2 can read out pixel signals from the plurality of sensor units S1 in units of columns (or rows) via the signal line L2. The readout unit U2 reads out the pixel signals from each of the driven sensor units S1 and outputs the pixel signals. A predetermined signal processing is incidentally performed on the. A predetermined bias is applied to each sensor unit S1 via the power supply line L3. The control unit U3 performs synchronous control of the driving unit U1 and the reading unit U2, and generates image data based on the pixel signals read by the reading unit U2 from the plurality of sensor units S1. The image data thus generated is output to an external image display unit (for example, a liquid crystal display or the like) and displayed as a radiation image. The power supply unit U4 generates and supplies a voltage corresponding to each unit based on the power of the battery 14.
 駆動部U1、読出部U2、制御部U3および電力供給部U4は、プリント基板12に設けられる。駆動部U1及び/又は読出部U2の機能の一部は、電子部品131に設けられてもよいし、放射線検出パネル11に設けられてもよい。 The drive unit U1, the reading unit U2, the control unit U3, and the power supply unit U4 are provided on the printed circuit board 12. Part of the functions of the driving unit U1 and/or the reading unit U2 may be provided in the electronic component 131 or the radiation detection panel 11.
 図3Aは、図1A記載の領域Kの拡大模式図である。図3Bは、図3A記載の線d2-d2における放射線撮像装置1の断面図である。前述のとおり、放射線検出パネル11は、筐体10の板部101と板材17との間に位置し、また、中央部において板部101により緩衝部材15を介して支持される。緩衝部材15は、放射線検出パネル11および板部101のそれぞれに対して、所定の接着部材により接着され固定される。付随的に、放射線検出パネル11と緩衝部材15との間に導電性のシート(例えば接地された金属シート)を介在させて、放射線検出パネル11に対する静電気による影響の抑制を図ることも可能である。 FIG. 3A is an enlarged schematic view of the area K described in FIG. 1A. FIG. 3B is a cross-sectional view of the radiation imaging apparatus 1 taken along the line d2-d2 shown in FIG. 3A. As described above, the radiation detection panel 11 is located between the plate portion 101 and the plate material 17 of the housing 10, and is supported by the plate portion 101 via the cushioning member 15 at the central portion. The buffer member 15 is adhered and fixed to each of the radiation detection panel 11 and the plate portion 101 by a predetermined adhesive member. Incidentally, it is possible to suppress the influence of static electricity on the radiation detection panel 11 by interposing a conductive sheet (for example, a grounded metal sheet) between the radiation detection panel 11 and the buffer member 15. ..
 平面視において(放射線の入射方向で見た場合)、緩衝部材15は、その外縁が撮像領域R1よりも外側に位置するように設けられるとよい。即ち、緩衝部材15は、図3Bに破線で示される撮像領域R1の端よりも外側まで延設されているとよい。図2を参照しながら述べたセンサ部S1の視点では、複数のセンサ部S1の全部は平面視において緩衝部材15の外縁より内側に位置しているとよい、と云える。このような構造によれば、撮像領域R1の全部を略水平状態に維持可能となり、例えば、上述の画像データに基づく放射線画像の歪み等を抑制し、放射線画像の品質を向上可能となる。 In plan view (when viewed in the radiation incident direction), the cushioning member 15 may be provided so that its outer edge is located outside the imaging region R1. That is, the cushioning member 15 may be extended to the outside of the end of the imaging region R1 shown by the broken line in FIG. 3B. From the viewpoint of the sensor unit S1 described with reference to FIG. 2, it can be said that all of the plurality of sensor units S1 are preferably located inside the outer edge of the cushioning member 15 in plan view. With such a structure, the entire imaging region R1 can be maintained in a substantially horizontal state, and, for example, distortion of the radiation image based on the image data described above can be suppressed, and the quality of the radiation image can be improved.
