WO2020162409A1 - プラスチック光ファイバのコア径計測方法およびそれに用いるプラスチック光ファイバのコア径計測装置、プラスチック光ファイバの欠陥検出方法およびそれに用いるプラスチック光ファイバの欠陥検出装置 - Google Patents

プラスチック光ファイバのコア径計測方法およびそれに用いるプラスチック光ファイバのコア径計測装置、プラスチック光ファイバの欠陥検出方法およびそれに用いるプラスチック光ファイバの欠陥検出装置 Download PDF

Info

Publication number
WO2020162409A1
WO2020162409A1 PCT/JP2020/003967 JP2020003967W WO2020162409A1 WO 2020162409 A1 WO2020162409 A1 WO 2020162409A1 JP 2020003967 W JP2020003967 W JP 2020003967W WO 2020162409 A1 WO2020162409 A1 WO 2020162409A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
plastic optical
light
light irradiation
pof
Prior art date
Application number
PCT/JP2020/003967
Other languages
English (en)
French (fr)
Inventor
優 坂本
一郎 末廣
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US17/427,829 priority Critical patent/US12025529B2/en
Priority to CN202080012417.3A priority patent/CN113518892B/zh
Priority claimed from JP2020015936A external-priority patent/JP7495235B2/ja
Publication of WO2020162409A1 publication Critical patent/WO2020162409A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters

Definitions

  • the present invention relates to a method for measuring the core diameter of a plastic optical fiber (hereinafter sometimes referred to as “POF”) used for communication and the like, a POF core diameter measuring device used therefor, a POF defect detection method, and a POF used therefor. More specifically, the present invention relates to a method and apparatus for continuously measuring the core diameter of a POF in-line in a POF manufacturing process, and a method and apparatus for detecting a defect in the POF. It is a thing.
  • POF plastic optical fiber
  • POF Ultra-Reliable and Low-Reliable Polyethylene
  • Such POF is generally manufactured by a method such as melt extrusion molding or a method of melt heating and drawing a preform by an interfacial gel polymerization method.
  • a device for manufacturing POF is continuously operated for a long time, it may be difficult to ensure uniform quality.
  • Patent Document 1 in order to improve the product quality (optical signal transmission loss) of the manufactured POF, an inspection device for measuring the optical transmission loss during manufacturing is proposed. Further, Patent Document 2 proposes a coating abnormal portion detecting method for detecting an abnormal portion of a coating of a polymer clad optical fiber, and it is said that the requirement for reliability is met.
  • Patent Document 1 the laser light is actually passed through the core of the POF to confirm the degree of scattering of the laser light, and the optical loss of the POF is measured. , Bubbles, etc.) can be determined, but the diameter of the formed core cannot be measured.
  • Patent Document 2 the inspection light is incident on the POF, and the presence or absence of the inspection light leaked to the outside from the abnormal portion of the covered clad is determined based on the temporal change of the brightness in the image of the POF, and based on this, the abnormality is detected. This is to detect a part. However, this one cannot measure the diameter of the formed core as in the case of Patent Document 1 described above.
  • the present invention has been made in view of such circumstances, and a POF core diameter measuring method capable of accurately measuring the POF core diameter, a POF core diameter measuring apparatus used for the same, a POF defect detecting method, and the same A defect detection device for a POF is provided.
  • the present invention provides the following [1] to [14].
  • [1] A method of measuring the core diameter of a POF, which is a method of irradiating light toward one side surface of the POF and a side surface of the POF opposite to the side surface to which the light is irradiated. And an image pickup mechanism for irradiating the side surface of the POF with the light irradiation mechanism, and the image pickup mechanism images the side surface on the opposite side of the POF to obtain image data, and the image pickup mechanism.
  • a data processing step of processing image data of the POF wherein in the imaging step, the light emission width of the light irradiation mechanism is W, and the shortest distance between the light emission position of the light irradiation mechanism and the side surface of the POF is D.
  • the light irradiation mechanism and the POF are arranged so that the ratio (D/W) of the shortest distance D to the light emission width W is 0.9 to 1.3.
  • the POF image data is converted into the POF image data.
  • a POF core diameter measuring method for obtaining a light intensity distribution on a side surface and calculating a core diameter of the POF based on the light intensity distribution.
  • the imaging step light irradiation and imaging of the POF are performed in at least two directions to obtain image data of at least two side surfaces of the POF in different directions, and in the data processing step, the at least two sides are used.
  • the core diameter measuring method for POF according to [1], wherein the core diameter of the POF is calculated based on the light intensity distribution acquired from one image data.
  • the clad diameter is calculated together with the core diameter of the POF based on the light intensity distribution in the radial direction of the POF acquired from the image data of the POF.
  • the eccentric amount of the POF core is calculated based on the calculated POF core diameter and cladding diameter.
  • An apparatus for measuring a core diameter of a POF having a core and a clad wherein a light irradiation mechanism for irradiating light toward one side surface of the POF and a light irradiation mechanism for the POF opposite to the light irradiation mechanism. And a data processing mechanism for processing the POF image data obtained by the imaging mechanism, the imaging mechanism being provided on the side of the POF for imaging the side surface of the POF opposite to the side surface irradiated with light.
  • the ratio (D/W) of the shortest distance D to the emission width W is 0.9 to 1.
  • the light irradiation mechanism is arranged so that the light intensity distribution in the radial direction of the POF is obtained from the image data of the POF, and the core of the POF is obtained based on the light intensity distribution.
  • a POF core diameter measuring device set to calculate diameter.
  • the POF core diameter measuring device wherein the data processing mechanism is set to calculate the core diameter of the POF based on a light intensity distribution acquired from the at least two image data.
  • the core diameter measurement of the POF according to [6] wherein at least two sets of image pickup units each including a light irradiation mechanism and an image pickup mechanism facing each other through the POF are provided in a disposition different in direction from the POF. apparatus.
  • a single image pickup unit including a light irradiation mechanism and an image pickup mechanism facing each other through the POF is provided, and the relative disposition of the POF and the image pickup unit can be changed.
  • the POF core diameter measuring device according to [6].
