WO2020164144A1 - 多带宽传输时的功率配置方法、装置、设备及*** - Google Patents

多带宽传输时的功率配置方法、装置、设备及*** Download PDF

Info

Publication number
WO2020164144A1
WO2020164144A1 PCT/CN2019/075285 CN2019075285W WO2020164144A1 WO 2020164144 A1 WO2020164144 A1 WO 2020164144A1 CN 2019075285 W CN2019075285 W CN 2019075285W WO 2020164144 A1 WO2020164144 A1 WO 2020164144A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
configuration
power value
upper limit
bandwidths
Prior art date
Application number
PCT/CN2019/075285
Other languages
English (en)
French (fr)
Inventor
周珏嘉
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/310,603 priority Critical patent/US11864125B2/en
Priority to PCT/CN2019/075285 priority patent/WO2020164144A1/zh
Priority to CN201980000161.1A priority patent/CN110140389B/zh
Priority to EP19915562.3A priority patent/EP3923638A4/en
Publication of WO2020164144A1 publication Critical patent/WO2020164144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/225Calculation of statistics, e.g. average, variance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications, and in particular to a method, device, device and system for power configuration in multi-bandwidth transmission.
  • the uplink transmit power of the terminal is classified according to the power class (Power class). For example: the transmit power of power level 3 is 23dBm. At higher frequency levels such as 3.5GHz, in order to ensure an increase in uplink coverage, higher transmission power needs to be introduced. For example, the transmission power of power level 2 is 26dBm. A terminal entering a higher power level than power level 3 is called a high-power user equipment (HPUE).
  • HPUE high-power user equipment
  • SAR Specific Absorption Rate
  • OTA Over-the-Air Technology
  • the above situation becomes more complicated.
  • the ratio (duty cycle) may be different.
  • the embodiments of the present disclosure provide a method, device, equipment and system for power configuration in multi-bandwidth transmission.
  • the technical solution is as follows:
  • a power configuration method during multi-bandwidth transmission including:
  • the base station determines the configuration upper limit of the overall equivalent power value when the terminal performs multi-bandwidth transmission on n bandwidths, where n is an integer greater than 1.
  • the base station generates configuration information of the first bandwidth in the n bandwidths for the terminal, and the overall equivalent power value on the n bandwidths corresponding to the configuration information is not higher than the configuration upper limit;
  • the base station sends configuration information to the terminal, and the above configuration information is used to configure the power configuration parameters when the terminal performs uplink transmission on the first bandwidth.
  • the base station generates configuration information of the first bandwidth among the n bandwidths for the terminal, including:
  • the base station obtains the equivalent power value corresponding to each of the n bandwidths of the terminal, and the n bandwidths include the first bandwidth configured this time;
  • the base station calculates the overall equivalent power value of the terminal according to the corresponding equivalent power value of the terminal on each bandwidth and the designated uplink transmission time ratio duty cycle;
  • the base station When the overall equivalent power value is not higher than the configuration upper limit, the base station generates configuration information of the first bandwidth.
  • the configuration information of the first bandwidth is used to configure the first power value and/or the first duty of the terminal on the first bandwidth. cycle.
  • the base station calculates the overall equivalent power value of the terminal and the designated duty cycle according to the equivalent power value corresponding to each bandwidth of the terminal, including:
  • the equivalent power value corresponding to the j-th bandwidth is equal to:
  • P eq_Band_j (DC p1 x P 1 x T 1 +DC p2 x P 2 x T 2 +DC p3 x P 3 x T 3 +...+DC pi x P i x T i +...DC pn x P n x T n )/(DC as_j x T window );
  • P eq_Band_j is the equivalent power value of the j-th bandwidth in the specified duty cycle
  • DC as_j is the specified duty cycle corresponding to the j-th bandwidth
  • T window is the entire evaluation time window
  • DC pi is the i-th sub-evaluation time period in duty cycle
  • the time period P i is to assess the actual power level corresponding to the power of the i-th piece
  • T i is the i-th evaluation period, do not overlap between each of the sub-evaluation period.
  • the base station acquiring the equivalent power value corresponding to each of the n bandwidths of the terminal includes:
  • the equivalent power value corresponding to each bandwidth is calculated.
  • the base station acquiring the equivalent power value corresponding to each of the n bandwidths of the terminal includes:
  • the method further includes:
  • the base station When the overall equivalent power value is higher than the configuration upper limit, the base station lowers the second power value of the second bandwidth and/or the second duty cycle.
  • the method further includes:
  • the base station refuses to adjust the second power value of the second bandwidth and/or the second duty cycle when the number of times of adjustment is higher than the preset number and the overall equivalent power value is still higher than the configured upper limit.
  • the method further includes:
  • the base station When the overall equivalent power value of the base station is higher than the configured upper limit, and the service priority of the second bandwidth is higher than the service priority of the first bandwidth, the base station lowers the first equivalent power value and/or the first duty of the first bandwidth cycle.
  • the method further includes:
  • the remaining equivalent power value quota is calculated according to the configuration upper limit and the overall equivalent power value
  • the increment of the equivalent power value of the third bandwidth is calculated
  • the configuration information of the third bandwidth is generated, and the configuration information of the uplink transmission power is used to configure the terminal's first bandwidth on the third bandwidth.
  • the base station determines the configuration upper limit of the overall equivalent power value when the terminal performs multi-bandwidth transmission on n bandwidths, including:
  • the base station receives the configuration upper limit of the overall equivalent power value reported by the terminal.
  • the base station determines the configuration upper limit of the overall equivalent power value when the terminal performs multi-bandwidth transmission on n bandwidths, including:
  • the base station receives the upper limit of the second sub-configuration when each of the n bandwidths reported by the terminal performs multi-bandwidth transmission under a specified duty cycle;
  • the base station determines the upper limit of the configuration of the overall equivalent power value according to the upper limit of the second sub-configuration when each bandwidth is used for multi-bandwidth transmission under a specified duty cycle.
  • the base station determines the upper limit of the configuration of the overall equivalent power value according to the upper limit of the second sub-configuration when performing multi-bandwidth transmission under a specified duty cycle for each bandwidth, including:
  • the base station multiplies the second sub-configuration upper limit, the specified duty cycle, and the evaluation time window of each bandwidth for multi-bandwidth transmission under the designated duty cycle to obtain the third product; the base station adds the third product to determine the overall equivalent power The configuration upper limit of the value;
  • the base station multiplies the second sub-configuration upper limit for multi-bandwidth transmission under the designated duty cycle for each bandwidth and the designated duty cycle to obtain the fourth product; the base station adds the fourth product to determine the upper limit of the overall equivalent power value configuration .
  • the base station determines the configuration upper limit of the overall equivalent power value when the terminal performs multi-bandwidth transmission on n bandwidths, including:
  • the base station receives the upper limit of the first sub-configuration when each of the n bandwidths reported by the terminal works independently under a specified duty cycle;
  • the base station determines the upper limit of the second sub-configuration for each bandwidth for multi-bandwidth transmission according to the upper limit of the first sub-configuration when each bandwidth works independently under a specified duty cycle, and the upper limit of the second sub-configuration is less than the upper limit of the first sub-configuration;
  • the base station determines the configuration upper limit of the overall equivalent power value according to the designated duty cycle and the second sub-configuration upper limit for each bandwidth for multi-broadband transmission.
  • the base station determines the upper limit of the second sub-configuration for each bandwidth for multi-bandwidth transmission according to the upper limit of the first sub-configuration when each bandwidth works independently under a specified duty cycle, including:
  • the base station calculates the average value of the upper limit of the first sub-configuration of the equivalent power value of n bandwidths when working independently at the corresponding power level, and determines the quotient of the average value and n as the second sub-configuration of each bandwidth for multi-bandwidth transmission.
  • Configuration upper limit
  • the base station calculates the maximum value of the first sub-configuration upper limit of the equivalent power value of n bandwidths when they work independently at the corresponding power level, and determines the quotient of the maximum value and n as the first sub-configuration limit for each bandwidth for multi-bandwidth transmission.
  • the base station calculates the minimum value of the first sub-configuration upper limit of the equivalent power value of n bandwidths when they work independently at the corresponding power level, and determines the quotient of the minimum value and n as the first sub-configuration limit for each bandwidth for multi-bandwidth transmission.
  • the base station calculates the average value of the first sub-configuration upper limit of the equivalent power value of the n bandwidths when they work independently at the corresponding power level, and determines the n division values after the average value is divided according to n weights as n bandwidths
  • the base station calculates the maximum value of the first sub-configuration upper limit of the equivalent power value of n bandwidths when they work independently at the corresponding power level, and determines the n division values after the maximum value is divided according to n weights as n bandwidths
  • the base station calculates the minimum value of the first sub-configuration upper limit of the equivalent power value when the n bandwidths work independently at the corresponding power level, and determines the n division values after the minimum value is divided according to n weights as n bandwidths
  • n weights correspond to n bandwidths one-to-one
  • the sum of n weights is 1.
  • a power configuration method during multi-bandwidth transmission including:
  • the terminal receives the configuration information sent by the base station, and the overall equivalent power value on the n bandwidths of multi-bandwidth transmission corresponding to the configuration information is not higher than the configuration upper limit;
  • the terminal determines the power configuration parameters for uplink transmission on the first bandwidth according to the configuration information.
  • the first bandwidth is one or more of the n bandwidths when the terminal transmits in multiple bandwidths, and the overall equivalent uplink transmission on the n bandwidths
  • the time ratio duty cycle is not higher than the configuration upper limit.
  • the method before the terminal receives the configuration information sent by the base station, the method further includes:
  • the terminal reports the configuration upper limit of the overall equivalent power value to the base station
  • the terminal reports to the base station the upper limit of the second sub-configuration of each of the n bandwidths under the specified duty cycle;
  • the terminal reports to the base station the first sub-configuration upper limit of the power value of each of the n bandwidths when working independently under a specified duty cycle.
  • the terminal reporting to the base station that each of the n bandwidths is before the second sub-configuration upper limit under the specified duty cycle includes:
  • the terminal calculates that each bandwidth of the n bandwidths is at the specified duty
  • a power configuration device during multi-bandwidth transmission which is applied to a base station, and the device includes:
  • the processing module is configured to determine the configuration upper limit of the overall equivalent power value when the terminal performs multi-bandwidth transmission on n bandwidths, where n is an integer greater than 1;
  • the processing module is configured to generate configuration information of the first bandwidth in the n bandwidths for the terminal, and the overall equivalent power value in the n bandwidths corresponding to the configuration information is not higher than the configuration upper limit;
  • the sending module is configured to send configuration information to the terminal, and the above-mentioned configuration information is used to configure power configuration parameters when the terminal performs uplink transmission on the first bandwidth.
  • a power configuration device during multi-bandwidth transmission which is applied to a terminal, and the device includes:
  • the receiving module is configured to receive the configuration information sent by the base station, and the overall equivalent power value on the n bandwidths of the multi-bandwidth transmission corresponding to the configuration information is not higher than the configuration upper limit;
  • the processing module is configured to determine the power configuration parameters for uplink transmission on the first bandwidth according to the configuration information.
  • the first bandwidth is one or more of the n bandwidths when the terminal transmits in multiple bandwidths,
  • the overall equivalent uplink transmission time ratio duty cycle is not higher than the configured upper limit.
  • a base station which includes:
  • Transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the power configuration method during multi-bandwidth transmission as described in the first aspect.
  • a terminal which includes:
  • Transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the power configuration method for multi-bandwidth transmission as described in the second aspect.
  • a computer storage medium stores at least one instruction, at least a program, a code set or an instruction set, the above at least one instruction, at least a program,
  • the code set or instruction set is loaded and executed by the processor to implement the power configuration method during multi-bandwidth transmission as described in the above aspects.
  • the equivalent power value of the terminal in n bandwidths is integrated into the overall equivalent power value relative to the entire terminal, and the configuration upper limit of the overall equivalent power value is used as the judgment of whether SAR Exceeding the standard for judging that when the base station generates the configuration information of the first bandwidth of the n bandwidths to the terminal, it can perform reasonable configuration based on the uniform configuration upper limit of the overall equivalent power value to ensure that the terminal is allocated to the n bandwidths.
  • the overall equivalent power value is not higher than the upper limit of the configuration, thereby reducing or avoiding the problem of excessive SAR in certain time windows.
  • Figure 1 is a schematic diagram of a multi-bandwidth transmission scenario provided by related technologies
  • Fig. 2 is a block diagram showing a communication system according to an exemplary embodiment
  • Fig. 3 is a flow chart showing a method for power configuration in multi-bandwidth transmission according to an exemplary embodiment
  • Fig. 4 is a flow chart showing a method for power configuration during multi-bandwidth transmission according to another exemplary embodiment
  • Fig. 5 is a flowchart showing a method for power configuration in multi-bandwidth transmission according to another exemplary embodiment
  • Fig. 6 is a flow chart showing a method for power configuration during multi-bandwidth transmission according to another exemplary embodiment
  • Fig. 7 is a flowchart showing a method for power configuration during multi-bandwidth transmission according to another exemplary embodiment
  • Fig. 8 is a flowchart showing a method for power configuration during multi-bandwidth transmission according to another exemplary embodiment
  • Fig. 9 is a flow chart showing a method for power configuration in multi-bandwidth transmission according to another exemplary embodiment
  • Fig. 10 is a block diagram showing a power configuration device in multi-bandwidth transmission according to an exemplary embodiment
  • Fig. 11 is a block diagram showing a power configuration device during multi-bandwidth transmission according to another exemplary embodiment
  • Fig. 12 is a schematic structural diagram of a terminal according to an exemplary embodiment
  • Fig. 13 is a block diagram showing an access network device according to an exemplary embodiment.
  • Multi-bandwidth transmission refers to the transmission method in which the terminal simultaneously uses more than two bandwidths to transmit uplink to the base station.
  • multi-bandwidth transmission includes, but is not limited to, scenarios such as carrier aggregation scenarios and multiple uplink active bandwidth parts (Band With Part, BWP) and/or sub-band (Sub-band) configured to the terminal in the NR system.
  • BWP Band With Part
  • Sub-band sub-band
  • Carrier aggregation It can refer to continuous carrier aggregation or discontinuous carrier aggregation. In the embodiments of the present disclosure, carrier aggregation refers to that the terminal uses two or more carriers in different frequency bands to jointly transmit signals to the base station.
  • Uplink transmission time ratio (duty cycle): The ratio of the uplink transmission time to the total time (uplink transmission time + downlink reception time) in a subframe.
  • the uplink transmit power of the terminal is classified according to the power class Power class.
  • the transmit power of power level 3 is 23dBm (that is, decibel milliwatt).
  • the transmission power of power level 2 is 26dBm.
  • HPUE The terminal entering a higher power level than power level 3 is called HPUE.
  • different power levels correspond to different power levels, and different power levels correspond to different SARs.
  • SAR is an indicator that measures the amount of radiation to the human body when the terminal transmits wireless signals in terminal design.
  • the OTA index corresponding to the SAR and the emission capability is a pair of contradictory indexes.
  • the UE's emission capability needs to exceed the emission capability of the OTA index, but cannot exceed the radiation requirement of the SAR.
  • HPUE will have the problem of SAR exceeding the standard, that is, when the power level is high, the cumulative radiation in a certain period of time may exceed the radiation requirement of SAR.
  • the LTE, NR TDD or FDD bandwidth aggregation networking of different power levels may have different power levels for different bandwidths.
  • the SAR value in certain time windows may exceed the standard, and the situation is more complicated; or, in Africa
  • multiple bandwidths allocated to the terminal are all in the uplink transmission state, which may also cause the SAR value in some time windows to exceed the standard.
  • LTE bandwidth, NR bandwidth A, and NR bandwidth B have their own uplink and downlink configurations.
  • the terminal is in three Uplink transmission is being carried out on the bandwidth, at this time it is easy to cause the SAR to exceed the standard;
  • the NR bandwidth B uses a high power level for uplink transmission, the transmit power on the NR bandwidth B during the time period of area 2 Superimposed with the transmit power on the LTE bandwidth, it is also easy to cause the SAR to exceed the standard; in another case, if the inspection is conducted in a larger time window, for example, the frame is the unit of the time window, the frame 3 in Figure 1 is due to the uplink configuration Too much can easily lead to excessive SAR.
  • the present disclosure provides a power configuration method during multi-bandwidth transmission.
  • the power value coordination between multiple bandwidths is performed in the scenario of multi-bandwidth transmission on n bandwidths, so as to control the uplink transmission power of the terminal to avoid SAR exceeding the standard .
  • the equivalent power value of a single bandwidth is a value used to equivalently measure the power value of the terminal when it performs uplink transmission on a single bandwidth. This value can be used as a criterion for judging whether the SAR on a single bandwidth exceeds the standard.
  • the calculation method of the equivalent power value of a single bandwidth Taking a single bandwidth as the j-th bandwidth as an example, the entire evaluation time window includes n time sub-windows, and the terminal uses correspondingly in the n time sub-windows on the j-th bandwidth.
  • one power class corresponds to one uplink transmit power.
  • the power of PC2 is 26dBm (ie, decibel milliwatt)
  • the power of PC3 is 23dBm.
  • the equivalent power value corresponding to the j-th bandwidth is equal to:
  • P eq_Band_j is the equivalent power value of the j-th bandwidth under the designated duty cycle; DC as_j is the designated duty cycle corresponding to the j-th bandwidth; T window is the entire evaluation time window; DC pi is the i-th sub-evaluation time period P i is the power corresponding to the actual power level in the i-th sub-assessment period; T i is the i-th sub-assessment period, each sub-assessment period does not overlap each other, i is not greater than An integer of n.
  • the actual power level in each sub-assessment period may be the same or different.
  • the actual duty cycle in each sub-assessment period may be the same or different.
  • the designated duty cycle corresponding to a single bandwidth is configured by the base station or determined in a predefined manner.
  • the designated duty cycle corresponding to each bandwidth is the same or different.
  • any one of the actual duty cycles used by the terminal in the j-th bandwidth can be used as the designated duty cycle; or, the smallest actual duty cycle used by the terminal in the j-th bandwidth
  • the value is used as the designated duty cycle; or, the maximum value of the actual duty cycle used by the terminal in the j-th bandwidth is the designated duty cycle; or, the predefined duty cycle is determined as the designated duty cycle. For example, 50% is determined as the designated duty cycle, 75% is determined as the designated duty cycle, or 100% is determined as the designated duty cycle.
  • Overall equivalent power value It is a value used to equivalently measure the power of the entire terminal for multi-bandwidth transmission over n bandwidths.
  • the overall equivalent power value is calculated based on the equivalent power value corresponding to each bandwidth of the terminal in the n bandwidths. In a multi-bandwidth transmission scenario, this value can be used as a criterion for judging whether the SAR of the entire terminal exceeds the standard.
  • the first calculation method of the overall equivalent power value For each of the n bandwidths, multiply the equivalent power value corresponding to the bandwidth, the designated duty cycle, and the evaluation time window to obtain the first product corresponding to the bandwidth ; Accumulate the first multipliers corresponding to the n bandwidths to obtain the overall equivalent power value. That is:
  • P eq is the overall equivalent power value of the terminal, DC as is the designated duty cycle corresponding to the entire terminal, P eq_Band_j is the equivalent power value of bandwidth j under the designated uplink transmission time ratio DC as_j ; DC as_ j is bandwidth j The corresponding designated duty cycle; T window is the entire evaluation time window, and P eq_Band_j x DC as_ j x T window represents the first product.
  • the second calculation method of the overall equivalent power value For each of the n bandwidths, multiply the equivalent power value corresponding to the bandwidth by the specified duty cycle to obtain the second product corresponding to the bandwidth; The bandwidth is respectively corresponding to the second multiplication and accumulation to obtain the overall equivalent power value. That is:
  • P eq is the overall equivalent power value of the terminal, DC as is the designated duty cycle corresponding to the entire terminal, P eq_Band_j is the equivalent power value of bandwidth j under the designated uplink transmission time ratio DC as_j ; DC as_ j is bandwidth j The corresponding designated duty cycle; P eq_Band_j x DC as_j represents the second product.
  • Fig. 2 is a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may be a 5G NR system.
  • the communication system may include: an access network 12 and a terminal 14.
  • the access network 12 includes several access network devices 120.
  • the access network device 120 and the core network device 110 communicate with each other through a certain interface technology, such as the S1 interface in the LTE system, and the NG interface in the 5G NR system.
  • the access network device 120 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different. For example, in LTE systems, they are called eNodeB or eNB; in 5G NR systems, they are called gNodeB or gNB. As communication technology evolves, the description of the name "base station" may change.
  • the terminal 14 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment (UE), mobile stations ( Mobile Station, MS), terminal (English: terminal device), etc.
  • UE user equipment
  • MS Mobile Station
  • terminal International: terminal device
  • the access network device 120 and the terminal 14 communicate with each other through a certain air interface technology, such as a Uu interface.
  • Fig. 3 is a flowchart of a method for power configuration during multi-bandwidth transmission according to an exemplary embodiment. This method can be executed by the communication system shown in FIG. 2. The method includes:
  • Step 301 The base station determines the configuration upper limit of the overall equivalent power value when the terminal performs multi-bandwidth transmission on n bandwidths.
  • the terminal uses n bandwidths for multi-bandwidth transmission, and n is an integer greater than 1.
  • multi-bandwidth transmission on n bandwidths includes: multi-bandwidth transmission under carrier aggregation, and/or multi-bandwidth transmission under non-carrier aggregation.
  • Multi-bandwidth transmission can also be referred to as: multi-bandwidth simultaneous transmission, multi-bandwidth coordinated transmission, multi-bandwidth coordinated transmission, and other possible descriptions, which are not limited in the present disclosure.
  • the overall equivalent power value refers to the integration of n equivalent power values corresponding to the terminal's uplink transmission on n bandwidths into a power value under a specified duty cycle.
  • the overall equivalent power value is calculated according to the equivalent power values respectively corresponding to the terminal on the n bandwidths.
  • the configuration upper limit of the overall equivalent power value is a criterion for judging whether the SAR exceeds the standard.
  • the configuration upper limit of the overall equivalent power value can be configured by the base station, and can also be reported by the terminal to the base station.
  • Step 302 The base station generates configuration information of the first bandwidth among the n bandwidths for the terminal.
  • the first bandwidth is the bandwidth that needs to be configured this time among the n bandwidths, and the first bandwidth is all or a part of the n bandwidths.
  • the present disclosure does not limit the number of the first bandwidths.
  • the base station generates configuration information of the first bandwidth for the terminal, and the configuration information is used to configure power configuration parameters when the terminal performs uplink transmission on the first bandwidth.