 また、前述のとおり、補強部材16は放射線検出パネル11の縁部に設けられる。この縁部は、緩衝部材15が固定された上記中央部より外側の部分に対応する。本実施形態においては、補強部材16は、放射線検出パネル11の基板111の板部101側の面(第1面)に、所定の接着部材により接着され固定される。放射線検出パネル11の実質的に全部を略水平状態に維持可能とするため、補強部材16は緩衝部材15と隣接しているとよい。 Further, as described above, the reinforcing member 16 is provided at the edge of the radiation detection panel 11. The edge portion corresponds to a portion outside the central portion where the cushioning member 15 is fixed. In the present embodiment, the reinforcing member 16 is bonded and fixed to the surface (first surface) of the radiation detection panel 11 on the plate portion 101 side of the substrate 111 by a predetermined adhesive member. The reinforcing member 16 may be adjacent to the buffer member 15 so that substantially all of the radiation detection panel 11 can be maintained in a substantially horizontal state.
 本実施形態では、補強部材16は、平面視において略矩形形状の放射線検出パネル11の個々の辺部に個別に設けられるものとするが、補強部材16の設置態様はこれに限られない。例えば、複数の辺部にそれぞれ設けられる複数の補強部材16の一部/全部は一体に設けられてもよく、一例として、放射線検出パネル11の周縁部に枠状の補強部材16が一体に設けられてもよい。他の実施形態として、或る一辺部に沿って複数の補強部材16が互いに離間して設置されてもよい。 In the present embodiment, the reinforcing member 16 is provided individually on each side of the radiation detection panel 11 having a substantially rectangular shape in a plan view, but the installation mode of the reinforcing member 16 is not limited to this. For example, some/all of the plurality of reinforcing members 16 respectively provided on the plurality of sides may be integrally provided, and as an example, the frame-shaped reinforcing member 16 is integrally provided at the peripheral edge of the radiation detection panel 11. You may be asked. As another embodiment, a plurality of reinforcing members 16 may be installed apart from each other along a certain side portion.
 放射線検出パネル11の基板111は、板部101側の面とは反対側の面(第2面)の縁部において、複数の電極1111を含む。個々の電極1111は、対応の信号線L2を介してセンサ部S1に電気接続される。ここでは不図示とするが、他の縁部についても同様であり、即ち、該他の縁部の電極1111は、例えば対応の信号線L1を介してセンサ部S1に電気接続される。個々の電極1111は、ACF(Anisotropic Conductive Film(異方性導電フィルム))を用いた接続領域R2での熱圧着により、フレキシブルケーブル13に電気接続される。 The substrate 111 of the radiation detection panel 11 includes a plurality of electrodes 1111 at the edge of the surface (second surface) opposite to the surface on the plate portion 101 side. Each electrode 1111 is electrically connected to the sensor unit S1 via the corresponding signal line L2. Although not shown here, the same applies to other edge portions, that is, the electrodes 1111 at the other edge portions are electrically connected to the sensor portion S1 via, for example, the corresponding signal line L1. The individual electrodes 1111 are electrically connected to the flexible cable 13 by thermocompression bonding in the connection region R2 using an ACF (Anisotropic Conductive Film).
 補強部材16は、平面視において、上記接続領域R2と重なるように設けられる。このような構造によれば、可撓性の放射線検出パネル11の撓みが抑制され、フレキシブルケーブル13および電極1111間の断線、接続不良等の発生を抑制可能となり、それにより、放射線撮像装置1の信頼性を向上可能となる。 The reinforcing member 16 is provided so as to overlap the connection region R2 in a plan view. According to such a structure, the flexible radiation detection panel 11 is prevented from being bent, and it is possible to prevent the disconnection between the flexible cable 13 and the electrode 1111 and the occurrence of connection failure. The reliability can be improved.
 また、本実施形態においては、筐体10の板部101と補強部材16との間には空隙が形成されており、板部101から接続領域R2への衝撃や加重等の影響が実質的にない。そのため、放射線撮像装置1の信頼性の一層の向上に有利と云える。 Further, in the present embodiment, a gap is formed between the plate portion 101 of the housing 10 and the reinforcing member 16, and the influence of the impact or the load from the plate portion 101 to the connection region R2 is substantially caused. Absent. Therefore, it can be said that it is advantageous for further improving the reliability of the radiation imaging apparatus 1.
