WO2020164391A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020164391A1
WO2020164391A1 PCT/CN2020/073917 CN2020073917W WO2020164391A1 WO 2020164391 A1 WO2020164391 A1 WO 2020164391A1 CN 2020073917 W CN2020073917 W CN 2020073917W WO 2020164391 A1 WO2020164391 A1 WO 2020164391A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
terminal device
time unit
system parameter
dedicated
Prior art date
Application number
PCT/CN2020/073917
Other languages
English (en)
French (fr)
Inventor
李新县
唐浩
王婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020164391A1 publication Critical patent/WO2020164391A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • Uu air interface communication refers to the communication between terminal equipment and base station on air interface resources.
  • the side link communication refers to the communication between terminal equipment and terminal equipment on side link resources.
  • the two terminal devices need to be connected by the side link before the side link communication.
  • the first terminal device serves as the sending end and the second terminal device serves as the receiving end.
  • the bypass connection process may be: the first terminal device sends a communication request to the second terminal device, and the second terminal device receives the communication After the request, the authorization and communication relationship confirmation are sent to the first terminal device.
  • the BWP refers to a group of continuous frequency domain resources on the carrier. How does the terminal device use the BWP for side link connection and side link communication? , Is the current research hotspot.
  • This application provides a communication method and device to use BWP to perform side link connection and side link communication.
  • a communication method including: a first terminal device uses a first system parameter on a first bandwidth portion BWP in a first time unit to establish a side link connection with a second terminal device, and the first BWP Including a pre-configured BWP or a public BWP, the first system parameter is the same as the system parameter of the pre-configured BWP or the public BWP; the first terminal device uses the second system parameter on the second BWP in the second time unit, Perform side link communication with the second terminal device.
  • the first terminal device uses the first system parameters on the first BWP to establish a side link connection with the second terminal device in the first time unit, and in the second time unit, the second The second system parameter is used on the BWP to perform side link communication with the second terminal device.
  • the terminal device uses the BWP to perform side link connection and side link communication.
  • the method further includes: the first terminal device receives radio resource control RRC dedicated signaling sent by the network device, where the RRC dedicated signaling is used to configure the first BWP; The first terminal device determines the first BWP according to the RRC dedicated signaling.
  • the first BWP is a dedicated BWP
  • the dedicated BWP includes a pre-configured BWP or a public BWP
  • the system parameters of the dedicated BWP are the same as those of the pre-configured or public BWP.
  • the side link connection can be established by using the above-mentioned dedicated BWP. Compared with the existing one, only a pre-configured BWP or a public BWP can be used to establish a side link connection, which can expand the use of dedicated BWP and increase the way to establish a side link connection.
  • the side link communication includes unicast, multicast, or broadcast
  • the first terminal device uses the second system parameter on the second time unit and the second BWP to communicate with the second
  • the side link communication performed by the terminal device includes: the second BWP is a first dedicated BWP, the second system parameter is a system parameter of the first dedicated BWP, and the first terminal device is at the second time Unit, the second system parameter is used on the first dedicated BWP to perform unicast, multicast or broadcast with the second terminal device; or, the second BWP is a pre-configured BWP or a public BWP, and the second system parameter For the pre-configured BWP or public BWP system parameters, the first terminal device uses the second system parameters on the second time unit, pre-configured BWP or public BWP, and performs unicast with the second terminal device , Multicast or broadcast; or, the second BWP is a second dedicated BWP, and the first frequency domain resource occupied by the frequency domain of the second dedicated
  • the method further includes: the first terminal device receives a first instruction sent by a network device, and the first instruction is used to indicate the first time unit and the second time unit The time ratio of; the first terminal device determines the first time unit and the second time unit according to the first instruction.
  • the first terminal device can determine the first time unit and the second time unit according to the instructions of the network device, and the ratio of the first time unit and the second time unit is more flexible.
  • the method further includes: the first terminal device works in the first time unit when the timer is started; when the timer expires, the first terminal The device switches to work in the second time unit; or, when the timer starts, the first terminal device works in the second time unit; when the timer expires, the first terminal device Switch to the first time unit to work.
  • the first terminal device can determine the ratio of the first time unit and the second time unit according to the timer, without the need for network device instructions, saving air interface overhead.
  • a communication device including a processor, configured to use a first system parameter on a first time unit and a first bandwidth part BWP to establish a side link connection with a second terminal device, and at a second time Unit, a second BWP uses a second system parameter to perform sidelink communication with the second terminal device, the first BWP includes a pre-configured BWP or a public BWP, and the first system parameter and the pre-configured BWP Or the system parameters of the public BWP are the same.
  • the apparatus further includes a communication interface, the communication interface is used to receive radio resource control RRC dedicated signaling sent by a network device, and the RRC dedicated signaling is used to configure the first BWP
  • the processor is further configured to determine the first BWP according to the RRC dedicated signaling.
  • the side link communication includes unicast, multicast or broadcast
  • the processor uses the second system parameter on the second time unit and the second BWP to communicate with the second terminal device.
  • the second BWP is the first dedicated BWP
  • the second system parameter is the system parameter of the first dedicated BWP
  • the first dedicated BWP Use the second system parameter on the BWP to perform unicast, multicast, or broadcast with the second terminal device
  • the second BWP is a pre-configured BWP or a public BWP
  • the second system parameter is the pre-configured BWP or public BWP system parameters, using the second system parameters on the pre-configured BWP or public BWP in the second time unit to perform unicast, multicast or broadcast with the second terminal device
  • the first The second BWP is a second dedicated BWP
  • the first frequency domain resource occupied by the frequency domain of the second dedicated BWP includes a
  • the communication interface is also used to receive a first indication sent by a network device, and the first indication is used to indicate a time ratio between the first time unit and the second time unit
  • the processor is further configured to determine the first time unit and the second time unit according to the first instruction.
  • the processor is further configured to: when the timer starts, work in the first time unit; when the timer expires, switch to work in the second time unit Or, when the timer starts, work in the second time unit; when the timer expires, switch to work in the first time unit.
  • a communication device including a processing module, configured to use a first system parameter on a first time unit and a first bandwidth portion BWP to establish a side link connection with a second terminal device, and, in a second In time unit, a second system parameter is used on the second BWP to perform sidelink communication with the second terminal device.
  • the first BWP includes a pre-configured BWP or a public BWP, and the first system parameter is the same as the pre-configured BWP.
  • the system parameters of BWP or public BWP are the same.
  • the device further includes a transceiver module, which is further configured to receive radio resource control RRC dedicated signaling sent by a network device, where the RRC dedicated signaling is used to configure the first BWP; and the processing The module is also used to determine the first BWP according to the RRC dedicated signaling.
  • a transceiver module which is further configured to receive radio resource control RRC dedicated signaling sent by a network device, where the RRC dedicated signaling is used to configure the first BWP; and the processing The module is also used to determine the first BWP according to the RRC dedicated signaling.
  • the side link communication includes unicast, multicast or broadcast
  • the processing module uses the second system parameter on the second time unit and the second BWP to communicate with the second terminal device.
  • the second BWP is the first dedicated BWP
  • the second system parameter is the system parameter of the first dedicated BWP
  • the first dedicated BWP Use the second system parameter on the BWP to perform unicast, multicast, or broadcast with the second terminal device
  • the second BWP is a pre-configured BWP or a public BWP
  • the second system parameter is the pre-configured BWP or public BWP system parameters, using the second system parameters on the pre-configured BWP or public BWP in the second time unit to perform unicast, multicast or broadcast with the second terminal device
  • the first The second BWP is a second dedicated BWP
  • the first frequency domain resource occupied by the frequency domain of the second dedicated BWP includes
  • the transceiver module is further configured to receive a first indication sent by a network device, and the first indication is used to indicate a time ratio between the first time unit and the second time unit
  • the processing module is further configured to determine the first time unit and the second time unit according to the first instruction.
  • the processing module is further configured to: work in the first time unit when the timer is started; switch to work in the second time unit when the timer expires Or, when the timer starts, work in the second time unit; when the timer expires, switch to work in the first time unit.
  • embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method designed in the first aspect.
  • an embodiment of the present application also provides a chip system.
  • the chip system includes a processor and may also include a memory for implementing the method of the first aspect.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • the embodiments of the present application also provide a computer program product, including instructions, which when run on a computer, cause the computer to execute the method of the first aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a wireless frame provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of BWP provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a communication process provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of side link communication provided by an embodiment of this application.
  • Fig. 6 is a schematic diagram of a time pattern provided by an embodiment of the application.
  • FIGS. 7 to 9 are schematic diagrams of a communication process provided by an embodiment of this application.
  • FIG. 10 is a flowchart of base station scheduling provided by an embodiment of this application.
  • FIG. 11 is a flowchart of UE self-sensing provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of another structure of a communication device provided by an embodiment of the application.
  • the communication system 100 may include at least one network device 110.
  • the network device 110 may be a device that communicates with terminal devices, such as a base station or a base station controller. Each network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located in the coverage area (cell).
  • the network device 110 may be a global system for mobile communications (GSM) system or a base transceiver station (BTS) in code division multiple access (CDMA), or it may be a broadband code division multiple access (CDMA) base station.
  • GSM global system for mobile communications
  • BTS base transceiver station
  • CDMA code division multiple access
  • CDMA broadband code division multiple access
  • the base station (nodeB, NB) in the wideband code division multiple access (WCDMA) system can also be an evolved NodeB (eNB or eNodeB) in the LTE system, or it can be a cloud radio access network (cloud radio).
  • the wireless controller in the access network (CRAN) scenario, or the network device can be a relay station, access point, in-vehicle device, wearable device, and network device in the future 5G network, for example, in the new radio (NR)
  • the base station (gNodeB or gNB) or the transmission receiving point/transmission reception point (TRP), or the network equipment 110 may also be the network equipment in the future evolution of the public land mobile network (PLMN), etc.,
  • PLMN public land mobile network
  • the communication system 100 also includes one or more terminal devices 120 located within the coverage area of the network device 110.
  • the terminal device 120 may be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user Agent or user device.
  • UE user equipment
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or terminals in the future evolved public land mobile network (PLMN) Devices, etc., are not limited in the embodiments of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 110 and the terminal device 120 may transmit data through air interface resources, and the air interface resources may include at least one of time domain resources, frequency domain resources, and code domain resources.
  • the network device 110 may send control information to the terminal device 120 through a control channel, such as a physical downlink control channel (PDCCH), thereby providing the terminal device 120 with control information.
  • a control channel such as a physical downlink control channel (PDCCH)
  • Allocate data channels such as physical downlink shared channel (PDSCH) or physical uplink shared channel (physical uplink shared channel, PUSCH) resources.
  • control information may indicate the symbol and/or resource block (resource block, RB) to which the data channel is mapped, and the network device 110 and the terminal device 120 perform data transmission on the allocated time-frequency resources through the data channel.
  • the above-mentioned data transmission may include downlink data transmission and/or uplink data transmission
  • downlink data (such as data carried in PDSCH) transmission may refer to the network device 110 sending data to the terminal device 120
  • uplink data such as data carried in PUSCH
  • Data can be data in a broad sense, such as user data, system information, broadcast information, or other information.
  • the terminal devices 120 can also use side link resources for data transmission. Similar to the above air interface resources, the side link resources can also include time domain resources, frequency domain resources, and code domain resources. At least one of them.
  • the physical channel for data transmission by the terminal device 120 may include a physical sidelink shared channel (PSSCH), a physical sidelink control channel (PSCCH), or a physical sidelink feedback. At least one of the channel (physical sidelink feedback channel, PSFCH), etc.
  • PSSCH is used to transmit data
  • PSCCH is used to transmit control information, such as scheduling assignment (SA) information
  • PSFCH is used to transmit feedback information.
  • the feedback information may include channel state information (CSI), Positive confirmation (acknowledgement, ACK) or negative confirmation (negative acknowledgement, NACK), etc.
  • CSI channel state information
  • ACK Positive confirmation
  • NACK negative confirmation
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of one network device may include other numbers of terminal devices.
  • This application is implemented The example does not limit this.
  • the side-link communication in the embodiments of the present application may refer to the communication between one terminal device and another terminal device (such as unicast, etc.), or the side-link communication may refer to the communication between one terminal device and multiple terminals.
  • the communication between terminal devices (such as multicast and broadcast, etc.) is not limited in this embodiment of the application.
  • "by-link communication refers to communication between one terminal device and another terminal device" is taken as an example for description.
  • the side link is used for communication between the terminal device and the terminal device, and may include a physical sidelink shared channel (PSSCH) and a physical sidelink control channel (PSCCH).
