WO2020165882A2 - 고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법 - Google Patents

고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법 Download PDF

Info

Publication number
WO2020165882A2
WO2020165882A2 PCT/IB2020/051457 IB2020051457W WO2020165882A2 WO 2020165882 A2 WO2020165882 A2 WO 2020165882A2 IB 2020051457 W IB2020051457 W IB 2020051457W WO 2020165882 A2 WO2020165882 A2 WO 2020165882A2
Authority
WO
WIPO (PCT)
Prior art keywords
pdc
acid
catalyst
sio
enzyme
Prior art date
Application number
PCT/IB2020/051457
Other languages
English (en)
French (fr)
Other versions
WO2020165882A4 (ko
WO2020165882A3 (ko
Inventor
차현길
주정찬
김희택
김경안
박제영
강명종
황성연
오동엽
이민우
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190016016A external-priority patent/KR102278269B1/ko
Priority claimed from KR1020190074404A external-priority patent/KR20200145980A/ko
Priority claimed from KR1020190109179A external-priority patent/KR102267703B1/ko
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to EP20756552.4A priority Critical patent/EP3909947A4/en
Publication of WO2020165882A2 publication Critical patent/WO2020165882A2/ko
Publication of WO2020165882A3 publication Critical patent/WO2020165882A3/ko
Publication of WO2020165882A4 publication Critical patent/WO2020165882A4/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/34Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D309/36Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms
    • C07D309/38Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms one oxygen atom in position 2 or 4, e.g. pyrones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/50Polycarboxylic acids having keto groups, e.g. 2-ketoglutaric acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/013122-Hydroxy-4-carboxymuconate semialdehyde hemiacetal dehydrogenase (1.1.1.312)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01053(3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate dehydrogenase (1.3.1.53)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/11008Protocatechuate 4,5-dioxygenase (1.13.11.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/12Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of two atoms of oxygen into one donor (1.14.12)
    • C12Y114/12015Terephthalate 1,2-dioxygenase (1.14.12.15)