  • the data processing mechanism is set to calculate the clad diameter together with the core diameter of the POF based on the light intensity distribution in the radial direction of the POF acquired from the image data of the POF.
  • the core diameter measuring device for POF according to any one of [8].
  • the POF core diameter measuring device according to [9] wherein the data processing mechanism is set to calculate the amount of eccentricity of the core of the POF based on the calculated core diameter and cladding diameter of the POF. ..
  • a method for detecting a defect in a POF comprising: capturing an image of a light irradiation mechanism that irradiates light toward one side surface of the POF; and a side surface of the POF opposite to a side surface to which the light is irradiated.
  • An image pickup mechanism corresponding to the light irradiation mechanism is provided, each of the light irradiation mechanisms irradiates the side surface of the POF with light, and an image pickup mechanism corresponding to the light irradiation mechanism images the side surface on the opposite side of the POF.
  • An imaging step of obtaining data and a data processing step of processing image data obtained by the imaging mechanism are provided, and in the imaging step, the emission width of the light irradiation mechanism is W, the emission position of the light irradiation mechanism and the The light irradiation mechanism and the POF are arranged such that the ratio (D/W) of the shortest distance D to the light emission width W is 0.9 to 1.3, where D is the shortest distance from the side surface of the POF.
  • the imaging step light irradiation and imaging are performed on the POF from at least two directions to obtain image data of at least two side surfaces of the POF in different directions, and in the data processing step, the at least two image data.
  • a device for detecting defects in a POF which images a light irradiation mechanism for irradiating light toward one side surface of the POF and a side surface of the POF opposite to a side surface to which the light is irradiated.
  • An image pickup mechanism corresponding to the light irradiation mechanism is provided, each of the light irradiation mechanisms irradiates the side surface of the POF with light, and an image pickup mechanism corresponding to the light irradiation mechanism images the side surface on the opposite side of the POF.
  • An image pickup mechanism for obtaining data and a data processing mechanism for processing the image data obtained by the image pickup mechanism are provided, the light emission width of the light irradiation mechanism is W, and the light emission position of the light irradiation mechanism and the side surface of the POF.
  • the light irradiation mechanism is arranged such that the ratio (D/W) of the shortest distance D to the light emission width W is 0.9 to 1.3, where D is the shortest distance.
  • the irradiation of light and the imaging of the POF are performed from at least two directions so that image data of at least two side surfaces of the POF in different directions can be obtained, and the data processing mechanism includes the at least two sides.
  • a defect detecting device for a POF which is set to detect a defect in the POF based on a light intensity distribution acquired from image data.
  • a method for detecting a defect in a POF comprising at least three light irradiation mechanisms for irradiating light toward one side surface of the POF, and a side surface of the POF opposite to a side surface irradiated with the light.
  • An image pickup mechanism corresponding to the light irradiation mechanism for picking up an image is provided, each of the light irradiation mechanisms irradiates the side surface of the POF with light, and the side surface on the opposite side of the POF is irradiated by the image pickup mechanism corresponding to the light irradiation mechanism.
  • An imaging step of imaging and obtaining at least three image data and a data processing step of processing at least three image data obtained by the imaging mechanism are provided, and in the imaging step, the emission width of the light irradiation mechanism is W.
  • the shortest distance between the light emission position of the light irradiation mechanism and the side surface of the POF is D
  • the ratio (D/W) of the shortest distance D to the light emission width W is 0.9 to 1.3.
  • a light irradiation mechanism and a POF are arranged, and in the data processing step, at least three light intensity distributions on the side surface of the POF are acquired from the at least three image data, and defects of the POF are detected based on the at least three light intensity distributions.
  • a method of detecting a defect of POF to be detected comprising at least three light irradiation mechanisms for irradiating light toward one side surface of the POF, and a side surface of the POF opposite to a side surface irradiated with the light.
  • An image pickup mechanism corresponding to the light irradiation mechanism for picking up an image is provided, each of the light irradiation mechanisms irradiates the side surface of the POF with light, and the side surface on the opposite side of the POF is irradiated by the image pickup mechanism corresponding to the light irradiation mechanism.
  • An imaging mechanism that captures at least three image data and a data processing mechanism that processes at least three image data obtained by the imaging mechanism are provided, and the light emission width of the light irradiation mechanism is set to W.
  • the light irradiation mechanism is arranged such that the ratio (D/W) of the shortest distance D to the light emission width W is 0.9 to 1.3, where D is the shortest distance between the light emitting position and the side surface of the POF.
  • the data processing mechanism is configured to obtain at least three light intensity distributions on the side surface of the POF from the at least three image data, and detect defects in the POF based on the at least three light intensity distributions. Defect detection device for POF.
  • the present inventors have conducted research for the purpose of obtaining an apparatus capable of measuring the POF core diameter in-line in the POF manufacturing process in order to ensure the POF product standard that is expected to increase production in the future. .. Then, since the core diameter cannot be continuously measured along the longitudinal direction of the POF if the core diameter is measured at the end surface of the POF, it is recalled that the measurement is performed from the side direction of the POF.
  • the POF acts as if it were a lens, and the light and dark seen through the POF is seen. From this state, it was found that the position of the interface between the core and the clad can be specified in the POF image data.
  • the present inventors set the emission width of the light irradiation mechanism as W, and the shortest distance between the light irradiation mechanism and the POF as D, and the ratio of the shortest distance D to the light emission width W.
  • W the emission width of the light irradiation mechanism
  • D the shortest distance between the light irradiation mechanism and the POF
  • W the ratio of the shortest distance D to the light emission width W.
  • the light irradiation mechanism and the image pickup mechanism are provided in a specific arrangement on the side of the POF extending in the longitudinal direction, and the side surface of the POF is irradiated with light irradiation. It is possible to easily and accurately measure the core diameter of the POF simply by obtaining image data of the opposite side surface.
  • the POF can be continuously measured while being moved in the longitudinal direction. Therefore, during the POF manufacturing process, the measuring process is performed in-line, that is, the variation in the core diameter is within the standard. It is possible to carry out a quality inspection of whether or not it fits. Therefore, high-quality POF can be stably supplied.