  • PSSCH is used to carry sidelink data (SL data)
  • PSCCH is used to carry sidelink control information (sidelink control information, SCI)
  • SCI sidelink control information
  • SCI sidelink control assistance
  • SL SA is information related to data scheduling, such as resource allocation and/or modulation and coding scheme (MCS) information used to carry PSSCH.
  • MCS modulation and coding scheme
  • the sidelink communication may also include: a physical sidelink feedback channel (PSFCH).
  • the physical side link feedback channel can also be referred to as a side link feedback channel for short.
  • the physical sidelink feedback channel may be used to transmit sidelink feedback control information (SFCI), and the sidelink feedback control information may also be referred to as sidelink feedback information for short.
  • the side link feedback control information may include one or more of channel state information (channel state information, CSI), hybrid automatic repeat request (HARQ) and other information.
  • the HARQ information may include acknowledgement information (acknowledgement, ACK) or negative acknowledgement (negtive acknowledgement, NACK), etc.
  • System parameters can also be referred to as frame structure parameters (numerology).
  • the system parameters may include one or more of subcarrier spacing and cyclic prefix (CP) type.
  • CP type can also be called CP length, or CP for short.
  • the CP type may be an extended CP or a normal (normal) CP.
  • the next time slot of the extended CP may include 12 time domain symbols, and the next time slot of the normal CP may include 14 time domain symbols.
  • Time domain symbols can be referred to simply as symbols.
  • the time-domain symbols can be orthogonal frequency division multiplexing (OFDM) symbols, or discrete fourier transform spread orthogonal frequency division multiplexing (DFT-s-s- OFDM) symbol.
  • the time domain symbol may be an OFDM symbol as an example for description.
  • the system parameters corresponding to number 0 are: subcarrier spacing is 15kHz, CP is normal CP, the system parameters corresponding to number 1 are: subcarrier spacing is 30kHz, CP is normal CP, and the system parameters corresponding to number 2 are:
  • the carrier interval is 60kHz, CP is normal CP or extended CP, the system parameters corresponding to number 3 are: subcarrier interval is 120kHz, CP is normal CP, and the system parameters corresponding to number 4 are: subcarrier interval is 240kHz, CP is Normal CP.
  • one time slot can be 1 millisecond (ms); when the subcarrier interval is 30kHz, one time slot can be 0.5ms.
  • a slot can include one or more symbols.
  • the next time slot of the normal cyclic prefix (CP) may include 14 symbols, and the next time slot of the extended CP may include 12 symbols.
  • Mini-slot also called mini-slot, can be a unit smaller than a slot, and a mini-slot can include one or more symbols.
  • a mini-slot may include 2 symbols, 4 symbols or 7 symbols, etc.
  • One slot may include one or more mini-slots.
  • a radio frame includes 10 subframes, each subframe may include 1 slot, and each slot may include 14 symbols. Among them, one radio frame can last for 10ms, each subframe can last for 1ms, and each time slot lasts for 1ms. Further, the mini-slot may include 4 symbols, 2 symbols or 7 symbols, etc.
  • the time slot characteristics under different system parameters are shown in Table 2. among them, Represents the number of symbols included in a slot, and the symbol number (or index) in the slot is For example, there can be 14 symbols in the normal CP, and 12 symbols in the extended CP.
  • a radio frame may include 10 subframes, a radio frame may be 10ms, and a subframe may be 1ms.
  • Carrier bandwidth part (carrier bandwidth part, BWP)
  • the carrier bandwidth part can be referred to as the bandwidth part (BWP) for short.
  • BWP is a group of continuous frequency domain resources on the carrier.
  • BWP is a group of continuous resource blocks (resource blocks, RB) on the carrier, or BWP is the carrier A group of contiguous subcarriers, or BWP is a group of contiguous resource block groups (RBG) on a carrier.
  • resource blocks resource blocks
  • BWP is a group of contiguous resource block groups (RBG) on a carrier.
  • RBG resource block groups
  • one RBG includes at least one RB, such as 1, 2, 4, 6, or 8, etc.
  • one RB may include at least one subcarrier, such as 12, etc.
  • the network in a cell, for a terminal device, can configure a maximum of 4 BWPs for the terminal device.
  • 4 BWPs Under frequency division duplexing (FDD), 4 BWPs can be configured for the uplink and downlink, and 4 BWPs can be configured for the uplink and downlink under TDD (time division duplexing).
  • the network device may configure the terminal device with system parameters including subcarrier spacing and/or CP length for each BWP.
  • only one BWP can be activated, and terminal equipment and network equipment send and receive data on the activated BWP.
  • the existing BWP is defined on a given carrier, that is, the resources of one BWP are located in one carrier resource.
  • carrier bandwidth carrier bandwidth
  • only one BWP can be configured for a UE.
  • the bandwidth of the BWP is less than or equal to the UE bandwidth capability (UE bandwidth capability), and the UE bandwidth capability is less than or equal to Carrier bandwidth (carrier BW).
  • UE bandwidth capability UE bandwidth capability
  • Carrier bandwidth carrier bandwidth
  • two BWPs can be configured for one UE, namely BWP1 and BWP2, and the bandwidths of BWP1 and BWP2 overlap.
  • two BWPs can be configured for one UE, namely BWP1 and BWP2, and BWP1 and BWP2 do not overlap.
  • the system parameters of BWP1 and BWP2 may be the same system parameter, or may also be different system parameters.
  • the configuration of the BWP (for example, the configuration of the number, location, and/or system parameters of the BWP) may also be other configurations, which are not limited in the embodiment of the present application.
  • the unit of the time unit may be a radio frame (radio frame), subframe (subframe), time slot (slot), mini-slot (mini-slot), and symbol (symbol).
  • a time unit may include one or more time slots.
  • One radio frame may include one or more subframes, and one subframe may include one or more time slots.
  • a slot can include one or more symbols.
  • next time slot of the normal cyclic prefix may include 14 time domain symbols
  • the next time slot of the extended CP may include 12 time domain symbols.
  • Time domain symbols can be referred to simply as symbols.
  • the time-domain symbols can be orthogonal frequency division multiplexing (OFDM) symbols, or discrete fourier transform spread orthogonal frequency division multiplexing (DFT-s-s- OFDM) symbol.
  • Mini-slot also called mini-slot, can be a unit smaller than a slot, and a mini-slot can include one or more symbols.
  • a mini-slot may include 2 symbols, 4 symbols or 7 symbols, etc.
  • One slot may include one or more mini-slots.
  • the network device can configure SL resources for the sender UE and/or the receiver UE through configuration information, and the SL resources include one or more resource pools. In the embodiment of the present application, the number may be 2, 3, 4 or more, which is not limited in the embodiment of the present application.
  • the network equipment can indicate the resources in the resource pool for sidelink communication to the sending end UE through the DCI. When the sending end UE receives the DCI, it can use the resources in the resource pool indicated by the DCI to send The receiving end UE sends SL information, and the SL information may include SL data and/or SCI and/or SFCI, etc. Correspondingly, the receiving end may receive SL information.
  • the network equipment may be a base station, or a network management system operated by an operator.
  • the network device can configure SL resources for UE1 and UE2, and the network device can send DCI to UE1.
  • UE1 can determine the SL transmission resource according to the indication of the DCI, and send SCI and/or SL data on the SL transmission resource.
  • UE2 determines the SL receiving resource according to the configured SL resource, receives the SCI on the SL receiving resource, and receives the SL data on the receiving resource according to the SCI.
  • the UE2 may send 1 to the UE to send SFCI.
  • the SFCI may include a positive acknowledgement ACK, otherwise, the SFCI may include a negative acknowledgement NACK.
  • the network device may configure SL resources for UE1, UE2, and UE3, and the network device may allocate SL transmission resources for UE3 and UE1 through DCI.
  • the UE3 may send the SL signal to the UE1.
  • the SL signal may include SCI and/or SL data.
  • UE1 can send SFCI to UE3.
  • UE1 may send an SL signal to UE2 on the SL transmission resource.
  • the SL signal may include SCI and/or SL data.
  • UE2 can send SFCI to UE1.
  • the base station scheduling mode may also be called a base station assisted scheduling mode, may also be called mode 1 (mode 1), or may be called mode 3 (mode 3).
  • the network device can configure SL resources for the sender UE and/or the receiver UE through configuration information, and the SL resources include one or more resource pools.
  • the UE at the sending end performs sensing in the configured SL resources, and if it senses that there are available resources in the SL resources, it sends SL information in the available resources, and correspondingly, the UE at the receiving end receives the SL information in the SL resources.
  • the network device can configure SL resources for UE1 and UE2.
  • UE1 senses SL transmission resources, and sends SCI and/or SL data in the SL transmission resources.
  • UE2 receives SCI and/or SL data according to the configured SL resource.
  • the UE2 can sense the SL transmission resources in the configured SL resources, and send SFCI to UE1 on the SL transmission resources.
  • UE1 when UE1 acts as a transmitter and sends SL data information to UE2 on SL transmission resources, UE1 can also act as a receiver to receive SL data information sent by UE3. Optionally, at the same time, UE1 can send SFCI to UE3 on the SL transmission resource.
  • SFCI for detailed description, please refer to the record of the base station scheduling mode of the side link SL, which will not be described here.
  • the UE automatic selection mode may also be referred to as the UE autonomous scheduling mode or the UE autonomous sensing mode, which may also be referred to as mode 2 (mode 2), or mode 4 (mode 4).
  • mode 2 mode 2
  • mode 4 mode 4
  • the first terminal device and the second terminal device in the flow may be the terminal device 120 in the flow shown in FIG. 1, and the network device may be the flow shown in FIG.
  • the network device 110 in the process It is understandable that the functions of the network equipment can also be realized by the chips applied to the network equipment, or through other means to support the realization of the network equipment; the functions of the terminal equipment can also be realized by the chips applied to the terminal equipment, or through other Device to support terminal device implementation.
  • the specific process can be:
  • the first terminal device uses the first system parameter on the first BWP in the first time unit to establish a side link connection with the second terminal device.
  • the first BWP includes a pre-configured BWP or a public BWP, and the first system parameters are the same as the system parameters of the pre-configured BWP or the public BWP. It is understandable that the first BWP includes a description of a pre-configured BWP or a public BWP, and may include: the first BWP is a pre-configured BWP; or, the first BWP is a public BWP; or, the first BWP is a dedicated BWP, and the dedicated BWP
  • the BWP occupies the first frequency domain resource
  • the public BWP or the pre-configured BWP occupies the second frequency domain resource
  • the first frequency domain resource includes the second frequency domain resource.
  • the core network device can be configured with a pre-configured BWP for the terminal device, and the access network device can be configured with a dedicated BWP and/or a public BWP for the terminal device.
  • the core network may be a prose application of the public land mobile network (PLMN), and the access network device may use the system information block (SIB) or master information block (master information block).
  • SIB system information block
  • Master information block master information block
  • Information block (MIB) configures a public BWP for terminal equipment
  • access network equipment can configure a dedicated BWP for terminal equipment through radio resource control (Radio Resource Control, RRC) dedicated signaling.
  • RRC Radio Resource Control
  • the first terminal device may determine the first BWP according to the RRC dedicated signaling sent by the network device.
  • the first terminal device may store pre-configured BWP information, dedicated BWP information, and/or public BWP information, and the first terminal device may determine the pre-configured BWP, dedicated BWP, and/or public BWP according to the corresponding information .
  • the public BWP may also be called common BWP
  • the dedicated BWP may also be called dedicated BWP
  • the pre-configured BWP may also be called pre-configured BWP.
  • the pre-configured BWP is that the operator pre-configures the side link resources for the terminal or pre-configures the side link resources for the terminal in a predefined manner in a standard protocol.
  • side link resources can be configured for one or more terminals.
  • the operator’s network management system can send pre-configuration information to each terminal.
  • the pre-configuration information is used for each terminal.
  • the terminal 1 can use the side link resources configured by the pre-configuration information to broadcast data and/ Or control information, other terminals, such as terminal 2, can receive data and/or control information on the side link resource.
  • the side link resources configured by the pre-configuration information can also be used for multicast transmission and/or unicast transmission, which is not limited in this application.
  • broadcast transmission may be referred to as broadcast sidelink signal communication, or may be referred to as sidelink communication of broadcast services, or sidelink communication where the transmission type is broadcast.
  • multicast transmission may be referred to as multicast sidelink signal communication, and may also be referred to as sidelink communication of a multicast service, or sidelink communication of a multicast transmission type.
  • unicast communication may be referred to as unicast sidelink signal communication, and may also be referred to as sidelink communication of unicast service, or sidelink communication of unicast transmission type.
  • a network management system operated by an operator may configure a side link BWP for a terminal device through pre-configuration signaling, and the side link BWP may be referred to as a pre-configured side link BWP.
