WO2020164141A1 - 随机接入响应的发送和接收方法、装置和*** - Google Patents

随机接入响应的发送和接收方法、装置和*** Download PDF

Info

Publication number
WO2020164141A1
WO2020164141A1 PCT/CN2019/075279 CN2019075279W WO2020164141A1 WO 2020164141 A1 WO2020164141 A1 WO 2020164141A1 CN 2019075279 W CN2019075279 W CN 2019075279W WO 2020164141 A1 WO2020164141 A1 WO 2020164141A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
random access
message
access response
terminal device
Prior art date
Application number
PCT/CN2019/075279
Other languages
English (en)
French (fr)
Inventor
路杨
张磊
王昕�
Original Assignee
富士通株式会社
路杨
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 路杨, 张磊, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2019/075279 priority Critical patent/WO2020164141A1/zh
Publication of WO2020164141A1 publication Critical patent/WO2020164141A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of communications, and in particular to a method, device and system for sending and receiving random access responses.
  • the connection density of the massive machine type communication (mMTC) scenario needs to reach 1 million terminal devices/square kilometer, which is ultra-high and reliable.
  • the delay of the ultra-low delay service in URLLC needs to be less than 1ms.
  • the mMTC scenario requires a low-cost, low-signaling overhead, low-latency, and low-power communication system, because a large number of uplink small data packet bursts generated by massive machine-type communication terminal equipment need to pass random
  • the access is sent to the network, and if it is based on the traditional 4-step random access method and orthogonal multiple access technology, the air interface signaling overhead and transmission delay are relatively large; similarly, the business in the uRLLC scenario is mainly periodic or event triggered For small data packets, random access is used to send uplink data with a high probability.
  • the existing 4-step random access method cannot meet the requirements of low signaling overhead and low delay.
  • V2V vehicle-to-vehicle communication
  • eMBB enhanced mobile broadband
  • WiFi wireless fidelity
  • LBT listen before talk
  • the 2-step random access method and non-orthogonal multiple access technology are general solutions for reducing random access signaling overhead and delay, which can eliminate the uplink scheduling process during random access, especially for small data packets And the unlicensed frequency band business has obvious efficiency improvement. It can meet the needs of low cost, low power consumption, and massive small data packets in the application scenarios of massive large connection mMTC in the future, and meet the low latency and low power of frequent small data packets and random burst services in eMBB, uRLLC, V2V and other application scenarios Consumption requirements are generally applicable to random access to unlicensed spectrum and licensed spectrum.
  • the MsgA message sent by the terminal device in the first step includes the preamble and data.
  • the demodulation of different PUSCH data based on the demodulation reference signal (DMRS, Demodulation Reference Signal) on the resource, so the network equipment can successfully demodulate the preamble, but the PUSCH data demodulation fails, which affects the random access Success rate.
  • DMRS demodulation reference signal
  • Demodulation Reference Signal Demodulation Reference Signal
  • embodiments of the present invention provide a method, device and system for sending and receiving a random access response.
  • a method for sending a random access response wherein the method includes:
  • the network device receives a first message sent by the terminal device, where the first message includes a random access preamble and data;
  • the network device If the network device demodulates the random access preamble of the first message, but cannot demodulate the data of the first message, the network device sends a first random access response to the terminal device
  • the first random access response carries at least an uplink transmission authorization and a sending time advance command allocated to the terminal device by the network device for retransmitting the data of the first message;
  • the network device receives the retransmission of the data of the first message sent by the terminal device.
  • a method for receiving a random access response wherein the method includes:
  • the terminal device sends a first message to the network device, where the first message includes a random access preamble and data;
  • the terminal device receives the random access response sent by the network device, and if the received random access response is a first random access response, the terminal device performs an uplink message carried in the first random access response.
  • the data of the first message is retransmitted in the resource indicated by the transmission authorization; wherein, the first random access response at least carries the uplink transmission authorization and the transmission time advance command.
  • an apparatus for sending a random access response which is configured in a network device, wherein the apparatus includes:
  • a receiving unit which receives a first message sent by a terminal device, the first message including a random access preamble and data;
  • the sending unit if the network device demodulates the random access preamble of the first message, but cannot demodulate the data of the first message, the sending unit sends the first random access preamble to the terminal device.
  • An access response where the first random access response carries at least an uplink transmission authorization and a sending time advance command allocated to the terminal device by the network device for retransmitting the data of the first message;
  • the receiving unit receives the retransmission of the data of the first message sent by the terminal device.
  • a random access response receiving apparatus which is configured in a terminal device, wherein the apparatus includes:
  • a sending unit that sends a first message to the network device, where the first message includes a random access preamble and data;
  • a receiving unit which receives a random access response sent by the network device, and if the received random access response is a first random access response, the sending unit is configured to perform the uplink operation carried in the first random access response
  • the data of the first message is retransmitted in the resource indicated by the transmission authorization; wherein, the first random access response at least carries the uplink transmission authorization and the transmission time advance command.
  • a network device wherein the network device includes the device described in the foregoing third aspect.
  • a terminal device wherein the terminal device includes the apparatus described in the foregoing fourth aspect.
  • a communication system includes the network device described in the fifth aspect and the terminal device described in the sixth aspect.
  • a computer-readable program wherein when the program is executed in a network device, the program causes the computer to execute the method described in the first aspect in the network device .
  • a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in the foregoing first aspect in a network device.
  • a computer-readable program wherein when the program is executed in a terminal device, the program causes the computer to execute the method described in the foregoing second aspect in the terminal device .
  • a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in the foregoing second aspect in a terminal device.
  • the beneficial effects of the embodiments of the present invention are: according to at least one aspect of the embodiments of the present invention, when the network device successfully demodulates the random access preamble of the first message, but the data demodulation of the first message fails, It is possible to roll back from the 2-step contention-based random access failure process to the 4-step contention-based random access to avoid interruption of the random access process.
  • Fig. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a 4-step random access method
  • Figure 3 is a schematic diagram of a 2-step random access method
  • Embodiment 4 is a schematic diagram of a method for sending a random access response in Embodiment 1;
  • FIG. 5 is a schematic diagram of an example of interaction between terminal equipment and network equipment
  • Figure 6 is a schematic diagram of another example of interaction between a terminal device and a network device
  • FIG. 7 is a schematic diagram of another example of interaction between a terminal device and a network device
  • Fig. 8 is a schematic diagram of another example of interaction between a terminal device and a network device
  • Embodiment 9 is a schematic diagram of a method for receiving a random access response in Embodiment 2.
  • FIG. 10 is a schematic diagram of an example data structure of a random access response
  • FIG. 11 is a schematic diagram of a data structure of another example of a random access response
  • FIG. 12 is a schematic diagram of another example data structure of a random access response
  • FIG. 13 is a schematic diagram of a random access response sending device of Embodiment 3.
  • FIG. 14 is a schematic diagram of a random access response receiving apparatus of Embodiment 4.
  • FIG. 15 is a schematic diagram of a network device of Embodiment 5.
  • FIG. 16 is a schematic diagram of a terminal device of Embodiment 6.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelations, but they do not indicate the spatial arrangement or temporal order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” can refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other currently known or future communication protocols.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power node (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be referred to as "Terminal Equipment” (TE, Terminal Equipment).
  • the terminal equipment can be fixed or mobile, and can also be called a mobile station (MS, Mobile Station), terminal, user, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc. Wait.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, Vehicle-mounted communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention, which schematically illustrates a case where a terminal device and a network device are taken as an example.
  • the communication system 100 may include: a network device 101 and a terminal device 102.
  • Figure 1 only uses one terminal device as an example for illustration.
  • the network device 101 is, for example, the network device gNB in the NR system.
  • eMBB enhanced mobile broadband
  • mMTC large-scale machine type communication
  • URLLC Ultra-Reliable and Low- Latency Communication
  • the terminal device 102 may send data to the network device 101, for example, using an unauthorized transmission mode.
  • the network device 101 can receive data sent by one or more terminal devices 102, and feedback information (for example, acknowledgement ACK/non-acknowledgement NACK) information to the terminal device 102, and the terminal device 102 can confirm the end of the transmission process according to the feedback information, or can further Perform new data transmission, or data retransmission can be performed.
  • feedback information for example, acknowledgement ACK/non-acknowledgement NACK
  • FIG. 2 is a schematic diagram of the 4-step random access method.
  • the first step is that the terminal device selects the CBRA preamble, and the contention-based random access opportunity (RO, Random The preamble (Msg1) is sent in access Occasion);
  • the network device will send a random access response (RAR, Random Access Response) (Msg2) after receiving the preamble, authorizing a dedicated uplink resource for the terminal device that sends the preamble (Such as PUSCH resource) and allocate a temporary CRNTI (TC-RNTI) to indicate the uplink advance of PUSCH;
  • the terminal device sends a message (msg3) carrying signaling or data on the PUSCH resource;
  • the fourth step if After successfully receiving msg3, the network device sends contention resolution signaling (msg4) for the msg3 to the terminal device.
  • FIG 3 is a schematic diagram of a 2-step random access method.
  • the first step is that the terminal device sends MsgA.
  • MsgA contains the CBRA preamble and data part (MsgA signaling or service data).
  • the terminal equipment can send the preamble of MsgA in the competing RO and the signaling or service data of MsgA in the competing PUSCH resource;
  • the network device sends MsgB after receiving MsgA, and sends random access to the terminal device through the MsgB.
  • the terminal device can transmit without uplink scheduling during the random access process, and upload signaling or service packets in one step, reducing random access signaling and delay.
  • the network equipment can demodulate MsgA data through the demodulation reference signal (DMRS, Demodulation Reference Signal) sent on the PUSCH resource of the MsgA data, where the DMRS sequence is related to the sequence index used by the MsgA preamble sent by the terminal device
  • the network device can obtain the DMRS corresponding to the preamble sequence index according to the preamble demodulated in the RO resource.
  • the network device can demodulate the MsgA data according to the DMRS corresponding to the preamlbe sequence index.
  • the network device can successfully demodulate the MsgA preamble, but the demodulation of the MsgA data fails.
  • Fig. 4 is a schematic diagram of a method for sending a random access response in this embodiment. Please refer to Fig. 4, the method includes:
  • Step 401 The network device receives a first message sent by a terminal device, where the first message includes a random access preamble and data;
  • Step 402 If the network device demodulates the random access preamble of the first message, but cannot demodulate the data of the first message, the network device sends the first random access preamble to the terminal device.
  • An access response where the first random access response carries at least an uplink transmission authorization and a sending time advance command allocated to the terminal device by the network device for retransmitting the data of the first message;
  • Step 403 The network device receives the retransmission of the data of the first message sent by the terminal device.
  • the foregoing first message may also be called a random access request, which may be MsgA in a 2-step random access process, as shown in FIG. 3, the foregoing random access preamble is the one in FIG. preamble, the above data is the payload in Figure 3.
  • a random access request which may be MsgA in a 2-step random access process
  • the foregoing random access preamble is the one in FIG. preamble
  • the above data is the payload in Figure 3.
  • the network device may send a random access response (referred to as the first message) to the terminal device.
  • Random access response which is different from the random access response carried in MsgB of the 2-step random access mode.
  • the first random access response is similar to the random access response carried in Msg2 of the 4-step random access mode. It does not carry contention resolution information, but only carries the uplink transmission authorization assigned by the network device to the terminal device and the sending time advance command. Therefore, the terminal device can fall back from the 2-step random access process to the 4-step random access process, which avoids Interruption of the random access process.
  • the network device can send The terminal device sends a random access response (referred to as the second random access response), which is similar to the random access response carried by MsgB in the 2-step random access method.
  • the second random access response carries at least the second random access response.
  • the contention resolution information of the data of a message and the TC-RNTI allocated by the network equipment to the terminal equipment.
  • the terminal device can determine whether the contention resolution is successful according to the contention resolution information.
  • the second random access response may also carry a transmission time advance command for the terminal device to send uplink data, and the terminal device may adjust the data transmission advance according to the transmission time advance command.
  • the network device after receiving the retransmission of the data of the first message, the network device sends a third random access response to the terminal device if it can demodulate the data of the first message according to the retransmission of the data of the first message.
  • the third random access response at least carries contention resolution information for the data of the first message.
  • FIG. 5 is a schematic diagram of an example of interaction between a terminal device and a network device.
  • the terminal device sends a first message containing a random access preamble and data to the network device (S501), and the network device is demodulating
  • the first random access response is sent to the terminal device (S502), and the terminal device sends the repetition of the data of the first message according to the first random access response.
  • the network device sends a third random access response to the terminal device in the case of demodulating the data of the first message according to the retransmission of the data of the first message (S504).
  • the random access preamble of the first message can be sent in a pre-configured physical random access channel opportunity (PRACH occasion), and the PRACH occasion has a mapping relationship with one or more uplink transmission resources.
  • the data of a message can be sent in a pre-configured uplink transmission resource that has a mapping relationship with the PRACH occasion.
  • the system can preset rules to enable the terminal device to determine the uplink transmission resource used to send the data part of the first message. For example, the terminal device can send the preamble according to the PRACH occasion and the preamble The sequence index uniquely determines the uplink transmission resource.
  • the PDCCH of the first random access response can be addressed to the random access radio network temporary identifier (RA-RNTI).
  • RA-RNTI random access radio network temporary identifier
  • the terminal device After receiving the PDCCH addressed to the RA-RNTI, the terminal device can The foregoing first random access response is received in the downlink authorized resource indicated in the PDCCH.
  • the medium access control (MAC) layer subheader of the transmission block scheduled by the PDCCH may contain identification information matching the random access preamble sequence of the first message, and the terminal device may determine success accordingly. Receive the first random access response.
  • MAC medium access control
  • the above-mentioned RA-RNTI may correspond to the time and frequency position of the above-mentioned PRACH occasion.
  • the existing standards can be referred to, and this embodiment does not limit this.
  • the network device may also schedule the terminal device to send the first message Automatic retransmission of mixed data.
  • the network device can send a hybrid automatic repeat request (HARQ) NACK signaling (called the first HARQ NACK signaling) to the terminal device to schedule the terminal.
  • HARQ NACK signaling a hybrid automatic repeat request (HARQ) NACK signaling
  • the device sends the first HARQ retransmission of the data for the first message, where the first HARQ NACK signaling can be through radio resource control (RRC) layer message, medium access control (MAC) layer signaling, or physical layer signaling (Such as PDCCH) sent.
  • RRC radio resource control
  • MAC medium access control
  • PDCCH physical layer signaling
  • the network device If the number of first HARQ retransmissions of the data of the first message reaches a preset threshold (referred to as the first threshold), and the network device still has not demodulated the data of the first message, the network device sends the terminal device Sending the first random access response.
  • the subsequent process is the same as the foregoing process of directly sending the first random access response, and the description is omitted here.
  • the network device may send a random access to the terminal device.
  • Incoming response (referred to as the fourth random access response)
  • the fourth random access response can carry the same content as the random access response carried by MsgB in the 2-step random access mode, and it carries at least the content for the first random access response.
  • the contention resolution information of the data of the message can determine whether the contention resolution is successful according to the contention resolution information.
  • the fourth random access response may also carry the TC-RNTI allocated by the network device to the terminal device. If the contention is resolved successfully, the terminal device may set the TC-RNTI as the used C-RNTI. In addition, in this example, the fourth random access response may also carry a transmission time advance command for the terminal device to send uplink data, and the terminal device may adjust the data transmission advance according to the transmission time advance command.
  • Fig. 6 is a schematic diagram of another example of interaction between a terminal device and a network device.
  • the terminal device sends a first message to the network device (S601), and the network device demodulates the first message. If the random access preamble of the message is not demodulated, but the data of the first message is not demodulated, the first HARQ NACK signaling is sent to the terminal device (S602), and the terminal device performs the data of the first message accordingly.
  • the first HARQ retransmission (S603), the network device sends the first random access response to the terminal device when the number of times of the first HARQ retransmission reaches the first threshold and the data of the first message is not demodulated.
  • the terminal device may retransmit the data of the first message (S605), and the network device may decode the data of the first message.
  • the network device correctly demodulates the data according to the retransmission of the first message, it sends a third random access response to the terminal device (S606).
  • Fig. 7 is a schematic diagram of another example of interaction between a terminal device and a network device.
  • the difference from Fig. 6 is that the network device demodulates the first HARQ retransmission number before the first threshold.
  • the foregoing fourth random access response is sent to the terminal device.
  • the terminal device sends a first message to the network device (S701).
  • the network device demodulates the random access preamble of the first message, but does not demodulate the first message.
  • the first HARQ NACK signaling is sent to the terminal device (S702), and the terminal device performs the first HARQ retransmission for the data of the first message accordingly (S703), and the network device transmits the data in the first HARQ Before the number of retransmissions reaches the first threshold, the data of the first message is demodulated, and the fourth random access response is sent to the terminal device (S704), and the terminal device can determine whether the contention resolution is successful.
  • the network device may clear the buffer area used for soft-combining the data of the first message, and when the first message is received When the data is retransmitted, the retransmitted data is used to decode the data of the first message; or, the network device may not clear the buffer area used for soft combining and decoding the data of the first message.
  • the data of the first message is retransmitted, the data of the first message is soft-combined and decoded using the data of the buffer and the retransmitted data.
  • the network device still The terminal device may be scheduled to send a hybrid automatic retransmission for the retransmission of the data of the first message.
  • the network device may send a hybrid automatic repeat request (HARQ) NACK signaling (referred to as second HARQ NACK signaling) to the terminal device, and schedule the terminal device to send a second HARQ retransmission for the data of the first message
  • HARQ NACK signaling may be sent through radio resource control (RRC) layer messages, medium access control (MAC) layer signaling, or physical layer signaling (such as PDCCH).
  • RRC radio resource control
  • MAC medium access control
  • PDCCH physical layer signaling
  • the network device demodulates the data of the first message, then the network device can send the data to the terminal device Send a random access response (referred to as the fifth random access response), the fifth random access response may be the same as the content carried in the third random access response, and it carries at least the contention for the data of the first message Resolution information.
  • the fifth random access response is similar to the random access response carried in Msg4 of the 4-step random access mode, and it at least carries contention resolution information for the data of the first message, and accordingly, the terminal device can resolve the contention according to the contention resolution. The information determines whether the contention resolution is successful, which will be described in Embodiment 2. This completes the random access process.
  • Fig. 8 is a schematic diagram of another example of interaction between the terminal device and the network device.
  • the terminal device sends a first message to the network device (S801), and the network device demodulates the first message. If the random access preamble of a message is not demodulated, the first random access response is directly sent to the terminal device (S802). After that, the terminal device may retransmit the data of the first message (S803), and the network device decodes the data of the first message.
  • the network device still cannot demodulate the data of the first message, and sends the second HARQ NACK signaling to the terminal device, as shown in S804 in Figure 8, to schedule the terminal device to send The second HARQ retransmission of the data of the first message, and then the terminal device performs the second HARQ retransmission of the data of the first message (S805).
  • the network device demodulates the data of the first message, and the network device may send a fifth random access response to the terminal device (S806).
  • the foregoing third random access response may also carry the C-RNTI allocated to the terminal device.
  • the PDCCH of the third random access response may be addressed to RA-RNTI, and the MAC layer subheader of the transport block scheduled by the PDCCH may contain identification information matching the random access preamble of the first message; wherein, the The random access preamble of the first message is sent in the pre-configured PRACH occasion, and the above-mentioned RA-RNTI corresponds to the time and frequency position of the PRACH occasion.
  • the terminal device can receive the PDU of the MAC layer random access response (the third random access response) in the downlink authorized resource indicated by the PDCCH.
  • the above-mentioned first random access response may also carry the TC-RNTI allocated by the network device to the terminal device. Therefore, the terminal device may use the TC-RNTI to scramble data and scramble according to the aforementioned
  • the sending time advance command adjusts the data sending advance amount, which will be specifically described in Embodiment 2.
  • the PDCCH of the third random access response can be addressed to the radio network temporary identity (C-RNTI); the C-RNTI matches the aforementioned first random access
  • the terminal device may receive the third random access response in the downlink authorized resource indicated by the PDCCH.
  • the third random access response may also carry the uplink transmission authorization and transmission time advance command allocated by the network device to the terminal device, and the terminal device may advance the transmission time according to the transmission time. Command to adjust the data sending advance, and send the uplink data on the resource indicated by the uplink transmission authorization.
