WO2020165934A1 - Distance measurement device and distance measurement method - Google Patents

Distance measurement device and distance measurement method Download PDF

Info

Publication number
WO2020165934A1
WO2020165934A1 PCT/JP2019/004815 JP2019004815W WO2020165934A1 WO 2020165934 A1 WO2020165934 A1 WO 2020165934A1 JP 2019004815 W JP2019004815 W JP 2019004815W WO 2020165934 A1 WO2020165934 A1 WO 2020165934A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
vehicle
distance
measuring device
distance measuring
Prior art date
Application number
PCT/JP2019/004815
Other languages
French (fr)
Japanese (ja)
Inventor
有史 松田
下谷 光生
中村 好孝
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/004815 priority Critical patent/WO2020165934A1/en
Priority to JP2020571727A priority patent/JP6869452B2/en
Publication of WO2020165934A1 publication Critical patent/WO2020165934A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a distance measuring device and a distance measuring method capable of measuring a distance between a first moving body and a second moving body located in front of or behind the first moving body.
  • An object of the present invention is to provide a technique capable of measuring the distance between the second mobile body and the second mobile body.
  • a distance measuring device relates to a first moving body and a second moving body positioned in front of or behind the first moving body, in a direction in which the position of the second moving body is viewed from the first moving body, and A first angle formed by a predetermined reference direction viewed from the moving body is acquired, and at the position of the second moving body on the first and second lane markings around the first moving body and the second moving body.
  • An acquisition unit that acquires the second and third angles formed by the reference direction and the direction in which the corresponding first and second positions are viewed from the first moving body, and the first, second, and third acquired by the acquisition unit.
  • a control unit that obtains the inter-moving body distance, which is the distance between the first moving body and the second moving body, based on the angle and the inter-division line distance that is the distance between the first and second division lines.
  • the inter-moving body distance is obtained based on the first to third angles and the division line distance.
  • FIG. 3 is a block diagram showing the configuration of the distance measuring device according to the first embodiment.
  • FIG. 6 is a diagram for explaining first to third angles according to the first embodiment.
  • FIG. 6 is a diagram for explaining first to third angles according to the first embodiment.
  • 5 is a flowchart showing an operation of the distance measuring device according to the first embodiment.
  • FIG. 6 is a block diagram showing a configuration of a distance measuring device according to a second embodiment.
  • FIG. 9 is a diagram for explaining fourth and fifth angles according to the second embodiment.
  • FIG. 9 is a diagram for explaining fourth and fifth angles according to the second embodiment.
  • 7 is a flowchart showing an operation of the distance measuring device according to the second embodiment.
  • FIG. 11 is a diagram for explaining first to third angles according to a modified example of the second embodiment.
  • FIG. 11 is a diagram for explaining first to third angles according to a modified example of the second embodiment.
  • 9 is a flowchart showing the operation of the distance measuring device according to the modification of the second embodiment.
  • FIG. 9 is a block diagram showing a configuration of a distance measuring device according to a third embodiment.
  • 9 is a flowchart showing the operation of the distance measuring device according to the third embodiment.
  • FIG. 11 is a diagram showing a display example of the distance measuring device according to the third embodiment.
  • FIG. 11 is a diagram showing a display example of the distance measuring device according to the third embodiment.
  • FIG. 9 is a block diagram showing a configuration of a distance measuring device according to a fourth embodiment.
  • FIG. 13 is a block diagram showing a configuration of a distance measuring device according to a fifth embodiment.
  • the distance measuring device measures the inter-moving body distance, which is the distance between the first moving body and the second moving body located in front of or behind the first moving body.
  • the first moving body and the second moving body includes, for example, a vehicle, a motorcycle, a person, and the like.
  • the first moving body is a vehicle equipped with a distance measuring device and the second moving body is a vehicle or a motorcycle located behind the first moving body.
  • the vehicle that is the first moving body may be referred to as “own vehicle”, and the vehicle or the motorcycle that is the second moving body may be referred to as “other vehicle” or “bike”.
  • FIG. 1 is a block diagram showing the configuration of the distance measuring device 1 according to the first embodiment.
  • the distance measuring device 1 of FIG. 1 includes an acquisition unit 11 and a control unit 12.
  • the acquisition unit 11 includes a camera provided in place of the side mirror of the own vehicle. And the acquisition part 11 acquires a 1st angle, a 2nd angle, and a 3rd angle based on the picked-up image which is the image which imaged the back of the own vehicle with the said camera.
  • FIG. 2 and 3 are diagrams for explaining the first angle, the second angle, and the third angle.
  • FIG. 2 is a schematic diagram of a captured image captured by a camera
  • FIG. 3 is a top view showing a state around the vehicle when the captured image of FIG. 2 is obtained.
  • each of the first lane marking 34 and the second lane marking 35 around the own vehicle 31 and the other vehicle 32 is, for example, a lane marking below the own vehicle 31 and immediately adjacent to the other vehicle 32, below the other vehicle 32, and below the own vehicle 31. It includes the lane markings immediately adjacent thereto, the lane markings immediately adjacent to the own vehicle 31 and the other vehicle 32, and the lane markings adjacent to some of these lane markings.
  • the lane markings include, for example, a white solid line, a white broken line, and a yellow solid line attached to the road.
  • the direction from the position of the camera 31a that captures the captured image to the position directly behind the vehicle 31 is defined in advance as a reference direction.
  • An angle based on the reference direction is associated in advance with each position on the captured image in FIG. 2, and the acquisition unit 11 uses the correspondence relationship to determine the reference direction from the position on the captured image. It is possible to calculate angles such as the first to third angles ⁇ 1 to ⁇ 3 of FIG.
  • the first angle ⁇ 1 is an angle formed by the direction in which the position of the other vehicle 32 is viewed from the own vehicle 31 and the reference direction.
  • the position of the other vehicle 32 here may be a position of an arbitrary portion of the other vehicle 32 in the captured image.
  • the second angle ⁇ 2 is an angle formed by the direction in which the first position 34a is viewed from the host vehicle 31 and the reference direction.
  • the first position 34a is a position corresponding to the position of the other vehicle 32 on the first lane marking 34.
  • the first position 34a is a position of a point where the first lane marking 34 intersects with a horizontal straight line passing through a part (lower part of the body) of the other vehicle 32 in the captured image of FIG.
  • the position is not limited to this, and may be a position close to the position.
  • the third angle ⁇ 3 is an angle formed by the direction in which the second position 35a is viewed from the host vehicle 31 and the reference direction.
  • the second position 35a is a position on the second lane marking 35 that corresponds to the position of the other vehicle 32.
  • the second position 35a is the position of the point where the second lane marking 35 intersects with the horizontal straight line passing through a part (lower part of the body) of the other vehicle 32 in the captured image of FIG.
  • the position is not limited to this, and may be a position close to the position.
  • the acquisition unit 11 is composed of a camera that captures the rear of the vehicle and an arithmetic unit that acquires the first to third angles ⁇ 1 to ⁇ 3 based on the images captured by the camera.
  • the acquisition unit 11 may be configured by an interface that acquires the calculation result (first to third angles ⁇ 1 to ⁇ 3 ) from the camera without performing image capturing and angle calculation.
  • the acquisition unit 11 is an interface that acquires an image captured by the camera. It may be configured by a calculation unit that calculates the first to third angles ⁇ 1 to ⁇ 3 from the image.
  • the control unit 12 is a division that is the distance between the first division line 34 and the second division line 35 and the first angle ⁇ 1 , the second angle ⁇ 2, and the third angle ⁇ 3 acquired by the acquisition unit 11.
  • the distance d between the moving bodies which is the distance between the own vehicle 31 and the other vehicle 32, is obtained based on the line distance l tl .
  • the following expressions (1) and (2) are established.
  • x in the formula is a length when the inter-moving object distance d is projected on a straight line in the reference direction.
  • the control unit 12 applies the first angle ⁇ 1 , the second angle ⁇ 2, and the third angle ⁇ 3 acquired by the acquisition unit 11 to the equation (3), and the inter-compartment line distance l of the equation (3).
  • the inter-moving object distance d is obtained.
  • the method by which the control unit 12 obtains the inter-moving body distance d is not limited to this.
  • the control unit 12 does not obtain the inter-moving body distance d using the equation (3), but uses the table of the first to third angles ⁇ 1 to ⁇ 3 and the inter-moving body distance d The distance d may be obtained. Further, as described in the second embodiment and the like, the distance between lane markings l tl may be appropriately changed.
  • FIG. 4 is a flowchart showing the operation of the distance measuring device 1 according to the first embodiment. Note that this operation is performed any time after the power of the distance measuring device 1 is turned on, for example.
  • step S1 the acquisition unit 11 acquires a captured image and determines whether or not another vehicle exists in the captured image. If it is determined that another vehicle exists, the process proceeds to step S2, and if it is determined that no other vehicle exists, the operation of FIG. 4 ends.
  • step S2 the acquisition unit 11 acquires the first to third angles ⁇ 1 to ⁇ 3 .
  • step S3 the control unit 12 determines the inter-moving object distance d based on the first to third angles ⁇ 1 to ⁇ 3 acquired by the acquisition unit 11 and the predetermined division line distance l tl. Ask. Then, the operation of FIG. 4 ends.
  • the distance measuring device 1 determines the inter-moving body distance d based on the first to third angles ⁇ 1 to ⁇ 3 and the lane marking distance l tl . According to such a configuration, even when the other vehicle 33 cannot see at least one end of the other vehicle 32 in the vehicle width direction as shown in FIGS. The distance d between the moving bodies with the vehicle 32 can be obtained.
  • the first to third angles ⁇ 1 to ⁇ 3 are acquired based on the image captured behind the vehicle.
  • the second moving body is described as being located behind the own vehicle, but the present invention is not limited to this.
  • the second moving body may be located in front of the own vehicle.
  • FIG. 5 is a block diagram showing the configuration of the distance measuring device 1 according to the second embodiment of the present invention.
  • the same or similar reference numerals are given to the same or similar constituent elements to the above-described constituent elements, and different constituent elements will be mainly described.
  • the distance measuring device 1 of FIG. 5 is connected to the camera 31a and the vehicle position detecting device 52.
  • the camera 31a photographs the rear of the vehicle as in the first embodiment.
  • a monocular camera, for example, is used as the camera 31a.
  • the own vehicle position detection device 52 detects the position of the own vehicle.
  • a GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • various sensors such as a gyro sensor are used.
  • the distance measuring device 1 of FIG. 5 includes an image input interface (I/F) unit 11a, an analysis information acquisition unit 11b, a position acquisition unit 11c, a control unit 12, a road map database (DB) 13, and a vehicle database. (DB) 14.
  • the image input I/F unit 11a, the analysis information acquisition unit 11b, and the position acquisition unit 11c are included in the concept of the acquisition unit 11 in FIG.
  • the image captured by the camera 31a is input to the image input I/F unit 11a.
  • a vehicle whose first and second ends in the vehicle width direction can be seen from the host vehicle is referred to as an “exposed vehicle”, the first end is a “near end” near the host vehicle, and the second end is the host vehicle.
  • the description will be given assuming that the "far end" is far from the vehicle.
  • the analysis information acquisition unit 11b uses the first to the other images based on the captured image.
  • the third angles ⁇ 1 to ⁇ 3 are acquired. That is, when the other vehicle in the captured image input to the image input I/F unit 11a is a vehicle in which at least one of the near end and the far end in the vehicle width direction cannot be seen, the analysis information acquisition unit 11b causes the captured image to be captured. First to third angles ⁇ 1 to ⁇ 3 are acquired based on the image.
  • the analysis information acquisition unit 11b determines the fourth angle ⁇ 4 and the fifth angle ⁇ 5 based on the captured image. get.
  • FIGS. 6 and 7 are views corresponding to FIGS. 2 and 3, respectively.
  • the fourth angle ⁇ 4 is an angle formed by the near end of the other vehicle 36 viewed from the own vehicle 31 and the reference direction.
  • the fifth angle ⁇ 5 is an angle formed by the far end of the other vehicle 36 viewed from the own vehicle 31 and the reference direction.
  • the analysis information acquisition unit 11b of FIG. 5 captures the exposed vehicle image and the vehicle type stored in the vehicle DB 14 described later.
  • the vehicle type of the exposed vehicle is also acquired by comparing with the image of the vehicle.
  • the position acquisition unit 11c acquires the position of the vehicle detected by the vehicle position detection device 52.
  • the position acquisition unit 11c is configured by the interface of the vehicle position detection device 52, but is not limited to this, and may be configured by the vehicle position detection device 52.
  • the road map DB 13 stores information such as the distance between road lanes and the shape of the road.
  • the position of the vehicle and the distance between the two lane markings are stored in advance in the road map DB 13 in association with each other.
  • the vehicle DB 14 stores images of vehicles classified by vehicle type, and information such as the vehicle width of the vehicle.
  • the vehicle type of the vehicle and the vehicle width of the vehicle are stored in advance in the vehicle DB 14 in association with each other.
  • the control unit 12 determines the first to third angles ⁇ 1 to ⁇ 3 and the sections as in the first embodiment.
  • the distance d between the moving bodies is obtained based on the line distance l tl .
  • the control part 12 specifies the distance between two suitable lane markings from the road map DB13 based on the position acquired by the position acquisition part 11c, and sets the said distance between lane markings. Used as the distance l tl .
  • the control unit 12 controls the fourth and fifth angles ⁇ 4 and ⁇ 5 and the exposed vehicle (other vehicle 36). Based on the vehicle width l v , the inter-moving body distance d that is the distance between the host vehicle 31 and the exposed vehicle (other vehicle 36) is obtained.
  • x in the formula is a length when the inter-moving object distance d is projected on a straight line in the reference direction.
  • the control unit 12 specifies the vehicle width from the vehicle DB 14 based on the vehicle type acquired by the analysis information acquisition unit 11b, and uses the vehicle width as the vehicle width l v of the exposed vehicle. Then, the control unit 12 applies the fourth and fifth angles ⁇ 4 and ⁇ 5 acquired by the analysis information acquisition unit 11b to the formula (5), and the vehicle width l v of the exposed vehicle is calculated using the formula (5). Then, the inter-moving body distance d is obtained.
  • the method by which the control unit 12 obtains the inter-moving body distance d is not limited to this.
  • control unit 12 does not calculate the inter-moving body distance d using the equation (5), but uses the table of the fourth and fifth angles ⁇ 4 , ⁇ 5 and the inter-moving body distance d to calculate the inter-moving body distance d.
  • the distance d may be obtained.
  • the vehicle width l v of the exposed vehicle may be a predetermined fixed value.
  • FIG. 8 is a flowchart showing the operation of the distance measuring device 1 according to the second embodiment. Note that this operation is performed any time after the power of the distance measuring device 1 is turned on, for example.
  • step S11 the image input I/F unit 11a acquires a captured image, and the analysis information acquisition unit 11b determines whether or not another vehicle exists in the captured image. If it is determined that another vehicle exists, the process proceeds to step S12, and if it is determined that no other vehicle exists, the operation of FIG. 8 ends.
  • step S12 the analysis information acquisition unit 11b determines whether the other vehicle is an exposed vehicle. When it is determined that the other vehicle is an exposed vehicle, the process proceeds to step S13, and when it is determined that the other vehicle is not the exposed vehicle, the process proceeds to step S15.
  • step S13 the analysis information acquisition unit 11b acquires the vehicle type of the exposed vehicle by comparing the captured image of the exposed vehicle with the image of the vehicle of the vehicle type stored in the vehicle DB 14.
  • the control unit 12 identifies the vehicle width corresponding to the acquired vehicle type from the vehicle DB 14, and uses the vehicle width as the vehicle width l v of the exposed vehicle.
  • step S14 the analysis information acquisition unit 11b acquires the fourth and fifth angles ⁇ 4 and ⁇ 5 . Then, the control unit 12, the fourth and fifth angle theta 4 is acquired, and theta 5, obtains the mobile distance d on the basis of the vehicle width l v exposure vehicle. Then, the operation of FIG. 8 ends.
  • step S12 the analysis information acquisition unit 11b determines whether two lane markings closest to the other vehicle are visible in the captured image acquired by the image input I/F unit 11a. Determine whether. If both of the two lane markings are visible, the process proceeds to step S16, and if not, the process proceeds to step S18.