  • the public BWP may include a pre-configured side link BWP.
  • the pre-configured side link BWP may also be referred to as the pre-configured BWP for short.
  • the network management system can write pre-configuration signaling in the SIM or USIM of the terminal, or store pre-configuration information in the ROM (read only memory) of the mobile device.
  • the terminal can read the pre-configuration information in the SIM card or ROM. Let obtain the configuration information of the pre-configured side link BWP, and then determine the pre-configured side link BWP.
  • the network management system may also send pre-configuration signaling to a mobile equipment (mobile equipment, ME) of the terminal, and the terminal may determine the pre-configured side link BWP through the pre-configuration signaling.
  • the sending resource pool and/or the receiving resource pool configured in the pre-configured BWP may be referred to as the pre-configured resource pool.
  • the pre-configured resource pool may include a pre-configured sending resource pool and/or a pre-configured receiving resource pool.
  • the SIM subscriber identification module
  • the SIM may be a user identification card, also called a user identification card, a smart card, etc.
  • USIM can be an abbreviation of universal subscriber identity module, or it can be called an upgraded SIM.
  • the one or more terminals may refer to terminals served by the operator.
  • the one or more terminals may refer to one or more terminals that can receive operator pre-configuration information, for example, all terminals served by a cell.
  • the public BWP is configured by system information configuration or radio resource control (radio resource control, RRC) public information configuration, for example, the access network device sends system information or RRC public information to the terminal.
  • System information or public RRC information may be cell-level parameters.
  • side link resources can be configured for a group of terminals.
  • the access network device can send system information or RRC public information to a group of terminals.
  • the system information Or RRC common information is used to configure side link resources for each terminal. Since system information or RRC public information is sent to a group of terminals, the side link resources of system information configuration or RRC public information configuration can be used for multicast transmission between terminals in the group.
  • terminal 1 can use system information If the side link resource configured or RRC common information is configured to multicast data and/or control information, other terminals in the group, such as terminal 2, can receive data or control information on the side link resource.
  • the access network device may configure the side link BWP for the terminal through system information or RRC public information, and the side link BWP may be called the system public side link BWP.
  • the system public side link BWP may also be referred to as the system public BWP or public BWP for short.
  • the sending resource pool and/or receiving resource pool configured in the system public BWP may be referred to as the system public resource pool or the public resource pool.
  • the public resource pool may include a public sending resource pool and/or a public receiving resource pool.
  • the group of terminals may include one or more terminals.
  • the group of terminals may refer to one or more terminals that can receive the system information or RRC common information.
  • a cell may divide the terminals served by it into multiple groups, and the group of terminals is one of them.
  • the side link resources of the system information configuration or the RRC public information configuration can also be used for unicast transmission and/or broadcast transmission, which is not limited in this application.
  • the dedicated BWP is configured by RRC dedicated information, for example, the access network device sends RRC dedicated information to the terminal.
  • the RRC dedicated information may be terminal-level parameters (or referred to as UE-level parameters), and parameter configuration is performed for the terminal.
  • side link resources can be configured for a single terminal.
  • the access network device can send RRC dedicated information to a single terminal.
  • the RRC dedicated information is used to configure side link resources for the terminal. . Since the RRC dedicated information is sent to a single terminal, the side link resources configured by the RRC dedicated information can be used for unicast transmission between terminals in the group. For example, terminal 1 can use the side link resources configured by the RRC dedicated information to transmit The terminal 2 unicasts data or control information.
  • the access network device can configure the side link BWP to the terminal through RRC dedicated information.
  • the side link BWP can be called a user dedicated side link BWP, or a user specific side link BWP, or simply a user Dedicated BWP, or user-specific BWP for short, or dedicated BWP for short, or specific BWP for short.
  • the BWP may be configured by the network device to the terminal through UE-specific signaling.
  • the sending resource pool and/or receiving resource pool configured in the dedicated BWP may be referred to as a dedicated resource pool.
  • the dedicated resource pool may include a dedicated sending resource pool and/or a dedicated receiving resource pool.
  • the sidelink resources configured by the RRC dedicated information can also be used for broadcast transmission and/or multicast transmission, which is not limited in this application.
  • the first terminal device serves as the sending end of the side link communication
  • the second terminal device serves as the receiving end of the side link communication.
  • the process of the side link connection may be: the first terminal device sends the side link to the second terminal device.
  • Link communication request after receiving the side link request, the second terminal device sends authorization and communication relationship determination to the first terminal device.
  • the second terminal device can also be used as the sending end of side link communication
  • the first terminal device can also be used as the receiving end of side link communication.
  • the process of establishing a side link connection is similar to the above process. No more explanation.
  • the first terminal device uses the second system parameter on the second BWP in the second time unit to perform sidelink communication with the second terminal device.
  • the second system parameter is a system parameter corresponding to the second BWP
  • the second BWP may include a public BWP, a pre-configured BWP, or a dedicated BWP.
  • the side link communication between the first terminal device and the second terminal device may include unicast, groupcast, or broadcast.
  • broadcast can refer to the communication between one terminal device and multiple terminal devices.
  • broadcast can refer to the communication between one terminal device and all terminal devices in the cell. Therefore, broadcast needs to be received by all terminal devices. .
  • the purpose of broadcasting is to allow all terminal devices to receive the broadcast message, but in reality, one or more terminal devices may receive the broadcast message.
  • Multicast can refer to the communication between a terminal device and a group of terminal devices.
  • the purpose of multicast is to make it possible for all terminal devices in a group of terminal devices to receive the multicast message, but in reality, one or more terminal devices in the group of terminal devices may receive the multicast message.
  • Unicast can refer to the communication between one terminal device and another terminal device.
  • the purpose of unicast is to allow a terminal device to receive a unicast message, but in practical applications, the terminal device may or may not receive the above unicast message.
  • the second BWP is the first dedicated BWP
  • the second system parameter is specifically the system parameter of the first dedicated BWP
  • the first terminal device may use the second system parameter on the first dedicated BWP in the above second time unit , Unicast, multicast or broadcast with the second terminal device.
  • the second BWP is a pre-configured BWP or a public BWP
  • the second system parameter is a system parameter of a pre-configured BWP or a public BWP.
  • the first terminal device can use the second time unit on the pre-configured BWP or public BWP. 2. System parameters, unicast, multicast or broadcast with the second terminal device.
  • the second BWP may be a second dedicated BWP
  • the second dedicated BWP occupies the first frequency domain resource
  • the public BWP or the pre-configured BWP occupies the second frequency domain resource
  • the first frequency domain resource includes the second frequency domain Resource
  • the second system parameter is the system parameter of the second dedicated BWP
  • the second system parameter is the same as the system parameter of the pre-configured BWP or the public BWP
  • the first terminal device can be in the above second time unit
  • the second dedicated BWP Use the second system parameters to perform unicast, multicast or broadcast with the second terminal device.
  • the following example may be used to determine the first time unit and the second time unit in the process shown in FIG. 4 above:
  • Example 1 The network device sends a first instruction to the terminal device, where the first instruction is used to indicate the time ratio between the first time unit and the second time unit; the terminal device determines in each time period according to the first instruction The first time unit and the second time unit.
  • the length of each time period can be predefined, or pre-indicated by the network device, etc. For example, if the time period is 1 time slot and one time slot is 1 ms as an example, if the first indication indicates that the time ratio between the first time unit and the second time unit is 3: 1, then the terminal device can determine 1 0.75 ms in the time slot is the first time unit, and 0.25 ms in one time slot is the second time unit.
  • the terminal device can determine 8 time slots within 10 time slots
  • the time slot is the first time unit, and the 2 time slots are the second time unit.
  • the sequence of the first time unit and the second time unit is not limited.
  • the first time unit includes 8 time slots within 10 time slots
  • the second time unit includes 10 time slots.
  • the first time unit can include any 8 time slots within 10 time slots
  • the second time unit can include any 2 time slots within 10 time slots.
  • the 8 time slots included in the time unit may not overlap with the 2 time slots included in the second time unit.
  • 10 time slots are numbered from 0 to 9, then the 8 time slots included in the first time unit can be numbered from 0 to 7, and the second time unit includes 2 time slots.
  • the number of time slots can be 8 and 9.
  • the numbers of the 2 time slots included in the second time unit may be 0 and 1, and the numbers of the 8 time slots included in the first time unit may be 2-9.
  • the 8 time slots included in the first time unit are numbered 0, 1, 2, 5, 6, 7, 8, 9, and the 2 time slots included in the second time unit are numbered 3 and 4, etc. . This application is not limited.
  • the network device can configure or predefine a time pattern. As shown in FIG. 6, in the time domain, the time pattern includes the first BWP time period and the second BWP time period.
  • the network device and the terminal device can determine the first time unit and the second time unit according to the time pattern.
  • the time pattern may be configured for core network equipment, and the time pattern may be applicable to all access network equipment and terminal equipment.
  • the time pattern may be pre-configured to the terminal device through a universal subscriber identity module (USIM) or a mobile equipment (mobile equipment, ME).
  • the time pattern may be configured per cell, and the access network device may configure the time pattern in system messages or RRC dedicated information.
  • an application scenario is provided: as shown in Figure 6, in the order of the time domain, they are the first BWP time period, the second BWP time period, the first BWP time period, and the second BWP time. segment.
  • the first terminal device uses the first system parameters in the first BWP in the first first BWP time period from left to right to establish a side link connection with the second terminal device, and in the first first BWP from left to right, In the second BWP time period, the second system parameter is used in the second BWP to perform side link communication with the second terminal device.
  • the first terminal device uses the first system parameters in the first BWP during the second first BWP time period from left to right to establish a side link connection with the third terminal device.
  • the second system parameter is used with the second BWP to establish side link communication with the third terminal device.
  • the number of the first BWP time period and the second BWP time period are two for illustration, and it is not a limitation of the application. Both the BWP time period and the second BWP time period are within the protection scope of this application.
  • Example 3 Set a timer.
  • the terminal device works in the first time unit, and when the timer expires, the terminal device switches to the second time unit to work.
  • the terminal device works in the second time unit, and when the timer expires, the terminal device switches to work in the first time unit.
  • the terminal device switches to the second time unit to work, which can also be referred to as the terminal device falling back to work on the second BWP; the terminal device switching to the first time unit to work, can also be called the terminal device falling back to the first time unit BWP work.
  • the method for determining the first time unit and the second time unit in the foregoing examples 1 to 3 is applicable to both the first terminal device in the process shown in FIG. 4 and the process shown in FIG. 4 The second terminal device.
  • the terminal devices in the foregoing examples 1 to 3 include a first terminal device and a second terminal device.
  • the first terminal device and the second terminal device are on the first BWP, using the first system parameters to establish a side link connection, and on the second BWP, using the second system parameters, Perform side link communication.
  • the first BWP is a public BWP or a pre-configured BWP, or the first BWP is a dedicated BWP, but the frequency domain resources of the dedicated BWP include frequency domain resources of the public BWP or pre-configured BWP, and the first system parameter is the public BWP or pre-configured System parameters of BWP.
  • first terminal device and the second terminal device meet the conditions of the side link communication on the first BWP and the first system parameters, and the side link connection between the first terminal device and the second terminal device can be established.
  • the second BWP and the second system parameters of the side link communication between the first terminal device and the second terminal device are not limited in this application.
  • the first terminal device and the second terminal device in the flow may be the terminal device 120 in the flow shown in FIG. 1, and the flow is:
  • the first terminal device uses the first system parameter on the first frequency domain resource included in the dedicated BWP to establish a sidelink connection with the second terminal device.
  • the first terminal device uses the first system parameter on the second frequency domain resource included in the dedicated BWP to perform sidelink communication with the second terminal device.
  • the first system parameter is a system parameter of the dedicated BWP, and the first system parameter is the same as a system parameter of a public BWP or a pre-configured BWP.
  • the dedicated BWP includes a first frequency domain resource and a second frequency domain resource, and the first frequency domain resource and the second frequency domain resource may overlap or not overlap at all.
  • the overlap may refer to complete overlap or partial overlap, etc., which is not limited in the embodiment of the present application.
  • the first frequency domain resource overlaps with the frequency domain resource occupied by the public BWP or the pre-configured BWP, which can be described as: the first frequency domain resource is overlapped with the frequency domain resource of the public BWP or the pre-configured BWP Overlap, or, it can be described as: the sending resource pool in the first frequency domain resource overlaps with the receiving resource pool of the public BWP or the pre-configured BWP, or it can be described as: the receiving resource pool in the first frequency domain resource There is overlap with the sending resource pool of the public BWP or the pre-configured BWP.
  • the frequency domain resource in which the first frequency domain resource overlaps with the public BWP or the pre-configured BWP may be referred to as an overlapping frequency domain resource.
