WO2020166224A1 - Method for producing scintillator plate, scintillator plate, radiation detection device and radiation detection system - Google Patents

Method for producing scintillator plate, scintillator plate, radiation detection device and radiation detection system Download PDF

Info

Publication number
WO2020166224A1
WO2020166224A1 PCT/JP2019/051466 JP2019051466W WO2020166224A1 WO 2020166224 A1 WO2020166224 A1 WO 2020166224A1 JP 2019051466 W JP2019051466 W JP 2019051466W WO 2020166224 A1 WO2020166224 A1 WO 2020166224A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
layer
resin
resin layer
groups
Prior art date
Application number
PCT/JP2019/051466
Other languages
French (fr)
Japanese (ja)
Inventor
慶人 佐々木
小林 玉樹
知昭 市村
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2020166224A1 publication Critical patent/WO2020166224A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the present invention relates to a scintillator plate manufacturing method, a scintillator plate, a radiation detection device, and a radiation detection system.
  • Patent Document 1 discloses forming a plurality of convex portions on a substrate and forming a scintillator on the convex portions.
  • Patent Document 1 since the scintillator is separately arranged on the convex portion, generation of stress due to a temperature cycle during use of the radiation detection apparatus is suppressed, and peeling of the scintillator from the underlayer is suppressed. sell.
  • the material for the convex portion is formed on the substrate by coating and drying and the convex portion is formed by using photolithography, the manufacturing process becomes complicated and the manufacturing cost increases.
  • the present invention aims to provide an advantageous technique for maintaining the adhesion of the scintillator to the substrate.
  • a method for manufacturing a scintillator plate is a method for manufacturing a scintillator plate in which a scintillator layer is disposed on a resin layer, for forming a resin layer on a substrate. And a second step of forming a scintillator layer on the resin material layer by using a vapor deposition method, in the second step, together with the formation of the scintillator forming the scintillator layer.
  • the resin layer is formed by the progress of the curing reaction of the resin material layer, and the scintillator layer includes a plurality of scintillator groups each composed of one or more columnar crystals of the scintillator, and scintillator groups adjacent to each other among the plurality of scintillator groups.
  • the resin layer includes a first portion that is in contact with the plurality of scintillator groups and a second portion that is disposed below the gap and is not in contact with the plurality of scintillator groups.
  • the film thickness of the part is thicker than the film thickness of the second part.
  • the figure which shows the modification of the sectional view of FIG. The figure which shows the modification of the sectional view of FIG.
  • the figure which shows the modification of the sectional view of FIG. The figure which shows the modification of the sectional view of FIG.
  • the figure which shows the modification of the sectional view of FIG. The figure which shows the shape of the scintillator layer of the radiation detection apparatus of FIG.
  • the figure which shows the shape of the resin layer of the radiation detection apparatus of FIG. The figure which shows the formation conditions of the resin layer of the radiation detection apparatus of FIG. 1, and a comparative example.
  • the figure which shows the evaluation result of the radiation detection apparatus of FIG. 1, and a comparative example The figure explaining the structural example of the radiation imaging system using the radiation detection apparatus which concerns on this invention.
  • ⁇ -rays, ⁇ -rays, ⁇ -rays, etc. which are beams produced by particles (including photons) emitted by radiation decay, a beam having an energy of about the same or more, for example, X-rays. It can also include rays, particle rays, cosmic rays, and so on.
  • FIG. 1A is a plan view of an incident surface for irradiating the radiation of the radiation detection apparatus 100 according to the exemplary embodiment of the present invention
  • FIG. 1B is a cross-sectional view taken along a line A-A′ in FIG. 1A.
  • the radiation detection apparatus 100 includes a sensor panel 110 for detecting light, and a wavelength conversion unit 120 for converting incident radiation into light that can be detected by the sensor panel.
  • the radiation detection apparatus 100 also includes a pad 131 and a connecting portion 132.
  • the sensor panel 110 includes a substrate 111, a photoelectric conversion unit 112 for detecting the light converted from the radiation by the wavelength conversion unit 120, and a resin layer 113.
  • the wavelength conversion unit 120 includes a scintillator layer 121 that converts radiation into light that can be detected by the photoelectric conversion unit 112, a reflective layer 123, and a bonding layer 122 that bonds the scintillator layer 121 and the reflective layer 123. ..
  • the substrate 111 may be, for example, a glass substrate or an insulating heat-resistant resin substrate.
  • a semiconductor film such as silicon may be formed on a substrate 111 which is a glass substrate or a heat resistant resin substrate, and the photoelectric conversion section 112 may be formed on this semiconductor film.
  • the substrate 111 may be a semiconductor substrate such as silicon. In this case, the photoelectric conversion section 112 may be directly formed on the substrate 111.
  • the photoelectric conversion unit 112 includes a plurality of photoelectric conversion elements for detecting light converted from radiation by the scintillator forming the scintillator layer 121 of the wavelength conversion unit 120, and switches for reading signals from the plurality of photoelectric conversion elements. Elements and are arranged.
  • the photoelectric conversion unit 112 has a plurality of photoelectric conversion elements arranged in a matrix.
  • the photoelectric conversion element converts the light converted by the scintillator layer 121 into an electric charge, and an electric signal corresponding to the electric charge generated by the photoelectric conversion element is read out through the switch element.
  • a radiation image is generated based on the electric signal output from each photoelectric conversion element of the photoelectric conversion unit 112.
  • the resin layer 113 is arranged so as to cover the photoelectric conversion unit 112.
  • a thermosetting resin having heat resistance to the temperature when the scintillator layer 121 is formed by using the vapor deposition method can be used.
  • various resins such as phenol resin, epoxy resin, unsaturated polyester resin, polyimide resin, silicone resin, diallyl phthalate resin, urethane resin, and acrylic resin are used as the main component. If the thickness of the resin layer 113 is too thick, it affects optical transparency and sharpness.
  • the columnar crystals of each scintillator are divided into a plurality of scintillator groups each including one or more columnar crystals during the formation of the scintillator layer 121.
  • the bond with the crystal may not be maintained. Therefore, the film thickness of the resin layer 113 may be 1 ⁇ m or more and 10 ⁇ m or less. Details of division of the scintillator group and formation of the resin layer 113 during formation of the scintillator layer 121 will be described later.
  • the scintillator forming the scintillator layer 121 for example, a scintillator including columnar crystals represented by cesium iodide (CsI:Tl) to which a small amount of thallium (Tl) is added can be used.
  • CsI:Tl cesium iodide
  • Tl thallium
  • the scintillator forming the scintillator layer 121 is directly formed on the resin layer 113 by using a vapor deposition method.
  • the radiation detection apparatus 100 in which the substrate 111 includes the photoelectric conversion unit 112 will be described, but the substrate 111 may not include the photoelectric conversion unit 112, for example.
  • the substrate 111, the resin layer 113, and the scintillator layer 121 form a scintillator plate.
  • the substrate 111 may be made of a material that transmits light converted from radiation by the scintillator.
  • glass or plastic may be used for the substrate 111.
  • the scintillator plate including the substrate 111, the resin layer 113, and the scintillator layer 121 serves as a radiation detection device together with the sensor panel. Can be configured.
  • the bonding layer 122 bonds the scintillator layer 121 and the reflective layer 123.
  • the coupling layer 122 may be made of a material having a high transmittance for the wavelength of the light so that the light converted by the scintillator forming the scintillator layer 121 can pass through.
  • the reflection layer 123 is arranged on the side opposite to the photoelectric conversion unit 112 with respect to the scintillator layer 121.
  • the reflection layer 123 reflects, of the light converted by the scintillator layer 121, the light that has traveled to the side opposite to the photoelectric conversion unit 112 toward the photoelectric conversion unit 112.
  • the reflection of light by the reflective layer 123 can improve the sensitivity of the photoelectric conversion unit 112.
  • the reflection layer 123 also has a function of preventing light (external light) other than the light converted by the scintillator layer 121 from entering the photoelectric conversion unit 112.
  • the reflective layer 123 can also function as a moisture-proof layer of the scintillator that constitutes the scintillator layer 121, or as an electromagnetic shield layer.
  • the reflective layer 123 can be made of, for example, a metal foil or a metal thin film.
  • the material of the reflective layer 123 include metal materials such as aluminum, gold, silver, copper and alloys thereof.
  • aluminum which is a material having high radiation transparency, may be used for the reflective layer 123.
  • the pad 131 is arranged in the end region of the substrate 111.
  • the connection portion 132 is arranged on the pad 131.
  • the connection unit 132 may be a flexible cable or the like for connecting the sensor panel 110 and a mounting substrate (not shown) arranged in the radiation imaging apparatus in which the radiation detection apparatus 100 is incorporated.
  • a resin material layer 213 for forming the resin layer 113 is formed on the substrate 111.
  • the resin material layer 213 refers to a layer in which the curing reaction (crosslinking reaction) has not progressed (completely cured) as compared with the resin layer in the previous stage in which the resin layer 113 is formed.
  • the resin material layer 113 which is a cured product is obtained.
  • the resin material layer 213 may be formed by applying a liquid resin dissolved in a solvent and then curing it so that the scintillator layer 121 can be formed.
  • the resin material layer 213 may be formed by adhering a heat-bondable sheet-shaped resin to the substrate 111.
  • a material used for the resin layer 113 a material whose curing temperature (crosslinking temperature) for forming the resin layer 113 from the resin material layer 213 is higher than temperature for starting formation of the scintillator forming the scintillator layer 121 is used. Used.
  • a material used for the resin layer 113 a material whose curing temperature (crosslinking temperature) for forming the resin layer 113 from the resin material layer 213 is lower than the maximum temperature for vapor deposition of the scintillator forming the scintillator layer 121 is used. ..
  • the substrate 111 on which the resin material layer 213 is formed is loaded into the vapor deposition chamber 201, and the scintillator layer 121 is deposited on the resin material layer 213 by vapor deposition. Forming a scintillator. If the temperature of the scintillator at the initial stage of vapor deposition is too low, the amount of emitted light will be significantly reduced. However, in order to obtain the shape of the resin layer 113 described later, the vapor deposition of the scintillator is started at a temperature lower than the curing temperature (crosslinking temperature) for forming the resin layer 113 from the resin material layer 213.
  • the curing temperature crosslinking temperature
  • the temperature at which formation of the scintillator is started may be 100° C. or higher and 150° C. or lower.
  • a resin material for forming the resin layer 113 is arranged on the substrate 111, and the resin material is kept at a temperature equal to or lower than a predetermined temperature (first temperature).
  • the resin material layer 213 is formed by curing the resin.
  • the formation of the scintillator may be started at a temperature equal to or lower than the temperature at which the resin material layer 213 was formed.
  • the above-mentioned “temperature” may be the temperature of the resin material layer 213 (or the resin layer 113).
  • the temperature of the substrate 111 may be measured to obtain the temperature of the resin material layer 213 (or the resin layer 113).
  • the maximum temperature during vapor deposition is required to be higher from the viewpoint of light emission amount, but an appropriate temperature can be set according to the heat resistance of the resin layer 113. That is, after the formation of the scintillator is started at a temperature equal to or lower than the temperature at which the resin material layer 213 is formed, the scintillator is higher than the temperature at which the resin material layer 213 is formed, and depending on the heat resistance of the resin layer 113. The scintillator is formed at a temperature equal to or lower than the predetermined temperature (second temperature).