  • the POF core diameter measuring apparatus of the present invention a light irradiation mechanism and an imaging mechanism are provided in a specific arrangement in the middle of the POF manufacturing line, and the image data obtained from the imaging mechanism is subjected to a specific data processing.
  • the core diameter of the POF can be calculated easily and accurately simply by processing by the mechanism. Therefore, it is possible to efficiently provide a high-quality POF without reducing the manufacturing speed of the POF. Further, the installation of this core diameter measuring device has an advantage that it is not necessary to significantly change the equipment or secure additional space.
  • defect detection method of the POF of the present invention since image data in three directions having different directions with respect to the POF can be obtained, blind spots in the circumferential direction can be eliminated and defect detection omission can be suppressed. Further, since it is possible to identify the layer including the defect, it is possible to efficiently detect only the cause of the transmission loss and suppress the over-detection.
  • the POF defect detection apparatus of the present invention it is possible to easily detect defects (foreign matter, air bubbles, etc.) contained in the POF simply by providing it in the middle of the POF manufacturing line. Therefore, it is possible to efficiently provide a high-quality POF without reducing the manufacturing speed of the POF. Further, the installation of this defect detection device also has an advantage that no significant facility change or securement of additional space is required.
  • FIG. 1 It is a typical block diagram which shows an example of the apparatus of this invention.
  • (A) is a schematic explanatory view showing the main part of the above apparatus from the front direction (cross-sectional direction) of the POF, and (b) is a schematic explanatory view showing the main part from the side direction of the POF. It is a typical sectional view showing composition of POF.
  • (A)-(c) are all explanatory views of image data by the above apparatus. It is explanatory drawing of the correction process by two images obtained from two directions. It is explanatory drawing of the correction process by two images obtained from two directions. It is a typical block diagram which shows the modification of the said apparatus. It is a typical block diagram which shows the other example of the apparatus of this invention.
  • FIG. 13 is a graph chart showing the measured core diameter and the actually measured value as Example 6 in comparison. It is a graph figure which contrasted and showed the value which measured the amount of eccentricity of a core as Example 6, and the actual measured value.
  • FIG. 16 is a graph diagram showing the measured core diameter and the actual measured value in contrast as Example 7.
  • FIG. 16 is a graph diagram showing the measured value of the eccentricity of the core and the actual measured value in contrast as Example 7. It is a figure explaining the procedure of the process flow (I) of the defect detection method. It is a figure explaining the procedure of the process flow (II) of the defect detection method.
  • a POF core diameter measuring method (hereinafter, may be simply referred to as “core diameter measuring method”) which is an embodiment of the present invention includes a light irradiation mechanism for irradiating light toward one side surface of the POF, and An image pickup mechanism for picking up the side surface of the POF opposite to the side surface to which light is irradiated is provided, the side surface of the POF is irradiated with light by the light irradiation mechanism, and the side surface on the opposite side of the POF is picked up by the image pickup mechanism.
  • An image pickup step for obtaining image data and a data processing step for processing the POF image data obtained by the image pickup mechanism are provided.
  • the imaging step assuming that the light emission width of the light irradiation mechanism is W and the shortest distance between the light emission position of the light irradiation mechanism and the side surface of the POF is D, the ratio of the shortest distance D to the light emission width W (D/ The POF is arranged so that W) is 0.9 to 1.3, and the light intensity distribution on the side surface of the POF is acquired from the image data of the POF in the data processing step.
  • the core diameter of POF is calculated.
  • FIG. 1 An example of an apparatus for carrying out a core diameter measuring method according to an embodiment of the present invention is schematically shown in FIG.
  • This device is for measuring the core diameter of the traveling POF 1 as indicated by a thick arrow in the figure, and is provided with a first light irradiation mechanism 2 that vertically irradiates light toward the side surface of the POF 1, and A first image pickup mechanism 3 is provided on the side opposite to the light irradiation mechanism 2 with respect to the POF 1 and picks up an image of the side surface of the POF 1 opposite to the side surface irradiated with light.
  • the first light irradiation mechanism 2 and the first imaging mechanism 3 face each other via the POF 1, as schematically shown in FIG. 2A and the right side view of FIG. 2B.
  • the second light irradiation mechanism 2′ and the second light irradiation mechanism 2′ are arranged in a direction in which the light irradiation is performed in a direction in which the angle is changed by 90° in the circumferential direction of the POF 1 with respect to the imaging unit A (returning to FIG. 1).
  • An image pickup unit B including an image pickup mechanism 3' is provided.
  • the position P where the image pickup unit A intersects with the POF 1 and the position Q where the image pickup unit B intersects with the POF 1 are displaced by a predetermined distance along the longitudinal direction of the POF 1. This distance is set in consideration of the distance traveled by traveling of the POF 1, and the first image data imaged by the imaging unit A at the position P and the first image data imaged by the imaging unit B at the position Q.
  • the image data of 2 is set in advance so as to be image data of two side surfaces at the same position of the POF 1 with different 90° angles.
  • the POF 1 to be measured by this device includes a core 4 made of an organic compound having a polymer as a matrix, a clad 5 made of an organic compound having a refractive index different from that of the core 4, and an outside of the clad 5. It is composed of an over clad 6 which covers this.
  • the core 4 is designed to have a higher refractive index than the clad 5, and can almost totally reflect light. Therefore, the POF 1 can propagate light while being confined in the core 4.
  • the overclad 6 is provided in this example, the overclad 6 may not be provided when it is not necessary to protect the core 4 and the cladding 5 because the cladding 5 is extremely hard.
  • the first and second light irradiation mechanisms 2 and 2′ for irradiating the POF 1 with light for example, various light sources such as a light emitting diode (LED), a laser, and a halogen lamp can be used.
  • LED light emitting diode
  • a laser a laser
  • a halogen lamp it is preferable to use light having a single wavelength as a light source rather than white light in which light of a plurality of wavelengths is mixed, since it is possible to prevent deterioration of an image and detection accuracy due to wavelength dispersion of refractive index.