  • the first terminal device may send a communication request on the above-mentioned overlapping frequency domain resources.
  • the second terminal device may also feed back communication authorization and confirmation information on the above-mentioned overlapping frequency domain resources.
  • the communication request may carry an identifier of the first terminal device, or BWP configuration information used by the first terminal device for sidelink communication.
  • the communication authorization and confirmation information may carry the identifier of the second terminal device, or the BWP configuration information used by the second terminal device for side link communication.
  • a dedicated BWP can be used to realize the side link connection and the side link communication without BWP switching, which improves the efficiency of the side link communication.
  • FIG. 8 provides a flow of a communication method.
  • the first terminal device and the second terminal device in the flow may be the terminal device 120 in the flow shown in FIG. 1, and the flow is:
  • the first terminal device performs sidelink communication with the second terminal device on the first BWP.
  • the first terminal device switches to the second BWP and establishes a side link connection with the third terminal device, where the second BWP includes a pre-configured BWP or a public BWP.
  • the first terminal device may send a handover request to the network device.
  • the network device may send a BWP configuration to the first terminal device.
  • the first terminal device switches to the first terminal device according to the BWP configuration.
  • On the second BWP establish a side link connection with the third terminal device.
  • switching request is also referred to as a “fallback request”
  • switching to the second terminal device is also referred to as “falling back to the second terminal device”.
  • the first BWP is a dedicated BWP, corresponding to the first system parameter
  • the second BWP can be a pre-configured BWP, a public BWP, or a fallback BWP configured by a network device, corresponding to the second system parameter, the first system parameter and the second system parameter Take the different system parameters as an example.
  • the first terminal device can perform side-link communication in the dedicated BWP. If the first terminal device believes that there is no communication demand for a period of time in the future, the first terminal device can report a fallback request to the network device and fall back to the pre-configured BWP, Public BWP or fallback BWP configured by the base station.
  • the BWP switching of the terminal device can be implemented in two different ways.
  • the first is that the terminal device can be configured with at most one dedicated BWP, and at most one pre-configured or public BWP, so that when the terminal device switches the BWP , Is to activate the second BWP and deactivate the first BWP.
  • the second is that the terminal device can configure at most one BWP.
  • the BWP includes a dedicated BWP, pre-configured and public BWP. When the terminal device switches the BWP, it reconfigures a BWP and activates the BWP at the same time.
  • the network equipment configures different BWPs for the terminal equipment, and uses different BWPs to realize side link connection and side link communication, which improves the utilization rate of different BWPs and improves the efficiency of side link communication.
  • a communication process in which core network equipment and access network equipment can correspond to the network equipment in Figure 1, Figure 4, Figure 6 and Figure 7, and UE1 can correspond to Figure 1 above.
  • Figure 4, Figure 6 and Figure 7, the first terminal device, UE2 can correspond to the above-mentioned Figure 1, Figure 4, Figure 6 and Figure 7 the second terminal device, using this process can be implemented for the terminal device configuration BWP, the The process includes:
  • the core network device sends a sidelink service authorization to UE1, and configures a pre-configured BWP for UE1.
  • the core network device sends a sidelink service authorization to UE2, and configures a pre-configured BWP for UE2.
  • the process shown in FIG. 9 may further include: S903.
  • the core network device sends the sidelink service authorization of UE1 and UE2 to the access network device.
  • the process shown in FIG. 9 may further include: S904.
  • UE1 and/or UE2 report side link resource configuration information to the access network device.
  • the side link resource configuration information may include the frequency band that the UE is interested in, service characteristics, requested side link resources, ProSe per packet priority (PPPP), target layer layer 2 identification, etc. .
  • PPPP ProSe per packet priority
  • the UE1 reporting side link resource configuration information is taken as an example, which is not a limitation of the present application.
  • the access network device configures the dedicated BWP and/or the public BWP to the UE1.
  • the access network device configures the dedicated BWP and/or the public BWP to the UE2.
  • UE1 and UE2 can use the methods shown in Figure 4, Figure 6 and Figure 7 above , Perform side link connection and side link communication.
  • the process of the side link may be: UE1 sends a communication request to UE2, and UE2 sends authorization and communication relationship confirmation to UE1.
  • the process of side link communication can specifically work in the base station scheduling mode, or it can work in the UE self-sensing mode. In the example shown in FIG. 9, it is described as an example of working in the base station scheduling mode, with UE1 being the transmitting end and UE2 being the receiving end.
  • UE1 sends a sidelink communication request to UE2.
  • UE2 sends authorization and communication relationship confirmation to UE1.
  • UE1 sends a scheduling request to the access network device.
  • the access network device sends DCI to UE1, where the DCI is used to indicate scheduling resources.
  • UE1 performs sidelink communication with UE2 on the scheduling resource indicated by the DCI.
  • the process of side-link communication may be sending SCI and data.
  • the methods provided in the embodiments of the present application are introduced from the perspective of network equipment, terminal, and interaction between the network equipment and the terminal.
  • the network device and the terminal may include hardware structures and/or software modules, and the above functions are implemented in the form of hardware structures, software modules, or hardware structures plus software modules. Whether one of the above-mentioned functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • an embodiment of the present application further provides an apparatus 1200 for implementing the function of the first terminal device in the above-mentioned method.
  • the device can be a terminal device or a device in a terminal device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device 1200 may include:
  • the processing module 1201 is configured to use the first system parameter on the first time unit and the first bandwidth part BWP, establish a side link connection with the second terminal device, and use the second system parameter on the second time unit and the second BWP , Perform sidelink communication with the second terminal device.
  • the apparatus 1200 may further include: a transceiver module 1202, configured to send or receive side link signals or information.
  • the processing module 1201 and the transceiver module 1202 please refer to the record in the above method embodiment.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • an embodiment of the present application provides a device 1300 for implementing the function of the first terminal device in the above method.
  • the device may be a terminal device or a device in a terminal device.