  • the maximum temperature during vapor deposition may be about 200° C., such as 180° C.
  • a temperature higher than the curing temperature (crosslinking temperature) for forming the resin layer 113 from the resin material layer 213 is selected as the maximum temperature.
  • the scintillator forming the scintillator layer 121 is formed, and at the same time, the curing reaction of the resin material layer 213 proceeds to form the resin layer 113.
  • the scintillator of the scintillator layer 121 which is expanded and contracted by the heat in the vapor deposition chamber and the vapor deposition material, and the cooling heat after vapor deposition by the above-described configuration and manufacturing method, is a plurality of scintillators each formed of one or more columnar crystals of the scintillator. It is divided into groups.
  • the scintillator layer 121 includes a plurality of scintillator groups 221 each composed of one or more columnar crystals of the scintillator, and between the scintillator groups adjacent to each other among the plurality of scintillator groups 221. And a gap 222 disposed in the space.
  • the gap 222 is created by the step of forming the scintillator layer 121.
  • the formed resin layer 113 also moves so as to correspond to the division of the scintillator group 221.
  • the resin layer 113 includes a portion (first portion) that is in contact with the plurality of scintillator groups 221 and a portion (second portion) that is disposed below the gap 222 and is not in contact with the plurality of scintillator group 221.
  • the thickness of the portion of the resin layer 113 disposed below the gap 222 that is not in contact with the scintillator group 221 is reduced due to the resin material being pulled to the portion in contact with the scintillator group 221.
  • the film thickness of the portion of the resin layer 113 that is in contact with the scintillator group 221 is larger than the film thickness of the portion that is not in contact with the scintillator group 221, and the formed resin layer 113 has an uneven shape.
  • the base layer of the scintillator layer 121 is cured from the resin material layer 213 to the resin layer 113.
  • the scintillators forming the scintillator layer 121 are arranged in close contact with the resin layer 113 with a gap 222 formed for each scintillator group 221. This suppresses the generation of stress near the interface between the scintillator and the resin layer 113 even if a temperature cycle or the like is performed after the radiation detection apparatus 100 is formed.
  • the occurrence of artifacts due to the scintillator peeling off from the resin layer 113 is suppressed. Further, such an effect can be realized without increasing the number of process steps by adjusting the temperature during the formation of the scintillator layer 121.
  • the division size of the scintillator group 221 of the scintillator layer 121 does not need to be uniform. Further, as shown in FIG. 3, in the orthogonal projection of the surface of the substrate 111 on which the scintillator layer 121 is arranged, the respective sizes of the plurality of scintillator groups 221 are equal to the plurality of photoelectric conversion units arranged in the photoelectric conversion unit 112. It may be smaller than the pitch at which the elements 312 are arranged. Further, the number of the scintillator layers 121 divided into a plurality of scintillator groups 221 is not specified.
  • 4A to 4E show an example of a state in which the scintillator layer 121 is divided into a plurality of scintillator groups 221.
  • 4A to 4E show a plurality of scintillator groups 221 arranged on one photoelectric conversion element 312.
  • the scintillator group 221 may be completely separated from the interface with the resin layer 113 of the scintillator to the upper surface opposite to the interface. Further, as shown in FIGS. 4C and 4D, the columnar crystals of the divided scintillator group 221 may be arranged so as to be close to each other on the upper surface side which is the vapor deposition end surface.
  • a portion of the resin layer 113 that is not in contact with the scintillator group 221 disposed under the gap 222 may be thinly formed so as to partially face the columnar crystal. .. Further, as shown in FIG. 4E, the resin layer 113 may have portions in contact with the scintillator group 221 separated from each other. The combination of the scintillator group 221 and the resin layer 113 shown in FIGS. 4A to 4E may be combined in any way.
  • a resin material layer 213 was formed so as to cover the substrate 111 on the surface of which the photoelectric conversion unit 112 was formed.
  • the resin material layer 213 was formed by laminating a 10 ⁇ m SAFS sheet manufactured by Nikkan Kogyo Co., Ltd. on the surface of the substrate 111 for provisional pressure bonding, and then annealed at 160° C. for 1 hour to be cured and formed.
  • the lamination temperature at the time of temporary pressure bonding was 100°C.
  • a scintillator layer 121 was formed using a vapor deposition method. Specifically, thallium iodide and cesium iodide were co-evaporated to form a scintillator layer 121 composed of columnar crystal scintillators.
  • the resin layer 113 was formed by the progress of the curing reaction of the resin material layer 213.
  • the temperature at the start of vapor deposition was 140° C., which is 160° C. or lower which is the maximum temperature when forming the resin material layer 213.
  • the maximum temperature during vapor deposition was 210° C., which was higher than 160° C. which is the maximum temperature when forming the resin material layer 213.
  • FIG. 5A shows a scanning electron microscope (SEM) image of columnar crystals on the initial stage of vapor deposition of the scintillator layer 121 formed under the above conditions
  • FIG. 5B shows an SEM image of the contact surface of the resin layer 113 with the scintillator layer 121. Shown. As shown in FIG. 5A, it was found that the scintillator layers 121 each had a scintillator group 221, and a gap 222 between the scintillator groups 221 adjacent to each other. Further, as shown in FIG. 5B, it was found that the resin layer 113 was formed with uneven shapes corresponding to the respective scintillator groups 221.
  • the substrate 111 was taken out from the vapor deposition apparatus, and the reflection layer 123 was attached so as to cover the scintillator layer 121, thereby forming the radiation detection apparatus 100 as shown in FIG. 1B.
  • the reflective layer 123 was obtained by transferring and bonding the bonding layer 122 containing a heat-melting resin to the reflective layer forming surface of the film-like sheet in which the aluminum film was formed as the reflective layer 123 on the reflective layer protective layer (not shown) of PET in advance. A three-layer film-like sheet was prepared.
  • This three-layer film sheet was arranged so as to cover the scintillator layer 121 and the outer periphery of the three-layer film sheet to contact the substrate 111, and was heated and pressed by a heat roller and fixed by welding the bonding layer 122.
  • the resin layer 113 was formed before forming the scintillator layer 121 so as to cover the substrate 111 on the surface of which the photoelectric conversion unit 112 was formed.
  • the resin layer 113 was formed by applying a polyimide resin layer material and curing the resin layer material at 200° C. for 2 hours.
  • the scintillator layer 121 and the reflective layer 123 were formed under the same conditions as in the example. Before and after the formation of the scintillator layer 121, the cured state (crosslinked state) of the resin layer 113 did not change.
  • the scintillator layer 121 was formed so as to cover the substrate 111 on the surface of which the photoelectric conversion unit 112 was formed without forming the resin layer 113.
  • the steps after forming the scintillator layer 121 are the same as those in the above-described embodiments and the first embodiment.
  • a peel test for confirming the adhesiveness was performed on each scintillator layer 121 formed. Further, the heat cycle (H/C) test and the measurement of the optical transfer function (MTF) were performed on each of the radiation detection devices 100 formed as described above. The conditions under which each evaluation was performed are as follows.
  • Peel test A notch was made using a cutter knife on the upper surface (the surface opposite to the interface with the resin layer 113) of the scintillator layer 121 formed on the resin layer 113. When the cuts were made, the peeled areas of the scintillator forming the scintillator layer 121 from the resin layer 113 were compared.
  • the radiation imaging apparatus incorporating the radiation detection apparatus 100 manufactured as described above was placed in a constant temperature bath, and this cycle was repeated 5 times with 50° C. for 4 hours and ⁇ 30° C. for 4 hours as one cycle. .. After repeating the heat cycle, the radiation imaging device was taken out of the thermostatic chamber at room temperature, radiographic images were taken, and the presence or absence of artifacts before and after the test was observed.
  • the MTF chart was arranged on the radiation incident surface side of the radiation imaging apparatus incorporating the radiation detection apparatus 100 manufactured as described above, and radiation (X-ray) was irradiated to measure the MTF.
  • the measurement points were 100 mm, 150 mm, and 200 mm from the center of rotation of the substrate 111 during vapor deposition.
  • FIG. 6 shows the forming conditions of the resin material layer 213 of the example and the forming conditions of the resin layer 113 of the first comparative example. Moreover, the result of each evaluation mentioned above is shown in FIG. It was found that the example has higher adhesion and MTF than the first comparative example. It is considered that this is because the formation of the resin layer 113 and the scintillator layer 121 at the same time suppressed generation of stress near the interface between the scintillator forming the scintillator layer 121 and the resin layer 113. It was also confirmed that the second comparative example in which the resin layer 113 was not arranged had a lower adhesive strength of the scintillator layer 121 as compared with the example.
  • the radiation imaging apparatus 800 incorporating the radiation detection apparatus 100 according to the above-described embodiment of the present invention can be applied to a radiation detection system SYS represented by a radiation inspection apparatus and the like.
  • This radiation detection system SYS includes a radiation imaging device 800 including the radiation detection device 100, a signal processing device 830 including an image processor, a display device 840 including a display, and a radiation generation device 810 for generating radiation.
  • FIG. 8 is a diagram showing an example of a schematic configuration of a radiation detection system SYS including a radiation imaging apparatus 800 in which the radiation detection apparatus 100 is incorporated.
  • radiation for example, X-rays
  • the radiation generator 810 passes through, for example, the chest of a subject 820 such as a patient and enters the radiation imaging apparatus 800.
  • the incident radiation contains information on the inside of the body of the subject 820.
  • the radiation detection apparatus 100 incorporated in the radiation imaging apparatus 800 can obtain electrical information (electrical signal) according to the incident radiation. Thereafter, this information is digitally converted, image-processed by the signal processing device 830 (signal processing unit) that processes the signal from the radiation detection device 100, and can be displayed as an inspection result by the display device 840 of the control room (control room). ..
  • this information can be transferred to a remote place by a network (transmission processing means) such as a telephone, a LAN, or the Internet.
  • a network transmission processing means
  • this information can be displayed as a test result on a display at another place such as a doctor room, and a doctor at a remote place can make a diagnosis.
  • this information and the inspection result can be stored in, for example, an optical disc, or can be recorded in a recording medium such as a film by a film processor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A method for producing a scintillator plate in which a scintillator layer is positioned on a resin layer, the method including a first step for forming a resin material layer for forming the resin layer on a substrate and a second step for forming the scintillator layer using vapor deposition on the resin material layer, wherein: a scintillator constituting the scintillator layer is formed, a curing reaction of the resin material layer progresses and the resin layer is formed during the second step; the scintillator layer includes a plurality of scintillator groups which each comprise one or more columnar crystals of the scintillator, and also includes gaps which are positioned between adjacent scintillator groups among the plurality of scintillator groups; the resin layer contains a first section which contacts the plurality of scintillator groups and a second section which does not contact the plurality of scintillator groups and is positioned below the gaps; and the film thickness in the first section is greater than the film thickness in the second section.