  • the light of a single wavelength for example, visible light of blue, green, red, or the like can be used, but it is preferable to use a wavelength that is less affected by the wavelength dispersion of the material of POF1 to be imaged.
  • the refractive index wavelength dispersion is converged as the wavelength becomes longer, and the influence of the long wavelength dispersion is reduced. Therefore, the light source of the red wavelength is used. It is preferable. As the light emitted from the light source, either parallel light or diffused light can be used, but diffused light is preferably used because it can be incident on the POF 1 from various angles.
  • the first and second light irradiation mechanisms 2 and 2′ have a light emission position of the light irradiation mechanisms 2 and 2′ and a side surface of the POF 1 when the light emission width of the light irradiation mechanisms 2 and 2′ is W. It is important to dispose so that the ratio (D/W) of the shortest distance D to the light emission width W is 0.9 to 1.3, where D is the shortest distance to [see FIG. 2(a)]. ].
  • the POF 1 acts as if it were a lens, and the core forming the POF 1 is formed. 4, due to the difference in the refractive index of each layer of the clad 5 and the over-cladding 6, the light and darkness of the light appears at the respective interfaces, so that the interface between the core 4 and the clad 5 of the POF 1 and the clad 5 and the over-clad 6 are The feature is that the image data is analyzed based on the principle that each position of the interface of can be specified.
  • the ratio (D/W) of the shortest distance D to the emission width W is as described above. As described above, it is necessary to set 0.9 to 1.3. Among them, this ratio is preferably 1.0 to 1.25, and more preferably 1.1 to 1.15.
  • the obtained image data shows that the entire POF 1 glows white, as schematically shown in FIG. 4(a). Since only the periphery of the overclad 6 is dark and shaded, the line 10 (broken line in the figure) indicating the interface between the core 4 and the clad 5 which should be originally visible is also the line 11 indicating the interface between the clad 5 and the overclad 6 ( I can't even see the broken line in the figure.
  • the obtained image data shows the light and shade of light shifted depending on the refractive index of each layer, as schematically shown in FIG. 4B, for example.
  • the line 10 indicating the interface between the core 4 and the clad 5 and the line 11 indicating the interface between the clad 5 and the overclad 6 can be clearly recognized as lines.
  • the D/W is larger than 1.3
  • the light emitting portion is too far away for the amount of light, and the obtained image data has a dark portion, for example, as schematically shown in FIG.
  • the lines 10 and 11 broken lines in the figure
  • the emission width W of the first light irradiation mechanism 2 is such that when the first light irradiation mechanism 2 faces the first image pickup mechanism 3 via the POF 1, the image pickup surface of the first image pickup mechanism 3 is obtained.
  • the light emitting surface of the first light irradiation mechanism 2 are parallel to each other, the maximum width of the light emitting surface (the longest diameter when the light emitting surface is circular in plan view). The same applies to W of the second light irradiation mechanism 2'.
  • the first imaging mechanism 3 for imaging the side surface of the POF 1 irradiated with the light for example, an image of an object such as a line sensor camera or an area sensor camera is formed on a device surface by a lens, and the amount of light is increased. It is possible to preferably use a signal which is converted into a signal and output. Above all, it is more preferable to use the area sensor camera because the influence of the shake of the moving subject can be reduced by increasing the shutter speed. The same applies to the second imaging mechanism 3'.
  • the first imaging mechanism 3 is arranged at a position facing the first light irradiation mechanism 2 via the POF 1.
  • the centers of the first light irradiation mechanism 2 and the first imaging mechanism 3 are preferably arranged on the same axis via the POF 1, but image data processing is performed by a data processing mechanism described later. It does not necessarily have to be arranged on the same axis as long as it can be corrected. The same applies to the second imaging mechanism 3'.
  • the POF 1 is composed of two image pickup units, the image pickup unit A including the first light irradiation mechanism 2 and the image pickup mechanism 3 and the image pickup unit B including the second light irradiation mechanism 2′ and the image pickup mechanism 3′.
  • the image data of the two side surfaces of which the 90° angle is changed can be obtained.
  • the obtained image data is sent to a data processing mechanism (not shown in FIG. 1) in which an arithmetic processing circuit or the like for core diameter measurement is incorporated in advance to be processed.
  • the above-mentioned two image pickup units namely, the image pickup unit A including the first light irradiation mechanism 2 and the image pickup mechanism 3 and the image pickup unit B including the second light irradiation mechanism 2′ and the image pickup mechanism 3′ have the POF 1 in the longitudinal direction. It is preferable that they are arranged on the same plane that crosses the direction. If the two image pickup units are arranged on the same plane, each image pickup unit can obtain an image of the POF 1 on a plane that is horizontal in the radial direction. Therefore, it is high even when the POF 1 is not stable during traveling.
  • the core diameter of POF1 can be calculated with accuracy.
  • the data processing mechanism may be based on any image analysis software or may be a software created exclusively for the image analysis software. However, the first imaging mechanism 3 and the second imaging mechanism 3 may be used.
  • the core diameter of interest is calculated by acquiring the light intensity distribution of the image data sent from', analyzing the distribution state, and applying it to a predetermined arithmetic expression. At this time, if the POF 1 itself is tilted or the core 4 is eccentric in the POF 1 from the two image data obtained by changing the 90° angle, if there is a deviation between the two image data, the deviation Accordingly, the correction process is further performed.
  • both image data (0° image) (Images, 90° images) are rotated by a predetermined angle in the circumferential direction by image rotation processing to re-correct the images so that they are not tilted as much as possible.
  • the size of the diameter and the center position of each layer are obtained.
  • the amount of eccentricity of the core 4 is calculated from the deviation of the center position of each layer, the core diameter is corrected, and the core diameter can be obtained with higher accuracy.
  • the POF 1 extending in the longitudinal direction is provided with the first light irradiation mechanism 2 and the first imaging mechanism 3 in a specific arrangement, and the image data obtained from the imaging mechanism 3 is
  • the core diameter of the POF 1 can be calculated easily and accurately only by performing processing with a specific data processing mechanism.