Definitions

  • the present invention relates to a method for preparing high-purity 2-pyrone-4,6-dicarboxylic acid and a method for preparing an intermediate therefor.
  • terephthalic acid is produced from polyethylene terephthalate (PET) using a biomass catalyst, and the TPA is reacted with a recombinant strain to produce 2-pyron-4,6-dicarboxylic acid (PDC).
  • PDC 2-pyron-4,6-dicarboxylic acid
  • the present invention specifically relates to a method of hydrolyzing polyethylene terephthalate into terephthalic acid using a SiO2 catalyst derived from biomass and microwave.
  • the present invention is more specifically, the present invention is a recombinant strain for producing 2-pyron-4,6-dicarboxylic acid (PDC) and the nucleotide sequence encoding the TphB enzyme, TphAabc enzyme, LigAB enzyme and LigC enzyme was introduced. It relates to a method for producing PDC comprising the step of reacting a substrate with a recombinant strain for producing PDC.
  • PDC 2-pyron-4,6-dicarboxylic acid
  • the present invention relates to a method for purifying 2-pyrone-4,6-dicarboxylic acid with high purity.
  • Rice a major grain in Asia including Korea, is about 4.68 million tons (about 920,000 ha) in Korea as of 2009, and about 5 million tons are produced every year.
  • Rice hull is an agricultural waste generated during the threshing process of rice, and generally accounts for about 20% of the rice by weight. Only in Korea, about 90 to 1 million tons of rice husk is generated as a by-product of the milling process every year.
  • rice husk such as rugs for livestock facilities such as cattle and pigs, and insulation for interiors.
  • Rice hull is largely divided into organic and inorganic components, with organic matter accounting for about 80% and inorganic matter accounting for about 20%.
  • Organic substances are composed of vegetable polymers such as cellulose, hemicellulose and lignin, and inorganic substances are mostly composed of silica.
  • the silica component contained in rice husk is protected by polymers with high physical and chemical resistance, such as lignin.
  • PET Polyethylene Terephthalate
  • PET Polyethylene Terephthalate
  • Glycolysis method is a method widely used commercially as a PET depolymerization method using glycols such as ethylene glycol. This method has the advantage of low operating cost and even if the raw material, waste PET, is slightly contaminated, but has a disadvantage that purification is difficult due to the high molecular weight of the depolymerization.
  • the hydrolysis method is a method of decomposing PET by water, alkali, etc., and is a method widely used for the production of terephthalic acid, but has a disadvantage in that the manufacturing cost is high.
  • Metanolysis is most widely used as a depolymerization method using methanol, and has an advantage that is not related to the contamination state of waste PET, but has a disadvantage of high manufacturing cost because it must be operated at high temperature and pressure.
  • Polyethylene terephthalic acid has advantages such as light weight, toughness, chemical stability, and easy molding, so it is widely used in synthetic fibers and packaging.
  • the largest amount of polyester was produced, with an annual production of 330,000 tons of polyethylene terephthalic acid, but it is difficult to decompose naturally, causing environmental pollution such as pollution of microplastics and plastic precipitation in marine ecosystems.
  • Biodegradable plastics such as polyethylene furandicarboxylic acid are being developed to replace polyethylene terephthalic acid with eco-friendly plastics.
  • these biodegradable plastics have many difficulties in replacing current polyethylene terephthalic acid in terms of physical properties and cost. For this reason, researches on reducing waste plastics that come out of nature by enhancing the recycling of polyethylene terephthalic acid are being actively conducted.
  • polyethylene terephthalic acid and polyethylene are physically recycled and are one of the plastics that can make recycled plastics.
  • polyethylene terephthalic acid has been recycled for several decades, but the recycling rate is only 21%. This is because recycled polyethylene terephthalic acid is of lower quality than newly produced polyethylene terephthalic acid, and the cost of the recycling process is higher. For example, newly produced polyethylene terephthalic acid costs from 1.1 to $1.3 per kilogram, while the cost of recycling polyethylene terephthalic acid is from 1.3 to $1.5 per kilogram.
  • 2-pyrone-4,6-dicarboxylic acid has a structure in which two carboxylic acid groups are attached to a polar pseudo-aromatic ring, and polyaddition and polycondensation are possible. Since it can act as a bifunctional monomer, it has been proposed to utilize a high value-added monomer such as a useful monomer for the production of various functional polyesters.
  • 2-Pylon-4,6-dicarboxylic acid (PDC) is produced enzymatically from lignin in large quantities and is generally purified with activated carbon, but it requires a technology that can be purified with high purity for high added value applications. Was done.
  • An object of the present invention is to produce terephthalic acid (TPA) from polyethylene terephthalate (PET) using a biomass catalyst, and react with the TPA with a recombinant strain to produce 2-pyron-4,6-dicarboxylic acid (PDC). , To provide a high purity PDC by removing impurities from the PDC.
  • TPA terephthalic acid
  • PET polyethylene terephthalate
  • PDC 2-pyron-4,6-dicarboxylic acid
  • the present invention is to provide a method for easily preparing a solid terephthalic acid by preparing a SiO 2 catalyst using rice husk, and reacting polyethylene terephthalate in a microwave reactor using this.
  • an object of the present invention is to provide a method of producing high purity terephthalic acid by lowering the impurity content in terephthalic acid when hydrolyzing polyethylene terephthalate under neutral conditions.
  • an object of the present invention is to provide a recombinant strain for the production of 2-pyron-4,6-dicarboxylic acid (PDC) into which the nucleotide sequence encoding the TphB enzyme, TphAabc enzyme, LigAB enzyme and LigC enzyme is introduced.
  • PDC 2-pyron-4,6-dicarboxylic acid
  • Another object of the present invention is to provide a method for producing PDC comprising reacting a substrate with a recombinant strain for producing PDC.
  • the present invention relates to a method for preparing high-purity 2-pyrone-4,6-dicarboxylic acid and a method for preparing an intermediate therefor; 1) preparing TPA from PET; 2) generating PDC by reacting TPA with the recombinant strain; And 3) purifying the prepared PDC with high purity.
  • the SiO 2 catalyst is characterized in that it is extracted from biomass.
  • the biomass is rice husk.
  • the SiO 2 catalyst has a surface modified by a thiol functional group (-SH).
  • the specific surface area of the SiO 2 catalyst is 151.92 ⁇ 281.02 m 2 /g, and the pore size is preferably 0.57 ⁇ 0.66 nm.
  • a method for producing a biomass-derived SiO 2 catalyst includes: a) pulverizing rice hull and then acid treatment; And b) heat-treating the acid-treated rice husk in step a).
  • the acid treatment in step a) is performed by using an acidic solution containing one selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and mixtures thereof, at 40 to 150°C. It is preferably carried out for minutes to 3 hours.
  • step a After the acid treatment in step a), it is preferable to further include filtering and washing the acid-treated rice husk.
  • the heat treatment in step b) is preferably carried out for 2 to 3 hours while lowering by 3.5 °C per minute at a temperature of 600 to 700 °C.
  • modifying the surface of the SiO 2 catalyst modifying the surface of the SiO 2 catalyst in toluene ( Tolyene) preparing a mixture by adding to a solvent; Washing the mixture; And drying the washed mixture.
  • the TPA decomposition method of PET using a biomass-derived SiO 2 catalyst is by mixing polyethylene terephthalate, a biomass-derived SiO 2 catalyst, and water and irradiating microwaves. It is characterized in that polyethylene terephthalate is hydrolyzed with terephthalic acid.
  • the method of hydrolyzing polyethylene terephthalate into terephthalic acid comprises: a) reacting polyethylene terephthalate, biomass-derived SiO 2 catalyst, and water in a microwave reactor to prepare a mixture in which terephthalic acid is precipitated. ; b) dissolving terephthalic acid by mixing sodium hydroxide in the mixture; c) filtering the mixture in which the terephthalic acid is dissolved to remove the residue and the catalyst; d) forming and obtaining a precipitate by adding an acidic solution to the mixture from which the residue and the catalyst have been removed; And e) drying the obtained precipitate.
  • the acidic solution is preferably one selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and mixtures thereof.
  • An embodiment of the step of generating PDC by reacting 2) TPA with a recombinant strain of the present invention is 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase (1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase; TphB) enzyme; Terephthalate 1,2-dioxyganase (TphAabc) enzyme; Protocatechuate 4,5-dioxyganase (LigAB) enzyme; Encoding an enzyme selected from the group consisting of 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (LigC) enzymes and combinations thereof It provides a recombinant strain for producing 2-pyron-4,6-dicarboxylic acid (PDC) into which a nucleotide sequence has been introduced.
  • PDC 2-pyron-4,6-dicarboxy
  • the nucleotide sequence (tphB) encoding the TphB enzyme is not particularly limited thereto, but as an example, it may be composed of the nucleotide sequence of SEQ ID NO: 1;
  • the nucleotide sequence ( tphAabc ) encoding the TphAabc enzyme is not particularly limited thereto, but as an example, it may be composed of the nucleotide sequence of SEQ ID NO: 2;
  • the nucleotide sequence ( ligAB ) encoding the LigAB enzyme is not particularly limited thereto, but as an example, it may be composed of the nucleotide sequence of SEQ ID NO: 3;
  • the nucleotide sequence ( LigC ) encoding the LigC enzyme is not particularly limited thereto, but as an example, it may be composed of the nucleotide sequence of SEQ ID NO: 4.
  • recombinant strains for the production of PDC of the present invention is a nucleotide of SEQ ID NO: 1 of tphB, nucleotides SEQ ID NO: 2 in tphAabc, SEQ ID NO 3 and SEQ ID NO 4 of ligAB ligC introduced recombinant strain; Mixed culture containing the SEQ ID NO 1 and SEQ ID NO 2 of tphB tphAabc introducing a first recombinant strain and the SEQ ID NO 3
  • the second recombinant strain is introduced and ligAB ligC nucleotides of SEQ ID NO: 4 of the; It may be a recombinant strain into which ligAB of nucleotide sequence number 3 and ligC of nucleotide sequence number 4 are introduced.
  • Introduction of the nucleotide sequence may be performed through an expression vector, and the strain into which the nucleotide sequence is introduced is transformed to express the nucleotide sequence.
  • the expression vector is a vector capable of expressing a target protein or target RNA in an appropriate host cell, and refers to a gene construct comprising essential regulatory elements operably linked to express a gene insert (the polynucleotide). Once in the host cell, the expression vector can replicate independently of the host chromosomal DNA, and the inserted foreign DNA can be expressed. Since plasmids are currently the most commonly used form of vectors, plasmids and vectors are sometimes used interchangeably in the specification of the present invention.
  • the vector includes, but is not limited to, a plasmid vector, a cosmid vector, a bacteriophage vector, and a viral vector.
  • Suitable expression vectors include, in addition to expression control elements such as promoters, operators, start codons, stop codons, polyadenylation signals and enhancers, signal sequences or leader sequences for membrane targeting or secretion, and can be variously prepared according to the purpose.
  • the promoter of the vector can be constitutive or inducible.
  • the expression vector includes a selection marker for selecting a host cell containing the vector, and in the case of a replicable expression vector, it may include an origin of replication.
  • the transformation means that DNA is introduced into a host so that the DNA can be replicated as an extrachromosomal factor or by chromosomal integration completion.
  • Host cells that can be used for transformation according to the present invention may include both prokaryotic or eukaryotic cells, and a host having high DNA introduction efficiency and high expression efficiency of the introduced DNA can be used.
  • well-known eukaryotic and prokaryotic hosts such as Escherichia, Pseudomonas, Bacillus, Streptomyces, fungi, yeast, insect cells such as Spodoptera frugiperda (SF9), CHO, COS 1, COS 7, animal cells such as BSC 1, BSC 40, BMT 10, etc. may be used, but are not limited thereto.
  • Transformation includes any method of introducing a polynucleotide, and as known in the art, it can be performed by selecting an appropriate standard technique according to the host cell. These methods include electroporation, protoplasm fusion, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, agitation using silicon carbide fibers, agrobacteria-mediated transformation, polyethylene glycol (PEG), Dextran sulfate, lipofectamine, particle bombardment, etc. are included, but are not limited thereto.
  • Another embodiment of the present invention provides a method for producing PDC, comprising reacting a substrate with the recombinant strain for producing the PDC.
  • the PCD production method provided by the present invention is not particularly limited thereto, but as a specific example, (1) the nucleotide sequence of SEQ ID NO: 1 encoding the TphB enzyme, the nucleotide sequence of SEQ ID NO: 2 encoding the TphAabc enzyme, and the LigAB enzyme Obtaining a recombinant strain into which the nucleotide sequence of SEQ ID NO: 3 encoding and the nucleotide sequence of SEQ ID NO: 4 encoding LigC enzyme are introduced; And (2) reacting the obtained recombinant strain with terephthalic acid (TPA) to produce 2-pyron-4,6-dicarboxylic acid (PDC).
  • TPA terephthalic acid
  • PDC 2-pyron-4,6-dicarboxylic acid
  • a catalytic reaction of converting terephthalic acid (TPA) to protocatechuic acid (PCA) through the sequential reaction of the TphAabc enzyme and the TphB enzyme can be performed, and the LigAB enzyme converts protocatechuic acid (PCA) into CHMS (4- carboxy-2-hydroxymuconate-6-semialdehyde) may be performed, and the LigC enzyme may perform a catalytic reaction of converting CHMS to PDC.
  • the PCD production method provided by the present invention includes (1) a first recombinant strain into which the nucleotide sequence of SEQ ID NO: 1 encoding TphB enzyme and the nucleotide sequence of SEQ ID NO: 2 encoding TphAabc enzyme are introduced, and LigAB enzyme Obtaining a second recombinant strain into which the nucleotide sequence of SEQ ID NO: 3 encoding and the nucleotide sequence of SEQ ID NO: 4 encoding LigC enzyme are introduced, respectively; (2) mixing the obtained first recombinant strain and the second recombinant strain at a ratio of 15:25 (number of cells) to obtain a mixed strain; And (3) reacting the obtained mixed strain with terephthalic acid (TPA) to produce 2-pyrone-4,6-dicarboxylic acid (PDC).
  • TPA terephthalic acid
  • PDC 2-pyrone-4,6-dicarboxylic acid
  • the PCD production method provided by the present invention includes the steps of: (1) obtaining a recombinant strain into which the nucleotide sequence of SEQ ID NO: 3 encoding LigAB enzyme and the nucleotide sequence of SEQ ID NO: 4 encoding LigC enzyme are introduced; And (2) reacting the obtained recombinant strain with protocatechuic acid (PCA) to produce 2-pyron-4,6-dicarboxylic acid (PDC).
  • PCA protocatechuic acid
  • PDC 2-pyron-4,6-dicarboxylic acid
  • the present invention provides a method for purifying high purity 2-pyrone-4,6-dicarboxylic acid including the following steps in the case of 3) purifying the prepared PDC with high purity :
  • step (b) extracting and layer-separating the aqueous solution obtained in step (a) with an organic solvent;
  • step (c) separating and removing a white precipitate formed by adding acetone to the aqueous layer separated in step (b);
  • step (d) extracting the solution from which the white precipitate was removed in step (c) with an organic solvent and layer separation;
  • step (e) concentrating by combining the organic layer separated in step (b) and the organic layer separated in step (d);
  • step (f) performing column chromatography on the concentrate obtained in step (e) with a mixed solvent of ethyl acetate and hexane.
  • the 2-pyrone-4,6-dicarboxylic acid sodium salt is a monovalent metal cation such as lithium, potassium, rubidium, silver, and cesium; Divalent metal cations such as magnesium, calcium, iron (II), copper (II), zinc, barium, cobalt, nickel (II), manganese, and chromium (II); Trivalent metal cations such as iron (III), aluminum, and gallium; And one or more other metal cations selected from the group consisting of tetravalent metal cations such as arsenic (IV), lead (IV), titanium (IV), and germanium (IV).
  • Divalent metal cations such as magnesium, calcium, iron (II), copper (II), zinc, barium, cobalt, nickel (II), manganese, and chromium (II)
  • Trivalent metal cations such as iron (III), aluminum, and gallium
  • one or more other metal cations selected from the group consisting of tetravalent metal cations such as
  • the acidification in step (a) may be performed using at least one acid selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, preferably hydrochloric acid.
  • the organic solvents used in steps (b) and (d) are the same or different, and one or two selected from the group consisting of ethyl acetate, methyl ethyl ketone, THF, and mixtures thereof. It may be more than one, preferably ethyl acetate.
  • the column chromatography in step (f) may be a silica gel column chromatography.
  • terephthalic acid is produced from polyethylene terephthalate (PET) using a biomass catalyst, and 2-pyron-4,6-dicarboxylic acid (PDC) can be produced by reacting the TPA with a recombinant strain.
  • PDC 2-pyron-4,6-dicarboxylic acid
  • High purity PDC may be provided by removing impurities of the PDC.
  • the biomass-derived SiO 2 catalyst according to the present invention by using the biomass-derived SiO 2 catalyst according to the present invention, the preparation method thereof, and the TPA decomposition method of PET using the same, the production of high-purity terephthalic acid (TPA) in a time faster than the PET hydrolysis rate under conventional neutral conditions. It is possible, and the prepared terephthalic acid can again be usefully used as a raw material for polyester fiber.
  • TPA high-purity terephthalic acid
  • the conversion amount is 100% in a certain amount of substrate, and it is possible to selectively produce only PDC without by-products. Since separation and purification of by-products is not required, it is economical, so it can be widely used for economical production of PDC.
  • Figure 2 shows a method of hydrolyzing polyethylene terephthalate into terephthalic acid.
  • 5(a) to 5(f) show the results of measuring XPS of SiO 2 catalysts prepared according to Examples 1 and 2 .
  • 6(a) and 6(b) show XPS quantitative analysis of SiO 2 catalysts prepared according to Examples 1 and 2.
  • 9(a) and 9(b) are graphs showing the yield of TPA according to time and temperature.
  • 10(a) and 10(b) are NMR analysis of terephthalic acid (TPA).
  • 11(a) and 11(b) are graphs showing the reaction rate constant values with respect to concentration and time.
  • 16 is an NMR graph of crude 2-pyrone-4,6-dicarboxylic acid sodium salt used in step (a) of the present invention.
  • step (b) of the present invention is an NMR graph and TLC analysis image of crude 2-pyrone-4,6-dicarboxylic acid resulting in step (b) of the present invention.
  • step (c) of the present invention is an NMR graph and TLC analysis image of a white precipitate obtained in step (c) of the present invention.
  • step (f) of the present invention is an NMR graph and TLC analysis image of a PDC obtained by column chromatography in step (f) of the present invention.
  • the present invention relates to a method for preparing high-purity 2-pyrone-4,6-dicarboxylic acid and a method for preparing an intermediate therefor; 1) preparing TPA from PET; 2) generating PDC by reacting TPA with the recombinant strain; And 3) purifying the prepared PDC with high purity.
  • the method for producing a biomass-derived SiO 2 catalyst includes: a) pulverizing rice hull and then acid treatment; And b) heat-treating the acid-treated rice husk in step a).
  • the method of hydrolyzing polyethylene terephthalate into terephthalic acid includes: a) reacting polyethylene terephthalate, a biomass-derived SiO 2 catalyst, and water in a microwave reactor to prepare a mixture in which terephthalic acid is precipitated; b) dissolving terephthalic acid by mixing sodium hydroxide in the mixture; c) filtering the mixture in which the terephthalic acid is dissolved to remove the residue and the catalyst; d) forming and obtaining a precipitate by adding an acidic solution to the mixture from which the residue and the catalyst have been removed; And e) drying the obtained precipitate.
  • the PCD production method provided by the present invention comprises (1) the nucleotide sequence of SEQ ID NO: 1 encoding the TphB enzyme, the nucleotide sequence of SEQ ID NO: 2 encoding the TphAabc enzyme, the nucleotide sequence of SEQ ID NO: 3 encoding the LigAB enzyme, and the LigC enzyme.
  • TPA terephthalic acid
  • PDC 2-pyron-4,6-dicarboxylic acid
  • the present invention comprises the steps of: (a) acidifying crude 2-pyrone-4,6-dicarboxylic acid sodium salt to prepare an aqueous solution containing 2-pyrone-4,6-dicarboxylic acid; (b) extracting and layer-separating the aqueous solution obtained in step (a) with an organic solvent; (c) separating and removing a white precipitate formed by adding acetone to the aqueous layer separated in step (b); (d) extracting the solution from which the white precipitate was removed in step (c) with an organic solvent and layer separation; (e) concentrating by combining the organic layer separated in step (b) and the organic layer separated in step (d); And (f) subjecting the concentrate obtained in step (e) to column chromatography with a mixed solvent of ethyl acetate and hexane, to provide a method for purifying high purity 2-pyrone-4,6-dicarboxylic acid. :
  • the present invention relates to a method for preparing high-purity 2-pyrone-4,6-dicarboxylic acid and a method for preparing an intermediate therefor; 1) preparing TPA from PET; 2) generating PDC by reacting TPA with the recombinant strain; And 3) purifying the prepared PDC with high purity.
  • the biomass described in the present invention may be rice husk.
  • the SiO 2 nanoparticles produced from the biomass may be SiO 2 catalysts.
  • a SiO 2 catalyst whose surface is modified by a thiol functional group is expressed as a Thiol-SiO 2 catalyst.
  • An object of the present invention is to provide a method for easily decomposing solid terephthalic acid by preparing a SiO 2 catalyst using rice husk, and reacting polyethylene terephthalate using this in a microwave reactor.
  • an object of the present invention is to provide a method for producing high purity terephthalic acid by lowering the impurity content in terephthalic acid when hydrolyzing polyethylene terephthalate under neutral conditions.
  • the present invention provides a SiO 2 catalyst extracted from biomass and a method for producing the same, and provides a method for hydrolyzing polyethylene terephthalate using the SiO 2 catalyst.
  • the biomass according to an embodiment of the present invention may be rice husk.
  • the SiO 2 catalyst according to an embodiment of the present invention is extracted from biomass, and the SiO 2 catalyst may have a surface modified by a thiol functional group (-SH).
  • the specific surface area of the SiO 2 catalyst may be 151.92 to 281.02 m 2 /g, and the pore size may be 0.57 to 0.66 nm.
  • a method for preparing a biomass-derived SiO 2 catalyst according to an embodiment of the present invention includes: a) pulverizing rice husk and then acid treatment (S10); And b) (a) heat-treating the acid-treated rice husk in step (S10) (S20).
  • the step a) (S10) is a step of pulverizing the rice husk and acid treatment.
  • the reason why the rice husk is pulverized to a certain size is to increase the efficiency of the acid treatment process performed after pulverization and to increase the purity of the finally produced SiO 2 .
  • the method of pulverizing the rice husk is not limited, and may be specifically milled.
  • the milling may be performed using a commonly used milling machine such as a knee-type milling machine, a bed-type milling machine, a universal milling machine, and an upright milling machine.
  • a commonly used milling machine such as a knee-type milling machine, a bed-type milling machine, a universal milling machine, and an upright milling machine.
  • the particle size of the milled rice husk may be 50 ⁇ 500 ⁇ m.
  • the acid treatment in step a) (S10) is to remove impurities contained in the rice husk, and may be a 7 to 15% acidic solution, and specifically, a 10% acidic solution.
  • the acidic solution may be one selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and mixtures thereof, and specifically hydrochloric acid.
  • the acid treatment in step A) (S10) is performed using an acidic solution containing one selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and mixtures thereof, at 40 to 150°C for 10 minutes to 3 hours. It may be performed for 20 to 2 hours at 50 ⁇ 100 °C using hydrochloric acid, more specifically, it may be carried out for 30 minutes at 60 °C using hydrochloric acid.
  • the acid treatment of the pulverized rice husk may be performed one or more times, specifically 1 to 10 times, and may be performed differently depending on the type and concentration of the acidic solution.
  • the acid treatment in step A) (S10) may be performed in a high-liquid ratio of 1:5 to 15 (g:ml) between the crushed rice husk and the acidic solution, and specifically, it may be performed in a high-liquid ratio of 1:10. have.
  • step A) After the acid treatment of step A) (S10), the step of filtering and washing the acid-treated rice husk may be further included.
  • the filtration is not limited as long as it is a method capable of obtaining SiO 2 nanoparticles.
  • the washing may be performed once to 4 times with distilled water, toluene, acetone, or the like.
  • step (S20) is a step of heat-treating the acid-treated rice husk of the step (a) (S10).
  • step b) (S20) may be performed for 2 to 3 hours while lowering the acid-treated rice husk by 3.5 °C per minute at a temperature of 600 to 700 °C.
  • a toluene Tolyene
  • Washing the mixture may be performed once to 4 times with distilled water, toluene, acetone, or the like.
  • Drying the washed mixture may be vacuum-dried at 50 to 70° C. for 12 to 26 hours.
  • Figure 2 shows a method of hydrolyzing polyethylene terephthalate into terephthalic acid.
  • the TPA decomposition method of PET using a biomass-derived SiO 2 catalyst according to another embodiment of the present invention is, by mixing polyethylene terephthalate, a biomass-derived SiO 2 catalyst, and water and irradiating microwaves to obtain the polyethylene terephthalate. It is characterized by hydrolyzing phthalate into terephthalic acid.
  • the method of hydrolyzing polyethylene terephthalate using a biomass-derived SiO 2 catalyst to terephthalic acid is: a) polyethylene terephthalate, a biomass-derived SiO 2 catalyst, and water are reacted in a microwave reactor to prepare a mixture in which terephthalic acid is precipitated Manufacturing step (S100); b) dissolving terephthalic acid by mixing sodium hydroxide in the mixture (S200); c) filtering the mixture in which the terephthalic acid is dissolved to remove the residue and the catalyst (S300); d) forming and obtaining a precipitate by adding an acidic solution to the mixture from which the residue and the catalyst have been removed (S400); And e) drying the obtained precipitate (S500).
  • S100 a) polyethylene terephthalate, a biomass-derived SiO 2 catalyst, and water are reacted in a microwave reactor to prepare a mixture in which terephthalic acid is precipitated Manufacturing step (S100); b) dissolving
  • Reaction Scheme 1 shows a process in which polyethylene terephthalate is hydrolyzed to terephthalic acid.
  • Step a) (S100) is a step of hydrolyzing polyethylene terephthalate to terephthalic acid using a SiO 2 catalyst derived from biomass.
  • the hydrolysis can be carried out in a microwave reactor.
  • the microwave reactor (Anton Paar, Monowave 400, UK) may be equipped with a temperature and pressure sensor.
  • the SiO 2 catalyst may be a SiO 2 catalyst derived from biomass, and the biomass may be rice husk.
  • the SiO 2 catalyst derived from the biomass may have a surface modified by a thiol functional group.
  • the mixture may be terephthalic acid, ethylene glycol, polyethylene terephthalate and catalyst.
  • the step b) (S200) is a step of dissolving terephthalic acid by mixing sodium hydroxide in the mixture.
  • step b) By dissolving terephthalic acid in step b) (S200), impurities may be removed in the next step.
  • impurities are non-reacted polyethylene terephthalate and catalyst.