Description

シンチレータプレートの製造方法、シンチレータプレート、放射線検出装置および放射線検出システムScintillator plate manufacturing method, scintillator plate, radiation detection device, and radiation detection system
 本発明は、シンチレータプレートの製造方法、シンチレータプレート、放射線検出装置および放射線検出システムに関するものである。 The present invention relates to a scintillator plate manufacturing method, a scintillator plate, a radiation detection device, and a radiation detection system.
 放射線を光に変換するシンチレータと、シンチレータによって変換された光を検出する光電変換素子と、を組み合わせた放射線検出装置が広く用いられている。基板の上に柱状結晶を備えるシンチレータを形成する際に、基板とシンチレータとの間の密着力を高めるために、基板の上に樹脂層を形成し、樹脂層の上にシンチレータを形成する場合がある。樹脂層の上に形成されるシンチレータは、結晶成長の初期において密に詰まった状態で形成される場合がある。樹脂層との界面に位置する密に詰まったシンチレータの結晶内で、放射線検出装置を使用中の温度サイクルなどによって応力が発生すると、シンチレータの一部が樹脂層から剥がれてしまう可能性がある。特許文献1には、基板上に複数の凸部を形成し、凸部の上にシンチレータを形成することが示されている。 Radiation detection devices that combine a scintillator that converts radiation into light and a photoelectric conversion element that detects the light converted by the scintillator are widely used. When forming a scintillator having columnar crystals on a substrate, in order to enhance the adhesion between the substrate and the scintillator, a resin layer may be formed on the substrate, and the scintillator may be formed on the resin layer. is there. The scintillator formed on the resin layer may be densely packed in the initial stage of crystal growth. If stress is generated in the densely packed crystal of the scintillator located at the interface with the resin layer due to a temperature cycle during use of the radiation detection device, a part of the scintillator may peel off from the resin layer. Patent Document 1 discloses forming a plurality of convex portions on a substrate and forming a scintillator on the convex portions.
特開2014-134430号公報JP, 2014-134430, A
 特許文献1の構成では、シンチレータが凸部の上に分離して配されるため、放射線検出装置を使用中の温度サイクルなどによる応力の発生が抑制され、シンチレータが下地層から剥がれることが抑制されうる。しかしながら、基材上に凸部となる材料を塗布乾燥によって形成し、フォトリソグラフィを用いて凸部を形成するため、製造プロセスが煩雑となり、製造コストが増加してしまう。 In the configuration of Patent Document 1, since the scintillator is separately arranged on the convex portion, generation of stress due to a temperature cycle during use of the radiation detection apparatus is suppressed, and peeling of the scintillator from the underlayer is suppressed. sell. However, since the material for the convex portion is formed on the substrate by coating and drying and the convex portion is formed by using photolithography, the manufacturing process becomes complicated and the manufacturing cost increases.
 本発明は、シンチレータの基板に対する密着力を維持するのに有利な技術を提供することを目的とする。 The present invention aims to provide an advantageous technique for maintaining the adhesion of the scintillator to the substrate.
 上記課題に鑑みて、本発明の実施形態に係るシンチレータプレートの製造方法は、樹脂層の上にシンチレータ層が配されるシンチレータプレートの製造方法であって、基板の上に樹脂層を形成するための樹脂材料層を形成する第1工程と、樹脂材料層の上に蒸着法を用いてシンチレータ層を形成する第2工程と、を含み、第2工程において、シンチレータ層を構成するシンチレータの形成と共に、樹脂材料層の硬化反応が進行し樹脂層が形成され、シンチレータ層は、それぞれシンチレータの1つ以上の柱状結晶によって構成される複数のシンチレータ群と、複数のシンチレータ群のうち互いに隣り合うシンチレータ群の間に配される間隙と、を含み、樹脂層は、複数のシンチレータ群と接する第1部分と、間隙の下に配され複数のシンチレータ群と接していない第2部分とを含み、第1部分の膜厚が、第2部分の膜厚よりも厚いことを特徴とする。 In view of the above problems, a method for manufacturing a scintillator plate according to an embodiment of the present invention is a method for manufacturing a scintillator plate in which a scintillator layer is disposed on a resin layer, for forming a resin layer on a substrate. And a second step of forming a scintillator layer on the resin material layer by using a vapor deposition method, in the second step, together with the formation of the scintillator forming the scintillator layer. The resin layer is formed by the progress of the curing reaction of the resin material layer, and the scintillator layer includes a plurality of scintillator groups each composed of one or more columnar crystals of the scintillator, and scintillator groups adjacent to each other among the plurality of scintillator groups. The resin layer includes a first portion that is in contact with the plurality of scintillator groups and a second portion that is disposed below the gap and is not in contact with the plurality of scintillator groups. The film thickness of the part is thicker than the film thickness of the second part.
 上記手段によって、シンチレータの基板に対する密着力を維持するのに有利な技術を提供する。 By the above means, we will provide an advantageous technology to maintain the adhesion of the scintillator to the substrate.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will be apparent from the following description with reference to the accompanying drawings. Note that, in the accompanying drawings, the same or similar configurations are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明に係るシンチレータプレートを用いた放射線検出装置の構成例を示す図。 本発明に係るシンチレータプレートを用いた放射線検出装置の構成例を示す図。 図1の放射線検出装置の製造方法を示す断面図。 図1の放射線検出装置の製造方法を示す断面図。 図1の放射線検出装置の製造方法を示す断面図。 図1の放射線検出装置の構成例を示す断面図。 図3の断面図の変形例を示す図。 図3の断面図の変形例を示す図。 図3の断面図の変形例を示す図。 図3の断面図の変形例を示す図。 図3の断面図の変形例を示す図。 図1の放射線検出装置のシンチレータ層の形状を示す図。 図1の放射線検出装置の樹脂層の形状を示す図。 図1の放射線検出装置と比較例の樹脂層の形成条件を示す図。 図1の放射線検出装置と比較例の評価結果を示す図。 本発明に係る放射線検出装置を用いた放射線撮像システムの構成例を説明する図。
The accompanying drawings are included in and constitute a part of the specification, illustrate the embodiments of the present invention, and together with the description, serve to explain the principles of the present invention.
The figure which shows the structural example of the radiation detection apparatus using the scintillator plate which concerns on this invention. The figure which shows the structural example of the radiation detection apparatus using the scintillator plate which concerns on this invention. Sectional drawing which shows the manufacturing method of the radiation detection apparatus of FIG. Sectional drawing which shows the manufacturing method of the radiation detection apparatus of FIG. Sectional drawing which shows the manufacturing method of the radiation detection apparatus of FIG. Sectional drawing which shows the structural example of the radiation detection apparatus of FIG. The figure which shows the modification of the sectional view of FIG. The figure which shows the modification of the sectional view of FIG. The figure which shows the modification of the sectional view of FIG. The figure which shows the modification of the sectional view of FIG. The figure which shows the modification of the sectional view of FIG. The figure which shows the shape of the scintillator layer of the radiation detection apparatus of FIG. The figure which shows the shape of the resin layer of the radiation detection apparatus of FIG. The figure which shows the formation conditions of the resin layer of the radiation detection apparatus of FIG. 1, and a comparative example. The figure which shows the evaluation result of the radiation detection apparatus of FIG. 1, and a comparative example. The figure explaining the structural example of the radiation imaging system using the radiation detection apparatus which concerns on this invention.
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The following embodiments do not limit the invention according to the claims. Although a plurality of features are described in the embodiment, not all of the plurality of features are essential to the invention, and the plurality of features may be arbitrarily combined. Further, in the accompanying drawings, the same or similar components are designated by the same reference numerals, and duplicated description will be omitted.
 また、本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。 In addition, in the radiation in the present invention, in addition to α-rays, β-rays, γ-rays, etc., which are beams produced by particles (including photons) emitted by radiation decay, a beam having an energy of about the same or more, for example, X-rays. It can also include rays, particle rays, cosmic rays, and so on.
 図1A~7を参照して、本発明の一部の実施形態における放射線検出装置について説明する。図1Aは、本発明の実施形態における放射線検出装置100の放射線を照射するための入射面の平面図、図1Bは、図1AのA-A’間における断面図である。放射線検出装置100は、光を検出するためのセンサパネル110と、入射した放射線をセンサパネルで検出可能な光に変換するための波長変換部120と、を含む。また、放射線検出装置100は、パッド131と接続部132とを含む。 A radiation detection apparatus according to some embodiments of the present invention will be described with reference to FIGS. 1A to 7. FIG. 1A is a plan view of an incident surface for irradiating the radiation of the radiation detection apparatus 100 according to the exemplary embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along a line A-A′ in FIG. 1A. The radiation detection apparatus 100 includes a sensor panel 110 for detecting light, and a wavelength conversion unit 120 for converting incident radiation into light that can be detected by the sensor panel. The radiation detection apparatus 100 also includes a pad 131 and a connecting portion 132.
 センサパネル110は、基板111と、波長変換部120で放射線から変換された光を検出するための光電変換部112と、樹脂層113と、を含む。波長変換部120は、放射線を光電変換部112で検出可能な光に変換するシンチレータ層121と、反射層123と、シンチレータ層121と反射層123とを結合するための結合層122と、を含む。 The sensor panel 110 includes a substrate 111, a photoelectric conversion unit 112 for detecting the light converted from the radiation by the wavelength conversion unit 120, and a resin layer 113. The wavelength conversion unit 120 includes a scintillator layer 121 that converts radiation into light that can be detected by the photoelectric conversion unit 112, a reflective layer 123, and a bonding layer 122 that bonds the scintillator layer 121 and the reflective layer 123. ..
 基板111は、例えば、ガラス基板や絶縁性の耐熱樹脂基板であってもよい。ガラス基板や耐熱樹脂基板である基板111の上にシリコンなどの半導体膜が形成され、この半導体膜に光電変換部112が形成されていてもよい。また、基板111は、シリコンなどの半導体基板であってもよい。この場合、基板111に直接、光電変換部112が形成されていてもよい。 The substrate 111 may be, for example, a glass substrate or an insulating heat-resistant resin substrate. A semiconductor film such as silicon may be formed on a substrate 111 which is a glass substrate or a heat resistant resin substrate, and the photoelectric conversion section 112 may be formed on this semiconductor film. Further, the substrate 111 may be a semiconductor substrate such as silicon. In this case, the photoelectric conversion section 112 may be directly formed on the substrate 111.