  • the power configuration parameters include: power level and/or duty cycle.
  • the base station generates configuration information of the first bandwidth in the n bandwidths for the terminal, and the overall equivalent power value on the n bandwidths corresponding to the configuration information is not higher than the above-mentioned configuration upper limit. That is, the overall equivalent power value of the terminal configured by the configuration information when performing uplink transmission on the n bandwidths is not higher than the above-mentioned configuration upper limit.
  • Step 303 The base station sends configuration information to the terminal.
  • the base station sends the generated configuration information of the first bandwidth to the terminal, where the configuration information is used to configure the power configuration parameters when the terminal performs uplink transmission on the first bandwidth.
  • the configuration information includes configuration information of one or more first bandwidths, which is used to configure power configuration parameters when the terminal performs uplink transmission on the one or more first bandwidths.
  • Step 304 The terminal receives the configuration information sent by the base station.
  • Step 305 The terminal determines the power configuration parameter when performing uplink transmission on the first bandwidth according to the configuration information.
  • the power configuration parameter includes at least one of a duty cycle when the terminal performs uplink transmission on the first bandwidth, and a power level when the terminal performs uplink transmission on the first bandwidth.
  • the method provided in this embodiment integrates the equivalent power value of the terminal on n bandwidths into the overall equivalent power value of the entire terminal in a scenario where the terminal uses multi-bandwidth transmission.
  • the configuration upper limit of the overall equivalent power value is used as the criterion for judging whether the SAR exceeds the standard, so that when the base station generates the configuration information of the first bandwidth of the n bandwidths to the terminal, it can perform reasonable configuration based on the uniform configuration upper limit of the overall equivalent power value , To ensure that the overall equivalent power value on the n bandwidths allocated to the terminal is not higher than the configuration upper limit, thereby reducing or avoiding the problem of SAR exceeding in certain time windows.
  • the process of generating configuration information of the first bandwidth in n bandwidths by the base station for the terminal includes the following steps:
  • Step 3021 The base station obtains the equivalent power value corresponding to each of the n bandwidths of the terminal.
  • the base station may initially generate the first power value and the first duty cycle of the first bandwidth according to at least one factor such as service, coverage, power consumption, and antenna configuration.
  • the first power value refers to the actual transmit power when the terminal performs uplink transmission on the first bandwidth.
  • the equivalent power value corresponding to each of the n bandwidths can be calculated by the base station.
  • the equivalent power value of the first bandwidth can be calculated by the base station; it can also be calculated by the terminal and reported to the base station.
  • the equivalent power value of the second bandwidth outside the bandwidth may be calculated in advance by the terminal and reported to the base station. This embodiment does not limit this.
  • Step 3022 Calculate the overall equivalent power value of the terminal according to the equivalent power value and the designated duty cycle corresponding to each bandwidth of the terminal.
  • the base station After obtaining the corresponding equivalent power value and designated duty cycle for each bandwidth, the base station calculates the overall equivalent power value of the terminal according to Formula 2 or Formula 3.
  • the designated uplink transmission time ratio DC as corresponding to the entire terminal in Formula 2 or Formula 3 is configured by the base station or determined in a predefined manner.
  • any one of the actual duty cycles used by the terminal in n bandwidths can be used as the designated duty cycle; or, the minimum value of the actual duty cycles used by the terminal in n bandwidths can be used as the designated duty cycle; or , Take the maximum value of the actual duty cycles used by the terminal in the n bandwidths as the designated duty cycle; or, determine the predefined duty cycle as the designated duty cycle.
  • Step 3023 Determine whether the overall equivalent power value is higher than the configuration upper limit.
  • the base station predicts whether the SAR of the terminal will exceed the standard after this configuration.
  • step 3024 is executed.
  • step 3025 is executed.
  • Step 3024 When the overall equivalent power value is not higher than the configuration upper limit, generate configuration information of the first bandwidth.
  • the base station when the overall equivalent power value is not higher than the configuration upper limit, the base station generates configuration information of the first bandwidth according to the first duty cycle and/or the first power value of the first bandwidth. For example, according to the first duty cycle and the changed items in the first power value, the configuration information of the first bandwidth is generated.
  • Step 3025 When the overall equivalent power value is higher than the configuration upper limit, regenerate configuration information of the first bandwidth.
  • the base station When the overall equivalent power value is higher than the configuration upper limit, the base station reduces the first duty cycle and/or the first power value of the first bandwidth, and recalculates the overall equivalent power value of the terminal, and enters step 3023 again until the terminal.
  • the configuration information of the first bandwidth is generated according to the first duty cycle and/or the first power value of the first bandwidth.
  • the base station obtains the equivalent power value corresponding to each of the n bandwidths of the terminal, including the following two cases:
  • the base station calculates each bandwidth according to the default duty cycle and preset power level corresponding to each of the n bandwidths.
  • the terminal when the terminal has connected to the network and uses multiple bandwidths for uplink transmission, due to changes in at least one factor such as service, coverage, power consumption, antenna configuration, etc., all or part of the first bandwidth power exists in the n bandwidths Configuration parameters need to be adjusted.
  • the base station adjusts the first duty cycle and/or first power value of the first bandwidth according to the adjustment requirement, and according to the adjusted first duty cycle and/or first power value of the first bandwidth.
  • a power value recalculate the equivalent power value corresponding to the first bandwidth.
  • the base station When the first bandwidth is a part of n bandwidths, the base station also needs to obtain the equivalent power value corresponding to the second bandwidth other than the first bandwidth in the n bandwidths.
  • the base station obtains the second duty cycle and the second power value of the second bandwidth other than the first bandwidth among the n bandwidths, and the base station calculates the second duty cycle and the second power value according to the second duty cycle and the second power value. 2.
  • the equivalent power value corresponding to the bandwidth For example, the base station reads the second duty cycle and the second power value of the second bandwidth in the history buffer, or the base station receives the second duty cycle and the second power value of the second bandwidth reported by the terminal.
  • the second power value is the actual power when the terminal performs uplink transmission on the second bandwidth.
  • the base station obtains the equivalent power value corresponding to the second bandwidth other than the first bandwidth among the n bandwidths. For example, the base station reads the equivalent power value of the second bandwidth in the history buffer, or the base station receives the equivalent power value of the second bandwidth reported by the terminal.
  • the base station After obtaining the equivalent power value corresponding to the first bandwidth and the equivalent power value corresponding to the second bandwidth, the base station calculates the overall equivalent power value of the terminal according to Formula 2 or Formula 3 to further determine whether the overall equivalent power value is higher than Configure the upper limit.
  • the base station when the overall equivalent power value is higher than the configuration upper limit, in addition to regenerating the configuration information of the first bandwidth, the base station may also lower the second bandwidth of the second bandwidth.
  • Two duty cycle and/or second power value For example: the terminal uses bandwidth A, bandwidth B, and bandwidth C for uplink transmission at the same time.
  • the power configuration parameters corresponding to bandwidth A need to be increased due to business requirements, if the adjusted overall equivalent power value is higher than the configuration upper limit , The base station can lower the bandwidth B and/or bandwidth C corresponding power configuration parameters.
  • the base station calculates the equivalent power value corresponding to the second bandwidth according to the second duty cycle and the second power value of the adjusted second bandwidth; according to the equivalent power value corresponding to the first bandwidth and the equivalent power corresponding to the second bandwidth Calculate the overall equivalent power value.
  • the power configuration parameter of the second bandwidth that has been adjusted down has changed, and therefore the second bandwidth that has been down adjusted has also become the first bandwidth that needs to be configured this time.
  • the base station since the process of adjusting the second bandwidth cannot be an infinite number of times, the base station also stores a preset number of times, and the preset number of times is used to avoid multiple invalidation of the second bandwidth. Turn down. As shown in Figure 5, the base station decides to continue to adjust or refuse to adjust the second bandwidth according to the preset times, and the steps are as follows:
  • Step 11 Determine whether the number of adjustments is higher than the preset number.
  • a preset number of times is stored in the base station, and the preset number is used to instruct the base station to adjust the second duty cycle and/or the upper limit of the second power value of the second bandwidth.
  • the base station determines whether the number of times of lowering the second bandwidth is higher than the preset number.
  • step 14 is executed; otherwise, step 12 is returned to.
  • Step 12 Adjust the second duty cycle and/or the second power value of the second bandwidth.
  • the base station reduces the second duty cycle when the terminal performs uplink transmission on the second bandwidth.
  • the base station lowers the second power value when the terminal performs uplink transmission on the second bandwidth.
  • the base station simultaneously reduces the second duty cycle and the second power value when the terminal performs uplink transmission on the second bandwidth.
  • Step 13 Calculate the overall equivalent power value of the terminal according to the second duty cycle and/or the second power value of the adjusted second bandwidth.
  • the base station After recalculating the overall equivalent power value of the terminal, the base station executes step 3023 again.
  • Step 14 The base station refuses to adjust the second duty cycle and/or the second power value of the second bandwidth.
  • the base station may cancel this configuration.
  • the method provided in this embodiment reduces the second duty cycle and/or the second power value of the second bandwidth to ensure the overall equivalent power of the terminal while ensuring the normal configuration of the first bandwidth.
  • the value is not higher than the upper limit of the configuration to avoid exceeding the SAR limit in certain time windows.
  • the method provided in this embodiment controls the time required for the configuration of the base station by limiting the upper limit of the number of adjustments, ensuring that the terminal can obtain the configuration information of the base station in time, thereby ensuring the delay requirement when the terminal performs uplink transmission.
  • the service priority of all or part of the second bandwidth may become higher, that is, there is the second bandwidth.
  • the service priority of is higher than the service priority of the first bandwidth.
  • the second bandwidth with a lower service priority is preferentially selected for lowering.
  • all the service priorities of the second bandwidth are higher than the service priorities of the first bandwidth, and the following adjustment methods may also be adopted:
  • the first duty cycle and/or the first equivalent power of the first bandwidth is reduced value.
  • the base station recalculates the overall equivalent power value according to the first duty cycle and/or the first equivalent power value of the reduced first bandwidth, and when the overall equivalent power value is not higher than the configuration upper limit, according to the first bandwidth of the first bandwidth
  • a duty cycle and/or a first power value generates configuration information of the first bandwidth.
  • the base station when determining whether the SAR of the terminal exceeds the standard, the overall equivalent power value of the terminal is used for calculation. In some optional embodiments, when the overall equivalent power value is calculated for the first time, the base station may calculate the remaining equivalent power value quota. When it is necessary to determine whether the SAR of the terminal exceeds the standard, it is only necessary to calculate whether the adjusted incremental power value is higher than the remaining equivalent power value. Referring to Figure 6, the process may include the following steps:
  • Step 21 When the overall equivalent power value is not higher than the configuration upper limit, the remaining equivalent power value quota is calculated according to the configuration upper limit and the overall equivalent power value.
  • the remaining equivalent power value quota (configuration upper limit-the overall equivalent power value of the terminal). That is, when the overall equivalent power value is not higher than the configuration upper limit, the base station will cooperate with the upper limit to subtract the overall equivalent power value to obtain the remaining equivalent power value quota.
  • Step 22 When the third duty cycle and the third power value of the third bandwidth need to be adjusted, adjust at least one of the third duty cycle and the third power value of the third bandwidth according to the adjustment requirement.
  • the adjustment requirement includes at least one of service, coverage area, power consumption, and antenna configuration.
  • the base station adjusts the third duty cycle and/or the third power value of the third bandwidth according to at least one of the foregoing adjustment requirements.
  • the third power value is the actual power when the terminal performs uplink transmission on the third bandwidth.
  • the third duty cycle and/or the third power value of the third bandwidth it may be adjusted to be higher or lower.
  • Step 23 According to the third duty cycle and/or the third power value of the third bandwidth, the increment of the equivalent power value of the third bandwidth is calculated.
  • the increment (the equivalent power value of the third bandwidth after this adjustment-the equivalent power value of the third bandwidth before this adjustment).
  • Step 24 When the increment of the equivalent power value of the third bandwidth is not higher than the remaining equivalent power value quota, generate configuration information of the third bandwidth.
  • the relationship between the calculation time of the remaining equivalent power value quota and the calculation time of the increment is not limited. The above two calculations can be performed at the same time, or the remaining equivalent power value quota can be calculated first and then the second calculation time.
  • the increment of the equivalent power value of the third bandwidth it is also possible to calculate the increment of the equivalent power value of the third bandwidth first, and then calculate the remaining equivalent power value quota.
  • the base station determines whether the SAR value of the terminal exceeds the standard by calculating and comparing the increment of the equivalent power value of the third bandwidth with the remaining equivalent power value quota, without recalculating the overall
  • the equivalent power value simplifies the calculation and reduces the calculation amount of the base station.
  • step 301 may adopt any one of the following three implementation modes:
  • the base station receives the configuration upper limit of the overall equivalent power value reported by the terminal, and the configuration upper limit is calculated by the terminal according to the configuration upper limit of the equivalent power value of each bandwidth;
  • the base station receives the upper limit of the sub-configuration of the equivalent power value of each bandwidth reported by the terminal, and the base station determines the upper limit of the overall equivalent power value of the terminal according to the upper limit of the sub-configuration;
  • the base station receives the first sub-configuration upper limit when each bandwidth reported by the terminal works independently under a specified duty cycle, and determines the configuration upper limit of the overall equivalent power value of the terminal according to the first sub-configuration upper limit.
  • the terminal first calculates the configuration upper limit of the overall equivalent power value, and then the terminal reports the configuration upper limit of the overall equivalent power value to the base station.
  • the process can include the following steps:
  • Step 30101 The terminal obtains the upper limit of the first sub-configuration of the power value of each of the n bandwidths when working independently under a specified duty cycle.
  • step 30102 the terminal determines the upper limit of the second sub-configuration when each bandwidth is used for multi-bandwidth transmission according to the upper limit of the first sub-configuration of the power value of each bandwidth when working independently under the specified duty cycle.
  • the upper limit of the second sub-configuration is smaller than the upper limit of the first sub-configuration. That is, the upper limit of the second sub-configuration needs to be rolled back to a certain extent relative to the upper limit of the first sub-configuration.
  • the terminal calculates the average value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when independently working under the corresponding duty cycle, and determines the quotient of the average value and n as each bandwidth The upper limit of the second sub-configuration for multi-bandwidth transmission;
  • the quotient of 90 and 3 is determined as 30 as the upper limit of the second sub-configuration for multi-bandwidth transmission for each bandwidth.
  • the terminal calculates the maximum value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when independently working under the corresponding duty cycle, and determines the quotient of the maximum value and n as each bandwidth The upper limit of the second sub-configuration for multi-bandwidth transmission;
  • the upper limit of the first sub-configuration of bandwidth D is 80%
  • the upper limit of the first sub-configuration of bandwidth E is 90%
  • the upper limit of the first sub-configuration of bandwidth F is 60%
  • the upper limit of the first sub-configuration of bandwidth E among the three bandwidths Maximum, the quotient of 90% and 3, 30%, is determined as the upper limit of the second sub-configuration for each bandwidth for multi-bandwidth transmission.
  • the terminal calculates the minimum value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when they work independently under the corresponding duty cycle, and determines the quotient of the minimum value and n as each bandwidth The upper limit of the second sub-configuration for multi-bandwidth transmission;
  • the upper limit of the first sub-configuration of bandwidth D is 80%
  • the upper limit of the first sub-configuration of bandwidth E is 90%
  • the upper limit of the first sub-configuration of bandwidth F is 60%
  • the upper limit of the first sub-configuration of bandwidth F among the three bandwidths The smallest, the quotient of 60% and 3, 20%, is determined as the upper limit of the second sub-configuration for each bandwidth for multi-bandwidth transmission.
  • the terminal calculates the average value of the first sub-configuration upper limit of the equivalent power value of the n bandwidths when working independently under the corresponding duty cycle, and divides the average value into n weights.
  • the division value is determined as the upper limit of the second sub-configuration when the n bandwidths are used for multi-bandwidth transmission, the n weights correspond to the n bandwidths one-to-one, and the sum of the n weights is 1;
  • the upper limit of the first sub-configuration of the bandwidth M and the bandwidth N is 80%, and the weight of the two bandwidths is 0.5. If 80% is divided according to the weight, the second sub-configuration of the bandwidth M and the bandwidth N is used for multi-bandwidth transmission.
  • the upper limit of the configuration is 40%.
  • the size of the n weights can be set according to at least one factor such as service priority, power consumption, coverage, and antenna configuration on each bandwidth.
  • the terminal calculates the maximum value of the first sub-configuration upper limit of the equivalent power value when the n bandwidths work independently under the corresponding duty cycle, and divides the maximum value according to n weights.
  • the division value is determined as the upper limit of the second sub-configuration when the n bandwidths are used for multi-bandwidth transmission, the n weights correspond to the n bandwidths one-to-one, and the sum of the n weights is 1;
  • the upper limit of the first sub-configuration of bandwidth Q is both 50%
  • the upper limit of the first sub-configuration of bandwidth U is both 70%
  • the upper limit of the first sub-configuration of bandwidth V is both 90%
  • the weight of bandwidth Q is 0.3
  • the upper limit of bandwidth U is
  • the weight of the bandwidth V is 0.5
  • the weight of the bandwidth V is 0.2.
  • the upper limit of the first sub-configuration of the bandwidth V is the largest
  • the upper limit of the second sub-configuration of the bandwidth Q for multi-bandwidth transmission is 27%.
  • the upper limit of the second sub-configuration is 45%
  • the upper limit of the second sub-configuration when the bandwidth V performs multi-bandwidth transmission is 18%.
  • the terminal calculates the minimum value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when working independently under the corresponding duty cycle, and divides the minimum values into n weights.
  • the division value is determined as the upper limit of the second sub-configuration when n bandwidths are used for multi-bandwidth transmission, the n weights correspond to the n bandwidths one-to-one, and the sum of the n weights is 1.
  • the upper limit of the first sub-configuration of bandwidth Q is both 50%
  • the upper limit of the first sub-configuration of bandwidth U is both 70%
  • the upper limit of the first sub-configuration of bandwidth V is both 90%
  • the weight of bandwidth Q is 0.3
  • the upper limit of bandwidth U is
  • the weight of the bandwidth V is 0.5
  • the weight of the bandwidth V is 0.2.
  • the upper limit of the first sub-configuration of bandwidth Q is the smallest
  • the upper limit of the second sub-configuration of bandwidth Q for multi-bandwidth transmission is 15%.
  • the upper limit of the second sub-configuration is 25%
  • the upper limit of the second sub-configuration when the bandwidth V performs multi-bandwidth transmission is 10%.
  • Step 30103 The terminal determines the configuration upper limit of the overall equivalent power value according to the second sub-configuration upper limit and the designated duty cycle when performing multi-bandwidth transmission for each bandwidth.
  • the second sub-configuration upper limit when the terminal performs multi-bandwidth transmission and the designated uplink transmission time ratio DC As_j is multiplied by the evaluation time window to obtain the third product corresponding to the bandwidth; the third product corresponding to n bandwidths is accumulated and added to obtain the configuration upper limit of the overall equivalent power value.
  • the overall equivalent power value is calculated by formula 3, based on a similar calculation principle, for each of the n bandwidths, the second sub-configuration upper limit when the bandwidth is multi-bandwidth transmission and the designated uplink transmission time ratio DC as_j , The fourth product corresponding to the bandwidth is obtained; the fourth product corresponding to the n bandwidths is accumulated and added to obtain the configuration upper limit of the overall equivalent power value.
  • Step 30104 The terminal reports the configuration upper limit of the overall equivalent power value to the base station.
  • Step 30105 The base station receives and saves the configuration upper limit of the overall equivalent power value reported by the terminal.
  • the terminal calculates and reports the second sub-configuration upper limit to the base station, and then the base station calculates the configuration upper limit of the overall equivalent power value.
  • the process can include the following steps:
  • Step 30106 The terminal reports to the base station the upper limit of the second sub-configuration under the specified duty cycle of each of the n bandwidths.
  • Step 30107 The base station receives the second sub-configuration upper limit of each of the n bandwidths reported by the terminal under the specified duty cycle.
  • Step 30108 The base station determines the configuration upper limit of the overall equivalent power value according to the second sub-configuration upper limit of each bandwidth under the specified duty cycle.
  • the base station calculates the configuration upper limit of the overall equivalent power value according to Formula 2 or Formula 3. For the calculation process, refer to step 30103, which will not be repeated here.
  • the base station calculates the configuration upper limit of the overall equivalent power value.
  • the process can include the following steps:
  • Step 30109 The terminal reports to the base station the upper limit of the first sub-configuration of the power value of each of the n bandwidths when independently working under a specified duty cycle.
  • Step 30110 The base station receives the first sub-configuration upper limit of the power value of each of the n bandwidths reported by the terminal when it independently works under a specified duty cycle.
  • the base station determines the upper limit of the second sub-configuration when each bandwidth is used for multi-bandwidth transmission according to the upper limit of the first sub-configuration of the power value when each bandwidth works independently under the specified duty cycle.
  • the upper limit of the second sub-configuration is smaller than the upper limit of the first sub-configuration.
  • the base station calculates the average value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when they work independently at the corresponding power level, and determines the quotient of the average value and n as each bandwidth The upper limit of the second sub-configuration for multi-bandwidth transmission;
  • the base station calculates the maximum value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when they work independently at the corresponding power level, and determines the quotient of the maximum value and n as each The second sub-configuration upper limit when the bandwidth is used for multi-bandwidth transmission;
  • the base station calculates the minimum value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when they work independently at the corresponding power level, and determines the quotient of the minimum value and n as each The second sub-configuration upper limit when the bandwidth is used for multi-bandwidth transmission;