  • the step c) (S300) is a step of filtering the mixture in which the terephthalic acid is dissolved to remove the residue and the catalyst.
  • the residue is undissolved polyethylene terephthalate.
  • the step c) (S300) is not limited as long as it is a method capable of removing the undecomposed polyethylene terephthalate and the catalyst.
  • step d) (S400), an acidic solution is added to the mixture from which the residue and the catalyst have been removed to form and obtain a precipitate.
  • the acidic solution may be one selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and mixtures thereof, and preferably hydrochloric acid.
  • the e) step (S500) is a step of drying the obtained precipitate.
  • the method of drying the obtained precipitate is not limited.
  • washed rice husk was heat-treated for 3 hours while lowering it at a temperature of 65° C. by 3.5° C. per minute to prepare a biomass-derived SiO 2 catalyst.
  • the surface-modified SiO 2 (Thiol-SiO 2 ) catalyst was prepared by drying in a vacuum oven at 60° C. for 24 hours.
  • 0.1 g of a SiO 2 catalyst prepared according to Example 1 0.1 g of polyethylene teretalate, and 12 ml of deionized water were used to prepare a mixture in which terephthalic acid was precipitated in a microwave reactor (Anton Paar, Monowave 400, UK).
  • 0.1 g of the surface-modified SiO 2 catalyst prepared according to Example 2 0.1 g of polyethylene teretalate, and 12 ml of deionized water were used to prepare a mixture in which terephthalic acid was precipitated in a microwave reactor (Anton Paar, Monowave 400, UK). .
  • the SiO 2 catalyst prepared according to Example 1 is composed of small SiO 2 particles having a size of about 50 nm, and is in the form of a rod having a fine interconnect structure. I can confirm that it is.
  • this nanostructure is a unique form of the SiO 2 catalyst.
  • Test Example 2 X-ray diffraction analysis of SiO2 catalyst
  • Test Example 3 Analysis of SiO2 catalyst by X-ray photoelectron spectroscopy (XPS)
  • 5(a) to 5(f) show the results of measuring XPS of SiO 2 catalysts prepared according to Examples 1 and 2 .
  • the SiO 2 catalyst prepared according to Example 1 in the O 1 s spectrum exhibited a single peak at 532.8 eV, which is oxygen (O) in the Si-O-Si bonding environment. ) Corresponds to.
  • the SiO 2 catalyst prepared according to Example 1 showed a single peak at 103.5 eV, which corresponds to silicon (Si) in the Si—O bonding environment.
  • the SiO 2 catalyst prepared according to Example 1 did not have a peak corresponding to sulfur.
  • the SiO2 catalyst prepared according to Example 2 in the O 1s spectrum showed a single peak at 532.9 eV. This is a result of confirming that the bonding of Si-O-Si did not change even after the surface of the catalyst was modified with a thiol functional group.
  • the SiO 2 catalyst prepared according to Example 2 was deconvoluted with one peak representing Si-O bonds (103.8 ev) and another peak representing Si-S bonds (102.4 eV). deconvolution), which means that the surface of the catalyst has been modified with a thiol functional group.
  • 6(a) and 6(b) show XPS quantitative analysis of SiO 2 catalysts prepared according to Examples 1 and 2.
  • the SiO 2 catalyst prepared according to Example 1 had a silicon atomic ratio of 31.24% and an oxygen atomic ratio of 64.01%, which was confirmed to be consistent with the conventional SiO 2 configuration. It can be seen that the silicon atomic ratio of the SiO 2 catalyst prepared according to Example 2 is 26.26%, the oxygen atomic ratio is 50.65%, and the sulfur atomic ratio is 2.78%.
  • the atomic ratio of the SiO 2 catalyst prepared according to Example 2 is different from that of Example 1 because the surface of the SiO 2 catalyst prepared according to Example 2 was modified with a thiol functional group.
  • Test Example 4 Analysis of N2 adsorption/desorption and NH3-TPD analysis of SiO2 catalyst
  • Figure 7 (a) and 7 (b) is in the first embodiment and will illustrating the N 2 adsorption / desorption isotherms of a SiO 2 catalyst prepared in accordance with 2, 8 is for example 1 and the SiO 2 catalyst prepared according to the two NH 3 -TPD measurement results are shown.
  • both SiO 2 catalysts prepared according to Examples 1 and 2 are mesoporous solids through capillary condensation following multilayer adsorption. solids) to form hysteresis loops in the range of 0.4 ⁇ 1.0 relative pressure (P/PO).
  • the specific surface area of the SiO 2 catalyst was calculated by Brunauer-Emmett-Teller (BET) theory (SBET).
  • the specific surface areas of the SiO 2 catalysts prepared according to Examples 1 and 2 were calculated as 281.02 m 2 /g and 151.92 m 2 /g.
  • the pore size of the SiO 2 catalyst was calculated by the Hgoorvath-Kawazoe (HK) method.
  • the pore sizes of the SiO 2 catalysts prepared according to Examples 1 and 2 were calculated as 0.57 nm and 0.66 nm, respectively.
  • the NH 3 adsorption peak was confirmed in the low temperature region (LT) of 161.6° C., and the calculated acid site concentration was 0.00838 mmol/g.
  • the SiO 2 catalyst prepared according to Example 2 also had an NH 3 adsorption peak in the low temperature region (LT) of 161.6 °C, and the calculated acidic site concentration was 0.00838 mmol/g.
  • Test Example 5 Calculation of the yield of terephthalic acid (TPA) by hydrolysis of polyethylene terephthalate (PET)
  • the yield of hydrolyzed terephthalic acid was calculated using the SiO 2 catalyst prepared according to Examples 1 and 2 of polyethylene terephthalate.
  • 9(a) and 9(b) are graphs showing the yield of TPA according to time and temperature.
  • 9(a) is a comparison of the hydrolysis yield of terephthalic acid according to the reaction time at a temperature of 230°C.
  • polyethylene terephthalate hydrolysis without using a catalyst did not react for the initial 5 minutes, and reacted for 50 minutes, resulting in a yield of 91.74%.
  • the hydrolysis time was shortened by 10 minutes when the SiO 2 catalyst according to Example 1 was used compared to the polyethylene terephthalate hydrolysis reaction without using the catalyst, and 10 minutes when the SiO 2 catalyst according to Example 2 was used. It was confirmed that the minutes were further shortened.
  • polyethylene terephthalate hydrolysis without using a catalyst did not proceed at temperatures below 170 °C, but when using the SiO 2 catalysts prepared according to Examples 1 and 2 , polyethylene terephthalate hydrolysis was performed even under conditions of 170 °C. It can be seen that decomposition can proceed.
  • Test Example 6 NMR analysis of terephthalic acid (TPA) according to polyethylene terephthalate (PET) hydrolysis
  • 10(a) and 10(b) are NMR analysis of terephthalic acid (TPA).
  • terephthalic acid prepared using the SiO 2 catalyst prepared according to Example 2 showed two peaks for a hydroxy proton and an aromatic single proton, and the chemical shift values were 13.31 ppm and It was found to be 8.03 ppm.
  • terephthalic acid prepared using the SiO 2 catalyst prepared according to Example 2 showed three peaks in a 13 C NMR spectrum, respectively, aromatic carbon quaternary aromatic carbon and carbonyl carbon And the chemical shift values were 129.7 ppm, 134.8 ppm and 166.4 ppm, respectively.
  • v is the reaction rate
  • k is the reaction rate constant
  • [A] is the concentration of polyethylene terephthalate.
  • Equation 3 the value of the reaction rate constant (k) of the polyethylene terephthalate hydrolysis reaction is determined according to Equation 3 below.
  • [A] t represents the polyethylene terephthalate concentration at a specific reaction time
  • [A] O represents the initial polyethylene terephthalate concentration
  • t represents a specific reaction time
  • 11(a) and 11(b) are graphs showing the reaction rate constant values with respect to concentration and time.
  • reaction rate constant (k) values were 0.56055, 0.76866 and 1.33406, respectively.
  • k is the rate constant
  • A is the pre-exponential factor
  • Ea is the activation energy
  • R is the gas constant
  • T is the absolute temperature.
  • Equation 4 may be changed to Equation 5 below.
  • the activation energy of polyethylene terephthalate hydrolysis by the SiO 2 catalyst prepared according to Example 2 was calculated as 23.19 kJ/mol, and this value was the polyethylene terephthalate hydrolysis activation energy (56.8) kJ/mol) is reduced by more than half.
  • Test Example 8 Analysis of the polyethylene terephthalate hydrolysis mechanism of the SiO2 catalyst prepared according to Example 2
  • Scheme 2 shows a process in which polyethylene terephthalate is hydrolyzed to terephthalic acid.
  • the thiol functional group on the surface of the SiO 2 catalyst according to Example 2 is easily deprotonated under aqueous conditions to form thiolate and hydronium (OH 3 +) ions.
  • the generated hydronium ions donate a proton to the nucleophilic center of polyethylene terephthalate.
  • the oxygen atom of the ester group is positively charged, but the positive charge is more delocalized at the central carbon atom.
  • the water molecule attacks the positively charged central carbon atom, and the ethyl group's oxygen atom receives a hydrogen atom from another positively charged oxygen atom, has a positive charge, destroys the bond between carbon and oxygen, and hydrolyzes polyethylene terephthalate.
  • the reaction produces terephthalic acid and ethylene glycol.
  • the purity of terephthalic acid may decrease by inducing incomplete decomposition of ester bonds in polyethylene terephthalate due to high activation energy, and the present invention solves this problem to achieve high purity terephthalate.
  • Acid can be prepared.
  • the biomass-derived SiO 2 catalyst according to the present invention the preparation method thereof, and the TPA decomposition method of PET using the same, it is possible to manufacture high-purity TPA in a faster time than the conventional PET neutral hydrolysis conditions.
  • Terephthalic acid can again be usefully used as a raw material for polyester fiber.
  • Example 3 Recombinant E. coli strain expression vector and strain construction
  • 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase using an Escherichia coli XL1-Blue strain to produce PDC from a recombinant strain Nase (1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase; TphB) nucleotide sequence encoding the enzyme (SEQ ID NO: 1), terephthalate 1,2-dioxygenase (terephthalate 1,2 -dioxyganase; TphAabc) nucleotide sequence encoding the enzyme (SEQ ID NO: 2), Protocatechuate 4,5-dioxyganase (LigAB) nucleotide sequence encoding the enzyme (SEQ ID NO: 3) , 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (LigC
  • each nucleotide sequence encoding the enzyme TphB and the enzyme TphAabc is Comamonas sp.
  • One derived from the E6 strain was used, and the nucleotide sequences encoding LigAB and LigC enzymes were derived from the Sphingomonas paucimobilis strain.
  • pKE112ligAB plasmid of group 1 As a concrete method to construct an expression vector, by cutting the pKE112 plasmid with restriction enzymes of the Kpn I and Sbf I, and inserting the ligAB gene digested with restriction enzymes Kpn I and Sbf I was constructed pKE112ligAB plasmid of group 1. The construction was the plasmid with a restriction enzyme to cut the pKE112ligAB of Hind III and inserting the gene ligC digested with restriction enzyme Hind III and the Sbf I build pKE112ligABC of group 2. For group 3, cutting the plasmid with restriction enzymes of pKE112 Ecor I and Kpn I, which was inserted into a gene tphB digested with restriction enzymes Kpn I and Ecor I.
  • the pKE112tphBligABC plasmid was constructed by inserting the ligABC gene in the same manner as in Experimental Groups 1 and 2.
  • group 3 by cutting the pKM212 plasmid with restriction enzymes Kpn I and the Hind III and inserting the gene tphAabc digested with restriction enzymes Kpn I and Hind III was constructed pKM212tphAabc.
  • Experimental Group 4-1 as in Experimental Group 3, after inserting the tphB gene into the pKE112 plasmid, pKE112tphB was constructed.
  • Experimental group 4-2 is the same plasmid as experimental group 2.
  • the expression vector was transformed into an E. coli strain to obtain strains of experimental groups 1 to 4 in Table 2 below.
  • experimental group 3 two plasmids were transformed into one E. coli strain to obtain a strain.
  • experimental group 4 the two plasmids of experimental group 4-1 were transformed into one E. coli to obtain a strain, and the plasmid of 4-2 was transformed into one E. coli to obtain a strain, and then the whole cell in a 15:25 ratio Conversion was carried out.
  • strain E6 tphAabc genes Km R Experimental group 4 One pKE112tphB pKE112; P tac promoter, Comamonas sp. strain E6 tphB genes, Amp R pKM212tphAabc pKM212; P tac promoter, Comamonas sp. strain E6 tphAabc genes, Km R 2 pKE112ligABC pKE112; P tac promoter, Sphingomonas paucimobilis strain ligABC gene, Amp R
  • the recombinant E. coli strain of Experimental Group 1 was 2 ml of LB medium (5 g/L yeast extract, 10 g/L sodium chloride (NaCl), 10 g/L casein pancreatic enzyme digestion product (bacto-tryptone)). Inoculated into the included 14 ml round bottom tube, and incubated for 8 hours at 37°C and 200 rpm.
  • LB medium 5 g/L yeast extract, 10 g/L sodium chloride (NaCl), 10 g/L casein pancreatic enzyme digestion product (bacto-tryptone)
  • a conical tube containing 10 ml LB medium (5 g/L yeast extract, 10 g/L sodium chloride (NaCl), 10 g/L casein pancreatic enzyme digest (bacto-tryptone)) tube) into the culture solution for 8 hours, and cultured overnight at 37°C and 200 rpm.
  • 10 ml LB medium 5 g/L yeast extract, 10 g/L sodium chloride (NaCl), 10 g/L casein pancreatic enzyme digest (bacto-tryptone)
  • the culture broth cultured overnight was again 500 ml LB medium (5 g/L yeast extract, 10 g/L sodium chloride (NaCl), 10 g/L casein pancreatic enzyme digestion product (bacto-tryptone)).
  • LB medium 5 g/L yeast extract, 10 g/L sodium chloride (NaCl), 10 g/L casein pancreatic enzyme digestion product (bacto-tryptone)).
  • bacto-tryptone casein pancreatic enzyme digestion product
  • IPTG induction is molecularly similar to allolactose, initiating transcription when the gene is under the control of a lac operon.
  • IPTG an analog of allolactose, is not hydrolyzed by beta-galactosidase, unlike allolactose, so it is maintained at the same concentration throughout the experiment environment. For this reason, IPTG induction is used to induce protein expression.
  • IPTG induction For the IPTG induction, incubate until the cell growth reaches 0.4 at the absorbance (OD600), put on ice to stop the growth of the cells, and add the IPTG so that the final concentration is 0.1 mM, and then at 16° C. and 180 rpm. Incubated for about 24 hours until the cell growth stopped.
  • the culture medium cultured for 24 hours was centrifuged for 20 minutes at 4° C. and 8000 rpm for cell recovery for total cell conversion.
  • the cells recovered after centrifugation were washed with Tris-HCl at a concentration of 50 mM pH 8.0, and the cell concentration in a volume of 20 ml was adjusted to 30 in absorbance (OD600).
  • This was again centrifuged at 4°C and 4400 rpm, and the volume of 20 ml was 30 in a 250 ml baffled Erlenmeyer flask with 50 mM Tris-HCl at pH 8.0 containing 1 g/L of protocatechuic acid. It reacted under conditions of °C and 250 rpm.
  • HPLC analysis was performed under the conditions of Table 3 in order to measure CHMS converted from Protocatechuic acid used as a substrate and recombinant E. coli using the reaction solution of Experimental Group 1 reacted in the 250 ml baffled Erlenmeyer flask. The results are shown in Figure 12.
  • the recombinant E. coli strain of Experimental Group 2 was subjected to a whole cell conversion reaction in the same manner as in Example 4, and the protocatechuic acid used as a substrate and CHMS converted from the recombinant E. coli and 2-pyron-4,6-dicarboxylic acid (PDC ) was performed under the conditions of Table 3 below, and the results are shown in FIG. 13.
  • the recombinant E. coli strain of Experimental Group 3 was subjected to a whole cell conversion reaction in the same manner as in Example 4, but instead of a 50 mM Tris-HCl buffer at pH 8.0, a TG buffer (50 mM Tris-HCl at pH 7.0, 20 g/L glycerol) ) was used, and 0.5 g/L of terephthalic acid was used instead of 1 g/L protocatechuic acid.
  • a TG buffer 50 mM Tris-HCl at pH 7.0, 20 g/L glycerol
  • the recombinant E. coli strain of experimental group 4-1 and the recombinant E. coli strain of experimental group 4-2 were subjected to whole cell conversion reaction in the same manner as in Example 4, but the recombinant E. coli strain of experimental group 4-1 and the recombinant E. coli strain of experimental group 4-2.
  • the ratio of the E. coli strain was carried out at 15:25.
  • HPLC analysis was performed under the conditions of Table 3 below. The results are shown in Figure 15.
  • PDC 2-pyrone-4,6-dicarboxylic acid
  • the pyron ring of PDC is a pseudo-aromatic ring, and has useful functions such as receptor properties and biodegradability induced by PDC hydrolase in the donor-acceptor type chromophore, and the two carboxylic acid functional groups attached to the pyron ring are large.
  • PDC is being studied as a difunctional monomer to be utilized to provide a linear or networked polymer by polycondensation with other difunctional or trifunctional monomers.
  • PDC cannot be synthesized using petrochemical technology and is currently only extractable from plant components, for example, it is possible to produce it on a large scale by microbial fermentation processes.
  • PDC as a compound is highly soluble in polar solvents such as water, acetone, methanol, THF and acetonitrile, but hardly soluble in non-polar solvents such as benzene, hexane and heptane.
  • PDC metal salts such as PDC sodium salt also have very low solubility in water or polar solvents, and a PDC purification method was developed using this.
  • a method of preparing or obtaining such a crude PDC or a crude PDC sodium salt is not particularly limited.
  • the crude PDC or crude PDC sodium salt may be commercially obtained or prepared by the microbial fermentation process described in the prior art.
  • the crude PDC or crude PDC sodium salt which is commercially available or prepared by the microbial fermentation process described in the prior art, is analyzed to have a trace amount of impurities in a spectroscopic examination such as NMR.
  • a spectroscopic examination such as NMR.
  • the PDC Separate spots that are distinct from the spot are observed. It is judged that these spots are impurities, and the amount is also seen to be not small.
  • An object of the present invention is to provide an economical PDC purification method capable of removing such impurities from crude PDC or crude PDC sodium salts commercially available or prepared by the microbial fermentation process described in the prior art at low cost. .
  • the present invention provides a method for purifying 2-pyrone-4,6-dicarboxylic acid (PDC) comprising the following steps:
  • step (b) extracting the resulting crude PDC-containing aqueous solution in step (a) with an organic solvent and layer-separating the layer into an aqueous layer and an organic layer;
  • step (c) separating and removing a white precipitate formed by adding acetone to the aqueous layer obtained in step (b);
  • step (d) extracting the solution from which the white precipitate was removed in step (c) with an organic solvent and layer-separating the aqueous layer and the organic layer;
  • step (e) concentrating the organic layer resulting from step (b) and the organic layer resulting from step (d);
  • step (f) performing column chromatography on the concentrate obtained in step (e) with a mixed solvent of ethyl acetate and hexane.
  • step (a) is a step of preparing a crude PDC-containing aqueous solution, for example, crude PDC sodium salt using at least one acid selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, etc. It is a step of preparing an aqueous solution containing PDC by acidifying.
  • the acidification is performed by introducing the PDC sodium salt into water and stirring vigorously to make an aqueous dispersion or a water mixture, and adding concentrated hydrochloric acid to it, or by directly adding concentrated hydrochloric acid to the PDC sodium salt. Can be done.
  • the acidification is performed by introducing the PDC sodium salt into water and stirring vigorously to make an aqueous dispersion or a water mixture, and adding concentrated hydrochloric acid to it, or by directly adding concentrated hydrochloric acid to the PDC sodium salt. Can be done.
  • FIGS. 16 and 17 show NMR graphs of crude PDC sodium salt and crude PDC, respectively. Peaks of two hydrogen atoms on the pylon ring (around ⁇ 7.0 to 7.4) are not seen in FIG. 16, but FIG. It is evident in 17. In FIG. 17, peaks indicating the presence of impurities are not clearly visible, but peaks at ⁇ 8 to 9 and ⁇ 3 to 4 may be estimated as impurities.
  • the crude PDC sodium salt may be replaced with a salt of another metal cation or may include some of them.
  • other metal cations include monovalent, divalent, trivalent or tetravalent other metal cations, specifically, monovalent metal cations such as lithium, potassium, rubidium, silver, cesium, and the like; Divalent metal cations such as magnesium, calcium, iron (II), copper (II), zinc, barium, cobalt, nickel (II), manganese, chromium (II), and the like; Trivalent metal cations such as iron (III), aluminum, and gallium; And tetravalent metal cations such as arsenic (IV), lead (IV), titanium (IV), germanium (IV), and the like.
  • the acidification of the crude PDC sodium salt may be performed using inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and the like, organic acids such as acetic acid, and the like, preferably hydrochloric acid, and more preferably concentrated hydrochloric acid.
  • the solution thus acidified and containing PDC may have a pH of 6 or less, preferably a pH of 5 or less, and more preferably a pH of 3 to 5.
  • step (b) is a step of extracting the crude PDC-containing aqueous solution obtained in step (a) with an organic solvent and separating the layers into an aqueous layer and an organic layer, wherein the extraction is performed by adding the organic solvent to the crude PDC-containing aqueous solution. It can be done by adding, stirring, shaking or shaking.
  • the organic solvent used for extraction is not particularly limited, but ethyl acetate, methyl ethyl ketone, THF, and the like may be mentioned, preferably ethyl acetate, THF, or a mixture thereof.
  • the amount of the organic solvent is not particularly limited, but in general, it may be selected from 50 to 150 vol%, preferably 70 to 130 vol%, and more preferably 90 to 110 vol% of the aqueous layer.
  • step (c) is a step of separating and removing a white precipitate formed by adding acetone to the aqueous layer separated in step (b), and an aqueous layer or solution from which the white precipitate is separated is obtained.
  • the separated white precipitate was confirmed to be an impurity because it did not contain PDC as a result of NMR and TLC analysis.
  • the separation of the white precipitate is not particularly limited, and a conventional solid-liquid separation method may be used, and may be performed, for example, by filtration, centrifugation, decantation, or the like.
  • PDC exhibits high solubility in both water and acetone, whereas white precipitate, an impurity, has high solubility in water but low solubility in acetone, so when acetone is added to the aqueous layer, PDC does not precipitate and is insoluble in acetone. Phosphorus impurities appear to precipitate out.
  • water-miscible organic solvents such as methanol, ethanol, propanol, acetonitrile, dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and N-methylpyrrolidone (NMP) are used in acetone. It can be used instead or partially replaced.
  • the amount of acetone or other water-miscible solvent is not particularly limited, but in 30 to 200% by volume, preferably 50 to 150% by volume, more preferably 60 to 120% by volume, and specifically 90 to 110% by volume of the aqueous layer. Can be chosen. If the amount of acetone or other water-miscible solvent is less than the above range, there is a fear that the white precipitate may not form properly, and if it is more than the above range, an additional process of removing some or all of the water-miscible solvent used for the subsequent extraction step is required Can be set.
  • FIG. 18 is a view showing an NMR graph and TLC analysis image (upper right) of a white precipitate separated by filtration.
  • the white precipitate is a material different from the PDC.
  • the TLC analysis image of the white precipitate with the TLC analysis image of the PDC (upper left image in FIG. 17)
  • the spot of the white precipitate is different from the location of the PDC spot, and the same location as one of the spots of PDC impurities. As it appears in, it is confirmed that the white precipitate is an impurity other than PDC.
  • step (d) is a step of extracting the solution from which the white precipitate is separated in step (c) with an organic solvent and layering the layer into an aqueous layer and an organic layer, and for extraction, an organic solvent is added to the solution, followed by stirring. It can be done by playing, shaking or shaking.
  • the organic solvent used for extraction is not particularly limited, and ethyl acetate, methyl ethyl ketone, THF, and the like may be exemplified, and ethyl acetate, THF, or mixtures thereof may be mentioned preferably.
  • the amount of the organic solvent is not particularly limited, but in general, it may be selected from 50 to 150% by volume, preferably 70 to 130% by volume, more preferably 90 to 110% by volume of the aqueous layer, and more than once, preferably Can be extracted 2-3 times.
  • Step (e) of the present invention is a step of concentrating the organic layer resulting from step (b) and the organic layer resulting from step (d) to obtain a concentrate containing 2-pyrone-4,6-dicarboxylic acid. to be.
  • the organic layer may be dried in advance with magnesium sulfate, sodium sulfate, or the like, and then concentrated under reduced pressure or atmospheric pressure.
  • 2-pyrone-4,6-dicarboxylic acid is obtained with high purity.
  • silica gel column chromatography is used.
  • the column chromatography may be performed by isocratic elution or gradient elution.
  • concentration gradient elution starting from a mixed solvent of ethyl acetate and hexane selected from 4:1 to 1:4, gradually increasing the ratio of ethyl acetate, and finally using a single solvent of 100% ethyl acetate
  • concentration gradient elution starting from a mixed solvent of ethyl acetate and hexane selected from 4:1 to 1:4, gradually increasing the ratio of ethyl acetate, and finally using a single solvent of 100% ethyl acetate
  • concentration gradient elution using a 100% single solvent of hexane is not excluded.
  • high-purity 2-pyrone-4,6-dicarboxylic acid (PDC) capable of producing a highly functional polymer can be provided in an economical and simple manner on an industrial scale.
  • impurities contained in 2-pyrone-4,6-dicarboxylic acid (PDC) and difficult to distinguish by a spectroscopic method such as NMR and/or a chromatographic method such as TLC can provide a way to identify and remove.
  • the microbial culture solution (1.5 L) containing PDC was centrifuged (4000 rpm, 1 hour, 4°C) to remove the cells. 15 g of NaCl was added to the supernatant and allowed to stand at 4° C. for 12 hours to precipitate PDC sodium salt, and recovered by filtration to prepare crude PDC sodium salt.
  • the crude PDC sodium salt (22 g) was dispersed in water, acidified by adding concentrated hydrochloric acid, adjusted to pH 3-4, and concentrated under reduced pressure to prepare crude PDC.
  • FIG. 16 is an NMR graph of crude PDC sodium salt
  • the two hydrogen atoms of the pylon ring of PDC do not appear in the NMR graph in the state of being a sodium salt (COONa state) (Fig. 16), but appearing around ⁇ 7.0 to 7.3 in the acidified state (COOH state) (Fig. 17). Is observed. However, in the TLC analysis image of FIG. 17, not only the PDC spot (the spot indicated by P in the red dotted rectangle) but also other spots are clearly displayed, indicating that a significant amount of impurities other than the PDC are included.
  • the organic layers (ethyl acetate layer) obtained in the first extraction and the second extraction were all combined, dried over anhydrous magnesium sulfate, filtered to remove anhydrous magnesium sulfate, and the resulting filtrate was concentrated under reduced pressure.
  • Example 8 The same procedure as in Example 8 was performed, except that the concentrate obtained by concentrating the organic layer was eluted with ethyl acetate (single solvent) in silica gel column chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법으로; 1) PET로부터 TPA를 제조하는 단계; 2) TPA를 재조합 균주와 반응시켜 PDC를 생성하는 단계; 및 3) 제조된 PDC를 고순도로 정제하는 단계를 포함한다. 본 발명에 의한 바이오 매스 유래 SiO2 촉매, 그 제조방법, 및 이를 이용한 PET의 TPA 분해방법을 이용하면, 종래의 중성 조건하에서 PET 가수분해 속도 보다 빠른 시간에 고순도 테레프탈 산(TPA)의 제조가 가능하며, 제조된 테레프탈 산은 다시 폴리에스테르 섬유의 원료 등으로 유용하게 사용할 수 있다. 본 발명은 TphB 효소, TphAabc 효소, LigAB 효소 및 LigC 효소를 코딩하는 뉴클레오티드 서열이 도입된, 2-피론-4,6-디카복실산(PDC) 생산용 재조합 균주 및 상기 PDC 생산용 재조합 균주와 기질을 반응시키는 단계를 포함하는 PDC의 생산방법에 관한 것이다. 본 발명은 공업적으로 제조되거나 상업적으로 입수가능한 조질(crude) 2-피론-4,6-디카르복실산 또는 이의 소듐염에서, NMR 및/또는 TLC 분석법으로 확인되지만 제거 및 정제가 곤란한 불순물을, 아세톤을 첨가하여 석출시켜 제거하고, 결과된 용액을 유기용매로 추출 및 농축하고, 결과된 농축물을 컬럼 크로마토그래피에서 에틸아세테이트와 헥산의 혼합용매로 용리함으로써, 2-피론-4,6-디카르복실산을 고순도로 정제하는 방법을 제공한다.