  • step S16 the position acquisition unit 11c acquires the position of the vehicle.
  • the control unit 12 identifies the distance between the two lane markings closest to the other vehicle from the road map DB 13 based on the acquired position and the captured image, and sets the distance as the lane marking distance l tl. To use.
  • step S17 the analysis information acquisition unit 11b acquires the first to third angles ⁇ 1 to ⁇ 3 . Then, the control unit 12 obtains the inter-moving body distance d based on the acquired first to third angles ⁇ 1 to ⁇ 3 and the division line distance l tl . Then, the operation of FIG. 8 ends.
  • step S18 the position acquisition unit 11c acquires the position of the own vehicle. Based on the acquired position, the control unit 12 identifies the distance between the two lane markings closest to the position from the road map DB 13 , and uses this distance as the lane marking distance ltl .
  • step S19 the analysis information acquisition unit 11b acquires the first to third angles ⁇ 1 to ⁇ 3 . Then, the control unit 12 obtains the inter-moving body distance d based on the acquired first to third angles ⁇ 1 to ⁇ 3 and the division line distance l tl . Then, the operation of FIG. 8 ends.
  • the distance measuring device 1 according to the second embodiment as described above is based on the fourth and fifth angles ⁇ 4 and ⁇ 5 and the vehicle width l v of the exposed vehicle when the other vehicle is an exposed vehicle. Then, the inter-moving body distance d is obtained. According to such a configuration, although the angle is acquired by the same method as in the first embodiment, the inter-moving object distance d can be obtained by a method different from that in the first embodiment.
  • the distance based on the position acquired by the position acquisition unit 11c is used as the partition line distance l tl .
  • the partition line distance l tl it is possible to optimize the division line distance l tl , and thus it is possible to improve the accuracy of the inter-moving body distance d.
  • the vehicle width based on the vehicle type acquired by the analysis information acquisition unit 11b is used as the vehicle width l v of the exposed vehicle.
  • the vehicle width l v of the exposed vehicle can be optimized, and thus the accuracy of the inter-moving body distance d can be increased.
  • the second moving body is described as another vehicle, but may be a motorcycle.
  • 9 and 10 are views corresponding to FIGS. 2 and 3, respectively.
  • the analysis information acquisition unit 11b operates as shown in FIG.
  • First to third angles ⁇ 1 to ⁇ 3 of the motorcycle 37 of FIG. 10 are acquired.
  • the first angle ⁇ 1 is an angle formed by the position of the tire of the motorcycle 37 viewed from the vehicle 31 and the reference direction.
  • the control unit 12 determines the distance between the host vehicle 31 and the motorcycle 37 based on the first to third angles ⁇ 1 to ⁇ 3 acquired by the analysis information acquisition unit 11b and the lane marking distance l tl. A distance d between moving objects is calculated.
  • FIG. 11 is a flowchart showing the operation of the distance measuring device 1 according to this modification. Note that this operation is performed any time after the power of the distance measuring device 1 is turned on, for example.
  • step S21 the image input I/F unit 11a acquires a captured image, and the analysis information acquisition unit 11b determines whether or not a moving object is present in the captured image.
  • the process proceeds to step S22, and when it is determined that the moving body does not exist, the operation of FIG. 11 ends.
  • step S22 the analysis information acquisition unit 11b determines whether the moving body is a motorcycle or a vehicle. When it is determined that the moving body is a motorcycle, the process proceeds to step S23. When it is determined that the moving body is a vehicle, the process proceeds to step S11 of FIG. 8 and the same operation as the operation of FIG. 8 described in the second embodiment is performed.
  • step S23 the position acquisition unit 11c acquires the position of the own vehicle.
  • the control unit 12 identifies the distance between the two lane markings closest to the motorcycle from the road map DB 13 based on the acquired position and the captured image, and uses this distance as the lane marking distance l tl. ..
  • step S24 the analysis information acquisition unit 11b acquires the first to third angles ⁇ 1 to ⁇ 3 . Then, the control unit 12 obtains the inter-moving body distance d based on the acquired first to third angles ⁇ 1 to ⁇ 3 and the division line distance l tl . Then, the operation of FIG. 11 ends.
  • the distance measuring device 1 acquires the first to third angles ⁇ 1 to ⁇ 3 when the moving body is a motorcycle, and the acquired first to third angles ⁇ 1 to The inter-moving body distance d is obtained based on ⁇ 3 and the inter-division line distance l tl .
  • this modification can be applied to the first embodiment and the third and subsequent embodiments described later.
  • FIG. 12 is a block diagram showing the configuration of the distance measuring device 1 according to the third embodiment of the present invention.
  • the same or similar reference numerals are given to the constituent elements that are the same as or similar to the constituent elements described above, and different constituent elements will be mainly described.
  • the distance measuring device 1 in FIG. 12 is connected to an image display device 53 which is a display device.
  • the image display device 53 is provided, for example, on a dashboard or an instrument panel of the vehicle.
  • the configuration of the distance measuring device 1 in FIG. 12 is the same as the configuration of the distance measuring device 1 in FIG. 5 with an image output interface (I/F) unit 15 added.
  • the control unit 12 is configured to control the image display device 53 via the image output I/F unit 15. Specifically, the control unit 12 causes the image display device 53 to display a mirror image of the captured image. As a result, the image display device 53 can display the same image as the image displayed on the conventional side mirror.
  • the control unit 12 performs control to display the other vehicle (second moving body) in the mirror image and the obtained inter-moving body distance d on the image display device 53 in association with each other.
  • FIG. 13 is a flowchart showing the operation of the distance measuring device 1 according to the third embodiment.
  • the operation of FIG. 13 is similar to the operation of FIG. 8 with steps S31, S32, and S33 added. Therefore, steps S31, S32, and S33 will be mainly described below.
  • step S31 after step S14, the control unit 12 causes the image display device 53 to display the other vehicle and the obtained inter-moving body distance d in association with each other.
  • FIG. 14 is a diagram showing a display example of the image display device 53 in this step S31, and is a diagram corresponding to FIG. In the display example of FIG. 14, the own vehicle 53a, the other vehicle 53b, the inter-moving body distance 53c that is the distance between the own vehicle 53a and the other vehicle 53b, the fourth and fifth angles ⁇ 4 of FIG. A display object 53d indicating the position where ⁇ 5 is detected is displayed.
  • the control unit 12 obtains the inter-moving body distance for each of the other vehicles, displays the inter-moving body distance closer to the other vehicle corresponding to the inter-moving body distance, and displays an image. It may be displayed on the device 53. Further, the control unit 12 may cause the image display device 53 to display a line connecting another vehicle corresponding to the inter-moving body distance and the inter-moving body distance. After step S31, the operation of FIG. 13 ends.
  • step S32 the control unit 12 causes the image display device 53 to display the other vehicle and the obtained inter-moving body distance d in association with each other.
  • FIG. 15 is a diagram showing a display example of the image display device 53 in this step S32, and is a diagram corresponding to FIG.
  • the own vehicle 53a, the other vehicles 53e and 53f, the inter-moving body distance 53g that is the distance between the own vehicle 53a and the other vehicle 53e, and the first angle ⁇ 1 of FIG. 2 are detected.
  • a display object 53h indicating the moved position and a display object 53i indicating the position where the second and third angles ⁇ 2 and ⁇ 3 are detected are displayed.
  • the other vehicle corresponding to the distance between the moving bodies may be displayed on the image display device 53 by bringing the distance between the moving bodies closer to each other.
  • a line connecting the other vehicle and the distance between the moving bodies may be displayed on the image display device 53.
  • step S33 after step S17, the control unit 12 causes the image display device 53 to display the other vehicle and the obtained inter-moving body distance d in association with each other.
  • the display example of step S33 is the same as the display example (FIG. 15) of the image display device 53 in step S32.
  • the distance measuring device 1 according to the third embodiment as described above performs control to cause the image display device 53 to display another vehicle and the distance between moving bodies in association with each other. With such a configuration, the driver can easily understand which inter-moving body distance corresponds to which other vehicle.
  • the control unit 12 may perform control to display a warning on the image display device 53 based on the distance between moving bodies.
  • the control unit 12 may cause the image display device 53 to display a warning when the inter-moving body distance becomes equal to or less than a threshold value.
  • the threshold value may be a predetermined fixed value, or may be changed so as to increase as the traveling speed of the host vehicle increases. According to such a distance measuring device 1, the driver can know in advance the possibility of collision between the own vehicle and another vehicle.
  • FIG. 16 is a block diagram showing the configuration of the distance measuring device 1 according to the fourth embodiment of the present invention.
  • the same or similar reference numerals are given to the same or similar constituent elements as the above-described constituent elements, and different constituent elements will be mainly described.
  • the distance measuring device 1 of FIG. 16 is connected to a wireless communication device 55 capable of communicating with the cloud server 54.
  • the configuration of the distance measuring device 1 of FIG. 16 is the same as the configuration of the distance measuring device 1 of FIG. 12 except that the communication interface (I/F) unit 16 is added and the road map DB 13 and the vehicle DB 14 are deleted from the configuration. is there.
  • the control unit 12 is configured to be communicable with the cloud server 54 by controlling the wireless communication device 55 via the communication I/F unit 16.
  • the cloud server 54 includes a road map DB 54a similar to the road map DB 13. That is, in the fourth embodiment, in the cloud server 54 outside the host vehicle, the position of the host vehicle and the distance between the two lane markings are associated with each other in advance.
  • the road map DB 54a is updated at any time.
  • the cloud server 54 also includes a vehicle DB 54b similar to the vehicle DB 14. That is, in the fourth embodiment, in the cloud server 54 outside the host vehicle, the vehicle type of the vehicle and the vehicle width of the vehicle are associated in advance. The vehicle DB 54b is updated at any time.
  • the distance measuring device 1 according to the fourth embodiment as described above can use the information in the road map DB 54a and the vehicle DB 54b by performing wireless communication with the cloud server 54. As a result, it can be expected that the memory of the distance measuring device 1 mounted on the own vehicle will be reduced and the updated information will be used.
  • the cloud server 54 includes the road map DB 54a and the vehicle DB 54b, but the present invention is not limited to this.
  • the cloud server 54 may include one of the road map DB 54a and the vehicle DB 54b, and the distance measuring device 1 may include the other.
  • FIG. 17 is a block diagram showing the configuration of the distance measuring device 1 according to the fifth embodiment of the present invention.
  • the same or similar constituent elements as those described above are designated by the same or similar reference numerals, and different constituent elements will be mainly described.
  • the distance measuring device 1 of FIG. 17 is connected to a communication device 56 capable of communicating with the outside of the distance measuring device 1.
  • the control unit 12 controls the communication device 56 via the communication I/F unit 16 to set the inter-moving object distance d from the communication device 56 to the outside of the distance measuring device 1 by at least one of wired and wireless. Control to send via.
  • a device having an auto cruise function provided in the own vehicle, a display device other than the image display device 53, a server outside the own vehicle, and the like are included.
  • the acquisition unit 11 and the control unit 12 of FIG. 1 described above are hereinafter referred to as “acquisition unit 11 and the like”.
  • the acquisition unit 11 and the like are realized by the processing circuit 81 shown in FIG. That is, the processing circuit 81 controls the acquisition unit 11 that acquires the first to third angles, and the inter-moving body distance based on the first to third angles and the inter-division line distance acquired by the acquisition unit 11. And a section 12.
  • Dedicated hardware may be applied to the processing circuit 81, or a processor that executes a program stored in the memory may be applied.
  • the processor corresponds to, for example, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the processing circuit 81 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate). Array), or a combination of these.
  • Each function of each unit such as the acquisition unit 11 may be realized by a circuit in which processing circuits are dispersed, or may be realized by a single processing circuit by combining the functions of each unit.
  • the processing circuit 81 When the processing circuit 81 is a processor, the functions of the acquisition unit 11 and the like are realized by combination with software and the like.
  • the software and the like correspond to, for example, software, firmware, or software and firmware.
  • Software and the like are described as programs and stored in the memory.
  • the processor 82 applied to the processing circuit 81 realizes the function of each unit by reading and executing the program stored in the memory 83. That is, the distance measuring device 1, when executed by the processing circuit 81, acquires the first to third angles, and the moving body based on the acquired first to third angles and the distances between the marking lines. And a memory 83 for storing a program that will be executed as a result.
  • the memory 83 is, for example, a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an EPROM (ErasableProgrammableReadOnlyMemory), an EEPROM (ElectricallyErasableProgrammableReadOnlyMemory), or the like. It may be volatile semiconductor memory, HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), its drive device, or any storage medium used in the future. May be.
  • each function of the acquisition unit 11 and the like is realized by either hardware or software.
  • the configuration is not limited to this, and a configuration in which a part of the acquisition unit 11 or the like is realized by dedicated hardware and another part is realized by software or the like may be used.
  • the processing circuit 81 as a processor 82 reads a program stored in the memory 83. It is possible to realize the function by executing it.
  • the processing circuit 81 can realize each function described above by hardware, software, etc., or a combination thereof.
  • the distance measuring device 1 described above includes at least a vehicle device such as a PND (Portable Navigation Device) and a navigation device, a communication terminal including a mobile terminal such as a mobile phone, a smartphone and a tablet, and a vehicle device and a communication terminal.
  • a vehicle device such as a PND (Portable Navigation Device) and a navigation device
  • a communication terminal including a mobile terminal such as a mobile phone, a smartphone and a tablet
  • a vehicle device and a communication terminal a communication terminal constructed as a system by appropriately combining the functions of applications installed in one and a server.
  • each function or each constituent element of the distance measuring device 1 described above may be distributed and arranged in each device that constructs the system, or may be concentrated in any one device. Good.
  • FIG. 20 is a block diagram showing the configuration of the server 91 according to this modification.
  • the server 91 of FIG. 20 includes a communication unit 91a and a control unit 91b, and can perform wireless communication with a vehicle device 93 such as a navigation device of the vehicle 92.
  • a vehicle device 93 such as a navigation device of the vehicle 92.
  • the communication unit 91a which is an acquisition unit, receives the first to third angles acquired by the vehicle device 93 by performing wireless communication with the vehicle device 93.
  • the control unit 91b has a function similar to that of the control unit 12 in FIG. 1 when a processor (not shown) of the server 91 executes a program stored in a memory (not shown) of the server 91. That is, the control unit 91b calculates the inter-moving body distance based on the first to third angles and the inter-division line distance received by the communication unit 91a. Then, the communication unit 91a transmits the inter-moving body distance obtained by the control unit 91b to the vehicle device 93. According to the server 91 configured in this way, the same effect as that of the distance measuring device 1 described in the first embodiment can be obtained.
  • FIG. 21 is a block diagram showing the configuration of the communication terminal 96 according to this modification.
  • the communication terminal 96 of FIG. 21 includes a communication unit 96a similar to the communication unit 91a and a control unit 96b similar to the control unit 91b, and can perform wireless communication with the vehicle device 98 of the vehicle 97.
  • the communication terminal 96 is, for example, a mobile terminal such as a mobile phone, a smartphone, or a tablet carried by a driver of the vehicle 97. According to communication terminal 96 configured in this way, the same effect as distance measuring apparatus 1 described in the first embodiment can be obtained.
  • 1 distance measuring device 11 acquisition unit, 12 control unit, 31 own vehicle, 32, 36 other vehicle, 34 1st section line, 34a 1st position, 35 2nd section line, 35a 2nd position, 37 bike, 53 images Display device, 54 cloud server, 56 communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