  • the base station calculates the average value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when they work independently at the corresponding power level, and divides the average value according to n weights.
  • the division values are determined as the upper limit of the second sub-configuration when the n bandwidths are used for multi-bandwidth transmission, the n weights correspond to the n bandwidths one-to-one, and the sum of the n weights is 1;
  • the base station calculates the maximum value of the first sub-configuration upper limit of the equivalent power values of the n bandwidths when they work independently at the corresponding power level, and divides the maximum value into n weights.
  • the division values are determined as the upper limit of the second sub-configuration when the n bandwidths are used for multi-bandwidth transmission, the n weights correspond to the n bandwidths one-to-one, and the sum of the n weights is 1;
  • the base station calculates the minimum value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when they work independently at the corresponding power level, and divides the minimum value into n weights.
  • the two division values are determined as the upper limit of the second sub-configuration when the n bandwidths are used for multi-bandwidth transmission, the n weights correspond to the n bandwidths one-to-one, and the sum of the n weights is 1.
  • Step 30112 The base station determines the configuration upper limit of the overall equivalent power value according to the second sub-configuration upper limit and the designated duty cycle when performing multi-bandwidth transmission for each bandwidth.
  • the second sub-configuration upper limit when the base station performs multi-bandwidth transmission and the designated uplink transmission time ratio DC As_j is multiplied by the evaluation time window to obtain the third product corresponding to the bandwidth; the third product corresponding to n bandwidths is accumulated and added to obtain the configuration upper limit of the overall equivalent power value.
  • the overall equivalent power value is calculated using formula 3, based on similar calculation principles, for each of the n bandwidths, the second sub-configuration upper limit when the base station performs multi-bandwidth transmission and the designated uplink transmission time ratio DC as_j , the fourth product corresponding to the bandwidth is obtained; the fourth product corresponding to the n bandwidths is accumulated and added to obtain the configuration upper limit of the overall equivalent power value.
  • the equivalent power value of the foregoing single bandwidth can also be calculated from the equivalent duty cycle of the single bandwidth.
  • the overall equivalent power value of the terminal can also be calculated from the overall equivalent duty cycle of the terminal.
  • the equivalent duty cycle of a single bandwidth is a value used to equivalently measure the duty cycle of the terminal when it performs uplink transmission on a single bandwidth. This value can be used as a criterion for judging whether the SAR on a single bandwidth exceeds the standard.
  • the calculation method of the equivalent duty cycle of a single bandwidth Taking a single bandwidth as the j-th bandwidth as an example, the entire evaluation time window includes n time sub-windows, and the terminal uses correspondingly in the n time sub-windows on the j-th bandwidth.
  • n duty cycles and n power levels Among them, one power class (Power Class, PC) corresponds to one uplink transmit power.
  • the power of PC2 is 26dBm (ie, decibel milliwatt)
  • the power of PC3 is 23dBm.
  • the equivalent duty cycle corresponding to the j-th bandwidth is equal to:
  • DC eq_Band_j (DC p1 x P 1 x T 1 +DC p2 x P 2 x T 2 +DC p3 x P 3 x T 3 +...+DC pi x P i xT i +...+DC pn x P n x T n )/(P as_j x T window ); formula four
  • DC eq_Band_j is the equivalent duty cycle of the j-th bandwidth at the specified power level; P as_j is the transmit power of the specified power level corresponding to the j-th bandwidth; T window is the entire evaluation time window; DC pi is the i-th band the actual duty cycle evaluation time period; actual power level P i is the power corresponding to the i-th piece of evaluation period; T i is the i-th evaluation period, do not overlap between each of the sub-evaluation period, i Is an integer not greater than n.
  • the actual power level in each sub-assessment period may be the same or different.
  • the designated power level corresponding to a single bandwidth is configured by the base station or determined in a predefined manner.
  • the specified power level corresponding to each bandwidth is the same or different.
  • any one of the actual power levels used by the terminal in the j-th bandwidth can be used as the designated power level; or, the minimum of the actual power levels used by the terminal in the j-th bandwidth
  • the level is regarded as the designated power level; or, the largest level among the actual power levels used by the terminal in the j-th bandwidth is regarded as the designated power level; or, the predefined power level is determined as the designated power level.
  • Overall equivalent duty cycle is a value used to equivalently measure the duty cycle when the entire terminal performs multi-bandwidth transmission on n bandwidths.
  • the overall equivalent duty cycle is calculated based on the equivalent duty cycle corresponding to each bandwidth of the terminal on the n bandwidths. In a multi-bandwidth transmission scenario, this value can be used as a criterion for judging whether the SAR of the entire terminal exceeds the standard.
  • the first calculation method of the overall equivalent duty cycle For each of the n bandwidths, multiply the equivalent duty cycle corresponding to the bandwidth, the specified power value, and the evaluation time window to obtain the first product corresponding to the bandwidth ; Accumulate the first multiplications corresponding to the n bandwidths to obtain the overall equivalent duty cycle. That is:
  • DC eq (DC eq_Band_1 x P as_1 x T window +DC eq_Band_2 x P as_2 x T window +DC eq_Band_3 x P as_3 x T window +...+DC eq_Band_j x P as_j x T window +...DC eq_Band_n x P as_n x T window )/(P as x T window ); formula five
  • DC eq is the overall equivalent duty cycle of the terminal, P as is the designated power value corresponding to the entire terminal, the designated power value corresponds to the designated power level, and DC eq_Band_j is the equivalent duty cycle of bandwidth j under the designated power value P as_j ; P as_j is the specified power value corresponding to bandwidth j; T window is the entire evaluation time window, and DC eq_Band_j x P as_j x T window represents the first product.
  • the second calculation method for the overall equivalent duty cycle For each of the n bandwidths, multiply the equivalent duty cycle corresponding to the bandwidth by the specified power value to obtain the second product corresponding to the bandwidth;
  • the bandwidths respectively correspond to the second multiplication accumulation and addition to obtain the overall equivalent duty cycle. That is:
  • DC eq (DC eq_Band_1 x P as_1 + DC eq_Band_2 x P as_2 + DC eq_Band_3 x P as_3 +...+DC eq_Band_j x P as_j +...DC eq_Band_n x P as_n )/Pas; formula six
  • DC eq is the overall equivalent duty cycle of the terminal, P as is the designated power value corresponding to the entire terminal, the designated power value corresponds to the designated power level, and DC eq_Band_j is the equivalent duty cycle of bandwidth j under the designated power value P as_j ; P as_j is the designated power value corresponding to bandwidth j, and DC eq_Band_j x P as_j represents the second product.
  • the specified power value P as and the specified duty cycle (DC as ) are determined, and the overall equivalent duty cycle (DC eq ) and the overall equivalent power value (P eq ) can correspond to each other.
  • Equation 8 The conversion principle of Equation 8 is the same as that of Equation 7, which determines the specified power value P as_j of the j-th bandwidth among n bandwidths and the specified uplink transmission time ratio DC as_j , and the equivalent uplink transmission time ratio DC of the j-th bandwidth eq_Band_j and the equivalent power value P eq_Band_j can correspond to each other.
  • the base station or terminal can calculate the equivalent duty cycle of a single bandwidth through formula 4, and then calculate the equivalent power value of a single bandwidth through formula 7;
  • the base station or terminal can directly calculate the overall equivalent duty cycle of the terminal through formula 4 and formula 5/6, and then calculate the overall equivalent power value of the terminal through formula 8;
  • the base station or terminal can calculate the equivalent duty cycle of a single bandwidth by formula 4, and then calculate the equivalent power value of the single bandwidth by formula 7; the base station or terminal can calculate the overall equivalent duty cycle of the terminal by formula 5/6.
  • Fig. 10 shows a block diagram of a power configuration device for multi-bandwidth transmission according to an exemplary embodiment of the present disclosure.
  • the device can be implemented as all or part of the access network equipment through software, hardware or a combination of the two.
  • the device includes: a processing module 420 and a sending module 440;
  • the processing module 420 is configured to determine the configuration upper limit of the overall equivalent power value when the terminal performs multi-bandwidth transmission on n bandwidths, where n is an integer greater than 1.
  • the processing module 420 is configured to generate configuration information of the first bandwidth in the n bandwidths for the terminal, and the overall equivalent power value in the n bandwidths corresponding to the configuration information is not higher than the configuration upper limit;
  • the sending module 440 is configured to send configuration information to the terminal, and the above-mentioned configuration information is used to configure power configuration parameters when the terminal performs uplink transmission on the first bandwidth.
  • the processing module 420 includes:
  • the first processing submodule 4201 is configured to obtain the equivalent power value corresponding to each of the n bandwidths of the terminal, where the n bandwidths include the first bandwidth configured this time;
  • the second processing sub-module 4202 is configured to calculate the overall equivalent power value of the terminal according to the equivalent power value corresponding to each bandwidth of the terminal and the duty cycle of the designated uplink transmission time;
  • the third processing submodule 4203 is configured to generate configuration information of the first bandwidth when the overall equivalent power value is not higher than the configuration upper limit, and the configuration information of the first bandwidth is used to configure the first bandwidth of the terminal on the first bandwidth. Power value and/or first duty cycle.
  • the second processing submodule 4202 is configured to, for each of the n bandwidths, multiply the equivalent power value corresponding to the bandwidth, the designated duty cycle, and the evaluation time window to obtain the first bandwidth corresponding to the bandwidth.
  • One product accumulate and add the first multiplications corresponding to each of the n bandwidths to obtain the overall equivalent power value; or, for each of the n bandwidths, multiply the equivalent power value corresponding to the bandwidth by the specified duty cycle to get The second product corresponding to the bandwidth; the second product corresponding to the n bandwidths is accumulated and added to obtain the overall equivalent power value.
  • the equivalent power value corresponding to the j-th bandwidth is equal to:
  • P eq_Band_j (DC p1 x P 1 x T 1 +DC p2 x P 2 x T 2 +DC p3 x P 3 x T 3 +...+DC pi x P i x T i +...DC pn x P n x T n )/(DC as_j x T window );
  • P eq_Band_j is the equivalent power value of the j-th bandwidth under the designated duty cycle
  • DC as_j is the corresponding designated duty cycle of the j-th bandwidth
  • T window is the entire evaluation time window
  • DC pi is the i-th sub-evaluation time duty cycle within a segment
  • the time period P i is to assess the actual power level corresponding to the power of the i-th piece
  • T i is the i-th evaluation period, do not overlap between each of the sub-evaluation period.
  • the first processing sub-module 4201 is configured to calculate the equivalent power value corresponding to each bandwidth according to the default duty cycle and the preset power value corresponding to each of the n bandwidths.
  • the first processing submodule 4201 is configured to adjust the first power value and the first duty cycle of the first bandwidth according to the adjustment requirement when the first power value and the first duty cycle of the first bandwidth need to be adjusted. At least one of the cycles, the equivalent power value corresponding to the first bandwidth is calculated according to the first power value and the first duty cycle;
  • the first processing submodule 4201 is configured to obtain the second power value and the second duty cycle of the second bandwidth excluding the first bandwidth among the n bandwidths, and calculate the second power cycle according to the second power value and the second duty cycle.
  • the processing module 420 includes:
  • the fourth processing submodule 4204 is configured to reduce the second power value of the second bandwidth and/or the second duty cycle when the overall equivalent power value is higher than the configuration upper limit.
  • the processing module 420 includes:
  • the fifth processing submodule 4205 is configured to reject the second power value of the second bandwidth and/or the second duty cycle when the number of times of adjustment is higher than the preset number and the overall equivalent power value is still higher than the configured upper limit. Adjustment.
  • the processing module 420 includes:
  • the sixth processing submodule 4206 is configured to lower the first bandwidth of the first bandwidth when the overall equivalent power value is higher than the configuration upper limit, and there is a service priority of the second bandwidth higher than the service priority of the first bandwidth Effective power value and/or first duty cycle.
  • the device further includes:
  • the processing module 420 is configured to calculate the remaining equivalent power value quota according to the configuration upper limit and the overall equivalent power value when the overall equivalent power value is not higher than the configuration upper limit;
  • the processing module 420 is configured to adjust at least one of the third power value and the third duty cycle of the third bandwidth according to the adjustment requirement when the equivalent power value and the duty cycle of the third bandwidth need to be adjusted;
  • the processing module 420 is configured to calculate the increment of the equivalent power value of the third bandwidth according to the third power value of the third bandwidth and/or the third duty cycle;
  • the processing module 420 is configured to generate configuration information of the third bandwidth when the increment of the equivalent power value of the third bandwidth is not higher than the remaining equivalent power value quota, and the configuration information of the uplink transmit power is used to configure the terminal The third power value and/or the third duty cycle on the third bandwidth.
  • the device further includes a receiving module 460;
  • the receiving module 460 is configured to receive the configuration upper limit of the overall equivalent power value reported by the terminal.
  • the receiving module 460 is configured to receive the upper limit of the second sub-configuration when each of the n bandwidths reported by the terminal performs multi-bandwidth transmission under a designated duty cycle;
  • the processing module 420 is configured to determine the configuration upper limit of the overall equivalent power value according to the second sub-configuration upper limit when multi-bandwidth transmission is performed for each bandwidth in a designated duty cycle.
  • the processing module 420 is configured to multiply the second sub-configuration upper limit, the specified duty cycle, and the evaluation time window for each bandwidth for multi-bandwidth transmission under the specified duty cycle to obtain the third product; The third product is added to determine the configuration upper limit of the overall equivalent power value.
  • the processing module 420 is configured to obtain the fourth product by adding the second sub-configuration upper limit for the multi-bandwidth transmission under the designated duty cycle and the designated duty cycle for each bandwidth; add the fourth product to determine the overall equivalent The configuration upper limit of the power value;
  • the receiving module 460 is configured to receive the first sub-configuration upper limit when each of the n bandwidths reported by the terminal works independently under a specified duty cycle;
  • the processing module 420 is configured to determine the upper limit of the second sub-configuration for each bandwidth for multi-bandwidth transmission according to the upper limit of the first sub-configuration when each bandwidth works independently under a specified duty cycle. Sub-configuration upper limit;
  • the processing module 420 is configured to determine the configuration upper limit of the overall equivalent power value according to the designated duty cycle and the second sub-configuration upper limit when performing multi-broadband transmission for each bandwidth.
  • the processing module 420 includes:
  • the seventh processing sub-module 4207 is configured to calculate the average value of the upper limit of the first sub-configuration of the equivalent power values of the n bandwidths when they work independently at the corresponding power level, and determine the quotient of the average value and n as each bandwidth The upper limit of the second sub-configuration for multi-bandwidth transmission;
  • the seventh processing sub-module 4207 is configured to calculate the maximum value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when independently working at the corresponding power level, and determine the quotient of the maximum value and n as every The upper limit of the second sub-configuration for multi-bandwidth transmission of two bandwidths;
  • the seventh processing sub-module 4207 is configured to calculate the minimum value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when they work independently at the corresponding power level, and determine the quotient of the minimum value and n as every The upper limit of the second sub-configuration for multi-bandwidth transmission with one bandwidth;
  • the seventh processing sub-module 4207 is configured to calculate the average value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when they work independently at the corresponding power level, and divide the average value according to n weights.
  • the n division values are determined as the upper limit of the second sub-configuration when the n bandwidths are used for multi-bandwidth transmission, the n weights correspond to the n bandwidths one-to-one, and the sum of the n weights is 1;
  • the seventh processing sub-module 4207 is configured to calculate the maximum value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when they work independently at the corresponding power level, and divide the maximum value according to n weights
  • the n division values are determined as the upper limit of the second sub-configuration when the n bandwidths are used for multi-bandwidth transmission, the n weights correspond to the n bandwidths one-to-one, and the sum of the n weights is 1;
  • the seventh processing sub-module 4207 is configured to calculate the minimum value of the first sub-configuration upper limit of the equivalent power values of n bandwidths when they work independently at the corresponding power level, and divide the minimum value according to n weights
  • the n division values are determined as the upper limit of the second sub-configuration when the n bandwidths are used for multi-bandwidth transmission, the n weights correspond to the n bandwidths one-to-one, and the sum of the n weights is 1.
  • the power configuration device for multi-bandwidth transmission uses a processing module to determine the upper limit of the configuration of the overall equivalent power value when the terminal performs multi-bandwidth transmission on n bandwidths, where n is an integer greater than 1. ; Generate the configuration information of the first bandwidth in the n bandwidths for the terminal, the overall equivalent power value on the n bandwidths corresponding to the above configuration information is not higher than the configuration upper limit, the overall equivalent power value is based on the terminal in n The corresponding equivalent power value on the bandwidth is calculated; and then the configuration information is sent to the terminal through the sending module, and the above configuration information is used to configure the power configuration parameters when the terminal performs uplink transmission on the first bandwidth.
  • the device adapts the power value of the terminal so that the overall equivalent power value of the n bandwidth allocated to the terminal is not higher than the upper limit of the configuration, avoiding the corresponding SAR The value exceeds the standard.
  • Fig. 11 shows a block diagram of a power configuration device for multi-bandwidth transmission according to an exemplary embodiment of the present disclosure.
  • the device can be implemented as all or part of the terminal through software, hardware or a combination of the two.
  • the device includes: a receiving module 560 and a processing module 520;
  • the receiving module 560 is configured to receive configuration information sent by the base station, and the overall equivalent power value on the n bandwidths of the multi-bandwidth transmission corresponding to the configuration information is not higher than the configuration upper limit;
  • the processing module 520 is configured to determine the power configuration parameters for uplink transmission on the first bandwidth according to the configuration information.
  • the first bandwidth is one or more of the n bandwidths when the terminal transmits in multiple bandwidths.
  • the overall equivalent uplink transmission time ratio duty cycle is not higher than the configured upper limit.
  • the device further includes:
  • the sending module 540 is configured to report the configuration upper limit of the overall equivalent power value to the base station;
  • the sending module 540 is configured to report to the base station the upper limit of the second sub-configuration when each of the n bandwidths performs multi-bandwidth transmission under a specified duty cycle;
  • the sending module 540 is configured to report to the base station the first sub-configuration upper limit of the power value of each of the n bandwidths when operating independently under a specified duty cycle.
  • the device further includes:
  • the processing module 520 is configured to calculate the upper limit of the sub-power value corresponding to the j-th broadband in the i-th sub-evaluation time period, the corresponding duty cycle, and the corresponding i-th sub-evaluation time period of the n bandwidth The upper limit of the second sub-configuration for each bandwidth under the specified duty cycle.
  • the power configuration device for multi-bandwidth transmission receives configuration information sent by the base station through the receiving module, and the overall equivalent power value on the n bandwidths of multi-bandwidth transmission corresponding to the configuration information is not high.
  • the overall equivalent power value is calculated according to the equivalent power values corresponding to the terminal on the n bandwidths, and the processing module determines the power configuration parameters for uplink transmission on the first bandwidth according to the configuration information.
  • the device adapts the power value of the terminal according to the configuration information sent by the base station, so that the overall equivalent power value of the n bandwidth allocated to the terminal is not higher than the configuration Upper limit to avoid exceeding the corresponding SAR value.
  • FIG. 12 shows a schematic structural diagram of a terminal provided by an exemplary embodiment of the present disclosure.
  • the terminal includes: a processor 601, a receiver 602, a transmitter 603, a memory 604, and a bus 605.
  • the processor 601 includes one or more processing cores, and the processor 601 executes various functional applications and information processing by running software programs and modules.
  • the receiver 602 and the transmitter 603 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 604 is connected to the processor 601 through a bus 605.
  • the memory 604 may be used to store at least one instruction, and the processor 601 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 604 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic or optical disk, electrically erasable and programmable Read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static anytime access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, programmable read-only memory (PROM) .
  • a non-transitory computer-readable storage medium including instructions, such as a memory including instructions, which can be executed by a processor of a terminal to complete the power configuration method for multi-bandwidth transmission.
  • the method executed by the terminal side may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • a non-transitory computer-readable storage medium When the instructions in the non-transitory computer storage medium are executed by the processor of the terminal, the terminal can execute the above-mentioned power configuration method for multi-bandwidth transmission.
  • Fig. 13 is a block diagram showing an access network device 700 according to an exemplary embodiment.
  • the access network device 700 may be a base station.
  • the access network device 700 may include: a processor 701, a receiver 702, a transmitter 703, and a memory 704.
  • the receiver 702, the transmitter 703 and the memory 704 are respectively connected to the processor 701 through a bus.
  • the processor 701 includes one or more processing cores, and the processor 701 executes the method executed by the access network device in the power configuration method for multi-bandwidth transmission provided by the embodiments of the present disclosure by running software programs and modules.
  • the memory 704 can be used to store software programs and modules. Specifically, the memory 704 may store an operating system 7041, an application module 7042 required by at least one function.
  • the receiver 702 is used to receive communication data sent by other devices, and the transmitter 703 is used to send communication data to other devices.
  • An exemplary embodiment of the present disclosure also provides a power configuration system (or communication system) for multi-bandwidth transmission, the system including: a terminal and an access network device;
  • the terminal includes the power configuration device for multi-bandwidth transmission provided by the embodiment shown in FIG. 11;
  • the access network includes the power configuration device for multi-bandwidth transmission provided in the embodiment shown in 10.
  • An exemplary embodiment of the present disclosure also provides a power configuration system (or communication system) during multi-bandwidth transmission.
  • the downlink signal receiving system includes: a terminal and an access network device;
  • the terminal includes the terminal provided in the embodiment shown in FIG. 12;
  • the access network equipment includes the access network equipment provided in the embodiment shown in FIG. 13.
  • An exemplary embodiment of the present disclosure also provides a computer-readable storage medium in which at least one instruction, at least a program, code set or instruction set is stored, the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the steps performed by the terminal or the access network device in the power configuration method for multi-bandwidth transmission provided by the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种多带宽传输时的功率配置方法、装置、设备及***,属于通信领域。该方法包括:基站确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限;基站为终端生成在n个带宽中的第一带宽的配置信息,配置信息对应的在n个带宽上的整体等效功率值不高于配置上限;基站向终端发送配置信息。本公开通过采用整体等效功率值的配置上限作为判断SAR是否超标的评判标准,基于配置上限对n个带宽的duty cycle和/或功率值进行合理配置,保证终端被分配使用的n个带宽上的整体等效功率值不高于配置上限,减少或避免某些时间窗口内的SAR超标的问题。