 光電変換部112には、波長変換部120のシンチレータ層121を構成するシンチレータで放射線から変換された光を検出するための複数の光電変換素子と、複数の光電変換素子から信号を読み出すためのスイッチ素子と、が配される。例えば、光電変換部112には、複数の光電変換素子が行列状に配される。光電変換素子は、シンチレータ層121で変換された光を電荷に変換し、スイッチ素子を介して光電変換素子で生成された電荷に応じた電気信号が読み出される。光電変換部112のそれぞれの光電変換素子から出力された電気信号に基づいて、放射線画像が生成される。 The photoelectric conversion unit 112 includes a plurality of photoelectric conversion elements for detecting light converted from radiation by the scintillator forming the scintillator layer 121 of the wavelength conversion unit 120, and switches for reading signals from the plurality of photoelectric conversion elements. Elements and are arranged. For example, the photoelectric conversion unit 112 has a plurality of photoelectric conversion elements arranged in a matrix. The photoelectric conversion element converts the light converted by the scintillator layer 121 into an electric charge, and an electric signal corresponding to the electric charge generated by the photoelectric conversion element is read out through the switch element. A radiation image is generated based on the electric signal output from each photoelectric conversion element of the photoelectric conversion unit 112.
 樹脂層113は、光電変換部112を覆うように配される。樹脂層113には、蒸着法を用いてシンチレータ層121を形成する際の温度に対して耐熱性を有する熱硬化性樹脂が使用されうる。熱硬化性樹脂としては、フェノール樹脂やエポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、シリコーン樹脂、ジアリルフタレート樹脂、ウレタン樹脂、アクリル樹脂などの各種の樹脂が主成分として用いられる。樹脂層113の厚さは、厚すぎる場合、光学的透明性や鮮鋭度に影響を及ぼす。また、樹脂層113の厚さが薄すぎる場合、シンチレータ層121の形成中に、それぞれのシンチレータの柱状結晶が1つ以上の柱状結晶によって構成される複数のシンチレータ群に分割される際に、柱状結晶との結合を維持できなくなってしまう可能性がある。このため、樹脂層113の膜厚は、1μm以上かつ10μm以下であってもよい。シンチレータ層121の形成中におけるシンチレータ群の分割および樹脂層113の形成の詳細については後述する。 The resin layer 113 is arranged so as to cover the photoelectric conversion unit 112. For the resin layer 113, a thermosetting resin having heat resistance to the temperature when the scintillator layer 121 is formed by using the vapor deposition method can be used. As the thermosetting resin, various resins such as phenol resin, epoxy resin, unsaturated polyester resin, polyimide resin, silicone resin, diallyl phthalate resin, urethane resin, and acrylic resin are used as the main component. If the thickness of the resin layer 113 is too thick, it affects optical transparency and sharpness. If the resin layer 113 is too thin, the columnar crystals of each scintillator are divided into a plurality of scintillator groups each including one or more columnar crystals during the formation of the scintillator layer 121. The bond with the crystal may not be maintained. Therefore, the film thickness of the resin layer 113 may be 1 μm or more and 10 μm or less. Details of division of the scintillator group and formation of the resin layer 113 during formation of the scintillator layer 121 will be described later.
 シンチレータ層121を構成するシンチレータには、例えば、タリウム(Tl)が微量添加されたヨウ化セシウム(CsI:Tl)に代表される柱状結晶を備えるシンチレータが用いられうる。シンチレータ層121を構成するシンチレータは、蒸着法を用いて樹脂層113の上に直接形成される。 As the scintillator forming the scintillator layer 121, for example, a scintillator including columnar crystals represented by cesium iodide (CsI:Tl) to which a small amount of thallium (Tl) is added can be used. The scintillator forming the scintillator layer 121 is directly formed on the resin layer 113 by using a vapor deposition method.
 本実施形態において、基板111が光電変換部112を備える放射線検出装置100について説明するが、例えば、基板111が光電変換部112を備えていなくてもよい。この場合、基板111、樹脂層113、シンチレータ層121は、シンチレータプレートを構成しているといえる。この場合、基板111には、シンチレータで放射線から変換された光を透過する材料が用いられうる。例えば、ガラスやプラスチックなどが、基板111に用いられてもよい。また、基板111のシンチレータ層121とは反対の側に、光電変換素子を含むセンサパネルが配された場合、基板111、樹脂層113およびシンチレータ層121を含むシンチレータプレートは、センサパネルと共に放射線検出装置を構成しうる。 In this embodiment, the radiation detection apparatus 100 in which the substrate 111 includes the photoelectric conversion unit 112 will be described, but the substrate 111 may not include the photoelectric conversion unit 112, for example. In this case, it can be said that the substrate 111, the resin layer 113, and the scintillator layer 121 form a scintillator plate. In this case, the substrate 111 may be made of a material that transmits light converted from radiation by the scintillator. For example, glass or plastic may be used for the substrate 111. Further, when a sensor panel including a photoelectric conversion element is arranged on the side of the substrate 111 opposite to the scintillator layer 121, the scintillator plate including the substrate 111, the resin layer 113, and the scintillator layer 121 serves as a radiation detection device together with the sensor panel. Can be configured.
 結合層122は、シンチレータ層121と反射層123とを結合する。結合層122は、シンチレータ層121を構成するシンチレータによって変換された光が通過できるように、当該光の波長について高い透過率を有する材料が用いられうる。 The bonding layer 122 bonds the scintillator layer 121 and the reflective layer 123. The coupling layer 122 may be made of a material having a high transmittance for the wavelength of the light so that the light converted by the scintillator forming the scintillator layer 121 can pass through.
 反射層123は、シンチレータ層121に対して光電変換部112とは反対の側に配される。反射層123は、シンチレータ層121で変換された光のうち、光電変換部112とは反対の側に進行した光を光電変換部112に向けて反射する。この反射層123による光の反射によって、光電変換部112の感度を向上させることができる。また、反射層123は、シンチレータ層121で変換された光以外の光(外部光)が光電変換部112に入射することを防止する機能も備えている。さらに、反射層123はシンチレータ層121を構成するシンチレータの防湿層や、電磁シールド層としても機能しうるものである。この反射層123は、例えば、金属箔または金属薄膜で構成されうる。この反射層123の材料としては、例えば、アルミニウム、金、銀、銅やそれらの合金など、金属材料を挙げることができる。これらの中で、放射線透過性の高い材料であるアルミニウムが、反射層123に用いられてもよい。 The reflection layer 123 is arranged on the side opposite to the photoelectric conversion unit 112 with respect to the scintillator layer 121. The reflection layer 123 reflects, of the light converted by the scintillator layer 121, the light that has traveled to the side opposite to the photoelectric conversion unit 112 toward the photoelectric conversion unit 112. The reflection of light by the reflective layer 123 can improve the sensitivity of the photoelectric conversion unit 112. The reflection layer 123 also has a function of preventing light (external light) other than the light converted by the scintillator layer 121 from entering the photoelectric conversion unit 112. Furthermore, the reflective layer 123 can also function as a moisture-proof layer of the scintillator that constitutes the scintillator layer 121, or as an electromagnetic shield layer. The reflective layer 123 can be made of, for example, a metal foil or a metal thin film. Examples of the material of the reflective layer 123 include metal materials such as aluminum, gold, silver, copper and alloys thereof. Among these, aluminum, which is a material having high radiation transparency, may be used for the reflective layer 123.
 パッド131は、基板111の端部領域に配されている。接続部132は、パッド131上に配されている。接続部132は、センサパネル110と、放射線検出装置100が組み込まれる放射線撮像装置に配された実装基板(不図示)と、を接続するためのフレキシブルケーブルなどでありうる。 The pad 131 is arranged in the end region of the substrate 111. The connection portion 132 is arranged on the pad 131. The connection unit 132 may be a flexible cable or the like for connecting the sensor panel 110 and a mounting substrate (not shown) arranged in the radiation imaging apparatus in which the radiation detection apparatus 100 is incorporated.
 次いで、本実施形態における樹脂層113およびシンチレータ層121のより詳細な構成および製造方法について説明する。 Next, more detailed configurations and manufacturing methods of the resin layer 113 and the scintillator layer 121 in the present embodiment will be described.
 まず、図2Aに示されるように、基板111の上に樹脂層113を形成するための樹脂材料層213を形成する。ここで、樹脂材料層213とは、樹脂層113が形成される前段階の樹脂層よりも硬化反応(架橋反応)が進んでいない(完全に硬化していない)段階の層のことを指す。樹脂材料層213を適切な温度で硬化させることによって、硬化物である樹脂層113が得られる。樹脂材料層213は、溶剤に溶かした液状の樹脂を塗布した後に、シンチレータ層121の形成に耐えうる程度に硬化させることによって形成されてもよい。また、例えば、熱接着が可能なシート状の樹脂を基板111に接着することによって、樹脂材料層213が形成されてもよい。ここで、樹脂層113に用いられる材料として、樹脂材料層213から樹脂層113を形成する硬化温度(架橋温度)がシンチレータ層121を構成するシンチレータの形成を開始する温度よりも高い温度の材料が用いられる。また、樹脂層113に用いられる材料として、樹脂材料層213から樹脂層113を形成する硬化温度(架橋温度)がシンチレータ層121を構成するシンチレータを蒸着する際の最高温度よりも低い材料が用いられる。 First, as shown in FIG. 2A, a resin material layer 213 for forming the resin layer 113 is formed on the substrate 111. Here, the resin material layer 213 refers to a layer in which the curing reaction (crosslinking reaction) has not progressed (completely cured) as compared with the resin layer in the previous stage in which the resin layer 113 is formed. By curing the resin material layer 213 at an appropriate temperature, the resin layer 113 which is a cured product is obtained. The resin material layer 213 may be formed by applying a liquid resin dissolved in a solvent and then curing it so that the scintillator layer 121 can be formed. Further, for example, the resin material layer 213 may be formed by adhering a heat-bondable sheet-shaped resin to the substrate 111. Here, as a material used for the resin layer 113, a material whose curing temperature (crosslinking temperature) for forming the resin layer 113 from the resin material layer 213 is higher than temperature for starting formation of the scintillator forming the scintillator layer 121 is used. Used. Further, as a material used for the resin layer 113, a material whose curing temperature (crosslinking temperature) for forming the resin layer 113 from the resin material layer 213 is lower than the maximum temperature for vapor deposition of the scintillator forming the scintillator layer 121 is used. ..
 樹脂材料層213を形成した後、図2Bに示されるように、蒸着チャンバ201に樹脂材料層213が形成された基板111を搬入し、樹脂材料層213の上に蒸着法を用いてシンチレータ層121を構成するシンチレータを形成する。シンチレータの蒸着初期の温度は、低すぎる場合、発光量が著しく低下してしまう。しかしながら、後述する樹脂層113の形状を得るために、シンチレータの蒸着は、樹脂材料層213から樹脂層113を形成する硬化温度(架橋温度)よりも低い温度で開始される。例えば、シンチレータの形成を開始する際の温度が、100℃以上かつ150℃以下であってもよい。例えば、図2Aに示される樹脂材料層213を形成する工程において、基板111の上に樹脂層113を形成するための樹脂材料を配し、所定の温度(第1温度)以下の温度で樹脂材料を硬化させることによって、樹脂材料層213を形成する。次いで、シンチレータの形成が、樹脂材料層213が形成された際の温度以下の温度で開始されてもよい。ここで、上述の「温度」とは、樹脂材料層213(または、樹脂層113)の温度でありうる。例えば、基板111の温度を測定することによって、樹脂材料層213(または、樹脂層113)の温度を取得してもよい。 After forming the resin material layer 213, as shown in FIG. 2B, the substrate 111 on which the resin material layer 213 is formed is loaded into the vapor deposition chamber 201, and the scintillator layer 121 is deposited on the resin material layer 213 by vapor deposition. Forming a scintillator. If the temperature of the scintillator at the initial stage of vapor deposition is too low, the amount of emitted light will be significantly reduced. However, in order to obtain the shape of the resin layer 113 described later, the vapor deposition of the scintillator is started at a temperature lower than the curing temperature (crosslinking temperature) for forming the resin layer 113 from the resin material layer 213. For example, the temperature at which formation of the scintillator is started may be 100° C. or higher and 150° C. or lower. For example, in the step of forming the resin material layer 213 shown in FIG. 2A, a resin material for forming the resin layer 113 is arranged on the substrate 111, and the resin material is kept at a temperature equal to or lower than a predetermined temperature (first temperature). The resin material layer 213 is formed by curing the resin. Then, the formation of the scintillator may be started at a temperature equal to or lower than the temperature at which the resin material layer 213 was formed. Here, the above-mentioned “temperature” may be the temperature of the resin material layer 213 (or the resin layer 113). For example, the temperature of the substrate 111 may be measured to obtain the temperature of the resin material layer 213 (or the resin layer 113).