The purpose of the present invention is to provide art capable of measuring the distance between a first moving body and a second moving body even if at least one end of the second moving body in the vehicle width direction cannot be seen from the first moving body. This distance measurement device is provided with an acquisition unit and a control unit. The acquisition unit acquires first to third angles with respect to a first moving body and a second moving body located ahead of or behind the first moving body. On the basis of an inter-demarcation line distance and the first to third angles acquired by the acquisition unit, the control unit determines an inter-moving body distance, which is the distance between the first moving body and the second moving body.

Description

距離測定装置及び距離測定方法Distance measuring device and distance measuring method
 本発明は、第1移動体と、第1移動体の前方または後方に位置する第2移動体との間の距離を測定可能な距離測定装置及び距離測定方法に関する。 The present invention relates to a distance measuring device and a distance measuring method capable of measuring a distance between a first moving body and a second moving body located in front of or behind the first moving body.
 近年、自車両に搭載されたカメラで撮影された画像を解析することによって、自車両と先行車両との間の距離を測定する技術が提案されている。例えば特許文献1の技術では、自車両前方を撮影した画像から、先行車両と先行車両の車幅とを検出し、検出した先行車両の車種に対応する既知の車幅と、検出した車幅とを比較することによって、自車両と先行車両との間の距離を測定している。 In recent years, a technology has been proposed that measures the distance between the own vehicle and the preceding vehicle by analyzing an image taken by a camera mounted on the own vehicle. For example, in the technique of Patent Document 1, the preceding vehicle and the vehicle widths of the preceding vehicle are detected from an image of the front of the host vehicle, and the known vehicle width corresponding to the detected vehicle type of the preceding vehicle and the detected vehicle width The distance between the host vehicle and the preceding vehicle is measured by comparing
特開2013-57992号公報JP-A-2013-57992
 しかしながら従来技術では、自車両から先行車両の車幅方向の一端がみえない場合には先行車両の車幅を検出できず、その結果として、自車両と先行車両との間の距離を測定することができないという問題があった。 However, in the conventional technique, when one end of the vehicle in the vehicle width direction of the preceding vehicle cannot be seen, the vehicle width of the preceding vehicle cannot be detected, and as a result, the distance between the vehicle and the preceding vehicle is measured. There was a problem that I could not.
 そこで、本発明は、上記のような問題点を鑑みてなされたものであり、第1移動体から第2移動体の車幅方向の少なくとも一端がみえない場合であっても、第1移動体と第2移動体との間の距離を測定可能な技術を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and even when at least one end of the first moving body in the vehicle width direction of the second moving body cannot be seen, the first moving body An object of the present invention is to provide a technique capable of measuring the distance between the second mobile body and the second mobile body.
 本発明に係る距離測定装置は、第1移動体と第1移動体の前方または後方に位置する第2移動体とに関して、第2移動体の位置を第1移動体からみた方向と、第1移動体からみた予め定められた基準方向とがなす第1角度を取得し、かつ、第1移動体及び第2移動体周辺の第1及び第2区画線上のうちの第2移動体の位置に対応する第1及び第2位置を第1移動体からみた方向と、基準方向とがなす第2及び第3角度を取得する取得部と、取得部で取得された第1、第2及び第3角度と、第1及び第2区画線同士の間の距離である区画線間距離とに基づいて、第1移動体と第2移動体との間の距離である移動体間距離を求める制御部とを備える。 A distance measuring device according to the present invention relates to a first moving body and a second moving body positioned in front of or behind the first moving body, in a direction in which the position of the second moving body is viewed from the first moving body, and A first angle formed by a predetermined reference direction viewed from the moving body is acquired, and at the position of the second moving body on the first and second lane markings around the first moving body and the second moving body. An acquisition unit that acquires the second and third angles formed by the reference direction and the direction in which the corresponding first and second positions are viewed from the first moving body, and the first, second, and third acquired by the acquisition unit. A control unit that obtains the inter-moving body distance, which is the distance between the first moving body and the second moving body, based on the angle and the inter-division line distance that is the distance between the first and second division lines. With.
 本発明によれば、第1~第3角度と、区画線間距離とに基づいて移動体間距離を求める。このような構成によれば、第1移動体から第2移動体の車幅方向の少なくとも一端がみえない場合であっても、第1移動体と第2移動体との間の距離を測定することができる。 According to the present invention, the inter-moving body distance is obtained based on the first to third angles and the division line distance. With such a configuration, the distance between the first moving body and the second moving body is measured even when at least one end of the second moving body in the vehicle width direction cannot be seen from the first moving body. be able to.
 本発明の目的、特徴、態様及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent by the following detailed description and the accompanying drawings.
実施の形態1に係る距離測定装置の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the distance measuring device according to the first embodiment. 実施の形態1に係る第1~第3角度を説明するための図である。FIG. 6 is a diagram for explaining first to third angles according to the first embodiment. 実施の形態1に係る第1~第3角度を説明するための図である。FIG. 6 is a diagram for explaining first to third angles according to the first embodiment. 実施の形態1に係る距離測定装置の動作を示すフローチャートである。5 is a flowchart showing an operation of the distance measuring device according to the first embodiment. 実施の形態2に係る距離測定装置の構成を示すブロック図である。FIG. 6 is a block diagram showing a configuration of a distance measuring device according to a second embodiment. 実施の形態2に係る第4及び第5角度を説明するための図である。FIG. 9 is a diagram for explaining fourth and fifth angles according to the second embodiment. 実施の形態2に係る第4及び第5角度を説明するための図である。FIG. 9 is a diagram for explaining fourth and fifth angles according to the second embodiment. 実施の形態2に係る距離測定装置の動作を示すフローチャートである。7 is a flowchart showing an operation of the distance measuring device according to the second embodiment. 実施の形態2の変形例に係る第1~第3角度を説明するための図である。FIG. 11 is a diagram for explaining first to third angles according to a modified example of the second embodiment. 実施の形態2の変形例に係る第1~第3角度を説明するための図である。FIG. 11 is a diagram for explaining first to third angles according to a modified example of the second embodiment. 実施の形態2の変形例に係る距離測定装置の動作を示すフローチャートである。9 is a flowchart showing the operation of the distance measuring device according to the modification of the second embodiment. 実施の形態3に係る距離測定装置の構成を示すブロック図である。FIG. 9 is a block diagram showing a configuration of a distance measuring device according to a third embodiment. 実施の形態3に係る距離測定装置の動作を示すフローチャートである。9 is a flowchart showing the operation of the distance measuring device according to the third embodiment. 実施の形態3に係る距離測定装置の表示例を示す図である。FIG. 11 is a diagram showing a display example of the distance measuring device according to the third embodiment. 実施の形態3に係る距離測定装置の表示例を示す図である。FIG. 11 is a diagram showing a display example of the distance measuring device according to the third embodiment. 実施の形態4に係る距離測定装置の構成を示すブロック図である。FIG. 9 is a block diagram showing a configuration of a distance measuring device according to a fourth embodiment. 実施の形態5に係る距離測定装置の構成を示すブロック図である。FIG. 13 is a block diagram showing a configuration of a distance measuring device according to a fifth embodiment. その他の変形例に係る距離測定装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the distance measuring device which concerns on other modifications. その他の変形例に係る距離測定装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the distance measuring device which concerns on other modifications. その他の変形例に係るサーバの構成を示すブロック図である。It is a block diagram which shows the structure of the server which concerns on another modification. その他の変形例に係る通信端末の構成を示すブロック図である。It is a block diagram which shows the structure of the communication terminal which concerns on another modification.
 <実施の形態1>
 本発明の実施の形態1に係る距離測定装置は、第1移動体と、第1移動体の前方または後方に位置する第2移動体との間の距離である移動体間距離を測定する。第1移動体及び第2移動体のそれぞれは、例えば車両、バイク、人などを含む。
<Embodiment 1>
The distance measuring device according to the first embodiment of the present invention measures the inter-moving body distance, which is the distance between the first moving body and the second moving body located in front of or behind the first moving body. Each of the first moving body and the second moving body includes, for example, a vehicle, a motorcycle, a person, and the like.
 以下では、第1移動体は、距離測定装置が搭載された車両であり、第2移動体は、第1移動体の後方に位置する車両またはバイクである例について説明する。なお、以下の説明では、第1移動体である車両を「自車両」と記すこともあり、第2移動体である車両またはバイクを「他車両」または「バイク」と記すこともある。 In the following, an example will be described in which the first moving body is a vehicle equipped with a distance measuring device and the second moving body is a vehicle or a motorcycle located behind the first moving body. In the following description, the vehicle that is the first moving body may be referred to as “own vehicle”, and the vehicle or the motorcycle that is the second moving body may be referred to as “other vehicle” or “bike”.
 図1は、本実施の形態1に係る距離測定装置1の構成を示すブロック図である。図1の距離測定装置1は、取得部11と制御部12とを備える。 FIG. 1 is a block diagram showing the configuration of the distance measuring device 1 according to the first embodiment. The distance measuring device 1 of FIG. 1 includes an acquisition unit 11 and a control unit 12.
 取得部11は、自車両のサイドミラーの代わりに設けられたカメラを含んでいる。そして、取得部11は、当該カメラで自車両の後方を撮影された画像である撮影画像に基づいて、第1角度、第2角度、及び、第3角度を取得する。 The acquisition unit 11 includes a camera provided in place of the side mirror of the own vehicle. And the acquisition part 11 acquires a 1st angle, a 2nd angle, and a 3rd angle based on the picked-up image which is the image which imaged the back of the own vehicle with the said camera.
 図2及び図3は、第1角度、第2角度、及び、第3角度を説明するための図である。図2は、カメラで撮影された撮影画像の模式図であり、図3は、図2の撮影画像が得られた時の自車両周辺の状態を示す上面図である。 2 and 3 are diagrams for explaining the first angle, the second angle, and the third angle. FIG. 2 is a schematic diagram of a captured image captured by a camera, and FIG. 3 is a top view showing a state around the vehicle when the captured image of FIG. 2 is obtained.
 図2及び図3には、自車両31と、他車両32,33と、自車両31及び他車両32周辺の第1区画線34及び第2区画線35とが図示されている。自車両31及び他車両32周辺の第1区画線34及び第2区画線35のそれぞれは、例えば、自車両31下かつ他車両32のすぐ隣の区画線、他車両32下かつ自車両31のすぐ隣の区画線、自車両31及び他車両32のすぐ隣の区画線、並びに、これら区画線のいくつか隣の区画線などを含む。以下、第1区画線34は、第2区画線35よりも自車両31に近いものとして説明する。なお、区画線は、例えば、道路上に付された白色実線、白色破線、及び、黄色実線などを含む。 2 and 3, the own vehicle 31, the other vehicles 32 and 33, and the first and second lane markings 34 and 35 around the own vehicle 31 and the other vehicle 32 are shown. Each of the first lane marking 34 and the second lane marking 35 around the own vehicle 31 and the other vehicle 32 is, for example, a lane marking below the own vehicle 31 and immediately adjacent to the other vehicle 32, below the other vehicle 32, and below the own vehicle 31. It includes the lane markings immediately adjacent thereto, the lane markings immediately adjacent to the own vehicle 31 and the other vehicle 32, and the lane markings adjacent to some of these lane markings. Hereinafter, it is assumed that the first lane marking 34 is closer to the host vehicle 31 than the second lane marking 35. The lane markings include, for example, a white solid line, a white broken line, and a yellow solid line attached to the road.
 図3に示すように、撮影画像を撮影するカメラ31aの位置から、自車両31の真後ろに向かう方向が基準方向として予め規定されている。図2の撮影画像上の各位置に対して基準方向を基準にした角度が予め対応付けられており、取得部11は、その対応関係を用いることによって、撮影画像上の位置から、基準方向を基準にした図3の第1~第3角度θ~θなどの角度を算出することが可能となっている。 As shown in FIG. 3, the direction from the position of the camera 31a that captures the captured image to the position directly behind the vehicle 31 is defined in advance as a reference direction. An angle based on the reference direction is associated in advance with each position on the captured image in FIG. 2, and the acquisition unit 11 uses the correspondence relationship to determine the reference direction from the position on the captured image. It is possible to calculate angles such as the first to third angles θ 1 to θ 3 of FIG.
 ここで第1角度θは、図3に示すように、他車両32の位置を自車両31からみた方向と基準方向とがなす角度である。なお、ここでいう他車両32の位置は、撮影画像中の他車両32の任意の部分の位置であればよい。 Here, as shown in FIG. 3, the first angle θ 1 is an angle formed by the direction in which the position of the other vehicle 32 is viewed from the own vehicle 31 and the reference direction. The position of the other vehicle 32 here may be a position of an arbitrary portion of the other vehicle 32 in the captured image.
 第2角度θは、図3に示すように、第1位置34aを自車両31からみた方向と基準方向とがなす角度である。第1位置34aは、第1区画線34上のうちの他車両32の位置に対応する位置である。本実施の形態1では、第1位置34aは、図2の撮影画像において、第1区画線34と、他車両32の一部(ボディ下部)を通る水平方向の直線とが交差する点の位置であるが、これに限ったものではなく、当該位置に近い位置であってもよい。 As shown in FIG. 3, the second angle θ 2 is an angle formed by the direction in which the first position 34a is viewed from the host vehicle 31 and the reference direction. The first position 34a is a position corresponding to the position of the other vehicle 32 on the first lane marking 34. In the first embodiment, the first position 34a is a position of a point where the first lane marking 34 intersects with a horizontal straight line passing through a part (lower part of the body) of the other vehicle 32 in the captured image of FIG. However, the position is not limited to this, and may be a position close to the position.
 第3角度θは、図3に示すように、第2位置35aを自車両31からみた方向と基準方向とがなす角度である。第2位置35aは、第2区画線35上のうちの他車両32の位置に対応する位置である。本実施の形態1では、第2位置35aは、図2の撮影画像において、第2区画線35と、他車両32の一部(ボディ下部)を通る水平方向の直線とが交差する点の位置であるが、これに限ったものではなく、当該位置に近い位置であってもよい。 As shown in FIG. 3, the third angle θ 3 is an angle formed by the direction in which the second position 35a is viewed from the host vehicle 31 and the reference direction. The second position 35a is a position on the second lane marking 35 that corresponds to the position of the other vehicle 32. In the first embodiment, the second position 35a is the position of the point where the second lane marking 35 intersects with the horizontal straight line passing through a part (lower part of the body) of the other vehicle 32 in the captured image of FIG. However, the position is not limited to this, and may be a position close to the position.
 なお以上の説明では、取得部11が、自車両の後方を撮影するカメラと、当該カメラで撮影した画像に基づいて第1~第3角度θ~θを取得する演算部とから構成されていたが、この構成に限ったものではない。例えば、取得部11外部に設けられたカメラが、自車両の後方の画像を撮影し、当該画像から第1~第3角度θ~θを算出するように構成されている場合には、取得部11は、画像の撮影及び角度の算出を行わずに、カメラから算出結果(第1~第3角度θ~θ)を取得するインターフェースから構成されてもよい。また例えば、取得部11外部に設けられたカメラが、自車両の後方の画像を撮影するように構成されている場合には、取得部11は、当該カメラで撮影された画像を取得するインターフェースと、当該画像から第1~第3角度θ~θを算出する演算部とから構成されてもよい。 In the above description, the acquisition unit 11 is composed of a camera that captures the rear of the vehicle and an arithmetic unit that acquires the first to third angles θ 1 to θ 3 based on the images captured by the camera. However, it is not limited to this configuration. For example, when a camera provided outside the acquisition unit 11 is configured to capture an image of the rear of the vehicle and calculate the first to third angles θ 1 to θ 3 from the image, The acquisition unit 11 may be configured by an interface that acquires the calculation result (first to third angles θ 1 to θ 3 ) from the camera without performing image capturing and angle calculation. Further, for example, when a camera provided outside the acquisition unit 11 is configured to capture an image of the rear of the vehicle, the acquisition unit 11 is an interface that acquires an image captured by the camera. It may be configured by a calculation unit that calculates the first to third angles θ 1 to θ 3 from the image.