Description

多带宽传输时的功率配置方法、装置、设备及*** 技术领域
本公开涉及通信领域,特别涉及一种多带宽传输时的功率配置方法、装置、设备及***。
背景技术
新空口(New Radio,NR)和长期演进(Long-Term Evolution,LTE)协同部署时,终端的上行发射功率的大小是以功率等级(Power class)进行分级的。例如:功率等级3的发射功率是23dBm。在3.5GHz等较高频率等级时,为了确保上行覆盖的增加,需要引入更高的发射功率,例如功率等级2的发射功率是26dBm。而进入比功率等级3更高的功率等级的终端被叫做高功率用户设备(High Power UE,HPUE)。
比吸收率(SAR)是终端设计中衡量终端发射无线信号时对人体辐射量的一个指标。SAR和发射能力OTA指标是一对矛盾的指标,UE的发射能力需要超过空中性能测试(Over-the-Air Technology,OTA)指标的发射能力,但是不能超过SAR的辐射要求。
在UE同时采用两个以上的带宽进行上行传输的场景下,比如载波聚合(Carrier Aggregation)的场景下,上述情况变得更加复杂。比如,不同上行发射时间比例(duty cycle)的LTE、NR的时分双工(Time Division Duplexing,TDD)或者频分双工(Frequency Division Duplexing,FDD)的带宽聚合组网,不同带宽的上行发射时间比例(duty cycle)可能不同,多个带宽上的上行发射叠加后,会造成某些时间窗口内的SAR值可能超标。
发明内容
本公开实施例提供了一种多带宽传输时的功率配置方法、装置、设备及***。所述技术方案如下:
根据本公开实施例的一个方面,提供了一种多带宽传输时的功率配置方法,该方法包括:
基站确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,n为大于1的整数;
基站为终端生成在n个带宽中的第一带宽的配置信息,上述配置信息对应的在n个带宽上的整体等效功率值不高于配置上限;
基站向终端发送配置信息,上述配置信息用于配置终端在第一带宽上进行上行发送时的功率配置参数。
在一些实施例中,基站为终端生成在n个带宽中的第一带宽的配置信息,包括:
基站获取终端在n个带宽中的每个带宽对应的等效功率值,n个带宽包括本次配置的第一带宽;
基站根据终端在每个带宽上分别对应的等效功率值和指定上行发射时间比例duty cycle,计算得到终端的整体等效功率值;
基站在整体等效功率值不高于配置上限时,生成第一带宽的配置信息,上述第一带宽的配置信息用于配置终端在第一带宽上的第一功率值和/或第一功duty cycle。
在一些实施例中,基站根据终端在每个带宽上分别对应的等效功率值,计算得到终端的整体等效功率值和指定duty cycle,包括:
对于n个带宽中的每个带宽,将带宽对应的等效功率值、指定duty cycle和评估时间窗口相乘,得到带宽对应的第一乘积;将n个带宽分别对应的第一乘积累加,得到整体等效功率值;
或,对于n个带宽中的每个带宽,将带宽对应的等效功率值和指定duty cycle相乘,得到带宽对应的第二乘积;将n个带宽分别对应的第二乘积累加,得到整体等效功率值。
在一些实施例中,对于n个带宽中的第j个带宽,第j个带宽对应的等效功率值等于:
P eq_Band_j=(DC p1x P 1x T 1+DC p2x P 2x T 2+DC p3x P 3x T 3+…+DC pi x P i x T i+…DC pn x P n x T n)/(DC as_j x T window);
其中,P eq_Band_j是第j个带宽在指定duty cycle下的等效功率值,DC as_j是第j个带宽对应的指定duty cycle,T window是整个评估时间窗口,DC pi是第i段子评估时间段内的duty cycle,P i是第i段子评估时间段内的实际功率等级对应的功率,T i是第i个子评估时间段,每个子评估时间段之间互不重叠的。
在一些实施例中,基站获取终端在n个带宽中的每个带宽对应的等效功率值,包括:
根据n个带宽中的每个带宽对应的默认duty cycle和预设功率值,计算得到每个带宽对应的等效功率值。
在一些实施例中,基站获取终端在n个带宽中的每个带宽对应的等效功率值,包括:
当需要调整第一带宽的第一功率值和第一duty cycle时,根据调整需求调整第一带宽的第一功率值和第一duty cycle中的至少一个,根据第一功率值和第一duty cycle计算得到第一带宽对应的等效功率值;
获取n个带宽中除第一带宽之外的第二带宽的第二功率值和第二duty cycle,根据第二功率值和第二duty cycle计算得到第二带宽对应的等效功率值,或,获取n个带宽中除第一带宽之外的第二带宽对应的等效功率值。
在一些实施例中,该方法还包括:
基站在整体等效功率值高于配置上限时,调低第二带宽的第二功率值和/或第二duty cycle。
在一些实施例中,该方法还包括:
基站在调低次数高于预设次数且整体等效功率值仍然高于配置上限时,拒绝对第二带宽的第二功率值和/或第二duty cycle的调整。
在一些实施例中,该方法还包括:
基站在整体等效功率值高于配置上限,且存在第二带宽的业务优先级高于第一带宽的业务优先级时,调低第一带宽的第一等效功率值和/或第一duty cycle。
在一些实施例中,该方法还包括:
在整体等效功率值不高于配置上限时,根据配置上限和整体等效功率值,计算得到剩余的等效功率值配额;
当需要调整第三带宽的等效功率值和duty cycle时,根据调整需求调整第三带宽的第三功率值和第三duty cycle中的至少一个;
根据第三带宽的第三功率值和/或第三duty cycle,计算得到第三带宽的等效功率值的增量;
当第三带宽的等效功率值的增量不高于剩余的等效功率值配额时,生成第三带宽的配置信息,上述上行发射功率的配置信息用于配置终端在第三带宽上 的第三功率值和/或第三duty cycle。
在一些实施例中,基站确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,包括:
基站接收终端上报的整体等效功率值的配置上限。
在一些实施例中,基站确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,包括:
基站接收终端上报的n个带宽中每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限;
基站根据每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限,确定整体等效功率值的配置上限。
在一些实施例中,基站根据每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限,确定整体等效功率值的配置上限,包括:
基站将每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限、指定duty cycle和评估时间窗口相乘,得到第三乘积;基站将第三乘积相加,确定整体等效功率值的配置上限;
或者,
基站将每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限和指定duty cycle相乘,得到第四乘积;基站将第四乘积相加,确定整体等效功率值的配置上限。
在一些实施例中,基站确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,包括:
基站接收终端上报的n个带宽中每个带宽在指定duty cycle下独立工作时的第一子配置上限;
基站根据每个带宽在指定duty cycle下独立工作时的第一子配置上限,确定每个带宽进行多带宽传输时的第二子配置上限,第二子配置上限小于第一子配置上限;
基站根据每个带宽进行多宽带传输时的指定duty cycle和第二子配置上限,确定整体等效功率值的配置上限。
在一些实施例中,基站根据每个带宽在指定duty cycle下独立工作时的第一子配置上限,确定每个带宽进行多带宽传输时的第二子配置上限,包括:
基站计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配 置上限的平均值,将平均值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
或,基站计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最大值,将最大值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
或,基站计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最小值,将最小值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
或,基站计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的平均值,将平均值按照n个权重进行划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1;
或,基站计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最大值,将最大值按照n个权重进行划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1;
或,基站计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最小值,将最小值按照n个权重进行划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1。
根据本公开实施例的另一个方面,提供了一种多带宽传输时的功率配置方法,该方法包括:
终端接收基站发送的配置信息,配置信息对应的在多带宽传输的n个带宽上的整体等效功率值不高于配置上限;
终端根据配置信息确定在第一带宽上进行上行发送时的功率配置参数,第一带宽是终端在多带宽传输时的n个带宽中的一个或者多个,n个带宽上的整体等效上行发射时间比例duty cycle不高于配置上限。
在一些实施例中,终端接收基站发送的配置信息之前,还包括:
终端向基站上报整体等效功率值的配置上限;
或,终端向基站上报n个带宽中每个带宽在指定duty cycle下的第二子配置上限;
或,终端向基站上报n个带宽中每个带宽在指定duty cycle下独立工作时的功率值的第一子配置上限。
在一些实施例中,终端向基站上报n个带宽中每个带宽在指定duty cycle下的第二子配置上限之前,包括:
终端根据n个宽带中的第j个宽带在第i段子评估时间段对应的子功率值上限、对应的duty cycle和对应的第i段子评估时间段,计算n个带宽中每个带宽在指定duty cycle下的第二子配置上限。
根据本公开实施例的另一个方面,提供了一种多带宽传输时的功率配置装置,应用于基站中,该装置包括:
处理模块,被配置为确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,n为大于1的整数;
处理模块,被配置为为终端生成在n个带宽中的第一带宽的配置信息,上述配置信息对应的在n个带宽上的整体等效功率值不高于配置上限;
发送模块,被配置为向终端发送配置信息,上述配置信息用于配置终端在第一带宽上进行上行发送时的功率配置参数。
根据本公开实施例的另一个方面,提供了一种多带宽传输时的功率配置装置,应用于终端中,该装置包括:
接收模块,被配置为接收基站发送的配置信息,配置信息对应的在多带宽传输的n个带宽上的整体等效功率值不高于配置上限;
处理模块,被配置为根据配置信息确定在第一带宽上进行上行发送时的功率配置参数,第一带宽是终端在多带宽传输时的n个带宽中的一个或者多个,n个带宽上的整体等效上行发射时间比例duty cycle不高于配置上限。
根据本公开实施例的另一方面,提供了一种基站,该基站包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上述第一方面所述的多带宽传输时的功率配置方法。
根据本公开实施例的另一方面,提供了一种终端,该终端包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如第二方面所述的多 带宽传输时的功率配置方法。
根据本公开实施例的另一方面,提供了一种计算机存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,上述至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上述各个方面所述的多带宽传输时的功率配置方法。
本公开实施例提供的技术方案可以包括以下有益效果:
通过在终端使用多带宽传输的场景下,将终端在n个带宽上的等效功率值,综合成为相对于整个终端的整体等效功率值,采用整体等效功率值的配置上限作为判断SAR是否超标的评判标准,使得基站在向终端生成n个带宽中第一带宽的配置信息时,能够基于统一的整体等效功率值的配置上限进行合理配置,保证终端被分配使用的n个带宽上的整体等效功率值不高于配置上限,从而减少或避免某些时间窗口内的SAR超标的问题。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是相关技术提供的多带宽传输场景的示意图;
图2是根据一示例性实施例示出的一种通信***的框图;
图3是根据一示例性实施例示出的一种多带宽传输时的功率配置方法的流程图;
图4是根据另一示例性实施例示出的一种多带宽传输时的功率配置方法的流程图;
图5是根据另一示例性实施例示出的一种多带宽传输时的功率配置方法的流程图;
图6是根据另一示例性实施例示出的一种多带宽传输时的功率配置方法的流程图;
图7是根据另一示例性实施例示出的一种多带宽传输时的功率配置方法的流程图;
图8是根据另一示例性实施例示出的一种多带宽传输时的功率配置方法的流程图;
图9是根据另一示例性实施例示出的一种多带宽传输时的功率配置方法的 流程图;
图10是根据一示例性实施例示出的一种多带宽传输时的功率配置装置的框图;
图11是根据另一示例性实施例示出的一种多带宽传输时的功率配置装置的框图;
图12是根据一示例性实施例示出的终端的结构示意图;
图13是根据一示例性实施例示出的接入网设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例涉及的若干相关名词的简介如下:
多带宽传输:是指终端同时采用两个以上的带宽向基站进行上行发射的传输方式。典型的,多带宽传输包括但不限于:载波聚合场景、NR***中向终端配置了多个上行激活带宽部分(BandWith Part,BWP)和/或子带宽(Sub-band)等场景。本公开实施例中,主要以多带宽传输是载波聚合场景来进行举例说明。
载波聚合:可以指连续载波聚合,也可以指非连续载波聚合。在本公开实施例中,载波聚合是指终端采用两个以上的不同频段的载波共同向基站进行信号的传输。
上行发射时间比例(duty cycle):在一个子帧内,上行发射时间占总时间(上行发射时间+下行接收时间)的比值。
NR和LTE协同部署时,终端的上行发射功率的大小是以功率等级Power class进行分级的。例如:功率等级3的发射功率是23dBm(即分贝毫瓦)。在3.5GHz等较高频率等级时,为了确保上行覆盖的增加,需要引入更高的发射功率,例如功率等级2的发射功率是26dBm。而进入比功率等级3更高的功率等级的终端被叫做HPUE。其中,不同的功率等级对应不同的功率等级,不同 的功率等级对应不同的SAR。
SAR是终端设计中衡量终端发射无线信号时对人体辐射量的一个指标。SAR和发射能力对应的OTA指标是一对矛盾的指标,UE的发射能力需要超过OTA指标的发射能力,但是不能超过SAR的辐射要求。
而HPUE会产生SAR超标的问题,也就是说,当功率等级较高时,某一段时间内的累计辐射可能会超过SAR的辐射要求。在载波聚合场景下,不同功率等级的LTE、NR的TDD或者FDD带宽聚合组网,不同带宽的功率等级可能不同,造成某些时间窗口内的SAR值可能超标,情况更加复杂;或者,在非载波聚合的场景下,终端被分配使用的多个带宽均处于上行发送状态,也可能造成某些时间窗口内的SAR值超标。
如图1所示,LTE带宽、NR带宽A和NR带宽B有各自的上下行配置,一种情况下,如果不考虑duty cycle、功率等因素,在区域3的时间段内,终端在三个带宽上都在进行上行发射,此时容易造成SAR的超标;另一种情况下,假设NR带宽B使用高功率等级进行上行发射,则在区域2的时间段内,NR带宽B上的发射功率与LTE带宽上的发射功率叠加,也容易造成SAR的超标;另一种情况下,如果以较大的时间窗口进行考察,例如以帧为时间窗口的单位,图1中帧3内由于上行配置过多,也容易造成SAR的超标。
本公开提供了一种多带宽传输时的功率配置方法,在n个带宽上进行多带宽传输的场景下进行多带宽之间的功率值的协调,从而控制终端的上行发射功率,以避免SAR超标。
在本公开实施例中,提出了单个带宽的等效功率值,以及整体等效功率值,相关的介绍如下:
单个带宽的等效功率值:是用于等效衡量终端在单个带宽上进行上行发射时的功率值的数值。该数值可以作为判断单个带宽上的SAR是否超标的评判标准。
单个带宽的等效功率值的计算方式:以单个带宽是第j个带宽为例,整个评估时间窗口包括n个时间子窗口,终端在第j个带宽上的n个时间子窗口内分别对应使用n个duty cycle和n个功率等级。其中,一个功率等级(Power Class,PC)对应一个上行发射功率。比如:PC2的功率是26dBm(即分贝毫瓦),PC3的功率是23dBm。
对于n个带宽中的第j个带宽,第j个带宽对应的等效功率值等于:
P eq_Band_j=(DC p1x P 1x T 1+DC p2x P 2x T 2+DC p3x P 3x T 3+…+DC pix P ix T i+…+DC pnx P nx T n)/(DC as_jx T window);    公式一
其中,P eq_Band_j是第j个带宽在指定duty cycle下的等效功率值;DC as_j是第j个带宽对应的指定duty cycle;T window是整个评估时间窗口;DC pi是第i段子评估时间段内的实际duty cycle;P i是第i段子评估时间段内的实际功率等级对应的功率;T i是第i个子评估时间段,每个子评估时间段之间互不重叠的,i是不大于n的整数。每个子评估时间段内的实际功率等级可能是相同的,也可能是不同的。每个子评估时间段内的实际duty cycle可能是相同的,也可能是不同的。
可选地,单个带宽对应的指定duty cycle是由基站配置的,或者按照预定义方式确定的。每个带宽所对应的指定duty cycle是相同或不同的。比如对于第j个带宽,可以将终端在第j个带宽中所使用的实际duty cycle中的任意一个作为指定duty cycle;或者,将终端在第j个带宽中所使用的实际duty cycle中的最小值作为指定duty cycle;或者,将终端在第j个带宽中所使用的实际duty cycle中的最大值作为指定duty cycle;或者,将预定义的duty cycle确定为指定duty cycle。比如,将50%确定为指定duty cycle,将75%确定为指定duty cycle,或者将100%确定为指定duty cycle。
整体等效功率值:是用于等效衡量整个终端在n个带宽上进行多带宽传输时的功率的数值。可选地,整体等效功率值是基于终端在n个带宽上每个带宽对应的等效功率值来计算得到的。在多带宽传输场景下,该数值可以作为判断整个终端的SAR是否超标的评判标准。
整体等效功率值的第一种计算方式:对于n个带宽中的每个带宽,将该带宽对应的等效功率值、指定duty cycle和评估时间窗口相乘,得到该带宽对应的第一乘积;将n个带宽分别对应的第一乘积累加,得到整体等效功率值。也即:
P eq=(P eq_Band_1x DC as_1x T window+P eq_Band_2x DC a s_2x T window+P eq_Band_3x DC a s_3x T window+…+P eq_Band_jx DC as_jx T window+…P eq_Band_nx DC as_nx T window)/(DC asx T window);          公式二
其中,P eq是终端的整体等效功率值,DC as是整个终端对应的指定duty cycle,P eq_Band_j是带宽j在指定上行发射时间比例DC as_j下的等效功率值;DC as_ j是带宽j对应的指定duty cycle;T window是整个评估时间窗口,P eq_Band_jx DC as_ jx T window表示第一乘积。
整体等效功率值的第二种计算方式:对于n个带宽中的每个带宽,将该带宽对应的等效功率值和指定duty cycle相乘,得到该带宽对应的第二乘积;将n个带宽分别对应的第二乘积累加,得到整体等效功率值。也即:
P eq=(P eq_Band_1x DC as_1+P eq_Band_2x DC a s_2+P eq_Band_3x DC a s_3+…+P eq_Band_ jx DC as_j+…P eq_Band_nx DC as_n)/DC as;        公式三