  • the 2-step random access process if the network device successfully demodulates the random access preamble (MsgA preamble) of the first message, but the data (MsgA payload) of the first message is demodulated In the case of failure, the 2-step random access process can be rolled back to the 4-step random access process, avoiding the interruption of the random access process.
  • This embodiment provides a method for receiving a random access response, which is applied to a terminal device, and is a processing on the terminal device side corresponding to the method in Embodiment 1, wherein the same content as in Embodiment 1 will not be repeated.
  • FIG. 9 is a schematic diagram of a method for receiving a random access response in this embodiment. As shown in FIG. 9, the method includes:
  • Step 901 The terminal device sends a first message to the network device, where the first message includes a random access preamble and data;
  • Step 902 The terminal device receives a random access response sent by the network device
  • Step 903 If the received random access response is a first random access response, the terminal device retransmits the first message in the resource indicated by the uplink transmission authorization carried in the first random access response Data; wherein, the first random access response carries at least the uplink transmission authorization and transmission time advance command.
  • the definitions of the above-mentioned first message and the above-mentioned first random access response are the same as in Embodiment 1.
  • the above-mentioned first message is, for example, steps S501, S601, S701, and S801 shown in FIGS. 5-8.
  • the first random access response is, for example, step S502 shown in FIG. 5, or step S604 shown in FIG. 6, or S802 shown in FIG. 8, and the description is omitted here.
  • the terminal device when the terminal device sends the above-mentioned first message (steps S501, S601, S701, and S801 as shown in Figure 5-8) to the network device for 2-step random access, if it receives To the first random access response (step S502 shown in FIG. 5 or step S604 shown in FIG. 6 or step S802 shown in FIG. 8) sent by the network device, the terminal device returns from the 2-step random access process Back to the 4-step random access process to avoid the interruption of the random access process.
  • the terminal device judges whether or not according to the contention resolution information carried in the second random access response The contention resolution is successful; wherein, the second random access response carries at least the contention resolution information for the data of the first message and the TC-RNTI allocated by the network device to the terminal device, and the terminal device can be based on the aforementioned contention
  • the resolution information determines whether the competition resolution is successful. If the terminal determines that the contention resolution is successful, it can use TC-RNTI as the C-RNTI used by itself.
  • the second random access response may also carry a transmission time advance command for the terminal to send uplink data, and the terminal device may adjust the data transmission advance according to the transmission time advance command. Further, the second random access response may also carry an uplink authorization for the terminal to send uplink data.
  • the network device further The data of the first message is decoded. If the network device can demodulate the data of the first message according to the retransmission of the data of the first message, the network device may send a third random access response to the terminal device (step S504, step S606), where the The third random access response carries at least contention resolution information for the data of the first message, and the terminal device determines whether the contention resolution is successful according to the contention resolution information. For details, refer to step S504 in FIG. 5 and step 606 in FIG. 6.
  • the terminal device can send the random access preamble of the first message in the pre-configured PRACH occasion And, the terminal device may determine the uplink transmission resource for sending the data of the first message according to the PRACH occasion, or determine the uplink resource for sending the data of the first message according to the PRACH occasion and the random access preamble of the first message , And send the data of the first message on the determined uplink transmission resource.
  • the PDCCH of the first random access response sent by the network device can be addressed to RA- RNTI
  • the MAC layer subheader of the transmission block scheduled by the PDCCH may include identification information matching the random access preamble of the first message, and thus, the terminal device may determine that the first random access response is successfully received.
  • the above-mentioned RA-RNTI may correspond to the time and frequency position of the above-mentioned PRACH occasion.
  • the existing standards can be referred to, and this embodiment does not limit this.
  • the network device may send the first HARQ NACK signaling to the terminal device (step S602, step 702), and the terminal device may be scheduled to send the first HARQ retransmission of the data of the first message.
  • the terminal device may also receive The first HARQ NACK signaling sent by the network device (step S602, step 702), the first HARQ NACK signaling is used to schedule the first HARQ retransmission for the data of the first message; if the first message is If the number of first HARQ retransmissions of data does not reach the first threshold, the terminal device can continue to send the first HARQ retransmission of the data of the first message to the network device (step 603, step 703).
  • the processing of the network device has been described in Embodiment 1, and will not be repeated here.
  • the network device may send the first message to the terminal device.
  • a random access response (step S604).
  • the first random access response carries at least an uplink transmission authorization and a transmission time advance command, and the terminal device retransmits the first random access response from the resources indicated by the uplink transmission authorization carried in the first random access response.
  • the data of a message is not limited to Embodiment 1, as shown in FIG. 6, if the network device still does not demodulate the data of the first message according to the first HARQ retransmission.
  • the network device may send a fourth random access response to the terminal device (step S704), and the fourth random access response at least carries information for all
  • the terminal device judges whether the contention resolution is successful according to the contention resolution information carried in the fourth random access response.
  • the terminal device may use the data in the data transmission buffer of the first message to retransmit the data of the first message, that is, use the data in the data transmission buffer of the first message to perform the first HARQ retransmission; or, the MAC layer encapsulation and grouping entity of the terminal device regenerates the data of the first message, and the terminal device puts the re-uploaded data of the first message into the data transmission buffer of the first message and sends .
  • the terminal device may use the data in the data transmission buffer of the first message to retransmit the data of the first message, that is, use the data in the data transmission buffer of the first message to perform the first HARQ retransmission; or, the MAC layer encapsulation and grouping entity of the terminal device regenerates the data of the first message, and the terminal device puts the re-uploaded data of the first message into the data transmission buffer of the first message and sends .
  • step S903 when the terminal device retransmits the data of the first message in the resource indicated by the uplink transmission authorization carried in the first random access response, the terminal device may The foregoing transmission time advance command carried in the access response adjusts the uplink transmission time, and uses RA-RNTI to retransmit the data of the first message.
  • the third random access response (S504 shown in FIG. 5 or S606 shown in FIG. 6) sent by the subsequent network device may carry the TC-RNTI allocated by the network device to the terminal device.
  • the PDCCH of the third random access response is also addressed to the RA-RNTI, and the transmission block scheduled by the PDCCH contains identification information matching the random access preamble of the first message; wherein, the RA-RNTI corresponds to the terminal device sending The time and frequency location of the PRACH occurrence of the first message preamble.
  • the foregoing first random access response may carry the TC-RNTI allocated by the network device to the terminal device, and then in step 903, the terminal device may carry the TC-RNTI according to the first random access response.
  • the foregoing sending time advance command adjusts the uplink sending time, and the data of the foregoing first message is retransmitted using the TC-RNTI carried in the first random access response.
  • the PDCCH of the third random access response (S504 shown in FIG. 5 or S606 shown in FIG. 6) sent by the subsequent network device can be addressed to the C-RNTI, which matches the first random access response above
  • the TC-RNTI carried in the, or the C-RNTI matches the C-RNTI MAC CE transmitted in the data of the first message.
  • the network device further performs the The data is decoded. If the network device still cannot demodulate the data of the first message according to the retransmission of the data of the first message, the network device can send the second HARQ NACK signaling to the terminal device (step S804), and the terminal device is scheduled to send The second HARQ retransmission of the data of the first message, in this embodiment, the terminal device may also receive the second HARQ NACK signaling sent by the network device, if the second HARQ retransmission of the data of the first message If the number of times does not reach the second threshold, the terminal device continues to send the second HARQ retransmission of the data of the first message to the network device (step S805).
  • the network device may send the fifth message to the terminal device.
  • Random access response step S806
  • the subsequent terminal device determines whether the contention resolution is successful according to the contention resolution information carried in the fifth random access response, thereby completing the random access process.
  • the terminal device determines whether the contention resolution is successful according to the contention resolution information in the random access response (for example, the second, third, fourth, or fifth random access response), if the contention resolution information matches Based on the data of the first message, the terminal device determines that the contention resolution is successful, and sets the C-RNTI to the TC-RNTI; if the contention resolution information does not match the data of the first message, the terminal device determines that the contention resolution failed, The above-mentioned TC-RNTI is discarded. If the terminal equipment starts the time advance (TA) timer, the TA timer needs to be stopped.
  • TA time advance
  • the 2-step random access process if the network device successfully demodulates the random access preamble (MsgA preamble) of the first message, but the data (MsgA payload) of the first message is demodulated In the case of failure, the 2-step random access process can be rolled back to the 4-step random access process, avoiding the interruption of the random access process.
  • the network device is the gNB and the terminal device is the UE as an example, but as mentioned above, this embodiment is not limited to this.
  • Figure 10 is a schematic diagram of an example data structure of a random access response.
  • the gNB successfully decodes the MsgA preamble on the RO resource used to send the MsgA preamble, but cannot send the MsgA preamble. Successfully demodulate the data of MsgA on the PUSCH resource corresponding to the RO resource.
  • the UE initiates 2-step random access, randomly selects a preamble index in the CBRA preamble, sends the MsgA preamble in the selected RO resource, and sends the MsgA data in the PUSCH resource corresponding to the RO resource.
  • the preamble and data of MsgA can be transmitted simultaneously or sequentially on different time domain resources.
  • the RO resource for sending the MsgA preamble and the PUSCH resource for sending the MsgA data are pre-configured by the system, and there is a mapping relationship between the two resources, and one RO resource corresponds to one or more PUSCH resources.
  • MsgA data can include CCCH SDU or C-RNTI MAC CE, and its meaning can refer to existing standards.
  • the gNB When the gNB receives MsgA, it first demodulates the preamble sent on the RO resource, and obtains the DMRS of the demodulated MsgA data according to the index of the demodulated preamlbe.
  • the DMRS of the MsgA data is distributed in the PUSCH of the MsgA data, and the gNB passes through the MsgA.
  • the DMRS of the data demodulates the MsgA data.
  • the gNB cannot successfully demodulate the data part of MsgA according to the preamble of MsgA.
  • the gNB then sends the first RAR to the UE.
  • the first RAR includes the TAC, the allocated TC-RNTI, and an uplink transmission grant (UL grant) to instruct the UE to fall back to the 4-step RACH process. It does not carry the MAC CE for contention resolution.
  • the MAC layer random access response PDU sent by the gNB is scrambled by RA-RNTI, and the transmitted resource location is indicated by the PDCCH scrambled by RA-RNTI.
  • RA-RNTI is calculated based on the location of the RO resource sending the MsgA preamble.
  • the MAC layer random access response PDU contains MAC subPDU, and the subheader (subHeader) of MAC subPDU contains RAPID, which indicates the index of the preamble sent by the UE and contains 4-step RACH RAR information (E and T shown in Figure 10). , Its meaning can refer to existing standards).
  • the UE starts the 4-step RACH random access response receiving window timer after sending the MsgA preamble, and starts the 2-step random access response receiving window timer after sending the MsgA data and starts to try to receive the MsgB.
  • the UE receives the MAC layer random access response PDU in the downlink authorized resource indicated in the PDCCH. If the RAPID in the subHeader of the MAC SubPDU in the MAC layer random access response PDU is the index of the preamble of the transmitted MsgA, the UE determines that the RAR is successfully received. If the RAR is the first RAR, the UE determines to fall back from 2-step to 4-stepRACH.
  • the UE can perform the third step of 4-step RACH, that is, the UE resends the data part of MsgA in the uplink authorized resource indicated by the RAR, uses the TC-RNTI allocated in the RAR to scramble the data and scrambles the data according to the RAR
  • the TAC adjusts the data transmission advance.
  • the retransmitted MsgA data can use the preset RV version, which can be the same as or different from the original MsgA data, and on the gNB side, Msg3 can be received in soft merge with the initially transmitted data.
  • the UE when the UE sends MsgA data, it can also use the HARQ process or not use the HARQ process. If the HARQ process is used, if the gNB cannot demodulate the MsgA data correctly, the Gnb can send HARQ NACK to the UE. The HARQ retransmission of the data for MsgA is sent. If the maximum number of retransmissions is reached and the data is not received correctly, the first RAR is sent.
  • Figure 11 is a schematic diagram of the data structure of another example of a random access response.
  • two UEs select different preambles when performing 2-step random access, such as preamble index A and B, and Choose to send the preamble on the same RO resource and respectively transmit the MsgA data on the PUSCH resource corresponding to the RO resource.
  • the gNB successfully decodes preamble A and preamble B in the RO, and successfully demodulates the data of MsgA corresponding to preamble B on the PUSCH resource corresponding to the RO resource, but fails to successfully demodulate the data of MsgA corresponding to preamble A.
  • two UEs initiate 2-step random access and randomly select different preamble indexes A and B in the CBRA preamble.
  • the two UEs choose to send the MsgA preamble in the same RO resource, and
  • the data of MsgA is sent in the PUSCH resource corresponding to the RO.
  • the preamble and the data can be transmitted at the same time or sent on different time domain resources one after another.
  • the RO resource for sending the preamble of MsgA and the PUSCH resource for sending the data of MsgA are pre-configured by the system, and there is a mapping relationship between the two resources, and one RO corresponds to one or more PUSCH resources.
  • MsgA data can include CCCH SDU or C-RNTI MAC CE, and its meaning can refer to existing standards.
  • the gNB first demodulates the preamble sent on the RO resource, and obtains the DMRS of the MsgA data of the two UEs according to the demodulated preamlbe index A and B.
  • the DMRS of the MsgA data is distributed in the PUSCH of the MsgA data, and then the DMRS is decoded. Adjust the MsgA data of the two UEs.
  • the gNB successfully demodulates the data of MsgA corresponding to preamble B but fails to demodulate the data of MsgA corresponding to preamble A. After that, the gNB sends RAR to the two UEs.
  • the MAC layer random access response PDU contains two MAC subPDUs.
  • MAC subPDU 2 corresponds to the RAR of the UE that successfully demodulates the MsaA data.
  • the subheader Contains RAPID, which indicates preamble index B, and the payload contains a second RAR used to indicate that the UE sending preamble A succeeds in random access.
  • This second RAR carries contention resolution MAC CE, TC-RNTI allocated by gNB for the UE, and uplink Authorization or timing advance; as shown in Figure 11, MAC subPDU 1 corresponds to the RAR of the UE that failed to demodulate the data of MsaA.
  • the subheader contains RAPID, which indicates preamble index A, and the payload contains the first RAR for Instruct the UE to fall back to the 4-step RACH process.
  • the first RAR carries the TC-RNTI, uplink grant or timing advance allocated by the gNB for the UE, and does not carry the contention resolution MAC CE.
  • the MAC layer random access response PDU sent by the gNB is scrambled by RA-RNTI, and the transmitted resource location is indicated by the PDCCH scrambled by RA-RNTI.
  • RA-RNTI is calculated based on the RO resource location of the preamble that sends the MsgA.
  • the two UEs After the two UEs send the MsgA preamble and receive the PDCCH addressed to the RA-RNTI, they receive the MAC layer random access response PDU in the downlink authorized resource indicated in the PDCCH.
  • RAPID in the subHeader of the sent preamble A is determined to successfully receive the random access response; this MAC SubPDU 1 contains For the first RAR (4-step RAR), the UE determines to fall back from 2-step to 4-step RACH, and in the next step, the UE executes the third step of 4-step RACH, that is, the UE resends the MsgA in the uplink authorized resources indicated by the RAR Use the TC-RNTI allocated in the first RAR (4-step RAR) to scramble the data and adjust the data transmission advance according to the TA in the RAR.
  • the retransmitted MsgA data can use the preset RV version, which can be the same as or different from the initial MsgA data, and on the gNB side, Msg3 can be received in soft merge with the initially transmitted MsgA data.
  • the UE sending the preamble B receives the MAC SubPDU 2 in the MAC layer random access response PDU
  • the RAPID in the subHeader of the preamble B is determined to successfully receive the random access response
  • the MAC SubPDU 2 contains the second RAR (not only the content of 4-step RAR, but also contention resolution MAC CE)
  • the UE determines to continue 2-step random access, and further, the UE starts the TA timer and adjusts the data transmission advance according to the TA in the second RAR.
  • the content of the MAC CE judges whether the contention resolution is successful.
  • the contention resolution and random access are successful, and the allocated TC-RNTI is set as the C-RTNI used. If the content of the MAC CE is inconsistent with the MsgA content, If the contention resolution fails, stop TA timer and ignore the received TC-RNTI.
  • the gNB will not send two RAR formats (ie, 2-step RAR and 4-step RAR) for the same preamble, so the UE can confirm the random access status as long as it receives the RAR.
  • the UE can use HARQ process or not use HARQ process when sending MsgA data. If HARQ process is used, if gNB cannot demodulate MsgA data correctly, it will send HARQ NACK to UE through PDCCH and schedule retransmission. , The UE sends HARQ retransmissions for MsgA data, where the UE can increase the transmission power of the MsgA data HARQ retransmissions according to the preset power step.
  • the gNB will send the first RAR; if Before reaching the maximum number of retransmissions, the gNB successfully demodulates the MsgA, and the gNB sends the second RAR.
  • the HARQ process can also be used to improve the correct rate of data demodulation. If the gNB cannot demodulate the MsgA data correctly, it sends the PDCCH addressed to the TC-RNTI to send HARQ NACK to the UE and schedules the retransmission, and the UE sends the HARQ retransmission of msg3.
  • FIG. 12 is a schematic diagram of another example data structure of a random access response.
  • UE a and UE b select the same preamble during 2-step random access, that is, the preamble index is the same, and Choose to send the preamble on the same RO resource and respectively transmit the MsgA data on the PUSCH resource corresponding to the RO resource.
  • the gNB successfully decoded the preamble from the RO resource and identified two identical preambles. It successfully demodulated the data of MsgA sent by UE a on the PUSCH resource corresponding to the RO resource, but failed to demodulate the data of MsgA sent by UE b. data.
  • UE a and UE b initiate 2-step random access and randomly select the same preamble in the CBRA preamble.
  • the two UEs choose to send the preamble in the same RO resource, and the corresponding RO resource
  • the MsgA data is sent in the PUSCH resource, and the preamble and the data can be transmitted at the same time or sent on different time domain resources one after another.
  • the RO resource for sending the preamble of MsgA and the PUSCH resource for sending the data of MsgA are pre-configured by the system, and there is a mapping relationship between the two resources, and one RO corresponds to one or more PUSCH resources.
  • the gNB first demodulates the preamble sent on the RO resource, and obtains the DMRS of the MsgA data according to the demodulated preambe index.
  • the DMRS of the MsgA data is distributed in the PUSCH of the MsgA data, and then the MsgA data is demodulated through the DMRS.
  • the gNB generally cannot demodulate the MsgA data of two UEs with the same DMRS on the same PUSCH resource.
  • the gNB successfully demodulates the MsgA data of the UE a but fails to demodulate the MsgA data of the UE b.
  • the gNB sends the RAR to the two UEs, sends the second RAR to the UE (UE a) that successfully demodulates the MsgA data, and sends the first RAR to the UE (UE b) that has not decoded the MsgA data.
  • the MAC layer random access response PDU contains two MAC subPDUs.
  • MAC subPDU 1 corresponds to the response of UE a
  • the subheader contains RAPID, which indicates preamble index
  • the payload contains 2-step random access response information (second RAR) to indicate the success of the random access process of UEa.
  • the second RAR carries contention resolution MAC CE, Temporary C-RNTI allocated by gNB to UE, uplink authorization or time Timing advance; as shown in Figure 12, MAC subPDU 2 corresponds to UE b’s MsgB, the subheader contains RAPID, which indicates the preamble index, and the payload contains 4-step random access response information (first RAR) for Instruct the UE b to fall back to the 4-step RACH process.
  • the first RAR carries the Temporary C-RNTI, uplink authorization, or timing advance allocated by the gNB for the UE, but does not carry the contention resolution MAC CE.
  • the MAC layer random access response PDU sent by the gNB is scrambled by RA-RNTI, and the transmitted resource location is indicated by the PDCCH scrambled by RA-RNTI.
  • RA-RNTI is calculated based on the location of the RO resource sending the MsgA preamble.
  • the two UEs start the 4-step RACH random access response receiving window timer after sending the MsgA preamble, and start the 2-step random access response receiving window timer after sending the MsgA data and start trying to receive MsgB.
  • the two UEs receive the PDCCH addressed to the RA-RNTI, they receive the MAC layer random access response PDU in the downlink authorized resource indicated in the PDCCH.
  • the UE a receives the MAC layer random access response PDU.
  • the RAPID in the subHeader of the MAC SubPDU 1 is the transmitted preamble and determines that the random access response is successfully received; the MAC SubPDU 1 contains the 2-step random access response (second RAR ), the UE a adjusts the data transmission advance according to the TA in the second RAR and judges whether the random contention resolution is successful according to the content of the contention resolution MAC CE. If the contention resolution MAC CE is consistent with the sent MsgA data, it is judged as the contention resolution and If the random access is successful, set the allocated TC-RNTI to the used C-RTNI, start the TA timer and use the TA to adjust the data transmission advance.
  • the RAPID in the subHeader of the MAC SubPDU 1 is the transmitted preamble, and determines that it has successfully received the random access response;
  • the MAC SubPDU 1 contains the 2-step random access response (second RAR), the UE starts the TA timer and adjusts the data transmission advance according to the TA in the RAR, and judges whether the random access process is successful according to the content of the contention resolution MAC CE, and the contention resolution MAC CE is inconsistent with the sent MsgA data, the UE discards the allocation TC-RNTI and stop TA timer;
  • the UE also receives a MAC SubPDU 2 whose RAPID matches the transmitted preamble.
  • This MAC SubPDU 2 contains a 4-step RACH RAR (first RAR), and the UE determines to roll back from the 2-step To 4-step RACH, the next step, the UE performs the third step of 4-step RACH, that is, the UE retransmits the MsgA data part in the uplink authorized resource indicated by the RAR, and uses the TC- allocated in the 4-step RAR (first RAR).
  • the RNTI scrambles the data and adjusts the data transmission advance according to the TA in the RAR.
  • the retransmitted MsgA data can use the preset RV version, which can be the same as or different from the initial MsgA data, and on the gNB side, msg3 can be received in soft merge with the initially transmitted MsgA data.
  • the gNB may send two RARs (ie, 2-step RAR and 4-step RAR) for the same preamble, so the UE needs to detect two RARs to confirm the random access state.
  • the gNB can send two RARs for the same preamble in the same random access response MAC PDU.
  • the UE if the UE only receives the first RAR, it will confirm the fallback from 2-step random access to 4-step random access, and retransmit the data of MsgA; if the UE only receives the second RAR, Then, according to the contention resolution MAC CE carried by the second RAR, judge whether the resolution is successful; if the UE receives the first RAR and the second RAR at the same time, the UE judges whether the contention resolution is successful according to the contention resolution MAC CE carried by the second RAR. If the MAC CE and Msg A data are consistent, it is considered that the contention resolution is successful. If they are inconsistent, it is confirmed that the 2-step random access is rolled back to the 4-step random access, the data of MsgA is retransmitted, and the contention resolution is considered to be failed.