 制御部12は、取得部11で取得された第1角度θ、第2角度θ及び第3角度θと、第1区画線34及び第2区画線35同士の間の距離である区画線間距離ltlとに基づいて、自車両31と他車両32との間の距離である移動体間距離dを求める。ここで、図3において、次式(1)及び次式(2)が成り立つ。なお、式中のxは、移動体間距離dを基準方向の直線上に射影したときの長さである。 The control unit 12 is a division that is the distance between the first division line 34 and the second division line 35 and the first angle θ 1 , the second angle θ 2, and the third angle θ 3 acquired by the acquisition unit 11. The distance d between the moving bodies, which is the distance between the own vehicle 31 and the other vehicle 32, is obtained based on the line distance l tl . Here, in FIG. 3, the following expressions (1) and (2) are established. Note that x in the formula is a length when the inter-moving object distance d is projected on a straight line in the reference direction.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この式(1)及び式(2)から次式(3)を導き出すことができる。 The following formula (3) can be derived from this formula (1) and formula (2).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 制御部12は、取得部11で取得された第1角度θ、第2角度θ及び第3角度θを式(3)に適用し、かつ、式(3)の区画線間距離ltlに予め定められた固定値を式(3)に適用することによって、移動体間距離dを求める。ただし制御部12が移動体間距離dを求める方法はこれに限ったものではない。例えば、制御部12は、式(3)を用いて移動体間距離dを求めるのではなく、第1~第3角度θ~θ及び移動体間距離dのテーブルを用いて移動体間距離dを求めてもよい。また、実施の形態2などで説明するように、区画線間距離ltlは適宜変更されてもよい。 The control unit 12 applies the first angle θ 1 , the second angle θ 2, and the third angle θ 3 acquired by the acquisition unit 11 to the equation (3), and the inter-compartment line distance l of the equation (3). By applying a predetermined fixed value for tl to the equation (3), the inter-moving object distance d is obtained. However, the method by which the control unit 12 obtains the inter-moving body distance d is not limited to this. For example, the control unit 12 does not obtain the inter-moving body distance d using the equation (3), but uses the table of the first to third angles θ 1 to θ 3 and the inter-moving body distance d The distance d may be obtained. Further, as described in the second embodiment and the like, the distance between lane markings l tl may be appropriately changed.
 図4は、本実施の形態1に係る距離測定装置1の動作を示すフローチャートである。なお、この動作は、例えば距離測定装置1の電源がオンになった後に随時行われる。 FIG. 4 is a flowchart showing the operation of the distance measuring device 1 according to the first embodiment. Note that this operation is performed any time after the power of the distance measuring device 1 is turned on, for example.
 まずステップS1にて、取得部11は、撮影画像を取得し、当該撮影画像中に他車両が存在するか否かを判定する。他車両が存在すると判定された場合には処理がステップS2に進み、他車両が存在しないと判定された場合には図4の動作が終了する。 First, in step S1, the acquisition unit 11 acquires a captured image and determines whether or not another vehicle exists in the captured image. If it is determined that another vehicle exists, the process proceeds to step S2, and if it is determined that no other vehicle exists, the operation of FIG. 4 ends.
 ステップS2にて、取得部11は、第1~第3角度θ~θを取得する。 In step S2, the acquisition unit 11 acquires the first to third angles θ 1 to θ 3 .
 ステップS3にて、制御部12は、取得部11で取得された第1~第3角度θ~θと、予め定められた区画線間距離ltlとに基づいて移動体間距離dを求める。その後、図4の動作が終了する。 In step S3, the control unit 12 determines the inter-moving object distance d based on the first to third angles θ 1 to θ 3 acquired by the acquisition unit 11 and the predetermined division line distance l tl. Ask. Then, the operation of FIG. 4 ends.
 <実施の形態1のまとめ>
 以上のような本実施の形態1に係る距離測定装置1は、第1~第3角度θ~θと、区画線間距離ltlとに基づいて移動体間距離dを求める。このような構成によれば、例えば図2及び図3のように、他車両33によって自車両31から他車両32の車幅方向の少なくとも一端がみえない場合であっても、自車両31と他車両32との間の移動体間距離dを求めることができる。
<Summary of Embodiment 1>
The distance measuring device 1 according to the first embodiment as described above determines the inter-moving body distance d based on the first to third angles θ 1 to θ 3 and the lane marking distance l tl . According to such a configuration, even when the other vehicle 33 cannot see at least one end of the other vehicle 32 in the vehicle width direction as shown in FIGS. The distance d between the moving bodies with the vehicle 32 can be obtained.
 また本実施の形態1では、第1~第3角度θ~θは、自車両の後方を撮影した画像に基づいて取得される。このような構成によれば、自車両に、後続車両との距離を測定するレーダなどを設けなくても、自車両と後続車両との間の移動体間距離dを求めることができる。 Further, in the first embodiment, the first to third angles θ 1 to θ 3 are acquired based on the image captured behind the vehicle. With such a configuration, it is possible to obtain the inter-moving body distance d between the own vehicle and the following vehicle without providing the own vehicle with a radar or the like for measuring the distance to the following vehicle.
 なお以上では、第2移動体は、自車両の後方に位置するものとして説明したがこれに限ったものではない。例えば、カメラが自車両の前方を撮影するように構成されている場合には、第2移動体は、自車両の前方に位置してもよい。 In the above description, the second moving body is described as being located behind the own vehicle, but the present invention is not limited to this. For example, when the camera is configured to capture the front of the own vehicle, the second moving body may be located in front of the own vehicle.
 <実施の形態2>
 図5は、本発明の実施の形態2に係る距離測定装置1の構成を示すブロック図である。以下、本実施の形態2に係る構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じまたは類似する参照符号を付し、異なる構成要素について主に説明する。
<Second Embodiment>
FIG. 5 is a block diagram showing the configuration of the distance measuring device 1 according to the second embodiment of the present invention. Hereinafter, among the constituent elements according to the second embodiment, the same or similar reference numerals are given to the same or similar constituent elements to the above-described constituent elements, and different constituent elements will be mainly described.
 図5の距離測定装置1は、カメラ31aと自車位置検出装置52とに接続されている。カメラ31aは、実施の形態1と同様に自車両の後方を撮影する。このカメラ31aには例えば単眼カメラが用いられる。 The distance measuring device 1 of FIG. 5 is connected to the camera 31a and the vehicle position detecting device 52. The camera 31a photographs the rear of the vehicle as in the first embodiment. A monocular camera, for example, is used as the camera 31a.
 自車位置検出装置52は、自車両の位置を検出する。この自車位置検出装置52には、例えばGPS(Global Positioning System)受信装置などのGNSS(Global Navigation Satellite System)受信装置、及び、ジャイロセンサなどの各種センサなどが用いられる。 The own vehicle position detection device 52 detects the position of the own vehicle. As the vehicle position detecting device 52, for example, a GNSS (Global Navigation Satellite System) receiving device such as a GPS (Global Positioning System) receiving device, and various sensors such as a gyro sensor are used.
 次に図5の距離測定装置1の構成要素について説明する。図5の距離測定装置1は、画像入力インターフェース(I/F)部11aと、解析情報取得部11bと、位置取得部11cと、制御部12と、道路地図データベース(DB)13と、車両データベース(DB)14とを備える。画像入力I/F部11a、解析情報取得部11b及び位置取得部11cは、図1の取得部11の概念に含まれる。 Next, the components of the distance measuring device 1 of FIG. 5 will be described. The distance measuring device 1 of FIG. 5 includes an image input interface (I/F) unit 11a, an analysis information acquisition unit 11b, a position acquisition unit 11c, a control unit 12, a road map database (DB) 13, and a vehicle database. (DB) 14. The image input I/F unit 11a, the analysis information acquisition unit 11b, and the position acquisition unit 11c are included in the concept of the acquisition unit 11 in FIG.
 画像入力I/F部11aには、カメラ31aの撮影画像が入力される。以下、撮影画像に関して、車幅方向の第1及び第2端が自車両からみえる車両を「露出車両」と記し、第1端は自車両に近い「近端」であり、第2端は自車両から遠い「遠端」であるものとして説明する。 The image captured by the camera 31a is input to the image input I/F unit 11a. Hereinafter, in the captured image, a vehicle whose first and second ends in the vehicle width direction can be seen from the host vehicle is referred to as an “exposed vehicle”, the first end is a “near end” near the host vehicle, and the second end is the host vehicle. The description will be given assuming that the "far end" is far from the vehicle.
 画像入力I/F部11aに入力された撮影画像内の他車両が露出車両でない場合、解析情報取得部11bは、実施の形態1の取得部11と同様に、撮影画像に基づいて第1~第3角度θ~θを取得する。つまり、画像入力I/F部11aに入力された撮影画像内の他車両が、車幅方向の少なくとも近端及び遠端の一つがみえない車両である場合に、解析情報取得部11bは、撮影画像に基づいて第1~第3角度θ~θを取得する。 When the other vehicle in the captured image input to the image input I/F unit 11a is not an exposed vehicle, the analysis information acquisition unit 11b, similar to the acquisition unit 11 of the first embodiment, uses the first to the other images based on the captured image. The third angles θ 1 to θ 3 are acquired. That is, when the other vehicle in the captured image input to the image input I/F unit 11a is a vehicle in which at least one of the near end and the far end in the vehicle width direction cannot be seen, the analysis information acquisition unit 11b causes the captured image to be captured. First to third angles θ 1 to θ 3 are acquired based on the image.
 一方、画像入力I/F部11aに入力された撮影画像内の他車両が露出車両である場合、解析情報取得部11bは、撮影画像に基づいて第4角度θ及び第5角度θを取得する。 On the other hand, when the other vehicle in the captured image input to the image input I/F unit 11a is an exposed vehicle, the analysis information acquisition unit 11b determines the fourth angle θ 4 and the fifth angle θ 5 based on the captured image. get.
 図6及び図7は、それぞれ図2及び図3に対応する図である。第4角度θは、図7に示すように、自車両31からみた他車両36の近端と基準方向とがなす角度である。第5角度θは、図7に示すように、自車両31からみた他車両36の遠端と基準方向とがなす角度である。 6 and 7 are views corresponding to FIGS. 2 and 3, respectively. As shown in FIG. 7, the fourth angle θ 4 is an angle formed by the near end of the other vehicle 36 viewed from the own vehicle 31 and the reference direction. As shown in FIG. 7, the fifth angle θ 5 is an angle formed by the far end of the other vehicle 36 viewed from the own vehicle 31 and the reference direction.
 なお、図5の解析情報取得部11bは、露出車両の第4及び第5角度θ,θを取得する場合に、露出車両の撮影画像と、後述する車両DB14に記憶されている車種別の車両の画像とを比較して露出車両の車種も取得する。 When acquiring the fourth and fifth angles θ 4 and θ 5 of the exposed vehicle, the analysis information acquisition unit 11b of FIG. 5 captures the exposed vehicle image and the vehicle type stored in the vehicle DB 14 described later. The vehicle type of the exposed vehicle is also acquired by comparing with the image of the vehicle.
 位置取得部11cは、自車位置検出装置52が検出した自車両の位置を取得する。なお、図5の構成では、位置取得部11cは、自車位置検出装置52のインターフェースから構成されるが、これに限ったものではなく自車位置検出装置52から構成されてもよい。 The position acquisition unit 11c acquires the position of the vehicle detected by the vehicle position detection device 52. In addition, in the configuration of FIG. 5, the position acquisition unit 11c is configured by the interface of the vehicle position detection device 52, but is not limited to this, and may be configured by the vehicle position detection device 52.
 道路地図DB13には、道路の車線間の距離、及び、道路形状などの情報が記憶されている。本実施の形態2では、道路地図DB13には、自車両の位置と、2つの区画線同士の間の距離とが予め対応付けられて記憶されている。 The road map DB 13 stores information such as the distance between road lanes and the shape of the road. In the second embodiment, the position of the vehicle and the distance between the two lane markings are stored in advance in the road map DB 13 in association with each other.
 車両DB14には、車種別の車両の画像、及び、当該車両の車幅などの情報が記憶されている。本実施の形態2では、車両DB14には、車両の車種と、車両の車幅とが予め対応付けられて記憶されている。 The vehicle DB 14 stores images of vehicles classified by vehicle type, and information such as the vehicle width of the vehicle. In the second embodiment, the vehicle type of the vehicle and the vehicle width of the vehicle are stored in advance in the vehicle DB 14 in association with each other.
 解析情報取得部11bが第1~第3角度θ~θを取得した場合、制御部12は、実施の形態1とほぼ同様に、第1~第3角度θ~θと、区画線間距離ltlとに基づいて移動体間距離dを求める。ただし本実施の形態2では、制御部12は、位置取得部11cで取得された位置に基づいて道路地図DB13から適切な2つの区画線同士の間の距離を特定し、当該距離を区画線間距離ltlとして用いる。 When the analysis information acquisition unit 11b acquires the first to third angles θ 1 to θ 3 , the control unit 12 determines the first to third angles θ 1 to θ 3 and the sections as in the first embodiment. The distance d between the moving bodies is obtained based on the line distance l tl . However, in this Embodiment 2, the control part 12 specifies the distance between two suitable lane markings from the road map DB13 based on the position acquired by the position acquisition part 11c, and sets the said distance between lane markings. Used as the distance l tl .
 一方、解析情報取得部11bが第4及び第5角度θ,θを取得した場合、制御部12は、第4及び第5角度θ,θと、露出車両(他車両36)の車幅lとに基づいて、自車両31と露出車両(他車両36)との間の距離である移動体間距離dを求める。ここで図7において、次式(4)が成り立つ。なお、式中のxは、移動体間距離dを基準方向の直線上に射影したときの長さである。 On the other hand, when the analysis information acquisition unit 11b acquires the fourth and fifth angles θ 4 and θ 5 , the control unit 12 controls the fourth and fifth angles θ 4 and θ 5 and the exposed vehicle (other vehicle 36). Based on the vehicle width l v , the inter-moving body distance d that is the distance between the host vehicle 31 and the exposed vehicle (other vehicle 36) is obtained. Here, in FIG. 7, the following expression (4) is established. Note that x in the formula is a length when the inter-moving object distance d is projected on a straight line in the reference direction.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この式(4)から次式(5)を導き出すことができる。 The following formula (5) can be derived from this formula (4).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 制御部12は、解析情報取得部11bで取得された車種に基づいて車両DB14から車幅を特定し、当該車幅を露出車両の車幅lとして用いる。そして、制御部12は、解析情報取得部11bで取得された第4及び第5角度θ,θを式(5)に適用し、かつ、露出車両の車幅lを式(5)に適用することによって、移動体間距離dを求める。ただし制御部12が移動体間距離dを求める方法はこれに限ったものではない。例えば、制御部12は、式(5)を用いて移動体間距離dを求めるのではなく、第4及び第5角度θ,θ並びに移動体間距離dのテーブルを用いて移動体間距離dを求めてもよい。また、露出車両の車幅lは予め定められた固定値であってもよい。 The control unit 12 specifies the vehicle width from the vehicle DB 14 based on the vehicle type acquired by the analysis information acquisition unit 11b, and uses the vehicle width as the vehicle width l v of the exposed vehicle. Then, the control unit 12 applies the fourth and fifth angles θ 4 and θ 5 acquired by the analysis information acquisition unit 11b to the formula (5), and the vehicle width l v of the exposed vehicle is calculated using the formula (5). Then, the inter-moving body distance d is obtained. However, the method by which the control unit 12 obtains the inter-moving body distance d is not limited to this. For example, the control unit 12 does not calculate the inter-moving body distance d using the equation (5), but uses the table of the fourth and fifth angles θ 4 , θ 5 and the inter-moving body distance d to calculate the inter-moving body distance d. The distance d may be obtained. Further, the vehicle width l v of the exposed vehicle may be a predetermined fixed value.
 図8は、本実施の形態2に係る距離測定装置1の動作を示すフローチャートである。なお、この動作は、例えば距離測定装置1の電源がオンになった後に随時行われる。 FIG. 8 is a flowchart showing the operation of the distance measuring device 1 according to the second embodiment. Note that this operation is performed any time after the power of the distance measuring device 1 is turned on, for example.
 まずステップS11にて、画像入力I/F部11aは撮影画像を取得し、解析情報取得部11bは撮影画像中に他車両が存在するか否かを判定する。他車両が存在すると判定された場合には処理がステップS12に進み、他車両が存在しないと判定された場合には図8の動作が終了する。 First, in step S11, the image input I/F unit 11a acquires a captured image, and the analysis information acquisition unit 11b determines whether or not another vehicle exists in the captured image. If it is determined that another vehicle exists, the process proceeds to step S12, and if it is determined that no other vehicle exists, the operation of FIG. 8 ends.
 ステップS12にて、解析情報取得部11bは、他車両が露出車両であるか否かを判定する。他車両が露出車両であると判定された場合には処理がステップS13に進み、他車両が露出車両でないと判定された場合には処理がステップS15に進む。 In step S12, the analysis information acquisition unit 11b determines whether the other vehicle is an exposed vehicle. When it is determined that the other vehicle is an exposed vehicle, the process proceeds to step S13, and when it is determined that the other vehicle is not the exposed vehicle, the process proceeds to step S15.
 ステップS13にて、解析情報取得部11bは、露出車両の撮影画像と、車両DB14に記憶されている車種別の車両の画像とを比較して露出車両の車種を取得する。制御部12は、取得された車種に対応する車幅を車両DB14から特定し、当該車幅を露出車両の車幅lとして用いる。 In step S13, the analysis information acquisition unit 11b acquires the vehicle type of the exposed vehicle by comparing the captured image of the exposed vehicle with the image of the vehicle of the vehicle type stored in the vehicle DB 14. The control unit 12 identifies the vehicle width corresponding to the acquired vehicle type from the vehicle DB 14, and uses the vehicle width as the vehicle width l v of the exposed vehicle.