其中,P eq是终端的整体等效功率值,DC as是整个终端对应的指定duty cycle,P eq_Band_j是带宽j在指定上行发射时间比例DC as_j下的等效功率值;DC as_ j是带宽j对应的指定duty cycle;P eq_Band_jx DC as_j表示第二乘积。
图2是本公开一个示例性实施例提供的通信***的框图。该通信***可以是5G NR***。该通信***可以包括:接入网12和终端14。
接入网12中包括若干接入网设备120。接入网设备120与核心网设备110之间通过某种接口技术互相通信,例如LTE***中的S1接口,5G NR***中的NG接口。接入网设备120可以是基站,所述基站是一种部署在接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的***中,具备基站功能的设备的名称可能会有所不同,例如在LTE***中,称为eNodeB或者eNB;在5G NR***中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称的描述可能会变化。
终端14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端(英文:terminal device)等等。为方便描述,上面提到的设备统称为终端。接入网设备120与终端14之间通过某种空口技术互相通信,例如Uu接口。
图3是根据一示例性实施例提供的多带宽传输时的功率配置方法的流程图。该方法可以由图2所示的通信***来执行。所述方法包括:
步骤301,基站确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限。
终端采用n个带宽进行多带宽传输,n为大于1的整数。
可选地,n个带宽上进行多带宽传输包括:载波聚合下的多带宽传输,和/或,非载波聚合时的多带宽传输。多带宽传输还可称为:多带宽同时传输、多带宽协同传输、多带宽协作传输等其他可能描述,本公开对此不加以限定。
整体等效功率值是指在指定duty cycle下,将终端在n个带宽上进行上行传输时对应的n个等效功率值综合为一个功率值。可选地,整体等效功率值是根据终端在n个带宽上分别对应的等效功率值计算的。该整体等效功率值的配置上限,是用于判断SAR是否超标的评判标准。
整体等效功率值的配置上限可以由基站来配置,也可以由终端向基站上报。
步骤302,基站为终端生成在n个带宽中的第一带宽的配置信息。
第一带宽是n个带宽中本次需要配置的带宽,第一带宽是n个带宽中的全部或一部分,本公开不限定第一带宽的数量。
基站为终端生成第一带宽的配置信息,该配置信息用于配置终端在第一带宽上进行上行发送时的功率配置参数,该功率配置参数包括:功率等级,和/或,duty cycle。
基站为终端生成在n个带宽中的第一带宽的配置信息,该配置信息对应的在n个带宽上的整体等效功率值不高于上述配置上限。也即,经过该配置信息配置后的终端,在n个带宽上进行上行发射时的整体等效功率值不高于上述配置上限。
步骤303,基站向终端发送配置信息。
基站将生成的第一带宽的配置信息发送至终端中,该配置信息用于配置终端在第一带宽上进行上行发送时的功率配置参数。
可选地,该配置信息包括一个或多个第一带宽的配置信息,用于配置终端在一个或多个第一带宽上进行上行发送时的功率配置参数。
步骤304,终端接收基站发送的配置信息。
步骤305,终端根据配置信息确定在第一带宽上进行上行发送时的功率配置参数。
功率配置参数包括:终端在第一带宽上进行上行发送时的duty cycle、终端在第一带宽上进行上行发送时的功率等级中的至少一种。
综上所述,本实施例提供的方法,通过在终端使用多带宽传输的场景下,将终端在n个带宽上的等效功率值,综合成为相对于整个终端的整体等效功率 值,采用整体等效功率值的配置上限作为判断SAR是否超标的评判标准,使得基站在向终端生成n个带宽中第一带宽的配置信息时,能够基于统一的整体等效功率值的配置上限进行合理配置,保证终端被分配使用的n个带宽上的整体等效功率值不高于配置上限,从而减少或避免某些时间窗口内的SAR超标的问题。
在基于图3实施例的可选实施例中,基站为终端生成在n个带宽中的第一带宽的配置信息的过程(步骤302)包括以下步骤:
步骤3021,基站获取终端在n个带宽中的每个带宽对应的等效功率值。
当需要配置n个带宽中的第一带宽时,基站可以根据业务、覆盖、功耗和天线配置等至少一个因素,来初步生成第一带宽的第一功率值和第一duty cycle。其中,第一功率值是指终端在第一带宽上进行上行发射时的实际发射功率。
单个带宽对应的等效功率值的计算方式如上公式一所示。
对于n个带宽中每个带宽对应的等效功率值,可以由基站自行计算,比如第一带宽的等效功率值可以由基站来计算;也可以由终端计算后上报给基站,比如除第一带宽之外的第二带宽的等效功率值可以由终端来提前计算并上报给基站。本实施例对此不加以限定。
步骤3022,根据终端在每个带宽上分别对应的等效功率值和指定duty cycle,计算得到终端的整体等效功率值。
在得到每个带宽上分别对应的等效功率值和指定duty cycle后,基站根据公式二或公式三来计算得到终端的整体等效功率值。
其中,公式二或公式三中整个终端对应的指定上行发射时间比例DC as是由基站配置的,或者按照预定义方式确定的。比如,可以将终端在n个带宽中所使用的实际duty cycle中的任意一个作为指定duty cycle;或者,将终端在n个带宽中所使用的实际duty cycle中的最小值作为指定duty cycle;或者,将终端在n个带宽中所使用的实际duty cycle中的最大值作为指定duty cycle;或者,将预定义的duty cycle确定为指定duty cycle。
步骤3023,判断整体等效功率值是否高于配置上限。
也即,基站预测本次配置后终端的SAR是否会超标。
当整体等效功率值不高于配置上限时,执行步骤3024;
当整体等效功率值高于配置上限时,执行步骤3025。
步骤3024,在整体等效功率值不高于配置上限时,生成第一带宽的配置信息。
可选地,在整体等效功率值不高于配置上限时,基站根据第一带宽的第一duty cycle和/或第一功率值,生成第一带宽的配置信息。比如,根据第一duty cycle和第一功率值中发生了变化的项,来生成第一带宽的配置信息。
步骤3025,在整体等效功率值高于配置上限时,重新生成第一带宽的配置信息。
在整体等效功率值高于配置上限时,基站调低第一带宽的第一duty cycle和/或第一功率值,并重新计算得到终端的整体等效功率值,再次进入步骤3023,直至终端的整体等效功率值不高于配置上限时,根据第一带宽的第一duty cycle和/或第一功率值生成第一带宽的配置信息。
需要说明的是,在图4所示的实施例中,基站获取终端在n个带宽中的每个带宽对应的等效功率值,包括以下两种情况:
一、终端刚入网的情况下,基站如何获取终端在n个带宽中的每个带宽对应的等效功率值;
二、在终端已经接入网络后,基站需要对n个带宽中的一个或者多个带宽进行调整的情况下,基站如何获取终端在n个带宽中的每个带宽对应的等效功率值。
第一种情况下,由于刚入网时向终端分配的带宽对应有默认duty cycle和预设功率值,基站根据n个带宽中的每个带宽对应的默认duty cycle和预设功率等级,计算得到每个宽带对应的等效功率值。
第二种情况下,在终端已经入网后采用多个带宽进行上行传输时,因业务、覆盖、功耗、天线配置等至少一个因素的变化,n个带宽中存在全部或部分第一带宽的功率配置参数需要调整。
当第一带宽是n个带宽的全部时,基站根据调整需求调整第一带宽的第一duty cycle和/或第一功率值,并根据调整后的第一带宽的第一duty cycle和/或第一功率值,重新计算第一带宽对应的等效功率值。
当第一带宽是n个带宽的一部分时,基站还需要获取n个带宽中除第一带宽之外的第二带宽对应的等效功率值。
在一种可能的实现方式中,基站获取n个带宽中除第一宽带之外的第二带宽的第二duty cycle和第二功率值,基站根据第二duty cycle和第二功率值计算得到第二带宽对应的等效功率值。比如,基站读取历史缓存的第二带宽的第二duty cycle和第二功率值,或者,基站接收终端上报的第二带宽的第二duty cycle和第二功率值。其中,第二功率值是终端在第二带宽上进行上行发射时的实际功率。
在另一种可能的实现方式中,基站获取n个带宽中除第一带宽之外的第二带宽对应的等效功率值。比如,基站读取历史缓存的第二带宽的等效功率值,或者,基站接收终端上报的第二带宽的等效功率值。
在得到第一带宽对应的等效功率值和第二带宽对应的等效功率值后,基站根据公式二或公式三计算终端的整体等效功率值,以进一步确定整体等效功率值是否高于配置上限。
还需要说明的是,在图4所示的实施例中,在整体等效功率值高于配置上限时,除重新生成第一带宽的配置信息之外,基站还可以调低第二带宽的第二duty cycle和/或第二功率值。比如:终端同时使用带宽A、带宽B和带宽C共三个带宽进行上行发射,当因业务需求需要调高带宽A对应的功率配置参数时,如果调整后的整体等效功率值高于配置上限,则基站可以调低带宽B和/或带宽C对应的功率配置参数。
基站根据调低后的第二带宽的第二duty cycle和第二功率值,计算第二带宽对应的等效功率值;根据第一带宽对应的等效功率值和第二带宽对应的等效功率值计算整体等效功率值。
需要说明的一点是,经过调低处理的第二带宽的功率配置参数发生了改变,因此经过调低处理的第二带宽也变为本次需要配置的第一带宽。
需要说明的另一点是,上述对第二带宽的调低过程可以为多次,直至终端的整体等效功率值不高于配置上限。
在基于图4的可选实施例中,由于对第二带宽的调低过程不能为无限多次,基站中还存储有预设次数,该预设次数用于避免对第二带宽的多次无效调低。如图5所示,基站根据预设次数决定对第二带宽继续调整或者拒绝调整,步骤如下:
步骤11,判断调低次数是否高于预设次数。
基站中存储有预设次数,该预设次数用于指示基站调整第二带宽的第二duty cycle和/或第二功率值的次数上限。
当需要调低第二带宽的功率配置参数时,基站判断对该第二带宽的调低次数是否高于预设次数。
当调低次数高于预设次数时,执行步骤14;否则,返回执行步骤12。
步骤12,调低第二带宽的第二duty cycle和/或第二功率值。
在一些实施例中,基站调低终端在第二带宽上进行上行发射时的第二duty cycle。
在一些实施例中,基站调低终端在第二带宽上进行上行发射时的第二功率值。
在一些实施例中,基站同时调低终端在第二带宽上进行上行发射时的第二duty cycle和第二功率值。
步骤13,根据调低后的第二带宽的第二duty cycle和/或第二功率值,计算得到终端的整体等效功率值。
基站在重新计算得到终端的整体等效功率值后,再次执行步骤3023。
步骤14,基站拒绝对第二带宽的第二duty cycle和/或第二功率值的调整。
可选地,当对第二带宽的调低次数已经达到了预设次数,则基站可以取消本次配置。
综上所述,本实施例提供的方法,通过调低第二带宽的第二duty cycle和/或第二功率值,能够在保证第一带宽的正常配置情况下,确保终端的整体等效功率值不高于配置上限,以避免某些时间窗口内的SAR超标。
另外,本实施例提供的方法,通过限制调低次数的上限来控制基站的配置所需时间,确保终端能够及时得到基站的配置信息,从而保证终端进行上行传输时的时延要求。
在基于图4实施例的可选实施例中,由于在基站生成第一带宽的配置信息的过程中,存在全部或部分的第二带宽的业务优先级可能会变高,也即存在第二带宽的业务优先级高于第一带宽的业务优先级。在需要调低第二带宽的功率配置参数时,优先选择业务优先级较低的第二带宽进行调低。在一些实施例中,比如全部第二带宽的业务优先级均高于第一带宽的业务优先级,还可以采用如 下调整方式:
基站在整体等效功率值高于配置上限,且存在第二带宽的业务优先级高于第一带宽的业务优先级时,调低第一带宽的第一duty cycle和/或第一等效功率值。基站根据调低后的第一带宽的第一duty cycle和/或第一等效功率值重新计算整体等效功率值,在整体等效功率值不高于配置上限时,根据第一带宽的第一duty cycle和/或第一功率值生成第一带宽的配置信息。
上述实施例中,在判断终端的SAR是否超标时,均采用终端的整体等效功率值来进行计算。在一些可选的实施例中,当整体等效功率值在第一次计算完毕后,基站可以计算剩余的等效功率值配额。当后续需要判断终端的SAR是否超标时,只需要计算本次调整的增量功率值是否高于剩余的等效功率值即可。参考图6,该过程可包括如下步骤:
步骤21,在整体等效功率值不高于配置上限时,根据配置上限和整体等效功率值,计算得到剩余的等效功率值配额。
剩余的等效功率值配额=(配置上限-终端的整体等效功率值)。也即,在整体等效功率值不高于配置上限时,基站将配合上限减去整体等效功率值,得到剩余的等效功率值配额。
步骤22,当需要调整第三带宽的第三duty cycle和第三功率值时,根据调整需求调整第三带宽的第三duty cycle和第三功率值中的至少一个。
可选地,调整需求包括业务、覆盖面积、功耗、天线配置中的至少一种。基站根据上述调整需求中的至少一种,调整第三带宽的第三duty cycle和/或第三功率值。第三功率值是终端在第三带宽上进行上行发射时的实际功率。
对第三带宽的第三duty cycle和/或第三功率值进行调整时,可以是调高,也可以是调低。
步骤23,根据第三带宽的第三duty cycle和/或第三功率值,计算得到第三带宽的等效功率值的增量。
该增量=(本次调整后的第三带宽的等效功率值-本次调整前的第三带宽的等效功率值)。
步骤24,当第三带宽的等效功率值的增量不高于剩余的等效功率值配额时,生成第三带宽的配置信息。
需要说明的是,剩余的等效功率值配额的计算时刻与增量的计算时刻的先 后关系不做限定,上述两个计算可以同时进行,也可以先计算剩余的等效功率值配额再计算第三带宽的等效功率值的增量;也可以先计算第三带宽的等效功率值的增量,再计算剩余的等效功率值配额。
综上所述,本实施例提供的方法,基站通过计算并比较第三带宽的等效功率值的增量与剩余的等效功率值配额,判断终端的SAR值是否超标,不需要重新计算整体等效功率值,简化了计算,减少了基站的计算量。
下面对上述步骤301中的“整体等效功率值的配置上限”的获取方式进行介绍。上述步骤301可以采用以下三种实现方式中的任意一种:
第一种,基站接收终端上报的整体等效功率值的配置上限,该配置上限是由终端根据各个带宽的等效功率值的配置上限计算得到的;
第二种,基站接收终端上报的每个带宽的等效功率值的子配置上限,由基站根据上述子配置上限确定终端的整体等效功率值的配置上限;
第三种,基站接收终端上报的每个带宽在指定duty cycle下独立工作时的第一子配置上限,根据该第一子配置上限来确定终端的整体等效功率值的配置上限。
在第一种实现方式下,如图7所示,由终端先计算整体等效功率值的配置上限,然后由终端向基站上报整体等效功率值的配置上限。该过程可以包括如下步骤:
步骤30101,终端获取n个带宽中每个带宽在指定duty cycle下独立工作时的功率值的第一子配置上限。
步骤30102,终端根据每个带宽在指定duty cycle下独立工作时的功率值的第一子配置上限,确定每个带宽进行多带宽传输时的第二子配置上限。
其中,第二子配置上限小于第一子配置上限。也即,第二子配置上限需要相对于第一子配置上限进行一定的回退。
在一个可选的实施例中,终端计算n个带宽在对应duty cycle下独立工作时的等效功率值的第一子配置上限的平均值,将平均值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
比如,带宽A、带宽B和带宽C的第一子配置上限均为90,则将90和3的商值30,确定为每个带宽进行多带宽传输时的第二子配置上限。
在一个可选的实施例中,终端计算n个带宽在对应duty cycle下独立工作时的等效功率值的第一子配置上限的最大值,将最大值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
比如,带宽D的第一子配置上限为80%,带宽E的第一子配置上限为90%,带宽F的第一子配置上限为60%,三个带宽中带宽E的第一子配置上限最大,将90%和3的商值30%,确定为每个带宽进行多带宽传输时的第二子配置上限。
在一个可选的实施例中,终端计算n个带宽在对应duty cycle下独立工作时的等效功率值的第一子配置上限的最小值,将最小值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
比如,带宽D的第一子配置上限为80%,带宽E的第一子配置上限为90%,带宽F的第一子配置上限为60%,三个带宽中带宽F的第一子配置上限最小,将60%和3的商值20%,确定为每个带宽进行多带宽传输时的第二子配置上限。
在一个可选的实施例中,终端计算n个带宽在对应duty cycle下独立工作时的等效功率值的第一子配置上限的平均值,将平均值按照n个权重进行划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1;
比如,带宽M和带宽N的第一子配置上限均为80%,两个带宽的权重均为0.5,将80%按照权重进行划分,则带宽M和带宽N进行多带宽传输时的第二子配置上限均为40%。
其中,n个权重的大小可以根据每个带宽上的业务优先级、功耗、覆盖、天线配置等至少一个因素来设定。
在一个可选的实施例中,终端计算n个带宽在对应duty cycle下独立工作时的等效功率值的第一子配置上限的最大值,将最大值按照n个权重进行划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1;
比如,带宽Q的第一子配置上限均为50%,带宽U的第一子配置上限均为70%,带宽V的第一子配置上限均为90%,带宽Q的权重为0.3,带宽U的权重为0.5,带宽V的权重为0.2,其中,带宽V的第一子配置上限最大,则带宽Q进行多带宽传输时的第二子配置上限为27%,带宽U进行多带宽传输时的第二子配置上限为45%,带宽V进行多带宽传输时的第二子配置上限为18%。
在一个可选的实施例中,终端计算n个带宽在对应duty cycle下独立工作时的等效功率值的第一子配置上限的最小值,将最小值按照n个权重进行划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1。
比如,带宽Q的第一子配置上限均为50%,带宽U的第一子配置上限均为70%,带宽V的第一子配置上限均为90%,带宽Q的权重为0.3,带宽U的权重为0.5,带宽V的权重为0.2,其中,带宽Q的第一子配置上限最小,则带宽Q进行多带宽传输时的第二子配置上限为15%,带宽U进行多带宽传输时的第二子配置上限为25%,带宽V进行多带宽传输时的第二子配置上限为10%。
步骤30103,终端根据每个带宽进行多带宽传输时的第二子配置上限和指定duty cycle,确定整体等效功率值的配置上限。
在整体等效功率值采用公式二计算时,基于类似的计算原理,对于n个带宽中的每个带宽,终端将该带宽进行多带宽传输时的第二子配置上限、指定上行发射时间比例DC as_j和评估时间窗口相乘,得到该带宽对应的第三乘积;将n个带宽对应的第三乘积累加,得到整体等效功率值的配置上限。
在整体等效功率值采用公式三计算时,基于类似的计算原理,对于n个带宽中的每个带宽,将该带宽进行多带宽传输时的第二子配置上限和指定上行发射时间比例DC as_j,得到该带宽对应的第四乘积;将n个带宽对应的第四乘积累加,得到整体等效功率值的配置上限。
步骤30104,终端向基站上报整体等效功率值的配置上限。
步骤30105,基站接收并保存终端上报的整体等效功率值的配置上限。
在第二种实现方式下,如图8所示,由终端计算并向基站上报第二子配置上限,然后由基站计算整体等效功率值的配置上限。该过程可以包括如下步骤:
步骤30106,终端向基站上报n个带宽中每个带宽的指定duty cycle下的第二子配置上限。
第二子配置上限的计算方式,可以参考上述步骤30102的描述。
步骤30107,基站接收终端上报的n个带宽中每个带宽在指定duty cycle下的第二子配置上限。
步骤30108,基站根据每个带宽在指定duty cycle下的第二子配置上限, 确定整体等效功率值的配置上限。
由基站根据公式二或公式三计算整体等效功率值的配置上限,计算过程参考步骤30103,在此不再加以赘述。
在第三实现方式中,如图9所示,由基站计算整体等效功率值的配置上限。该过程可以包括如下步骤:
步骤30109,终端向基站上报n个带宽中每个带宽在指定duty cycle下独立工作时的功率值的第一子配置上限。
步骤30110,基站接收终端上报的n个带宽中每个带宽在指定duty cycle下独立工作时的功率值的第一子配置上限。
步骤30111,基站根据每个带宽在指定duty cycle下独立工作时的功率值的第一子配置上限,确定每个带宽进行多带宽传输时的第二子配置上限。
其中,第二子配置上限小于第一子配置上限。
在一个可选的实施例中,基站计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的平均值,将平均值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
在另一些可选地实施例中,基站计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最大值,将最大值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