  • the apparatus 1300 includes at least one processor 1301, configured to implement the function of the first terminal device in the foregoing method.
  • the processor 1301 may use the first system parameter on the first time unit, the first bandwidth part BWP, establish a side link connection with the second terminal device, and use the second system on the second time unit, the second BWP
  • the processor 1301 may use the first system parameter on the first time unit, the first bandwidth part BWP, establish a side link connection with the second terminal device, and use the second system on the second time unit, the second BWP
  • side link communication with the second terminal device please refer to the detailed description in the method for details, which will not be described here.
  • the device 1300 may further include at least one memory 1302 for storing program instructions and/or data.
  • the memory 1302 is coupled with the processor 1301.
  • the coupling in the embodiments of the present application is an interval coupling or a communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1301 may operate in cooperation with the memory 1302.
  • the processor 1301 may execute program instructions stored in the memory 1302. At least one of the at least one memory may be included in the processor.
  • the apparatus 1300 may further include a communication interface 1303 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1300 can communicate with other devices.
  • the communication interface 1303 may be a transceiver, circuit, bus, module, or other type of communication interface, and the other device may be a second terminal device or a network device.
  • the processor 1301 uses the communication interface 1303 to send and receive data, and is used to implement the method in the foregoing embodiment.
  • the embodiment of the present application does not limit the connection medium between the communication device 1303, the processor 1301, and the memory 1302.
  • the memory 1302, the processor 1301, and the communication interface 1303 are connected by a bus 1304 in FIG. 13.
  • the bus is represented by a thick line in FIG. 13, and the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and it may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function, for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:第一终端设备在第一时间单元,第一带宽部分BWP上使用第一***参数,与第二终端设备建立旁链路连接,第一终端设备在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信。采用本申请的方法及装置,可实现终端设备利用BWP,进行旁链路连接和旁链路通信。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年02月15日提交国家知识产权局、申请号为201910117887.5、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在新空口(new radio,NR)***中,终端设备的通信分为Uu空口通信和旁链路(sidelink,SL)通信。其中,Uu空口通信指终端设备与基站,在空口资源上的通信。旁链路通信指终端设备与终端设备,在旁链路资源上的通信。
两个终端设备在进行旁链路通信前,需进行旁链路连接。比如,第一终端设备作为发送端,第二终端设备作为接收端,旁链路连接的过程可为:第一终端设备向第二终端设备发送通信请求,第二终端设备在接收到所述通信请求后,发送授权和通信关系确认至第一终端设备。
同时,在NR***中,引入了带宽部分(bandwidth part,BWP)的概念,所述BWP是指载波上一组连续的频域资源,终端设备如何利用BWP进行旁链路连接和旁链路通信,是当前的研究热点。
发明内容
本申请提供一种通信方法及装置,以利用BWP,进行旁链路连接和旁链路通信。
第一方面,提供一种通信方法,包括:第一终端设备在第一时间单元,第一带宽部分BWP上使用第一***参数,与第二终端设备建立旁链路连接,所述第一BWP包括预配置BWP或公共BWP,所述第一***参数与所述预配置BWP或公共BWP的***参数相同;所述第一终端设备在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信。
由上可见,在本申请实施例中,第一终端设备在第一时间单元,第一BWP上使用第一***参数,与第二终端设备建立旁链路连接,在第二时间单元,第二BWP上使用第二***参数,与第二终端设备进行旁链路通信。采用本申请的方法,可实现终端设备利用BWP,进行旁链路连接和旁链路通信。
在一种可能的设计中,所述方法还包括:所述第一终端设备接收网络设备发送的无线资源控制RRC专用信令,所述RRC专用信令用于配置所述第一BWP;所述第一终端设备根据所述RRC专用信令,确定所述第一BWP。
针对上述设计,所述第一BWP为专用BWP,且该专用BWP包括预配置BWP或公共BWP,该专用BWP的***参数与预配置或公共BWP的***参数相同。采用具有上述专 用BWP即可建立旁链路连接。相对于现有的,仅可利用预配置BWP或公共BWP建立旁链路连接,可扩大专用BWP的用途,增加建立旁链路连接的方式。
在一种可能的设计中,所述旁链路通信包括单播、组播或广播,所述第一终端设备在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信,包括:所述第二BWP为第一专用BWP,所述第二***参数为所述第一专用BWP的***参数,所述第一终端设备在所述第二时间单元,第一专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,所述第二BWP为预配置BWP或公共BWP,所述第二***参数为所述预配置BWP或公共BWP的***参数,所述第一终端设备在所述第二时间单元,预配置BWP或公共BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,所述第二BWP为第二专用BWP,且所述第二专用BWP的频域所占用的第一频域资源包括第二频域资源,所述第二频域资源为所述预配置BWP或公共BWP的频域资源,所述第二***参数为所述第二专用BWP的***参数,所述第二***参数与所述预配置BWP或公共BWP的***参数相同,所述第一终端设备在所述第二时间单元,所述第二专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播。
针对上述设计,可采用不同BWP建立旁链路通信,相对于仅可利用专用BWP建立旁链路通信,使用旁链路通信的方式更加灵活。
在一种可能的设计中,所述方法还包括:所述第一终端设备接收网络设备发送的第一指示,所述第一指示用于指示所述第一时间单元和所述第二时间单元的时间配比;所述第一终端设备根据所述第一指示,确定所述第一时间单元和所述第二时间单元。
在该设计中,第一终端设备可根据网络设备的指示,确定第一时间单元和第二时间单元,第一时间单元和第二时间单元的配比更加灵活。
在一种可能的设计中,所述方法还包括:所述第一终端设备在所述定时器启动时,工作在所述第一时间单元;当所述定时器超时时,所述第一终端设备切换到所述第二时间单元工作;或者,所述第一终端设备在所述定时器启动时,工作在所述第二时间单元;当所述定时器超时时,所述第一终端设备切换到所述第一时间单元工作。
在该设计中,第一终端设备可根据定时器,确定第一时间单元和第二时间单元的配比,无需网络设备指示,节省空口开销。
第二方面,提供一种通信装置,包括处理器,用于在第一时间单元,第一带宽部分BWP上使用第一***参数,与第二终端设备建立旁链路连接,以及在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信,所述第一BWP包括预配置BWP或公共BWP,所述第一***参数与所述预配置BWP或公共BWP的***参数相同。
在一种可能的设计中,所述装置还包括通信接口,所述通信接口,用于接收网络设备发送的无线资源控制RRC专用信令,所述RRC专用信令用于配置所述第一BWP;所述处理器,还用于根据所述RRC专用信令,确定所述第一BWP。
在一种可能的设计中,所述旁链路通信包括单播、组播或广播,所述处理器在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信时,具体用于:所述第二BWP为第一专用BWP,所述第二***参数为所述第一专用BWP的***参数,在所述第二时间单元,第一专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,所述第二BWP为预配置BWP或公共BWP,所述第二系 统参数为所述预配置BWP或公共BWP的***参数,在所述第二时间单元,预配置BWP或公共BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,所述第二BWP为第二专用BWP,且所述第二专用BWP的频域所占用的第一频域资源包括第二频域资源,所述第二频域资源为所述预配置BWP或公共BWP的频域资源,所述第二***参数为所述第二专用BWP的***参数,所述第二***参数与所述预配置BWP或公共BWP的***参数相同,在所述第二时间单元,所述第二专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播。
在一种可能的设计中,所述通信接口,还用于接收网络设备发送的第一指示,所述第一指示用于指示所述第一时间单元和所述第二时间单元的时间配比;所述处理器,还用于根据所述第一指示,确定所述第一时间单元和所述第二时间单元。
在一种可能的设计中,所述处理器还用于:在所述定时器启动时,工作在所述第一时间单元;当所述定时器超时时,切换到所述第二时间单元工作;或者,在所述定时器启动时,工作在所述第二时间单元;当所述定时器超时时,切换到所述第一时间单元工作。
第三方面,提供一种通信装置,包括处理模块,用于在第一时间单元,第一带宽部分BWP上使用第一***参数,与第二终端设备建立旁链路连接,以及,在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信,所述第一BWP包括预配置BWP或公共BWP,所述第一***参数与所述预配置BWP或公共BWP的***参数相同。
在一种可能的设计中,所述装置还包括收发模块,还用于接收网络设备发送的无线资源控制RRC专用信令,所述RRC专用信令用于配置所述第一BWP;所述处理模块,还用于根据所述RRC专用信令,确定所述第一BWP。
在一种可能的设计中,所述旁链路通信包括单播、组播或广播,所述处理模块在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信时,具体用于:所述第二BWP为第一专用BWP,所述第二***参数为所述第一专用BWP的***参数,在所述第二时间单元,第一专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,所述第二BWP为预配置BWP或公共BWP,所述第二***参数为所述预配置BWP或公共BWP的***参数,在所述第二时间单元,预配置BWP或公共BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,所述第二BWP为第二专用BWP,且所述第二专用BWP的频域所占用的第一频域资源包括第二频域资源,所述第二频域资源为所述预配置BWP或公共BWP的频域资源,所述第二***参数为所述第二专用BWP的***参数,所述第二***参数与所述预配置BWP或公共BWP的***参数相同,在所述第二时间单元,所述第二专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播。
在一种可能的设计中,所述收发模块,还用于接收网络设备发送的第一指示,所述第一指示用于指示所述第一时间单元和所述第二时间单元的时间配比;所述处理模块,还用于根据所述第一指示,确定所述第一时间单元和所述第二时间单元。
在一种可能的设计中,所述处理模块还用于:在所述定时器启动时,工作在所述第一时间单元;当所述定时器超时时,切换到所述第二时间单元工作;或者,在所述定时器启动时,工作在所述第二时间单元;当所述定时器超时时,切换到所述第一时间单元工作。
第四方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机 上运行时,使得计算机执行第一方面设计的方法。
第五方面,本申请实施例还提供一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现第一方面的方法。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面的方法。
附图说明
图1为本申请实施例提供的通信***的一示意图;
图2为本申请实施例提供的无线帧的一示意图;
图3为本申请实施例提供的BWP的一示意图;
图4为本申请实施例提供的通信流程的一示意图;
图5为本申请实施例提供的旁链路通信的一示意图;
图6为本申请实施例提供的时间图样的一示意图;
图7至图9为本申请实施例提供的通信流程的一示意图;
图10为本申请实施例提供的基站调度的一流程图;
图11为本申请实施例提供的UE自感知的一流程图;
图12为本申请实施例提供的通信装置的一结构示意图;
图13为本申请实施例提供的通信装置的另一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1示出了本申请实施例应用的通信***100之一。该通信***100可以包括至少一个网络设备110。网络设备110可以是与终端设备通信的设备,如基站或基站控制器等。每个网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端设备进行通信。该网络设备110可以是全球移动通信(global system for mobile communications,GSM)***或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)***中的基站(nodeB,NB),还可以是LTE***中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备,例如,新无线(new radio,NR)中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),或者网络设备110还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等,本申请实施例并不限定。
该通信***100还包括位于网络设备110覆盖范围内的一个或多个终端设备120。该终端设备120可以是移动的或固定的。该终端设备120可以指接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳 电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