 ステップS14にて、解析情報取得部11bは第4及び第5角度θ,θを取得する。そして、制御部12は、取得された第4及び第5角度θ,θと、露出車両の車幅lとに基づいて移動体間距離dを求める。その後、図8の動作が終了する。 In step S14, the analysis information acquisition unit 11b acquires the fourth and fifth angles θ 4 and θ 5 . Then, the control unit 12, the fourth and fifth angle theta 4 is acquired, and theta 5, obtains the mobile distance d on the basis of the vehicle width l v exposure vehicle. Then, the operation of FIG. 8 ends.
 ステップS12からステップS15に処理が進んだ場合、解析情報取得部11bは、画像入力I/F部11aで取得された撮影画像において、他車両に最も近い2つの区画線がいずれもみえているか否かを判定する。当該2つの区画線がいずれもみえている場合には処理がステップS16に進み、そうでない場合には処理がステップS18に進む。 When the process proceeds from step S12 to step S15, the analysis information acquisition unit 11b determines whether two lane markings closest to the other vehicle are visible in the captured image acquired by the image input I/F unit 11a. Determine whether. If both of the two lane markings are visible, the process proceeds to step S16, and if not, the process proceeds to step S18.
 ステップS16にて、位置取得部11cは自車両の位置を取得する。制御部12は、取得された位置と、撮影画像とに基づいて、他車両に最も近い2つの区画線同士の間の距離を道路地図DB13から特定し、当該距離を区画線間距離ltlとして用いる。 In step S16, the position acquisition unit 11c acquires the position of the vehicle. The control unit 12 identifies the distance between the two lane markings closest to the other vehicle from the road map DB 13 based on the acquired position and the captured image, and sets the distance as the lane marking distance l tl. To use.
 ステップS17にて、解析情報取得部11bは第1~第3角度θ~θを取得する。そして、制御部12は、取得された第1~第3角度θ~θと、区画線間距離ltlとに基づいて移動体間距離dを求める。その後、図8の動作が終了する。 In step S17, the analysis information acquisition unit 11b acquires the first to third angles θ 1 to θ 3 . Then, the control unit 12 obtains the inter-moving body distance d based on the acquired first to third angles θ 1 to θ 3 and the division line distance l tl . Then, the operation of FIG. 8 ends.
 ステップS15からステップS18に処理が進んだ場合、位置取得部11cは自車両の位置を取得する。制御部12は、取得された位置に基づいて、当該位置に最も近い2つの区画線同士の間の距離を道路地図DB13から特定し、当該距離を区画線間距離ltlとして用いる。 When the process proceeds from step S15 to step S18, the position acquisition unit 11c acquires the position of the own vehicle. Based on the acquired position, the control unit 12 identifies the distance between the two lane markings closest to the position from the road map DB 13 , and uses this distance as the lane marking distance ltl .
 ステップS19にて、解析情報取得部11bは第1~第3角度θ~θを取得する。そして、制御部12は、取得された第1~第3角度θ~θと、区画線間距離ltlとに基づいて移動体間距離dを求める。その後、図8の動作が終了する。 In step S19, the analysis information acquisition unit 11b acquires the first to third angles θ 1 to θ 3 . Then, the control unit 12 obtains the inter-moving body distance d based on the acquired first to third angles θ 1 to θ 3 and the division line distance l tl . Then, the operation of FIG. 8 ends.
 <実施の形態2のまとめ>
 以上のような本実施の形態2に係る距離測定装置1は、他車両が露出車両である場合に、第4及び第5角度θ,θと、露出車両の車幅lとに基づいて移動体間距離dを求める。このような構成によれば、実施の形態1と同様の手法で角度を取得するけれども、実施の形態1と異なる手法で移動体間距離dを求めることができる。
<Summary of Second Embodiment>
The distance measuring device 1 according to the second embodiment as described above is based on the fourth and fifth angles θ 4 and θ 5 and the vehicle width l v of the exposed vehicle when the other vehicle is an exposed vehicle. Then, the inter-moving body distance d is obtained. According to such a configuration, although the angle is acquired by the same method as in the first embodiment, the inter-moving object distance d can be obtained by a method different from that in the first embodiment.
 また本実施の形態2では、位置取得部11cで取得された位置に基づく距離を区画線距離ltlとして用いる。このような構成によれば、区画線距離ltlを適切化することができるので、移動体間距離dの精度を高めることができる。 Further, in the second embodiment, the distance based on the position acquired by the position acquisition unit 11c is used as the partition line distance l tl . With such a configuration, it is possible to optimize the division line distance l tl , and thus it is possible to improve the accuracy of the inter-moving body distance d.
 また本実施の形態2では、解析情報取得部11bで取得された車種に基づく車幅を露出車両の車幅lとして用いる。このような構成によれば、露出車両の車幅lを適切化することができるので、移動体間距離dの精度を高めることができる。 Further, in the second embodiment, the vehicle width based on the vehicle type acquired by the analysis information acquisition unit 11b is used as the vehicle width l v of the exposed vehicle. With such a configuration, the vehicle width l v of the exposed vehicle can be optimized, and thus the accuracy of the inter-moving body distance d can be increased.
 <実施の形態2の変形例>
 以上の説明では、第2移動体は他車両であるものとして説明したが、バイクであってもよい。図9及び図10は、それぞれ図2及び図3に対応する図である。
<Modification of Second Embodiment>
In the above description, the second moving body is described as another vehicle, but may be a motorcycle. 9 and 10 are views corresponding to FIGS. 2 and 3, respectively.
 実施の形態1において取得部11が、図2及び図3の他車両32について第1~第3角度θ~θを取得したことと同様にして、解析情報取得部11bは、図9及び図10のバイク37について第1~第3角度θ~θを取得する。なお、第1角度θは、自車両31からみたバイク37のタイヤの位置と基準方向とがなす角度である。制御部12は、解析情報取得部11bで取得された第1~第3角度θ~θと、区画線間距離ltlとに基づいて、自車両31とバイク37との間の距離である移動体間距離dを求める。 Similarly to the acquisition unit 11 acquiring the first to third angles θ 1 to θ 3 of the other vehicle 32 in FIGS. 2 and 3 in the first embodiment, the analysis information acquisition unit 11b operates as shown in FIG. First to third angles θ 1 to θ 3 of the motorcycle 37 of FIG. 10 are acquired. The first angle θ 1 is an angle formed by the position of the tire of the motorcycle 37 viewed from the vehicle 31 and the reference direction. The control unit 12 determines the distance between the host vehicle 31 and the motorcycle 37 based on the first to third angles θ 1 to θ 3 acquired by the analysis information acquisition unit 11b and the lane marking distance l tl. A distance d between moving objects is calculated.
 図11は、本変形例に係る距離測定装置1の動作を示すフローチャートである。なお、この動作は、例えば距離測定装置1の電源がオンになった後に随時行われる。 FIG. 11 is a flowchart showing the operation of the distance measuring device 1 according to this modification. Note that this operation is performed any time after the power of the distance measuring device 1 is turned on, for example.
 まずステップS21にて、画像入力I/F部11aは撮影画像を取得し、解析情報取得部11bは撮影画像中に移動体が存在するか否かを判定する。移動体が存在すると判定された場合には処理がステップS22に進み、移動体が存在しないと判定された場合には図11の動作が終了する。 First, in step S21, the image input I/F unit 11a acquires a captured image, and the analysis information acquisition unit 11b determines whether or not a moving object is present in the captured image. When it is determined that the moving body exists, the process proceeds to step S22, and when it is determined that the moving body does not exist, the operation of FIG. 11 ends.
 ステップS22にて、解析情報取得部11bは、移動体がバイク及び車両のどちらであるかを判定する。移動体がバイクであると判定された場合には処理がステップS23に進む。移動体が車両であると判定された場合には処理が図8のステップS11に進み、実施の形態2で説明した図8の動作と同様の動作が行われる。 In step S22, the analysis information acquisition unit 11b determines whether the moving body is a motorcycle or a vehicle. When it is determined that the moving body is a motorcycle, the process proceeds to step S23. When it is determined that the moving body is a vehicle, the process proceeds to step S11 of FIG. 8 and the same operation as the operation of FIG. 8 described in the second embodiment is performed.
 ステップS23にて、位置取得部11cは自車両の位置を取得する。制御部12は、取得された位置と、撮影画像とに基づいて、バイクに最も近い2つの区画線同士の間の距離を道路地図DB13から特定し、当該距離を区画線間距離ltlとして用いる。 In step S23, the position acquisition unit 11c acquires the position of the own vehicle. The control unit 12 identifies the distance between the two lane markings closest to the motorcycle from the road map DB 13 based on the acquired position and the captured image, and uses this distance as the lane marking distance l tl. ..
 ステップS24にて、解析情報取得部11bは第1~第3角度θ~θを取得する。そして、制御部12は、取得された第1~第3角度θ~θと、区画線間距離ltlとに基づいて移動体間距離dを求める。その後、図11の動作が終了する。 In step S24, the analysis information acquisition unit 11b acquires the first to third angles θ 1 to θ 3 . Then, the control unit 12 obtains the inter-moving body distance d based on the acquired first to third angles θ 1 to θ 3 and the division line distance l tl . Then, the operation of FIG. 11 ends.
 ここで、撮影画像からバイクの車幅を検出し、当該車幅に基づいて自車両とバイクとの間の距離を求める方法では、当該車幅が比較的小さいため、誤差が比較的大きくなってしまうという問題がある。これに対して本変形例に係る距離測定装置1は、移動体がバイクである場合に第1~第3角度θ~θを取得し、取得された第1~第3角度θ~θと、区画線間距離ltlとに基づいて移動体間距離dを求める。このように、移動体がバイクなどである場合には、車幅を用いずに移動体間距離dを求めるため、移動体間距離dの精度を高めることができる。なお、本変形例は、実施の形態1、及び、後述する実施の形態3以降においても適用可能である。 Here, in the method of detecting the vehicle width of the motorcycle from the captured image and obtaining the distance between the host vehicle and the motorcycle based on the vehicle width, the vehicle width is relatively small, so the error is relatively large. There is a problem that it ends up. On the other hand, the distance measuring device 1 according to the present modification acquires the first to third angles θ 1 to θ 3 when the moving body is a motorcycle, and the acquired first to third angles θ 1 to The inter-moving body distance d is obtained based on θ 3 and the inter-division line distance l tl . Thus, when the moving body is a motorcycle or the like, the distance d between the moving bodies is obtained without using the vehicle width, so that the accuracy of the distance d between the moving bodies can be improved. It should be noted that this modification can be applied to the first embodiment and the third and subsequent embodiments described later.
 <実施の形態3>
 図12は、本発明の実施の形態3に係る距離測定装置1の構成を示すブロック図である。以下、本実施の形態3に係る構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じまたは類似する参照符号を付し、異なる構成要素について主に説明する。
<Third Embodiment>
FIG. 12 is a block diagram showing the configuration of the distance measuring device 1 according to the third embodiment of the present invention. Hereinafter, among the constituent elements according to the third embodiment, the same or similar reference numerals are given to the constituent elements that are the same as or similar to the constituent elements described above, and different constituent elements will be mainly described.
 図12の距離測定装置1は、表示装置である画像表示装置53と接続されている。なお、画像表示装置53は、例えば、自車両のダッシュボードやインストルメントパネルに設けられる。 The distance measuring device 1 in FIG. 12 is connected to an image display device 53 which is a display device. The image display device 53 is provided, for example, on a dashboard or an instrument panel of the vehicle.
 図12の距離測定装置1の構成は、図5の距離測定装置1の構成に画像出力インターフェース(I/F)部15を追加した構成と同様である。制御部12は、画像出力I/F部15を介して画像表示装置53を制御するように構成されている。具体的には、制御部12は、撮影画像の鏡像を画像表示装置53に表示させる。これにより、画像表示装置53は、従来のサイドミラーに映る像と同様の像を表示することができる。また、制御部12は、当該鏡像内の他車両(第2移動体)と、求めた移動体間距離dとを対応付けて画像表示装置53に表示させる制御を行う。 The configuration of the distance measuring device 1 in FIG. 12 is the same as the configuration of the distance measuring device 1 in FIG. 5 with an image output interface (I/F) unit 15 added. The control unit 12 is configured to control the image display device 53 via the image output I/F unit 15. Specifically, the control unit 12 causes the image display device 53 to display a mirror image of the captured image. As a result, the image display device 53 can display the same image as the image displayed on the conventional side mirror. In addition, the control unit 12 performs control to display the other vehicle (second moving body) in the mirror image and the obtained inter-moving body distance d on the image display device 53 in association with each other.
 図13は、本実施の形態3に係る距離測定装置1の動作を示すフローチャートである。この図13の動作は、図8の動作にステップS31,S32,S33を追加したものと同様である。そこで以下では、ステップS31,S32,S33について主に説明する。 FIG. 13 is a flowchart showing the operation of the distance measuring device 1 according to the third embodiment. The operation of FIG. 13 is similar to the operation of FIG. 8 with steps S31, S32, and S33 added. Therefore, steps S31, S32, and S33 will be mainly described below.
 ステップS14後のステップS31にて、制御部12は、他車両と、求めた移動体間距離dとを対応付けて画像表示装置53に表示させる。図14は、本ステップS31における画像表示装置53の表示例を示す図であり、図6に対応する図である。図14の表示例では、自車両53aと、他車両53bと、自車両53aと他車両53bとの間の距離である移動体間距離53cと、図6の第4及び第5角度θ,θが検出された位置を示す表示オブジェクト53dとが表示されている。 In step S31 after step S14, the control unit 12 causes the image display device 53 to display the other vehicle and the obtained inter-moving body distance d in association with each other. FIG. 14 is a diagram showing a display example of the image display device 53 in this step S31, and is a diagram corresponding to FIG. In the display example of FIG. 14, the own vehicle 53a, the other vehicle 53b, the inter-moving body distance 53c that is the distance between the own vehicle 53a and the other vehicle 53b, the fourth and fifth angles θ 4 of FIG. A display object 53d indicating the position where θ 5 is detected is displayed.
 なお、複数の他車両が表示される場合には、制御部12は、各他車両について移動体間距離を求め、移動体間距離に対応する他車両に当該移動体間距離を近づけて画像表示装置53に表示させてもよい。また制御部12は、移動体間距離に対応する他車両と当該移動体間距離とを結ぶ線を画像表示装置53に表示させてもよい。ステップS31の後、図13の動作が終了する。 In addition, when a plurality of other vehicles are displayed, the control unit 12 obtains the inter-moving body distance for each of the other vehicles, displays the inter-moving body distance closer to the other vehicle corresponding to the inter-moving body distance, and displays an image. It may be displayed on the device 53. Further, the control unit 12 may cause the image display device 53 to display a line connecting another vehicle corresponding to the inter-moving body distance and the inter-moving body distance. After step S31, the operation of FIG. 13 ends.
 ステップS17後のステップS32にて、制御部12は、他車両と、求めた移動体間距離dとを対応付けて画像表示装置53に表示させる。図15は、本ステップS32における画像表示装置53の表示例を示す図であり、図2に対応する図である。図15の表示例では、自車両53aと、他車両53e,53fと、自車両53aと他車両53eとの間の距離である移動体間距離53gと、図2の第1角度θが検出された位置を示す表示オブジェクト53hと、第2及び第3角度θ,θが検出された位置を示す表示オブジェクト53iとが表示されている。なお、複数の他車両が表示される場合には、移動体間距離に対応する他車両に当該移動体間距離を近づけて画像表示装置53に表示させてもよいし、移動体間距離に対応する他車両と当該移動体間距離とを結ぶ線を画像表示装置53に表示させてもよい。ステップS32の後、図13の動作が終了する。 In step S32 after step S17, the control unit 12 causes the image display device 53 to display the other vehicle and the obtained inter-moving body distance d in association with each other. FIG. 15 is a diagram showing a display example of the image display device 53 in this step S32, and is a diagram corresponding to FIG. In the display example of FIG. 15, the own vehicle 53a, the other vehicles 53e and 53f, the inter-moving body distance 53g that is the distance between the own vehicle 53a and the other vehicle 53e, and the first angle θ 1 of FIG. 2 are detected. A display object 53h indicating the moved position and a display object 53i indicating the position where the second and third angles θ 2 and θ 3 are detected are displayed. In addition, when a plurality of other vehicles are displayed, the other vehicle corresponding to the distance between the moving bodies may be displayed on the image display device 53 by bringing the distance between the moving bodies closer to each other. A line connecting the other vehicle and the distance between the moving bodies may be displayed on the image display device 53. After step S32, the operation of FIG. 13 ends.
 ステップS17後のステップS33にて、制御部12は、他車両と、求めた移動体間距離dとを対応付けて画像表示装置53に表示させる。本ステップS33の表示例は、ステップS32における画像表示装置53の表示例(図15)と同様である。 In step S33 after step S17, the control unit 12 causes the image display device 53 to display the other vehicle and the obtained inter-moving body distance d in association with each other. The display example of step S33 is the same as the display example (FIG. 15) of the image display device 53 in step S32.
 <実施の形態3のまとめ>
 以上のような本実施の形態3に係る距離測定装置1は、他車両と移動体間距離とを対応付けて画像表示装置53に表示させる制御を行う。このような構成によれば、運転者は、どの移動体間距離がどの他車両に対応しているかを容易に把握することができる。
<Summary of Third Embodiment>