在另一些可选地实施例中,基站计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最小值,将最小值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
在另一些可选地实施例中,基站计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的平均值,将平均值按照n个权重进行划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1;
在另一些可选地实施例中,基站计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最大值,将最大值按照n个权重进行划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1;
在另一些可选地实施例中,基站计算n个带宽在对应功率等级下独立工作 时的等效功率值的第一子配置上限的最小值,将最小值按照n个权重进行划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1。
步骤30112,基站根据每个带宽进行多带宽传输时的第二子配置上限和指定duty cycle,确定整体等效功率值的配置上限。
在整体等效功率值采用公式二计算时,基于类似的计算原理,对于n个带宽中的每个带宽,基站将该带宽进行多带宽传输时的第二子配置上限、指定上行发射时间比例DC as_j和评估时间窗口相乘,得到该带宽对应的第三乘积;将n个带宽对应的第三乘积累加,得到整体等效功率值的配置上限。
在整体等效功率值采用公式三计算时,基于类似的计算原理,对于n个带宽中的每个带宽,基站将该带宽进行多带宽传输时的第二子配置上限和指定上行发射时间比例DC as_j,得到该带宽对应的第四乘积;将n个带宽对应的第四乘积累加,得到整体等效功率值的配置上限。
还需要说明的是,上述单个带宽的等效功率值也可以由单个带宽的等效duty cycle来计算得到。终端的整体等效功率值也可以由终端的整体等效duty cycle来计算得到。
单个带宽的等效duty cycle:是用于等效衡量终端在单个带宽上进行上行发射时的duty cycle的数值。该数值可以作为判断单个带宽上的SAR是否超标的评判标准。
单个带宽的等效duty cycle的计算方式:以单个带宽是第j个带宽为例,整个评估时间窗口包括n个时间子窗口,终端在第j个带宽上的n个时间子窗口内分别对应使用n个duty cycle和n个功率等级。其中,一个功率等级(Power Class,PC)对应一个上行发射功率。比如:PC2的功率是26dBm(即分贝毫瓦),PC3的功率是23dBm。
对于n个带宽中的第j个带宽,第j个带宽对应的等效duty cycle等于:
DC eq_Band_j=(DC p1x P 1x T 1+DC p2x P 2x T 2+DC p3x P 3x T 3+…+DC pix P ixT i+…+DC pnx P nx T n)/(P as_jx T window);     公式四
其中,DC eq_Band_j是第j个带宽在指定功率等级下的等效duty cycle;P as_j是第j个带宽对应的指定功率等级的发射功率;T window是整个评估时间窗口;DC pi是第i段子评估时间段内的实际duty cycle;P i是第i段子评估时间段内的实际 功率等级对应的功率;T i是第i个子评估时间段,每个子评估时间段之间互不重叠的,i是不大于n的整数。每个子评估时间段内的实际功率等级可能是相同的,也可能是不同的。
可选地,单个带宽对应的指定功率等级是由基站配置的,或者按照预定义方式确定的。每个带宽所对应的指定功率等级是相同或不同的。比如对于第j个带宽,可以将终端在第j个带宽中所使用的实际功率等级中的任意一个作为指定功率等级;或者,将终端在第j个带宽中所使用的实际功率等级中的最小等级作为指定功率等级;或者,将终端在第j个带宽中所使用的实际功率等级中的最大等级作为指定功率等级;或者,将预定义的功率等级确定为指定功率等级。
整体等效duty cycle:是用于等效衡量整个终端在n个带宽上进行多带宽传输时的duty cycle的数值。可选地,整体等效duty cycle是基于终端在n个带宽上每个带宽对应的等效duty cycle来计算得到的。在多带宽传输场景下,该数值可以作为判断整个终端的SAR是否超标的评判标准。
整体等效duty cycle的第一种计算方式:对于n个带宽中的每个带宽,将该带宽对应的等效duty cycle、指定功率值和评估时间窗口相乘,得到该带宽对应的第一乘积;将n个带宽分别对应的第一乘积累加,得到整体等效duty cycle。也即:
DC eq=(DC eq_Band_1x P as_1x T window+DC eq_Band_2x P as_2x T window+DC eq_Band_3x P as_3x T window+…+DC eq_Band_jx P as_jx T window+…DC eq_Band_nx P as_nx T window)/(P asx T window);          公式五
其中,DC eq是终端的整体等效duty cycle,P as是整个终端对应的指定功率值,指定功率值与指定功率等级对应,DC eq_Band_j是带宽j在指定功率值P as_j下的等效duty cycle;P as_j是带宽j对应的指定功率值;T window是整个评估时间窗口,DC eq_Band_jx P as_jx T window表示第一乘积。
整体等效duty cycle的第二种计算方式:对于n个带宽中的每个带宽,将该带宽对应的等效duty cycle和指定功率值相乘,得到该带宽对应的第二乘积;将n个带宽分别对应的第二乘积累加,得到整体等效duty cycle。也即:
DC eq=(DC eq_Band_1x P as_1+DC eq_Band_2x P as_2+DC eq_Band_3x P as_3+…+DC eq_Band_jx P as_j+…DC eq_Band_nx P as_n)/Pas;       公式六
其中,DC eq是终端的整体等效duty cycle,P as是整个终端对应的指定功率 值,指定功率值与指定功率等级对应,DC eq_Band_j是带宽j在指定功率值P as_j下的等效duty cycle;P as_j是带宽j对应的指定功率值,DC eq_Band_jx P as_j表示第二乘积。
而整体等效功率值和整体等效duty cycle之间的换算公式如下:
DC eqx P as=P eqx DC as      公式七
也就是说,确定了指定功率值P as以及指定duty cycle(DC as),整体等效duty cycle(DC eq)和整体等效功率值(P eq)是可以相互对应的。
单个带宽的等效功率值和单个带宽的等效功率值之间的换算公式如下:
DC eq_Band_jx P as_j=P eq_Band_jx DC as_j      公式八
公式八的换算原理与公式七的换算原理相同,确定了n个带宽中第j个带宽的指定功率值P as_j以及指定上行发射时间比例DC as_j,第j个带宽的等效上行发射时间比例DC eq_Band_j和等效功率值P  eq_Band_j是可以相互对应的。
所以,基站或终端可以通过公式四计算单个带宽的等效duty cycle,再通过公式七换算得到单个带宽的等效功率值;
基站或终端可以通过公式四、公式五/六直接计算得到终端的整体等效duty cycle,再通过公式八换算得到终端的整体等效功率值;
基站或终端可以通过公式四计算单个带宽的等效duty cycle,再通过公式七换算得到单个带宽的等效功率值;基站或终端再通过公式五/六计算得到终端的整体等效duty cycle。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图10示出了本公开一个示例性实施例提供的多带宽传输时的功率配置装置的框图。该装置可以通过软件、硬件或者两者的结合实现成为接入网设备的全部或一部分。该装置包括:处理模块420和发送模块440;
处理模块420,被配置为确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,n为大于1的整数;
处理模块420,被配置为为终端生成在n个带宽中的第一带宽的配置信息,上述配置信息对应的在n个带宽上的整体等效功率值不高于配置上限;
发送模块440,被配置为向终端发送配置信息,上述配置信息用于配置终端在第一带宽上进行上行发送时的功率配置参数。
在一些实施例中,所述处理模块420包括:
第一处理子模块4201,被配置为获取终端在n个带宽中的每个带宽对应的等效功率值,n个带宽包括本次配置的第一带宽;
第二处理子模块4202,被配置为根据终端在每个带宽上分别对应的等效功率值和指定上行发射时间比例duty cycle,计算得到终端的整体等效功率值;
第三处理子模块4203,被配置为在整体等效功率值不高于配置上限时,生成第一带宽的配置信息,上述第一带宽的配置信息用于配置终端在第一带宽上的第一功率值和/或第一duty cycle。
在一些实施例中,第二处理子模块4202,被配置为对于n个带宽中的每个带宽,将带宽对应的等效功率值、指定duty cycle和评估时间窗口相乘,得到带宽对应的第一乘积;将n个带宽分别对应的第一乘积累加,得到整体等效功率值;或,对于n个带宽中的每个带宽,将带宽对应的等效功率值和指定duty cycle相乘,得到带宽对应的第二乘积;将n个带宽分别对应的第二乘积累加,得到整体等效功率值。
在一些实施例中,对于n个带宽中的第j个带宽,第j个带宽对应的等效功率值等于:
P eq_Band_j=(DC p1x P 1x T 1+DC p2x P 2x T 2+DC p3x P 3x T 3+…+DC pix P ix T i+…DC pnx P nx T n)/(DC as_jx T window);
其中,P eq_Band_j是第j个带宽在指定duty cycle下的等效功率值,DC as_j是第j个带宽的对应的指定duty cycle,T window是整个评估时间窗口,DC pi是第i段子评估时间段内的duty cycle,P i是第i段子评估时间段内的实际功率等级对应的功率,T i是第i个子评估时间段,每个子评估时间段之间互不重叠的。
在一些实施例中,第一处理子模块4201,被配置为根据n个带宽中的每个带宽对应的默认duty cycle和预设功率值,计算得到每个带宽对应的等效功率值。
在一些实施例中,第一处理子模块4201,被配置为当需要调整第一带宽的第一功率值和第一duty cycle时,根据调整需求调整第一带宽的第一功率值和第一duty cycle中的至少一个,根据第一功率值和第一duty cycle计算得到第一带宽对应的等效功率值;
第一处理子模块4201,被配置为获取n个带宽中除第一带宽之外的第二带宽的第二功率值和第二duty cycle,根据第二功率值和第二duty cycle计算得到 第二带宽对应的等效功率值,或,获取n个带宽中除第一带宽之外的第二带宽对应的等效功率值。
在一些实施例中,处理模块420包括:
第四处理子模块4204,被配置为在整体等效功率值高于配置上限时,调低第二带宽的第二功率值和/或第二duty cycle。
在一些实施例中,处理模块420包括:
第五处理子模块4205,被配置为在调低次数高于预设次数且整体等效功率值仍然高于配置上限时,拒绝对第二带宽的第二功率值和/或第二duty cycle的调整。
在一些实施例中,处理模块420包括:
第六处理子模块4206,被配置为在整体等效功率值高于配置上限,且存在第二带宽的业务优先级高于第一带宽的业务优先级时,调低第一带宽的第一等效功率值和/或第一duty cycle。
在一些实施例中,该装置还包括:
处理模块420,被配置为在整体等效功率值不高于配置上限时,根据配置上限和整体等效功率值,计算得到剩余的等效功率值配额;
处理模块420,被配置为当需要调整第三带宽的等效功率值和duty cycle时,根据调整需求调整第三带宽的第三功率值和第三duty cycle中的至少一个;
处理模块420,被配置为根据第三带宽的第三功率值和/或第三duty cycle,计算得到第三带宽的等效功率值的增量;
处理模块420,被配置为当第三带宽的等效功率值的增量不高于剩余的等效功率值配额时,生成第三带宽的配置信息,上述上行发射功率的配置信息用于配置终端在第三带宽上的第三功率值和/或第三duty cycle。
在一些实施例中,该装置还包括接收模块460;
接收模块460,被配置为接收终端上报的整体等效功率值的配置上限。
在一些实施例中,接收模块460,被配置为接收终端上报的n个带宽中每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限;
处理模块420,被配置为根据每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限,确定整体等效功率值的配置上限。
在一些实施例中,处理模块420,被配置为将每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限、指定duty cycle和评估时间窗口相乘, 得到第三乘积;将第三乘积相加,确定整体等效功率值的配置上限。或者,处理模块420,被配置为将每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限和指定duty cycle,得到第四乘积;将第四乘积相加,确定整体等效功率值的配置上限;
在一些实施例中,接收模块460,被配置为接收终端上报的n个带宽中每个带宽在指定duty cycle下独立工作时的第一子配置上限;
处理模块420,被配置为根据每个带宽在指定duty cycle下独立工作时的第一子配置上限,确定每个带宽进行多带宽传输时的第二子配置上限,第二子配置上限小于第一子配置上限;
处理模块420,被配置为根据每个带宽进行多宽带传输时的指定duty cycle和第二子配置上限,确定整体等效功率值的配置上限。
在一些实施例中,处理模块420包括:
第七处理子模块4207,被配置为计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的平均值,将平均值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
或,第七处理子模块4207,被配置为计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最大值,将最大值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
或,第七处理子模块4207,被配置为计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最小值,将最小值与n的商值确定为每个带宽进行多带宽传输时的第二子配置上限;
或,第七处理子模块4207,被配置为计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的平均值,将平均值按照n个权重进行划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1;
或,第七处理子模块4207,被配置为计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最大值,将最大值按照n个权重进行划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1;
或,第七处理子模块4207,被配置为计算n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最小值,将最小值按照n个权重进行 划分后的n个划分值确定为n个带宽进行多带宽传输时的第二子配置上限,n个权重与n个带宽一一对应且n个权重的和值为1。
综上所述,本实施例提供的多带宽传输时的功率配置装置,通过处理模块确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,n为大于1的整数;为终端生成在n个带宽中的第一带宽的配置信息,上述配置信息对应的在n个带宽上的整体等效功率值不高于配置上限,整体等效功率值是根据终端在n个带宽上分别对应的等效功率值计算的;再通过发送模块向终端发送配置信息,上述配置信息用于配置终端在第一带宽上进行上行发送时的功率配置参数。在终端采用多带宽进行传输的情况下,该装置通过对终端的功率值的适应性配置,使终端被分配使用的n个带宽上的整体等效功率值不高于配置上限,避免对应的SAR值超标。
图11示出了本公开一个示例性实施例提供的多带宽传输时的功率配置装置的框图。该装置可以通过软件、硬件或者两者的结合实现成为终端的全部或一部分。该装置包括:接收模块560和处理模块520;
接收模块560,被配置为接收基站发送的配置信息,配置信息对应的在多带宽传输的n个带宽上的整体等效功率值不高于配置上限;
处理模块520,被配置为根据配置信息确定在第一带宽上进行上行发送时的功率配置参数,第一带宽是终端在多带宽传输时的n个带宽中的一个或者多个,n个带宽上的整体等效上行发射时间比例duty cycle不高于配置上限。
在一些实施例中,该装置还包括:
发送模块540,被配置为向基站上报整体等效功率值的配置上限;
或,发送模块540,被配置为向基站上报n个带宽中每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限;
或,发送模块540,被配置为向基站上报n个带宽中每个带宽在指定duty cycle下独立工作时的功率值的第一子配置上限。
在一些实施例中,该装置还包括:
处理模块520,被配置为根据n个宽带中的第j个宽带在第i段子评估时间段对应的子功率值上限、对应的duty cycle和对应的第i段子评估时间段,计算n个带宽中每个带宽在指定duty cycle下的第二子配置上限。
综上所述,本实施例提供的多带宽传输时的功率配置装置,通过接收模块 接收基站发送的配置信息,配置信息对应的在多带宽传输的n个带宽上的整体等效功率值不高于配置上限,整体等效功率值是根据终端在n个带宽上分别对应的等效功率值计算的;再通过处理模块根据配置信息确定在第一带宽上进行上行发送时的功率配置参数。在终端采用多带宽进行传输的情况下,该装置通过根据基站发送的配置信息对终端的功率值的适应性配置,使终端被分配使用的n个带宽上的整体等效功率值不高于配置上限,避免对应的SAR值超标。
图12示出了本公开一个示例性实施例提供的终端的结构示意图,该终端包括:处理器601、接收器602、发射器603、存储器604和总线605。
处理器601包括一个或者一个以上处理核心,处理器601通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器602和发射器603可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器604通过总线605与处理器601相连。
存储器604可用于存储至少一个指令,处理器601用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由终端的处理器执行以完成上述多带宽传输时的功率配置方法中由终端侧执行的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述非临时性计算机存储介质中的指令由终端的处理器执行时,使得终端能够执行上述多带宽传输时的功率配置方法。
图13是根据一示例性实施例示出的一种接入网设备700的框图。该接入 网设备700可以是基站。
接入网设备700可以包括:处理器701、接收机702、发射机703和存储器704。接收机702、发射机703和存储器704分别通过总线与处理器701连接。
其中,处理器701包括一个或者一个以上处理核心,处理器701通过运行软件程序以及模块以执行本公开实施例提供的多带宽传输时的功率配置方法中接入网设备所执行的方法。存储器704可用于存储软件程序以及模块。具体的,存储器704可存储操作***7041、至少一个功能所需的应用程序模块7042。接收机702用于接收其他设备发送的通信数据,发射机703用于向其他设备发送通信数据。
本公开一示例性实施例还提供了一种多带宽传输时的功率配置***(或称通信***),所述***包括:终端和接入网设备;
所述终端包括如图11所示实施例提供的多带宽传输时的功率配置装置;
所述接入网包括如10所示实施例提供的多带宽传输时的功率配置装置。
本公开一示例性实施例还提供了一种多带宽传输时的功率配置***(或称通信***),所述下行信号的接收***包括:终端和接入网设备;
所述终端包括如图12所示实施例提供的终端;
所述接入网设备包括如图13所示实施例提供的接入网设备。
本公开一示例性实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的多带宽传输时的功率配置方法中由终端或者接入网设备执行的步骤。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性 的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (39)