  • this device can be incorporated inline in the middle of the POF 1 production line or at the end of the POF 1, and the POF 1 can be run intermittently while the core diameter is changed. Measurement can be performed.
  • the core diameter of the POF 1 can be efficiently measured without lowering the manufacturing speed of the POF 1. Is preferred.
  • the installation of the above device has the advantage that no major facility changes or additional space needs to be secured.
  • the layer where the defect exists can be specified. For example, if foreign matter, bubbles, etc. are present in the core layer, the foreign matter or the like causes a large transmission loss of light. On the other hand, even if foreign matter or the like is present in the clad layer other than the core layer, the foreign matter or the like does not affect the optical transmission loss. Therefore, by detecting the foreign matter or the like after specifying the core layer, it is possible to efficiently specify only the foreign matter or the like that causes the transmission loss and suppress overdetection.
  • each image pickup unit is 120° in the circumferential direction.
  • image data of three different directions in which the orientation of the POF 1 is changed by 120° in the circumferential direction is obtained.
  • reference numeral R is a position where the image pickup unit C intersects with POF1
  • reference numeral 2′′ is a third light irradiation mechanism included in the image pickup unit C
  • reference numeral 3′′ is the same as the image pickup unit C. It is a third imaging mechanism that has.
  • FIG. 7 shows an example in which three sets of image pickup units A, B, and C having different directions are used, naturally, four or more sets of image pickup units having different directions may be used, or a single set of image pickup units may be used. It is also possible to change the arrangement of the image pickup units in the circumferential direction of the POF 1 at equal intervals and perform image pickup to obtain image data of different directions in which the POF 1 is turned in the circumferential direction.
  • a plurality of image pickup units are not arranged around the POF 1 in different directions as in the above apparatus, but a single image pickup unit is arranged. May be set so that the arrangement can be changed relative to the POF 1. An example thereof is schematically shown in FIG.
  • This apparatus is provided with a holding mechanism 12 for holding the POF 1 so as to intersect with a single image pickup unit composed of the first light irradiation mechanism 2 and the first image pickup mechanism 3, and holds this holding mechanism 12.
  • a holding mechanism 12 for holding the POF 1 so as to intersect with a single image pickup unit composed of the first light irradiation mechanism 2 and the first image pickup mechanism 3, and holds this holding mechanism 12.
  • 13 is an adjustment mechanism for finely adjusting the distance between the POF 1 and the first light irradiation mechanism 2
  • 14 is an adjustment mechanism for finely adjusting the measurement position with respect to the POF 1 in the vertical direction.
  • a plurality of image data can be obtained by changing the circumferential direction of the POF 1 without disposing a plurality of image pickup units as in the device shown in FIG. 1, and the core diameter can be obtained with high accuracy. Can be detected and foreign matter and bubbles can be detected.
  • measurement and detection cannot be performed while the POF 1 is running, it is limited to applications such as inspection of prototypes and finished products.
  • an annular base that can rotate in the circumferential direction is provided around the traveling POF 1 as a center, and the first light irradiation mechanism 2 is provided on one of the diagonal sides of the annular base.
  • the image data of at least two side surfaces of the POF 1 in different directions may be obtained. In this case, it is preferable that imaging from different directions is performed at the timing when the POF 1 stops.
  • the core diameter is calculated based on the image data captured from at least two directions, not only the core diameter but also the diameters of the clad 5 and the overclad 6 are calculated for the correction process. Then, since the processing for obtaining the outer diameter and the center position of each layer is performed, the eccentricity amount of the core 4, the circularity of the outer diameter of the POF 1 itself, and the like can be obtained by using these numerical values.
  • the eccentricity of the core 4 is out of the specification, the transmission loss of light may increase. Therefore, measuring the eccentricity of the core 4 together meets the practical needs.
  • Examples 1 to 5, Comparative Examples 1 to 3 First, in the apparatus shown in FIG. 1, the emission width W of the first light irradiation mechanism 2 of the image pickup unit A and the shortest distance D between the light irradiation mechanism 2 and the POF 1 are set as shown in Table 1 below. Thus, core diameter measuring devices of Examples 1 to 5 and Comparative Examples 1 to 3 were produced. An LED (wavelength 630 nm type, diffused light, manufactured by CCS) is used as the light irradiation mechanism 2, and the amount of light is adjusted so that the amount of light received by the camera immediately outside the POF 1 (formation part) is 128/256 gradations or more. Used. Further, the same setting as that of the image pickup A is made for the image pickup unit B.
  • An LED wavelength 630 nm type, diffused light, manufactured by CCS
  • the POF 1 has a core diameter of 120 ⁇ m
  • both the core and the clad are made of a resin whose main component is methyl methacrylate (MMA), and the core has a refractive index increased by a refractive index adjusting agent.
  • the overclad is made of polycarbonate (PC) resin.
  • the "main component” means a component that affects the characteristics of the material, and the content of the component is usually 50% by mass or more of the entire material.
  • the apparatus was evaluated based on the results of the above measurements, and the results are also shown in Table 1 below. The evaluation method is as follows.
  • the core diameter can be easily measured in the device in which the ratio of the shortest distance D to the emission width W (D/W) is set in the range of 0.9 to 1.3.
  • Example 6 Next, using the apparatus shown in FIG. 7, the diameter of the core 4 (see FIG. 3) of the POF 1 and the amount of eccentricity were measured in-line 10 times at different measurement points.
  • the apparatus of FIG. 7 has the same configuration (light emission width, etc.) as that of the second embodiment except that the image pickup unit C is added. Further, the same POF 1 as the measurement target is used as in the second embodiment.
  • the results of comparing the obtained diameter and eccentricity of the core 4 with the actually measured diameter and eccentricity of the core 4 are shown in FIGS. 9 and 10. As a result of comparing the two, the maximum difference in diameter of the core 4 was 2.2 ⁇ m, and the maximum difference in eccentricity of the core 4 was 1.6 ⁇ m.