The distance measuring device 1 according to the third embodiment as described above performs control to cause the image display device 53 to display another vehicle and the distance between moving bodies in association with each other. With such a configuration, the driver can easily understand which inter-moving body distance corresponds to which other vehicle.
 <実施の形態3の変形例>
 実施の形態3において、制御部12は、移動体間距離に基づいて警告を画像表示装置53に表示させる制御を行ってもよい。例えば、制御部12は、移動体間距離が閾値以下となった場合に、警告を画像表示装置53に表示させてもよい。また、当該閾値は、予め定められた固定値であってもよいし、自車両の走行速度が速くなるにつれて大きくなるように変更されてもよい。このような距離測定装置1によれば、運転者は、自車両と他車両とが衝突する可能性を事前に把握することができる。
<Modification of Embodiment 3>
In the third embodiment, the control unit 12 may perform control to display a warning on the image display device 53 based on the distance between moving bodies. For example, the control unit 12 may cause the image display device 53 to display a warning when the inter-moving body distance becomes equal to or less than a threshold value. Further, the threshold value may be a predetermined fixed value, or may be changed so as to increase as the traveling speed of the host vehicle increases. According to such a distance measuring device 1, the driver can know in advance the possibility of collision between the own vehicle and another vehicle.
 <実施の形態4>
 図16は、本発明の実施の形態4に係る距離測定装置1の構成を示すブロック図である。以下、本実施の形態4に係る構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じまたは類似する参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 4>
FIG. 16 is a block diagram showing the configuration of the distance measuring device 1 according to the fourth embodiment of the present invention. Hereinafter, among the constituent elements according to the fourth embodiment, the same or similar reference numerals are given to the same or similar constituent elements as the above-described constituent elements, and different constituent elements will be mainly described.
 図16の距離測定装置1は、クラウドサーバ54と通信可能な無線通信装置55と接続されている。図16の距離測定装置1の構成は、図12の距離測定装置1の構成に通信インターフェース(I/F)部16を追加し、当該構成から道路地図DB13及び車両DB14を削除した構成と同様である。制御部12は、通信I/F部16を介して無線通信装置55を制御することによって、クラウドサーバ54と通信可能に構成されている。 The distance measuring device 1 of FIG. 16 is connected to a wireless communication device 55 capable of communicating with the cloud server 54. The configuration of the distance measuring device 1 of FIG. 16 is the same as the configuration of the distance measuring device 1 of FIG. 12 except that the communication interface (I/F) unit 16 is added and the road map DB 13 and the vehicle DB 14 are deleted from the configuration. is there. The control unit 12 is configured to be communicable with the cloud server 54 by controlling the wireless communication device 55 via the communication I/F unit 16.
 クラウドサーバ54は、道路地図DB13と同様の道路地図DB54aを備える。つまり本実施の形態4では、自車両の外部であるクラウドサーバ54において、自車両の位置と2つの区画線同士の間の距離とが予め対応付けられている。なお、道路地図DB54aは随時更新される。 The cloud server 54 includes a road map DB 54a similar to the road map DB 13. That is, in the fourth embodiment, in the cloud server 54 outside the host vehicle, the position of the host vehicle and the distance between the two lane markings are associated with each other in advance. The road map DB 54a is updated at any time.
 またクラウドサーバ54は、車両DB14と同様の車両DB54bを備える。つまり本実施の形態4では、自車両の外部であるクラウドサーバ54において、車両の車種と、当該車両の車幅とが予め対応付けられている。なお、車両DB54bは随時更新される。 The cloud server 54 also includes a vehicle DB 54b similar to the vehicle DB 14. That is, in the fourth embodiment, in the cloud server 54 outside the host vehicle, the vehicle type of the vehicle and the vehicle width of the vehicle are associated in advance. The vehicle DB 54b is updated at any time.
 <実施の形態4のまとめ>
 以上のような本実施の形態4に係る距離測定装置1は、クラウドサーバ54と無線通信を行うことによって、道路地図DB54a及び車両DB54bの情報を用いることができる。これにより、自車両に搭載された距離測定装置1のメモリの低減化、及び、更新された情報の使用などが期待できる。
<Summary of Embodiment 4>
The distance measuring device 1 according to the fourth embodiment as described above can use the information in the road map DB 54a and the vehicle DB 54b by performing wireless communication with the cloud server 54. As a result, it can be expected that the memory of the distance measuring device 1 mounted on the own vehicle will be reduced and the updated information will be used.
 なお図16の例では、クラウドサーバ54は、道路地図DB54a及び車両DB54bを備えていたが、これに限ったものではない。例えば、クラウドサーバ54が道路地図DB54a及び車両DB54bの一方を備え、距離測定装置1が他方を備える構成であってもよい。 In the example of FIG. 16, the cloud server 54 includes the road map DB 54a and the vehicle DB 54b, but the present invention is not limited to this. For example, the cloud server 54 may include one of the road map DB 54a and the vehicle DB 54b, and the distance measuring device 1 may include the other.
 <実施の形態5>
 図17は、本発明の実施の形態5に係る距離測定装置1の構成を示すブロック図である。以下、本実施の形態5に係る構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じまたは類似する参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 5>
FIG. 17 is a block diagram showing the configuration of the distance measuring device 1 according to the fifth embodiment of the present invention. Hereinafter, among the constituent elements according to the fifth embodiment, the same or similar constituent elements as those described above are designated by the same or similar reference numerals, and different constituent elements will be mainly described.
 図17の距離測定装置1は、距離測定装置1の外部と通信可能な通信装置56と接続されている。制御部12は、通信I/F部16を介して通信装置56を制御することによって、通信装置56から距離測定装置1の外部に移動体間距離dを、有線及び無線の少なくともいずれか1つを介して送信する制御を行う。ここで、距離測定装置1の外部には、自車両に設けられたオートクルーズ機能を有する装置、画像表示装置53以外の表示装置、自車両外部のサーバなどが含まれる。 The distance measuring device 1 of FIG. 17 is connected to a communication device 56 capable of communicating with the outside of the distance measuring device 1. The control unit 12 controls the communication device 56 via the communication I/F unit 16 to set the inter-moving object distance d from the communication device 56 to the outside of the distance measuring device 1 by at least one of wired and wireless. Control to send via. Here, outside the distance measuring device 1, a device having an auto cruise function provided in the own vehicle, a display device other than the image display device 53, a server outside the own vehicle, and the like are included.
 <実施の形態5のまとめ>
 以上のような本実施の形態5に係る距離測定装置1は、通信装置56から距離測定装置1の外部に移動体間距離dを送信する制御を行うので、距離測定装置1の外部において移動体間距離dを用いることができる。
<Summary of Embodiment 5>
Since the distance measuring device 1 according to the fifth embodiment as described above controls the transmission of the inter-moving object distance d from the communication device 56 to the outside of the distance measuring device 1, the moving object is outside the distance measuring device 1. The distance d can be used.
 <その他の変形例>
 上述した図1の取得部11及び制御部12を、以下「取得部11等」と記す。取得部11等は、図18に示す処理回路81により実現される。すなわち、処理回路81は、第1~第3角度を取得する取得部11と、取得部11で取得された第1~第3角度と区画線間距離とに基づいて移動体間距離を求める制御部12と、を備える。処理回路81には、専用のハードウェアが適用されてもよいし、メモリに格納されるプログラムを実行するプロセッサが適用されてもよい。プロセッサには、例えば、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)などが該当する。
<Other modifications>
The acquisition unit 11 and the control unit 12 of FIG. 1 described above are hereinafter referred to as “acquisition unit 11 and the like”. The acquisition unit 11 and the like are realized by the processing circuit 81 shown in FIG. That is, the processing circuit 81 controls the acquisition unit 11 that acquires the first to third angles, and the inter-moving body distance based on the first to third angles and the inter-division line distance acquired by the acquisition unit 11. And a section 12. Dedicated hardware may be applied to the processing circuit 81, or a processor that executes a program stored in the memory may be applied. The processor corresponds to, for example, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
 処理回路81が専用のハードウェアである場合、処理回路81は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。取得部11等の各部の機能それぞれは、処理回路を分散させた回路で実現されてもよいし、各部の機能をまとめて一つの処理回路で実現されてもよい。 When the processing circuit 81 is dedicated hardware, the processing circuit 81 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate). Array), or a combination of these. Each function of each unit such as the acquisition unit 11 may be realized by a circuit in which processing circuits are dispersed, or may be realized by a single processing circuit by combining the functions of each unit.
 処理回路81がプロセッサである場合、取得部11等の機能は、ソフトウェア等との組み合わせにより実現される。なお、ソフトウェア等には、例えば、ソフトウェア、ファームウェア、または、ソフトウェア及びファームウェアが該当する。ソフトウェア等はプログラムとして記述され、メモリに格納される。図19に示すように、処理回路81に適用されるプロセッサ82は、メモリ83に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、距離測定装置1は、処理回路81により実行されるときに、第1~第3角度を取得するステップと、取得された第1~第3角度と区画線間距離とに基づいて移動体間距離を求めるステップと、が結果的に実行されることになるプログラムを格納するためのメモリ83を備える。換言すれば、このプログラムは、取得部11等の手順や方法をコンピュータに実行させるものであるともいえる。ここで、メモリ83は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などの、不揮発性または揮発性の半導体メモリ、HDD(Hard Disk Drive)、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)、そのドライブ装置等、または、今後使用されるあらゆる記憶媒体であってもよい。 When the processing circuit 81 is a processor, the functions of the acquisition unit 11 and the like are realized by combination with software and the like. Note that the software and the like correspond to, for example, software, firmware, or software and firmware. Software and the like are described as programs and stored in the memory. As shown in FIG. 19, the processor 82 applied to the processing circuit 81 realizes the function of each unit by reading and executing the program stored in the memory 83. That is, the distance measuring device 1, when executed by the processing circuit 81, acquires the first to third angles, and the moving body based on the acquired first to third angles and the distances between the marking lines. And a memory 83 for storing a program that will be executed as a result. In other words, it can be said that this program causes a computer to execute the procedure and method of the acquisition unit 11 and the like. Here, the memory 83 is, for example, a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an EPROM (ErasableProgrammableReadOnlyMemory), an EEPROM (ElectricallyErasableProgrammableReadOnlyMemory), or the like. It may be volatile semiconductor memory, HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), its drive device, or any storage medium used in the future. May be.
 以上、取得部11等の各機能が、ハードウェア及びソフトウェア等のいずれか一方で実現される構成について説明した。しかしこれに限ったものではなく、取得部11等の一部を専用のハードウェアで実現し、別の一部をソフトウェア等で実現する構成であってもよい。例えば、取得部11については専用のハードウェアとしての処理回路81、インターフェース及びレシーバなどでその機能を実現し、それ以外についてはプロセッサ82としての処理回路81がメモリ83に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。 Above, the configuration in which each function of the acquisition unit 11 and the like is realized by either hardware or software has been described. However, the configuration is not limited to this, and a configuration in which a part of the acquisition unit 11 or the like is realized by dedicated hardware and another part is realized by software or the like may be used. For example, with respect to the acquisition unit 11, its function is realized by a processing circuit 81 as dedicated hardware, an interface and a receiver, and in other cases, the processing circuit 81 as a processor 82 reads a program stored in the memory 83. It is possible to realize the function by executing it.
 以上のように、処理回路81は、ハードウェア、ソフトウェア等、またはこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit 81 can realize each function described above by hardware, software, etc., or a combination thereof.
 また、以上で説明した距離測定装置1は、PND(Portable Navigation Device)及びナビゲーション装置などの車両装置と、携帯電話、スマートフォン及びタブレットなどの携帯端末を含む通信端末と、車両装置及び通信端末の少なくとも1つにインストールされるアプリケーションの機能と、サーバとを適宜に組み合わせてシステムとして構築される距離測定システムにも適用することができる。この場合、以上で説明した距離測定装置1の各機能あるいは各構成要素は、前記システムを構築する各機器に分散して配置されてもよいし、いずれかの機器に集中して配置されてもよい。 Further, the distance measuring device 1 described above includes at least a vehicle device such as a PND (Portable Navigation Device) and a navigation device, a communication terminal including a mobile terminal such as a mobile phone, a smartphone and a tablet, and a vehicle device and a communication terminal. The present invention can also be applied to a distance measurement system constructed as a system by appropriately combining the functions of applications installed in one and a server. In this case, each function or each constituent element of the distance measuring device 1 described above may be distributed and arranged in each device that constructs the system, or may be concentrated in any one device. Good.
 図20は、本変形例に係るサーバ91の構成を示すブロック図である。図20のサーバ91は、通信部91aと制御部91bとを備えており、車両92のナビゲーション装置などの車両装置93と無線通信を行うことが可能となっている。 FIG. 20 is a block diagram showing the configuration of the server 91 according to this modification. The server 91 of FIG. 20 includes a communication unit 91a and a control unit 91b, and can perform wireless communication with a vehicle device 93 such as a navigation device of the vehicle 92.
 取得部である通信部91aは、車両装置93と無線通信を行うことにより、車両装置93で取得された第1~第3角度を受信する。 The communication unit 91a, which is an acquisition unit, receives the first to third angles acquired by the vehicle device 93 by performing wireless communication with the vehicle device 93.
 制御部91bは、サーバ91の図示しないプロセッサなどが、サーバ91の図示しないメモリに記憶されたプログラムを実行することにより、図1の制御部12と同様の機能を有している。つまり、制御部91bは、通信部91aで受信された第1~第3角度と区画線間距離とに基づいて移動体間距離を求める。そして、通信部91aは、制御部91bで求めた移動体間距離を車両装置93に送信する。このように構成されたサーバ91によれば、実施の形態1で説明した距離測定装置1と同様の効果を得ることができる。 The control unit 91b has a function similar to that of the control unit 12 in FIG. 1 when a processor (not shown) of the server 91 executes a program stored in a memory (not shown) of the server 91. That is, the control unit 91b calculates the inter-moving body distance based on the first to third angles and the inter-division line distance received by the communication unit 91a. Then, the communication unit 91a transmits the inter-moving body distance obtained by the control unit 91b to the vehicle device 93. According to the server 91 configured in this way, the same effect as that of the distance measuring device 1 described in the first embodiment can be obtained.
 図21は、本変形例に係る通信端末96の構成を示すブロック図である。図21の通信端末96は、通信部91aと同様の通信部96aと、制御部91bと同様の制御部96bとを備えており、車両97の車両装置98と無線通信を行うことが可能となっている。なお、通信端末96には、例えば車両97の運転者が携帯する携帯電話、スマートフォン、及びタブレットなどの携帯端末が適用される。このように構成された通信端末96によれば、実施の形態1で説明した距離測定装置1と同様の効果を得ることができる。 FIG. 21 is a block diagram showing the configuration of the communication terminal 96 according to this modification. The communication terminal 96 of FIG. 21 includes a communication unit 96a similar to the communication unit 91a and a control unit 96b similar to the control unit 91b, and can perform wireless communication with the vehicle device 98 of the vehicle 97. ing. Note that the communication terminal 96 is, for example, a mobile terminal such as a mobile phone, a smartphone, or a tablet carried by a driver of the vehicle 97. According to communication terminal 96 configured in this way, the same effect as distance measuring apparatus 1 described in the first embodiment can be obtained.
 なお、本発明は、その発明の範囲内において、各実施の形態及び各変形例を自由に組み合わせたり、各実施の形態及び各変形例を適宜、変形、省略したりすることが可能である。 It should be noted that, within the scope of the invention, the present invention can be freely combined with each embodiment and each modification, and each embodiment and each modification can be appropriately modified or omitted.
 本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、本発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that innumerable variations not illustrated can be envisaged without departing from the scope of the invention.
 1 距離測定装置、11 取得部、12 制御部、31 自車両、32,36 他車両、34 第1区画線、34a 第1位置、35 第2区画線、35a 第2位置、37 バイク、53 画像表示装置、54 クラウドサーバ、56 通信装置。 1 distance measuring device, 11 acquisition unit, 12 control unit, 31 own vehicle, 32, 36 other vehicle, 34 1st section line, 34a 1st position, 35 2nd section line, 35a 2nd position, 37 bike, 53 images Display device, 54 cloud server, 56 communication device.