  1. 一种多带宽传输时的功率配置方法,其特征在于,所述方法包括:
    基站确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,n为大于1的整数;
    所述基站为所述终端生成在所述n个带宽中的第一带宽的配置信息,所述配置信息对应的在所述n个带宽上的所述整体等效功率值不高于所述配置上限;
    所述基站向所述终端发送所述配置信息,所述配置信息用于配置所述终端在所述第一带宽上进行上行发送时的功率配置参数。
  2. 根据权利要求1所述的方法,其特征在于,所述基站为所述终端生成在所述n个带宽中的第一带宽的配置信息,包括:
    所述基站获取所述终端在所述n个带宽中的每个带宽对应的等效功率值,所述n个带宽包括本次配置的第一带宽;
    所述基站根据所述终端在所述每个带宽上分别对应的等效功率值和指定上行发射时间比例duty cycle,计算得到所述终端的整体等效功率值;
    所述基站在所述整体等效功率值不高于所述配置上限时,生成所述第一带宽的配置信息,所述第一带宽的配置信息用于配置所述终端在所述第一带宽上的第一功率值和/或第一duty cycle。
  3. 根据权利要求2所述的方法,其特征在于,所述基站根据所述终端在所述每个带宽上分别对应的等效功率值和指定duty cycle,计算得到所述终端的整体等效功率值,包括:
    对于所述n个带宽中的每个带宽,将所述带宽对应的等效功率值、所述指定duty cycle和所述评估时间窗口相乘,得到所述带宽对应的第一乘积;将所述n个带宽分别对应的所述第一乘积累加,得到所述整体等效功率值;
    或,
    对于所述n个带宽中的每个带宽,将所述带宽对应的等效功率值和所述指定duty cycle相乘,得到所述带宽对应的第二乘积;将所述n个带宽分别对应的所述第二乘积累加,得到所述整体等效功率值。
  4. 根据权利要求2所述的方法,其特征在于,对于所述n个带宽中的第j个带宽,所述第j个带宽对应的等效功率值等于:
    P eq_Band_j=(DC p1x P 1x T 1+DC p2x P 2x T 2+DC p3x P 3x T 3+…+DC pix P i x T i+…DC pnx P nx T n)/(DC as_jx T window);
    其中,P eq_Band_j是第j个带宽在指定duty cycle下的等效功率值,DC as_j是第j个带宽对应的指定duty cycle,T window是整个评估时间窗口,DC pi是第i段子评估时间段内的duty cycle,P i是第i段子评估时间段内的实际功率等级对应的功率,T i是第i个子评估时间段,每个子评估时间段之间互不重叠的,i为不大于n的整数。
  5. 根据权利要求2至4任一所述的方法,其特征在于,所述基站获取所述终端在所述n个带宽中的每个带宽对应的等效功率值,包括:
    根据所述n个带宽中的每个带宽对应的默认duty cycle和预设功率值,计算得到所述每个带宽对应的等效功率值。
  6. 根据权利要求2至4任一所述的方法,其特征在于,所述基站获取所述终端在所述n个带宽中的每个带宽对应的等效功率值,包括:
    当需要调整所述第一带宽的所述第一功率值和所述第一duty cycle时,根据调整需求调整所述第一带宽的所述第一功率值和所述第一duty cycle中的至少一个,根据所述第一功率值和所述第一duty cycle计算得到所述第一带宽对应的等效功率值;
    获取所述n个带宽中除所述第一带宽之外的第二带宽的第二功率值和第二duty cycle,根据所述第二功率值和所述第二duty cycle计算得到所述第二带宽对应的等效功率值,或,获取所述n个带宽中除所述第一带宽之外的第二带宽对应的等效功率值。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述基站在所述整体等效功率值高于所述配置上限时,调低所述第二带宽的所述第二功率值和/或所述第二duty cycle。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述基站在调低次数高于预设次数且所述整体等效功率值仍然高于所述配置上限时,拒绝对所述第二带宽的第二功率值和/或第二duty cycle的调整。
  9. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述基站在所述整体等效功率值高于所述配置上限,且存在所述第二带宽的业务优先级高于所述第一带宽的业务优先级时,调低所述第一带宽的第一等效功率值和/或第一duty cycle。
  10. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述整体等效功率值不高于所述配置上限时,根据所述配置上限和所述整体等效功率值,计算得到剩余的等效功率值配额;
    当需要调整第三带宽的等效功率值和duty cycle时,根据调整需求调整所述第三带宽的第三功率值和第三duty cycle中的至少一个;
    根据所述第三带宽的第三功率值和/或第三duty cycle,计算得到所述第三带宽的等效功率值的增量;
    当所述第三带宽的等效功率值的增量不高于所述剩余的等效功率值配额时,生成所述第三带宽的配置信息,所述上行发射功率的配置信息用于配置所述终端在所述第三带宽上的第三功率值和/或第三duty cycle。
  11. 根据权利要求1所述的方法,其特征在于,所述基站确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,包括:
    所述基站接收所述终端上报的所述整体等效功率值的配置上限。
  12. 根据权利要求1所述的方法,其特征在于,所述基站确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,包括:
    所述基站接收所述终端上报的所述n个带宽中每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限;
    所述基站根据每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限,确定所述整体等效功率值的配置上限。
  13. 根据权利要求12所述的方法,其特征在于,所述基站根据每个带宽在 指定duty cycle下进行多带宽传输时的第二子配置上限,确定所述整体等效功率值的配置上限,包括:
    所述基站将所述每个带宽在预设duty cycle下进行多带宽传输时的第二子配置上限、指定duty cycle和评估时间窗口相乘,得到第三乘积;所述基站将所述第三乘积相加,确定所述整体等效功率值的配置上限;
    或者,
    所述基站将所述每个带宽在预设duty cycle下进行多带宽传输时的所述第二子配置上限和所述指定duty cycle相乘,得到第四乘积;所述基站将所述第四乘积相加,确定所述整体等效功率值的配置上限。
  14. 根据权利要求1所述的方法,其特征在于,所述基站确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,包括:
    所述基站接收所述终端上报的所述n个带宽中每个带宽在指定duty cycle下独立工作时的第一子配置上限;
    所述基站根据每个带宽在指定duty cycle下独立工作时的第一子配置上限,确定所述每个带宽进行多带宽传输时的第二子配置上限,所述第二子配置上限小于所述第一子配置上限;
    所述基站根据所述每个带宽进行多宽带传输时的指定duty cycle和第二子配置上限,确定所述整体等效功率值的配置上限。
  15. 根据权利要求14所述的方法,其特征在于,所述基站根据每个带宽在指定duty cycle下独立工作时的第一子配置上限,确定所述每个带宽进行多带宽传输时的第二子配置上限,包括:
    所述基站计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的平均值,将所述平均值与n的商值确定为所述每个带宽进行多带宽传输时的第二子配置上限;
    或,
    所述基站计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最大值,将所述最大值与n的商值确定为所述每个带宽进行多带宽传输时的第二子配置上限;
    或,
    所述基站计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最小值,将所述最小值与n的商值确定为所述每个带宽进行多带宽传输时的第二子配置上限;
    或,
    所述基站计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的平均值,将所述平均值按照n个权重进行划分后的n个划分值确定为所述n个带宽进行多带宽传输时的第二子配置上限,所述n个权重与所述n个带宽一一对应且所述n个权重的和值为1;
    或,
    所述基站计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最大值,将所述最大值按照n个权重进行划分后的n个划分值确定为所述n个带宽进行多带宽传输时的第二子配置上限,所述n个权重与所述n个带宽一一对应且所述n个权重的和值为1;
    或,
    所述基站计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最小值,将所述最小值按照n个权重进行划分后的n个划分值确定为所述n个带宽进行多带宽传输时的第二子配置上限,所述n个权重与所述n个带宽一一对应且所述n个权重的和值为1。
  16. 一种多带宽传输时的功率配置方法,其特征在于,所述方法包括:
    终端接收基站发送的配置信息,所述配置信息对应的在多带宽传输的n个带宽上的整体等效功率值不高于配置上限;
    所述终端根据所述配置信息确定在所述第一带宽上进行上行发送时的功率配置参数,所述第一带宽是所述终端在多带宽传输时的n个带宽中的一个或者多个,所述n个带宽上的整体等效上行发射时间比例duty cycle不高于配置上限。
  17. 根据权利要求16所述的方法,其特征在于,所述终端接收基站发送的配置信息之前,还包括:
    所述终端向所述基站上报所述整体等效功率值的配置上限;
    或,
    所述终端向所述基站上报所述n个带宽中每个带宽在指定duty cycle下进行 多带宽传输时的第二子配置上限;
    或,
    所述终端向所述基站上报所述n个带宽中每个带宽在指定duty cycle下独立工作时的功率值的第一子配置上限。
  18. 根据权利要求17所述的方法,其特征在于,所述终端向所述基站上报所述n个带宽中每个带宽在指定duty cycle下的第二子配置上限之前,包括:
    所述终端根据所述n个宽带中的第j个宽带在第i段子评估时间段对应的子功率值上限、对应的duty cycle和对应的第i段子评估时间段,计算所述n个带宽中每个带宽在指定duty cycle下的第二子配置上限。
  19. 一种多带宽传输时的功率配置装置,其特征在于,所述装置包括:
    处理模块,被配置为确定终端在n个带宽上进行多带宽传输时的整体等效功率值的配置上限,n为大于1的整数;
    所述处理模块,被配置为为所述终端生成在所述n个带宽中的第一带宽的配置信息,所述配置信息对应的在所述n个带宽上的所述整体等效功率值不高于所述配置上限;
    发送模块,被配置为向所述终端发送所述配置信息,所述配置信息用于配置所述终端在所述第一带宽上进行上行发送时的功率配置参数。
  20. 根据权利要求19所述的装置,其特征在于,所述处理模块包括:
    第一处理子模块,被配置为获取所述终端在所述n个带宽中的每个带宽对应的等效功率值,所述n个带宽包括本次配置的第一带宽;
    第二处理子模块,被配置为根据所述终端在所述每个带宽上分别对应的等效功率值和指定上行发射时间比例duty cycle,计算得到所述终端的整体等效功率值;
    第三处理子模块,被配置为在所述整体等效功率值不高于所述配置上限时,生成所述第一带宽的配置信息,所述第一带宽的配置信息用于配置所述终端在所述第一带宽上的第一功率值和/或第一duty cycle。
  21. 根据权利要求20所述的装置,其特征在于,所述第二处理子模块,被 配置为对于所述n个带宽中的每个带宽,将所述带宽对应的等效功率值、所述指定duty cycle和评估时间窗口相乘,得到所述带宽对应的第一乘积;将所述n个带宽分别对应的所述第一乘积累加,得到所述整体等效功率值;
    或,对于所述n个带宽中的每个带宽,将所述带宽对应的等效功率值和所述指定duty cycle相乘,得到所述带宽对应的第二乘积;将所述n个带宽分别对应的所述第二乘积累加,得到所述整体等效功率值。
  22. 根据权利要求20所述的装置,其特征在于,对于所述n个带宽中的第j个带宽,所述第j个带宽对应的等效功率值等于:
    P eq_Band_j=(DC p1x P 1x T 1+DC p2x P 2x T 2+DC p3x P 3x T 3+…+DC pix P i x T i+…DC pnx P nx T n)/(DC as_jx T window);
    其中,P eq_Band_j是第j个带宽在指定duty cycle下的等效功率值,DC as_j是第j个带宽的对应的指定duty cycle,T window是整个评估时间窗口,DC pi是第i段子评估时间段内的duty cycle,P i是第i段子评估时间段内的实际功率等级对应的功率,T i是第i个子评估时间段,每个子评估时间段之间互不重叠的。
  23. 根据权利要求20至22任一所述的装置,其特征在于,所述第一处理子模块,被配置为根据所述n个带宽中的每个带宽对应的默认duty cycle和预设功率值,计算得到所述每个带宽对应的等效功率值。
  24. 根据权利要求20至22任一所述的装置,其特征在于,
    所述第一处理子模块,被配置为当需要调整所述第一带宽的所述第一功率值和所述第一duty cycle时,根据调整需求调整所述第一带宽的所述第一功率值和所述第一duty cycle中的至少一个,根据所述第一功率值和所述第一duty cycle计算得到所述第一带宽对应的等效功率值;
    所述第一处理子模块,被配置为获取所述n个带宽中除所述第一带宽之外的第二带宽的第二功率值和第二duty cycle,根据所述第二功率值和所述第二duty cycle计算得到所述第二带宽对应的等效功率值,或,获取所述n个带宽中除所述第一带宽之外的第二带宽对应的等效功率值。
  25. 根据权利要求24所述的装置,其特征在于,所述处理模块包括:
    第四处理子模块,被配置为在所述整体等效功率值高于所述配置上限时,调低所述第二带宽的所述第二功率值和/或所述第二duty cycle。
  26. 根据权利要求25所述的装置,其特征在于,
    第五处理子模块,被配置为在调低次数高于预设次数且所述整体等效功率值仍然高于所述配置上限时,拒绝对所述第二带宽的第二功率值和/或第二duty cycle的调整。
  27. 根据权利要求23所述的装置,其特征在于,
    第六处理子模块,被配置为在所述整体等效功率值高于所述配置上限,且存在所述第二带宽的业务优先级高于所述第一带宽的业务优先级时,调低所述第一带宽的第一等效功率值和/或第一duty cycle。
  28. 根据权利要求20所述的装置,其特征在于,
    所述处理模块,被配置为在所述整体等效功率值不高于所述配置上限时,根据所述配置上限和所述整体等效功率值,计算得到剩余的等效功率值配额;
    所述处理模块,被配置为当需要调整第三带宽的等效功率值和duty cycle时,根据调整需求调整所述第三带宽的第三功率值和第三duty cycle中的至少一个;
    所述处理模块,被配置为根据所述第三带宽的第三功率值和/或第三duty cycle,计算得到所述第三带宽的等效功率值的增量;
    所述处理模块,被配置为当所述第三带宽的等效功率值的增量不高于所述剩余的等效功率值配额时,生成所述第三带宽的配置信息,所述上行发射功率的配置信息用于配置所述终端在所述第三带宽上的第三功率值和/或第三duty cycle。
  29. 根据权利要求19所述的装置,其特征在于,所述装置还包括:接收模块;
    所述接收模块,被配置为接收所述终端上报的所述整体等效功率值的配置上限。
  30. 根据权利要求19所述的装置,其特征在于,所述装置还包括:接收模 块;
    所述接收模块,被配置为接收所述终端上报的所述n个带宽中每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限;
    所述处理模块,被配置为根据每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限,确定所述整体等效功率值的配置上限。
  31. 根据权利要求30所述的装置,其特征在于,
    所述处理模块,被配置为将所述每个带宽在预设duty cycle下进行多带宽传输时的第二子配置上限、指定duty cycle和评估时间窗口相乘,得到第三乘积;将所述第三乘积相加,确定所述整体等效功率值的配置上限;
    或者,
    所述处理模块,被配置为将所述每个带宽在预设duty cycle下进行多带宽传输时的所述第二子配置上限和所述指定duty cycle相乘,得到第四乘积;将所述第四乘积相加,确定所述整体等效功率值的配置上限。
  32. 根据权利要求19所述的装置,其特征在于,
    所述接收模块,被配置为接收所述终端上报的所述n个带宽中每个带宽在指定duty cycle下独立工作时的第一子配置上限;
    所述处理模块,被配置为根据每个带宽在指定duty cycle下独立工作时的第一子配置上限,确定所述每个带宽进行多带宽传输时的第二子配置上限,所述第二子配置上限小于所述第一子配置上限;
    所述处理模块,被配置为根据所述每个带宽进行多宽带传输时的指定duty cycle和第二子配置上限,确定所述整体等效功率值的配置上限。
  33. 根据权利要求32所述的装置,其特征在于,所述处理模块包括:
    第七处理子模块,被配置为计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的平均值,将所述平均值与n的商值确定为所述每个带宽进行多带宽传输时的第二子配置上限;
    或,
    所述第七处理子模块,被配置为计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最大值,将所述最大值与n的商值确 定为所述每个带宽进行多带宽传输时的第二子配置上限;
    或,
    所述第七处理子模块,被配置为计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最小值,将所述最小值与n的商值确定为所述每个带宽进行多带宽传输时的第二子配置上限;
    或,
    所述第七处理子模块,被配置为计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的平均值,将所述平均值按照n个权重进行划分后的n个划分值确定为所述n个带宽进行多带宽传输时的第二子配置上限,所述n个权重与所述n个带宽一一对应且所述n个权重的和值为1;
    或,
    所述第七处理子模块,被配置为计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最大值,将所述最大值按照n个权重进行划分后的n个划分值确定为所述n个带宽进行多带宽传输时的第二子配置上限,所述n个权重与所述n个带宽一一对应且所述n个权重的和值为1;
    或,
    所述第七处理子模块,被配置为计算所述n个带宽在对应功率等级下独立工作时的等效功率值的第一子配置上限的最小值,将所述最小值按照n个权重进行划分后的n个划分值确定为所述n个带宽进行多带宽传输时的第二子配置上限,所述n个权重与所述n个带宽一一对应且所述n个权重的和值为1。
  34. 一种多带宽传输时的功率配置装置,其特征在于,所述装置包括:
    接收模块,被配置为接收基站发送的配置信息,所述配置信息对应的在多带宽传输的n个带宽上的整体等效功率值不高于配置上限;
    处理模块,被配置为根据所述配置信息确定在所述第一带宽上进行上行发送时的功率配置参数,所述第一带宽是所述终端在多带宽传输时的n个带宽中的一个或者多个,所述n个带宽上的整体等效上行发射时间比例duty cycle不高于配置上限。
  35. 根据权利要求34所述的装置,其特征在于,所述装置还包括:
    发送模块,被配置为向所述基站上报所述整体等效功率值的配置上限;
    或,所述发送模块,被配置为向所述基站上报所述n个带宽中每个带宽在指定duty cycle下进行多带宽传输时的第二子配置上限;
    或,所述发送模块,被配置为向所述基站上报所述n个带宽中每个带宽在指定duty cycle下独立工作时的功率值的第一子配置上限。
  36. 根据权利要求35所述的装置,其特征在于,所述装置还包括:
    所述处理模块,被配置为根据所述n个宽带中的第j个宽带在第i段子评估时间段对应的子功率值上限、对应的duty cycle和对应的第i段子评估时间段,计算所述n个带宽中每个带宽在指定duty cycle下的第二子配置上限。
  37. 一种基站,其特征在于,所述基站包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至15任一所述的多带宽传输时的功率配置方法。
  38. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求16至18任一所述的多带宽传输时的功率配置方法。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求1至18任一所述的多带宽传输时的功率配置方法。
PCT/CN2019/075285 2019-02-15 2019-02-15 多带宽传输时的功率配置方法、装置、设备及*** WO2020164144A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/310,603 US11864125B2 (en) 2019-02-15 2019-02-15 Power configuration method, apparatus, device, and system for multi-bandwidth transmission
PCT/CN2019/075285 WO2020164144A1 (zh) 2019-02-15 2019-02-15 多带宽传输时的功率配置方法、装置、设备及***
CN201980000161.1A CN110140389B (zh) 2019-02-15 2019-02-15 多带宽传输时的功率配置方法、装置、设备及***
EP19915562.3A EP3923638A4 (en) 2019-02-15 2019-02-15 POWER CONFIGURATION METHOD, DEVICE, DEVICE AND SYSTEM FOR MULTI-BANDWIDTH TRANSMISSION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075285 WO2020164144A1 (zh) 2019-02-15 2019-02-15 多带宽传输时的功率配置方法、装置、设备及***