 シンチレータの形成を比較的低温で開始した後、蒸着中に温度を上昇させる。蒸着中の最高温度は、発光量の観点からより高い温度が求められるが、樹脂層113の耐熱性に応じて、適当な温度が設定されうる。つまり、シンチレータの形成を樹脂材料層213が形成された際の温度以下の温度で開始した後、樹脂材料層213が形成された際の温度よりも高く、かつ、樹脂層113の耐熱性に応じた温度(第2温度)以下の温度で、シンチレータが形成される。蒸着中の最高温度は、例えば、180℃以上かつ220℃以下など、200℃程度であってもよい。この最高温度は、上述のように、樹脂材料層213から樹脂層113を形成する硬化温度(架橋温度)よりも高い温度が選択される。これによって、シンチレータ層121を構成するシンチレータの形成と共に、樹脂材料層213の硬化反応が進行し樹脂層113が形成される。 After starting the formation of the scintillator at a relatively low temperature, raise the temperature during vapor deposition. The maximum temperature during vapor deposition is required to be higher from the viewpoint of light emission amount, but an appropriate temperature can be set according to the heat resistance of the resin layer 113. That is, after the formation of the scintillator is started at a temperature equal to or lower than the temperature at which the resin material layer 213 is formed, the scintillator is higher than the temperature at which the resin material layer 213 is formed, and depending on the heat resistance of the resin layer 113. The scintillator is formed at a temperature equal to or lower than the predetermined temperature (second temperature). The maximum temperature during vapor deposition may be about 200° C., such as 180° C. or higher and 220° C. or lower. As described above, a temperature higher than the curing temperature (crosslinking temperature) for forming the resin layer 113 from the resin material layer 213 is selected as the maximum temperature. As a result, the scintillator forming the scintillator layer 121 is formed, and at the same time, the curing reaction of the resin material layer 213 proceeds to form the resin layer 113.
 以上のような構成、製造方法によって、蒸着チャンバ内や蒸着物質による熱、蒸着後の冷却熱によって伸縮したシンチレータ層121のシンチレータは、それぞれシンチレータの1つ以上の柱状結晶によって構成される複数のシンチレータ群に分割される。換言すると、図2Cに示されるように、シンチレータ層121は、それぞれシンチレータの1つ以上の柱状結晶によって構成される複数のシンチレータ群221と、複数のシンチレータ群221のうち互いに隣り合うシンチレータ群の間に配される間隙222と、を含むようになる。つまり、間隙222は、このシンチレータ層121を形成する工程によって生成される。このとき、形成された樹脂層113も、シンチレータ群221の分割と呼応するように移動する。これによって、樹脂層113は、複数のシンチレータ群221と接する部分(第1部分)と、間隙222の下に配され複数のシンチレータ群221と接していない部分(第2部分)とを含むようになる。また、樹脂層113のシンチレータ群221と接していない間隙222の下に配された部分は、シンチレータ群221に接する部分に樹脂材料が引っ張られることによって膜厚が低下する。結果的に、樹脂層113のシンチレータ群221と接する部分の膜厚が、シンチレータ群221と接していない部分の膜厚よりも厚くなり、形成された樹脂層113は、凹凸形状となる。 The scintillator of the scintillator layer 121, which is expanded and contracted by the heat in the vapor deposition chamber and the vapor deposition material, and the cooling heat after vapor deposition by the above-described configuration and manufacturing method, is a plurality of scintillators each formed of one or more columnar crystals of the scintillator. It is divided into groups. In other words, as shown in FIG. 2C, the scintillator layer 121 includes a plurality of scintillator groups 221 each composed of one or more columnar crystals of the scintillator, and between the scintillator groups adjacent to each other among the plurality of scintillator groups 221. And a gap 222 disposed in the space. That is, the gap 222 is created by the step of forming the scintillator layer 121. At this time, the formed resin layer 113 also moves so as to correspond to the division of the scintillator group 221. As a result, the resin layer 113 includes a portion (first portion) that is in contact with the plurality of scintillator groups 221 and a portion (second portion) that is disposed below the gap 222 and is not in contact with the plurality of scintillator group 221. Become. Further, the thickness of the portion of the resin layer 113 disposed below the gap 222 that is not in contact with the scintillator group 221 is reduced due to the resin material being pulled to the portion in contact with the scintillator group 221. As a result, the film thickness of the portion of the resin layer 113 that is in contact with the scintillator group 221 is larger than the film thickness of the portion that is not in contact with the scintillator group 221, and the formed resin layer 113 has an uneven shape.
 本実施形態において、シンチレータ層121を構成するシンチレータを形成する際に、シンチレータ層121の下地層を樹脂材料層213から樹脂層113に硬化させる。これによって、シンチレータ層121を構成するシンチレータは、シンチレータ群221ごとに間隙222をあけて、樹脂層113に密着して配される。これによって、放射線検出装置100を形成した後に、温度サイクルなどがかかった場合であっても、シンチレータの樹脂層113との界面付近での応力の発生が抑制される。結果として、シンチレータが樹脂層113から剥がれることによるアーチファクトの発生が抑制される。また、このような効果が、シンチレータ層121の形成中の温度を調整することによって、プロセスステップを増加させることなく実現できる。 In the present embodiment, when forming the scintillator forming the scintillator layer 121, the base layer of the scintillator layer 121 is cured from the resin material layer 213 to the resin layer 113. As a result, the scintillators forming the scintillator layer 121 are arranged in close contact with the resin layer 113 with a gap 222 formed for each scintillator group 221. This suppresses the generation of stress near the interface between the scintillator and the resin layer 113 even if a temperature cycle or the like is performed after the radiation detection apparatus 100 is formed. As a result, the occurrence of artifacts due to the scintillator peeling off from the resin layer 113 is suppressed. Further, such an effect can be realized without increasing the number of process steps by adjusting the temperature during the formation of the scintillator layer 121.
 シンチレータ層121のシンチレータ群221の分割サイズは、均一である必要はない。また、図3に示されるように、基板111のシンチレータ層121が配された面に対する正射影において、複数のシンチレータ群221のそれぞれの大きさが、光電変換部112に配される複数の光電変換素子312が配されるピッチよりも小さくてもよい。また、シンチレータ層121が複数のシンチレータ群221に分割される数においても規定されない。 The division size of the scintillator group 221 of the scintillator layer 121 does not need to be uniform. Further, as shown in FIG. 3, in the orthogonal projection of the surface of the substrate 111 on which the scintillator layer 121 is arranged, the respective sizes of the plurality of scintillator groups 221 are equal to the plurality of photoelectric conversion units arranged in the photoelectric conversion unit 112. It may be smaller than the pitch at which the elements 312 are arranged. Further, the number of the scintillator layers 121 divided into a plurality of scintillator groups 221 is not specified.
 図4A~4Eは、シンチレータ層121が複数のシンチレータ群221分割される状態の例を示している。図4A~4Eでは、1つの光電変換素子312の上に配される複数のシンチレータ群221を示している。 4A to 4E show an example of a state in which the scintillator layer 121 is divided into a plurality of scintillator groups 221. 4A to 4E show a plurality of scintillator groups 221 arranged on one photoelectric conversion element 312.
 シンチレータ層を構成するシンチレータの柱状結晶が集まるシンチレータ群221は、図4Aに示されるように、シンチレータの樹脂層113との界面から界面と反対側の上面まで完全に分割されていなくてもよい。つまり、互いに隣り合うシンチレータ群221の間に配される間隙222は、シンチレータ層121のうち少なくとも樹脂層113の側の一部に配されていてもよい。したがって、それぞれのシンチレータ群221は、シンチレータ層121と樹脂層113との界面で、それぞれの群が規定され、シンチレータ層121の上面の側においてつながっていてもよい。シンチレータ層121のうち少なくとも樹脂層113の側の一部が、それぞれのシンチレータ群221に分割されることによって、温度サイクルなどによる応力の発生が抑制され、シンチレータが樹脂層113から剥がれてしまうことを抑制できる。 As shown in FIG. 4A, the scintillator group 221 in which the scintillator columnar crystals forming the scintillator layer do not have to be completely divided from the interface with the resin layer 113 of the scintillator to the upper surface opposite to the interface. That is, the gap 222 arranged between the scintillator groups 221 adjacent to each other may be arranged at least on a part of the scintillator layer 121 on the resin layer 113 side. Therefore, each scintillator group 221 may be defined at the interface between the scintillator layer 121 and the resin layer 113, and may be connected on the upper surface side of the scintillator layer 121. By dividing at least a part of the scintillator layer 121 on the resin layer 113 side into each scintillator group 221, generation of stress due to a temperature cycle or the like is suppressed and the scintillator is prevented from peeling off from the resin layer 113. Can be suppressed.
 また、シンチレータ群221は、図4Bに示されるように、シンチレータの樹脂層113との界面から界面と反対側の上面まで完全に、それぞれがセパレートされていてもよい。また、図4C、4Dに示されるように、分割されたシンチレータ群221の柱状結晶が、蒸着終了面である上面の側で、近接するように配されていてもよい。 Further, as shown in FIG. 4B, the scintillator group 221 may be completely separated from the interface with the resin layer 113 of the scintillator to the upper surface opposite to the interface. Further, as shown in FIGS. 4C and 4D, the columnar crystals of the divided scintillator group 221 may be arranged so as to be close to each other on the upper surface side which is the vapor deposition end surface.
 樹脂層113のうち間隙222の下に配されるシンチレータ群221に接しない部分は、図4A~4Dに示されるように、その一部が柱状結晶に相対するように薄く形成されていればよい。また、樹脂層113は、図4Eに示されるように、それぞれシンチレータ群221と接する部分同士が、互いに離れて存在していてもよい。図4A~4Eに示されるシンチレータ群221と樹脂層113との組み合わせは、どうのように組み合わせさられていてもよい。 As shown in FIGS. 4A to 4D, a portion of the resin layer 113 that is not in contact with the scintillator group 221 disposed under the gap 222 may be thinly formed so as to partially face the columnar crystal. .. Further, as shown in FIG. 4E, the resin layer 113 may have portions in contact with the scintillator group 221 separated from each other. The combination of the scintillator group 221 and the resin layer 113 shown in FIGS. 4A to 4E may be combined in any way.
 以下、実施例および比較例について説明する。 The following is a description of examples and comparative examples.
 実施例
 まず、図2Aに示されるように、表面に光電変換部112が形成された基板111を覆うように、樹脂材料層213を形成した。樹脂材料層213は、ニッカン工業株式会社製SAFSシート10μmを基板111の表面にラミネートすることによって仮圧着し、その後、160℃で1時間アニールすることによって硬化させ形成した。仮圧着する際のラミネート温度は100℃とした。
Example First, as shown in FIG. 2A, a resin material layer 213 was formed so as to cover the substrate 111 on the surface of which the photoelectric conversion unit 112 was formed. The resin material layer 213 was formed by laminating a 10 μm SAFS sheet manufactured by Nikkan Kogyo Co., Ltd. on the surface of the substrate 111 for provisional pressure bonding, and then annealed at 160° C. for 1 hour to be cured and formed. The lamination temperature at the time of temporary pressure bonding was 100°C.