其中,网络设备110与终端设备120间可以通过空口资源进行数据传输,空口资源可以包括时域资源、频域资源,码域资源中的至少一种。具体来说,网络设备110和终端设备120进行数据传输时,网络设备110可以通过控制信道,如物理下行控制信道(physical downlink control channel,PDCCH)向终端设备120发送控制信息,从而为终端设备120分配数据信道,如物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)的资源。比如该控制信息可以指示数据信道所映射至的符号和/或资源块(resource block,RB),网络设备110和终端设备120在该分配的时频资源通过数据信道进行数据传输。其中,上述数据传输可以包括下行数据传输和/或上行数据传输,下行数据(如PDSCH携带的数据)传输可以指网络设备110向终端设备120发送数据,上行数据(如PUSCH携带的数据)传输可以是指终端设备120向网络设备110发送数据。数据可以是广义的数据,比如可以是用户数据,也可以是***信息,广播信息,或其他的信息等。
在图1所示的通信***中,终端设备120之间也可以通过旁链路资源进行数据传输,与上述空口资源类似,旁链路资源也可以包括时域资源、频域资源、码域资源中的至少一个。具体来说,终端设备120进行数据传输的物理信道可以包括物理旁链路共享信道(physical sidelink shared channel,PSSCH)、物理旁链路控制信道(physical sidelink control channel,PSCCH)或物理旁链路反馈信道(physical sidelink feedback channel,PSFCH)等中的至少一个。其中,PSSCH用于传输数据,PSCCH用于传输控制信息,比如调度分配(scheduling assignment,SA)信息,PSFCH用于传输反馈信息,比如反馈信息中可以包括信道状态信息(channel state information,CSI)、肯定确认(acknowledgement,ACK)或否定确认(negative acknowledgement,NACK)等。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且一个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不作限定。另外,可以理解的是,本申请实施例中的旁连路通信可以指一个终端设备与另一个终端设备间的通信(比如单播等),或者,旁链路通信可以指一个终端设备与多个终端设备间的通信(比如组播和广播等),本申请实施例对此不作限定。为了便于描述,在本申请实施例中“以旁链路通信指一个终端设备与另一个终端设备间的通信”为例进行说明。
下面对本申请中所使用到的一些通信名词或术语进行解释说明,该通信名词或术语也作为本申请发明内容的一部分。
一、旁链路(sidelink,SL)
旁链路用于终端设备和终端设备之间的通信,可以包括物理旁链路共享信道(physical sidelink shared channel,PSSCH)和物理旁链路控制信道(physical sidelink control channel,PSCCH)。其中,PSSCH用于承载旁链路数据(SL data),PSCCH用于承载旁链路控制信息(sidelink control information,SCI),所述SCI中包含的信息用于旁链路调度分配(sidelink  scheduling assigment,SL SA)。SL SA是用于数据调度相关的信息,比如,用于承载PSSCH的资源分配和/或调制编码机制(modulation and coding scheme,MCS)等信息。
可选的,旁链路通信还可以包括:物理旁链路反馈信道(physical sidelink feedback channel,PSFCH)。物理旁链路反馈信道也可以简称为旁链路反馈信道。物理旁链路反馈信道可以用于传输旁链路反馈控制信息(sidelink feedback control information,SFCI),旁链路反馈控制信息也可以简称为旁链路反馈信息。其中,旁链路反馈控制信息可以包括信道状态信息(channel state information,CSI)和混合自动重传请求(hybrid automatic repeat request,HARQ)等信息中的一个或多个。其中,HARQ信息中可以包括确认信息(acknowledgement,ACK)或否定性确认(negtive acknowledgement,NACK)等。
二、***参数
***参数还可称为帧结构参数(numerology)。***参数可包括子载波间隔和循环前缀(cyclic prefix,CP)类型等中的一个或多个。CP类型也可以称为CP长度,或简称为CP。所述CP类型可为扩展CP,或者为正常(普通)CP。扩展CP下一个时隙可包括12个时域符号,正常CP下一个时隙可包括14个时域符号。时域符号可以简称为符号。时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是基于离散傅立叶变换扩展的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)符号,本申请实施例中可以以时域符号是OFDM符号为例进行说明。
如表1所示,在NR***中,可以支持5种***参数,编号分别为0至4。编号0所对应的***参数为:子载波间隔为15kHz,CP为正常CP,编号1所对应的***参数为:子载波间隔为30kHz,CP为正常CP,编号2所对应的***参数为:子载波间隔为60kHz,CP为正常CP或扩展CP,编号3所对应的***参数为:子载波间隔为120kHz,CP为正常CP,编号4所对应的***参数为:子载波间隔为240kHz,CP为正常CP。
表1支持的***参数
Figure PCTCN2020073917-appb-000001
针对不同的子载波间隔可以有不同的时隙长度。比如子载波间隔为15kHz时,一个时隙可以为1毫秒(ms);子载波间隔为30kHz时,一个时隙可以为0.5ms。一个时隙可以包括一个或多个符号。比如,正常循环前缀(cyclic prefix,CP)下一个时隙可以包括14个符号,扩展CP下一个时隙可以包括12个符号。微时隙,又称为迷你时隙,可以是比时隙更小的单位,一个微时隙可以包括一个或多个符号。比如,一个微时隙可以包括2个符号,4个符号或7个符号等。一个时隙可以包括一个或多个微时隙。
如图2所示,以15kHz的子载波间隔为例,1个无线帧包括10个子帧,每个子帧可包括1个时隙,每个时隙可包括14个符号。其中,1个无线帧可持续10ms,每个子帧可持 续1ms,每个时隙持续1ms。进一步的,微时隙可包括4个符号、2个符号或7个符号等。
不同***参数下的时隙特征如表2所示。其中,
Figure PCTCN2020073917-appb-000002
表示一个时隙slot中包括的符号的个数,且时隙中的符号编号(或称为索引)为
Figure PCTCN2020073917-appb-000003
比如正常CP下可以是14个符号,扩展CP下可以是12个符号。一个无线帧可以包括10个子帧,一个无线帧可以是10ms,一个子帧为1ms。
Figure PCTCN2020073917-appb-000004
表示在***参数μ下,一个无线帧包括的时隙的个数,且一个无线帧中的时隙编号(或称为索引)
Figure PCTCN2020073917-appb-000005
Figure PCTCN2020073917-appb-000006
Figure PCTCN2020073917-appb-000007
表示在***参数μ下,一个子帧包括的时隙的个数,且一个子帧中的时隙编号
Figure PCTCN2020073917-appb-000008
表2正常CP下的***参数下的时隙特征
Figure PCTCN2020073917-appb-000009
三、载波带宽部分(carrier bandwidth part,BWP)
载波带宽部分可以简称为带宽部分(bandwidth part,BWP),BWP是载波上一组连续的频域资源,例如BWP是载波上一组连续的资源块(resource block,RB),或者BWP是载波上一组连续的子载波,或者BWP是载波上一组连续的资源块组(resource block group,RBG)。其中,一个RBG中包括至少一个RB,例如1个、2个、4个、6个或8个等,一个RB可以包括至少一个子载波,例如12个等。在一种可能的实现中,例如NR的版本15(release 15,Rel-15)所示的方法中,在一个小区中,对于一个终端设备,网络为该终端设备最多可以配置4个BWP,在频分双工(frequency division duplexing,FDD)下,上下行可各配置4个BWP,在时分双工(time division duplexing,TDD)下,上下行可各配置4个BWP。网络设备可以针对每个BWP向终端设备配置包括子载波间隔和/或CP长度的***参数。在任一时刻,在一个小区中,仅能激活一个BWP,终端设备和网络设备在激活的BWP上进行数据的收发。现有BWP是定义在一个给定的载波上的,即一个BWP的资源位于一个载波资源内。
如图3的#1所示,在载波宽带(carrier BW)内,针对一个UE可仅配置一个BWP,所述BWP的带宽小于或等于UE带宽能力(UE bandwidth capability),UE带宽能力小于或等于载波带宽(carrier BW)。如图3的#2所示,在载波带宽中,针对一个UE可配置两个BWP,分别为BWP1和BWP2,且BWP1和BWP2的带宽相重叠。如图3的#3所示,在载波带宽中,针对一个UE可配置两个BWP,分别为BWP1和BWP2,且BWP1和BWP2不重叠。BWP1和BWP2的***参数可以是相同的***参数,或者也可以是不同的***参数。实际中,BWP的配置(例如BWP的个数、位置、和/或***参数等配置)还可以是其它的配置,本申请实施例不做限制。
四、时间单元
时间单元的单位可以为无线帧(radio frame)、子帧(subframe)、时隙(slot)、微时隙(mini-slot)和符号(symbol)等单位。例如,一种具体实现中,一个时间单元可包括1个或多个时隙等。一个无线帧可以包括一个或多个子帧,一个子帧可以包括一个或者多个时隙。针对不同的子载波间隔可以有不同的时隙长度。比如子载波间隔为15kHz时,一个时隙可以为1毫秒(ms);子载波间隔为30kHz时,一个时隙可以为0.5ms。一个时隙可以包括一个或多个符号。比如正常循环前缀(cyclic prefix,CP)下一个时隙可以包括14个时域符 号,扩展CP下一个时隙可以包括12个时域符号。时域符号可以简称为符号。时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是基于离散傅立叶变换扩展的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)符号。微时隙,又称为迷你时隙,可以是比时隙更小的单位,一个微时隙可以包括一个或多个符号。比如一个微时隙可以包括2个符号,4个符号或7个符号等。一个时隙可以包括一个或多个微时隙。
五、基站调度模式
在基站调度模式下,网络设备可通过配置信息为发送端UE和/或接收端UE配置SL资源,所述SL资源中包括一个或多个资源池。在本申请实施例中,多个可以是2个、3个、4个或更多个,本申请实施例不做限制。网络设备可通过DCI向发送端UE指示资源池中的用于进行旁链路通信的资源,发送端UE在接收到所述DCI时,可利用所述DCI所指示的资源池中的资源,向接收端UE发送SL信息,所述SL信息可包括SL data和/或SCI和/或SFCI等,相应的,接收端可接收SL信息。其中,所述网络设备可为基站,或者为运营商运营的网管***等。
如图10所示,网络设备可为UE1和UE2配置SL资源,网络设备可发送DCI至UE1,UE1可根据DCI的指示,确定SL发送资源,在SL发送资源上发送SCI和/或SL data。UE2根据配置的SL资源,确定SL接收资源,在SL接收资源上接收SCI,并根据SCI在接收资源上接收SL data。可选的,UE2在接收到SL data后,可向UE发送1发送SFCI。例如,如果UE2正确接收SL data,则所述SFCI中可包括肯定确认ACK,否则,所述SFCI中可包括否定确认NACK等。
在一示例中,网络设备可以为UE1、UE2和UE3配置SL资源,网络设备可通过DCI为UE3和UE1分配SL发送资源。UE3在SL发送资源上,可向UE1发送SL信号,比如,所述SL信号可包括SCI和/或SL data等。UE1在接收到所述SL信号后,UE1可向UE3发送SFCI。可选地,同时,UE1在SL发送资源上,可向UE2发送SL信号,比如,所述SL信号可包括SCI和/或SL data等。UE2在接收到所述SL信号后,UE2可向UE1发送SFCI。
可选的,基站调度模式也可以称为基站辅助调度模式,也可称为模式1(mode 1),也可以称为模式3(mode 3)。
六、UE自主选择模式
在UE自主选择模式下,网络设备可通过配置信息,为发送端UE和/或接收端UE配置SL资源,所述SL资源中包括一个或多个资源池。发送端UE在所配置的SL资源中进行感知,如果感知到SL资源中有可用资源,则在该可用资源中发送SL信息,相应的,接收端UE在SL资源中接收SL信息。
如图11所示,网络设备可为UE1和UE2配置SL资源,UE1在配置的SL资源中,感知SL发送资源,在SL发送资源中发送SCI和/或SL data。相应的,UE2根据配置的SL资源,接收SCI和/或SL data。可选的,UE2在接收到SL data后,可在配置的SL资源中,感知SL发送资源,且在SL发送资源上向UE1发送SFCI等。
与上述旁链路SL的基站调度模式相似,UE1在作为发送端,在SL发送资源上向UE2发送SL data信息时,UE1也可作为接收端,接收UE3发送的SL data信息。可选地,同时,UE1可以在SL发送资源上向UE3发送SFCI,详细说明可参见上述旁链路SL的基站 调度模式的记载,在此不再说明。
可选的,UE自动选择模式,也可称为UE自主调度模式,或UE自主感知模式,也可称为模式2(mode 2),也可以称为模式4(mode 4)。
七、“和/或”
“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,需要理解的是,在本申请的描述中,“多个”,是指两个或两个以上,其它量词与之类似。“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
如图4所示,提供一种通信方法的流程,该流程中的第一终端设备和第二终端设备可为上述图1所示流程中的终端设备120,网络设备可为上述图1所示流程中的网络设备110。可以理解的是,网络设备的功能也可以通过应用于网络设备的芯片来实现,或者通过其他装置来支持网络设备实现;终端设备的功能也可以通过应用于终端设备的芯片来实现,或者通过其他装置来支持终端设备实现。该流程具体可为:
S401.第一终端设备在第一时间单元,第一BWP上使用第一***参数,与第二终端设备建立旁链路连接。
其中,第一BWP包括预配置BWP或公共BWP,第一***参数与预配置BWP或公共BWP的***参数相同。可以理解的是,第一BWP包括预配置BWP或公共BWP的描述,可包括:第一BWP为预配置BWP;或者,第一BWP为公共BWP;或者,第一BWP为专用BWP,且该专用BWP占用第一频域资源,公共BWP或预配置BWP占用第二频域资源,第一频域资源包括第二频域资源。可选的,核心网设备可为终端设备配置预配置BWP,接入网设备为可为终端设备配置专用BWP和/或公共BWP。示例的,核心网可为公共陆地移动网络(public land mobile network,PLMN)的近距离应用(prose application),接入网设备可通过***消息块(system information block,SIB)或主信息块(master information block,MIB)为终端设备配置公共BWP,接入网设备可通过无线资源控制(radio resource control,RRC)专用信令为终端设备配置专用BWP。可以理解的是,当第一BWP为专用BWP时,第一终端设备可根据网络设备发送的RRC专用信令,确定第一BWP。或者,第一终端设备中可存储有预配置BWP的信息、专用BWP的信息和/或公共BWP的信息,第一终端设备可根据相应的信息,确定预配置BWP、专用BWP和/或公共BWP。
可选的,公共BWP也可称为common BWP,专用BWP也可称为dedicated BWP,预配置BWP也可称为pre-configured BWP。
预配置BWP是由运营商为终端预先配置旁链路资源或者在标准协议中通过预定义的方式为终端预配置旁链路资源。
通过预配置的配置方式,可以为一个或多个终端配置旁链路资源,在具体实现中,可以由运营商的网管***向各个终端分别发送预配置信息,该预配置信息用于为各个终端分别配置旁链路资源。由于预配置信息是发给多个终端的,因此预配置信息配置的旁链路资源可以用于终端之间的广播传输,比如终端1可以使用预配置信息配置的旁链路资源广播数据和/或控制信息,则其它终端,如终端2可以在该旁链路资源上接收数据和/或控制信息。当然,实际应用中,预配置信息配置的旁链路资源还可以用于组播传输和/或用于单播 传输,本申请不做限定。
可选的,本申请中,广播传输可以称为广播sidelink信号通信,也可以称为,广播业务的sidelink通信,或者传输类型为广播的sidelink的通信。
可选的,本申请中,组播传输可以称为组播sidelink信号通信,也可以称为,组播业务的sidelink通信,或者传输类型为组播的sidelink的通信。
可选的,本申请中,单播通信可以称为单播sidelink信号通信,也可以称为,单播业务的sidelink通信,或者传输类型为单播的sidelink的通信。
具体的,比如运营商运营的网管***可以通过预配置信令为终端设备配置旁链路BWP,该旁链路BWP可以称为预配置旁链路BWP。所述公共BWP可以包括预配置旁链路BWP。可选的,预配置旁链路BWP也可以简称为预配置BWP。
比如,网管***可以在终端的SIM或USIM中写入预配置信令,或在移动设备的ROM(read only memory)中存储预配置信息,终端可以通过读取SIM卡或ROM中的预配置信令获取预配置旁链路BWP的配置信息,进而确定预配置旁链路BWP。或者,网管***也可以向终端的移动设备(mobile equipment,ME)发送预配置信令,终端可以通过预配置信令确定预配置旁链路BWP。
可选的,在预配置BWP中配置的发送资源池和/或接收资源池,可以称为预配置资源池。预配置资源池可以包括预配置发送资源池和/或预配置接收资源池。