  • the UE can use the HARQ process or not use the HARQ process when sending MsgA data. If the HARQ process is used, if the gNB cannot demodulate the MsgA data correctly, it sends HARQ NACK to the UE through the PDCCH and schedules the retransmission. Send HARQ retransmission for MsgA data, where the UE can increase the transmission power of the MsgA data HARQ retransmission according to the preset power step.
  • the gNB will send the first RAR; Before the maximum number of retransmissions, the gNB successfully demodulates MsgA, and the gNB sends the second RAR.
  • the HARQ process can also be used to improve the correct rate of data demodulation. If the gNB cannot demodulate the Msg3 data correctly, it sends the PDCCH addressed to the TC-RNTI to send HARQ NACK to the UE and schedule the retransmission, and the UE sends the HARQ retransmission of the msg3 data. Among them, the UE can increase the transmit power of the Msg3HARQ retransmission according to the preset power step.
  • the method in this embodiment is described above by taking the three scenarios shown in Figure 10 to Figure 12 as examples. This embodiment is not limited to this.
  • the UE and gNB can also have other scenarios. For implementation in other scenarios, refer to Embodiment 1 and Example 2.
  • This embodiment provides a method and apparatus for sending a random access response, which is configured in network equipment. Since the principle of the device to solve the problem is similar to the method of embodiment 1, its specific implementation can refer to the implementation of the method of embodiment 1, and the same content will not be repeated.
  • FIG. 13 is a schematic diagram of an apparatus 1300 for sending a random access response in this embodiment. As shown in FIG. 13, the apparatus 1300 includes a receiving unit 1301 and a sending unit 1302.
  • the receiving unit 1301 receives a first message sent by a terminal device, where the first message contains a random access preamble and data; if the network device demodulates the random access preamble of the first message, it cannot be demodulated Out the data of the first message, the sending unit 1302 sends a first random access response to the terminal device, and the first random access response carries at least the usage allocated by the network device for the terminal device. In order to retransmit the uplink transmission authorization of the data of the first message and the sending time advance command; the receiving unit 1301 receives the retransmission of the data of the first message sent by the terminal device.
  • the sending unit 1302 sends a third random access to the terminal device.
  • the third random access response at least carries contention resolution information for the data of the first message.
  • the sending unit 1302 sends a second random access to the terminal device.
  • the second random access response at least carries contention resolution information for the data of the first message and the TC-RNTI allocated by the network device to the terminal device.
  • the second random access response also carries a sending time advance command for the terminal device to send uplink data.
  • the random access preamble of the first message is sent in a pre-configured physical random access channel opportunity (PRACH occasion); the data of the first message is sent in a pre-configured uplink transmission resource ;
  • PRACH occasion has a mapping relationship with one or more uplink transmission resources.
  • the PDCCH of the first random access response is addressed to the random access radio network temporary identifier (RA-RNTI), and the medium access control (MAC) layer subheader of the transport block scheduled by the PDCCH Contains identification information matching the random access preamble of the first message; wherein, the RA-RNTI corresponds to the time and frequency position of the PRACH occasion.
  • RA-RNTI random access radio network temporary identifier
  • MAC medium access control
  • the sending unit 1302 sends the first hybrid automatic repeat request (HARQ) NACK signaling to the terminal device to schedule The terminal device sends a first HARQ retransmission for the data of the first message; if the number of first HARQ retransmissions of the data of the first message reaches a preset first threshold, the network device still has no After demodulating the data of the first message, the sending unit 1302 sends the first random access response to the terminal device; if the number of first HARQ retransmissions of the data of the first message reaches a preset Before the set first threshold, if the network device demodulates the data of the first message, the sending unit 1302 sends a fourth random access response to the terminal device, and the fourth random access response is at least Carry contention resolution information for the data of the first message.
  • HARQ hybrid automatic repeat request
  • the apparatus 1300 may further include:
  • the sending unit 1302 sends second HARQ NACK signaling to the terminal device, and schedules the terminal device to send a second HARQ retransmission for the data of the first message; if Before the second HARQ retransmission number of the data of the first message reaches the preset second threshold, the network device demodulates the data of the first message, and the sending unit 1302 sends the data to the terminal device Send a fifth random access response, where the fifth random access response at least carries contention resolution information for the data of the first message.
  • the third random access response also carries a temporary cell radio network temporary identifier (TC-RNTI) allocated by the network device to the terminal device.
  • TC-RNTI temporary cell radio network temporary identifier
  • the PDCCH of the third random access response is addressed to RA-RNTI
  • the MAC layer subheader of the transport block scheduled by the PDCCH contains the random access preamble matching the random access preamble of the first message
  • the identification information wherein, the random access preamble of the first message is sent in a pre-configured PRACH occasion, and the RA-RNTI corresponds to the time and frequency location of the PRACH occasion.
  • the first random access response also carries the TC-RNTI allocated by the network device to the terminal device.
  • the PDCCH of the third random access response is addressed to a temporary radio network temporary identity (C-RNTI); the C-RNTI matches the TC-RNTI carried in the first random access response.
  • RNTI or, the C-RNTI matches the temporary wireless network temporary identification medium access control unit (C-RNTI MAC CE) transmitted in the data of the first message.
  • C-RNTI temporary radio network temporary identity
  • the 2-step random access process if the network device successfully demodulates the random access preamble (MsgA preamble) of the first message, but the data (MsgA payload) of the first message is demodulated In the case of failure, the 2-step random access process can be rolled back to the 4-step random access process, avoiding the interruption of the random access process.
  • This embodiment provides a random access response receiving device, which is configured in a terminal device. Since the principle of the device to solve the problem is similar to the method of embodiment 2, its specific implementation can refer to the implementation of the method of embodiment 2, and the same content will not be repeated.
  • FIG. 14 is a schematic diagram of an apparatus 1400 for receiving a random access response in this embodiment.
  • the apparatus 1400 includes: a sending unit 1401 and a receiving unit 1402.
  • the sending unit 1401 sends a first message to the network device, where the first message includes a random access preamble and data; the receiving unit 1402 receives the random access response sent by the network device, if the received random access response is The first random access response, the sending unit 1401 retransmits the data of the first message in the resource indicated by the uplink transmission authorization carried in the first random access response; wherein, the first random access The response carries at least the uplink transmission authorization and the sending time advance command.
  • the receiving unit 1402 after the sending unit 1401 retransmits the data of the first message in the resource indicated by the uplink transmission authorization carried in the first random access response, the receiving unit 1402 also receives the A third random access response sent by the network device, where the third random access response at least carries contention resolution information for the data of the first message.
  • the apparatus 1400 further includes:
  • the first processing unit 1403 determines whether the contention resolution is successful according to the contention resolution information.
  • the device 1400 further includes:
  • the second processing unit 1404 if the random access response received by the receiving unit 1402 is a second random access response, the second processing unit 1404 resolves the contention according to the contention carried in the second random access response Information determines whether the contention resolution is successful; wherein, the second random access response carries at least the contention resolution information for the data of the first message and the TC-RNTI allocated by the network device to the terminal device.
  • the second random access response also carries a sending time advance command for the terminal device to send uplink data.
  • the sending unit 1401 sends the random access preamble of the first message in a pre-configured physical random access channel opportunity (PRACH occasion); and, the sending unit 1401 is based on the PRACH
  • the occasion determines the uplink transmission resource for sending the data of the first message, or the sending unit 1401 determines the uplink for sending the data of the first message according to the PRACH occasion and the random access preamble of the first message Resource; and, the sending unit 1401 sends the data of the first message on the determined uplink transmission resource.
  • PRACH occasion physical random access channel opportunity
  • the PDCCH of the first random access response can be addressed to RA-RNTI, and the MAC layer subheader of the transport block scheduled by the PDCCH contains the random access preamble of the first message.
  • Matching identification information wherein, the RA-RNTI corresponds to the time and frequency location of the PRACH occasion.
  • the receiving unit 1402 after the sending unit 1401 sends the first message to the network device, the receiving unit 1402 also receives the first HARQ NACK signaling sent by the network device, and the first HARQ NACK signaling is used to schedule the first HARQ retransmission of the data of the first message; if the number of first HARQ retransmissions of the data of the first message does not reach the first threshold, the sending unit 1401 sends a notification to the The network device sends the first HARQ retransmission of the data of the first message.
  • the sending unit 1401 may retransmit the data of the first message using the data in the sending buffer of the data of the first message; or, the MAC layer encapsulation and grouping entity of the terminal device may retransmit the data of the first message.
  • the data of the first message is generated, and the sending unit 1401 puts the regenerated data of the first message into the sending buffer of the data of the first message for sending.
  • the receiving unit 1402 receives the network The second HARQ NACK signaling sent by the device, the second HARQ NACK signaling is used to schedule the second HARQ retransmission of the data of the first message; if the second HARQ retransmission of the data of the first message If the number of times does not reach the first threshold, the sending unit 1401 sends the second HARQ retransmission of the data of the first message to the network device.
  • the sending unit 1401 adjusts the uplink sending time according to the sending time advance command carried in the first random access response, and uses RA-RNTI to retransmit the data of the first message; wherein, the The sending unit 1401 sends the random access preamble of the first message in a pre-configured PRACH occasion, and the RA-RNTI corresponds to the time and frequency position of the PRACH occasion.
  • the third random access response also carries the TC-RNTI allocated by the network device to the terminal device.
  • the PDCCH of the third random access response is addressed to RA-RNTI, and the MAC layer subheader of the transport block scheduled by the PDCCH contains identification information matching the random access preamble of the first message; wherein,
  • the sending unit 1401 sends the random access preamble of the first message in a pre-configured PRACH occasion, and the RA-RNTI corresponds to the time and frequency position of the PRACH occasion.
  • the first random access response also carries the TC-RNTI allocated by the network device to the terminal device.
  • the sending unit 1401 adjusts the uplink sending time according to the sending time advance command carried in the first random access response, and retransmits the data of the first message using the TC-RNTI carried in the first random access response .
  • the PDCCH of the third random access response is addressed to the C-RNTI, and the C-RNTI matches the TC-RNTI carried in the first random access response, or the C -The RNTI matches the C-RNTI MAC CE transmitted in the data of the first message.
  • the second processing unit 1404 determines whether the contention resolution is successful according to the contention resolution information carried in the second random access response, including: when the contention resolution carried in the second random access response When the information matches the data of the first message, the second processing unit 1404 determines that the contention resolution is successful, and sets the C-RNTI to the TC-RNTI carried in the second random access response; otherwise, the first The second processing unit 1404 determines that the contention resolution fails, and discards the TC-RNTI carried in the second random access response.
  • the 2-step random access process if the network device successfully demodulates the random access preamble (MsgA preamble) of the first message, but the data (MsgA payload) of the first message is demodulated In the case of failure, the 2-step random access process can be rolled back to the 4-step random access process, avoiding the interruption of the random access process.
  • the embodiment of the present invention also provides a network device, which includes the device described in Embodiment 3.
  • FIG. 15 is a schematic diagram of an embodiment of a network device according to an embodiment of the present invention.
  • the network device 1500 may include: a central processing unit (CPU) 1501 and a memory 1502; the memory 1502 is coupled to the central processing unit 1501.
  • the memory 1502 can store various data; in addition, it also stores information processing programs, which are executed under the control of the central processing unit 1501 to receive various information sent by the terminal device and send various information to the terminal device.
  • the functions of the device described in embodiment 3 can be integrated into the central processing unit 1501, and the central processing unit 1501 implements the functions of the device described in embodiment 3, and the device described in embodiment 3 The functions of is incorporated here, so I won’t repeat them here.
  • the device described in Embodiment 3 can be configured separately from the central processing unit 1501.
  • the device described in Embodiment 3 can be a chip connected to the central processing unit 1501, and the device can be Control to realize the function of the device described in the third embodiment.
  • the network device 1500 may further include: a transceiver 1503, an antenna 1504, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It should be noted that the network device 1500 does not necessarily include all the components shown in FIG. 15; in addition, the network device 1500 may also include components not shown in FIG. 15, and the prior art can be referred to.
  • This embodiment provides a terminal device, which includes the device described in Embodiment 4.
  • Fig. 16 is a schematic diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device 1600 may include a central processing unit 1601 and a memory 1602; the memory 1602 is coupled to the central processing unit 1601. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace this structure to implement telecommunication functions or other functions.
  • the functions of the device described in embodiment 4 can be integrated into the central processing unit 1601, and the central processing unit 1601 implements the functions of the device described in embodiment 4, among which the device described in embodiment 4 The functions of is incorporated here, so I won’t repeat them here.
  • the device described in Embodiment 4 can be configured separately from the central processing unit 1601.
  • the device described in Embodiment 4 can be configured as a chip connected to the central processing unit 1601, and the central processing unit 1601 Control to realize the function of the device described in the fourth embodiment.
  • the terminal device 1600 may further include: a communication module 1603, an input unit 1604, an audio processing unit 1605, a display 1606, and a power supply 1607. It is worth noting that the terminal device 1600 does not necessarily include all the components shown in FIG. 16; in addition, the terminal device 1600 may also include components not shown in FIG. 16, which can refer to the prior art.
  • the central processing unit 1601 is sometimes called a controller or operating control, and may include a microprocessor or other processor devices and/or logic devices.
  • the central processing unit 1601 receives input and controls each of the terminal equipment 1600. Operation of components.
  • the memory 1602 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices. Can store various information, in addition can also store and execute programs related to the information. And the central processing unit 1601 can execute the program stored in the memory 1602 to realize information storage or processing. The functions of other components are similar to the existing ones, so I won't repeat them here.
  • the components of the terminal device 1600 can be implemented by dedicated hardware, firmware, software, or a combination thereof, without departing from the scope of the present invention.
  • terminals in the random access process are avoided.
  • An embodiment of the present invention also provides a communication system, which includes a network device and a terminal device.
  • the network device is, for example, the network device 1500 described in Embodiment 5
  • the terminal device is, for example, the terminal device 1600 described in Embodiment 6.
  • the terminal device is, for example, a UE served by gNB.
  • the terminal device also includes the conventional composition and functions of the terminal device. As described in Embodiment 6, it is not here. Repeat it again.
  • the network device may be, for example, the gNB in NR.
  • the network device In addition to the functions of the device described in Embodiment 3, it also includes the regular composition and functions of the network device, as described in Embodiment 5. No longer.
  • the embodiment of the present invention also provides a computer-readable program, wherein when the program is executed in the terminal device, the program causes the computer to execute the method described in Embodiment 2 in the terminal device.
  • An embodiment of the present invention also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in Embodiment 2 in a terminal device.
  • An embodiment of the present invention also provides a computer-readable program, wherein when the program is executed in a network device, the program causes a computer to execute the method described in Embodiment 1 in the network device.
  • An embodiment of the present invention also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the method described in Embodiment 1 in a network device.
  • the above devices and methods of the present invention can be implemented by hardware, or by hardware combined with software.
  • the present invention relates to such a computer-readable program, when the program is executed by a logic component, the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, etc.
  • the present invention also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, and the like.
  • the method/device described in conjunction with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by curing these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the drawings can be implemented as general-purpose processors, digital signal processors (DSPs) for performing the functions described in the present invention. ), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component or any appropriate combination thereof.
  • DSPs digital signal processors
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple micro-processing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a random access response sending device which is configured in a network device, wherein the device includes:
  • a receiving unit which receives a first message sent by a terminal device, the first message including a random access preamble and data;
  • the sending unit if the network device demodulates the random access preamble of the first message, but cannot demodulate the data of the first message, the sending unit sends the first random access preamble to the terminal device.
  • An access response where the first random access response carries at least an uplink transmission authorization and a sending time advance command allocated to the terminal device by the network device for retransmitting the data of the first message;
  • the receiving unit receives the retransmission of the data of the first message sent by the terminal device.
  • the sending unit sends the first message to the terminal device.
  • the sending unit sends a second random access response to the terminal device, and the second The random access response at least carries contention resolution information for the data of the first message and the TC-RNTI allocated by the network device to the terminal device.
  • the sending unit sends the first hybrid automatic repeat request (HARQ) NACK signaling to the terminal device, and schedules the terminal device to send information for all The first HARQ retransmission of the data of the first message;
  • HARQ hybrid automatic repeat request
  • the sending unit sends a message to the terminal The device sends the first random access response
  • the network device demodulates the data of the first message, the sending unit sends the data to the terminal device Send a fourth random access response, where the fourth random access response carries at least contention resolution information for the data of the first message.
  • a processing unit which empties the buffer area used for soft merge to receive the data of the first message after the sending unit sends the first random access response to the terminal device, and when the receiving unit receives the data When the data of the first message is retransmitted, the retransmitted data is used to decode the data of the first message; or, the buffer area used for soft combining and decoding the data of the first message is not cleared, when the When receiving the retransmission of the data of the first message, the receiving unit uses the buffer data and the retransmitted data to perform soft combining and decoding on the data of the first message.
  • the sending unit sends second HARQ NACK signaling to the terminal device to schedule the terminal The device sends a second HARQ retransmission for the data of the first message;
  • the sending unit sends the data to the terminal device Send a fifth random access response, where the fifth random access response at least carries contention resolution information for the data of the first message.
  • a random access response receiving device configured in a terminal device, wherein the device includes:
  • a sending unit that sends a first message to the network device, where the first message includes a random access preamble and data;
  • a receiving unit which receives a random access response sent by the network device, and if the received random access response is a first random access response, the sending unit is configured to perform the uplink operation carried in the first random access response
  • the data of the first message is retransmitted in the resource indicated by the transmission authorization; wherein, the first random access response at least carries the uplink transmission authorization and the transmission time advance command.
  • the sending unit after the sending unit retransmits the data of the first message in the resource indicated by the uplink transmission authorization carried in the first random access response, the receiving The unit further receives a third random access response sent by the network device, where the third random access response carries at least contention resolution information for the data of the first message, and the apparatus further includes:
  • the first processing unit judges whether the contention resolution is successful according to the contention resolution information.
  • the second processing unit determines whether or not according to the contention resolution information carried in the second random access response The contention resolution is successful; wherein the second random access response carries at least the contention resolution information for the data of the first message and the TC-RNTI allocated by the network device to the terminal device.
  • the sending unit sends the random access preamble of the first message in a pre-configured physical random access channel opportunity (PRACH occasion);
  • PRACH occasion a pre-configured physical random access channel opportunity
  • the sending unit determines the uplink transmission resource for sending the data of the first message according to the PRACH occasion, or the sending unit determines to send the data according to the PRACH occasion and the random access preamble of the first message
  • the uplink resource of the data of the first message and the sending unit sends the data of the first message on the determined uplink transmission resource.
  • the receiving unit further receives the first HARQ NACK signaling sent by the network device, The first HARQ NACK signaling is used to schedule the first HARQ retransmission for the data of the first message;
  • the sending unit sends the first HARQ retransmission of the data of the first message to the network device.
  • the sending unit retransmits the data of the first message using the data in the sending buffer of the data of the first message; or,
  • the MAC layer encapsulation group entity of the terminal device regenerates the data of the first message, and the sending unit puts the regenerated data of the first message into the sending buffer of the data of the first message for sending .
  • the sending unit sends the second HARQ retransmission of the data of the first message to the network device.
  • the sending unit adjusts the uplink sending time according to the sending time advance command carried in the first random access response, and uses RA-RNTI to retransmit the The data of the first message; wherein the sending unit sends the random access preamble of the first message in a pre-configured PRACH occasion, and the RA-RNTI corresponds to the time and frequency position of the PRACH occasion.
  • the second processing unit determines that the contention resolution is successful, and sets C-RNTI as the second random access TC-RNTI carried in the response;
  • the second processing unit determines that the contention resolution fails, and discards the TC-RNTI carried in the second random access response.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种随机接入响应的发送和接收方法、装置和通信***,其中,随机接入响应的发送方法包括:网络设备接收终端设备发送的第一消息,所述第一消息包含随机接入前导码和数据;如果所述网络设备解调出所述第一消息的随机接入前导码,但不能解调出所述第一消息的数据,则所述网络设备向所述终端设备发送第一随机接入响应,所述第一随机接入响应至少携带所述网络设备为所述终端设备分配的用于重传所述第一消息的数据的上行传输授权以及发送时间提前命令;所述网络设备接收所述终端设备发送的所述第一消息的数据的重传。由此,可以从2步基于竞争的随机接入失败的过程回退到4步基于竞争的随机接入,避免随机接入过程中断。