Description

고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법
본 발명은 고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법에 관한 것이다.
본 발명에 따르면 폴리에틸렌 테레프탈레이트(PET)로부터 바이오 매스 촉매를 이용하여 테레프탈산(TPA)를 생성하고, 상기 TPA를 재조합 균주와 반응시켜 2-피론-4,6-디카복실산(PDC)을 생산할 수 있다. 또한 상기 PDC의 불순물을 제거하여 고순도의 PDC를 제공할 수 있다.
또한, 본 발명은 구체적으로는 바이오 매스로부터 유래된 SiO2 촉매와 마이크로파를 이용하여 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate)를 테레프탈 산으로 가수분해하는 방법에 관한 것이다.
또한, 본 발명은 보다 구체적으로 본 발명은 TphB 효소, TphAabc 효소, LigAB 효소 및 LigC 효소를 코딩하는 뉴클레오티드 서열이 도입된, 2-피론-4,6-디카복실산(PDC) 생산용 재조합 균주 및 상기 PDC 생산용 재조합 균주와 기질을 반응시키는 단계를 포함하는 PDC의 생산방법에 관한 것이다.
또한, 본 발명은 2-피론-4,6-디카르복실산을 고순도로 정제하는 방법에 관한 것이다.
대한민국을 비롯한 아시아 지역의 주요한 곡물인 벼는 국내의 경우 2009년을 기준으로 약 468 만 톤(재배 면적 약 92 만 ha)으로 매년 500 만 톤 정도가 생산되고 있다. 왕겨는 벼의 탈곡 과정에서 발생하는 농업폐기물이며 일반적으로 무게비로 벼의 약 20 %를 차지하는 바, 국내에서만 매년 약 90 내지 100 만 톤의 왕겨가 도정과정의 부산물로 발생되고 있다.
그러나 1900년대 중반부터 왕겨의 다양한 활용 연구에도 불구하고 국내에서는 대부분 소, 돼지 등의 축산시설 깔개, 인테리어용 보온재 등, 왕겨의 자체적인 활용만 되고 있는 실정이다.
왕겨는 크게 유기물과 무기물 성분으로 나뉘며 유기물이 약 80 %, 무기물은 약 20 %를 차지하고 있다. 유기물은 셀룰로오스, 헤미셀룰로오스 및 리그닌 등의 식물성 고분자로 구성되며 무기물은 대부분 실리카로 구성되어 있다. 왕겨에 포함된 실리카 성분을 리그닌과 같이 물리적, 화학적 저항성이 큰 고분자가 보호하고 있는 형태를 띠고 있다.
따라서 이러한 왕겨의 활용성을 높이기 위해 왕겨를 원료로 활용하기 위한 연구와 왕겨를 소재로 활용하여 목질재료 또는 합성목재 등을 제조하는 기술개발, 그리고 왕겨 내에 존재하는 실리카를 분리/추출하여 활용하는 연구 등 다양한 연구개발들이 지속적으로 행하여져 왔다.
한편, 테레프탈 산과 에틸렌 글리콜을 축중합하여 얻을 수 있는 PET(Polyethylene Terephthalate)는 강성, 전기적 성질, 내후성, 내열성이 좋고, 고온하에서 장기 폭로하여도 인장강도의 저하가 상당히 적으며 또한 결정성 플라스틱에 속하기 때문에 기름에 대한 내성도 좋다.
이에 따라 생활용품, 장난감, 전기절연체, 가전제품 케이스, 포장재 등으로 사용되고 있으며 특히, 가볍고 맛과 냄새가 없기 때문에 플라스틱 음료수병의 대부분을 차지하고 있다.
그러나 이러한 장점에도 불구하고 대기 및 생물학적 물질에 대한 내성이 크기 때문에 매우 느리게 분해되어 폐PET 수지는 환경문제를 야기하고 있다.
이러한 폐PET 수지를 재활용하는 방법으로 글리콜리시스(Glycolysis), 하이드롤리시스(Hydrolysis), 메타놀리시스(Methanolysis) 등 화학적 재활용 방법이 개시되어 있다.
글리콜리시스 방법은 에틸렌 글리콜 등의 글리콜에 의한 PET 해중합 방식으로 상업적으로 널리 사용되고 있는 방식이다. 본 방법은 조업비용이 적게 들고 원료 물질인 폐PET가 약간 오염되었어도 무방한 장점이 있으나, 해중합물의 분자량이 높아 정제가 곤란한 단점이 있다.
하이드롤리시스 방법은 물, 알칼리 등에 의한 PET 분해 방법으로 테레프탈 산(Terephthalic Acid)의 제조 용도로 많이 쓰이고 있는 방법이나 제조비용이 많이 드는 단점이 있다.
메타놀리시스는 메탄올에 의한 해중합 방법으로 가장 널리 쓰이고 있으며, 폐PET의 오염 상태와 관계가 없는 장점이 있는 반면에 높은 온도와 압력에서 운전되어야 하기 때문에 제조비용이 많이 든다는 단점이 있다.
상기 방법 중에서 테레프탈 산은 다시 폴리에스테르 섬유의 원료 등으로 사용할 수 있으므로, 폐PET 수지로부터 테레프탈 산과 에틸렌 글리콜을 분리해 내는 하이드롤리시스 방법에 대한 연구가 많이 진행되어 왔다.
폴리에틸렌 테레프탈산은 가벼운 무게, 질김, 화학적 안정성, 쉬운 성형 등의 장점들을 가지고 있어 합성 섬유나 포장 등에 널리 사용되고 있다. 2015년의 경우 연간 폴리에틸렌 테레프탈산의 생산량이 33만 톤 정도로 폴리에스터 중 가장 많은 양이 생산되었지만, 자연적으로 분해되기 어려워 미세플라스틱의 오염, 해양 생태계의 플라스틱 침전 등의 환경오염을 야기 하고 있다.
폴리에틸렌 테레프탈산을 친환경적인 플라스틱으로 대체 하기 위해 폴리에틸렌 퓨란디카복실산 같은 자연분해 플라스틱이 개발되고 있다. 그러나 이러한 자연분해 플라스틱들은 현재의 폴리에틸렌 테레프탈산을 물성이나 비용적인 측면에서 대체하기엔 많은 어려움이 있다. 이런 이유로, 폴리에틸렌 테레프탈산의 재활용을 강화 하여 자연으로 나오게 되는 폐 플라스틱을 줄이는 연구가 활발히 진행되고 있다.
많은 플라스틱 중 폴리에틸렌 테레프탈산과 폴리에틸렌은 물리적으로 재활용 되고, 재활용 플라스틱을 만들 수 있는 플라스틱 중 하나 이다. 미국에서는 수 십년 간 폴리에틸렌 테레프탈산의 재활용 공정이 이루어지고 있지만 재활용률은 겨우 21 %에 불과하다. 이는 재활용된 폴리에틸렌 테레프탈산이 새로 생산된 폴리에틸렌 테레프탈산 보다 품질이 낮고, 재활용 과정의 비용이 비싸기 때문이다. 일례로, 새로 생산된 폴리에틸렌 테레프탈산은 킬로그램 당 1.1에서 1.3 달러이지만, 폴리에틸렌 테레프탈산을 재활용하는 비용은 킬로그램 당 1.3에서 1.5 달러이다.
한편, 플라스틱을 가스나 연료로 바꿀 수 있는 화학적 혹은 열 화학적 플라스틱 재활용은 플라스틱과 비교하였을 때 에너지 비용 측면과 생성물의 낮은 가격 때문에 널리 사용되고 있지 않다. 요약하자면, 현재 사용되고 있는 재활용 방법들은 폐 폴리에틸렌 테레프탈산을 줄이기에 바람직한 해결방법이 아니다. 이러한 이유로 볼 때 폴리에틸렌 테레프탈산의 재활용 방법을 업사이클링, 즉 재활용품을 이용하여 고부가가치의 물질을 만드는 재활용 방법이 필요하다.
2-피론-4,6-디카르복실산(PDC)은 극성 유사-방향족 고리에 2개의 카르복실산기가 부착된 구조를 가지고 있으며, 중부가반응(polyaddition) 및 중축합반응(polycondensation)이 가능한 2관능성 단량체로서 작용할 수 있기 때문에, 다양한 기능성 폴리에스터의 제조에 유용한 단량체 등의 고부가가치 활용이 제안되었다. 2-피론-4,6-디카르복실산(PDC)은 리그닌으로부터 효소공학적으로 대량으로 생산되고 일반적으로 활성탄으로 정제되고 있지만, 고부가가치 활용을 위해 고순도로 정제할 수 있는 기술이 필요하여 많은 연구가 행해졌다.
그러나, 기존 선행방법으로 정제된 2-피론-4,6-디카르복실산 뿐만 아니라 다른 상업적으로 입수가능한 2-피론-4,6-디카르복실산에는 NMR과 TLC 분석 결과 미량의 불순물이 함유되어 있다고 추정되는데, 이들 불순물은 전통적인 2-피론-4,6-디카르복실산 정제 방법(예. 재결정, 양이온 석출법, 용해도법 등)으로는 제거하기가 곤란하여, 2-피론-4,6-디카르복실산의 고부가가치 활용이 공업적인 관점에서 제한되고 있다. 또한, 이들의 제거 및 정제에는 많은 비용과 노력이 필요하므로, 이러한 불순물을 간단하고 효율적이고 경제적으로 제거할 수 있는 방법이 요구되고 있다.
본 발명의 목적은 폴리에틸렌 테레프탈레이트(PET)로부터 바이오 매스 촉매를 이용하여 테레프탈산(TPA)를 생성하고, 상기 TPA를 재조합 균주와 반응시켜 2-피론-4,6-디카복실산(PDC)을 생산하며, 상기 PDC의 불순물을 제거하여 고순도의 PDC를 제공하는 데 있다.
또한, 본 발명은, 왕겨를 이용하여 SiO 2 촉매를 제조하고, 이를 이용하여 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate)를 마이크로파 반응기에서 반응시켜 고체상 테레프탈 산을 용이하게 제조할 수 있는 방법을 제공하는 데 있다.
또한, 본 발명은 중성 조건하에서 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate)를 가수분해할 때 테레프탈 산 중의 불순물 함량을 낮추어 고순도의 테레프탈 산을 제조하는 방법을 제공하는 데 그 목적이 있다.
또한, 본 발명의 목적은 TphB 효소, TphAabc 효소, LigAB 효소 및 LigC 효소를 코딩하는 뉴클레오티드 서열이 도입된 2-피론-4,6-디카복실산(PDC) 생산용 재조합 균주를 제공하는 데 있다.
본 발명의 다른 목적은 상기 PDC 생산용 재조합 균주와 기질을 반응시키는 단계를 포함하는 PDC의 생산방법을 제공하는 것이다.
또한, 본 발명의 목적은 공업적으로 제조되거나 상업적으로 입수가능한 조질(crude) 2-피론-4,6-디카르복실산 또는 이의 소듐염에서, NMR 및/또는 TLC 분석법으로 확인되지만 제거 및 정제가 곤란한 불순물을 제거하여 고순도의 2-피론-4,6-디카르복실산을 제공하는 것을 목적으로 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)는 이하의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법으로; 1) PET로부터 TPA를 제조하는 단계; 2) TPA를 재조합 균주와 반응시켜 PDC를 생성하는 단계; 및 3) 제조된 PDC를 고순도로 정제하는 단계를 포함한다.
본 발명에 따른 1) PET로부터 TPA를 제조하는 단계 중 SiO 2 촉매는, 바이오 매스로부터 추출된 것을 특징으로 한다.
상기 바이오 매스는 왕겨인 것이 바람직하다.
상기 SiO 2 촉매는 티올 작용기(-SH)에 의해 표면이 개질된 것이 바람직하다.
상기 SiO 2 촉매의 비표면적은 151.92 ~ 281.02 m 2/g이고, 기공의 크기는 0.57 ~ 0.66 nm인 것이 바람직하다.
본 발명의 바람직한 다른 실시예에 따른, 바이오매스 유래 SiO 2 촉매의 제조방법은, 가) 왕겨를 분쇄한 후 산처리하는 단계; 및 나) 상기 가) 단계의 산처리된 왕겨를 열처리하는 단계;를 포함하는 것을 특징으로 한다.
다른 실시예에 있어서, 상기 가) 단계의 상기 산처리는, 황산, 염산, 질산, 인산, 및 이들의 혼합물로 이루어진 군에서 선택된 1 종을 포함하는 산성용액을 사용하여, 40 ~ 150 ℃에서 10 분 ~ 3 시간 동안 수행되는 것이 바람직하다.
상기 가) 단계의 산처리 후, 상기 산처리된 왕겨를 여과 및 세척하는 단계를 더 포함하는 것이 바람직하다.
상기 나) 단계의 열처리는 600 ~ 700 ℃의 온도에서 분당 3.5 ℃씩 하강시키면서 2 ~ 3 시간 동안 수행되는 것이 바람직하다.
상기 나) 단계 후 SiO 2 촉매의 표면을 개질시키는 단계를 더 포함하며, 상기 SiO 2 촉매의 표면을 개질시키는 단계는, 상기 SiO 2 촉매와 머캅토프로필 트리메톡시실란(Mercaptopropyl trimethoxysilane)을 톨루엔(Tolyene) 용매에 투입하여 혼합물을 제조하는 단계; 상기 혼합물을 세척하는 단계; 및 상기 세척된 혼합물을 건조시키는 단계;를 포함하는 것이 바람직하다.
본 발명의 또 다른 바람직한 실시예에 따른 바이오 매스 유래 SiO 2 촉매를 이용한 PET의 TPA 분해방법은, 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate), 바이오매스 유래 SiO 2 촉매, 및 물을 혼합하고 마이크로파를 조사하여 상기 폴리에틸렌 테레프탈레이트를 테레프탈 산(Terephthalic acid)으로 가수분해하는 것을 특징으로 한다.
또 다른 실시예에 있어서, 상기 폴리에틸렌 테레프탈레이트를 테레프탈 산으로 가수분해하는 방법은, a) 폴리에틸렌 테레프탈레이트, 바이오매스 유래 SiO 2 촉매 및 물을 마이크로파 반응기에서 반응시켜 테레프탈 산이 침전된 혼합물을 제조하는 단계; b) 상기 혼합물에 수산화나트륨을 혼합하여 테레프탈 산을 용해시키는 단계; c) 상기 테레프탈 산이 용해된 혼합물을 여과하여 잔여물과 촉매를 제거하는 단계; d) 상기 잔여물과 촉매가 제거된 혼합물에 산성용액을 투입하여 침전물을 형성시키고 수득하는 단계; 및 e) 상기 수득된 침전물을 건조시키는 단계;를 포함하는 것이 바람직하다.
상기 산성용액은, 황산, 염산, 질산, 인산, 및 이들의 혼합물로 이루어진 군에서 선택된 1 종인 것이 바람직하다.
본 발명의 2) TPA를 재조합 균주와 반응시켜 PDC를 생성하는 단계의 일 실시예는 1,2-디하이드록시-3,5-사이클로핵사디엔-1,4-디카르복실레이트 디하이드로게네이즈(1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase; TphB) 효소; 테레프탈레이트 1,2-디옥시게네이즈 (terephthalate 1,2-dioxyganase; TphAabc) 효소; 프로토카테츄에이트 4,5-디옥시게네이즈 (Protocatechuate 4,5-dioxyganase; LigAB) 효소; 4-카복시-2-하이드록시뮤코네이트-6-세미알데하이드 디하이드로게네이즈 (4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase; LigC) 효소 및 이들의 조합으로 구성된 군으로부터 선택되는 효소를 코딩하는 뉴클레오티드 서열이 도입된, 2-피론-4,6-디카복실산(PDC) 생산용 재조합 균주를 제공한다.
상기 TphB 효소를 코딩하는 뉴클레오티드 서열 (tphB)은 특별히 이에 제한되지 않으나, 일 예로서, 서열번호 1의 뉴클레오티드 서열로 구성될 수 있고; 상기 TphAabc 효소를 코딩하는 뉴클레오티드 서열( tphAabc)은 특별히 이에 제한되지 않으나, 일 예로서, 서열번호 2의 뉴클레오티드 서열로 구성될 수 있으며; 상기 LigAB 효소를 코딩하는 뉴클레오티드 서열( ligAB)은 특별히 이에 제한되지 않으나, 일 예로서, 서열번호 3의 뉴클레오티드 서열로 구성될 수 있고; 상기 LigC 효소를 코딩하는 뉴클레오티드 서열( LigC)은 특별히 이에 제한되지 않으나, 일 예로서, 서열번호 4의 뉴클레오티드 서열로 구성될 수 있다.
상기 실시의 구체적인 예시로서, 본 발명의 PDC 생산용 재조합 균주는 뉴클레오티드 서열번호 1의 tphB, 뉴클레오티드 서열번호 2의 tphAabc, 뉴클레오티드 서열번호 3의 ligAB 및 뉴클레오티드 서열번호 4의 ligC가 도입된 재조합 균주; 뉴클레오티드 서열번호 1의 tphB 및 뉴클레오티드 서열번호 2의 tphAabc가 도입된 제1 재조합 균주와 뉴클레오티드 서열번호 3의 ligAB 및 뉴클레오티드 서열번호 4의 ligC가 도입된 제2 재조합 균주를 포함하는 혼합균주; 뉴클레오티드 서열번호 3의 ligAB 및 뉴클레오티드 서열번호 4의 ligC가 도입된 재조합 균주 등이 될 수 있다.
상기 뉴클레오티드 서열의 도입은 발현벡터를 통해 수행될 수 있고, 상기 뉴클레오티드 서열이 도입된 균주는 상기 뉴클레오티드 서열이 발현되도록 형질전환된다.
상기 발현벡터란 적당한 숙주세포에서 목적 단백질 또는 목적 RNA을 발현할 수 있는 벡터로서, 유전자 삽입물(상기 폴리뉴클레오티드)이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 의미한다. 발현벡터는 일단 숙주 세포 내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 삽입된 외래 DNA가 발현될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 플라스미드(plasmid) 및 벡터(vector)는 때로 상호 교환적으로 사용된다.
상기 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 적합한 발현벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원을 포함할 수 있다.
상기 형질전환은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 본 발명에 따른 형질전환에 사용될 수 있는 숙주 세포는 원핵 또는 진핵 세포 모두를 포함할 수 있으며, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 숙주가 사용될 수 있다. 예를 들어, 에스케리키아, 슈도모나스, 바실러스, 스트렙토마이세스, 진균, 효모와 같은 주지의 진핵 및 원핵숙주들, 스포도프테라 프루기페르다(SF9)와 같은 곤충 세포, CHO, COS 1, COS 7, BSC 1, BSC 40, BMT 10 등의 동물 세포 등이 사용될 수 있으며, 이에 제한되는 것은 아니다.
형질전환은 폴리뉴클레오티드를 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 숙주세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 이런 방법에는 전기충격유전자전달법(electroporation), 원형질 융합, 인산 칼슘(CaPO 4) 침전, 염화 칼슘(CaCl 2) 침전, 실리콘 카바이드 섬유 이용한 교반, 아그로박테리아-매개 형질전환, PEG(polyethylene glycol), 덱스트란 설페이트, 리포펙타민, 입자 충격법(particle bombardment) 등이 포함되나 이로 제한되지 않는다.
본 발명의 다른 실시양태는 상기 PDC 생산용 재조합 균주와 기질을 반응시키는 단계를 포함하는, PDC의 생산방법을 제공한다.
본 발명에서 제공하는 PCD 생산방법은 특별히 이에 제한되지 않으나, 구체적인 일 예로서, (1) TphB 효소를 코딩하는 서열번호 1의 뉴클레오티드 서열, TphAabc 효소를 코딩하는 서열번호 2의 뉴클레오티드 서열, LigAB 효소를 코딩하는 서열번호 3의 뉴클레오티드 서열 및 LigC 효소를 코딩하는 서열번호 4의 뉴클레오티드 서열이 도입된 재조합 균주를 수득하는 단계; 및 (2) 상기 수득한 재조합 균주와 테레프탈산(TPA)을 반응시켜서, 2-피론-4,6-디카복실산(PDC)를 생성하는 단계를 포함한다.
이때, 상기 TphAabc 효소와 TphB 효소의 순차반응을 통해 테레프탈산(TPA)을 프로토카테츄산(PCA)으로 전환시키는 촉매반응을 수행할 수 있고, 상기 LigAB 효소는 프로토카테츄산(PCA)을 CHMS(4-carboxy-2-hydroxymuconate-6-semialdehyde)로 전환시키는 촉매반응을 수행할 수 있으며, 상기 LigC 효소는 CHMS를 PDC로 전환시키는 촉매반응을 수행할 수 있다.
다른 예로서, 본 발명에서 제공하는 PCD 생산방법은 (1) TphB 효소를 코딩하는 서열번호 1의 뉴클레오티드 서열과 TphAabc 효소를 코딩하는 서열번호 2의 뉴클레오티드 서열이 도입된 제1 재조합 균주, 및 LigAB 효소를 코딩하는 서열번호 3의 뉴클레오티드 서열과 LigC 효소를 코딩하는 서열번호 4의 뉴클레오티드 서열이 도입된 제2 재조합 균주를 각각 수득하는 단계; (2) 상기 수득한 제1 재조합 균주와 제2 재조합 균주를 15:25(균체수)의 비율로 혼합하여 혼합균주를 수득하는 단계; 및 (3) 상기 수득한 혼합균주와 테레프탈산(TPA)을 반응시켜서, 2-피론-4,6-디카복실산(PDC)를 생성하는 단계를 포함한다.
또 다른 예로서, 본 발명에서 제공하는 PCD 생산방법은 (1) LigAB 효소를 코딩하는 서열번호 3의 뉴클레오티드 서열과 LigC 효소를 코딩하는 서열번호 4의 뉴클레오티드 서열이 도입된 재조합 균주를 수득하는 단계; 및 (2) 상기 수득한 재조합 균주와 프로토카테츄산(PCA)을 반응시켜서, 2-피론-4,6-디카복실산(PDC)를 생성하는 단계를 포함한다.
또한, 상기의 목적을 달성하기 위하여, 본 발명은 3) 제조된 PDC를 고순도로 정제하는 단계의 경우 하기 단계를 포함하는 고순도 2-피론-4,6-디카르복실산의 정제 방법을 제공한다:
(a) 조질 2-피론-4,6-디카르복실산 소듐염을 산성화하여 2-피론-4,6-디카르복실산을 함유하는 수용액을 제조하는 단계;
(b) 상기 단계 (a)에서 결과된 수용액을 유기용매로 추출하고 층분리하는 단계;
(c) 상기 단계 (b)에서 층분리된 수층에 아세톤을 첨가하여 형성되는 백색 침전물을 분리하여 제거하는 단계;
(d) 상기 단계 (c)에서 백색 침전물이 제거된 용액을 유기용매로 추출하고 층분리하는 단계;
(e) 상기 단계 (b)에서 층분리된 유기층 및 단계 (d)에서 층분리된 유기층을 결합하여 농축하는 단계; 및
(f) 상기 단계 (e)에서 결과된 농축물을 에틸 아세테이트와 헥산의 혼합 용매로 컬럼 크로마토그래피하는 단계.
본 발명의 일 실시예에 따르면, 상기 2-피론-4,6-디카르복실산 소듐염은 리튬, 칼륨, 루비듐, 은, 세슘과 같은 1가 금속 양이온; 마그네슘, 칼슘, 철(II), 구리(II), 아연, 바륨, 코발트, 니켈(II), 망간, 크롬(II)과 같은 2가 금속 양이온; 철(III), 알루미늄, 갈륨과 같은 3가 금속 양이온; 및 비소(IV), 납(IV), 티탄(IV), 게르마늄(IV)과 같은 4가 금속 양이온으로 구성된 군에서 선택된 1종 이상의 다른 금속 양이온을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 단계 (a)에서 산성화는 염산, 황산, 질산 및 인산으로 구성된 군에서 선택된 하나 이상의 산, 바람직하게는 염산을 사용하여 수행될 수 있다.
본 발명의 일 실시예에 따르면, 상기 단계 (b) 및 (d)에서 사용되는 유기용매는 동일 또는 상이하며, 에틸아세테이트, 메틸에틸케톤, THF 및 이들의 혼합물로 구성된 군에서 선택되는 하나 또는 둘 이상일 수 있고, 바람직하게는 에틸아세테이트이다.
본 발명의 일 실시예에 따르면, 상기 단계 (f)의 컬럼 크로마토그래피는 에틸아세테이트:헥산=4:1 ~ 1:4의 혼합 용매로 용리될 수 있으며, 바람직하게는 에틸아세테이트:헥산=4:1 ~ 1:4의 혼합 용매에서 시작하여 에틸아세테이트(단일 용매)로 변화시키면서 농도구배 용리될 수 있다.
본 발명의 일 실시예에 따르면, 상기 단계 (f)의 컬럼 크로마토그래피는 실리카겔 컬럼 크로마토그래피일 수 있다.
본 발명에 따르면 폴리에틸렌 테레프탈레이트(PET)로부터 바이오 매스 촉매를 이용하여 테레프탈산(TPA)를 생성하고, 상기 TPA를 재조합 균주와 반응시켜 2-피론-4,6-디카복실산(PDC)을 생산할 수 있으며, 상기 PDC의 불순물을 제거하여 고순도의 PDC를 제공할 수 있다.
또한, 본 발명에 의한 바이오 매스 유래 SiO 2 촉매, 그 제조방법, 및 이를 이용한 PET의 TPA 분해방법을 이용하면, 종래의 중성 조건하에서 PET 가수분해 속도 보다 빠른 시간에 고순도 테레프탈 산(TPA)의 제조가 가능하며, 제조된 테레프탈 산은 다시 폴리에스테르 섬유의 원료 등으로 유용하게 사용할 수 있다.
또한, 본 발명에서 제공하는 재조합 균주를 사용하여 2-피론-4,6-디카복실산(PDC)를 생산하는 경우 일정량의 기질에서 전환량이 100% 이며, 부산물 없이 PDC 만 선택적으로 생산하는 것이 가능하여 부산물에 대한 분리정제가 요구되지 않아 경제적이므로, PDC의 경제적인 생산에 널리 활용될 수 있을 것이다.
또한, 본 발명에 따르면, 공업적으로 제조되거나 상업적으로 입수가능한 조질(crude) 2-피론-4,6-디카르복실산 또는 이의 소듐염에서, NMR 및/또는 TLC 분석법으로 확인되지만 제거 및 정제가 곤란한 불순물을 간단하면서도 저렴한 비용으로 제거할 수 있다.
도 1은 바이오 매스 유래 SiO 2 촉매의 제조방법을 나타낸 것이다.
도 2는 폴리에틸렌 테레프탈레이트를 테레프탈 산으로 가수분해하는 방법을 나타낸 것이다.
도 3(a) 내지 3(f)는 실시예 1 및 2의 SEM 이미지를 나타낸 것이다.
도 4는 실시예 1에 따라 제조된 SiO 2 촉매의 X-선 회절 패턴을 분석한 것이다.
도 5(a) 내지 5(f)는 실시예 1 및 실시예 2에 따라 제조된 SiO 2 촉매의 XPS를 측정한 결과를 나타낸 것이다.
도 6(a) 및 6(b)는 실시예 1 및 2에 따라 제조된 SiO 2 촉매의 XPS 정량분석을 나타낸 것이다.
도 7(a) 및 7(b)는 실시예 1 및 2에 따라 제조된 SiO 2 촉매의 N 2 흡착/탈착 등온선을 나타낸 것이다.
도 8은 실시예 1 및 2에 따라 제조된 SiO2 촉매의 NH 3-TPD 측정결과를 나타낸 것이다.
도 9(a) 및 9(b)는 시간 및 온도에 따른 TPA의 수율을 나타낸 그래프이다.
도 10(a) 및 10(b)는 테레프탈 산(TPA)의 NMR을 분석한 것이다.
도 11(a) 및 11(b)는 농도 및 시간에 대한 반응속도 상수값을 나타낸 그래프이다.
도 12는 본 발명에서 제공하는 실험군 1의 재조합 대장균 균주를 이용하여 프로토카테츄산을 기질로 전세포 전환하고, 이로부터 전환된 CHMS를 확인한 결과이다.
도 13은 본 발명에서 제공하는 실험군 2의 재조합 대장균 균주를 이용하여 프로토카테츄산을 기질로 전세포 전환하고, 이로부터 전환된 2-피론-4,6-디카복실산(PDC)을 확인한 결과이다.
도 14는 본 발명에서 제공하는 실험군 3의 재조합 대장균 균주를 이용하여 테레프탈산을 기질로 전세포 전환하고, 이로부터 전환된 2-피론-4,6-디카복실산(PDC)을 확인한 결과이다.
도 15는 본 발명에서 제공하는 실험군 4-1의 재조합 대장균 균주와, 실험군 4-2의 재조합 대장균 균주를 이용하여 테레프탈산을 기질로 전세포 전환하고, 이로부터 전환된 2-피론-4,6-디카복실산(PDC)을 확인한 결과이다.
도 16은 본 발명의 단계 (a)에서 사용된 조질 2-피론-4,6-디카르복실산 소듐염의 NMR 그래프이다.
도 17은 본 발명의 단계 (b)에서 결과된 조질 2-피론-4,6-디카르복실산의 NMR 그래프 및 TLC 분석 이미지이다.
도 18은 본 발명의 단계 (c)에서 결과된 백색 침전물의 NMR 그래프 및 TLC 분석 이미지이다.
도 19, 20 및 21은 본 발명의 비교예 1, 2 및 3에서 수득된 PDC의 NMR 그래프를 각각 보여준다.
도 22는 본 발명의 단계 (f)에서 컬럼 크로마토그래피하여 얻어진 PDC의 NMR 그래프 및 TLC 분석 이미지이다.
본 발명은 고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법으로; 1) PET로부터 TPA를 제조하는 단계; 2) TPA를 재조합 균주와 반응시켜 PDC를 생성하는 단계; 및 3) 제조된 PDC를 고순도로 정제하는 단계를 포함한다.
바이오매스 유래 SiO 2 촉매의 제조방법은, 가) 왕겨를 분쇄한 후 산처리하는 단계; 및 나) 상기 가) 단계의 산처리된 왕겨를 열처리하는 단계;를 포함하는 것을 특징으로 한다.
상기 폴리에틸렌 테레프탈레이트를 테레프탈 산으로 가수분해하는 방법은, a) 폴리에틸렌 테레프탈레이트, 바이오매스 유래 SiO 2 촉매 및 물을 마이크로파 반응기에서 반응시켜 테레프탈 산이 침전된 혼합물을 제조하는 단계; b) 상기 혼합물에 수산화나트륨을 혼합하여 테레프탈 산을 용해시키는 단계; c) 상기 테레프탈 산이 용해된 혼합물을 여과하여 잔여물과 촉매를 제거하는 단계; d) 상기 잔여물과 촉매가 제거된 혼합물에 산성용액을 투입하여 침전물을 형성시키고 수득하는 단계; 및 e) 상기 수득된 침전물을 건조시키는 단계;를 포함하는 것을 특징으로 한다.
또한, PDC 생산용 재조합 균주와 기질을 반응시키는 단계를 포함하는, PDC의 생산방법을 제공한다.
본 발명에서 제공하는 PCD 생산방법은 (1) TphB 효소를 코딩하는 서열번호 1의 뉴클레오티드 서열, TphAabc 효소를 코딩하는 서열번호 2의 뉴클레오티드 서열, LigAB 효소를 코딩하는 서열번호 3의 뉴클레오티드 서열 및 LigC 효소를 코딩하는 서열번호 4의 뉴클레오티드 서열이 도입된 재조합 균주를 수득하는 단계; 및 (2) 상기 수득한 재조합 균주와 테레프탈산(TPA)을 반응시켜서, 2-피론-4,6-디카복실산(PDC)를 생성하는 단계를 포함한다.