Claims (13)

  1.  第1移動体と前記第1移動体の前方または後方に位置する第2移動体とに関して、前記第2移動体の位置を前記第1移動体からみた方向と、前記第1移動体からみた予め定められた基準方向とがなす第1角度を取得し、かつ、前記第1移動体及び前記第2移動体周辺の第1及び第2区画線上のうちの前記第2移動体の位置に対応する第1及び第2位置を前記第1移動体からみた方向と、前記基準方向とがなす第2及び第3角度を取得する取得部と、
     前記取得部で取得された前記第1、第2及び第3角度と、前記第1及び第2区画線同士の間の距離である区画線間距離とに基づいて、前記第1移動体と前記第2移動体との間の距離である移動体間距離を求める制御部と
    を備える、距離測定装置。
    With respect to the first moving body and the second moving body located in front of or behind the first moving body, the position of the second moving body as viewed from the first moving body and the direction as seen from the first moving body in advance. A first angle formed by the defined reference direction is obtained, and the position corresponds to the position of the second moving body on the first and second lane markings around the first moving body and the second moving body. An acquisition unit that acquires second and third angles formed by the first and second positions viewed from the first moving body and the reference direction;
    Based on the first, second, and third angles acquired by the acquisition unit, and the lane marking distance that is the distance between the first and second lane markings, the first moving body and the A distance measuring device, comprising: a control unit that obtains a distance between moving bodies, which is a distance from the second moving body.
  2.  請求項1に記載の距離測定装置であって、
     前記第2移動体が、車幅方向の少なくとも第1及び第2端の一つが前記第1移動体からみえない車両、または、バイクである場合に、前記取得部は前記第1、第2及び第3角度を取得し、
     前記制御部は、前記取得部で取得された前記第1、第2及び第3角度と、前記区画線間距離とに基づいて、前記移動体間距離を求める、距離測定装置。
    The distance measuring device according to claim 1,
    When the second moving body is a vehicle or a motorcycle in which at least one of the first and second ends in the vehicle width direction cannot be seen from the first moving body, the acquisition unit includes the first, second, and Get the third angle,
    The said control part is a distance measuring device which calculates|requires the said moving body distance based on the said 1st, 2nd, and 3rd angle acquired by the said acquisition part, and the said division line distance.
  3.  請求項1に記載の距離測定装置であって、
     前記第2移動体が、車幅方向の第1及び第2端が前記第1移動体からみえる車両である露出車両である場合に、前記取得部は、前記第2移動体の前記第1及び第2端を前記第1移動体からみた方向と、前記基準方向とがなす第4及び第5角度をさらに取得し、
     前記制御部は、前記取得部で取得された前記第4及び第5角度と、前記露出車両の車幅とに基づいて、前記第1移動体と前記第2移動体との間の距離である移動体間距離を求める、距離測定装置。
    The distance measuring device according to claim 1,
    When the second moving body is an exposed vehicle in which the first and second ends in the vehicle width direction are visible from the first moving body, the acquisition unit includes the first and second moving bodies. Further acquiring fourth and fifth angles formed by the direction in which the second end is viewed from the first moving body and the reference direction,
    The control unit is a distance between the first moving body and the second moving body based on the fourth and fifth angles acquired by the acquisition unit and the vehicle width of the exposed vehicle. Distance measuring device that determines the distance between moving bodies.
  4.  請求項1に記載の距離測定装置であって、
     前記第1移動体の位置と2つの区画線同士の間の距離とが予め対応付けられ、
     前記取得部は、前記第1移動体の位置をさらに取得し、
     前記制御部は、前記取得部で取得された位置に基づく距離を前記区画線間距離として用いる、距離測定装置。
    The distance measuring device according to claim 1,
    The position of the first moving body and the distance between the two lane markings are associated in advance,
    The acquisition unit further acquires the position of the first moving body,
    The said control part is a distance measuring device which uses the distance based on the position acquired by the said acquisition part as said division line distance.
  5.  請求項1に記載の距離測定装置であって、
     前記第2移動体はバイクであり、
     前記第2移動体の位置は前記バイクのタイヤの位置である、距離測定装置。
    The distance measuring device according to claim 1,
    The second moving body is a motorcycle,
    The distance measuring device, wherein the position of the second moving body is the position of the tire of the motorcycle.
  6.  請求項3に記載の距離測定装置であって、
     車両の車種と、当該車両の車幅とが予め対応付けられ、
     前記取得部は、前記露出車両の車種をさらに取得し、
     前記制御部は、前記取得部で取得された車種に基づく車幅を前記露出車両の車幅として用いる、距離測定装置。
    The distance measuring device according to claim 3,
    The vehicle type of the vehicle and the vehicle width of the vehicle are associated in advance,
    The acquisition unit further acquires the vehicle type of the exposed vehicle,
    The control unit uses a vehicle width based on the vehicle type acquired by the acquisition unit as a vehicle width of the exposed vehicle.
  7.  請求項4に記載の距離測定装置であって、
     前記第1移動体の外部において、前記第1移動体の位置と前記2つの区画線同士の間の距離とが予め対応付けられている、距離測定装置。
    The distance measuring device according to claim 4,
    A distance measuring device in which a position of the first moving body and a distance between the two lane markings are associated with each other outside the first moving body.
  8.  請求項6に記載の距離測定装置であって、
     前記第1移動体の外部において、前記車両の車種と、当該車両の車幅とが予め対応付けられている、距離測定装置。
    The distance measuring device according to claim 6,
    A distance measuring device in which a vehicle type of the vehicle and a vehicle width of the vehicle are previously associated with each other outside the first moving body.
  9.  請求項1に記載の距離測定装置であって、
     前記制御部は、
     前記第2移動体と前記移動体間距離とを対応付けて表示装置に表示させる制御を行う、距離測定装置。
    The distance measuring device according to claim 1,
    The control unit is
    A distance measuring device that controls to display on a display device the second moving body and the distance between the moving bodies in association with each other.
  10.  請求項1に記載の距離測定装置であって、
     前記制御部は、
     前記移動体間距離に基づいて警告を表示装置に表示させる制御を行う、距離測定装置。
    The distance measuring device according to claim 1,
    The control unit is
    A distance measuring device that controls to display a warning on a display device based on the distance between the moving bodies.
  11.  請求項1に記載の距離測定装置であって、
     前記制御部は、
     通信装置から前記距離測定装置の外部に前記移動体間距離を送信する制御を行う、距離測定装置。
    The distance measuring device according to claim 1,
    The control unit is
    A distance measuring device which controls to transmit the distance between moving bodies from a communication device to the outside of the distance measuring device.
  12.  請求項1に記載の距離測定装置であって、
     前記第1、第2及び第3角度は、前記第1移動体の後方を撮影した画像に基づいて取得される、距離測定装置。
    The distance measuring device according to claim 1,
    The distance measuring device, wherein the first, second, and third angles are acquired based on an image captured behind the first moving body.
  13.  第1移動体と前記第1移動体の前方または後方に位置する第2移動体とに関して、前記第2移動体の位置を前記第1移動体からみた方向と、前記第1移動体からみた予め定められた基準方向とがなす第1角度を取得し、かつ、前記第1移動体及び前記第2移動体周辺の第1及び第2区画線上のうちの前記第2移動体の位置に対応する第1及び第2位置を前記第1移動体からみた方向と、前記基準方向とがなす第2及び第3角度を取得し、
     取得された前記第1、第2及び第3角度と、前記第1及び第2区画線同士の間の距離である区画線間距離とに基づいて、前記第1移動体と前記第2移動体との間の距離である移動体間距離を求める、距離測定方法。
    With respect to the first moving body and the second moving body positioned in front of or behind the first moving body, the position of the second moving body as viewed from the first moving body and the position as seen from the first moving body in advance A first angle formed by the defined reference direction is obtained, and the position corresponds to the position of the second moving body on the first and second lane markings around the first moving body and the second moving body. Acquiring second and third angles formed by a direction in which the first and second positions are viewed from the first moving body and the reference direction,
    The first moving body and the second moving body based on the acquired first, second, and third angles and a distance between lane markings that is a distance between the first and second lane markings. A distance measuring method for obtaining the distance between moving bodies, which is the distance between and.
PCT/JP2019/004815 2019-02-12 2019-02-12 Distance measurement device and distance measurement method WO2020165934A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/004815 WO2020165934A1 (en) 2019-02-12 2019-02-12 Distance measurement device and distance measurement method
JP2020571727A JP6869452B2 (en) 2019-02-12 2019-02-12 Distance measuring device and distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004815 WO2020165934A1 (en) 2019-02-12 2019-02-12 Distance measurement device and distance measurement method