Description

随机接入响应的发送和接收方法、装置和*** 技术领域
本发明涉及通信领域,特别涉及一种随机接入响应的发送和接收方法、装置和***。
背景技术
在国际电信联盟(ITU)定义的第五代新无线关键技术指标(5G NR KPI)中,海量机器类型通信(mMTC)场景的连接密度需要达到100万终端设备/平方公里,超高可靠低时延通信(uRLLC)中超低时延业务的时延需要低于1ms。其中,mMTC场景需要一种低成本、低信令开销、低时延、低功耗的通信***,因为海量的机器类型通信终端设备产生的大量上行小数据包突发(burst)都需要通过随机接入发送给网络,而如果基于传统的4步随机接入方式和正交多址接入技术则空口信令开销和传输时延较大;同样,uRLLC场景的业务主要是周期性或事件触发的小数据包,大概率采用随机接入发送上行数据,现有的4步随机接入方式无法满足低信令开销和低时延要求。此外,针对车车通信(V2V)和增强型移动宽带(eMBB)应用场景下也可能有小数据包业务,在4步随机接入方式下的传输也是低效的。另外,在非授权频谱中,由于信道接入是基于无线保真(WiFi)的载波监听技术的先听后说(LBT)机制,在网络设备或终端设备监听到信道空闲时,即LBT成功时才发送信号,采用现有的4步随机接入方式将大大影响接入成功率和接入时延。
2步随机接入方式和非正交多址接入技术是针对降低随机接入信令开销和时延的通用解决方案,可以在随机接入过程中免去上行调度过程,特别针对小数据包和非授权频段业务有较明显的效率提升。能满足未来海量大连接mMTC应用场景的低成本、低功耗、海量小数据包的需求,满足eMBB、uRLLC、V2V等应用场景下频繁的小数据包随机突发业务的低时延、低功耗要求,同时普遍适用于非授权频谱和授权频谱的随机接入。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
在2步基于竞争的随机接入(2-step CBRA)中,第一步终端设备发送的MsgA消息包括前导码(preamble)和数据,发明人发现,由于不同preamble的解调性能高于在PUSCH资源上基于解调参考信号(DMRS,Demodulation Reference Signal)的不同PUSCH数据的解调,因此会出现网络设备能成功解调该preamble,但该PUSCH数据解调失败的情况,从而影响随机接入的成功率。
为了解决上述问题中的至少一个或者解决其他类似问题,本发明实施例提供了一种随机接入响应的发送和接收方法、装置和***。
根据本发明实施例的第一方面,提供了一种随机接入响应的发送方法,其中,所述方法包括:
网络设备接收终端设备发送的第一消息,所述第一消息包含随机接入前导码和数据;
如果所述网络设备解调出所述第一消息的随机接入前导码,但不能解调出所述第一消息的数据,则所述网络设备向所述终端设备发送第一随机接入响应,所述第一随机接入响应至少携带所述网络设备为所述终端设备分配的用于重传所述第一消息的数据的上行传输授权以及发送时间提前命令;
所述网络设备接收所述终端设备发送的所述第一消息的数据的重传。
根据本发明实施例的第二方面,提供了一种随机接入响应的接收方法,其中,所述方法包括:
终端设备向网络设备发送第一消息,所述第一消息包括随机接入前导码和数据;
所述终端设备接收所述网络设备发送的随机接入响应,如果接收的所述随机接入响应为第一随机接入响应,则所述终端设备在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据;其中,所述第一随机接入响应至少携带所述上行传输授权和发送时间提前命令。
根据本发明实施例的第三方面,提供了一种随机接入响应的发送装置,配置于网络设备,其中,所述装置包括:
接收单元,其接收终端设备发送的第一消息,所述第一消息包含随机接入前导码和数据;
发送单元,如果所述网络设备解调出所述第一消息的随机接入前导码,但不能解调出所述第一消息的数据,则所述发送单元向所述终端设备发送第一随机接入响应,所述第一随机接入响应至少携带所述网络设备为所述终端设备分配的用于重传所述第一消息的数据的上行传输授权以及发送时间提前命令;
所述接收单元接收所述终端设备发送的所述第一消息的数据的重传。
根据本发明实施例的第四方面,提供了一种随机接入响应的接收装置,配置于终端设备,其中,所述装置包括:
发送单元,其向网络设备发送第一消息,所述第一消息包括随机接入前导码和数据;
接收单元,其接收所述网络设备发送的随机接入响应,如果接收的所述随机接入响应为第一随机接入响应,则所述发送单元在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据;其中,所述第一随机接入响应至少携带所述上行传输授权和发送时间提前命令。
根据本发明实施例的第五方面,提供了一种网络设备,其中,所述网络设备包括前述第三方面所述的装置。
根据本发明实施例的第六方面,提供了一种终端设备,其中,所述终端设备包括前述第四方面所述的装置。
根据本发明实施例的第七方面,提供了一种通信***,所述通信***包括前述第五方面所述的网络设备和前述第六方面所述的终端设备。
根据本发明实施例的其它方面,提供了一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行前述第一方面所述的方法。
根据本发明实施例的其它方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行前述第一方面所述的方法。
根据本发明实施例的其它方面,提供了一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行前述第二方面所述的方法。
根据本发明实施例的其它方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行前述第二方面所述的方法。
本发明实施例的有益效果在于:根据本发明实施例的至少一个方面,当出现网络设备成功解调第一消息的随机接入前导码,但该第一消息的数据解调失败的情况下,可以从2步基于竞争的随机接入失败的过程回退到4步基于竞争的随机接入,避免随机接入过程中断。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本发明实施例的通信***的示意图;
图2是4步随机接入方式的示意图;
图3是2步随机接入方式的示意图;
图4是实施例1的随机接入响应的发送方法的示意图;
图5是终端设备和网络设备进行交互的一个示例的示意图;
图6是终端设备和网络设备进行交互的另一个示例的示意图;
图7是终端设备和网络设备进行交互的再一个示例的示意图;
图8是终端设备和网络设备进行交互的又一个示例的示意图;
图9是实施例2的随机接入响应的接收方法的示意图;
图10是随机接入响应的一个示例的数据结构的示意图;
图11是随机接入响应的另一个示例的数据结构的示意图;
图12是随机接入响应的再一个示例的数据结构的示意图;
图13是实施例3的随机接入响应的发送装置的示意图;
图14是实施例4的随机接入响应的接收装置的示意图;
图15是实施例5的网络设备的示意图;
图16是实施例6的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信***中设备之间的通信可以根据任意阶段的通信协议进行,例如可以 包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信***中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
以下通过示例对本发明实施例的场景进行说明,但本发明实施例不限于此。
图1是本发明实施例的通信***的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信***100可以包括:网络设备101和终端设备102。为简单起见,图1仅以一个终端设备为例进行说明。网络设备101例如为NR***中的网络设备gNB。
在本发明实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
其中,终端设备102可以向网络设备101发送数据,例如使用免授权传输方式。网络设备101可以接收一个或多个终端设备102发送的数据,并向终端设备102反馈信息(例如确认ACK/非确认NACK)信息,终端设备102根据反馈信息可以确认结束传输过程、或者还可以再进行新的数据传输,或者可以进行数据重传。
图2是4步随机接入方式的示意图,如图2所示,在4步CBRA中,第一步,终端设备选择CBRA preamble,在***预配置的基于竞争的随机接入机会(RO,Random access Occasion)中发送该preamble(Msg1);第二步,网络设备收到该preamble后会发送随机接入响应(RAR,Random Access Response)(Msg2),授权发送该preamble的终端设备一个专用上行资源(如PUSCH资源)并分配临时CRNTI(TC-RNTI)、指示PUSCH的上行提前量;第三步,终端设备在该PUSCH资源上发送携带信令或数据的消息(msg3);第四步,如果成功接收msg3,网络设备向终端设备发送针对该msg3的竞争解决信令(msg4)。
图3是2步随机接入方式的示意图,如图3所示,在2步CBRA中,第一步,终端设备发送MsgA,MsgA包含CBRA preamble和数据部分(MsgA的信令或业务数据),终端设备可以在竞争的RO中发送MsgA的preamble并在竞争的PUSCH资源中发送MsgA的信令或业务数据;第二步,网络设备收到MsgA后发送MsgB,通过该MsgB向终端设备发送随机接入响应。由此,在2步随机接入方式中,终端设备在随机接入过程中做到了免上行调度发送,一步上传信令或业务包,减少了随机接入信令和时延。
另一方面,网络设备通过同在MsgA数据的PUSCH资源上发送的解调参考信号 (DMRS,Demodulation Reference Signal)可以解调MsgA数据,其中,DMRS序列与终端设备发送的MsgA preamble采用的序列索引相关,网络设备可以根据在RO资源中解调出的preamble得到该preamble序列索引对应的DMRS。并且,若多个终端设备在2-step CBRA时选择不同的preamble序列索引并在相同的PUSCH资源上传输MsgA数据,网络设备可以根据preamlbe序列索引对应的DMRS解调出MsgA数据。
然而,由于preamble的解调性能高于在PUSCH资源上基于DMRS的不同PUSCH数据的解调,因此会出现网络设备能成功解调MsgA preamble,但该MsgA数据解调失败的情况。
下面结合附图对本发明的各种实施方式进行说明。这些实施方式只是示例性的,不是对本发明的限制。
实施例1
本实施例提供了一种随机接入响应的发送方法,该方法应用于网络设备。图4是本实施例的随机接入响应的发送方法的示意图,请参照图4,该方法包括:
步骤401:网络设备接收终端设备发送的第一消息,所述第一消息包含随机接入前导码(preamble)和数据;
步骤402:如果所述网络设备解调出所述第一消息的随机接入前导码,但不能解调出所述第一消息的数据,则所述网络设备向所述终端设备发送第一随机接入响应,所述第一随机接入响应至少携带所述网络设备为所述终端设备分配的用于重传所述第一消息的数据的上行传输授权以及发送时间提前命令;
步骤403:所述网络设备接收所述终端设备发送的所述第一消息的数据的重传。
在本实施例中,上述第一消息也可以称为随机接入请求,其可以是2步随机接入过程中的MsgA,如图3所示,上述随机接入前导码即为图3中的preamble,上述数据即为图3中的payload。关于该第一消息的详细内容,可以参考现有标准,此处不再赘述。
在本实施例中,如果网络设备解调出了第一消息的preamble,但是没有解调出该第一消息的数据,则该网络设备可以向终端设备发送一个随机接入响应(称为第一随机接入响应),与2步随机接入方式的MsgB中携带的随机接入响应不同,该第一随机接入响应类似于4步随机接入方式的Msg2中携带的随机接入响应,其不携带竞争解决信息,而只携带网络设备分配给终端设备的上行传输授权以及发送时间提前命 令,由此,终端设备可以从2步随机接入过程回退到4步随机接入过程,避免了随机接入过程的中断。
在本实施例中,如果网络设备在接收到终端设备发送的上述第一消息后,解调出了该第一消息的随机接入前导码和该第一消息的数据,则该网络设备可以向终端设备发送一个随机接入响应(称为第二随机接入响应),与2步随机接入方式中的MsgB所携带的随机接入响应类似,该第二随机接入响应至少携带针对该第一消息的数据的竞争解决信息以及网络设备为终端设备分配的TC-RNTI。终端设备根据该竞争解决信息可以判断竞争解决是否成功。
在本实施例中,该第二随机接入响应还可以携带用于终端设备发送上行数据的发送时间提前命令,终端设备可以根据该发送时间提前命令调整数据发送提前量。
在本实施例中,网络设备在收到第一消息的数据的重传之后,如果根据第一消息的数据的重传能解调第一消息的数据,向终端设备发送第三随机接入响应,该第三随机接入响应至少携带针对所述第一消息的数据的竞争解决信息。
图5是终端设备和网络设备进行交互的一个示例的示意图,如图5所示,终端设备向网络设备发送包含随机接入前导码和数据的第一消息(S501),网络设备在解调出了该随机接入前导码但没有解调出该数据的情况下,向终端设备发送第一随机接入响应(S502),终端设备根据该第一随机接入响应发送第一消息的数据的重传(S503),网络设备在根据该第一消息的数据的重传解调出第一消息的数据的情况下,向终端设备发送第三随机接入响应(S504)。
在本实施例中,上述第一消息的随机接入前导码可以在预配置物理随机接入信道机会(PRACH occasion)中发送,该PRACH occasion与一个或多个上行传输资源具有映射关系,上述第一消息的数据可以在预配置的、与上述PRACH occasion具有映射关系的上行传输资源中发送。在PRACH occasion对应多个上行传输资源的情况下,***可预设规则使终端设备确定用于发送第一消息的数据部分的上行传输资源,例如,终端设备可根据发送preamble的PRACH occasion以及preamble的序列索引唯一确定该上行传输资源。
在本实施例中,上述第一随机接入响应的PDCCH可以寻址于随机接入无线网络临时标识(RA-RNTI),终端设备在接收到寻址于RA-RNTI的PDCCH后,可以在该PDCCH中指示的下行授权资源中接收上述第一随机接入响应。
在本实施例中,上述PDCCH调度的传输块的媒体接入控制(MAC)层子头中可以包含与上述第一消息的随机接入前导码序列匹配的标识信息,终端设备可以据此确定成功接收该第一随机接入响应。
在本实施例中,上述RA-RNTI可以对应上述PRACH occasion所在的时间和频率位置。关于具体的对应关系可以参考现有标准,本实施例对此不作限制。
在本实施例中,如果网络设备没有解调出上述第一消息的数据,则在该网络设备发送上述第一随机接入响应之前,该网络设备还可以先调度终端设备发送针对该第一消息的数据的混合自动重传。
例如,如果网络设备没有解调出上述第一消息的数据,则网络设备可以向终端设备发送一个混合自动重传请求(HARQ)NACK信令(称为第一HARQ NACK信令),调度该终端设备发送针对该第一消息的数据的第一HARQ重传,其中,第一HARQ NACK信令可以通过无线资源控制(RRC)层消息、媒体接入控制(MAC)层信令或物理层信令(如PDCCH)发送。
如果该第一消息的数据的第一HARQ重传次数达到预先设定的阈值(称为第一阈值),而网络设备仍然没有解调出该第一消息的数据,则网络设备再向终端设备发送所述第一随机接入响应。后续过程与前述直接发送第一随机接入响应的过程相同,此处省略说明。
如果该第一消息的数据的第一HARQ重传次数达到预先设定的上述第一阈值之前,网络设备解调出了该第一消息的数据,则该网络设备可以向终端设备发送一个随机接入响应(称为第四随机接入响应),该第四随机接入响应可以与2步随机接入方式中的MsgB所携带的随机接入响应携带相同的内容,其至少携带针对该第一消息的数据的竞争解决信息。终端设备根据该竞争解决信息可以判断竞争解决是否成功。
在这个例子中,第四随机接入响应还可以携带网络设备为该终端设备分配的TC-RNTI,若竞争解决成功,终端设备可以将该TC-RNTI设置为使用的C-RNTI。此外,在这个例子中,第四随机接入响应还可以携带用于终端设备发送上行数据的发送时间提前命令,终端设备可以根据该发送时间提前命令调整数据发送提前量。
图6是终端设备和网络设备的另一个示例的交互示意图,如图6所示,在这个示例中,终端设备向网络设备发送第一消息(S601),网络设备在解调出了该第一消息的随机接入前导码,但是没有解调出该第一消息的数据的情况下,向终端设备发送第 一HARQ NACK信令(S602),终端设备据此进行针对该第一消息的数据的第一HARQ重传(S603),网络设备在该第一HARQ重传次数达到上述第一阈值仍然未解调出该第一消息的数据的情况下,向终端设备发送上述第一随机接入响应(S604),之后,终端设备可以进行该第一消息的数据的重传(S605),网络设备可以对该第一消息的数据进行解码。网络设备根据该第一消息的数据的重传正确解调时,向终端设备发送第三随机接入响应(S606)。
图7是终端设备和网络设备的另一个示例的交互示意图,如图7所示,与图6不同的是,在网络设备在该第一HARQ重传次数达到上述第一阈值之前解调出该第一消息的数据的情况下,向终端设备发送上述第四随机接入响应。如图7所示,在这个示例中,终端设备向网络设备发送第一消息(S701),网络设备在解调出了该第一消息的随机接入前导码,但是没有解调出该第一消息的数据的情况下,向终端设备发送第一HARQ NACK信令(S702),终端设备据此进行针对该第一消息的数据的第一HARQ重传(S703),网络设备在该第一HARQ重传次数达到上述第一阈值之前解调出该第一消息的数据,向终端设备发送上述第四随机接入响应(S704),终端设备可以据此判断竞争解决是否成功。
在本实施例中,在网络设备向终端设备发送了上述第一随机接入响应之后,网络设备可以清空用于软合并接收该第一消息的数据的缓存区,当收到该第一消息的数据的重传时,再使用重传的数据对所述第一消息的数据进行解码;或者,该网络设备也可以不清空用于软合并解码该第一消息的数据的缓存区,当收到该第一消息的数据的重传时,使用该缓冲区的数据和重传的数据对该第一消息的数据进行软合并解码。