其中,SIM(subscriber identification module)可以是用户识别卡,也称为用户身份识别卡、智能卡等。USIM可以是全球用户识别卡(universal subscriber identity module)的缩写,也可以叫做升级SIM。
可选的,所述一个或多个终端可以是指该运营商服务下的终端。
可选的,所述一个或多个终端可以是指可以接收到运营商预配置信息的一个或多个终端,例如,为由一个小区服务的所有终端。
公共BWP是由***信息配置或无线资源控制(radio resource control,RRC)公共信息配置,比如由接入网设备向终端发送***信息或RRC公共信息。***信息或公共RRC信息可以是小区级的参数。
通过***信息配置或RRC公共信息的配置的方式,可以为一组终端配置旁链路资源,在具体实现中,可以由接入网设备向一组终端发送***信息或RRC公共信息,该***信息或RRC公共信息用于为各个终端配置旁链路资源。由于***信息或RRC公共信息是发给一组终端的,因此***信息配置或RRC公共信息配置的旁链路资源可以用于组内的终端之间的组播传输,比如终端1可以使用***信息配置或RRC公共信息配置的旁链路资源组播数据和/或控制信息,则组内的其它终端,如终端2可以在该旁链路资源上接收数据或控制信息。
具体的,比如接入网设备可以通过***信息或RRC公共信息为终端配置旁链路BWP,该旁链路BWP可以称为***公共旁链路BWP。可选的,***公共旁链路BWP也可以简称为***公共BWP,或者公共BWP。
可选的,在***公共BWP中配置的发送资源池和/或接收资源池,可以称为***公共资源池,或公共资源池。公共资源池可以包括公共发送资源池和/或公共接收资源池。
可选的,所述一组终端可以包括一个或多个终端。
可选的,所述一组终端可以是指可以接收到该***信息或RRC公共信息的一个或多个终端。例如,一个小区可以将其服务的终端分为多组,所述一组终端为其中的一组。
当然,实际应用中,***信息配置或RRC公共信息配置的旁链路资源还可以用于单播传输和/或广播传输,本申请不做限定。
专用BWP是由RRC专用信息配置,比如由接入网设备向终端发送RRC专用信息。RRC专用信息可以是终端级的参数(或称为UE级的参数),针对该终端进行参数配置。
针对RRC专用信息的配置方式,可以为单个终端配置旁链路资源,在具体实现中,可以由接入网设备向单个终端发送RRC专用信息,该RRC专用信息用于为终端配置旁链路资源。由于RRC专用信息是发给单个终端的,因此RRC专用信息配置的旁链路资源可以用于组内的终端之间的单播传输,比如终端1可以使用RRC专用信息配置的旁链路资源向终端2单播发送数据或控制信息。
具体的,比如接入网设备可以通过RRC专用信息向终端配置旁链路BWP,该旁链路BWP可以称为用户专用旁链路BWP,或者称为用户特定旁链路BWP,或者简称为用户专用BWP,或者简称为用户特定BWP,或者简称为专用BWP,或者简称为特定BWP。该BWP可以是网络设备通过UE特定(specific)信令配置给终端的。
可选的,在专用BWP中配置的发送资源池和/或接收资源池,可以称为专用资源池。专用资源池可以包括专用发送资源池和/或专用接收资源池。
当然,实际应用中,RRC专用信息配置的旁链路资源还可以用于广播传输和/或组播传输,本申请不做限定。
可选的,第一终端设备作为旁链路通信的发送端,第二终端设备作为旁链路通信的接收端,旁链路连接的过程可为:第一终端设备向第二终端设备发送旁链路通信请求,第二终端设备在接收到所述旁链路请求后,向第一终端设备发送授权和通信关系确定。可以理解的是,第二终端设备也可作为旁链路通信的发送端,第一终端设备也可作为旁链路通信的接收端,建立旁链路连接的过程与上述过程相类似,在此不再说明。
S402.第一终端设备在第二时间单元,第二BWP上使用第二***参数,与第二终端设备进行旁链路通信。
其中,第二***参数为第二BWP所对应的***参数,第二BWP可包括公共BWP、预配置BWP或专用BWP等。第一终端设备与第二终端设备的旁链路通信可包括单播(unicast)、组播(groupcast)或广播(broadcast)。如图5所示,广播可以是指一个终端设备与多个终端设备的通信,比如,广播可以是指一个终端设备与小区中的所有终端设备的通信,因此,广播需要所有终端设备均可接收。广播的目的是让所有的终端设备都可以接收到广播消息,但实际中接收到广播消息的可以是一个或多个终端设备。组播可以指一个终端设备与一组终端设备的通信。组播的目的是让一组终端设备中的所有的终端设备都可能接收到组播消息,但实际中接收到组播消息的可以是一组终端设备中的一个或多个终端设备。单播可以指一个终端设备与另一个终端设备的通信。单播的目的是让一个终端设备接收到单播消息,但在实际应用中,该终端设备可以接收到或者未接收到上述单播消息。
示例的,第二BWP为第一专用BWP,所述第二***参数具体为第一专用BWP的***参数,第一终端设备可在上述第二时间单元,第一专用BWP上使用第二***参数,与第二终端设备进行单播、组播或广播。
示例的,第二BWP为预配置BWP或公共BWP,第二***参数为预配置BWP或公共BWP的***参数,第一终端设备可在上述第二时间单元,预配置BWP或公共BWP上使用第二***参数,与第二终端设备进行单播、组播或广播。
示例的,第二BWP可为第二专用BWP,且所述第二专用BWP占用第一频域资源,公共BWP或预配置BWP占用第二频域资源,第一频域资源包括第二频域资源,第二***参数为第二专用BWP的***参数,且所述第二***参数与预配置BWP或公共BWP的***参数相同,第一终端设备可以在上述第二时间单元,第二专用BWP上使用第二***参数,与第二终端设备进行单播、组播或广播等。
在本申请实施例中,可采用以下示例,确定上述图4所示流程中的第一时间单元和第二时间单元:
示例一:网络设备向终端设备发送第一指示,所述第一指示用于指示第一时间单元和第二时间单元的时间配比;终端设备根据第一指示,在每个时间周期内,确定第一时间单元和第二时间单元。关于每个时间周期的长度可为预定义的,或者,为网络设备预先指示的等。比如,以时间周期为1个时隙,且一个时隙为1ms为例,若第一指示指示第一时间单元和第二时间单元的时间配比为3:1,那么终端设备可确定1个时隙中的0.75ms为第一时间单元,1个时隙内的0.25ms为第二时间单元。再比如,以时间周期为10个时隙为例,若第一指示指示第一时间单元和第二时间单元的时间配比为8:2,那么终端设备可以确定10个时隙内的8个时隙为第一时间单元,2个时隙为第二时间单元。在本申请实施例中,并不限定第一时间单元和第二时间单元的前后顺序,比如,以第一时间单元包括10个时隙内的8个时隙,第二时间单元包括10个时隙内的2个时隙为例,第一时间单元可包括10个时隙内的任8个时隙,第二时间单元可包括10个时隙内的任2个时隙,只有保证第一时间单元所包括的8个时隙与第二时间单元所包括的2个时隙不重叠即可。比如,按照时域的先后顺序,10个时隙的编号依次为0至9,那么第一时间单元所包括的8个时隙的编号可为0至7,第二时间单元所包括的2个时隙的编号可为8和9。或者,第二时间单元所包括的2个时隙的编号可为0和1,第一时间单元所包括的8个时隙的编号可为2至9。或者,第一时间单元所包括的8个时隙的编号为0、1、2、5、6、7、8、9,第二时间单元所包括的2个时隙的编号为3和4等。本申请并不限定。
示例二:网络设备可配置或预定义一个时间图样,如图6所示,在时域上,该时间图样包括第一BWP时间段和第二BWP时间段。网络设备和终端设备根据该时间图样,可确定第一时间单元和第二时间单元。比如,该时间图样可为核心网设备配置的,该时间图样可适用所有的接入网设备和终端设备。或者,该时间图样可为通过全球用户标识模块(universal subscriber identity module,USIM)或移动设备(mobile equipment,ME)预配置给终端设备的。或者,该时间图样可以是按小区配置的,接入网设备可在***消息或RRC专用信息中配置时间图样。示例的,针对该时间图样,提供一应用场景:如图6所示,按照时域的先后顺序,依次为第一BWP时间段、第二BWP时间段、第一BWP时间段和第二BWP时间段。第一终端设备在从左至右的第一个第一BWP时间段,在第一BWP使用第一***参数,与第二终端设备建立旁链路连接,在从左至右的第一个第二BWP时间段,在第二BWP使用第二***参数,与第二终端设备进行旁链路通信。第一终端设备在从左至右的第二个第一BWP时间段,在第一BWP使用第一***参数,与第三终端设备建立旁链路连接,在从左至右的第二个第二BWP时间段,与第二BWP使用第二***参数,与第 三终端设备建立旁链路通信。需要指出的是,在图6所示的示例中,是以第一BWP时间段和第二BWP时间段的数量为两个进行举例说明的,并不作为对本申请的限定,任意数量的第一BWP时间段和第二BWP时间段均为在本申请的保护范围内。
示例三:设定一定时器,当定时器启动时,终端设备工作在第一时间单元,当定时器超时时,终端设备切换到第二时间单元工作。或者,当定时器启动时,终端设备工作在第二时间单元,当定时器超时时,终端设备切换到第一时间单元工作。可选的,终端设备切换到第二时间单元工作,也可称为终端设备回退到第二BWP上工作;终端设备切换到第一时间单元工作,也可称为终端设备回退到第一BWP工作。
需要指出的是,上述示例一至示例三中的第一时间单元和第二时间单元的确定方式,既适用于上述图4所示流程中的第一终端设备,又适用上述图4所示流程中的第二终端设备。上述示例一至示例三中的终端设备,包括第一终端设备和第二终端设。
由上可见,在本申请实施例中,第一终端设备与第二终端设备在第一BWP上,使用第一***参数,建立旁链路连接,在第二BWP上,使用第二***参数,进行旁链路通信。第一BWP为公共BWP或预配置BWP,或者,第一BWP为专用BWP,但专用BWP的频域资源包括公共BWP或预配置BWP的频域资源,且第一***参数为公共BWP或预配置BWP的***参数。可以看出,第一终端设备和第二终端设备在第一BWP和第一***参数上,满足旁链路通信的条件,可建立第一终端设备和第二终端设备间的旁链路连接。而关于第一终端设备和第二终端设备间旁链路通信的第二BWP和第二***参数,本申请并不作限定。
如图7所示,提供一种通信方法的流程,该流程中的第一终端设备和第二终端设备可为上述图1所示流程中的终端设备120,该流程为:
S701.第一终端设备在专用BWP所包括的第一频域资源上,使用第一***参数,与第二终端设备建立旁链路连接。
S702.第一终端设备在专用BWP所包括的第二频域资源上,使用第一***参数,与第二终端设备进行旁链路通信。
其中,所述第一***参数为所述专用BWP的***参数,且所述第一***参数与公共BWP或预配置BWP的***参数相同。所述专用BWP包括第一频域资源和第二频域资源,所述第一频域资源与第二频域资源可有重叠,或完全不重叠。所述重叠可指完全重叠或部分重叠等,本申请实施例不作限定。所述第一频域资源与所述公共BWP或预配置BWP所占用的频域资源有重叠,可以描述为:所述第一频域资源与所述公共BWP或预配置BWP的频域资源有重叠,或者,可以描述为:第一频域资源内的发送资源池与所述公共BWP或预配置BWP的接收资源池有重叠,或者,可以描述为:第一频域资源内的接收资源池与所述公共BWP或预配置BWP的发送资源池有重叠。为了便于描述,可将第一频域资源与公共BWP或预配置BWP相重叠的频域资源,称为重叠频域资源。第一终端设备可在上述重叠频域资源上发送通信请求,相应的,第二终端设备也在上述重叠频域资源上反馈通信授权和确认信息。可选的,所述通信请求中可携带第一终端设备的标识,或者第一终端设备用于旁链路通信的BWP配置信息。相应的,所述通信授权和确认信息中可携带第二终端设备的标识,或第二终端设备用于旁链路通信的BWP配置信息。
由上可见,在本申请实施例中,利用一个专用BWP即可实现旁链路连接和旁链路通信,无需进行BWP的切换,提高了旁链路通信的效率。
如图8,提供一种通信方法的流程,该流程中的第一终端设备和第二终端设备可为上述图1所示流程中的终端设备120,该流程为:
S801.第一终端设备在第一BWP上,与第二终端设备进行旁链路通信。
S802.第一终端设备切换到第二BWP上,与第三终端设备建立旁链路连接,所述第二BWP包括预配置BWP或公共BWP。
具体的,所述第一终端设备可向网络设备发送切换请求,网络设备在接收到切换请求后,可向第一终端设备发送BWP配置,第一终端设备根据所述BWP配置,切换到所述第二BWP上,与所述第三终端设备建立旁链路连接。可选的,上述“切换请求”,也称为“回退请求”,“切换到第二终端设备”也称为“回退到第二终端设备”。
示例的,以第一BWP为专用BWP,对应第一***参数,第二BWP可为预配置BWP、公共BWP或网络设备配置的回退BWP,对应第二***参数,第一***参数与第二***参数不同为例进行说明。第一终端设备可在专用BWP进行旁链路通信,如果第一终端设备认为在未来一段时间内没有通信需求时,第一终端设备可向网络设备上报回退请求,回退到预配置BWP、公共BWP或基站配置的回退BWP上。
可选的,终端设备的BWP切换可以有两种不同的实现方式,第一种是终端设备最多可以配置一个专用的BWP,最多配置一个预配置或公共的BWP,这样终端设备在切换BWP的时候,就是激活第二BWP,去激活第一BWP。第二种是终端设备最多可以配置一个BWP,该BWP包括专用BWP,预配置和公共BWP,那么终端设备在切换BWP的时候,就是重新配置一个BWP,并同时激活该BWP。
由上可见,网络设备为终端设备配置不同的BWP,且利用不同的BWP实现旁链路连接和旁链路通信,提高了不同BWP的利用率,提高了旁链路通信的效率。
如图9所示,提供一种通信流程,在该流程中的核心网设备和接入网设备可对应上述图1、图4、图6和图7中的网络设备,UE1可对应上述图1、图4、图6和图7中的第一终端设备,UE2可对应上述图1、图4、图6和图7中的第二终端设备,利用该流程可实现为终端设备配置BWP,该流程包括:
S901.核心网设备向UE1发送旁链路服务授权,并为UE1配置预配置BWP。
S902.核心网设备向UE2发送旁链路服务授权,并为UE2配置预配置BWP。
可选的,图9所示的流程还可包括:S903.核心网设备将UE1和UE2的旁链路服务授权发送给接入网设备。
可选的,图9所示的流程还可包括:S904.UE1和/或UE2向接入网设备上报旁链路资源配置信息。示例的,所述旁链路资源配置信息可包括UE感兴趣的频段、业务特征、请求旁链路资源、近距离通信数据分组优先级(ProSe per packet priority,PPPP)和目标层层2标识等。可以理解的是,在图9所示的流程中,以UE1上报旁链路资源配置信息为例,并不作为对本申请的限定。
S905.接入网设备向UE1配置专用BWP和/或公共BWP。
S906.接入网设备向UE2配置专用BWP和/或公共BWP。
可选的,在本申请实施例中,在为UE1和/或UE2配置预配置BWP、专用BWP和/或公共BWP之后,UE1和UE2可采用上述图4、图6和图7所示的方法,进行旁链路连接和旁链路通信。比如,旁链路的过程可为:UE1向UE2发送通信请求,UE2向UE1发 送授权和通信关系确认。比如,旁链路通信的过程可具体工作在基站调度模式下,也可工作在UE自感知模式下。在图9所示的示例中,以工作在基站调度模式下,且UE1为发送端,UE2为接收端为例进行说明。
S907.UE1向UE2发送旁链路通信请求。
S908.UE2向UE1发送授权和通信关系确认。
S909.UE1向接入网设备发送调度请求。
S910.接入网设备向UE1发送DCI,所述DCI用于指示调度资源。
S911.UE1在DCI所指示的调度资源上,与UE2进行旁链路通信。示例的,旁链路通信的过程可为,发送SCI和数据data等。
上述本申请提供的实施例中,分别从网络设备、终端、以及网络设备和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
与上述构思相同,如图12所示,本申请实施例还提供一种装置1200用于实现上述方法中第一终端设备的功能。该装置可以是终端设备,也可以是终端设备中的装置。其中,该装置可以为芯片***。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。该装置1200可以包括:
处理模块1201,用于在第一时间单元,第一带宽部分BWP上使用第一***参数,与第二终端设备建立旁链路连接,在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信。可选的,装置1200还可包括:收发模块1202,用于发送或接收旁链路信号或信息。
关于处理模块1201和收发模块1202的具体执行过程,可参见上方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图13所示,本申请实施例提供一种装置1300,用于实现上述方法中第一终端设备的功能,该装置可以是终端设备,也可以是终端设备中的装置。
装置1300包括至少一个处理器1301,用于实现上述方法中第一终端设备的功能。示例地,处理器1301可在第一时间单元,第一带宽部分BWP上使用第一***参数,与第二终端设备建立旁链路连接,在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信,具体参见方法中的详细描述,此处不再说明。
装置1300还可以包括至少一个存储器1302,用于存储程序指令和/或数据。存储器1302和处理器1301耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1301可以和存储器1302协同操作。处理器1301可能执行存储器1302中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置1300还可以包括通信接口1303,用于通过传输介质和其它设备进行通信,从而 用于装置1300中的装置可以和其它设备进行通信。示例性地,通信接口1303可以是收发器、电路、总线、模块或其它类型的通信接口,该其它设备可以是第二终端设备或网络设备。处理器1301利用通信接口1303收发数据,并用于实现上述实施例中的方法。
本申请实施例中不限定上述通信装置1303、处理器1301以及存储器1302之间的连接介质。本申请实施例在图13中以存储器1302、处理器1301以及通信接口1303之间通过总线1304连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为了便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b, 或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。