  • the actually measured diameter and eccentricity of the core 4 of the POF 1 are obtained as follows. That is, the portion where the diameter and the amount of eccentricity of the core 4 of the POF 1 are measured is actually cut and polished. The polished surface is magnified and observed with a microscope to obtain a microscope cross-sectional image. The diameter and the amount of eccentricity of the core 4 of the POF 1 were specified from this microscope cross-sectional image, and these values were used as the actual diameter and the amount of eccentricity of the core 4.
  • Example 7 The diameter and the amount of eccentricity of the core 4 (see FIG. 3) of the POF 1 were measured in the same manner as in Example 6 except that the measurement position was changed to 4 using the device shown in FIG. The results of comparing the obtained diameter and eccentricity of the core 4 with the actually measured diameter and eccentricity of the core 4 are shown in FIGS. 11 and 12. As a result of comparing the two, the maximum difference in diameter of the core 4 was 2.9 ⁇ m, and the maximum difference in eccentricity of the core 4 was 3.3 ⁇ m.
  • Example 8 Then, using the apparatus shown in FIG. 7, according to the defect detection method described later, the layer included in POF1 of 6.5 m was not specified, and the defects contained in the entire POF1 were detected. The results are shown in Table 2 below. From the results shown in Table 2, when defects are detected without specifying a layer, defects in the core 4 (see FIG. 3) can be detected, but excessive foreign matter in the overclad 6 unrelated to transmission loss is detected. I understand that it will be done.
  • Example 9 Further, using the apparatus shown in FIG. 7, the core 4 (see FIG. 3) was specified in the 24 m POF 1 according to the defect detection method described later, and the defects contained in the entire POF 1 were detected. The results are shown in Table 3 below. From the results in Table 3, when the core 4 is specified and the defect is detected, the excessive detection of the defect in the overclad 6 unrelated to the transmission loss is suppressed, and the defect in the core 4 can be efficiently detected. It was
  • the image pickup units A, B, and C are used to obtain different image data from three directions in which the POF 1 is turned by 120° in the circumferential direction.
  • the barycentric coordinates of the detection candidate are acquired for each of the obtained image data as shown in FIG. 13 and the processing flow (I) shown below.
  • “5.2-valued extraction” sets the threshold value to 10 and extracts, as a detection candidate, a portion of the 8-bit image data 256 gradations having a gradation difference of 10 gradations with respect to the normal portion. There is.
  • the obtained detection candidate is processed according to the processing flow (II) shown in FIG. 14 and described later, whereby the defect (defect) of the POF 1 can be detected.
  • Processing flow (I) 1. Different image data is acquired using the image pickup units A, B, and C and stored in the memory. 2. Edge detection processing is performed on the image data to obtain the coordinates of POF1 in the image. 3. An image of the POF1 portion is cut out by using the acquired coordinates of POF1 and the set value. 4. The image of the cut-out POF 1 is compared with the non-defective product image registered in advance, and the difference is specified as the abnormal portion. 5. The binarization process is performed by comparing the image of the abnormal portion with the set threshold value. 6. Blob processing analysis is performed on the binarized image of the abnormal portion, the barycentric coordinates of the abnormal portion are acquired, and extracted as a detection candidate.