또한, 본 발명은, (a) 조질 2-피론-4,6-디카르복실산 소듐염을 산성화하여 2-피론-4,6-디카르복실산을 함유하는 수용액을 제조하는 단계; (b) 상기 단계 (a)에서 결과된 수용액을 유기용매로 추출하고 층분리하는 단계; (c) 상기 단계 (b)에서 층분리된 수층에 아세톤을 첨가하여 형성되는 백색 침전물을 분리하여 제거하는 단계; (d) 상기 단계 (c)에서 백색 침전물이 제거된 용액을 유기용매로 추출하고 층분리하는 단계; (e) 상기 단계 (b)에서 층분리된 유기층 및 단계 (d)에서 층분리된 유기층을 결합하여 농축하는 단계; 및 (f) 상기 단계 (e)에서 결과된 농축물을 에틸 아세테이트와 헥산의 혼합 용매로 컬럼 크로마토그래피하는 단계를 포함하는 고순도 2-피론-4,6-디카르복실산의 정제 방법을 제공한다:
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.
본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부된 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
그러나 본 발명은 이하에 개시되는 실시예들에 의해 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
또한, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.
이하 도면을 참조하여 본 발명의 따른 바람직한 실시예를 상세히 설명하기로 한다.
본 발명은 고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법으로; 1) PET로부터 TPA를 제조하는 단계; 2) TPA를 재조합 균주와 반응시켜 PDC를 생성하는 단계; 및 3) 제조된 PDC를 고순도로 정제하는 단계를 포함한다.
1. PET로부터 TPA 제조
본 발명의 설명에 앞서 본 발명에서 설명되는 바이오 매스는 왕겨일 수 있다.
상기 바이오 매스에서 제조되는 SiO 2 나노입자는 SiO 2 촉매일 수 있다.
또한, 티올 작용기에 의하여 표면이 개질된 SiO 2 촉매는 Thiol-SiO 2 촉매로 표현한다.
본 발명의 목적은 왕겨를 이용하여 SiO 2 촉매를 제조하고, 이를 이용하여 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate)를 마이크로파 반응기에서 반응시켜 고체상 테레프탈 산을 용이하게 분해할 수 있는 방법을 제공하는 데 있다.
또한, 본 발명은 중성 조건하에서 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate)를 가수분해할 때 테레프탈 산 중의 불순물 함량을 낮추어 고순도의 테레프탈 산을 제조하는 방법을 제공하는 데 그 목적이 있다.
본 발명의 바이오 매스로부터 추출된 SiO 2 촉매 및 그 제조방법을 제공하며, 상기 SiO 2 촉매를 이용하여 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate)를 가수분해하는 방법을 제공한다.
본 발명의 일 실시예에 따른 바이오 매스는 왕겨일 수 있다.
본 발명의 일 실시예에 따른 SiO 2 촉매는 바이오 매스로부터 추출된 것이며, 상기 SiO 2 촉매는 티올 작용기(-SH)에 의해 표면이 개질된 것일 수 있다.
상기 SiO 2 촉매의 비표면적은 151.92 ~ 281.02 m 2/g이고, 기공의 크기는 0.57 ~ 0.66 nm일 수 있다.
이하, 도 1을 참조하여 본 발명의 일 실시예에 따른 바이오 매스 유래 SiO2 촉매의 제조방법에 대하여 설명한다.
도 1은 바이오 매스 유래 SiO 2 촉매의 제조방법을 나타낸 것이다.
본 발명의 일 실시예에 따른 바이오매스 유래 SiO 2 촉매의 제조방법은, 가) 왕겨를 분쇄한 후 산처리하는 단계(S10); 및 나) 상기 (가) 단계(S10)의 산처리된 왕겨를 열처리하는 단계(S20);를 포함하여 제공된다.
상기 가) 단계(S10)는 왕겨를 분쇄하고 산처리하는 단계이다.
상기 왕겨를 일정크기로 분쇄하는 이유는 분쇄 후 이루어지는 산처리 공정의 효율성을 높이고, 최종적으로 제조되는 SiO 2의 순도를 높이기 위함이다.
상기 왕겨를 분쇄하는 방법은 제한하지 않으며, 구체적으로 밀링하여 수행될 수 있다.
상기 밀링은 니형 밀링머신, 베드형 밀링머신, 만능 밀링머신 및 직립형 밀링머신 등 통상적으로 사용하는 밀링머신을 이용하여 수행할 수 있다.
상기 밀링된 왕겨의 입자 크기는 50 ~ 500 μm일 수 있다.
상기 가) 단계(S10)의 산처리는 왕겨 내에 포함된 불순물을 제거하기 위함이며, 7 ~ 15 %의 산성용액일 수 있으며, 구체적으로는 10 % 산성용액일 수 있다.
상기 산성용액은 황산, 염산, 질산, 인산, 및 이들의 혼합물로 이루어진 군에서 선택된 1 종의 것일 수 있으며, 구체적으로 염산일 수 있다.
상기 가) 단계(S10)의 산처리는, 황산, 염산, 질산, 인산, 및 이들의 혼합물로 이루어진 군에서 선택된 1 종을 포함하는 산성용액을 사용하여, 40 ~ 150 ℃에서 10 분 ~ 3 시간 동안 수행될 수 있으며, 구체적으로 염산을 이용하여 50 ~ 100 ℃에서 20 ~ 2 시간 동안 수행될 수 있으며, 더욱 구체적으로는 염산을 이용하여 60 ℃에서 30 분 동안 수행될 수 있다.
상기 분쇄된 왕겨의 산처리는 1 회 이상 수행될 수 있으며, 구체적으로 1 ~ 10 회 수행하며, 산성용액의 종류 및 농도에 따라 달리하여 수행될 수 있다.
상기 가) 단계(S10)의 산처리는 분쇄된 왕겨와 상기 산성용액을 1:5 ~ 15의 고액비(g:ml)로 수행될 수 있으며, 구체적으로는 1:10의 고액비로 수행될 수 있다.
상기 가) 단계(S10)의 산처리 후, 상기 산처리된 왕겨를 여과 및 세척하는 단계를 더 포함할 수 있다.
상기 여과는 SiO 2 나노입자를 수득할 수 있는 방법이라면 이를 제한하지 않는다.
상기 세척은 증류수, 톨루엔, 아세톤 등으로 1 회 ~ 4 회 수행될 수 있다.
상기 나) 단계(S20)는, 상기 (가) 단계(S10)의 산처리된 왕겨를 열처리하는 단계이다.
상기 나) 단계(S20)의 열처리는 산처리된 왕겨를 600 ~ 700 ℃의 온도에서 분당 3.5 ℃씩 하강시키면서 2 ~ 3 시간 동안 수행될 수 있다.
열처리가 상기와 같은 조건에서 수행될 때 높은 비표면적(151.92 ~ 281.02 m 2/g) 및 큰 기공(0.57 ~ 0.66 nm)의 SiO 2 촉매를 수득할 수 있다.
상기 나) 단계(S10) 후 SiO 2 촉매의 표면을 개질시키는 단계를 더 포함하며, 상기 SiO 2 촉매의 표면을 개질시키는 단계는, 상기 SiO 2 촉매와 머캅토프로필 트리메톡시실란(Mercaptopropyl trimethoxysilane)을 톨루엔(Tolyene) 용매에 투입하여 혼합물을 제조하는 단계; 상기 혼합물을 세척하는 단계; 및 상기 세척된 혼합물을 건조시키는 단계;를 포함할 수 있다.
상기 혼합물을 세척하는 단계는, 증류수, 톨루엔, 아세톤 등으로 1 회 ~ 4 회 수행될 수 있다.
상기 세척된 혼합물을 건조시키는 단계는, 50 ~ 70 ℃에서 12 ~ 26 시간 동안 진공건조될 수 있다.
도 2는 폴리에틸렌 테레프탈레이트를 테레프탈 산으로 가수분해하는 방법을 나타낸 것이다.
본 발명의 다른 실시예에 따른 바이오 매스 유래 SiO 2 촉매를 이용한 PET의 TPA 분해방법은, 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate), 바이오매스 유래 SiO 2 촉매, 및 물을 혼합하고 마이크로파를 조사하여 상기 폴리에틸렌 테레프탈레이트를 테레프탈 산(Terephthalic acid)으로 가수분해하는 것을 특징으로 한다.
구체적으로 바이오 매스 유래 SiO 2 촉매를 이용한 폴리에틸렌 테레프탈레이트를 테레프탈 산으로 가수분해하는 방법은, a) 폴리에틸렌 테레프탈레이트, 바이오매스 유래 SiO 2 촉매, 및 물을 마이크로파 반응기에서 반응시켜 테레프탈 산이 침전된 혼합물을 제조하는 단계(S100); b) 상기 혼합물에 수산화나트륨을 혼합하여 테레프탈 산을 용해시키는 단계(S200); c) 상기 테레프탈 산이 용해된 혼합물을 여과하여 잔여물과 촉매를 제거하는 단계(S300); d) 상기 잔여물과 촉매가 제거된 혼합물에 산성용액을 투입하여 침전물을 형성시키고 수득하는 단계(S400); 및 e) 상기 수득된 침전물을 건조시키는 단계(S500);를 포함하여 제공된다.
하기의 반응식 1은 폴리에틸렌 테레프탈레이트가 테레프탈 산으로 가수분해되는 과정을 나타낸 것이다.
[화학식 1]
Figure LOP200001PCT-appb-img-000001
상기 a) 단계(S100)는 바이오매스에서 유래된 SiO 2 촉매를 이용하여 폴리에틸렌 테레프탈레이트를 테레프탈 산으로 가수분해시키는 단계이다.
상기 가수분해는 마이크로파 반응기에서 수행될 수 있다.
상기 마이크로파 반응기(Anton Paar, Monowave 400, 영국)는 온도 및 압력 센서가 장착된 것일 수 있다.
상기 마이크로파 반응기에 대한 설명은 본 발명의 범위를 벗어나므로 이에 대한 설명은 생략한다.
상기 SiO 2 촉매는 바이오매스에서 유래된 SiO 2 촉매일 수 있으며, 상기 바이오매스는 왕겨일 수 있다.
또한, 상기 바이오매스에서 유래된 SiO 2 촉매는 티올 작용기에 의해 표면이 개질된 것일 수 있다.
상기 SiO 2 촉매는 앞서 설명하였기에 대한 설명은 생략한다.
상기 폴리에틸렌 테레프탈레이트를 가수분해하기 위해서는 물이 필요한 것은 자명한 것으로 이에 대한 설명은 생략한다.
상기 반응식 1을 참조하면, 상기 폴리에틸렌 테레프탈레이트가 가수분해되면 테레프탈 산이 침전된 혼합물이 제조된다.
상기 혼합물은 테레프탈 산, 에틸렌 글리콜, 폴리에틸렌 테레프탈레이트 및 촉매일 수 있다.
상기 b) 단계(S200)는 상기 혼합물에 수산화나트륨을 혼합하여 테레프탈 산을 용해시키는 단계이다.
상기 b) 단계(S200)에서 테레프탈 산을 용해함으로써, 다음 단계에서 불순물을 제거할 수 있다.
여기서 불순물이란 반응하지 않은 폴리에틸렌 테레프탈레이트와 촉매이다.
상기 c) 단계(S300)는 상기 테레프탈 산이 용해된 혼합물을 여과하여 잔여물과 촉매를 제거하는 단계이다.
상기 잔여물은, 미분해된 폴리에틸렌 테레프탈레이트이다.
상기 c) 단계(S300)는 미분해된 폴리에틸렌 테레프탈레이트와 촉매를 제거할 수 있는 방법이라면 이를 제한하지 않는다.
상기 d) 단계(S400)는, 상기 잔여물과 촉매가 제거된 혼합물에 산성용액을 투입하여 침전물을 형성시키고 수득하는 단계이다.
상기 산성용액은 황산, 염산, 질산, 인산, 및 이들의 혼합물로 이루어진 군에서 선택된 1 종일 수 있으며, 바람직하게는 염산일 수 있다.
상기 e) 단계(S500)는 수득된 침전물을 건조시키는 단계이다.
상기 수득된 침전물을 건조시키는 방법은 제한하지 않는다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
실시예 1 : 바이오매스 유래 SiO2 촉매의 제조
먼저, 분쇄기를 이용하여 왕겨의 입자크기가 150 μm가 되도록 분쇄하여 준비하였다.
10 g의 분쇄된 왕겨를 100 ml의 염산(10 % HCl) 수용액에 15 시간 동안 침지시켰다.
다음으로, 필터를 이용하여 염산 수용액을 제거한 후 증류수로 왕겨를 2 회 세척하였다.
마지막으로, 세척된 왕겨를 65 ℃의 온도에서 분당 3.5 ℃씩 하강시키면서 3 시간 동안 열처리(Annealing)하여 바이오매스 유래 SiO 2 촉매를 제조하였다.
실시예 2 : 표면 개질된 SiO2 촉매의 제조
먼저, 실시예 1에 따라 제조된 바이오매스 유래 SiO 2 촉매 0.5 g과 머캅토프로필 트리메톡시실란(Mercaptopropyl trimethoxysilane) 0.5 ml를 톨루엔(Toluene) 200 ml에 혼합한 후 24 시간 동안 환류시키고 톨루엔과 아세톤으로 세척하였다.
마지막으로, 60 ℃ 진공 오븐에서 24 시간 동안 건조시켜 표면 개질된 SiO2 (Thiol-SiO 2) 촉매를 제조하였다.
실험예 1: 무촉매 PET의 가수분해
먼저, 폴리에틸렌 테레탈레이트 0.1 g 및 탈이온수 12 ml를 마이크로파 반응기(Anton Paar, Monowave 400, 영국)에 테레프탈 산이 침전된 혼합물을 제조하였다.
반응 후 상기 테레프탈 산이 침전된 혼합물에 1 M의 수산화나트륨을 첨가하여 침전된 테레프탈 산(TPA)을 디-2-메틸 테레프탈 산(NaTPA)의 형태로 용해시킨 후 여과하여 반응하지 않은 폴리에틸렌 테레프탈레이트를 제거하였다.
다음으로, 과량의 염산을 투입하여 TPA를 침전시키고 여과하여 TPA를 분리하였다.
마지막으로, 60 ℃의 오븐에서 건조 TPA를 수득하였다.
실험예 2: 바이오 매스 유래 SiO2 촉매를 이용한 PET의 가수분해
먼저, 실시예 1에 따라 제조된 SiO 2 촉매 0.1 g, 폴리에틸렌 테레탈레이트 0.1 g 및 탈이온수 12 ml를 마이크로파 반응기(Anton Paar, Monowave 400, 영국)에 테레프탈 산이 침전된 혼합물을 제조하였다.
반응 후 상기 테레프탈 산이 침전된 혼합물에 1 M의 수산화나트륨을 첨가하여 침전된 테레프탈 산(TPA)을 디-2-메틸 테레프탈 산(NaTPA)의 형태로 용해시킨 후 여과하여 반응하지 않은 폴리에틸렌 테레프탈레이트와 SiO 2 촉매를 제거하였다.
다음으로, 과량의 염산을 투입하여 TPA를 침전시키고 여과하여 TPA를 분리하였다.
마지막으로, 60 ℃의 오븐에서 건조 TPA를 수득하였다.
실험예 3: 표면 개질된 SiO2 촉매를 이용한 PET의 가수분해
먼저, 실시예 2에 따라 제조된 표면 개질된 SiO 2 촉매 0.1 g, 폴리에틸렌 테레탈레이트 0.1 g 및 탈이온수 12 ml를 마이크로파 반응기(Anton Paar, Monowave 400, 영국)에 테레프탈 산이 침전된 혼합물을 제조하였다.
반응 후 상기 테레프탈 산이 침전된 혼합물에 1 M의 수산화나트륨을 첨가하여 침전된 테레프탈 산(TPA)을 디-2-메틸 테레프탈 산(NaTPA)의 형태로 용해시킨 후 여과하여 반응하지 않은 폴리에틸렌 테레프탈레이트와 표면 개질된 SiO 2 촉매를 제거하였다.
다음으로, 과량의 염산을 투입하여 TPA를 침전시키고 여과하여 TPA를 분리하였다.
마지막으로, 60 ℃의 오븐에서 건조 TPA를 수득하였다.
시험예 1 : SiO2 촉매의 특성 분석
도 3(a) 내지 3(f)는 실시예 1 및 2의 SEM 이미지를 나타낸 것이다.
도 3(a) 내지 3(c)를 참조하면, 실시예 1에 따라 제조된 SiO 2 촉매는 약 50 nm의 사이즈를 갖는 작은 SiO 2 입자로 구성되고, 미세한 상호 연결 구조를 갖는 막대 모양의 형태인 것을 확인할 수 있다.
또한, 도 3(d) 내지 3(f)를 참조하면, 실시예 2에 따라 제조되어 표면 개질된 SiO 2 촉매는 표면을 개질한 후에도 미세한 형태를 계속 유지하는 것을 확인할 수 있다.
결과적으로, 이러한 나노구조는 SiO 2 촉매의 고유한 형태인 것을 확인할 수 있다.
시험예 2 : SiO2 촉매의 X-선 회절 분석
도 4는 실시예 1에 따라 제조된 SiO 2 촉매의 X-선 회절 패턴을 분석한 것이다.
도 4를 참조하면 2θ 값이 20 °인 부분에서 넓은 돌기 형태로 나타났으며, 이것은 비정질 상태 실리카의 X-선 회절 패턴과 일치한다.
시험예 3 : SiO2 촉매의 X-선 광전자 분광법(XPS)에 의한 분석
도 5(a) 내지 5(f)는 실시예 1 및 실시예 2에 따라 제조된 SiO 2 촉매의 XPS를 측정한 결과를 나타낸 것이다.
도 5(a) 내지 5(c)를 참조하면, O 1s 스펙트럼에서 실시예 1에 따라 제조된 SiO 2 촉매는 532.8 eV에서 단일피크를 나타내었으며, 이것은 Si-O-Si결합 환경에서 산소(O)에 해당한다. 또한, Si 2p 스펙트럼에서 실시예 1에 따라 제조된 SiO 2 촉매는 103.5 eV에서 단일피크를 나타내었으며, 이것은 Si-O결합 환경에서 실리콘(Si)에 해당한다. 또한, S 2p 스펙트럼에서 실시예 1에 따라 제조된 SiO 2 촉매는 황에 해당하는 피크는 발견되지 않았다.
도 5(d) 내지 5(f)를 참조하면, O 1s 스펙트럼에서 실시예 2에 따라 제조된 SiO2 촉매는 532.9 eV에서 단일피크를 나타났다. 이것은 촉매의 표면을 티올 관능기로 개질한 후에도 Si-O-Si의 결합이 변하지 않은 것을 확인할 수 있는 결과이다.
그러나, Si 2p 스펙트럼에서 실시예 2에 따라 제조된 SiO 2 촉매는 Si-O 결합(103.8 ev)을 나타내는 하나의 피크와 Si-S 결합(102.4 eV)을 나타내는 또 하나의 피크로 데콘볼루션(deconvolution)되는 것을 확인할 수 있으며, 이것은 촉매의 표면이 티올 관능기로 개질되었다는 것을 의미한다.
더불어, S 2p 스펙트럼에서 실시예 2에 따라 제조된 SiO 2 촉매는 S 2p1/2 및 2p3/2에 해당하는 피크가 각각 164.6 eV 및 163.5 eV에서 확인되었으며, 이는 촉매의 표면이 티올 관능기로 인해 개질되어 나타나는 것으로 확인할 수 있다.
도 6(a) 및 6(b)는 실시예 1 및 2에 따라 제조된 SiO 2 촉매의 XPS 정량분석을 나타낸 것이다.
도 6(a) 및 6(b)를 참조하면, 실시예 1에 따라 제조된 SiO 2 촉매의 실리콘 원자비는 31.24 %이고, 산소 원자비는 64.01 %로 종래의 SiO 2 구성과 일치하는 것으로 확인되었으며, 실시예 2에 따라 제조된 SiO 2 촉매의 실리콘 원자비는 26.26 %이고, 산소 원자비는 50.65 %이며, 황 원자비는 2.78 %인 것을 확인할 수 있다.
실시예 2에 따라 제조된 SiO 2 촉매의 원자비가 실시예 1과 상이한 것은 실시예 2에 따라 제조된 SiO 2 촉매의 표면이 티올 관능기로 개질되었기 때문이다.
상기 XPS 분석결과 실시예 2에 따라 제조된 SiO 2 촉매는 표면 개질 과정이 잘 수행되었으며, 실시예 1에 따라 제조된 SiO 2 촉매의 표면을 개질하더라도 초기 구조에 영향을 주지 않는 것을 확인할 수 있다.
시험예 4 : SiO2 촉매의 N2 흡착/탈착 분석 및 NH3-TPD 분석
도 7(a) 및 7(b)는 실시예 1 및 2에 따라 제조된 SiO 2 촉매의 N 2 흡착/탈착 등온선을 나타낸 것이고, 도 8은 실시예 1 및 2에 따라 제조된 SiO 2 촉매의 NH 3-TPD 측정결과를 나타낸 것이다.
도 7(a) 및 7(b)를 참조하면, 실시예 1 및 2에 따라 제조된 두 SiO 2 촉매 모두는 다층 흡착(multilayer adsorption)에 이은 모세관 응축(capillary condensation)을 통한 메조포러스 고체(mesoporous solids)로 인하여 0.4 ~ 1.0 상대압력(P/PO) 범위에서 히스테리시스 루프(Hysteresis loops)를 형성하는 iv 타입의 등온선을 나타내었다.
Brunauer-Emmett-Teller(BET) 이론(SBET)에 의해 SiO 2 촉매의 비표면적을 계산하였다.
실시예 1 및 2에 따라 제조된 SiO 2 촉매의 비표면적은 281.02 m 2/g 및 151.92 m 2/g으로 계산되었다.
또한, Hgoorvath-Kawazoe (HK) 방법에 의해 SiO 2 촉매의 기공 크기를 계산하였다.
실시예 1 및 2에 따라 제조된 SiO 2 촉매의 기공 크기는 각각 0.57 nm와 0.66 nm으로 계산되었다.
두 결과를 통해 SiO 2 촉매는 티올 개질 과정 동안 표면적 및 기공 크기가 거의 변하지 않는 것을 확인할 수 있다.
도 8을 참조하면, 실시예 1에 따라 제조된 SiO 2 촉매는 161.6 ℃의 저온 영역(LT)에서 NH 3 흡착 피크가 확인되었으며, 계산된 산성부위 농도는 0.00838 mmol/g 이다.
또한, 실시예 2에 따라 제조된 SiO 2 촉매 역시 161.6 ℃의 저온 영역(LT)에서 NH 3 흡착 피크가 확인되었으며, 계산된 산성부위 농도는 0.00838 mmol/g 이다.
그러나, 실시예 2에 따라 제조된 SiO 2 촉매는 표면의 티올 관능기가 산성부위로 작용하여 369.4 ℃의 고온 영역(HT)에서 또 다른 NH 3 흡착 피크가 확인되었으며, 계산된 산성부위 농도는 0.39319 mmol/g 이다.
시험예 5 : 폴리에틸렌 테레프탈레이트(PET)의 가수분해에 따른 테레프탈 산(TPA)의 수율계산
폴리에틸렌 테레프탈레이트를 실시예 1 및 2에 따라 제조된 SiO 2 촉매를 이용하여 가수분해된 테레프탈 산의 수율을 계산하였다.
도 9(a) 및 9(b)는 시간 및 온도에 따른 TPA의 수율을 나타낸 그래프이다.
TPA의 수율은 하기의 수학식 1에 의해 계산되었다.
[수학식 1]
Figure LOP200001PCT-appb-img-000002
도 9(a)는 230 ℃의 온도에서 반응시간에 따른 테레프탈 산의 가수분해 수율을 비교한 것이다.
도 9(a)를 참조하면, 촉매를 사용하지 않은 폴리에틸렌 테레프탈레이트 가수분해는 초기 5 분 동안 반응하지 않았으며, 50 분 동안 반응하여 수율이 91.74 %에 도달하였다.
그러나 실시예 1에 따라 제조된 SiO 2 촉매를 이용한 폴리에틸렌 테레프탈레이트 가수분해는 초기 5 분의 반응시간 동안 가수분해가 진행되었으며, 40 분 동안 반응하여 수율이 92.4 %에 도달하였다. 더불어 실시예 2에 따라 제조된 SiO 2 촉매를 이용한 폴리에틸렌 테레프탈레이트 가수분해 반응은 30 분 동안 반응하여 수율이 93.43 %에 도달하였다.
결과적으로, 촉매를 사용하지 않은 폴리에틸렌 테레프탈레이트 가수분해 반응 보다 실시예 1에 따른 SiO 2 촉매를 사용하였을 때 가수분해 시간을 10 분 단축시켰으며, 실시예 2에 따른 SiO 2 촉매를 사용하였을 때는 10 분을 더 단축시키는 것을 확인할 수 있었다.
이것은 실시예 1에 따른 SiO 2 촉매 보다 실시예 2에 따른 SiO 2 촉매의 산도가 높기 때문이며, 반응이 시작될 때 가수분해 속도가 서서히 증가되는 것은 폴리에틸렌 테레프탈레이트의 불규칙 사슬 분리에 의한 것이다.
상기 폴리에틸렌 테레프탈레이트의 불규칙 사슬 분리를 거친 후 가수 분해 속도는 급격히 증가하였으며, 테레프탈 산 가수분해 수율은 97.06 %에 도달하였다.
도 9(b)를 참조하면, 170 ℃ 이하에서 폴리에틸렌 테레프탈레이트 가수분해는 시작되지 않았으며, 온도를 상승시켰을 때 온도가 증가함에 따라 테레프탈 산의 수율이 증가하는 것을 확인할 수 있다. 더불어, 230 ℃의 반응온도에서 수율이 93.43 %에 도달하였다.
결과적으로 촉매를 사용하지 않은 폴리에틸렌 테레프탈레이트 가수분해는 170 ℃이하의 온도에서는 진행되지 않았으나, 실시예 1 및 실시예 2에 따라 제조된 SiO 2 촉매를 이용할 경우 170 ℃이하의 조건에서도 폴리에틸렌 테레프탈레이트 가수분해가 진행될 수 있다는 것을 확인할 수 있다.
시험예 6 : 폴리에틸렌 테레프탈레이트(PET) 가수분해에 따른 테레프탈 산(TPA)의 NMR 분석
도 10(a) 및 10(b)는 테레프탈 산(TPA)의 NMR을 분석한 것이다.
도 10(a)를 참조하면, 실시예 2에 따라 제조된 SiO 2 촉매를 이용하여 제조된 테레프탈 산은 하이드록시 양성자와 방향족 단일 양성자에 대한 두 개의 피크를 나타냈으며, 화학적 시프트 값은 각각 13.31 ppm과 8.03 ppm으로 나타났다.
도 10(b)를 참조하면, 실시예 2에 따라 제조된 SiO 2 촉매를 이용하여 제조된 테레프탈 산은 13C NMR 스펙트럼에서 3개의 피크가 나타났으며, 각각 방향족 탄소 4 급 방향족 탄소 및 카보닐 탄소이며, 화학적 시프트 값은 각각 129.7 ppm, 134.8 ppm 및 166.4 ppm으로 나타났다.
상기한 결과는 종래의 테레프탈 산 데이터와 일치하는 것으로 확인된다.
시험예 7 : 폴리에틸렌 테레프탈레이트(PET) 가수분해의 동력학 분석
폴리에틸렌 테레프탈레이트의 테레프탈 산 가수분해는 하기의 수학식 2를 따른다.
[수학식 2]
v = k[A] 2
여기서, v는 반응속도, k는 반응속도 상수, [A]는 폴리에틸렌 테레프탈레이트의 농도를 나타낸다.
통합속도 법칙에 따라 폴리에틸렌 테레프탈레이트 가수분해 반응의 반응속도 상수(k) 값은 하기의 수학식 3에 따라 결정된다.
[수학식 3]
1/[A] t - 1/[A] 0 = kt
여기서, [A] t는 특정반응 시간의 폴리에틸렌 테레프탈레이트 농도를 나타내는 것이고, [A] O는 초기의 폴리에틸렌 테레프탈레이트 농도를 나타낸 것이며, t는 특정 반응 시간을 나타내는 것이다.
도 11(a) 및 11(b)는 농도 및 시간에 대한 반응속도 상수값을 나타낸 그래프이다.
도 11(a)를 참조하면, 촉매가 없을 때(무 촉매), 실시예 1 및 2에 따른 촉매를 사용하였을 때 반응속도 상수(k)값은 각각 0.56055, 0.76866 및 1.33406으로 나타났다.
실시예 1에 따라 제조된 SiO 2 촉매를 이용한 가수분해는 무 촉매 가수분해 보다 1.37 배 향상된 가수분해 특성을 나타냈으며, 실시예 2에 따라 제조된 SiO 2 촉매를 이용한 가수분해는 2.37 배 향상된 가수분해 특성을 나타내었다.
실시예 2에 따라 제조된 SiO 2 촉매를 이용한 가수분해 특성이 향상된 이유는 활성화 에너지가 낮아졌기 때문이며, 이는 반응 온도 제어 실험에 기초한 하기의 수학식 4(Arrhenius 방정식)에 따라 계산되었다.
[수학식 4]
k=Ae-Ea/RT
여기서, k는 속도 상수이며, A는 사전 지수 인자, Ea는 활성화 에너지, R은 기체상수, 및 T는 절대온도를 나타낸다.
상기 수학식 4는 하기의 수학식 5로 변화될 수 있다.
[수학식 5]
ln(k) = ln(A)- Ea/R(1/T)
도 11(b)를 참조하면, 실시예 2에 따라 제조된 SiO 2 촉매에 의한 폴리에틸렌 테레프탈레이트 가수분해의 활성화 에너지는 23.19 kJ/mol으로 계산되었으며, 이 값은 폴리에틸렌 테레프탈레이트 가수분해 활성화 에너지(56.8 kJ/mol) 값 보다 절반 이상 감소된 것이다.
시험예 8 : 실시예 2에 따라 제조된 SiO2 촉매의 폴리에틸렌 테레프탈레이트 가수분해 메커니즘 분석
하기의 반응식 2는 폴리에틸렌 테레프탈레이트가 테레프탈 산으로 가수분해되는 과정을 나타낸 것이다.
[화학식 2]
Figure LOP200001PCT-appb-img-000003
먼저, 실시예 2에 따른 SiO 2 촉매 표면의 티올 관능기는 수성 조건에서 쉽게 탈프로톤화되어 티올레이트와 하이드로늄(OH 3+) 이온으로 형성된다.
다음으로, 생성된 하이드로늄 이온은 폴리에틸렌 테레프탈레이트의 친핵성 중심에 양성자를 제공한다.
폴리에틸렌 테레프탈레이트에서 에스테르 그룹의 산소 원자는 양전하를 띄지만, 양전하는 중심 탄소 원자에서 더 비편재화된다.
다음으로, 물 분자는 양전하를 띈 중심 탄소 원자를 공격하게 되며, 에틸기의 산소 원자는 다른 양전하 산소 원자에서 수소 원자를 제공받아, 양전하를 띄고, 탄소와 산소의 결합을 파괴하여 폴리에틸렌 테레프탈레이트 가수분해 반응에서 테레프탈 산과 에틸렌 글리콜을 생성한다.
실시예 2에 따라 제조된 SiO 2 촉매가 없다면, 높은 활성화에너지로 인하여 폴리에틸렌 테레프탈레이트에서 에스테르 결합의 불완전한 분해를 유도하여 테레프탈 산의 순도가 떨어질 수 있으며, 본 발명은 이러한 문제점을 해소하여 고순도의 테레프탈 산을 제조할 수 있다.
따라서, 본 발명에 의한 바이오 매스 유래 SiO 2 촉매, 그 제조방법, 및 이를 이용한 PET의 TPA 분해방법을 이용하면, 종래의 PET 중성 가수분해 조건 보다 빠른 시간에 고순도 TPA의 제조가 가능하며, 제조된 테레프탈 산은 다시 폴리에스테르 섬유의 원료 등으로 유용하게 사용할 수 있다.
2. TPA를 재조합 균주와 반응시켜 PDC를 생성
실시예 3: 재조합 대장균 균주 발현벡터 및 균주 구축
본 발명에서는 재조합 균주로부터 PDC를 생산하기 위해 대장균( Escherichia coli XL1-Blue) 균주를 이용하여 1,2-디하이드록시-3,5-사이클로핵사디엔-1,4-디카르복실레이트 디하이드로게네이즈 (1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase; TphB) 효소를 코딩하는 뉴클레오티드 서열(서열번호 1), 테레프탈레이트 1,2-디옥시게네이즈 (terephthalate 1,2-dioxyganase; TphAabc) 효소를 코딩하는 뉴클레오티드 서열(서열번호 2), 프로토카테츄에이트 4,5-디옥시게네이즈 (Protocatechuate 4,5-dioxyganase; LigAB) 효소를 코딩하는 뉴클레오티드 서열(서열번호 3), 4-카복시-2-하이드록시뮤코네이트-6-세미알데하이드 디하이드로게네이즈 (4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase; LigC) 효소를 코딩하는 뉴클레오티드 서열(서열번호 4)이 도입된 재조합 대장균 균주 발현 벡터를 구축하였다.