在本实施例中,如果网络设备根据第一消息的数据的重传(图5所示的步骤S503和图6所示的步骤S605)没有解调出上述第一消息的数据,该网络设备还可以调度终端设备发送针对该第一消息的数据的重传的混合自动重传。例如,网络设备可以向终端设备发送一个混合自动重传请求(HARQ)NACK信令(称为第二HARQ NACK信令),调度该终端设备发送针对该第一消息的数据的第二HARQ重传,其中,第二HARQ NACK信令可以通过无线资源控制(RRC)层消息、媒体接入控制(MAC)层信令或物理层信令(如PDCCH)发送。
如果该第一消息的数据的第二HARQ重传次数达到预先设定的阈值(称为第二阈值)之前,网络设备解调出了该第一消息的数据,则该网络设备可以向终端设备发 送一个随机接入响应(称为第五随机接入响应),该第五随机接入响应可以与上述第三随机接入响应携带的内容相同,其至少携带针对该第一消息的数据的竞争解决信息。该第五随机接入响应类似于4步随机接入方式的Msg4中携带的随机接入响应,其至少携带针对该第一消息的数据的竞争解决信息,据此,终端设备可以根据该竞争解决信息判断竞争解决是否成功,具体将在实施例2中进行说明。由此完成了随机接入过程。
图8是终端设备和网络设备进行交互的再一个示例的示意图,如图8所述,在这个示例中,终端设备向网络设备发送第一消息(S801),网络设备在解调出了该第一消息的随机接入前导码,但是没有解调出该第一消息的数据的情况下,直接向终端设备发送上述第一随机接入响应(S802)。之后,终端设备可以进行该第一消息的数据的重传(S803),网络设备对该第一消息的数据进行解码。根据该第一消息的数据的重传,网络设备仍然不能解调出该第一消息的数据,向终端设备发送第二HARQ NACK信令,如图8所示的S804,以调度终端设备发送针对该第一消息的数据的第二HARQ重传,之后终端设备进行该第一消息的数据的第二HARQ重传(S805)。在第一消息的数据的第二HARQ重传次数达到预先设定的第二阈值之前,网络设备解调出了该第一消息的数据,该网络设备可以向终端设备发送第五随机接入响应(S806)。
在本实施例的一个实施方式中,上述第三随机接入响应还可以携带为终端设备分配的C-RNTI。上述第三随机接入响应的PDCCH可以寻址于RA-RNTI,该PDCCH调度的传输块的MAC层子头中可以包含与上述第一消息的随机接入前导码匹配的标识信息;其中,该第一消息的随机接入前导码在预配置的PRACH occasion中发送,上述RA-RNTI对应该PRACH occasion所在的时间和频率位置。由此,终端设备在接收到寻址于RA-RNTI的PDCCH后,可以在该PDCCH指示的下行授权资源中接收MAC层的随机接入响应(上述第三随机接入响应)的PDU。
在本实施例的另一个实施方式中,上述第一随机接入响应还可以携带网络设备为终端设备分配的TC-RNTI,由此,终端设备可以使用该TC-RNTI对数据加扰并根据前述发送时间提前命令调整数据发送提前量,具体将在实施例2中进行说明。在第一随机接入响应携带上述TC-RNTI的情况下,该第三随机接入响应的PDCCH可以寻址于无线网络临时标识(C-RNTI);该C-RNTI匹配于上述第一随机接入响应中携带 的TC-RNTI,或者,该C-RNTI匹配于上述第一消息的数据中传输的临时无线网络临时标识媒体接入控制控制单元(C-RNTI MAC CE)。终端设备在接收到寻址于C-RNTI的PDCCH后,可以在该PDCCH指示的下行授权资源中接收第三随机接入响应。
在本实施例中,与前述第一随机接入响应类似,该第三随机接入响应还可以携带网络设备为终端设备分配的上行传输授权和发送时间提前命令,终端设备可以根据该发送时间提前命令调整数据发送提前量,并在上述上行传输授权指示的资源上发送上行数据。
根据本实施例的方法,在2步随机接入过程中,如果网络设备成功解调出第一消息的随机接入前导码(MsgA preamble),但是该第一消息的数据(MsgA payload)解调失败的情况下,可以从2步随机接入过程回退到4步随机接入过程,避免了随机接入过程的中断。
实施例2
本实施例提供了一种随机接入响应的接收方法,该方法应用于终端设备,其是对应实施例1的方法的终端设备侧的处理,其中与实施例1相同的内容不再重复说明。
图9是本实施例的随机接入响应的接收方法的示意图,如图9所示,该方法包括:
步骤901:终端设备向网络设备发送第一消息,所述第一消息包括随机接入前导码和数据;
步骤902:所述终端设备接收所述网络设备发送的随机接入响应;
步骤903:如果接收的所述随机接入响应为第一随机接入响应,则所述终端设备在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据;其中,所述第一随机接入响应至少携带所述上行传输授权和发送时间提前命令。
在本实施例中,上述第一消息和上述第一随机接入响应的定义与实施例1相同,上述第一消息例如为图5-图8所示的步骤S501、S601、S701、S801,上述第一随机接入响应例如为图5所示的步骤S502,或者为图6所示的步骤S604,或者为图8所示的S802,此处省略说明。
在本实施例中,终端设备在向网络设备发送了上述第一消息(如图5-图8所示的步骤S501、S601、S701、S801)以进行2步随机接入的过程中,如果接收到网络设备发送的上述第一随机接入响应(如图5所示的步骤S502或者图6所示的步骤S604 或者图8所示的步骤S802),则终端设备从2步随机接入过程回退到4步随机接入过程,避免了随机接入过程的中断。
在本实施例中,如果终端设备在发送了第一消息后,接收的随机接入响应为第二随机接入响应,则终端设备根据该第二随机接入响应中携带的竞争解决信息判断是否竞争解决成功;其中,第二随机接入响应至少携带针对所述第一消息的数据的所述竞争解决信息和所述网络设备为所述终端设备分配的TC-RNTI,终端设备可以根据上述竞争解决信息判断竞争解决是否成功。若终端判断竞争解决成功,可以将TC-RNTI作为自身使用的C-RNTI。
第二随机接入响应还可以携带用于终端发送上行数据的发送时间提前命令,终端设备可以根据该发送时间提前命令调整数据发送提前量。进一步的,第二随机接入响应还可以携带一个上行授权,用于终端发送上行数据。
在本实施例的一个实施方式中,如实施例1所述,如图5和图6所示,在终端设备重传了上述第一消息的数据(步骤S503、步骤605)之后,网络设备进一步对该第一消息的数据进行解码。如果网络设备根据该第一消息的数据的重传能够解调出该第一消息的数据,则该网络设备可以向终端设备发送第三随机接入响应(步骤S504、步骤S606),其中,该第三随机接入响应至少携带针对所述第一消息的数据的竞争解决信息,终端设备根据所述竞争解决信息判断竞争解决是否成功。具体可参考图5的步骤S504和图6的步骤606。
在本实施例中,在步骤901中,如图5-图8所示的步骤S501、S601、S701、S801,终端设备可以在预配置的PRACH occasion中发送上述第一消息的随机接入前导码;并且,终端设备可以根据上述PRACH occasion确定发送该第一消息的数据的上行传输资源,或者根据上述PRACH occasion和上述第一消息的随机接入前导码确定发送该第一消息的数据的上行资源,并在确定的上行传输资源上发送该第一消息的数据。
在本实施例中,如实施例1所述的,如图5所示的步骤S502或者图6所示的步骤S604,网络设备发送的上述第一随机接入响应的PDCCH可以寻址于RA-RNTI,该PDCCH调度的传输块的MAC层子头中可以包含与该第一消息的随机接入前导码匹配的标识信息,由此,终端设备可以确定成功接收该第一随机接入响应。并且,在本实施例中,上述RA-RNTI可以对应上述PRACH occasion所在的时间和频率位置。关于具体的对应关系可以参考现有标准,本实施例对此不作限制。
在本实施例的一个实施方式中,如图6和图7所示,如果网络设备解调出了第一消息的随机接入前导码但是没有解调出该第一消息的数据,则该网络设备可以向终端设备发送第一HARQ NACK信令(步骤S602,步骤702),调度终端设备发送针对该第一消息的数据的第一HARQ重传,则在本实施方式中,终端设备还可以接收网络设备发送的该第一HARQ NACK信令(步骤S602,步骤702),该第一HARQ NACK信令用于调度针对所述第一消息的数据的第一HARQ重传;如果该第一消息的数据的该第一HARQ重传次数未达到第一阈值,则终端设备可以继续向网络设备发送该第一消息的数据的第一HARQ重传(步骤603、步骤703)。关于网络设备的处理已经在实施例1中做了说明,此处不再赘述。
在本实施方式中,如实施例1所述,如图6所示,如果网络设备根据该第一HARQ重传仍然没有解调出第一消息的数据,则网络设备可以向终端设备发送上述第一随机接入响应(步骤S604),该第一随机接入响应至少携带上行传输授权和发送时间提前命令,终端设备在该第一随机接入响应携带的上行传输授权指示的资源中重传第一消息的数据。如果网络设备根据该第一HARQ重传解调出了第一消息的数据,则网络设备可以向终端设备发送第四随机接入响应(步骤S704),该第四随机接入响应至少携带针对所述第一消息的数据的竞争解决信息,终端设备根据该第四随机接入响应中携带的竞争解决信息判断是否竞争解决成功。
在本实施方式中,终端设备可以使用该第一消息的数据的发送缓存中的数据重传上述第一消息的数据,也即使用该第一消息的数据的发送缓存中的数据进行上述第一HARQ重传;或者,终端设备的MAC层封装组包实体重新生成该第一消息的数据,该终端设备将该重新上传的第一消息的数据放入该第一消息的数据的发送缓存中发送。上述只是举例说明,本实施例对具体的重传方式不作限制。
在本实施例的一个实施方式中,在步骤S903中,终端设备在第一随机接入响应携带的上行传输授权指示的资源中重传第一消息的数据时,终端设备可以根据该第一随机接入响应中携带的上述发送时间提前命令调整上行发送时间,并使用RA-RNTI重传所述第一消息的数据。后续网络设备发送的第三随机接入响应(如图5所示的S504或者图6所示的S606)可以携带网络设备为所述终端设备分配的TC-RNTI。第三随机接入响应的PDCCH也寻址于RA-RNTI,该PDCCH调度的传输块中包含与所述第一消息的随机接入前导码匹配的标识信息;其中,RA-RNTI对应终端设备发送 第一消息preamble的PRACH occasion所在的时间和频率位置。
在本实施例的另一个实施方式中,上述第一随机接入响应可以携带网络设备为终端设备分配的TC-RNTI,则在步骤903中,终端设备可以根据该第一随机接入响应中携带的上述发送时间提前命令调整上行发送时间,并使用该第一随机接入响应中携带的TC-RNTI重传上述第一消息的数据。后续网络设备发送的第三随机接入响应(如图5所示的S504或者图6所示的S606)的PDCCH可以寻址于C-RNTI,该C-RNTI匹配于以上第一随机接入响应中携带的TC-RNTI,或者,C-RNTI匹配于第一消息的数据中传输的C-RNTI MAC CE。
在本实施例的另一个实施方式中,如实施例1所述,如图8所示,在终端设备重传了上述第一消息的数据(步骤S803)之后,网络设备进一步对该第一消息的数据进行解码。如果网络设备根据该第一消息的数据的重传仍然不能解调出该第一消息的数据,则该网络设备可以向终端设备发送第二HARQ NACK信令(步骤S804),调度终端设备发送针对该第一消息的数据的第二HARQ重传,则在本实施方式中,终端设备还可以接收网络设备发送的该第二HARQ NACK信令,如果该第一消息的数据的第二HARQ重传次数未达到第二阈值,则该终端设备继续向网络设备发送该第一消息的数据的第二HARQ重传(步骤S805)。如图8所示,如果在该第二HARQ重传的次数达到预先设定的第二阈值之前,网络设备解调出了该第一消息的数据,则网络设备可以向终端设备发送上述第五随机接入响应(步骤S806),后续终端设备根据第五随机接入响应中携带的竞争解决信息判断竞争解决是否成功,由此完成了随机接入过程。
在本实施例中,终端设备根据随机接入响应(例如上述第二、第三、第四或第五随机接入响应)中的竞争解决信息判断竞争解决是否成功时,如果该竞争解决信息匹配于上述第一消息的数据,则终端设备确定竞争解决成功,将C-RNTI设置为上述TC-RNTI;如果该竞争解决信息与上述第一消息的数据不匹配,则终端设备确定竞争解决失败,丢弃上述TC-RNTI,如果终端设备启动了时间提前(TA)定时器则还需要停止TA定时器。
根据本实施例的方法,在2步随机接入过程中,如果网络设备成功解调出第一消息的随机接入前导码(MsgA preamble),但是该第一消息的数据(MsgA payload)解调失败的情况下,可以从2步随机接入过程回退到4步随机接入过程,避免了随机接 入过程的中断。
为使本实施例的方法更加清楚易懂,下面结合几个示例对本实施例的方法进行说明。在下面的示例中,以网络设备为gNB,终端设备为UE为例,但如前所述,本实施例并不以此作为限制。
图10是随机接入响应的一个示例的数据结构的示意图,在图10的示例中,gNB在用于发送MsgA的preamble的RO资源上成功解出MsgA的preamble,但无法在发送该MsgA的preamble的RO资源对应的PUSCH资源上成功解调MsgA的数据。
如图10所示,UE发起2-step随机接入,在CBRA preamble中随机选择一个preamble index,在选择的RO资源中发送MsgA的preamble并在该RO资源对应的PUSCH资源中发送MsgA的数据,MsgA的preamble和数据可以同时传输或先后在不同的时域资源上发送。发送MsgA的preamble的RO资源和发送MsgA的数据的PUSCH资源都是***预配置的,并且两个资源之间具有映射关系,一个RO资源对应一个或多个PUSCH资源。MsgA的数据可以包含CCCH SDU或C-RNTI MAC CE,其含义可以参考现有标准。
gNB接收MsgA时首先解调RO资源上发送的preamble,根据解调出的preamlbe的index得到解调MsgA的数据的DMRS,其中,MsgA的数据的DMRS分布在MsgA的数据的PUSCH中,gNB通过MsgA的数据的DMRS解调MsgA的数据。在本实施例中,gNB不能根据MsgA的preamble成功解调MsgA的数据部分。之后gNB向UE发送第一RAR,如图10所示,该第一RAR包含TAC和分配的TC-RNTI以及上行传输授权(UL grant),用来指示UE回退到4-step RACH过程,而不携带竞争解决的MAC CE。具体的,如图10所示,gNB发送的MAC层随机接入响应PDU由RA-RNTI加扰,发送的资源位置由RA-RNTI加扰的PDCCH指示。RA-RNTI是根据发送MsgA preamble的RO资源位置计算得到的。MAC层随机接入响应PDU中包含MAC subPDU,MAC subPDU的子头(subHeader)里包含RAPID,其指示UE发送的preamble的index,以及包含4-step RACH RAR信息(图10所示的E和T,其含义可以参考现有标准)。
UE在发送MsgA的preamble后启动4-step RACH随机接入响应接收窗定时器,发送MsgA的数据后启动2-step随机接入响应接收窗定时器并开始尝试接收MsgB。 UE接收到寻址于RA-RNTI的PDCCH后,在PDCCH中指示的下行授权资源中接收MAC层随机接入响应PDU。若在MAC层随机接入响应PDU中的MAC SubPDU的subHeader中的RAPID为发送的MsgA的preamble的index,UE确定成功接收RAR,若该RAR为第一RAR,UE确定从2-step回退到4-stepRACH。下一步,UE可以执行4-step RACH的第三步,即UE在该RAR指示的上行授权资源中重新发送MsgA的数据部分,使用该RAR中分配的TC-RNTI对数据加扰并根据RAR中的TAC调整数据发送提前量。重发的MsgA的数据(Msg3)可以使用预设的RV版本,可以与初始的MsgA的数据相同也可以不同,并且,在gNB侧,Msg3可以与初始发送的数据做软合并接收。
在图10的示例中,UE发送MsgA的数据时,也可以使用HARQ过程或不使用HARQ过程,如果使用HARQ过程,如果gNB无法正确解调MsgA的数据,则Gnb可以向UE发送HARQ NACK,UE发送针对MsgA的数据的HARQ重传,若达到最大重传次数仍未正确接收,才发送上述第一RAR。
图11是随机接入响应的另一个示例的数据结构的示意图,在图11的示例中,两个UE在进行2-step随机接入时选择不同的前导码,如preamble index A和B,并选择在相同的RO资源上发送preamble以及在该RO资源对应的PUSCH资源上分别传输MsgA的数据。gNB在RO中成功解出preamble A和preamble B,并在该RO资源对应的PUSCH资源上成功解调出preamble B对应的MsgA的数据,但未能成功解调preamble A对应的MsgA的数据。
如图11所示,2个UE发起2-step随机接入,分别在CBRA preamble中随机选择了不同的preamble index A和B,两个UE选择在相同的RO资源中发送MsgA的preamble,并在RO对应的PUSCH资源中发送MsgA的数据,preamble和数据可以同时传输或先后在不同的时域资源上发送。发送MsgA的preamble的RO资源和发送MsgA的数据的PUSCH资源都是***预配置的,并且两个资源之间具有映射关系,一个RO对应一个或多个PUSCH资源。MsgA的数据可以包含CCCH SDU或C-RNTI MAC CE,其含义可以参考现有标准。
gNB首先解调RO资源上发送的preamble,根据解调出的preamlbe index A和B分别得到两个UE的MsgA的数据的DMRS,MsgA的数据的DMRS分布在MsgA数据的PUSCH中,然后通过DMRS解调两个UE的MsgA的数据。在本实施例中,gNB 成功解调preamble B对应的MsgA的数据但没有解调出preamble A对应的MsgA的数据。之后gNB向两个UE发送RAR,MAC层随机接入响应PDU中包含两个MAC subPDU,其中,如图11所示,MAC subPDU 2对应MsaA的数据解调成功的UE的RAR,子头(subheader)里包含RAPID,其指示了preamble index B,payload包含第二RAR用来指示发送preamble A的UE随机接入成功,该第二RAR携带竞争解决MAC CE、gNB为UE分配的TC-RNTI、上行授权或时间定时提前量;如图11所示,MAC subPDU 1对应MsaA的数据解调失败的UE的RAR,子头(subheader)里包含RAPID,其指示preamble index A,payload包含第一RAR用来指示UE回退到4-step RACH过程,该第一RAR携带gNB为UE分配的TC-RNTI、上行授权或时间定时提前量,而不携带竞争解决MAC CE。此外,gNB发送的MAC层随机接入响应PDU由RA-RNTI加扰,发送的资源位置由RA-RNTI加扰的PDCCH指示。RA-RNTI是根据发送MsgA的preamble的RO资源位置计算得到的。