 また、図3Bから分かるように、筐体10に衝撃が加わった際に放射線検出パネル11の基板111が側壁部103に干渉することのないように、補強部材16は基板111の端よりも側壁部103側まで延在している。そのため、放射線撮像装置1の信頼性の一層の向上に更に有利と云える。 Further, as can be seen from FIG. 3B, the reinforcing member 16 is provided on the side wall rather than the end of the substrate 111 so that the substrate 111 of the radiation detection panel 11 does not interfere with the side wall portion 103 when an impact is applied to the housing 10. It extends to the part 103 side. Therefore, it can be said that it is further advantageous in further improving the reliability of the radiation imaging apparatus 1.
 以上、本実施形態によれば、可撓性の放射線検出パネル11は、中央部において板部101により緩衝部材15を介して支持されており、板部101からの外部衝撃による影響を低減可能となっている。緩衝部材15は、板部101より伸縮しやすく構成されていればよい。また、放射線検出パネル11の縁部には補強部材16が設けられており、放射線検出パネルの撓みを抑制可能となっている。補強部材16は、緩衝部材15よりも高い剛性を有するように構成されていればよい。本実施形態によれば、放射線撮像装置1の軽量化および信頼性の向上を比較的簡素な構成で実現可能となる。 As described above, according to the present embodiment, the flexible radiation detection panel 11 is supported by the plate portion 101 via the cushioning member 15 in the central portion, and it is possible to reduce the influence of the external impact from the plate portion 101. Has become. The cushioning member 15 may be configured so as to be more easily expanded and contracted than the plate portion 101. Further, a reinforcing member 16 is provided at the edge of the radiation detection panel 11 so that the radiation detection panel can be prevented from bending. The reinforcing member 16 may be configured to have higher rigidity than the cushioning member 15. According to the present embodiment, it is possible to reduce the weight of the radiation imaging apparatus 1 and improve the reliability with a relatively simple configuration.
 また、本実施形態では、緩衝部材15は、板部101とは別体としたが、板部101に対して一体成形されていてもよい。一例として、緩衝部材15は、内部に空洞を有することにより変形可能な構造、例えばハニカム構造、であってもよい。 Further, in the present embodiment, the cushioning member 15 is a separate body from the plate portion 101, but may be integrally formed with the plate portion 101. As an example, the cushioning member 15 may have a structure that is deformable by having a cavity inside, for example, a honeycomb structure.
 図4Aは、本実施形態の変形例に係る放射線撮像装置1の上面拡大図を示し、図4Bは、その断面図を示す。第1変形例は、他の補強部材16’を更に設ける、という点で上記図1A~図1Bの構造と異なる。平面視において、補強部材16は、放射線検出パネル11の縁部に沿って設けられ、これに対して、補強部材16’は、少なくとも接続領域R2を覆うように、補強部材16が設置された領域よりも小さい領域に亘って設けられる。即ち、補強部材16は、可撓性の放射線検出パネル11の自重による撓みを抑制するのに設置されるのに対して、補強部材16’は、フレキシブルケーブル13および電極1111間の断線、接続不良等の発生を抑制するのに設置される。 4A shows an enlarged top view of a radiation imaging apparatus 1 according to a modified example of this embodiment, and FIG. 4B shows a sectional view thereof. The first modified example is different from the structure of FIGS. 1A and 1B in that another reinforcing member 16 ′ is further provided. In plan view, the reinforcing member 16 is provided along the edge of the radiation detection panel 11, while the reinforcing member 16′ is an area in which the reinforcing member 16 is installed so as to cover at least the connection area R2. Is provided over a smaller area. That is, the reinforcing member 16 is installed to suppress the bending of the flexible radiation detection panel 11 due to its own weight, whereas the reinforcing member 16 ′ has a disconnection between the flexible cable 13 and the electrode 1111 and a connection failure. It is installed to suppress the occurrence of
 補強部材16及び16’は、互いに異なる材料で構成されてもよいし、同一の材料で且つ互いに異なる寸法(幅、長さ、厚さ)で構成されてもよい。例えば、補強部材16は、PET等の比較的軽量の材料で構成され、補強部材16’は、金属等、補強部材16よりも高い剛性の材料で構成されてもよい。このように、補強部材16及び16’の設置態様を目的に応じて変えることにより、更なる軽量化を図ることも可能となる。 The reinforcing members 16 and 16 ′ may be made of different materials, or may be made of the same material and different dimensions (width, length, thickness). For example, the reinforcing member 16 may be made of a relatively lightweight material such as PET, and the reinforcing member 16 ′ may be made of a material having higher rigidity than the reinforcing member 16 such as metal. As described above, it is possible to further reduce the weight by changing the installation mode of the reinforcing members 16 and 16' according to the purpose.