  • the POF core diameter measuring method and core diameter measuring device of the present invention are useful for in-line POF core diameter measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

プラスチック光ファイバ(POF)のコア径を正確に計測することができるPOFのコア径計測方法およびPOFのコア径計測装置、POFの欠陥検出方法およびそれに用いるPOFの欠陥検出装置を提供するため、POF1の側面に向って光を照射する光照射機構2,2'と、上記POF1に対して上記光照射機構2、2'と反対側に設けられる撮像機構3、3'と、上記撮像機構3、3'によって得られたPOF1の画像データを処理してPOF1のコア径を算出するデータ処理機構とを備え、上記光照射機構2、2'の発光幅をWとし、上記光照射機構2、2'の発光位置と上記POF1の側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)が0.9~1.3となるように上記光照射機構2、2'を配置した。

Description

プラスチック光ファイバのコア径計測方法およびそれに用いるプラスチック光ファイバのコア径計測装置、プラスチック光ファイバの欠陥検出方法およびそれに用いるプラスチック光ファイバの欠陥検出装置
 本発明は、通信用途等に用いられるプラスチック光ファイバ(以下「POF」ということがある)のコア径を計測する方法およびそれに用いるPOFのコア径計測装置、POFの欠陥検出方法およびそれに用いるPOFの欠陥検出装置に関し、より詳細には、POFの製造工程においてインラインで、連続的にPOFのコア径を計測することのできる方法およびその装置、POFの欠陥を検出することのできる方法およびその装置に関するものである。
 POFは、素材がプラスチックであることから、軽量で良好な可撓性を有し、低コストで製造可能であるため、近年、需要が拡大している。このようなPOFは、一般的に、溶融押出成形や界面ゲル重合法によるプリフォームを溶融加熱延伸する方法等により製造されている。しかし、POFを製造するための装置を連続的に長時間運転すると、均一的な品質を担保することが困難になる場合がある。
 このため、例えば、特許文献1では、製造されるPOFの製品品質(光信号の伝送損失)を向上させるために、製造しながら光伝送損失を計測する検査装置が提案されている。また、特許文献2では、ポリマークラッド光ファイバの被覆の異常部を検出する被覆異常部検出方法が提案され、信頼性の要求に応えるとしている。
 しかしながら、特許文献1のものは、実際にPOFのコア内にレーザー光を通過させてレーザー光の散乱の程度を確認し、POFの光損失を計測するものであり、コアに欠陥(異物や亀裂、気泡など)が生じているか否かを判断することはできるものの、形成されたコアの径を計測することはできない。
 また、特許文献2のものは、POFに検査光を入射しPOFの画像における輝度の経時変化によって、その被覆クラッドの異常部から外部に漏れた検査光の有無を判定し、これに基づいて異常部を検出するものである。しかし、このものも、上記特許文献1のものと同様、形成されたコアの径を計測することはできない。
特開2014-2002号公報 特開2016-85138号公報
 一方、POFにおけるコア径の変動は、帯域幅の低下につながることから、常時安定したコア径のPOFを提供することが、光通信の信頼性を高める上で重要である。そこで、コア径の正確な計測を連続的に行うことができれば、インラインで、コア径が規定の範囲から外れたものだけを除外することができるため、その技術の確立が強く求められている。また、POFの欠陥の検出を連続的に行うことができれば、インラインで欠陥を有する箇所だけを除外することができるため、その技術の確立も期待されている。
 本発明はこのような事情に鑑みなされたもので、POFのコア径を正確に計測することができるPOFのコア径計測方法およびそれに用いるPOFのコア径計測装置、POFの欠陥検出方法およびそれに用いるPOFの欠陥検出装置を提供する。
 上記の目的を達成するため、本発明は、以下の[1]~[14]を提供する。
[1]POFのコア径を計測する方法であって、上記POFの一方の側面に向って光を照射する光照射機構と、上記POFの、光が照射される側面の反対側の側面を撮像する撮像機構とを設け、上記光照射機構によりPOFの側面に光を照射し、上記撮像機構によって上記POFの反対側の側面を撮像し画像データを得る撮像工程と、上記撮像機構により得られたPOFの画像データを処理するデータ処理工程とを備え、上記撮像工程において、上記光照射機構の発光幅をWとし、光照射機構の発光位置と上記POFの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)が0.9~1.3となるように上記光照射機構とPOFを配置し、上記データ処理工程において、上記POFの画像データからPOFの側面における光強度分布を取得し、上記光強度分布に基づき上記POFのコア径を算出するPOFのコア径計測方法。
[2]上記撮像工程において、上記POFに対する光照射と撮像を、少なくとも2方向から行い、上記POFの、方向の異なる少なくとも2つの側面の画像データを得るとともに、上記データ処理工程において、上記少なくとも2つの画像データから取得される光強度分布に基づき上記POFのコア径を算出する、[1]に記載のPOFのコア径計測方法。[3]上記データ処理工程において、上記POFの画像データから取得したPOFの径方向における光強度分布に基づいて、上記POFのコア径とともにクラッド径を算出する、[1]または[2]に記載のPOFのコア径計測方法。
[4]上記データ処理工程において、算出された上記POFのコア径とクラッド径に基づき上記POFのコアの偏心量を算出する、[3]に記載のPOFのコア径計測方法。
[5]コアとクラッドとを有するPOFのコア径を計測する装置であって、上記POFの一方の側面に向って光を照射する光照射機構と、上記POFに対して上記光照射機構と反対側に設けられ、上記POFの、光が照射される側面の反対側の側面を撮像する撮像機構と、上記撮像機構によって得られたPOFの画像データを処理するデータ処理機構とを備え、上記光照射機構の発光幅をWとし、上記光照射機構の発光位置と上記POFの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)が0.9~1.3となるように上記光照射機構が配置されており、上記データ処理機構が、上記POFの画像データからPOFの径方向における光強度分布を取得し、上記光強度分布に基づき上記POFのコア径を算出するよう設定されているPOFのコア径計測装置。
[6]上記光照射機構による光照射と撮像機構による撮像が、上記POFに対し少なくとも2方向から行われ、上記POFの、方向の異なる少なくとも2つの側面の画像データが得られるようになっており、上記データ処理機構が、上記少なくとも2つの画像データから取得される光強度分布に基づき上記POFのコア径を算出するよう設定されている、[5]に記載のPOFのコア径計測装置。
[7]上記POFを介して対峙する光照射機構と撮像機構からなる撮像ユニットが、少なくとも2セット、POFに対し方向が異なる配置で設けられている、[6]に記載のPOFのコア径計測装置。
[8]上記POFを介して対峙する光照射機構と撮像機構からなる撮像ユニットが単一で設けられており、上記POFと、上記撮像ユニットとの相対的な配置が変更可能になっている、[6]に記載のPOFのコア径計測装置。
[9]上記データ処理機構が、上記POFの画像データから取得したPOFの径方向における光強度分布に基づいて、上記POFのコア径とともにクラッド径を算出するよう設定されている、[5]~[8]のいずれかに記載のPOFのコア径計測装置。
[10]上記データ処理機構が、算出された上記POFのコア径とクラッド径に基づき上記POFのコアの偏心量を算出するよう設定されている、[9]に記載のPOFのコア径計測装置。