이 때 TphB 효소와 TphAabc 효소를 코딩하는 각 뉴클레오티드 서열은 Comamonas sp. E6 균주로부터 유래된 것을 사용하고, LigAB와 LigC 효소를 코딩하는 각 뉴클레오티드 서열은 Sphingomonas paucimobilis 균주로부터 유래된 것을 사용하였다.
프라이머 서열 목적 유전자
1 5'-ggatcc atgacaatagtgcaccgtagattg-3' tphB
2 5'-actagttt agaccggttgggctccg-3'
3 유전자 합성 의뢰 tphAabc
4
5 유전자 합성 의뢰 ligAB
6
7 유전자 합성 의뢰 ligC
8
발현 벡터를 구축하기 위한 구체적인 방법으로서, pKE112 플라스미드를 KpnI 및 SbfI의 제한효소로 절단하고, KpnI 및 SbfI의 제한효소로 절단된 ligAB 유전자를 삽입하여 실험군 1의 pKE112ligAB 플라스미드를 구축 하였다. 상기 구축 된 pKE112ligAB 플라스미드를 HindIII의 제한효소로 절단하고, SbfI 및 HindIII의 제한효소로 절단한 ligC 유전자를 삽입하여 실험군 2의 pKE112ligABC를 구축하였다. 실험군 3의 경우, pKE112 플라스미드를 EcorI 및 KpnI의 제한효소로 절단하고, EcorI 및 KpnI의 제한효소로 절단한 tphB 유전자를 삽입하였다.
이후 실험군 1 및 2와 동일한 방법으로 ligABC 유전자를 삽입하여 pKE112tphBligABC 플라스미드를 구축하였다. 실험군 3의 경우, pKM212 플라스미드를 KpnI 및 HindIII의 제한효소로 절단하고 KpnI 및 HindIII의 제한효소로 절단한 tphAabc 유전자를 삽입하여 pKM212tphAabc를 구축하였다. 실험군 4-1의 경우, 실험군 3과 같이 pKE112 플라스미드에 tphB 유전자를 삽입 한 후, pKE112tphB를 구축하였다. pKM212tphAabc의 경우 실험군 3의 두 번째 플라스미드와 같은 방법으로 구축하였다. 실험군 4-2의 경우 실험군 2와 같은 플라스미드 이다.
이후 상기 발현벡터를 대장균 균주에 형질전환하여 하기 표 2의 실험군 1 내지 4의 균주를 확보하였다. 실험군 3의 경우, 두 플라스미드를 한 대장균 균주에 형질전환하여 균주를 확보하였다. 실험군 4의 경우, 실험군 4-1의 2개 플라스미드를 한 대장균에 형질전환하여 균주를 확보하고, 4-2의 플라스미드를 한 대장균에 형질전환하여 균주를 확보 한 후 이를 15:25 비율로 전세포 전환을 실행하였다.
조건 플라스미드
실험군 1 pKE112ligAB pKE112; P tac promoter, Sphingomonas paucimobilis strain ligAB gene, Amp R
실험군 2 pKE112ligABC pKE112; P tac promoter, Sphingomonas paucimobilis strain ligABC gene, Amp R
실험군 3 pKE112tphBligABC pKE112; P tac promoter, Comamonas sp. strain E6 tphB gene, Sphingomonas paucimobilis strain ligABC gene, Amp R
pKM212tphAabc pKM212; P tac promoter, Comamonas sp. strain E6 tphAabc genes, Km R
실험군 4 1 pKE112tphB pKE112; P tac promoter, Comamonas sp. strain E6 tphB genes, Amp R
pKM212tphAabc pKM212; P tac promoter, Comamonas sp. strain E6 tphAabc genes, Km R
2 pKE112ligABC pKE112; P tac promoter, Sphingomonas paucimobilis strain ligABC gene, Amp R
실시예 4: 재조합 대장균 균주를 사용한 프로토카테츄산으로부터 CHMS 제조
상기 실험군 1의 재조합 대장균 균주를 2 ml의 LB 배지(5 g/L 효모추출물(yeast extract), 10 g/L 염화나트륨(NaCl), 10 g/L 카제인의 췌장 효소 분해물(bacto-tryptone))가 포함된 14 ml의 둥근 튜브(round bottom tube)에 접종하고, 37 ℃ 및 200 rpm 의 조건에서 8시간 배양하였다.
다음으로, 10 ml LB 배지(5 g/L 효모추출물(yeast extract), 10 g/L 염화나트륨(NaCl), 10 g/L 카제인의 췌장 효소 분해물(bacto-tryptone))가 포함된 원뿔형 관(conical tube)에 상기 8 시간 배양한 배양액을 넣고 37 ℃ 및 200 rpm의 조건에서 오버나이트(overnight)로 배양 하였다.
오버나이트(overnight)로 배양한 배양액은 다시 500 ml LB 배지(5 g/L 효모추출물(yeast extract), 10 g/L 염화나트륨(NaCl), 10 g/L 카제인의 췌장 효소 분해물(bacto-tryptone))가 포함된 2 리터 진탕 삼각 플라스크(baffled Erlenmeyer flask) 로 옮겨져 37 ℃ 및 200 rpm의 조건에서 세포성장이 흡광도(OD600) 에서 0.4 가 될 때까지 배양 하였다. 이 때, 흡광도 (OD600) 에서 0.4까지 배양 하는 것은 세포의 IPTG 유도(IPTG induction)을 위함이다.
상기 IPTG 유도(IPTG induction)는 알로락토스(allolactose)와 분자적으로 유사하여 유전자가 락 오페론(lac operon)의 통제하에 있을 때 전사를 개시한다. 알로락토스(allolactose)의 유사체인 IPTG는 알로락토스(allolactose)와는 다르게 베타 갈락토시다아제(β-galactosidase)에 의해 가수분해 되지 않아 실험환경 내내 같은 농도로 유지된다. 이러한 이유로 IPTG 유도(IPTG induction)은 단백질 발현을 유도하는데 쓰인다.
상기 IPTG 유도(IPTG induction)을 위하여 세포성장이 흡광도(OD600) 에서 0.4 가 될 때까지 배양한 후 얼음에 넣어 세포의 생장을 멈추고 IPTG의 최종 농도가 0.1mM 이 되도록 더해준 뒤 16 ℃ 및 180 rpm 조건에서 세포 생장이 멈출 때까지 약 24시간 동안 배양 하였다.
다음으로 24시간 동안 배양한 배양액은 전세포 전환을 위한 세포 회수를 위해 4 ℃ 및 8000 rpm 조건에서 20분 간 원심분리 하였다. 원심분리 이후 회수된 세포는 pH 8.0의 50mM 농도 Tris-HCl로 세척하여 20 ml 부피에서의 세포 농도를 흡광도 (OD600) 에서 30으로 맞추었다. 이는 다시 4 ℃ 및 4400 rpm 조건에서 원심분리 하여 1 g/L 농도의 프로토카테츄산이 포함된 pH 8.0의 50 mM Tris-HCl로 250 ml 진탕 삼각 플라스크(baffled Erlenmeyer flask)에서 20 ml의 부피로 30 ℃ 및 250 rpm 조건에서 반응 하였다.
상기 250 ml 진탕 삼각 플라스크(baffled Erlenmeyer flask)에서 반응한 실험군 1의 반응액을 이용하여 기질로 사용된 프로토카테츄산 및 재조합 대장균으로부터 전환된 CHMS를 측정하기 위해 표 3의 조건으로 HPLC 분석을 수행하였으며 이의 결과를 도 12에 나타내었다.
도 12에서 보듯이, 상기 재조합 대장균 균주를 이용하여 프로토카테츄산을 기질로 전세포 전환을 진행했을 경우 1.20(±0.01)g/L 의 프로토카테츄산을 3시간째에 모두 소모 했으며 156.03(±9.63)의 HPLC 면적 값의 CHMS를 전환했다.
실시예 5: 재조합 대장균 균주를 사용한 프로토카테츄산으로부터 2-피론-4,6-디카복실산(PDC)의 제조
상기 실험군 2의 재조합 대장균 균주를 상기 실시예 4와 같은 방법으로 전세포 전환 반응을 진행 하였으며 기질로 사용된 프로토카테츄산 및 재조합 대장균으로부터 전환된 CHMS와 2-피론-4,6-디카복실산(PDC)를 측정하기 위해 하기 표 3의 조건으로 HPLC 분석을 수행하였으며 이의 결과를 도 13에 나타내었다.
도 13에서 보듯이, 상기 재조합 대장균 균주를 이용하여 프로토카테츄산을 기질로 전세포 전환을 진행했을 경우 1.17(±0.01)g/L 의 프로토카테츄산을 6시간째에 모두 소모 했으며 1313.80(±22.79)의 HPLC 면적 값의 2-피론-4,6-디카복실산(PDC)을 전환했다.
실시예 6: 재조합 대장균 균주를 사용한 테레프탈산으로부터 2-피론-4,6-디카복실산(PDC)의 제조
상기 실험군 3의 재조합 대장균 균주를 상기 실시예 4와 같은 방법으로 전세포 전환 반응을 진행 하였으나 pH 8.0 의 50 mM Tris-HCl 완충액 대신 TG 완충액(pH 7.0의 50 mM Tris-HCl, 20 g/L 글리세롤)을 사용하였으며, 기질 또한 1 g/L 프로토카테츄산 대신 0.5 g/L 의 테레프탈산을 사용하였다. 기질로 사용된 테레프탈산, 중간산물인 프로토카테츄산 및 CHMS, 재조합 대장균 균주로부터 전환된 2-피론-4,6-디카복실산(PDC)를 측정하기 위해 하기 표 3의 조건으로 HPLC 분석을 수행하였으며 이의 결과를 도 14에 나타내었다.
도 14에서 보듯이, 상기 재조합 대장균 균주를 이용하여 테레프탈산을 기질로 전세포 전환을 진행했을 경우 0.50(±0.01) g/L 의 테레프탈산을 5시간째에 모두 소모 했으며 1129.9(±17.4)의 HPLC 면적 값의 2-피론-4,6-디카복실산(PDC)를 전환 하였으나 11.8(±2.3)의 HPLC 면적 값의 CHMS를 2-피론-4,6-디카복실산(PDC)으로 전환하지 못하여 전세포 전환액에 남았다.
실시예 7: 두 가지 재조합 대장균 균주를 사용한 테레프탈산으로부터 2-피론-4,6-디카복실산(PDC)의 제조
상기 실험군 4-1의 재조합 대장균 균주와 실험군 4-2의 재조합 대장균 균주를 상기 실시예 4와 같은 방법으로 전세포 전환 반응을 진행 하였으나 실험군 4-1 의 재조합 대장균 균주와 상기 실험군 4-2의 재조합 대장균 균주의 비율을 15:25로 진행하였다. 기질로 사용된 테레프탈산, 중간산물인 프로토카테츄산 및 CHMS, 재조합 대장균 균주로부터 전환된 2-피론-4,6-디카복실산(PDC)를 측정하기 위해 하기 표 3의 조건으로 HPLC 분석을 수행하였으며 이의 결과를 도 15에 나타내었다.
HPLC 수행조건
ODC 및 CHMS 측정 조건 TPA 및 PCA 측정 조건
컬럼 Aminex HPX-87H column Optimapak C18 column
유량(Flow rate) 0.8 ml/min 1.0 ml/min
용매(solvent) 5 mM of H 2SO 4 A; 0.1 % trifluoroacetate in 100 % acetonitrile B; 0.1 % trifluoroacetate in waterA : 10 %B : 90 %
온도 50 ℃ 30 ℃
도15에서 보듯이, 상기 실험군 4-1의 재조합 대장균 균주와 실험군 4-2의 재조합 대장균 균주를 15:25의 비율로 이용하여 테레프탈산을 기질로 전세포 전환을 진행했을 경우 0.52(±0.00) g/L의 테레프탈산을 6시간에 모두 소모 했으며 1585.73(±16.63)의 HPLC 면적 값의 2-피론-4,6-디카복실산(PDC)를 전환하였다. 도 14의 결과와는 다르게 중간산물인 CHMS 가 전세포 전환액에 남지 않았으며 이는 중간산물인 CHMS까지 모두 전환했음을 알 수 있다.
3. 제조된 PDC의 고순도 정제
2-피론-4,6-디카르복실산(이후, PDC로 약칭)은 화학적으로 안정하면서 여러 가지 관능기를 갖고 있어 다용도 기능성 물질로 많은 기대를 받고 있다. PDC의 피론 고리는 유사-방향족 고리로서, 공여체-수용체 유형 크로모포어에서 수용체 특성 및 PDC 가수분해효소에 의해 유도된 생분해성과 같은 유용한 기능을 가지고 있으며, 피론 고리에 부착된 2 개의 카복실산 관능기는 큰 분자 시스템이 만들어질 때 화학적으로 변형되어 연결기로서 작용할 수 있다. 대표적으로는, PDC는 2관능성 단량체로서 다른 2관능성 또는 3관능성 단량체와 중축합함으로써 선형 또는 망상화된 중합체를 제공하기 위해 활용하는 것이 연구되고 있다.
PDC는 석유화학 기술을 사용하여 합성할 수 없고 현재로는 식물 성분으로부터만 추출 가능한데, 예를 들어, 미생물 발효 공정으로 대규모로 생산하는 것이 가능하다.
미생물 발효 공정으로 PDC를 제조할 때, PDC를 함유하는 발효 혼합물에 NaCl을 첨가하여 PDC 소듐염을 석출시키고, 이를 원심분리로 회수하고, 다시 산성화하여 유기용매로 추출함으로써, 순수한 PDC를 정제하는 방법이 제안되었다.
화합물로서의 PDC는 물, 아세톤, 메탄올, THF 및 아세토니트릴과 같은 극성 용매에 매우 용해성이지만, 벤젠, 헥산 및 헵탄과 같은 비극성 용매에는 거의 용해되지 않는다. PDC 소듐염과 같은 PDC 금속염도 대부분 물이나 극성용매에서의 용해도가 매우 낮은데, 이를 이용하여 PDC 정제 방법이 개발되었다.
본 발명에 있어서, 이러한 조질 PDC 또는 조질 PDC 소듐염을 제조하거나 입수하는 방법은 특별히 한정되지 않는다. 일반적으로는, 조질 PDC 또는 조질 PDC 소듐염은 상업적으로 입수한 것이거나 선행기술에 기재된 미생물 발효 공정으로 제조된 것일 수 있다.
그러나 상업적으로 입수가능하거나 선행기술에 기재된 미생물 발효 공정으로 제조된 조질 PDC 또는 조질 PDC 소듐염은, NMR 등의 분광학적 검사에서는 불순물이 미량인 것으로 분석되지만, TLC(박막크로마토그래피) 분석법에서는 PDC의 스팟과 뚜렷이 구분되는 별개의 스팟들이 관찰된다. 이러한 스팟은 불순물인 것으로 판단되며, 그 양 또한 적지 않은 것으로 보여진다.
본 발명은 상업적으로 입수가능하거나 선행기술에 기재된 미생물 발효 공정으로 제조된 조질 PDC 또는 조질 PDC 소듐염에서 이러한 불순물을 간단하면서도 저렴한 비용으로 제거할 수 있는 경제적인 PDC 정제 방법을 제공하는 것을 목적으로 한다.
본 발명은 하기 단계를 포함하는 2-피론-4,6-디카르복실산(PDC)의 정제 방법을 제공한다:
(a) 조질 PDC 소듐염을 산성화하여 조질 PDC-함유 수용액을 제조하는 단계;
(b) 상기 단계 (a)에서 결과된 조질 PDC-함유 수용액을 유기용매로 추출하여 수층과 유기층으로 층분리하는 단계;
(c) 상기 단계 (b)에서 결과된 수층에 아세톤을 첨가하여 형성되는 백색 침전물을 분리하여 제거하는 단계;
(d) 상기 단계 (c)에서 백색 침전물이 제거된 용액을 유기용매로 추출하고 수층과 유기층으로 층분리하는 단계;
(e) 상기 단계 (b)에서 결과된 유기층 및 단계 (d)에서 결과된 유기층을 농축하는 단계; 및
(f) 상기 단계 (e)에서 결과된 농축물을 에틸 아세테이트와 헥산의 혼합 용매로 컬럼 크로마토그래피하는 단계.
본 발명에 있어서, 단계 (a)는 조질 PDC-함유 수용액을 준비하는 단계로서, 예를 들면, 염산, 질산, 황산, 인산 등으로 구성된 군에서 선택되는 1종 이상의 산을 사용하여 조질 PDC 소듐염을 산성화함으로써 PDC를 함유하는 수용액을 제조하는 단계이다.
본 발명의 일 실시예에 있어서, 상기 산성화는, PDC 소듐염을 물에 도입하고 격렬히 교반하여 수분산물 또는 수혼합물로 만들고, 여기에 진한 염산을 첨가하거나, PDC 소듐염에 진한 염산을 직접 첨가함으로써 수행될 수 있다.
본 발명의 일 실시예에 있어서, 상기 산성화는, PDC 소듐염을 물에 도입하고 격렬히 교반하여 수분산물 또는 수혼합물로 만들고, 여기에 진한 염산을 첨가하거나, PDC 소듐염에 진한 염산을 직접 첨가함으로써 수행될 수 있다.
첨부된 도면에 있어서, 도 16 및 도 17은 조질 PDC 소듐염 및 조질 PDC의 NMR 그래프를 각각 보여주는데, 피론 고리상의 2개의 수소원자의 피크(δ 7.0 ~ 7.4 부근)가 도 16에서는 보이지 않지만, 도 17에서는 뚜렷하게 나타난다. 도 17에서, 불순물의 존재를 시사하는 피크는 뚜렷하게 보이지 않으나, δ 8 ~ 9 및 δ 3 ~ 4에서 나타나는 피크들이 불순물로 추정될 수 있다.
도 16 및 도 17의 NMR 그래프 상에는 불순물의 존재가 명확하지 않으나, 도 17의 상단에 표시된 TLC 이미지에서는 점선 내에 PDC 스팟(P로 표시) 뿐만 아니라 이와는 다른 위치에 스팟들이 뚜렷하게 보이며, 이들 스팟들로부터 상당량의 불순물이 존재할 수도 있음이 유추된다.
본 발명의 일 실시예에 있어서, 상기 조질 PDC 소듐염은 다른 금속 양이온의 염으로 대체되거나 이들을 일부 포함할 수 있다. 다른 금속 양이온의 예로는 1가, 2가, 3가 또는 4가의 다른 금속 양이온, 구체적으로는 리튬, 칼륨, 루비듐, 은, 세슘 등과 같은 1가 금속 양이온; 마그네슘, 칼슘, 철(II), 구리(II), 아연, 바륨, 코발트, 니켈(II), 망간, 크롬(II) 등과 같은 2가 금속 양이온; 철(III), 알루미늄, 갈륨 등과 같은 3가 금속 양이온; 및 비소(IV), 납(IV), 티탄(IV), 게르마늄(IV) 등과 같은 4가 금속 양이온을 언급할 수 있다.
상기 조질 PDC 소듐염의 산성화는 염산, 황산, 질산, 인산 등과 같은 무기산, 아세트산 등과 같은 유기산을 사용하여 수행될 수 있으며, 바람직하게는 염산, 더욱 바람직하게는 진한 염산을 사용하여 수행될 수 있다. 이렇게 산성화되어 PDC를 함유하는 용액은 pH 6 이하, 바람직하게는 pH 5 이하, 더욱 바람직하게는 pH 3 ~ 5를 가질 수 있다.
본 발명에 있어서, 단계 (b)는 상기 단계 (a)에서 결과된 조질 PDC-함유 수용액을 유기용매로 추출하고 수층과 유기층으로 층분리하는 단계로서, 추출은 조질 PDC-함유 수용액에 유기용매를 첨가하고, 교반하거나, 진탕하거나 또는 흔들기(shaking)함으로써 수행될 수 있다.
추출에 사용되는 유기용매는 특별히 한정되지 않으나, 에틸아세테이트, 메틸에틸케톤, THF 등이 언급될 수 있으며, 바람직하게는 에틸아세테이트, THF, 또는 이들의 혼합물이 언급될 수 있다.
유기용매의 양은 특별히 한정되지 않으나, 일반적으로는 수층의 50~150 부피%, 바람직하게는 70~130 부피%, 더욱 바람직하게는 90~110 부피%에서 선택될 수 있다.
층분리된 유기층에 함유된 PDC에는 미량의 불순물이 함유되어 있는 것이 NMR 및 TLC 분석으로 확인되었다 (도 17 참조).
본 발명에 있어서, 단계 (c)는 상기 단계 (b)에서 층분리된 수층에 아세톤을 첨가하여 형성되는 백색 침전물을 분리하여 제거하는 단계로서, 백색 침전물이 분리된 수층 또는 용액이 수득된다. 분리된 백색 침전물는, NMR 및 TLC 분석 결과, PDC를 함유하지 않아 불순물인 것으로 확인되었다.
백색 침전물의 분리는 특별히 한정되지 않고, 통상적인 고액 분리 방법을 이용할 수 있으며, 예를 들면 여과, 원심분리, 경사분리 등에 의해 수행될 수 있다.
이와 관련하여, PDC는 물 및 아세톤에 모두 높은 용해도를 나타내는 반면, 불순물인 백색 침전물은 물에서의 용해도는 높지만 아세톤에서의 용해도는 낮기 때문에, 수층에 아세톤을 첨가하면 PDC는 석출되지 않고 아세톤에 불용성인 불순물은 석출되는 것으로 보여진다.
본 발명의 하나의 변법에 따르면, 메탄올, 에탄올, 프로판올, 아세토니트릴, 디메틸포름아미드(DMF), 디메틸술폭사이드(DMSO) 및 N-메틸피롤리돈(NMP)과 같은 다른 수혼화성 유기용매를 아세톤 대신에 사용하거나 일부 대체시킬 수 있다.
아세톤 또는 다른 수혼화성 용매의 사용량은 특별히 한정되지 않으나, 수층의 30~200 부피%, 바람직하게는 50~150 부피%, 더욱 바람직하게는 60~120 부피%, 구체적으로는 90~110 부피%에서 선택될 수 있다. 아세톤 또는 다른 수혼화성 용매의 사용량이 상기 범위 이하이면 백색 침전물의 형성이 제대로 되지 않을 우려가 있고, 상기 범위 이상이면 후속 추출 단계를 위해 사용된 수혼화성 용매를 일부 또는 전부 제거하는 공정이 추가로 필요해질 수 있다.
도 18은 여과로 분리된 백색 침전물의 NMR 그래프 및 TLC 분석 이미지(우상단)를 보여주는 도면이다. 도 18에 나타낸 백색 침전물의 NMR 그래프를 PDC 소듐염의 NMR 그래프(도 16) 및 PDC의 NMR 그래프(도 17)와 비교하면, 상기 백색 침전물은 PDC와는 상이한 물질인 것이 확인된다. 또한, 상기 백색 침전물의 TLC 분석 이미지를 PDC의 TLC 분석 이미지(도 17의 좌상단 이미지)와 비교하면, 상기 백색 침전물의 스팟은 PDC 스팟의 위치와는 상이하며, PDC 불순물의 스팟 중의 하나와 동일한 위치에서 나타나므로, 상기 백색 침전물은 PDC가 아닌 불순물인 것이 확인된다.
본 발명에 있어서, 단계 (d)는 상기 단계 (c)에서 백색 침전물이 분리된 용액을 유기용매로 추출하여 수층과 유기층으로 층분리하는 단계로서, 추출은 상기 용액에 유기용매를 첨가하고, 교반하거나, 진탕하거나 또는 흔들기(shaking)함으로써 수행될 수 있다.
추출에 사용되는 유기용매는 특별히 한정되지 않으며, 에틸아세테이트, 메틸에틸케톤, THF 등을 예시할 수 있으며, 바람직하게는 에틸아세테이트, THF 또는 이들의 혼합물을 언급할 수 있다.
유기용매의 양은 특별히 한정되지 않으나, 일반적으로는 수층의 50~150 부피%, 바람직하게는 70~130 부피%, 더욱 바람직하게는 90~110 부피%에서 선택될 수 있으며, 1회 이상, 바람직하게는 2~3회 추출할 수 있다.
본 발명의 단계 (e)는 상기 단계 (b)에서 결과된 유기층 및 단계 (d)에서 결과된 유기층들을 농축하여 2-피론-4,6-디카르복실산을 함유하는 농축물을 수득하는 단계이다.
본 발명의 바람직한 일 실시예에 따르면, 상기 유기층은 황산마그네슘, 황산나트륨 등으로 미리 건조시킨 다음, 감압 또는 상압 하에 농축될 수 있다.
상기 농축물에 함유된 PDC는, NMR 및 TLC 분석 결과, 미량의 불순물이 여전히 존재함이 확인된다.
본 발명의 단계 (f)는 상기 단계 (e)에서 결과된 농축물을 에틸아세테이트와 헥산의 혼합 용매, 바람직하게는 에틸아세테이트:헥산 = 4:1~1:4의 혼합 용매로 컬럼 크로마토그래피하는 단계로서, 2-피론-4,6-디카르복실산을 고순도로 수득하는 단계이다.
본 발명의 일 실시예에 따르면, 실리카겔 컬럼 크로마토그래피를 이용한다.
도 19, 20 및 21은 상기 고형물을 에틸아세테이트:메탄올=1:1의 혼합 용매, 에틸아세테이트:메탄올=2:1의 혼합 용매, 및 에틸아세테이트 100% 단일 용매를 각각 사용하여 컬럼 크로마토그래피로 분리하여 수득된 PDC의 NMR 그래프 및/또는 TLC 분석 이미지를 각각 보여준다. 각각의 NMR 이미지는 PDC 이외에 불순물이 미량이지만 무시하지 못할 량으로 존재하는 것을 시사한다.
도 22는 상기 고형물을 에틸아세테이트:헥산=1:1의 혼합 용매를 사용하여 컬럼 크로마토그래피로 분리하고, 수득된 2-피론-4,6-디카르복실산 생성물의 NMR 그래프를 보여주는데, 불순물에 해당하는 피크가 거의 보이지 않는다.
본 발명의 바람직한 일 실시예에 따르면, 상기 컬럼 크로마토그래피는 등용매용리(isocratic elution) 또는 농도구배용리(gradient elution)에 의해 수행될 수 있다. 농도구배용리의 예로서, 4:1 내지 1:4 의 비율에서 선택되는 에틸아세테이트와 헥산의 혼합 용매에서 시작하여, 점차로 에틸아세테이트의 비율을 증가시켜, 최종적으로 에틸 아세테이트 100%의 단일 용매를 사용하여 용리하는 방식을 언급할 수 있다. 본 발명은, 점차로 에틸아세테이트의 비율을 저하시켜, 최종적으로 헥산의 100% 단일 용매를 사용하는 농도구배용리도 배제하지 않는다.
본 발명의 하나의 이점에 따르면, 재결정, 용매석출, 염석 등과 같은 종래의 정제 방법으로 확인 및/또는 제거가 곤란한 불순물을 대부분 제거하여 고순도의 2-피론-4,6-디카르복실산(PDC)을 제공할 수 있다.
본 발명의 또다른 이점에 따르면, 고기능성 중합체를 제조할 수 있는 고순도의 2-피론-4,6-디카르복실산(PDC)을 공업적인 규모로 경제적이면서 간단한 방법으로 제공할 수 있다.
본 발명의 또다른 이점에 따르면, 2-피론-4,6-디카르복실산(PDC)에 함유되어 있으며 NMR과 같은 분광학적 방법 및/또는 TLC와 같은 크로마토그래피적 방법으로 구분이 어려운 불순물을 확인 및 제거하는 방법을 제공할 수 있다.
제조예 1
PDC를 함유하는 미생물 배양액 (1.5 L)을 원심분리(4000 rpm, 1 hour, 4 ℃)하여 세포를 제거한다. 상등액에 15 g의 NaCl을 첨가하고 4 ℃에서 12시간 동안 정치하여 PDC 소듐염을 석출시키고, 여과로 회수하여, 조질 PDC 소듐염을 제조하였다.
조질 PDC 소듐염(22 g)을 물에 분산시키고, 진한 염산을 첨가하여 산성화시키고, pH 3~4로 조정하고, 감압 하에 농축하여, 조질 PDC를 제조하였다.
도 16은 조질 PDC 소듐염의 NMR 그래프이고, 도 17은 조질 PDC 소듐염을 진한 염산으로 산성화시켜 수득한 PDC의 NMR 그래프 및 TLC 분석 이미지(전개용매 클로로포름:에틸아세테이트:포름아미드 = 10:8:1)를 보여준다.
PDC의 피론 고리의 2개의 수소원자는, 소듐염인 상태(COONa 상태)에서는 NMR 그래프에 나타나지 않지만(도 16), 산성화된 상태(COOH 상태)에서는 δ 7.0 ~ 7.3 부근에서 나타나는 것(도 17)이 관찰된다. 하지만 도 17의 TLC 분석 이미지에는 PDC 스팟(붉은 점선으로 된 사각형 내에 P로 표시된 스팟) 뿐만 아니라 별개의 다른 스팟들이 뚜렷하게 표시되고 있어, PDC 이외에 상당량의 불순물이 포함되어 있음을 보여준다.
실시예 8
제조예 1에서 얻어진 조질의 PDC 소듐염 22 g을 증류수 100 ml에 용해시키고, 1M 염산을 천천히 첨가하여 pH 3 ~ 4로 조정한 다음, 에틸아세테이트 100 ml로 1회 추출하였다(1차 추출).
수층과 유기층을 분리하고, 수층에 아세톤 30 ml를 첨가하여 백색 고형물을 석출시키고, 형성된 백색 고형물을 여과로 제거하고, 남아있는 아세톤을 감압하여 제거한 다음, 여액을 다시 에틸아세테이트 100 ml로 2회 추출하였다(2차 추출).
상기 1차 추출 및 2차 추출에서 얻어진 유기층(에틸아세테이트층)을 모두 결합하고, 무수 황산마그네슘으로 건조시키고, 여과로 무수 황산마그네슘을 제거하고, 결과된 여액을 감압 하에 농축하였다.
상기 결과된 농축물을 실리카겔 컬럼 크로마토그래피에서 에틸 아세테이트:헥산=1:1의 혼합 용매로 용리하고, 감압 하에 농축하여 고순도 PDC 를 수득하였으며, 반응물에 대비된 수율은 80 % 이상이었다. 컬럼 크로마토그래피에서 용리되는 분획에서 PDC-함유 여부는 TLC (에틸 아세테이트:헥산=1:1)로 확인하였다.
실시예 9
유기층을 농축하여 얻어진 농축물을 실리카겔 컬럼 크로마토그래피에서 에틸 아세테이트:헥산=1:1의 혼합 용매에서 에틸 아세테이트 단일 용매로 서서히 비율을 변화시키면서 농도구배 용리하는 것을 제외하고는 실시예 8에서와 동일하게 수행하였다.
결과된 2-피론-4,6-디카르복실산에는 불순물이 대부분 제거된 것을 NMR 그래프(도 22)에서 확인할 수 있었다.
비교예 1
유기층을 농축하여 얻어진 농축물을 실리카겔 컬럼 크로마토그래피에서 에틸 아세테이트:메탄올=1:1의 혼합 용매로 용리하는 것을 제외하고는 실시예 8에서와 동일하게 수행하였다.
결과된 2-피론-4,6-디카르복실산에는 미량의 불순물이 여전히 존재하는 것을 NMR 그래프(도 19)에서 확인할 수 있었다.
비교예 2
유기층을 농축하여 얻어진 농축물을 실리카겔 컬럼 크로마토그래피에서 에틸 아세테이트:메탄올=2:1의 혼합 용매로 용리하는 것을 제외하고는 실시예 8에서와 동일하게 수행하였다.
결과된 2-피론-4,6-디카르복실산에는 미량의 불순물이 여전히 존재하는 것을 NMR 그래프(도 20)에서 확인할 수 있었다.
비교예 3
유기층을 농축하여 얻어진 농축물을 실리카겔 컬럼 크로마토그래피에서 에틸 아세테이트(단일 용매)로 용리하는 것을 제외하고는 실시예 8에서와 동일하게 수행하였다.
결과된 2-피론-4,6-디카르복실산에는 미량의 불순물이 여전히 존재하는 것을 NMR 그래프(도 21)에서 확인할 수 있었다.
지금까지 본 발명의 일 실시예에 따른 고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (33)