 上記実施形態の内容は、放射線検出パネル11の構造に応じて変更されてもよい。図5は、他の例に係る放射線撮像装置1の断面図を示す。複数の電極1111は、基板111の板部101側の面(即ち、図3Bの例とは反対側)に設けられていてもよい。この場合、図5から分かるように、フレキシブルケーブル13による電気接続は、基板111の板部101側の面で実現され、また、補強部材16は、基板111の板部101側の面とは反対側の面に設置されればよい。 The contents of the above embodiment may be changed depending on the structure of the radiation detection panel 11. FIG. 5 shows a cross-sectional view of a radiation imaging apparatus 1 according to another example. The plurality of electrodes 1111 may be provided on the surface of the substrate 111 on the plate portion 101 side (that is, on the side opposite to the example in FIG. 3B). In this case, as can be seen from FIG. 5, the electrical connection by the flexible cable 13 is realized on the surface of the substrate 111 on the plate portion 101 side, and the reinforcing member 16 is opposite to the surface of the substrate 111 on the plate portion 101 side. It may be installed on the side surface.
  (第2実施形態)
 図6は、第2実施形態に係る放射線撮像装置1’の構成例を示す断面図である。本実施形態においては、放射線撮像装置1’は表面照射型の構造であり、即ち、放射線検出パネル11は、シンチレータ112が基板111に対して放射線の入射側となるように(シンチレータ112が基板111に対して板部101側に位置するように)配置される。これに伴い、フレキシブルケーブル13は、基板111の板部101側(放射線の入射側)の面において放射線検出パネル11と電気接続され、また、補強部材16は、その反対側の面に設置される。他の内容については前述の第1実施形態の内容を踏襲するものとし、ここでの説明は省略とする。
(Second embodiment)
FIG. 6 is a cross-sectional view showing a configuration example of the radiation imaging apparatus 1′ according to the second embodiment. In the present embodiment, the radiation imaging apparatus 1 ′ has a surface irradiation type structure, that is, in the radiation detection panel 11, the scintillator 112 is on the radiation incident side with respect to the substrate 111 (the scintillator 112 is the substrate 111). With respect to the plate portion 101 side). Along with this, the flexible cable 13 is electrically connected to the radiation detection panel 11 on the surface of the board 111 on the plate portion 101 side (radiation incidence side), and the reinforcing member 16 is installed on the opposite surface. .. The other contents follow the contents of the first embodiment described above, and the description thereof is omitted here.
 図7は、本実施形態に係る放射線撮像装置1’の断面図を示す。第1実施形態同様、緩衝部材15は、平面視において、外縁が撮像領域R1よりも外側に位置するように設けられるとよく、即ち、緩衝部材15は、図7に破線で示される撮像領域R1の端よりも外側まで延設されているとよい。 FIG. 7 shows a cross-sectional view of the radiation imaging apparatus 1'according to this embodiment. Similar to the first embodiment, the cushioning member 15 may be provided such that the outer edge thereof is located outside the imaging region R1 in a plan view, that is, the cushioning member 15 is the imaging region R1 indicated by a broken line in FIG. 7. It is good to extend to the outside of the end of.