Publications (1)

Publication Number Publication Date
WO2020164144A1 true WO2020164144A1 (zh) 2020-08-20

Family

ID=67566638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075285 WO2020164144A1 (zh) 2019-02-15 2019-02-15 多带宽传输时的功率配置方法、装置、设备及***

Country Status (4)

Country Link
US (1) US11864125B2 (zh)
EP (1) EP3923638A4 (zh)
CN (1) CN110140389B (zh)
WO (1) WO2020164144A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3927028A4 (en) * 2019-02-15 2022-10-05 Beijing Xiaomi Mobile Software Co., Ltd. METHOD, DEVICE, DEVICE AND SYSTEM FOR POWER CONFIGURATION DURING MULTI-BANDWIDTH TRANSMISSION
US11832249B2 (en) * 2019-05-13 2023-11-28 Qualcomm Incorporated Dynamic duty cycle
CN112584374B (zh) * 2019-09-27 2022-03-25 维沃移动通信有限公司 能力参数确定方法、上行调度方法、终端和网络侧设备
US12003446B2 (en) * 2021-10-15 2024-06-04 Qualcomm Incorporated Dynamic network power mode switching and timeline
CN113891444B (zh) * 2021-10-20 2023-08-11 中国联合网络通信集团有限公司 一种发射功率确定方法、装置和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595477A (zh) * 2011-01-10 2012-07-18 上海贝尔股份有限公司 一种用于传输功率余量报告的方法及装置
CN102685869A (zh) * 2009-12-30 2012-09-19 华为技术有限公司 一种功率控制方法和装置
CN103329602A (zh) * 2011-01-11 2013-09-25 三星电子株式会社 用于移动通信***的上行链路传输功率配置方法和装置
WO2014173329A1 (en) * 2013-04-26 2014-10-30 Mediatek Inc. Maximum output power configuration with ue preference in carrier aggregation
CN108702709A (zh) * 2018-05-31 2018-10-23 北京小米移动软件有限公司 控制上行发射功率的方法和装置、基站及用户设备
CN109152030A (zh) * 2017-06-16 2019-01-04 中兴通讯股份有限公司 功率共享的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8909945B2 (en) * 2005-04-08 2014-12-09 Interdigital Technology Corporation Method for transmit and receive power control in mesh systems
US7813739B2 (en) * 2007-09-27 2010-10-12 Koon Hoo Teo Method for reducing inter-cell interference in wireless OFDMA networks
CN103220768B (zh) 2012-01-21 2018-06-19 中兴通讯股份有限公司 一种载波聚合***中上行信号功率削减方法及装置
FR3009152B1 (fr) * 2013-07-25 2015-07-31 Thales Sa Procede de gestion des frequences hf en utilisation large bande
CN106961721B (zh) * 2016-01-11 2020-05-15 中兴通讯股份有限公司 一种实现上行功率控制的方法及终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685869A (zh) * 2009-12-30 2012-09-19 华为技术有限公司 一种功率控制方法和装置
CN102595477A (zh) * 2011-01-10 2012-07-18 上海贝尔股份有限公司 一种用于传输功率余量报告的方法及装置
CN103329602A (zh) * 2011-01-11 2013-09-25 三星电子株式会社 用于移动通信***的上行链路传输功率配置方法和装置
WO2014173329A1 (en) * 2013-04-26 2014-10-30 Mediatek Inc. Maximum output power configuration with ue preference in carrier aggregation
CN109152030A (zh) * 2017-06-16 2019-01-04 中兴通讯股份有限公司 功率共享的方法及装置
CN108702709A (zh) * 2018-05-31 2018-10-23 北京小米移动软件有限公司 控制上行发射功率的方法和装置、基站及用户设备

Also Published As

Publication number Publication date
US11864125B2 (en) 2024-01-02
EP3923638A4 (en) 2022-10-12
US20220124632A1 (en) 2022-04-21
CN110140389B (zh) 2022-05-20
EP3923638A1 (en) 2021-12-15
CN110140389A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2020164144A1 (zh) 多带宽传输时的功率配置方法、装置、设备及***
EP2986063A1 (en) Apparatus for power headroom reporting
CN102291811B (zh) 一种上行功率控制方法和设备
RU2010135534A (ru) Управление запасом по мощности в системах беспроводной связи
US6747967B2 (en) Method and system for computing the optimal slot to cell assignment in cellular systems employing time division duplex
CN113316241B (zh) 无线通信的方法和终端设备
CN114270955B (zh) 通信方法及装置
EP3577955B1 (en) Maximum communication distance range adaptation
US20230337252A1 (en) Downlink scheduling across a cellular carrier aggregation
WO2020164145A1 (zh) 多带宽传输时的功率配置方法、装置、设备及***
EP3113560A1 (en) Method and apparatus for configuring position of frequency resource
CN105516993A (zh) 一种认知网络中频谱资源分配方法及装置
WO2013008167A1 (en) Packet scheduling in a cellular communication network for the purpose of device -to -device communications
WO2021108956A1 (zh) 安全控制方法及装置
WO2020087977A1 (zh) 数据传输方法和设备
EP3826375B1 (en) Uplink transmitting power determining method, network device, and storage medium
WO2018137444A1 (zh) 一种消除干扰的方法和装置以及存储介质
CN112655250A (zh) 无线通信的方法、终端设备和网络设备
KR20230019970A (ko) 전력 제어 방법 및 장치
CN114902750A (zh) 发射功率调整的方法、装置、终端、基站及存储介质
EP3937562A1 (en) Resource configuration method, network device, and terminal device
CN111836351A (zh) 一种功率分配方法及装置
US20230156625A1 (en) Techniques for per communication link energy reservation
WO2023000990A1 (zh) 一种通信方法、装置及***
CN105766033A (zh) 一种上行聚合载波的方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019915562

Country of ref document: EP

Effective date: 20210909