1) 폴리에틸렌 테레프탈레이트(PET)로부터 테레프탈산(TPA)을 제조하는 단계;
2) 테레프탈산(TPA)을 재조합 균주와 반응시켜 2-피론-4,6-디카복실산(PDC)을 생성하는 단계; 및
3) 제조된 PDC를 고순도로 정제하는 단계를 포함하는 고순도 2-피론-4,6-디카르복실산 및 이를 위한 중간체 제조방법.
바이오 매스로부터 추출된 것을 특징으로 하는, SiO 2 촉매.
제 2항에 있어서,
상기 바이오 매스는 왕겨인 것을 특징으로 하는, SiO 2 촉매.
제 2항에 있어서,
상기 SiO 2 촉매는,
티올 작용기(-SH)에 의해 표면이 개질된 것을 특징으로 하는, SiO 2 촉매.
제 2항에 있어서,
상기 SiO 2 촉매의 비표면적은 151.92 ~ 281.02 m 2/g이고, 기공의 크기는 0.57 ~ 0.66 nm인 것을 특징으로 하는, SiO 2 촉매.
가) 왕겨를 분쇄한 후 산처리하는 단계; 및
나) 상기 가) 단계의 산처리된 왕겨를 열처리하는 단계;를 포함하는 것을 특징으로 하는, 바이오매스 유래 SiO 2 촉매의 제조방법.
제 6항에 있어서,
상기 가) 단계의 상기 산처리는,
황산, 염산, 질산, 인산, 및 이들의 혼합물로 이루어진 군에서 선택된 1 종을 포함하는 산성용액을 사용하여,
40 ~ 150 ℃에서 10 분 ~ 3 시간 동안 수행되는 것을 특징으로 하는,
바이오매스 유래 SiO 2 촉매의 제조방법.
제 6항에 있어서,
상기 가) 단계의 산처리 후,
상기 산처리된 왕겨를 여과 및 세척하는 단계를 더 포함하는 것을 특징으로 하는,
바이오매스 유래 SiO 2 촉매의 제조방법.
제 6항에 있어서,
상기 (나) 단계의 열처리는
600 ~ 700 ℃의 온도에서 분당 3.5 ℃씩 하강시키면서 2 ~ 3 시간 동안 수행되는 것을 특징으로 하는,
바이오매스 유래 SiO 2 촉매의 제조방법.
제 6항에 있어서,
상기 (나) 단계 후 SiO 2 촉매의 표면을 개질시키는 단계를 더 포함하며,
상기 SiO 2 촉매의 표면을 개질시키는 단계는,
상기 SiO 2 촉매와 머캅토프로필 트리메톡시실란(Mercaptopropyl trimethoxysilane)을 톨루엔(Tolyene) 용매에 투입하여 혼합물을 제조하는 단계;
상기 혼합물을 세척하는 단계; 및
상기 세척된 혼합물을 건조시키는 단계;를 포함하는 것을 특징으로 하는,
바이오매스 유래 SiO 2 촉매의 제조방법.
폴리에틸렌 테레프탈레이트(Polyethylene terephthalate), 바이오매스 유래 SiO 2 촉매, 및 물을 혼합하고 마이크로파를 조사하여 상기 폴리에틸렌 테레프탈레이트를 테레프탈 산(Terephthalic acid)으로 가수분해하는 것을 특징으로 하는,
바이오 매스 유래 SiO 2 촉매를 이용한 PET의 TPA 분해방법.
제 11항에 있어서,
상기 폴리에틸렌 테레프탈레이트를 테레프탈 산으로 가수분해하는 방법은,
(a) 폴리에틸렌 테레프탈레이트, 바이오매스 유래 SiO 2 촉매, 및 물을 마이크로파 반응기에서 반응시켜 테레프탈 산이 침전된 혼합물을 제조하는 단계;
(b) 상기 혼합물에 수산화나트륨을 혼합하여 테레프탈 산을 용해시키는 단계;
(c) 상기 테레프탈 산이 용해된 혼합물을 여과하여 잔여물과 촉매를 제거하는 단계;
(d) 상기 잔여물과 촉매가 제거된 혼합물에 산성용액을 투입하여 침전물을 형성시키고 수득하는 단계; 및
(e) 상기 수득된 침전물을 건조시키는 단계;를 포함하는 것을 특징으로 하는,
바이오 매스 유래 SiO 2 촉매를 이용한 PET의 TPA 분해방법.
제 12항에 있어서,
상기 산성용액은,
황산, 염산, 질산, 인산, 및 이들의 혼합물로 이루어진 군에서 선택된 1 종인 것을 특징으로 하는,
바이오 매스 유래 SiO 2 촉매를 이용한 PET의 TPA 분해방법.
1,2-디하이드록시-3,5-사이클로핵사디엔-1,4-디카르복실레이트 디하이드로게네이즈 (1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase; TphB) 효소; 테레프탈레이트 1,2-디옥시게네이즈 (terephthalate 1,2-dioxyganase; TphAabc) 효소; 프로토카테츄에이트 4,5-디옥시게네이즈 (Protocatechuate 4,5-dioxyganase; LigAB) 효소; 4-카복시-2-하이드록시뮤코네이트-6-세미알데하이드 디하이드로게네이즈 (4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase; LigC) 효소 및 이들의 조합으로 구성된 군으로부터 선택되는 효소를 코딩하는 뉴클레오티드 서열이 도입된, 2-피론-4,6-디카복실산(PDC) 생산용 재조합 균주.
제14항에 있어서,
상기 TphB 효소를 코딩하는 뉴클레오티드 서열은 서열번호 1로 표시되는 것을 특징으로 하는, PDC 생산용 재조합 균주.
제14항에 있어서,
상기 TphAabc 효소를 코딩하는 뉴클레오티드 서열은 서열번호 2로 표시되는 것을 특징으로 하는, PDC 생산용 재조합 균주.
제14항에 있어서,
상기 LigAB 효소를 코딩하는 뉴클레오티드 서열은 서열번호 3으로 표시되는 것을 특징으로 하는, PDC 생산용 재조합 균주.
제14항에 있어서,
상기 LigC 효소를 코딩하는 뉴클레오티드 서열은 서열번호 4로 표시되는 것을 특징으로 하는, PDC 생산용 재조합 균주.
(a) TphB 효소를 코딩하는 서열번호 1의 뉴클레오티드 서열, TphAabc 효소를 코딩하는 서열번호 2의 뉴클레오티드 서열, LigAB 효소를 코딩하는 서열번호 3의 뉴클레오티드 서열 및 LigC 효소를 코딩하는 서열번호 4의 뉴클레오티드 서열이 도입된 재조합 균주를 수득하는 단계; 및
(b) 상기 수득한 재조합 균주와 테레프탈산(TPA)을 반응시켜서, 2-피론-4,6-디카복실산(PDC)를 생성하는 단계를 포함하는, PDC의 생산방법.
제19항에 있어서,
상기 TphB 효소와 TphAabc 효소는 테레프탈산(TPA)을 프로토카테츄산(PCA)으로 전환시키는 촉매반응을 수행하는 것인, PDC의 생산방법.
제19항에 있어서,
상기 LigAB 효소는 프로토카테츄산(PCA)을 CHMS로 전환시키는 촉매반응을 수행하는 것인, PDC의 생산방법.
제19항에 있어서,
상기 LigC 효소는 CHMS를 PDC로 전환시키는 촉매반응을 수행하는 것인, PDC의 생산방법.
(a) TphB 효소를 코딩하는 서열번호 1의 뉴클레오티드 서열과 TphAabc 효소를 코딩하는 서열번호 2의 뉴클레오티드 서열이 도입된 제1 재조합 균주, 및 LigAB 효소를 코딩하는 서열번호 3의 뉴클레오티드 서열과 LigC 효소를 코딩하는 서열번호 4의 뉴클레오티드 서열이 도입된 제2 재조합 균주를 각각 수득하는 단계;
(b) 상기 수득한 제1 재조합 균주와 제2 재조합 균주를 15:25(균체수)의 비율로 혼합하여 혼합균주를 수득하는 단계; 및
(c) 상기 수득한 혼합균주와 테레프탈산(TPA)을 반응시켜서, 2-피론-4,6-디카복실산(PDC)를 생성하는 단계를 포함하는, PDC의 생산방법.
(a) LigAB 효소를 코딩하는 서열번호 3의 뉴클레오티드 서열과 LigC 효소를 코딩하는 서열번호 4의 뉴클레오티드 서열이 도입된 재조합 균주를 수득하는 단계; 및
(b) 상기 수득한 재조합 균주와 프로토카테츄산(PCA)을 반응시켜서, 2-피론-4,6-디카복실산(PDC)를 생성하는 단계를 포함하는, PDC의 생산방법.
(a) 조질 2-피론-4,6-디카르복실산 소듐염(PDC 소듐염)을 산성화하여 조질 PDC-함유 수용액을 제조하는 단계;
(b) 상기 단계 (a)에서 결과된 조질 PDC-함유 수용액을 유기용매로 추출하여 수층과 유기층으로 층분리하는 단계;
(c) 상기 단계 (b)에서 결과된 수층에 아세톤을 첨가하여 형성되는 백색 침전물을 분리하여 제거하는 단계;
(d) 상기 단계 (c)에서 백색 침전물이 제거된 용액을 유기용매로 추출하고 수층과 유기층으로 층분리하는 단계;
(e) 상기 단계 (b)에서 결과된 유기층 및 단계 (d)에서 결과된 유기층을 농축하는 단계; 및
(f) 상기 단계 (e)에서 결과된 농축물을 에틸 아세테이트와 헥산의 혼합 용매로 컬럼 크로마토그래피하는 단계;
를 포함하는, 2-피론-4,6-디카르복실산의 정제 방법.
제25항에 있어서,
상기 2-피론-4,6-디카르복실산 소듐염은 리튬, 칼륨, 루비듐, 은, 세슘과 같은 1가 금속 양이온; 마그네슘, 칼슘, 철(II), 구리(II), 아연, 바륨, 코발트, 니켈(II), 망간, 크롬(II)과 같은 2가 금속 양이온; 철(III), 알루미늄, 갈륨과 같은 3가 금속 양이온; 및 비소(IV), 납(IV), 티탄(IV), 게르마늄(IV)과 같은 4가 금속 양이온으로 구성된 군에서 선택된 1종 이상의 다른 금속 양이온을 포함하는 것을 특징으로 하는, 2-피론-4,6-디카르복실산의 정제 방법.
제26항에 있어서,
상기 단계 (a)에서 산성화는 염산, 황산, 질산 및 인산으로 구성된 군에서 선택된 하나 이상의 산을 사용하여 수행되는 것을 특징으로 하는, 2-피론-4,6-디카르복실산의 정제 방법.
제26항에 있어서,
상기 단계 (a)에서 산성화는 염산을 사용하여 수행되는 것을 특징으로 하는, 2-피론-4,6-디카르복실산의 정제 방법.
제26항에 있어서,
상기 단계 (b) 및 (d)에서 사용되는 유기용매는 동일 또는 상이하며, 에틸아세테이트, 메틸에틸케톤, THF 및 이들의 혼합물로 구성된 군에서 선택되는 하나 또는 둘 이상인 것을 특징으로 하는, 2-피론-4,6-디카르복실산의 정제 방법.
제26항에 있어서,
상기 단계 (b) 및 (d)에서 사용될 수 있는 유기용매는 에틸아세테이트인 것을 특징으로 하는, 2-피론-4,6-디카르복실산의 정제 방법.
제26항에 있어서,
상기 단계 (f)의 컬럼 크로마토그래피는 에틸아세테이트:헥산=4:1~1:4의 혼합 용매로 용리되는 것을 특징으로 하는, 2-피론-4,6-디카르복실산의 정제 방법.
제26항에 있어서,
상기 단계 (f)의 컬럼 크로마토그래피는 에틸아세테이트:헥산=4:1~1:4의 혼합 용매에서 시작하여 에틸아세테이트(단일 용매)로 변화시키면서 농도구배 용리되는 것을 특징으로 하는, 2-피론-4,6-디카르복실산의 정제 방법.
제26항에 있어서,
상기 단계 (f)의 컬럼 크로마토그래피는 실리카겔 컬럼 크로마토그래피인 것을 특징으로 하는, 2-피론-4,6-디카르복실산의 정제 방법.
PCT/IB2020/051457 2019-02-12 2020-02-21 고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법 WO2020165882A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20756552.4A EP3909947A4 (en) 2019-02-12 2020-02-21 METHOD FOR PRODUCING HIGH PURITY 2-PYRONE-4,6-DICARBOXYLIC ACID AND METHOD FOR PRODUCING AN INTERMEDIATE THEREOF