 上述のとおり、本実施形態では、補強部材16は、基板111の板部101側とは反対側の面に設置される。ここで、平面視において、緩衝部材15と補強部材16とは部分的に互いに重なっているとよい。これにより、可撓性の放射線検出パネル11の自重による撓みを抑制することに加え、補強部材16が設置されていることによる撓みをも適切に抑制することもできる。よって、本実施形態においても第1実施形態同様の効果が得られる。 As described above, in the present embodiment, the reinforcing member 16 is installed on the surface of the substrate 111 opposite to the plate portion 101 side. Here, it is preferable that the cushioning member 15 and the reinforcing member 16 partially overlap each other in a plan view. As a result, in addition to suppressing the flexure of the flexible radiation detection panel 11 due to its own weight, it is also possible to appropriately suppress the flexure due to the installation of the reinforcing member 16. Therefore, also in the present embodiment, the same effect as in the first embodiment can be obtained.
 また、補強部材16は、平面視において、撮像領域R1よりも外側に位置しているとよく、それにより、補強部材16からの放射線の散乱による撮像領域R1への影響を低減可能となり、放射線画像の品質の向上に有利となりうる。 In addition, the reinforcing member 16 is preferably located outside the imaging region R1 in a plan view, whereby the influence on the imaging region R1 due to the scattering of radiation from the reinforcing member 16 can be reduced, and the radiation image can be reduced. Can be advantageous for improving the quality of
 本実施形態の内容は、放射線検出パネル11の構造に応じて変更されてもよい。図8は、他の例に係る放射線撮像装置1’の断面図を、図5同様に示す。複数の電極1111は、基板111の板部101側とは反対側の面(即ち、図7の例とは反対側)に設けられていてもよい。この場合、図8から分かるように、フレキシブルケーブル13による電気接続は、基板111の板部101側とは反対側の面で実現され、また、補強部材16は、基板111の板部101側の面に設置されればよい。 The content of this embodiment may be changed according to the structure of the radiation detection panel 11. FIG. 8 shows a sectional view of a radiation imaging apparatus 1'according to another example, similarly to FIG. The plurality of electrodes 1111 may be provided on the surface of the substrate 111 on the side opposite to the plate portion 101 side (that is, on the side opposite to the example of FIG. 7 ). In this case, as can be seen from FIG. 8, the electrical connection by the flexible cable 13 is realized on the surface of the substrate 111 opposite to the plate portion 101 side, and the reinforcing member 16 is provided on the plate portion 101 side of the substrate 111. It may be installed on the surface.
 図9は、実施形態の内容の適用例として、医療検査等に用いられる撮像システムの構成例を示す。放射線源610が発生した放射線611は、患者等の被検者620の胸部621を透過し、放射線検出装置630に入射する。装置630に入射した放射線611には被検者620の体内の情報が含まれており、装置630は、放射線611に応じた電気的情報を取得する。この電気的情報は、デジタル信号に変換された後、例えばプロセッサ640によって所定の信号処理が為される。 FIG. 9 shows a configuration example of an imaging system used for a medical examination or the like as an application example of the contents of the embodiment. Radiation 611 generated by the radiation source 610 passes through a chest 621 of a subject 620 such as a patient and enters a radiation detection device 630. The radiation 611 that has entered the device 630 includes information on the inside of the body of the subject 620, and the device 630 acquires electrical information according to the radiation 611. This electrical information is converted into a digital signal and then subjected to predetermined signal processing, for example, by the processor 640.
 医師等のユーザは、この電気的情報に応じた放射線画像を、例えばコントロールルームのディスプレイ650で観察することができる。ユーザは、放射線画像又はそのデータを、所定の通信手段660により遠隔地へ転送することができ、この放射線画像を、他の場所であるドクタールームのディスプレイ651で観察することもできる。また、ユーザは、この放射線画像又はそのデータを所定の記録媒体に記録することもでき、例えば、プロセッサ670によってフィルム671に記録することもできる。 A user such as a doctor can observe the radiation image corresponding to this electrical information on the display 650 in the control room, for example. The user can transfer the radiation image or the data thereof to a remote place by a predetermined communication means 660, and can also observe the radiation image on the display 651 of the doctor room which is another place. The user can also record this radiographic image or data thereof on a predetermined recording medium, for example, the processor 670 to record it on the film 671.