两个UE在发送MsgA的preamble后,接收到寻址于RA-RNTI的PDCCH后,在PDCCH中指示的下行授权资源中接收MAC层随机接入响应PDU。
如图11所示,发送preamble A的UE收到MAC层随机接入响应PDU中的MAC SubPDU 1的subHeader中的RAPID为发送的preamble A时,确定成功接收随机接入响应;该MAC SubPDU 1包含第一RAR(4-step RAR),UE确定从2-step回退到4-stepRACH,下一步,UE执行4-step RACH的第三步,即UE在RAR指示的上行授权资源中重新发送MsgA的数据部分,使用第一RAR(4-step RAR)中分配的TC-RNTI对数据加扰并根据RAR中的TA调整数据发送提前量。重发的MsgA数据(Msg3)可以使用预设的RV版本,可以与初始的MsgA数据相同也可以不同,并且在gNB侧,Msg3可以与初始发送的MsgA数据做软合并接收。
如图11所示,发送preamble B的UE收到MAC层随机接入响应PDU中的MAC SubPDU 2的subHeader中的RAPID为preamble B时,确定成功接收随机接入响应;该MAC SubPDU 2包含第二RAR(不仅包含4-step RAR的内容,还包含竞争解决MAC CE),UE确定继续2-step随机接入,进一步,UE启动TA timer并根据第二RAR中的TA调整数据发送提前量,根据MAC CE的内容判断竞争解决是否成功,若MAC CE内容与MsgA数据一致则竞争解决和随机接入成功,将分配的TC-RNTI设为使用的C-RTNI,若MAC CE内容与MsgA内容不一致则竞争解决失败,停止TA timer并 忽略收到的TC-RNTI。
在图11的示例中,gNB不会针对同一个preamble发送两种格式的RAR(即2-step RAR和4-step RAR),因此UE只要收到RAR即可确认随机接入状态。
此外,在图11的示例中,UE发送MsgA的数据时可以使用HARQ过程或不使用HARQ过程,如果使用HARQ过程,如果gNB无法正确解调MsgA数据则通过PDCCH向UE发送HARQ NACK并调度重传,UE发送针对MsgA数据的HARQ重传,其中,UE可以根据预设功率步长提升MsgA数据HARQ重传的发送功率,若达到最大重传次数仍未正确接收,gNB才发送第一RAR;若达到最大重传次数之前,gNB成功解调MsgA,gNB发送第二RAR。
另外,在图11的示例中,当UE回退到4-step随机接入发送MsgA的数据重传(即发送msg3)时,也可以使用HARQ过程,以提高数据解调正确率。如果gNB无法正确解调MsgA数据则发送寻址于TC-RNTI的PDCCH向UE发送HARQ NACK并调度重传,UE发送msg3的HARQ重传。
图12是随机接入响应的再一个示例的数据结构的示意图,在图12的示例中,UE a和UE b在2-step随机接入时选择相同的前导码,也即preamble index相同,并选择在相同的RO资源上发送preamble以及在该RO资源对应的PUSCH资源上分别传输MsgA的数据。gNB在RO资源中成功解出preamble,并识别两个相同的preamble,在该RO资源对应的PUSCH资源上成功解调UE a发送的MsgA的数据,但未能成功解调UE b发送的MsgA的数据。
如图12所示,UE a和UE b发起2-step随机接入,分别在CBRA preamble中随机选择了相同的preamble,两个UE选择在相同的RO资源中发送preamble,并在RO资源对应的PUSCH资源中发送MsgA的数据,preamble和数据可以同时传输或先后在不同的时域资源上发送。发送MsgA的preamble的RO资源和发送MsgA的数据的PUSCH资源都是***预配置的,并且两个资源之间具有映射关系,一个RO对应一个或多个PUSCH资源。
gNB首先解调RO资源上发送的preamble,根据解调出的preamlbe index得到MsgA的数据的DMRS,MsgA的数据的DMRS分布在MsgA的数据的PUSCH中,然后通过DMRS解调MsgA的数据。gNB一般无法在同一个PUSCH资源上解调DMRS相同的2个UE的MsgA的数据,在本实施例中,gNB成功解调UE a的MsgA 的数据但没有解调出UE b的MsgA的数据。之后,gNB向两个UE发送RAR,针对成功解调MsgA的数据的UE(UE a)发送第二RAR,针对未解出MsgA的数据的UE(UE b)发送第一RAR。
如图12所示,MAC层随机接入响应PDU中包含两个MAC subPDU,其中,如图12所示,MAC subPDU 1对应UE a的响应,子头(subheader)里包含RAPID,其指示preamble index,payload包含2-step随机接入响应信息(第二RAR)用来指示UEa随机接入过程成功,该第二RAR携带竞争解决MAC CE、gNB给UE分配的Temporary C-RNTI、上行授权或时间定时提前量;如图12所示,MAC subPDU 2对应UE b的MsgB,子头(subheader)里包含RAPID,其指示preamble index,payload包含4-step随机接入响应信息(第一RAR)用来指示UE b回退到4-step RACH过程,该第一RAR携带gNB为UE分配的Temporary C-RNTI、上行授权或时间定时提前量,但不携带竞争解决MAC CE。gNB发送的MAC层随机接入响应PDU由RA-RNTI加扰,发送的资源位置由RA-RNTI加扰的PDCCH指示。RA-RNTI是根据发送MsgA preamble的RO资源位置计算得到的。
两个UE在发送MsgA的preamble后启动4-step RACH随机接入响应接收窗定时器,在发送MsgA的数据后启动2-step随机接入响应接收窗定时器并开始尝试接收MsgB。两个UE接收到寻址于RA-RNTI的PDCCH后,在PDCCH中指示的下行授权资源中接收MAC层随机接入响应PDU。
UE a收到MAC层随机接入响应PDU中的MAC SubPDU 1的subHeader中的RAPID为发送的preamble,确定成功接收随机接入响应;该MAC SubPDU 1包含2-step随机接入响应(第二RAR),UE a根据该第二RAR中的TA调整数据发送提前量并根据竞争解决MAC CE的内容判断随机竞争解决是否成功,若竞争解决MAC CE与发送的MsgA数据一致,则判断为竞争解决和随机接入成功,将分配的TC-RNTI设为使用的C-RTNI,启动TA timer并使用TA调整数据发送提前量。
UE b收到MAC层随机接入响应PDU中的MAC SubPDU 1的subHeader中的RAPID为发送的preamble时,确定成功接收随机接入响应;该MAC SubPDU 1包含2-step随机接入响应(第二RAR),UE启动TA timer并根据RAR中的TA调整数据发送提前量,根据竞争解决MAC CE的内容判断随机接入过程是否成功,竞争解决MAC CE与发送的MsgA的数据不一致,则UE丢弃分配的TC-RNTI并停止TA timer; 另外,UE还收到一个RAPID与发送preamble匹配的MAC SubPDU 2,该MAC SubPDU 2包含4-step RACH RAR(第一RAR),UE确定从2-step回退到4-stepRACH,下一步,UE执行4-step RACH的第三步,即UE在RAR指示的上行授权资源中重新发送MsgA数据部分,使用4-step RAR(第一RAR)中分配的TC-RNTI对数据加扰并根据RAR中的TA调整数据发送提前量。重发的MsgA数据(msg3)可以使用预设的RV版本,可以与初始的MsgA数据相同也可不同,并且在gNB侧,msg3可以与初始发送的MsgA数据做软合并接收。
在图12的示例中,gNB针对同一个preamble可能发送2个RAR(即2-step RAR和4-step RAR),因此UE需要检测2种RAR才能确认随机接入状态。此外,gNB可以在同一个随机接入响应MAC PDU发送针对同一preamble的2个RAR。
在图12的示例中,如果UE仅收到第一RAR,则确认从2-step随机接入回退到4-step随机接入,重发MsgA的数据;如果UE仅收到第二RAR,则根据该第二RAR携带的竞争解决MAC CE判断解决解决是否成功;如果UE同时收到第一RAR和第二RAR,则UE根据第二RAR携带的竞争解决MAC CE判断竞争解决是否成功,如果该MAC CE与Msg A的数据一致,则认为竞争解决成功,如果不一致,则确认从2-step随机接入回退到4-step随机接入,重发MsgA的数据,并认为竞争解决失败。
在图12的示例中,UE发送MsgA数据时可以使用HARQ过程或不使用HARQ过程,如果使用HARQ过程,如果gNB无法正确解调MsgA数据,则通过PDCCH向UE发送HARQ NACK并调度重传,UE发送针对MsgA的数据的HARQ重传,其中,UE可以根据预设功率步长提升MsgA数据HARQ重传的发送功率,若达到最大重传次数仍未正确接收,gNB才发送第一RAR;若达到最大重传次数之前,gNB成功解调MsgA,gNB发送第二RAR。
另外,在图12的示例中,当UE回退到4-step发送MsgA的数据的重传(发送msg3)时,也可以使用HARQ过程,以提高数据解调正确率。如果gNB无法正确解调Msg3数据,则发送寻址于TC-RNTI的PDCCH,以向UE发送HARQ NACK并调度重传,UE发送msg3数据的HARQ重传。其中,UE可以根据预设功率步长提升Msg3HARQ重传的发送功率。
前面以图10~图12的三个场景为例对本实施例的方法进行了说明,本实施例不限于此,UE和gNB还可以有其他场景,在其他场景下的实施可以参考实施例1和实 施例2。
实施例3
本实施例提供了一种随机接入响应的发送方法装置,该装置配置于网络设备设备。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参照实施例1的方法的实施,内容相同之处不再重复说明。
图13是本实施例的随机接入响应的发送装置1300的示意图,如图13所示,该装置1300包括:接收单元1301和发送单元1302。
接收单元1301接收终端设备发送的第一消息,所述第一消息包含随机接入前导码和数据;如果所述网络设备解调出所述第一消息的随机接入前导码,但不能解调出所述第一消息的数据,则所述发送单元1302向所述终端设备发送第一随机接入响应,所述第一随机接入响应至少携带所述网络设备为所述终端设备分配的用于重传所述第一消息的数据的上行传输授权以及发送时间提前命令;所述接收单元1301接收所述终端设备发送的所述第一消息的数据的重传。
在本实施例中,如果所述网络设备根据所述第一消息的数据的重传能解调出所述第一消息的数据,所述发送单元1302向所述终端设备发送第三随机接入响应,所述第三随机接入响应至少携带针对所述第一消息的数据的竞争解决信息。
在本实施例中,如果所述网络设备解调出所述第一消息的随机接入前导码和所述第一消息的数据,则所述发送单元1302向所述终端设备发送第二随机接入响应,所述第二随机接入响应至少携带针对所述第一消息的数据的竞争解决信息以及所述网络设备为所述终端设备分配的TC-RNTI。
在本实施例中,所述第二随机接入响应还携带用于所述终端设备发送上行数据的发送时间提前命令。
在本实施例中,所述第一消息的随机接入前导码在预配置的物理随机接入信道机会(PRACH occasion)中发送;所述第一消息的数据在预配置的上行传输资源中发送;所述PRACH occasion与一个或多个上行传输资源具有映射关系。
在本实施例中,所述第一随机接入响应的PDCCH寻址于随机接入无线网络临时标识(RA-RNTI),所述PDCCH调度的传输块的媒体接入控制(MAC)层子头中包含与所述第一消息的随机接入前导码匹配的标识信息;其中,所述RA-RNTI对应所 述PRACH occasion所在的时间和频率位置。
在本实施例中,如果所述网络设备没有解调出所述第一消息的数据,则所述发送单元1302向所述终端设备发送第一混合自动重传请求(HARQ)NACK信令,调度所述终端设备发送针对所述第一消息的数据的第一HARQ重传;如果所述第一消息的数据的第一HARQ重传次数达到预先设定的第一阈值,所述网络设备仍然没有解调出所述第一消息的数据,则所述发送单元1302向所述终端设备发送所述第一随机接入响应;如果所述第一消息的数据的第一HARQ重传次数达到预先设定的第一阈值之前,所述网络设备解调出所述第一消息的数据,则所述发送单元1302向所述终端设备发送第四随机接入响应,所述第四随机接入响应至少携带针对所述第一消息的数据的竞争解决信息。
在本实施例中,如图13所示,装置1300还可以包括:
处理单元1303,其在所述发送单元1302向所述终端设备发送所述第一随机接入响应之后,清空用于软合并接收所述第一消息的数据的缓存区,当所述接收单元1301收到所述第一消息的数据的重传时,使用重传的数据对所述第一消息的数据进行解码;或者,不清空用于软合并解码所述第一消息的数据的缓存区,当所述接收单元1301收到所述第一消息的数据的重传时,使用所述缓冲区数据和重传的数据对所述第一消息的数据进行软合并解码。
在本实施例中,在所述接收单元1301接收所述终端设备发送的所述第一消息的数据的重传之后,如果所述网络设备根据所述第一消息的数据的重传仍然不能解调出所述第一消息的数据,所述发送单元1302向所述终端设备发送第二HARQ NACK信令,调度所述终端设备发送针对所述第一消息的数据的第二HARQ重传;如果所述第一消息的数据的第二HARQ重传次数达到预先设定的第二阈值之前,所述网络设备解调出所述第一消息的数据,则所述发送单元1302向所述终端设备发送第五随机接入响应,所述第五随机接入响应至少携带针对所述第一消息的数据的竞争解决信息。
在本实施例中,所述第三随机接入响应还携带所述网络设备为所述终端设备分配的临时小区无线网络临时标识(TC-RNTI)。
在本实施例中,所述第三随机接入响应的PDCCH寻址于RA-RNTI,所述PDCCH调度的传输块的MAC层子头中包含与所述第一消息的随机接入前导码匹配的标识信 息;其中,所述第一消息的随机接入前导码在预配置的PRACH occasion中发送,所述RA-RNTI对应所述PRACH occasion所在的时间和频率位置。
在本实施例中,所述第一随机接入响应还携带所述网络设备为所述终端设备分配的TC-RNTI。在本实施例中,所述第三随机接入响应的PDCCH寻址于临时无线网络临时标识(C-RNTI);所述C-RNTI匹配于所述第一随机接入响应中携带的TC-RNTI,或者,所述C-RNTI匹配于所述第一消息的数据中传输的临时无线网络临时标识媒体接入控制控制单元(C-RNTI MAC CE)。
根据本实施例的装置,在2步随机接入过程中,如果网络设备成功解调出第一消息的随机接入前导码(MsgA preamble),但是该第一消息的数据(MsgA payload)解调失败的情况下,可以从2步随机接入过程回退到4步随机接入过程,避免了随机接入过程的中断。
实施例4
本实施例提供了一种随机接入响应的接收装置,该装置配置于终端设备。由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参照实施例2的方法的实施,内容相同之处不再重复说明。
图14是本实施例的随机接入响应的接收装置1400的示意图,如图14所示,所述装置1400包括:发送单元1401和接收单元1402。
发送单元1401向网络设备发送第一消息,所述第一消息包括随机接入前导码和数据;接收单元1402接收所述网络设备发送的随机接入响应,如果接收的所述随机接入响应为第一随机接入响应,则所述发送单元1401在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据;其中,所述第一随机接入响应至少携带所述上行传输授权和发送时间提前命令。
在本实施例中,在所述发送单元1401在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据之后,所述接收单元1402还接收所述网络设备发送的第三随机接入响应,所述第三随机接入响应至少携带针对所述第一消息的数据的竞争解决信息,如图14所示,所述装置1400还包括:
第一处理单元1403,其根据所述竞争解决信息判断竞争解决是否成功。
在本实施例中,如图14所示,所述装置1400还包括:
第二处理单元1404,如果所述接收单元1402接收的所述随机接入响应为第二随机接入响应,则所述第二处理单元1404根据所述第二随机接入响应中携带的竞争解决信息判断是否竞争解决成功;其中,所述第二随机接入响应至少携带针对所述第一消息的数据的所述竞争解决信息和所述网络设备为所述终端设备分配的TC-RNTI。
在本实施例中,所述第二随机接入响应还携带用于所述终端设备发送上行数据的发送时间提前命令。
在本实施例中,所述发送单元1401在预配置的物理随机接入信道机会(PRACH occasion)中发送所述第一消息的随机接入前导码;并且,所述发送单元1401根据所述PRACH occasion确定发送所述第一消息的数据的上行传输资源,或者,所述发送单元1401根据所述PRACH occasion和所述第一消息的随机接入前导码确定发送所述第一消息的数据的上行资源;并且,所述发送单元1401在确定的所述上行传输资源上发送所述第一消息的数据。
在本实施例中,所述第一随机接入响应的PDCCH可以寻址于RA-RNTI,所述PDCCH调度的传输块的MAC层子头中包含与所述第一消息的随机接入前导码匹配的标识信息;其中,所述RA-RNTI对应所述PRACH occasion所在的时间和频率位置。