Claims (16)

  1. 一种通信方法,其特征在于,包括:
    第一终端设备在第一时间单元,第一带宽部分BWP上使用第一***参数,与第二终端设备建立旁链路连接,所述第一BWP包括预配置BWP或公共BWP,所述第一***参数与所述预配置BWP或公共BWP的***参数相同;
    所述第一终端设备在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收网络设备发送的无线资源控制RRC专用信令,所述RRC专用信令用于配置所述第一BWP;
    所述第一终端设备根据所述RRC专用信令,确定所述第一BWP。
  3. 如权利要求1或2所述的方法,其特征在于,所述旁链路通信包括单播、组播或广播,所述第一终端设备在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信,包括:
    所述第二BWP为第一专用BWP,所述第二***参数为所述第一专用BWP的***参数,所述第一终端设备在所述第二时间单元,第一专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,
    所述第二BWP为预配置BWP或公共BWP,所述第二***参数为所述预配置BWP或公共BWP的***参数,所述第一终端设备在所述第二时间单元,预配置BWP或公共BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,
    所述第二BWP为第二专用BWP,且所述第二专用BWP的频域所占用的第一频域资源包括第二频域资源,所述第二频域资源为所述预配置BWP或公共BWP的频域资源,所述第二***参数为所述第二专用BWP的***参数,所述第二***参数与所述预配置BWP或公共BWP的***参数相同,所述第一终端设备在所述第二时间单元,所述第二专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收网络设备发送的第一指示,所述第一指示用于指示所述第一时间单元和所述第二时间单元的时间配比;
    所述第一终端设备根据所述第一指示,确定所述第一时间单元和所述第二时间单元。
  5. 如权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备在所述定时器启动时,工作在所述第一时间单元;
    当所述定时器超时时,所述第一终端设备切换到所述第二时间单元工作;或者,
    所述第一终端设备在所述定时器启动时,工作在所述第二时间单元;
    当所述定时器超时时,所述第一终端设备切换到所述第一时间单元工作。
  6. 一种通信装置,其特征在于,包括处理器;
    所述处理器,用于在第一时间单元,第一带宽部分BWP上使用第一***参数,与第二终端设备建立旁链路连接,以及在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信,所述第一BWP包括预配置BWP或公共BWP,所述第一***参数与所述预配置BWP或公共BWP的***参数相同。
  7. 如权利要求6所述的装置,其特征在于,所述装置还包括通信接口,用于:
    接收网络设备发送的无线资源控制RRC专用信令,所述RRC专用信令用于配置所述第一BWP;
    所述处理器,还用于根据所述RRC专用信令,确定所述第一BWP。
  8. 如权利要求6或7所述的装置,其特征在于,所述旁链路通信包括单播、组播或广播,所述处理器在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信时,具体用于:
    所述第二BWP为第一专用BWP,所述第二***参数为所述第一专用BWP的***参数,在所述第二时间单元,第一专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,
    所述第二BWP为预配置BWP或公共BWP,所述第二***参数为所述预配置BWP或公共BWP的***参数,在所述第二时间单元,预配置BWP或公共BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,
    所述第二BWP为第二专用BWP,且所述第二专用BWP的频域所占用的第一频域资源包括第二频域资源,所述第二频域资源为所述预配置BWP或公共BWP的频域资源,所述第二***参数为所述第二专用BWP的***参数,所述第二***参数与所述预配置BWP或公共BWP的***参数相同,在所述第二时间单元,所述第二专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播。
  9. 如权利要求6至8任一项所述的装置,其特征在于,
    所述通信接口,还用于接收网络设备发送的第一指示,所述第一指示用于指示所述第一时间单元和所述第二时间单元的时间配比;
    所述处理器,还用于根据所述第一指示,确定所述第一时间单元和所述第二时间单元。
  10. 如权利要求6至8任一项所述的装置,其特征在于,所述处理器还用于:
    在所述定时器启动时,工作在所述第一时间单元;
    当所述定时器超时时,切换到所述第二时间单元工作;或者,
    在所述定时器启动时,工作在所述第二时间单元;
    当所述定时器超时时,切换到所述第一时间单元工作。
  11. 一种通信装置,其特征在于,包括处理模块:
    所述处理模块,用于在第一时间单元,第一带宽部分BWP上使用第一***参数,与第二终端设备建立旁链路连接,以及,在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信,所述第一BWP包括预配置BWP或公共BWP,所述第一***参数与所述预配置BWP或公共BWP的***参数相同。
  12. 如权利要求11所述的装置,其特征在于,所述装置还包括收发模块,用于:
    接收网络设备发送的无线资源控制RRC专用信令,所述RRC专用信令用于配置所述第一BWP;
    所述处理模块,还用于根据所述RRC专用信令,确定所述第一BWP。
  13. 如权利要求11或12所述的装置,其特征在于,所述旁链路通信包括单播、组播或广播,所述处理模块在第二时间单元,第二BWP上使用第二***参数,与所述第二终端设备进行旁链路通信时,具体用于:
    所述第二BWP为第一专用BWP,所述第二***参数为所述第一专用BWP的***参 数,在所述第二时间单元,第一专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,
    所述第二BWP为预配置BWP或公共BWP,所述第二***参数为所述预配置BWP或公共BWP的***参数,在所述第二时间单元,预配置BWP或公共BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播;或者,
    所述第二BWP为第二专用BWP,且所述第二专用BWP的频域所占用的第一频域资源包括第二频域资源,所述第二频域资源为所述预配置BWP或公共BWP的频域资源,所述第二***参数为所述第二专用BWP的***参数,所述第二***参数与所述预配置BWP或公共BWP的***参数相同,在所述第二时间单元,所述第二专用BWP上使用第二***参数,与所述第二终端设备进行单播、组播或广播。
  14. 如权利要求11至13任一项所述的装置,其特征在于,
    所述收发模块,还用于接收网络设备发送的第一指示,所述第一指示用于指示所述第一时间单元和所述第二时间单元的时间配比;
    所述处理模块,还用于根据所述第一指示,确定所述第一时间单元和所述第二时间单元。
  15. 如权利要求11至13任一项所述的装置,其特征在于,所述处理模块还用于:
    在所述定时器启动时,工作在所述第一时间单元;
    当所述定时器超时时,切换到所述第二时间单元工作;或者,
    在所述定时器启动时,工作在所述第二时间单元;
    当所述定时器超时时,切换到所述第一时间单元工作。
  16. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至5任一项所述的方法。
PCT/CN2020/073917 2019-02-15 2020-01-22 一种通信方法及装置 WO2020164391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910117887.5A CN111586851B (zh) 2019-02-15 2019-02-15 一种通信方法及装置
CN201910117887.5 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020164391A1 true WO2020164391A1 (zh) 2020-08-20

Family

ID=72045457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073917 WO2020164391A1 (zh) 2019-02-15 2020-01-22 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN111586851B (zh)
WO (1) WO2020164391A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116097889A (zh) * 2020-12-31 2023-05-09 华为技术有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279331A1 (en) * 2017-03-24 2018-09-27 Sharp Laboratories Of America, Inc. Radio resource control (rrc) messages for enhanced scheduling request
CN108964853A (zh) * 2017-05-18 2018-12-07 华为技术有限公司 一种时隙的指示方法、接入网设备和用户设备
CN109150379A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种通信方法、网络设备及终端设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307524B (zh) * 2016-09-19 2021-11-19 华为技术有限公司 链路建立方法及设备与无线通信***
US10159097B2 (en) * 2016-09-30 2018-12-18 Qualcomm Incorporated Signaling and determination of slot and mini-slot structure
CN108024310B (zh) * 2016-11-04 2020-09-11 华为技术有限公司 用于传输数据的方法、终端设备和网络设备
WO2018121621A1 (en) * 2016-12-27 2018-07-05 Chou, Chie-Ming Method for signaling bandwidth part (bwp) indicators and radio communication equipment using the same
CN108419295B (zh) * 2017-02-10 2022-01-14 华为技术有限公司 一种终端与终端之间通信的方法、网络侧设备和终端
US11265742B2 (en) * 2017-05-17 2022-03-01 Qualcomm Incorporated Radio link monitoring with sub-bands and interference measurements
CN109150455B (zh) * 2017-06-16 2020-10-23 华为技术有限公司 一种指示方法、处理方法及装置
EP3664536B1 (en) * 2017-08-02 2023-09-20 NTT DoCoMo, Inc. User terminal and wireless communications method
CN111096018B (zh) * 2017-08-02 2023-10-27 英特尔公司 用于实现新无线电(nr)网络中的前向兼容性的预留资源的装置、***和方法
WO2019142250A1 (ja) * 2018-01-17 2019-07-25 三菱電機株式会社 変圧器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279331A1 (en) * 2017-03-24 2018-09-27 Sharp Laboratories Of America, Inc. Radio resource control (rrc) messages for enhanced scheduling request
CN108964853A (zh) * 2017-05-18 2018-12-07 华为技术有限公司 一种时隙的指示方法、接入网设备和用户设备
CN109150379A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种通信方法、网络设备及终端设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Bandwidth Parts and Resource Pools for V2X Sidelink", 3GPP TSG RAN WG1 MEETING #95, R1-1813555, 3 November 2018 (2018-11-03), XP051555610, DOI: 20200331154826X *
HUAWEI ET AL.: "Remaining Issues on Bandwidth Part and Wideband Operation", 3GPP TSG RAN WG1 NR AD HOC MEETING, R1-1800018, 13 January 2018 (2018-01-13), XP051384521, DOI: 20200331155507X *
PANASONIC: "Numerology for Msg2 and Msg4 for RRC_CONNECTED UEs", 3GPP TSG-RAN WG1 MEETING 90BIS R1-1718314, 29 September 2017 (2017-09-29), XP051351681, DOI: 20200331155035X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116097889A (zh) * 2020-12-31 2023-05-09 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN111586851A (zh) 2020-08-25
CN111586851B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
EP2939491B1 (en) Method and user equipment for device-to-device communication
EP2939492B1 (en) Reference signal measurement for device-to-device communication
CN111432349B (zh) 一种通信方法及装置
WO2020143804A1 (zh) 一种旁链路资源的配置方法及装置
EP3817480A1 (en) Signal transmission method and apparatus
WO2021062602A1 (en) Method and apparatus for sharing channel occupancy time on unlicensed spectrum
JP7385044B2 (ja) Nrにおけるマルチキャストのためのハイブリッド自動再送要求(harq)機構
CN110972297B (zh) 一种信号传输方法及装置
US20200280981A1 (en) Method and apparatus for managing resource pool in wireless communication system
WO2014105388A2 (en) Method and apparatus for device-to-device communication
WO2020164445A1 (zh) 一种通信方法及装置
WO2020199846A1 (zh) 一种通信方法及装置
EP3595376B1 (en) Uplink transmission method and apparatus
EP3783808B1 (en) Information transmission method and device
WO2017024582A1 (zh) 上行参考信号传输方法、用户终端及基站
US11678239B2 (en) Communication method, base station, and terminal
WO2020164391A1 (zh) 一种通信方法及装置
WO2020164392A1 (zh) 一种通信方法及装置
WO2024065707A1 (zh) 侧行通信方法、装置、设备、存储介质及程序产品
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2024067429A1 (zh) 通信方法及通信装置
WO2024093834A1 (zh) 一种通信方法及装置
KR20200105404A (ko) 무선 통신 시스템에서 리소스 풀을 운영하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756548

Country of ref document: EP

Kind code of ref document: A1