 発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the following claims are attached to open the scope of the invention.
 本願は、2019年2月18日提出の日本国特許出願特願2019-026673を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 The present application claims priority based on Japanese Patent Application No. 2019-026673 filed on February 18, 2019, and the entire contents thereof are incorporated herein.
 1:放射線撮像装置、10:筐体、101:板部、11:放射線検出パネル、15:緩衝部材、16:補強部材。 Reference numeral 1: radiation imaging device, 10: housing, 101: plate portion, 11: radiation detection panel, 15: buffer member, 16: reinforcing member.

Claims (14)

  1.  基板上に複数の放射線検出素子が配列されて成る可撓性の放射線検出パネルと、前記放射線検出パネルを収容するための筐体と、を備える放射線撮像装置であって、
     前記筐体は、一方面を形成する板部を含み、
     前記可撓性の前記放射線検出パネルは、その中央部において前記筐体の前記板部により緩衝部材を介して支持されており、前記中央部より外側の縁部には、前記放射線検出パネルの撓みを抑制するための補強部材が設けられている
     ことを特徴とする放射線撮像装置。
    A radiation imaging apparatus comprising: a flexible radiation detection panel in which a plurality of radiation detection elements are arranged on a substrate; and a housing for housing the radiation detection panel,
    The housing includes a plate portion forming one surface,
    The flexible radiation detection panel is supported at its central portion by the plate portion of the housing via a cushioning member, and the radiation detection panel is bent at an edge portion outside the central portion. A radiation imaging apparatus, comprising: a reinforcing member for suppressing the radiation.
  2.  前記筐体の前記板部と前記補強部材との間には空隙が形成されている
     ことを特徴とする請求項1記載の放射線撮像装置。
    The radiation imaging apparatus according to claim 1, wherein a gap is formed between the plate portion of the housing and the reinforcing member.
  3.  前記放射線検出パネルは、前記基板における前記板部側の第1面とは反対側の第2面に、前記複数の放射線検出素子に電気接続された複数の電極を含み、
     前記補強部材は、前記第1面に設けられている
     ことを特徴とする請求項1または請求項2記載の放射線撮像装置。
    The radiation detection panel includes a plurality of electrodes electrically connected to the plurality of radiation detection elements on a second surface of the substrate opposite to the first surface on the plate portion side,
    The radiation imaging apparatus according to claim 1, wherein the reinforcing member is provided on the first surface.
  4.  前記放射線検出パネルは、前記基板における前記板部側の第1面に、前記複数の放射線検出素子に電気接続された複数の電極を含み、
     前記補強部材は、前記第1面とは反対側の第2面に設けられている
     ことを特徴とする請求項1または請求項2記載の放射線撮像装置。
    The radiation detection panel includes a plurality of electrodes electrically connected to the plurality of radiation detection elements on a first surface of the substrate on the plate portion side,
    The said reinforcement member is provided in the 2nd surface on the opposite side to the said 1st surface. The radiation imaging device of Claim 1 or Claim 2 characterized by the above-mentioned.
  5.  前記放射線の入射方向で見た場合に、前記緩衝部材と前記補強部材とは部分的に互いに重なっている
     ことを特徴とする請求項4記載の放射線撮像装置。
    The radiation imaging apparatus according to claim 4, wherein the buffer member and the reinforcing member partially overlap each other when viewed in the radiation incident direction.