在本实施例中,在所述发送单元1401向所述网络设备发送所述第一消息之后,所述接收单元1402还接收所述网络设备发送的第一HARQ NACK信令,所述第一HARQ NACK信令用于调度针对所述第一消息的数据的第一HARQ重传;如果所述第一消息的数据的第一HARQ重传次数未达到第一阈值,所述发送单元1401向所述网络设备发送所述第一消息的数据的第一HARQ重传。
在本实施例中,所述发送单元1401可以使用所述第一消息的数据的发送缓存中的数据重传所述第一消息的数据;或者,所述终端设备的MAC层封装组包实体重新生成所述第一消息的数据,所述发送单元1401将重新生成的所述第一消息的数据放入所述第一消息的数据的发送缓存中发送。
在本实施例中,在所述发送单元1401在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据之后,所述接收单元1402接收所述网络设备发送的第二HARQ NACK信令,所述第二HARQ NACK信令用于调度针对所述第一消息的数据的第二HARQ重传;如果所述第一消息的数据的第二HARQ重传次 数未达到第一阈值,所述发送单元1401向所述网络设备发送所述第一消息的数据的第二HARQ重传。
在本实施例中,所述发送单元1401根据所述第一随机接入响应中携带的发送时间提前命令调整上行发送时间,使用RA-RNTI重传所述第一消息的数据;其中,所述发送单元1401在预配置的PRACH occasion中发送所述第一消息的随机接入前导码,所述RA-RNTI对应所述PRACH occasion所在的时间和频率位置。
在本实施例中,所述第三随机接入响应还携带所述网络设备为所述终端设备分配的TC-RNTI。所述第三随机接入响应的PDCCH寻址于RA-RNTI,所述PDCCH调度的传输块的MAC层子头中包含与所述第一消息的随机接入前导码匹配的标识信息;其中,所述发送单元1401在预配置的PRACH occasion中发送所述第一消息的随机接入前导码,所述RA-RNTI对应所述PRACH occasion所在的时间和频率位置。
在本实施例中,所述第一随机接入响应中还携带所述网络设备为所述终端设备分配的TC-RNTI。所述发送单元1401根据所述第一随机接入响应中携带的发送时间提前命令调整上行发送时间,使用所述第一随机接入响应中携带的TC-RNTI重传所述第一消息的数据。
在本实施例中,所述第三随机接入响应的PDCCH寻址于C-RNTI,所述C-RNTI匹配于所述第一随机接入响应中携带的TC-RNTI,或者,所述C-RNTI匹配于所述第一消息的数据中传输的C-RNTI MAC CE。
在本实施例中,所述第二处理单元1404根据所述第二随机接入响应中携带的竞争解决信息判断是否竞争解决成功,包括:当所述第二随机接入响应中携带的竞争解决信息匹配于所述第一消息的数据时,所述第二处理单元1404确定竞争解决成功,将C-RNTI设置为所述第二随机接入响应中携带的TC-RNTI;否则,所述第二处理单元1404确定竞争解决失败,丢弃所述第二随机接入响应中携带的TC-RNTI。
根据本实施例的装置,在2步随机接入过程中,如果网络设备成功解调出第一消息的随机接入前导码(MsgA preamble),但是该第一消息的数据(MsgA payload)解调失败的情况下,可以从2步随机接入过程回退到4步随机接入过程,避免了随机接入过程的中断。
实施例5
本发明实施例还提供了一种网络设备,该网络设备包括实施例3所述的装置。
图15是本发明实施例的网络设备的一个实施方式的构成示意图。如图15所示,网络设备1500可以包括:中央处理器(CPU)1501和存储器1502;存储器1502耦合到中央处理器1501。其中该存储器1502可存储各种数据;此外还存储信息处理的程序,并且在中央处理器1501的控制下执行该程序,以接收终端设备发送的各种信息、并且向终端设备发送各种信息。
在一个实施方式中,实施例3所述的装置的功能可以被集成到中央处理器1501中,由中央处理器1501实现实施例3所述的装置的功能,其中关于实施例3所述的装置的功能被合并于此,在此不再赘述。
在另一个实施方式中,实施例3所述的装置可以与中央处理器1501分开配置,例如可以将该实施例3所述的装置为与中央处理器1501连接的芯片,通过中央处理器1501的控制来实现该实施例3所述的装置的功能。
此外,如图15所示,网络设备1500还可以包括:收发机1503和天线1504等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1500也并不是必须要包括图15中所示的所有部件;此外,网络设备1500还可以包括图15中没有示出的部件,可以参考现有技术。
通过本实施例的网络设备,避免了随机接入过程的终端。
实施例6
本实施例提供了一种终端设备,该终端设备包括实施例4所述的装置。
图16是本发明实施例的终端设备的示意图。如图16所示,该终端设备1600可以包括中央处理器1601和存储器1602;存储器1602耦合到中央处理器1601。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
在一个实施方式中,实施例4所述的装置的功能可以被集成到中央处理器1601中,由中央处理器1601实现实施例4所述的装置的功能,其中关于实施例4所述的装置的功能被合并于此,在此不再赘述。
在另一个实施方式中,实施例4所述的装置可以与中央处理器1601分开配置,例如可以将该实施例4所述的装置配置为与中央处理器1601连接的芯片,通过中央 处理器1601的控制来实现该实施例4所述的装置的功能。
如图16所示,该终端设备1600还可以包括:通信模块1603、输入单元1604、音频处理单元1605、显示器1606、电源1607。值得注意的是,终端设备1600也并不是必须要包括图16中所示的所有部件;此外,终端设备1600还可以包括图16中没有示出的部件,可以参考现有技术。
如图16所示,中央处理器1601有时也称为控制器或操作控件,可以包括微处理器或其它处理器装置和/或逻辑装置,该中央处理器1601接收输入并控制终端设备1600的各个部件的操作。
其中,存储器1602,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种信息,此外还可存储执行有关信息的程序。并且中央处理器1601可执行该存储器1602存储的该程序,以实现信息存储或处理等。其它部件的功能与现有类似,此处不再赘述。终端设备1600的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
通过本实施例的终端设备,避免了随机接入过程的终端。
实施例7
本发明实施例还提供一种通信***,该通信***包括网络设备和终端设备,网络设备例如为实施例5所述的网络设备1500,终端设备例如为实施例6所述的终端设备1600。
在本实施例中,该终端设备例如是gNB服务的UE,其除了包含实施例4所述的装置的功能以外,还包括终端设备的常规组成和功能,如实施例6所述,在此不再赘述。
在本实施例中,该网络设备例如可以是NR中的gNB,其除了包含实施例3所述的装置的功能以外,还包括网络设备的常规组成和功能,如实施例5所述,在此不再赘述。
通过本实施例的通信***,避免了随机接入过程的终端。
本发明实施例还提供一种计算机可读程序,其中当在终端设备中执行所述程序 时,所述程序使得计算机在所述终端设备中执行实施例2所述的方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行实施例2所述的方法。
本发明实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行实施例1所述的方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行实施例1所述的方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可***移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立 门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1、一种随机接入响应的发送装置,配置于网络设备,其中,所述装置包括:
接收单元,其接收终端设备发送的第一消息,所述第一消息包含随机接入前导码和数据;
发送单元,如果所述网络设备解调出所述第一消息的随机接入前导码,但不能解调出所述第一消息的数据,则所述发送单元向所述终端设备发送第一随机接入响应,所述第一随机接入响应至少携带所述网络设备为所述终端设备分配的用于重传所述第一消息的数据的上行传输授权以及发送时间提前命令;
所述接收单元接收所述终端设备发送的所述第一消息的数据的重传。
2、根据附记1所述的装置,如果所述网络设备根据所述第一消息的数据的重传能解调出所述第一消息的数据,所述发送单元向所述终端设备发送第三随机接入响应,所述第三随机接入响应至少携带针对所述第一消息的数据的竞争解决信息。
3、根据附记1所述的装置,其中,
如果所述网络设备解调出所述第一消息的随机接入前导码和所述第一消息的数据,则所述发送单元向所述终端设备发送第二随机接入响应,所述第二随机接入响应至少携带针对所述第一消息的数据的竞争解决信息以及所述网络设备为所述终端设备分配的TC-RNTI。
4、根据附记3所述的装置,其中,所述第二随机接入响应还携带用于所述终端设备发送上行数据的发送时间提前命令。
5、根据附记1至4任一项所述的装置,其中,所述第一消息的随机接入前导码在预配置的物理随机接入信道机会(PRACH occasion)中发送;所述第一消息的数据在预配置的上行传输资源中发送;所述PRACH occasion与一个或多个上行传输资源 具有映射关系。
6、根据附记5所述的装置,其中,所述第一随机接入响应的PDCCH寻址于随机接入无线网络临时标识(RA-RNTI),所述PDCCH调度的传输块的媒体接入控制(MAC)层子头中包含与所述第一消息的随机接入前导码匹配的标识信息;其中,所述RA-RNTI对应所述PRACH occasion所在的时间和频率位置。
7、根据附记1所述的装置,其中,
如果所述网络设备没有解调出所述第一消息的数据,则所述发送单元向所述终端设备发送第一混合自动重传请求(HARQ)NACK信令,调度所述终端设备发送针对所述第一消息的数据的第一HARQ重传;
如果所述第一消息的数据的第一HARQ重传次数达到预先设定的第一阈值,所述网络设备仍然没有解调出所述第一消息的数据,则所述发送单元向所述终端设备发送所述第一随机接入响应;
如果所述第一消息的数据的第一HARQ重传次数达到预先设定的第一阈值之前,所述网络设备解调出所述第一消息的数据,则所述发送单元向所述终端设备发送第四随机接入响应,所述第四随机接入响应至少携带针对所述第一消息的数据的竞争解决信息。
8、根据附记1或7所述的装置,其中,所述装置还包括:
处理单元,其在所述发送单元向所述终端设备发送所述第一随机接入响应之后,清空用于软合并接收所述第一消息的数据的缓存区,当所述接收单元收到所述第一消息的数据的重传时,使用重传的数据对所述第一消息的数据进行解码;或者,不清空用于软合并解码所述第一消息的数据的缓存区,当所述接收单元收到所述第一消息的数据的重传时,使用所述缓冲区数据和重传的数据对所述第一消息的数据进行软合并解码。
9、根据附记1所述的装置,其中,在所述接收单元接收所述终端设备发送的所述第一消息的数据的重传之后,
如果所述网络设备根据所述第一消息的数据的重传仍然不能解调出所述第一消息的数据,所述发送单元向所述终端设备发送第二HARQ NACK信令,调度所述终端设备发送针对所述第一消息的数据的第二HARQ重传;
如果所述第一消息的数据的第二HARQ重传次数达到预先设定的第二阈值之前, 所述网络设备解调出所述第一消息的数据,则所述发送单元向所述终端设备发送第五随机接入响应,所述第五随机接入响应至少携带针对所述第一消息的数据的竞争解决信息。
10、根据附记2所述的装置,其中,所述第三随机接入响应还携带所述网络设备为所述终端设备分配的临时小区无线网络临时标识(TC-RNTI)。
11、根据附记2或10所述的装置,其中,所述第三随机接入响应的PDCCH寻址于RA-RNTI,所述PDCCH调度的传输块的MAC层子头中包含与所述第一消息的随机接入前导码匹配的标识信息;其中,所述第一消息的随机接入前导码在预配置的PRACH occasion中发送,所述RA-RNTI对应所述PRACH occasion所在的时间和频率位置。
12、根据附记2所述的装置,其中,所述第一随机接入响应还携带所述网络设备为所述终端设备分配的TC-RNTI。
13、根据附记12所述的装置,其中,所述第三随机接入响应的PDCCH寻址于临时无线网络临时标识(C-RNTI);所述C-RNTI匹配于所述第一随机接入响应中携带的TC-RNTI,或者,所述C-RNTI匹配于所述第一消息的数据中传输的临时无线网络临时标识媒体接入控制控制单元(C-RNTI MAC CE)。
14、一种随机接入响应的接收装置,配置于终端设备,其中,所述装置包括:
发送单元,其向网络设备发送第一消息,所述第一消息包括随机接入前导码和数据;
接收单元,其接收所述网络设备发送的随机接入响应,如果接收的所述随机接入响应为第一随机接入响应,则所述发送单元在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据;其中,所述第一随机接入响应至少携带所述上行传输授权和发送时间提前命令。
15、根据附记14所述的装置,其中,在所述发送单元在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据之后,所述接收单元还接收所述网络设备发送的第三随机接入响应,所述第三随机接入响应至少携带针对所述第一消息的数据的竞争解决信息,所述装置还包括:
第一处理单元,其根据所述竞争解决信息判断竞争解决是否成功。
16、根据附记14所述的装置,其中,所述装置还包括:
第二处理单元,如果所述接收单元接收的所述随机接入响应为第二随机接入响 应,则所述第二处理单元根据所述第二随机接入响应中携带的竞争解决信息判断是否竞争解决成功;其中,所述第二随机接入响应至少携带针对所述第一消息的数据的所述竞争解决信息和所述网络设备为所述终端设备分配的TC-RNTI。
17、根据附记16所述的装置,其中,所述第二随机接入响应还携带用于所述终端设备发送上行数据的发送时间提前命令。
18、根据附记14至17任一项所述的装置,其中,
所述发送单元在预配置的物理随机接入信道机会(PRACH occasion)中发送所述第一消息的随机接入前导码;
所述发送单元根据所述PRACH occasion确定发送所述第一消息的数据的上行传输资源,或者,所述发送单元根据所述PRACH occasion和所述第一消息的随机接入前导码确定发送所述第一消息的数据的上行资源;并且,所述发送单元在确定的所述上行传输资源上发送所述第一消息的数据。
19、根据附记18所述的装置,其中,所述第一随机接入响应的PDCCH寻址于RA-RNTI,所述PDCCH调度的传输块的MAC层子头中包含与所述第一消息的随机接入前导码匹配的标识信息;其中,所述RA-RNTI对应所述PRACH occasion所在的时间和频率位置。
20、根据附记14所述的装置,其中,在所述发送单元向所述网络设备发送所述第一消息之后,所述接收单元还接收所述网络设备发送的第一HARQ NACK信令,所述第一HARQ NACK信令用于调度针对所述第一消息的数据的第一HARQ重传;
如果所述第一消息的数据的第一HARQ重传次数未达到第一阈值,所述发送单元向所述网络设备发送所述第一消息的数据的第一HARQ重传。
21、根据附记14或20所述的装置,其中,
所述发送单元使用所述第一消息的数据的发送缓存中的数据重传所述第一消息的数据;或者,
所述终端设备的MAC层封装组包实体重新生成所述第一消息的数据,所述发送单元将重新生成的所述第一消息的数据放入所述第一消息的数据的发送缓存中发送。
22、根据附记14所述的装置,其中,在所述发送单元在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据之后,所述接收单元接收所述网络设备发送的第二HARQ NACK信令,所述第二HARQ NACK信令用于调度 针对所述第一消息的数据的第二HARQ重传;
如果所述第一消息的数据的第二HARQ重传次数未达到第一阈值,所述发送单元向所述网络设备发送所述第一消息的数据的第二HARQ重传。
23、根据附记14至22任一项所述的装置,其中,所述发送单元根据所述第一随机接入响应中携带的发送时间提前命令调整上行发送时间,使用RA-RNTI重传所述第一消息的数据;其中,所述发送单元在预配置的PRACH occasion中发送所述第一消息的随机接入前导码,所述RA-RNTI对应所述PRACH occasion所在的时间和频率位置。
24、根据附记15所述的装置,其中,所述第三随机接入响应还携带所述网络设备为所述终端设备分配的TC-RNTI。
25、根据附记15或24所述的装置,其中,所述第三随机接入响应的PDCCH寻址于RA-RNTI,所述PDCCH调度的传输块的MAC层子头中包含与所述第一消息的随机接入前导码匹配的标识信息;其中,所述发送单元在预配置的PRACH occasion中发送所述第一消息的随机接入前导码,所述RA-RNTI对应所述PRACH occasion所在的时间和频率位置。
26、根据附记15所述的装置,其中,所述第一随机接入响应中还携带所述网络设备为所述终端设备分配的TC-RNTI。
27、根据附记26所述的装置,其中,所述发送单元根据所述第一随机接入响应中携带的发送时间提前命令调整上行发送时间,使用所述第一随机接入响应中携带的TC-RNTI重传所述第一消息的数据。
28、根据附记27所述的装置,其中,所述第三随机接入响应的PDCCH寻址于C-RNTI,所述C-RNTI匹配于所述第一随机接入响应中携带的TC-RNTI,或者,所述C-RNTI匹配于所述第一消息的数据中传输的C-RNTI MAC CE。
29、根据附记16或17所述的装置,其中,
当所述第二随机接入响应中携带的竞争解决信息匹配于所述第一消息的数据时,所述第二处理单元确定竞争解决成功,将C-RNTI设置为所述第二随机接入响应中携带的TC-RNTI;
否则,所述第二处理单元确定竞争解决失败,丢弃所述第二随机接入响应中携带的TC-RNTI。