 次いで、図2B、2Cに示されるように、蒸着法を用いてシンチレータ層121を形成した。具体的には、ヨウ化タリウムとヨウ化セシウムを共蒸着し、柱状結晶のシンチレータによって構成されるシンチレータ層121を形成した。また、このとき同時に、樹脂材料層213の硬化反応が進行することによって、樹脂層113が形成された。蒸着の開始時の温度は、樹脂材料層213を形成する際の最高温度である160℃以下の140℃とした。また、蒸着中の最高温度(蒸着終了時の温度)は、樹脂材料層213を形成する際の最高温度である160℃よりも高い210℃であった。 Next, as shown in FIGS. 2B and 2C, a scintillator layer 121 was formed using a vapor deposition method. Specifically, thallium iodide and cesium iodide were co-evaporated to form a scintillator layer 121 composed of columnar crystal scintillators. At the same time, the resin layer 113 was formed by the progress of the curing reaction of the resin material layer 213. The temperature at the start of vapor deposition was 140° C., which is 160° C. or lower which is the maximum temperature when forming the resin material layer 213. The maximum temperature during vapor deposition (temperature at the end of vapor deposition) was 210° C., which was higher than 160° C. which is the maximum temperature when forming the resin material layer 213.
 上述の条件で形成したシンチレータ層121の蒸着初期側の柱状結晶の走査型電子顕微鏡(SEM)像が図5Aに、樹脂層113のシンチレータ層121との接触表面のSEM像が図5Bに、それぞれ示される。図5Aに示されるように、シンチレータ層121には、それぞれシンチレータ群221と、互いに隣接するシンチレータ群221の間の間隙222と、が形成されていることが分かった。また、図5Bに示されるように、樹脂層113には、それぞれのシンチレータ群221に対応するように、凹凸形状が形成されていることが分かった。 5A shows a scanning electron microscope (SEM) image of columnar crystals on the initial stage of vapor deposition of the scintillator layer 121 formed under the above conditions, and FIG. 5B shows an SEM image of the contact surface of the resin layer 113 with the scintillator layer 121. Shown. As shown in FIG. 5A, it was found that the scintillator layers 121 each had a scintillator group 221, and a gap 222 between the scintillator groups 221 adjacent to each other. Further, as shown in FIG. 5B, it was found that the resin layer 113 was formed with uneven shapes corresponding to the respective scintillator groups 221.
 シンチレータ層121を形成した後、蒸着装置から基板111を取り出し、シンチレータ層121を覆うように反射層123を貼り付けることによって、図1Bに示されるような放射線検出装置100を形成した。反射層123は、予めPETの反射層保護層(不図示)に反射層123としてアルミニウム膜が形成されたフィルム状シートの反射層形成面に、熱溶融樹脂を含む結合層122を転写接着させた3層のフィルム状シートを準備した。この3層のフィルムシートを、シンチレータ層121を覆い且つ3層フィルムシートの外周が基板111にかかるように配し、ヒートローラーによって加熱押圧し結合層122の溶着によって固定した。 After forming the scintillator layer 121, the substrate 111 was taken out from the vapor deposition apparatus, and the reflection layer 123 was attached so as to cover the scintillator layer 121, thereby forming the radiation detection apparatus 100 as shown in FIG. 1B. The reflective layer 123 was obtained by transferring and bonding the bonding layer 122 containing a heat-melting resin to the reflective layer forming surface of the film-like sheet in which the aluminum film was formed as the reflective layer 123 on the reflective layer protective layer (not shown) of PET in advance. A three-layer film-like sheet was prepared. This three-layer film sheet was arranged so as to cover the scintillator layer 121 and the outer periphery of the three-layer film sheet to contact the substrate 111, and was heated and pressed by a heat roller and fixed by welding the bonding layer 122.
 第1比較例
 まず、表面に光電変換部112が形成された基板111を覆うように、シンチレータ層121を形成する前に樹脂層113を形成した。樹脂層113は、ポリイミドの樹脂層材料を塗布し、樹脂層材料を200℃で2時間硬化させることによって形成した。
First Comparative Example First, the resin layer 113 was formed before forming the scintillator layer 121 so as to cover the substrate 111 on the surface of which the photoelectric conversion unit 112 was formed. The resin layer 113 was formed by applying a polyimide resin layer material and curing the resin layer material at 200° C. for 2 hours.
 次いで、実施例と同様の条件でシンチレータ層121の形成および反射層123の形成を行った。シンチレータ層121の形成の前後で、樹脂層113の硬化状態(架橋状態)に変化はなかった。 Next, the scintillator layer 121 and the reflective layer 123 were formed under the same conditions as in the example. Before and after the formation of the scintillator layer 121, the cured state (crosslinked state) of the resin layer 113 did not change.
 第2比較例
 樹脂層113を形成せずに、表面に光電変換部112が形成された基板111を覆うように、シンチレータ層121を形成した。シンチレータ層121を形成した後の工程は、上述の実施例および第1実施例と同様である。
Second Comparative Example The scintillator layer 121 was formed so as to cover the substrate 111 on the surface of which the photoelectric conversion unit 112 was formed without forming the resin layer 113. The steps after forming the scintillator layer 121 are the same as those in the above-described embodiments and the first embodiment.
 それぞれ形成したシンチレータ層121に対して密着性を確認するためのピール試験を実施した。また、上述のように形成したそれぞれの放射線検出装置100に対して、ヒートサイクル(H/C)試験および光学伝達関数(MTF)の測定を行った。それぞれの評価を行った条件は、以下の通りである。 A peel test for confirming the adhesiveness was performed on each scintillator layer 121 formed. Further, the heat cycle (H/C) test and the measurement of the optical transfer function (MTF) were performed on each of the radiation detection devices 100 formed as described above. The conditions under which each evaluation was performed are as follows.
 ピール試験
 樹脂層113の上に形成されたシンチレータ層121の上面(樹脂層113との界面とは反対側の面)に、カッターナイフを用いて切込みを入れた。切込みを入れた際、樹脂層113からのシンチレータ層121を構成するシンチレータの剥離面積を比較した。
Peel test A notch was made using a cutter knife on the upper surface (the surface opposite to the interface with the resin layer 113) of the scintillator layer 121 formed on the resin layer 113. When the cuts were made, the peeled areas of the scintillator forming the scintillator layer 121 from the resin layer 113 were compared.
 H/C試験
 上述のように作製された放射線検出装置100を組み込んだ放射線撮像装置を恒温槽に投入し、50℃4時間、-30℃4時間を1つのサイクルとして、これを5回繰り返した。ヒートサイクルを繰り返した後、恒温槽を常温にて放射線撮像装置を取り出し、放射線画像を撮影し、試験前後でのアーチファクトの有無を観察した。
H/C test The radiation imaging apparatus incorporating the radiation detection apparatus 100 manufactured as described above was placed in a constant temperature bath, and this cycle was repeated 5 times with 50° C. for 4 hours and −30° C. for 4 hours as one cycle. .. After repeating the heat cycle, the radiation imaging device was taken out of the thermostatic chamber at room temperature, radiographic images were taken, and the presence or absence of artifacts before and after the test was observed.
 MTFの測定
 上述のように作製された放射線検出装置100を組み込んだ放射線撮像装置の放射線入射面側にMTFチャートを配置し、放射線(X線)を照射してMTFを測定した。測定ポイントは蒸着する際に、基板111を回転させた回転中心から100mm、150mm、200mmの位置とした。
Measurement of MTF The MTF chart was arranged on the radiation incident surface side of the radiation imaging apparatus incorporating the radiation detection apparatus 100 manufactured as described above, and radiation (X-ray) was irradiated to measure the MTF. The measurement points were 100 mm, 150 mm, and 200 mm from the center of rotation of the substrate 111 during vapor deposition.
 実施例の樹脂材料層213の形成条件および第1比較例の樹脂層113の形成条件を図6に示す。また、上述のそれぞれの評価の結果を図7に示す。実施例は、第1比較例と比較して、密着力、MTFともに高くなることが分かった。これは、樹脂層113の形成とシンチレータ層121の形成を同時に行うことによって、シンチレータ層121を構成するシンチレータの樹脂層113との界面付近での応力の発生が抑制されたためと考えられる。また、樹脂層113が配されていない第2比較例は、実施例と比較してシンチレータ層121の密着力が低下することが確認された。 FIG. 6 shows the forming conditions of the resin material layer 213 of the example and the forming conditions of the resin layer 113 of the first comparative example. Moreover, the result of each evaluation mentioned above is shown in FIG. It was found that the example has higher adhesion and MTF than the first comparative example. It is considered that this is because the formation of the resin layer 113 and the scintillator layer 121 at the same time suppressed generation of stress near the interface between the scintillator forming the scintillator layer 121 and the resin layer 113. It was also confirmed that the second comparative example in which the resin layer 113 was not arranged had a lower adhesive strength of the scintillator layer 121 as compared with the example.
 上述した本発明の実施形態に係る放射線検出装置100が組み込まれた放射線撮像装置800は、放射線検査装置などに代表される放射線検出システムSYSに適用することが可能である。この放射線検出システムSYSは、放射線検出装置100を含む放射線撮像装置800と、イメージプロセッサなどを含む信号処理装置830と、ディスプレイなどを含む表示装置840と、放射線を発生させるための放射線発生装置810とを含み構成されうる。図8は、放射線検出装置100が組み込まれた放射線撮像装置800を含む放射線検出システムSYSの概略構成の一例を示す図である。 The radiation imaging apparatus 800 incorporating the radiation detection apparatus 100 according to the above-described embodiment of the present invention can be applied to a radiation detection system SYS represented by a radiation inspection apparatus and the like. This radiation detection system SYS includes a radiation imaging device 800 including the radiation detection device 100, a signal processing device 830 including an image processor, a display device 840 including a display, and a radiation generation device 810 for generating radiation. Can be configured to include. FIG. 8 is a diagram showing an example of a schematic configuration of a radiation detection system SYS including a radiation imaging apparatus 800 in which the radiation detection apparatus 100 is incorporated.
 図8において、放射線発生装置810で発生した放射線(例えば、X線)は、患者などの被検者820の例えば胸部を透過し、放射線撮像装置800に入射する。入射した放射線には被検者820の体内部の情報が含まれている。放射線撮像装置800に組み込まれた放射線検出装置100では、入射した放射線に応じた電気的情報(電気信号)が得られる。その後、この情報はデジタル変換され、放射線検出装置100からの信号を処理する信号処理装置830(信号処理部)によって画像処理され、コントロールルーム(制御室)の表示装置840により検査結果として表示されうる。また、この情報は、電話、LAN、インターネットなどのネットワーク(伝送処理手段)によって遠隔地へ転送されうる。これによって、この情報をドクタールームなどの別の場所におけるディスプレイに検査結果として表示し、遠隔地の医師が診断することが可能である。また、この情報および検査結果を、例えば、光ディスクなどに保存することもできるし、フィルムプロセッサによってフィルムなどの記録媒体に記録することもできる。 In FIG. 8, radiation (for example, X-rays) generated by the radiation generator 810 passes through, for example, the chest of a subject 820 such as a patient and enters the radiation imaging apparatus 800. The incident radiation contains information on the inside of the body of the subject 820. The radiation detection apparatus 100 incorporated in the radiation imaging apparatus 800 can obtain electrical information (electrical signal) according to the incident radiation. Thereafter, this information is digitally converted, image-processed by the signal processing device 830 (signal processing unit) that processes the signal from the radiation detection device 100, and can be displayed as an inspection result by the display device 840 of the control room (control room). .. Moreover, this information can be transferred to a remote place by a network (transmission processing means) such as a telephone, a LAN, or the Internet. As a result, this information can be displayed as a test result on a display at another place such as a doctor room, and a doctor at a remote place can make a diagnosis. Further, this information and the inspection result can be stored in, for example, an optical disc, or can be recorded in a recording medium such as a film by a film processor.
 発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the following claims are attached to open the scope of the invention.
 本願は、2019年2月15日提出の日本国特許出願特願2019-025786を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 The present application claims priority based on Japanese Patent Application No. 2019-025786 filed on Feb. 15, 2019, and the entire contents thereof are incorporated herein.