  6.  前記板部を第1板部として、
     前記筐体は、
      前記第1板部と対向する第2板部と、
      前記第1板部及び前記第2板部を接続するように周設された側壁部と、
     を更に含んでおり、
     前記放射線撮像装置は、
      前記第1板部及び前記第2板部の間において前記側壁部に跨設された板材と、
      前記放射線検出パネルを駆動制御するための制御部であって前記板材に対して前記放射線検出パネルとは反対側に位置するように前記板材に固定された制御部と、
     を更に備える
     ことを特徴とする請求項1から請求項5の何れか1項記載の放射線撮像装置。
    The plate portion as a first plate portion,
    The housing is
    A second plate portion facing the first plate portion;
    A side wall portion provided so as to connect the first plate portion and the second plate portion,
    Further includes,
    The radiation imaging device,
    A plate member spanning the side wall portion between the first plate portion and the second plate portion,
    A control unit for driving and controlling the radiation detection panel, the control unit being fixed to the plate material so as to be located on the opposite side of the radiation detection panel with respect to the plate material,
    The radiation imaging apparatus according to any one of claims 1 to 5, further comprising:
  7.  前記放射線検出パネルと前記制御部とを接続する配線部を更に備え、
     前記板材には、前記配線部を挿通させる開口が設けられている
     ことを特徴とする請求項6記載の放射線撮像装置。
    Further comprising a wiring unit connecting the radiation detection panel and the control unit,
    The radiation imaging apparatus according to claim 6, wherein the plate member is provided with an opening through which the wiring portion is inserted.
  8.  前記緩衝部材は、前記板部より伸縮しやすく構成され且つ前記筐体の前記板部および前記放射線検出パネルのそれぞれに対して接着されている
     ことを特徴とする請求項1から請求項7の何れか1項記載の放射線撮像装置。
    The cushioning member is configured to expand and contract more easily than the plate portion, and is adhered to each of the plate portion of the housing and the radiation detection panel. The radiation imaging apparatus according to item 1.
  9.  前記緩衝部材は、前記板部より伸縮しやすく構成され且つ前記板部に対して一体成形されている
     ことを特徴とする請求項1から請求項7の何れか1項記載の放射線撮像装置。
    8. The radiation imaging apparatus according to claim 1, wherein the cushioning member is configured to be more easily expanded and contracted than the plate portion and is integrally formed with the plate portion.
  10.  前記放射線の入射方向で見た場合に、前記複数の放射線検出素子は、前記緩衝部材の外縁より内側に位置している
     ことを特徴とする請求項1から請求項9の何れか1項記載の放射線撮像装置。
    The plurality of radiation detection elements are located inside an outer edge of the buffer member when viewed in the radiation incident direction. 10. The any one of claims 1 to 9, wherein: Radiation imaging device.
  11.  前記放射線検出パネルは、前記基板上に前記複数の放射線検出素子を覆うように設けられたシンチレータを更に含み、
     前記シンチレータは、前記基板に対して前記筐体の前記板部とは反対側に位置する
     ことを特徴とする請求項1から請求項10の何れか1項記載の放射線撮像装置。
    The radiation detection panel further includes a scintillator provided on the substrate to cover the plurality of radiation detection elements,
    The radiation image pickup apparatus according to any one of claims 1 to 10, wherein the scintillator is located on the side of the housing opposite to the plate portion with respect to the substrate.
  12.  前記放射線検出パネルは、前記基板上に前記複数の放射線検出素子を覆うように設けられたシンチレータを更に含み、
     前記シンチレータは、前記基板に対して前記筐体の前記板部側に位置する
     ことを特徴とする請求項1から請求項10の何れか1項記載の放射線撮像装置。
    The radiation detection panel further includes a scintillator provided on the substrate to cover the plurality of radiation detection elements,
    The radiation image pickup apparatus according to any one of claims 1 to 10, wherein the scintillator is positioned on the plate portion side of the housing with respect to the substrate.
  13.  前記補強部材は前記緩衝部材よりも高い剛性を有するように構成されている
     ことを特徴とする請求項1から請求項12の何れか1項記載の放射線撮像装置。
    The radiation imaging apparatus according to claim 1, wherein the reinforcing member is configured to have higher rigidity than the cushioning member.