Claims (20)

  1. 一种随机接入响应的发送装置,配置于网络设备,其中,所述装置包括:
    接收单元,其接收终端设备发送的第一消息,所述第一消息包含随机接入前导码和数据;
    发送单元,如果所述网络设备解调出所述第一消息的随机接入前导码,但不能解调出所述第一消息的数据,则所述发送单元向所述终端设备发送第一随机接入响应,所述第一随机接入响应至少携带所述网络设备为所述终端设备分配的用于重传所述第一消息的数据的上行传输授权以及发送时间提前命令;
    所述接收单元接收所述终端设备发送的所述第一消息的数据的重传。
  2. 根据权利要求1所述的装置,如果所述网络设备根据所述第一消息的数据的重传能解调出所述第一消息的数据,所述发送单元向所述终端设备发送第三随机接入响应,所述第三随机接入响应至少携带针对所述第一消息的数据的竞争解决信息。
  3. 根据权利要求1所述的装置,其中,
    如果所述网络设备解调出所述第一消息的随机接入前导码和所述第一消息的数据,则所述发送单元向所述终端设备发送第二随机接入响应,所述第二随机接入响应至少携带针对所述第一消息的数据的竞争解决信息以及所述网络设备为所述终端设备分配的TC-RNTI。
  4. 根据权利要求3所述的装置,其中,所述第二随机接入响应还携带用于所述终端设备发送上行数据的发送时间提前命令。
  5. 根据权利要求1至4任一项所述的装置,其中,所述第一消息的随机接入前导码在预配置的物理随机接入信道机会(PRACH occasion)中发送;所述第一消息的数据在预配置的上行传输资源中发送;所述PRACH occasion与一个或多个上行传输资源具有映射关系。
  6. 根据权利要求1所述的装置,其中,所述装置还包括:
    处理单元,其在所述发送单元向所述终端设备发送所述第一随机接入响应之后,清空用于软合并接收所述第一消息的数据的缓存区,当所述接收单元收到所述第一消息的数据的重传时,使用重传的数据对所述第一消息的数据进行解码;或者,不清空用于软合并解码所述第一消息的数据的缓存区,当所述接收单元收到所述第一消息的 数据的重传时,使用所述缓冲区数据和重传的数据对所述第一消息的数据进行软合并解码。
  7. 根据权利要求1所述的装置,其中,在所述接收单元接收所述终端设备发送的所述第一消息的数据的重传之后,
    如果所述网络设备根据所述第一消息的数据的重传仍然不能解调出所述第一消息的数据,所述发送单元向所述终端设备发送第二HARQ NACK信令,调度所述终端设备发送针对所述第一消息的数据的第二HARQ重传;
    如果所述第一消息的数据的第二HARQ重传次数达到预先设定的第二阈值之前,所述网络设备解调出所述第一消息的数据,则所述发送单元向所述终端设备发送第五随机接入响应,所述第五随机接入响应至少携带针对所述第一消息的数据的竞争解决信息。
  8. 根据权利要求2所述的装置,其中,所述第一随机接入响应还携带所述网络设备为所述终端设备分配的TC-RNTI。
  9. 根据权利要求8所述的装置,其中,所述第三随机接入响应的PDCCH寻址于临时无线网络临时标识(C-RNTI);所述C-RNTI匹配于所述第一随机接入响应中携带的TC-RNTI,或者,所述C-RNTI匹配于所述第一消息的数据中传输的临时无线网络临时标识媒体接入控制控制单元(C-RNTI MAC CE)。
  10. 一种随机接入响应的接收装置,配置于终端设备,其中,所述装置包括:
    发送单元,其向网络设备发送第一消息,所述第一消息包括随机接入前导码和数据;
    接收单元,其接收所述网络设备发送的随机接入响应,如果接收的所述随机接入响应为第一随机接入响应,则所述发送单元在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据;其中,所述第一随机接入响应至少携带所述上行传输授权和发送时间提前命令。
  11. 根据权利要求10所述的装置,其中,在所述发送单元在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据之后,所述接收单元还接收所述网络设备发送的第三随机接入响应,所述第三随机接入响应至少携带针对所述第一消息的数据的竞争解决信息,所述装置还包括:
    第一处理单元,其根据所述竞争解决信息判断竞争解决是否成功。
  12. 根据权利要求10所述的装置,其中,所述装置还包括:
    第二处理单元,如果所述接收单元接收的所述随机接入响应为第二随机接入响应,则所述第二处理单元根据所述第二随机接入响应中携带的竞争解决信息判断是否竞争解决成功;其中,所述第二随机接入响应至少携带针对所述第一消息的数据的所述竞争解决信息和所述网络设备为所述终端设备分配的TC-RNTI。
  13. 根据权利要求12所述的装置,其中,所述第二随机接入响应还携带用于所述终端设备发送上行数据的发送时间提前命令。
  14. 根据权利要求10所述的装置,其中,
    所述发送单元在预配置的物理随机接入信道机会(PRACH occasion)中发送所述第一消息的随机接入前导码;
    所述发送单元根据所述PRACH occasion确定发送所述第一消息的数据的上行传输资源,或者,所述发送单元根据所述PRACH occasion和所述第一消息的随机接入前导码确定发送所述第一消息的数据的上行资源;并且,所述发送单元在确定的所述上行传输资源上发送所述第一消息的数据。
  15. 根据权利要求10所述的装置,其中,
    所述发送单元使用所述第一消息的数据的发送缓存中的数据重传所述第一消息的数据;或者,
    所述终端设备的MAC层封装组包实体重新生成所述第一消息的数据,所述发送单元将重新生成的所述第一消息的数据放入所述第一消息的数据的发送缓存中发送。
  16. 根据权利要求10所述的装置,其中,在所述发送单元在所述第一随机接入响应携带的上行传输授权指示的资源中重传所述第一消息的数据之后,所述接收单元接收所述网络设备发送的第二HARQ NACK信令,所述第二HARQ NACK信令用于调度针对所述第一消息的数据的第二HARQ重传;
    如果所述第一消息的数据的第二HARQ重传次数未达到第一阈值,所述发送单元向所述网络设备发送所述第一消息的数据的第二HARQ重传。
  17. 根据权利要求11所述的装置,其中,所述第一随机接入响应中还携带所述网络设备为所述终端设备分配的TC-RNTI。
  18. 根据权利要求17所述的装置,其中,所述发送单元根据所述第一随机接入响应中携带的发送时间提前命令调整上行发送时间,使用所述第一随机接入响应中携 带的TC-RNTI重传所述第一消息的数据。
  19. 根据权利要求18所述的装置,其中,所述第三随机接入响应的PDCCH寻址于C-RNTI,所述C-RNTI匹配于所述第一随机接入响应中携带的TC-RNTI,或者,所述C-RNTI匹配于所述第一消息的数据中传输的C-RNTI MAC CE。
  20. 根据权利要求12所述的装置,其中,
    当所述第二随机接入响应中携带的竞争解决信息匹配于所述第一消息的数据时,所述第二处理单元确定竞争解决成功,将C-RNTI设置为所述第二随机接入响应中携带的TC-RNTI;
    否则,所述第二处理单元确定竞争解决失败,丢弃所述第二随机接入响应中携带的TC-RNTI。
PCT/CN2019/075279 2019-02-15 2019-02-15 随机接入响应的发送和接收方法、装置和*** WO2020164141A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075279 WO2020164141A1 (zh) 2019-02-15 2019-02-15 随机接入响应的发送和接收方法、装置和***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075279 WO2020164141A1 (zh) 2019-02-15 2019-02-15 随机接入响应的发送和接收方法、装置和***

Publications (1)

Publication Number Publication Date
WO2020164141A1 true WO2020164141A1 (zh) 2020-08-20

Family

ID=72044012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075279 WO2020164141A1 (zh) 2019-02-15 2019-02-15 随机接入响应的发送和接收方法、装置和***

Country Status (1)

Country Link
WO (1) WO2020164141A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088786A (zh) * 2010-02-11 2011-06-08 大唐移动通信设备有限公司 一种上行数据传输方法、装置和***
CN102917469A (zh) * 2011-08-01 2013-02-06 中兴通讯股份有限公司 辅服务小区接入的方法及***、网络侧网元、用户设备
US20160381715A1 (en) * 2015-06-24 2016-12-29 Electronics And Telecommunications Research Institute Method and apparatus for controlling random access opportunity in mobile communication system
CN108282899A (zh) * 2017-01-05 2018-07-13 电信科学技术研究院 一种两步竞争随机接入方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088786A (zh) * 2010-02-11 2011-06-08 大唐移动通信设备有限公司 一种上行数据传输方法、装置和***
CN102917469A (zh) * 2011-08-01 2013-02-06 中兴通讯股份有限公司 辅服务小区接入的方法及***、网络侧网元、用户设备
US20160381715A1 (en) * 2015-06-24 2016-12-29 Electronics And Telecommunications Research Institute Method and apparatus for controlling random access opportunity in mobile communication system
CN108282899A (zh) * 2017-01-05 2018-07-13 电信科学技术研究院 一种两步竞争随机接入方法和装置

Similar Documents

Publication Publication Date Title
CN113302966B (zh) 用于执行随机接入程序的方法和用户设备
JP5654698B2 (ja) ランダムアクセス手順を行う方法及び装置
CN112655270B (zh) Lbt监测失败的处理方法、装置和***
WO2013120458A1 (zh) 数据传输方法、基站及用户设备
CN113574958B (zh) 随机接入响应的接收方法、装置和通信***
WO2010085908A1 (zh) 用户设备接入方法及***和网络接入设备
CN113905453B (zh) 随机接入的方法和设备
US20220256620A1 (en) Random access method and apparatus and communication system
EP3902362B1 (en) Random access method, terminal device and network device
CN114208079B (zh) 数据传输的方法及其装置、通信***
KR100992780B1 (ko) 랜덤 액세스 절차를 수행하는 방법
WO2020252633A1 (zh) 随机接入前导码退避的方法、装置和***
WO2020164141A1 (zh) 随机接入响应的发送和接收方法、装置和***
WO2020181431A1 (zh) 随机接入响应的发送和接收方法、装置和***
JP7306483B2 (ja) 信号送信方法、装置及び通信システム
US12041623B2 (en) Random access method, terminal device and network device
US12048021B2 (en) Random access method and device
WO2022027527A1 (zh) 信号的发送和接收方法、装置和通信***
WO2020199001A1 (zh) 信息发送方法、信息发送装置和通信***
WO2020199022A1 (zh) 选择随机接入类型的方法及装置
WO2020186468A1 (zh) 随机接入的方法和设备
WO2021062639A1 (zh) 随机接入方法、装置和通信***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914766

Country of ref document: EP

Kind code of ref document: A1