Claims (13)

  1.  樹脂層の上にシンチレータ層が配されるシンチレータプレートの製造方法であって、
     基板の上に前記樹脂層を形成するための樹脂材料層を形成する第1工程と、
     前記樹脂材料層の上に蒸着法を用いて前記シンチレータ層を形成する第2工程と、
    を含み、
     前記第2工程において、前記シンチレータ層を構成するシンチレータの形成と共に、前記樹脂材料層の硬化反応が進行し前記樹脂層が形成され、
     前記シンチレータ層は、それぞれ前記シンチレータの1つ以上の柱状結晶によって構成される複数のシンチレータ群と、前記複数のシンチレータ群のうち互いに隣り合うシンチレータ群の間に配される間隙と、を含み、
     前記樹脂層は、前記複数のシンチレータ群と接する第1部分と、前記間隙の下に配され前記複数のシンチレータ群と接していない第2部分とを含み、
     前記第1部分の膜厚が、前記第2部分の膜厚よりも厚いことを特徴とするシンチレータプレートの製造方法。
    A method of manufacturing a scintillator plate in which a scintillator layer is arranged on a resin layer,
    A first step of forming a resin material layer for forming the resin layer on a substrate,
    A second step of forming the scintillator layer on the resin material layer using a vapor deposition method,
    Including
    In the second step, together with the formation of the scintillator forming the scintillator layer, a curing reaction of the resin material layer proceeds to form the resin layer,
    The scintillator layer includes a plurality of scintillator groups each constituted by one or more columnar crystals of the scintillator, and a gap arranged between scintillator groups adjacent to each other among the plurality of scintillator groups,
    The resin layer includes a first portion that is in contact with the plurality of scintillator groups, and a second portion that is disposed below the gap and is not in contact with the plurality of scintillator groups,
    The method of manufacturing a scintillator plate, wherein the film thickness of the first portion is thicker than the film thickness of the second portion.
  2.  前記第1工程において、基板の上に前記樹脂層を形成するための樹脂材料を配し、第1温度以下の温度で前記樹脂材料を硬化させることによって、前記樹脂材料層が形成され、
     前記第2工程において、前記シンチレータの形成を前記第1温度以下の温度で開始した後、前記第1温度よりも高く、かつ、第2温度以下の温度で前記シンチレータが形成されることを特徴とする請求項1に記載のシンチレータプレートの製造方法。
    In the first step, a resin material for forming the resin layer is arranged on a substrate, and the resin material layer is formed by curing the resin material at a temperature equal to or lower than a first temperature,
    In the second step, after the formation of the scintillator is started at a temperature equal to or lower than the first temperature, the scintillator is formed at a temperature higher than the first temperature and equal to or lower than a second temperature. The method for manufacturing a scintillator plate according to claim 1.
  3.  前記第2工程において、前記シンチレータの形成を開始する際の温度が、100℃以上かつ150℃以下であることを特徴とする請求項2に記載のシンチレータプレートの製造方法。 The method for producing a scintillator plate according to claim 2, wherein in the second step, the temperature at which the formation of the scintillator is started is 100° C. or higher and 150° C. or lower.
  4.  前記第2温度が、180℃以上かつ220℃以下であることを特徴とする請求項2または3に記載のシンチレータプレートの製造方法。 The method for producing a scintillator plate according to claim 2 or 3, wherein the second temperature is 180°C or higher and 220°C or lower.
  5.  前記間隙が、前記第2工程によって生成されることを特徴とする請求項1乃至4の何れか1項に記載のシンチレータプレートの製造方法。 The method for manufacturing a scintillator plate according to any one of claims 1 to 4, wherein the gap is generated in the second step.
  6.  前記間隙が、前記シンチレータ層のうち少なくとも前記樹脂層の側の一部に配されることを特徴とする請求項1乃至5の何れか1項に記載のシンチレータプレートの製造方法。 The method for manufacturing a scintillator plate according to any one of claims 1 to 5, wherein the gap is arranged at least on a part of the scintillator layer on the resin layer side.
  7.  前記樹脂層が、熱硬化性樹脂を含むことを特徴とする請求項1乃至6の何れか1項に記載のシンチレータプレートの製造方法。 The method for manufacturing a scintillator plate according to any one of claims 1 to 6, wherein the resin layer contains a thermosetting resin.
  8.  前記樹脂層の膜厚が、1μm以上かつ10μm以下であることを特徴とする請求項1乃至7の何れか1項に記載のシンチレータプレートの製造方法。 The method for producing a scintillator plate according to any one of claims 1 to 7, wherein the resin layer has a film thickness of 1 µm or more and 10 µm or less.
  9.  基板と、基板の上に配された樹脂層と、前記樹脂層の上に配されたシンチレータ層と、を含むシンチレータプレートであって、
     前記シンチレータ層は、それぞれ1つ以上のシンチレータの柱状結晶によって構成される複数のシンチレータ群と、前記複数のシンチレータ群のうち互いに隣り合うシンチレータ群の間に配される間隙と、を含み、
     前記樹脂層は、前記複数のシンチレータ群と接する第1部分と、前記間隙の下に配され前記複数のシンチレータ群と接していない第2部分とを含み、
     前記第1部分の膜厚が、前記第2部分の膜厚よりも厚いことを特徴とするシンチレータプレート。
    A scintillator plate including a substrate, a resin layer disposed on the substrate, and a scintillator layer disposed on the resin layer,
    The scintillator layer includes a plurality of scintillator groups each composed of one or more columnar crystals of scintillator, and a gap arranged between the scintillator groups adjacent to each other among the plurality of scintillator groups,
    The resin layer includes a first portion that is in contact with the plurality of scintillator groups, and a second portion that is disposed below the gap and is not in contact with the plurality of scintillator groups,
    The scintillator plate, wherein the film thickness of the first portion is thicker than the film thickness of the second portion.
  10.  請求項9に記載のシンチレータプレートと、
     前記シンチレータ層で放射線から変換された光を検出するための複数の光電変換素子と、
    を含むことを特徴とする放射線検出装置。
    A scintillator plate according to claim 9;
    A plurality of photoelectric conversion elements for detecting light converted from radiation in the scintillator layer,
    A radiation detecting apparatus comprising:
  11.  前記複数の光電変換素子が、前記基板に配されていることを特徴とする請求項10に記載の放射線検出装置。 The radiation detection apparatus according to claim 10, wherein the plurality of photoelectric conversion elements are arranged on the substrate.
  12.  前記基板の前記シンチレータ層が配された面に対する正射影において、前記複数のシンチレータ群のそれぞれの大きさが、前記複数の光電変換素子が配されるピッチよりも小さいことを特徴とする請求項10または11に記載の放射線検出装置。 11. The orthographic projection of the surface of the substrate on which the scintillator layer is arranged, each size of the plurality of scintillator groups is smaller than a pitch at which the plurality of photoelectric conversion elements are arranged. Or the radiation detection device according to item 11.
  13.  請求項10乃至12の何れか1項に記載の放射線検出装置と、
     前記放射線検出装置からの信号を処理する信号処理部と、
    を備えることを特徴とする放射線検出システム。
    A radiation detection apparatus according to claim 10,
    A signal processing unit for processing a signal from the radiation detection device,
    A radiation detection system comprising:
PCT/JP2019/051466 2019-02-15 2019-12-27 Method for producing scintillator plate, scintillator plate, radiation detection device and radiation detection system WO2020166224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-025786 2019-02-15
JP2019025786A JP2020134253A (en) 2019-02-15 2019-02-15 Method for manufacturing scintillator plate, scintillator plate, radiation detection device and radiation detection system