Publications (1)

Publication Number Publication Date
WO2020165934A1 true WO2020165934A1 (en) 2020-08-20

Family

ID=72044652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004815 WO2020165934A1 (en) 2019-02-12 2019-02-12 Distance measurement device and distance measurement method

Country Status (2)

Country Link
JP (1) JP6869452B2 (en)
WO (1) WO2020165934A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276697A (en) * 1999-01-18 2000-10-06 Yazaki Corp Periphery monitoring device for vehicle
JP2003337998A (en) * 2002-05-21 2003-11-28 Aisin Seiki Co Ltd Lane deviation deciding apparatus
JP2014195170A (en) * 2013-03-28 2014-10-09 Honda Motor Co Ltd Driving support device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276697A (en) * 1999-01-18 2000-10-06 Yazaki Corp Periphery monitoring device for vehicle
JP2003337998A (en) * 2002-05-21 2003-11-28 Aisin Seiki Co Ltd Lane deviation deciding apparatus
JP2014195170A (en) * 2013-03-28 2014-10-09 Honda Motor Co Ltd Driving support device

Also Published As

Publication number Publication date
JPWO2020165934A1 (en) 2021-05-20
JP6869452B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP7025276B2 (en) Positioning in urban environment using road markings
US11614340B2 (en) Vehicle driving control apparatus and calibration method performed by the vehicle driving control apparatus
JP2020064046A (en) Vehicle position determining method and vehicle position determining device
JP6261832B1 (en) Traveling path recognition device and traveling path recognition method
JP4577655B2 (en) Feature recognition device
US11720992B2 (en) Method, apparatus, and computer program product for generating an overhead view of an environment from a perspective image
JP6520740B2 (en) Object detection method, object detection device, and program
JP6751280B2 (en) Position estimating device, position detecting method and program
JP6395010B2 (en) Information provision system for billing location evaluation
JP4948338B2 (en) Inter-vehicle distance measuring device
JP7123530B2 (en) Communication device, communication system, and communication method
JP5628612B2 (en) In-vehicle information system, in-vehicle device, information terminal
JP5134608B2 (en) Vehicle periphery display device, vehicle periphery display method and program
US11187815B2 (en) Method of determining location of vehicle, apparatus for determining location, and system for controlling driving
WO2020165934A1 (en) Distance measurement device and distance measurement method
JP2016053584A (en) On-vehicle device
JP6793884B2 (en) Automatic driving control device, information communication terminal, automatic driving control system and automatic driving control method
KR20150009763A (en) Camera system and controlling method of Camera system
JP6789440B2 (en) Object identification device
KR20180009280A (en) System for route providing and detecting land position using 3d map data
WO2024095450A1 (en) Map data creation system, probe information generation device and map data creation method
WO2020021596A1 (en) Vehicle position estimation device and vehicle position estimation method
WO2018212286A1 (en) Measurement device, measurement method and program
JP2020010123A (en) On-vehicle photographing apparatus, photographing system and photographing method
JP7351283B2 (en) Driver notification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571727

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914879

Country of ref document: EP

Kind code of ref document: A1