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020190016016A KR102278269B1 (ko) 2019-02-12 2019-02-12 PET의 TPA 분해용 바이오 매스 유래 SiO₂ 촉매, 그 제조방법, 및 이를 이용한 PET의 TPA 분해방법
KR10-2019-0016016 2019-02-12
KR1020190074404A KR20200145980A (ko) 2019-06-21 2019-06-21 2-파이론-4,6-디카복실산 생산용 재조합 균주 및 이를 이용한 2-파이론-4,6-디카복실산 생산 방법
KR10-2019-0074404 2019-06-21
KR1020190109179A KR102267703B1 (ko) 2019-09-03 2019-09-03 2-피론-4,6-디카르복실산의 정제 방법
KR10-2019-0109179 2019-09-03

Publications (3)

Publication Number Publication Date
WO2020165882A2 true WO2020165882A2 (ko) 2020-08-20
WO2020165882A3 WO2020165882A3 (ko) 2021-05-06
WO2020165882A4 WO2020165882A4 (ko) 2021-06-24

Family

ID=72045048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/051457 WO2020165882A2 (ko) 2019-02-12 2020-02-21 고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법

Country Status (2)

Country Link
EP (1) EP3909947A4 (ko)
WO (1) WO2020165882A2 (ko)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658244B2 (ja) * 2004-03-30 2011-03-23 義博 片山 2−ピロン−4,6−ジカルボン酸を発酵生産するための遺伝子、前記遺伝子を含むプラスミド、前記プラスミドを含む形質転換体及び2−ピロン−4,6−ジカルボン酸の製造方法
JP4882063B2 (ja) * 2005-10-12 2012-02-22 国立大学法人東京農工大学 テレフタル酸の代謝に関与する新規遺伝子
JP2007211188A (ja) * 2006-02-10 2007-08-23 Univ Of Tokushima ポリエステルの分解方法および芳香族ジカルボン酸の回収方法
KR101157373B1 (ko) * 2011-05-12 2012-06-21 충남대학교산학협력단 왕겨 유래 고순도 다공성 실리카 및 실리콘 합성 방법
JP6042827B2 (ja) * 2012-01-27 2016-12-14 株式会社ジナリス テレフタル酸カリウム塩からの有用化学品の製造法
ITUB20150924A1 (it) * 2015-05-29 2016-11-29 N A M Nano Analysis & Mat S R L Processo sol-gel per la produzione di aerogeli di silice
BR112017027347B1 (pt) * 2015-06-19 2022-06-21 China Petroleum & Chemical Corporation Processos para produção de hidrocarboneto aromático, paraxileno e ácido tereftálico

Also Published As

Publication number Publication date
WO2020165882A4 (ko) 2021-06-24
WO2020165882A3 (ko) 2021-05-06
EP3909947A2 (en) 2021-11-17
EP3909947A4 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
WO2018070726A1 (ko) 리튬 화합물의 제조 방법
WO2010064764A1 (en) Method of preparing piceatannol using bacterial cytochrome p450 and composition therefor
WO2016032299A1 (ko) 단량체 염을 이용한 폴리이미드 제조방법
WO2020165882A2 (ko) 고순도 2-피론-4,6-디카르복실산 제조방법 및 그를 위한 중간체 제조방법
WO2013169024A1 (ko) 에어로겔 제조에 사용되는 용매치환용 용매 및 이를 사용한 소수성화된 에어로겔 제조방법
WO2020138871A1 (en) Organic light emitting diode and organic light emitting device including the same
WO2013085361A2 (ko) 4-하이드록시부티릭산 고생성능을 가지는 변이 미생물 및 이를 이용한 4-하이드록시부티릭산의 제조방법
WO2020138872A1 (en) Organic light emitting diode and organic light emitting device including the same
WO2020226341A1 (ko) L-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산을 생산하는 방법
WO2022060153A1 (ko) 에스테르 작용기를 포함하는 고분자의 해중합 촉매 및 이를 이용한 해중합 방법
WO2022045838A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2018182361A1 (ko) CRISPR/Cas 시스템과 재조합 효소 및 단일가닥 올리고디옥시리보핵산을 이용한 코리네박테리움 변이균주 제조방법
WO2015156645A1 (ko) 호모세린계 화합물의 처리 공정
WO2024039019A1 (ko) 시멘트 염소 바이패스 더스트의 친환경 재활용 시스템 및 친환경 재활용방법
WO2023132543A1 (ko) 포토박테리움 레이오그나티 유래의 우라실-dna 글리코실라제를 사용하여 핵산 증폭 반응에서의 캐리오버 오염을 제거하는 방법
WO2016013844A1 (ko) 페닐아세틸 호모세린 락톤 유도체의 생산 방법
WO2015072692A1 (ko) 가교구조를 갖는 열전환 폴리(벤즈옥사졸-이미드) 공중합체, 이를 포함하는 기체분리막 및 그 제조방법
WO2014142590A1 (ko) 폴리락트산의 개질제, 폴리락트산 개질제 제조방법, 이를 이용한 폴리락트산 개질방법, 개질된 폴리락트산을 이용한 생분해성 발포체 조성물 및 생분해성 발포체 조성물을 이용한 신발용 발포체
WO2015141886A1 (ko) 미생물 유래의 o-아실호모세린으로부터 바이오 유래 호모세린락톤 염산염 및 바이오 유래 유기산을 제조하는 방법
WO2018212624A1 (ko) 수산화지방산류, 헤폭실린류 또는 트리오실린류 제조용 조성물
WO2024112154A1 (ko) 생분해성 폴리에스테르 수지 조성물의 제조방법, 및 이를 이용한 생분해성 폴리에스테르 필름의 제조방법
WO2016200210A1 (ko) 선별적 용해도를 갖는 트리페닐메탄 유도체 및 그의 용도
WO2020190043A1 (ko) 프룩토스로부터 5-알콕시메틸퍼퓨랄 및 2,5-퓨란디카르복실산의 제조방법
WO2017119576A1 (ko) 올레산 수화효소 2를 이용한 생물전환공정
WO2023101490A1 (ko) 가니렐릭스의 신규한 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756552

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020756552

Country of ref document: EP

Effective date: 20210806