Publications (1)

Publication Number Publication Date
WO2020166224A1 true WO2020166224A1 (en) 2020-08-20

Family

ID=72044645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051466 WO2020166224A1 (en) 2019-02-15 2019-12-27 Method for producing scintillator plate, scintillator plate, radiation detection device and radiation detection system

Country Status (2)

Country Link
JP (1) JP2020134253A (en)
WO (1) WO2020166224A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7457640B2 (en) 2020-12-23 2024-03-28 浜松ホトニクス株式会社 Radiation detector and radiation detector manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031687A (en) * 2000-07-18 2002-01-31 Canon Inc Radiation detector
JP2009014526A (en) * 2007-07-05 2009-01-22 Konica Minolta Medical & Graphic Inc Radiation image conversion panel and method for manufacturing it
WO2011074249A1 (en) * 2009-12-18 2011-06-23 株式会社 東芝 Radiation detector and method for manufacturing same
JP2013015347A (en) * 2011-06-30 2013-01-24 Fujifilm Corp Radiation image detection device
JP2014059171A (en) * 2012-09-14 2014-04-03 Hamamatsu Photonics Kk Scintillator panel and radiation detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031687A (en) * 2000-07-18 2002-01-31 Canon Inc Radiation detector
JP2009014526A (en) * 2007-07-05 2009-01-22 Konica Minolta Medical & Graphic Inc Radiation image conversion panel and method for manufacturing it
WO2011074249A1 (en) * 2009-12-18 2011-06-23 株式会社 東芝 Radiation detector and method for manufacturing same
JP2013015347A (en) * 2011-06-30 2013-01-24 Fujifilm Corp Radiation image detection device
JP2014059171A (en) * 2012-09-14 2014-04-03 Hamamatsu Photonics Kk Scintillator panel and radiation detector

Also Published As

Publication number Publication date
JP2020134253A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
RU2408901C1 (en) Radiation detecting device and system
US20130026377A1 (en) Radiation detection apparatus, manufacturing method thereof, and radiation detection system
US7642519B2 (en) Radiation detecting apparatus and method for manufacturing the same
JP6310216B2 (en) Radiation detection apparatus, manufacturing method thereof, and radiation detection system
JP2006052986A (en) Radiation detector, its manufacturing method, and radiation imaging system
US20140091225A1 (en) Radiation imaging apparatus, radiation imaging system, and radiation imaging apparatus manufacturing method
US20110147602A1 (en) Radiographic imaging apparatus, radiographic imaging system, and method of producing radiographic imaging apparatus
JP2014181994A (en) Radiation detection device and radiation detection system
JP2005172511A (en) Radiation detector, its manufacturing method, and radiation imaging systems
JP2004061115A (en) Scintillator panel, radiation detection device, and radiation imaging system
WO2020166224A1 (en) Method for producing scintillator plate, scintillator plate, radiation detection device and radiation detection system
JP2007057428A (en) Radiation detecting device and radiation imaging system
JP2003262678A (en) Scintillator panel for radiation detector, and manufacturing method thereof
JP2004061116A (en) Radiation detector and system
JP6555955B2 (en) Radiation detection apparatus and radiation imaging system
JP2004335870A (en) Radiation detection device
JP2005114518A (en) Radiation detection device and its manufacturing method
JP6514477B2 (en) Radiation detection apparatus and imaging system
JP6995666B2 (en) Radiation imaging device and radiation imaging system
JP2020204488A (en) Radiation detection assembly and radiation photographing system
JP2006052979A (en) Radiation detection device and scintillator panel
JP2006343277A (en) Radiation detection device and radiation imaging system
JP7325295B2 (en) Scintillator panel, radiation detector, method for manufacturing scintillator panel, and method for manufacturing radiation detector
JP6077787B2 (en) Radiation imaging apparatus and radiation imaging system
JP2004317167A (en) Radiation detection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915264

Country of ref document: EP

Kind code of ref document: A1