  14.  前記補強部材は、前記放射線検出パネルの前記縁部に複数設けられている
     ことを特徴とする請求項1から請求項13の何れか1項記載の放射線撮像装置。
    The radiation imaging apparatus according to any one of claims 1 to 13, wherein a plurality of the reinforcing members are provided at the edge portion of the radiation detection panel.
PCT/JP2019/051465 2019-02-18 2019-12-27 Radiographic device WO2020170613A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019026673A JP2020134274A (en) 2019-02-18 2019-02-18 Radiation imaging apparatus
JP2019-026673 2019-02-18

Publications (1)

Publication Number Publication Date
WO2020170613A1 true WO2020170613A1 (en) 2020-08-27

Family

ID=72144379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051465 WO2020170613A1 (en) 2019-02-18 2019-12-27 Radiographic device

Country Status (2)

Country Link
JP (1) JP2020134274A (en)
WO (1) WO2020170613A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007508A (en) 2019-07-09 2022-02-01 富士胶片株式会社 Radiation detector and radiographic imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098239A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Radiological image conversion panel
JP2012013682A (en) * 2010-05-31 2012-01-19 Fujifilm Corp Radiographic image photographing device
JP2012132703A (en) * 2010-12-20 2012-07-12 Fujifilm Corp Electronic cassette
JP2016180707A (en) * 2015-03-24 2016-10-13 キヤノン株式会社 Radiation imaging device and radiation imaging system
JP2017026327A (en) * 2015-07-15 2017-02-02 キヤノン株式会社 Radioactive ray detection device and radioactive ray imaging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098239A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Radiological image conversion panel
JP2012013682A (en) * 2010-05-31 2012-01-19 Fujifilm Corp Radiographic image photographing device
JP2012132703A (en) * 2010-12-20 2012-07-12 Fujifilm Corp Electronic cassette
JP2016180707A (en) * 2015-03-24 2016-10-13 キヤノン株式会社 Radiation imaging device and radiation imaging system
JP2017026327A (en) * 2015-07-15 2017-02-02 キヤノン株式会社 Radioactive ray detection device and radioactive ray imaging system

Also Published As

Publication number Publication date
JP2020134274A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
US8653465B2 (en) Radiation detection apparatus and radiation imaging system
JP6633864B2 (en) Radiation imaging apparatus and radiation imaging system
US10061042B2 (en) Radiation imaging apparatus and radiation imaging system
JP6609105B2 (en) Radiation imaging apparatus and radiation imaging system
US10838082B2 (en) Radiation detector and radiographic imaging apparatus
JP2009133837A (en) Manufacturing method of radiation detecting apparatus, and radiation detecting apparatus, and radiation imaging system
TW201944964A (en) Radiation detector, radiographic imaging device and manufacturing method
JP2014025846A (en) Radiation image photographing device
JP6554767B2 (en) Radiation imaging equipment
US10481280B2 (en) Radiation detecting apparatus, radiation detecting system, and manufacturing method for radiation detecting apparatus
JP4464260B2 (en) Semiconductor device, radiation imaging apparatus, and manufacturing method thereof
CN106489205A (en) Electrooptical device with flexible substrate
JP5536527B2 (en) Radiation image capturing apparatus and radiation image capturing system
JP2010145349A (en) Radiation detection apparatus
WO2020170613A1 (en) Radiographic device
US6483567B1 (en) Image processing device
JP5421849B2 (en) Radiation image capturing apparatus and radiation image capturing system
JP5403848B2 (en) Radiation detection apparatus and radiation detection system
JP2005283262A (en) Two-dimensional image detector
CN111199694B (en) Electronic device
JP2007184407A (en) Electromagnetic wave detection device and radiation imaging system
JP6590868B2 (en) Radiation imaging apparatus and radiation imaging system
US20190343468A1 (en) Radiation imaging apparatus and imaging system
JP4819344B2 (en) Semiconductor device, radiation imaging apparatus, and manufacturing method thereof
JP5197468B2 (en) Radiation detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916029

Country of ref document: EP

Kind code of ref document: A1