[11]POFの欠陥を検出する方法であって、上記POFの一方の側面に向って光を照射する光照射機構と、上記POFの、光が照射される側面の反対側の側面を撮像する上記光照射機構に対応する撮像機構とを設け、上記光照射機構がいずれもPOFの側面に光を照射し、上記光照射機構に対応する撮像機構によって上記POFの反対側の側面を撮像し画像データを得る撮像工程と、上記撮像機構により得られた画像データを処理するデータ処理工程とを備え、上記撮像工程において、上記光照射機構の発光幅をWとし、光照射機構の発光位置と上記POFの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)がいずれも0.9~1.3となるように上記光照射機構とPOFを配置し、上記撮像工程において、上記POFに対する光照射と撮像を、少なくとも2方向から行い、上記POFの、方向の異なる少なくとも2つの側面の画像データを得るとともに、上記データ処理工程において、上記少なくとも2つの画像データからPOFの側面における少なくとも2つの光強度分布を取得し、上記少なくとも2つの光強度分布に基づき上記POFの欠陥を検出するPOFの欠陥検出方法。
[12]POFの欠陥を検出する装置であって、上記POFの一方の側面に向って光を照射する光照射機構と、上記POFの、光が照射される側面の反対側の側面を撮像する上記光照射機構に対応する撮像機構とを設け、上記光照射機構がいずれもPOFの側面に光を照射し、上記光照射機構に対応する撮像機構によって上記POFの反対側の側面を撮像し画像データを得る撮像機構と、上記撮像機構により得られた画像データを処理するデータ処理機構とを備え、上記光照射機構の発光幅をWとし、光照射機構の発光位置と上記POFの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)がいずれも0.9~1.3となるように上記光照射機構が配置されており、上記記撮像工程において、上記POFに対する光照射と撮像が、少なくとも2方向から行われ、上記POFの、方向の異なる少なくとも2つの側面の画像データが得られるようになっており、上記データ処理機構が、上記少なくとも2つの画像データから取得される光強度分布に基づき上記POFの欠陥を検出するよう設定されているPOFの欠陥検出装置。
[13]POFの欠陥を検出する方法であって、上記POFの一方の側面に向って光を照射する少なくとも3つの光照射機構と、上記POFの、光が照射される側面の反対側の側面を撮像する上記光照射機構に対応する撮像機構とを設け、上記光照射機構がいずれもPOFの側面に光を照射し、上記光照射機構に対応する撮像機構によって上記POFの反対側の側面を撮像し少なくとも3つの画像データを得る撮像工程と、上記撮像機構により得られた少なくとも3つの画像データを処理するデータ処理工程とを備え、上記撮像工程において、上記光照射機構の発光幅をWとし、光照射機構の発光位置と上記POFの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)がいずれも0.9~1.3となるように上記光照射機構とPOFを配置し、上記データ処理工程において、上記少なくとも3つの画像データからPOFの側面における少なくとも3つの光強度分布を取得し、上記少なくとも3つの光強度分布に基づき上記POFの欠陥を検出するPOFの欠陥検出方法。
[14]POFの欠陥を検出する装置であって、上記POFの一方の側面に向って光を照射する少なくとも3つの光照射機構と、上記POFの、光が照射される側面の反対側の側面を撮像する上記光照射機構に対応する撮像機構とを設け、上記光照射機構がいずれもPOFの側面に光を照射し、上記光照射機構に対応する撮像機構によって上記POFの反対側の側面を撮像し少なくとも3つの画像データを得る撮像機構と、上記撮像機構により得られた少なくとも3つの画像データを処理するデータ処理機構とを備え、上記光照射機構の発光幅をWとし、光照射機構の発光位置と上記POFの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)がいずれも0.9~1.3となるように上記光照射機構が配置されており、上記データ処理機構が、上記少なくとも3つの画像データからPOFの側面における少なくとも3つの光強度分布を取得し、上記少なくとも3つの光強度分布に基づき上記POFの欠陥を検出するよう設定されているPOFの欠陥検出装置。
 すなわち、本発明者らは、今後増産が見込まれるPOFの製品規格を担保するため、POFの製造工程においてインラインでPOFのコア径を計測することができる装置を得ることを目的として研究を行った。そして、POFの端面においてコア径を計測していては、POFの長手方向に沿って連続的にコア径を計測することはできないことから、POFの側面方向から計測することを想起し、研究を重ねる過程で、POFの一方の側面に向って光を照射し、その光が照射される側面の反対側の側面を撮像すると、上記POFがいわばレンズのように働き、POFを透して見える明暗の状態から、上記POFの画像データにおいてコアとクラッドの界面の位置を特定できることが判明した。
 そして、本発明者らは、さらに研究を重ねた結果、上記光照射機構の発光幅をWとし、上記光照射機構と上記POFの最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)を所定の範囲に設定すると、高い精度で正確にコアとクラッドの界面の位置を特定することができ、ひいてはコア径の値を正確に求めることができることおよびPOFが有する欠陥の検出が容易にできることを見出した。
 本発明のPOFのコア径計測方法によれば、上述のとおり、長手方向に延びるPOFの側方に、特定の配置で光照射機構と撮像機構を設け、POFの側面に光照射を与えながらその反対側の側面の画像データを得るだけで、簡単かつ正確にPOFのコア径を計測することができる。そして、この計測方法によれば、POFを長手方向に移動させながら、連続的に計測を行うことができるため、POFの製造工程途中において、インラインで計測処理、すなわちコア径のばらつきが規格内に収まっているか否かの品質検査を行うことができる。したがって、高品質のPOFを安定的に供給することができる。
 また、本発明のPOFのコア径計測装置によれば、POFの製造ラインの途中に、特定の配置で光照射機構と撮像機構を設け、上記撮像機構から得られる画像データを、特定のデータ処理機構によって処理するだけで、簡単かつ正確にPOFのコア径を算出することができる。したがって、POFの製造スピードを下げることなく、効率よく高品質のPOFを提供することができる。そして、このコア径計測装置の設置には、大幅な設備変更や追加スペースの確保がいらないという利点を有する。
 さらに、本発明のPOFの欠陥検出方法によれば、POFに対して向きが異なる3方向の画像データが得られるため、周方向の死角がなくなり、欠陥の検出漏れを抑制することができる。また、欠陥が含まれた層を特定することもできるため、伝達損失の原因となるものだけを効率的に検出することができ、過検出を抑制することができる。
 また、本発明のPOFの欠陥検出装置によれば、POFの製造ラインの途中に設けるだけで、POFに含まれた欠陥(異物、気泡等)を簡単に検出することができる。このため、POFの製造スピードを下げることなく、効率よく高品質のPOFを提供することができる。そして、この欠陥検出装置の設置もまた、大幅な設備変更や追加スペースの確保がいらないという利点を有する。
本発明の装置の一例を示す模式的な構成図である。 (a)は上記装置の要部をPOF正面方向(断面方向)から示す模式的な説明図、(b)は同じくその要部をPOF側面方向から示す模式的な説明図である。 POFの構成を示す模式的な断面図である。 (a)~(c)は、いずれも上記装置による画像データの説明図である。 2方向から得られた2つの画像による補正処理の説明図である。 2方向から得られた2つの画像による補正処理の説明図である。 上記装置の変形例を示す模式的な構成図である。 本発明の装置の他の例を示す模式的な構成図である。 実施例6としてコア径を計測した値と実際の測定値とを対比して示したグラフ図である。 実施例6としてコアの偏心量を計測した値と実際の測定値とを対比して示したグラフ図である。 実施例7としてコア径を計測した値と実際の測定値とを対比して示したグラフ図である。 実施例7としてコアの偏心量を計測した値と実際の測定値とを対比して示したグラフ図である。 欠陥の検出方法の処理フロー(I)の手順を説明する図である。 欠陥の検出方法の処理フロー(II)の手順を説明する図である。
 つぎに、本発明の実施の形態について詳しく説明する。ただし、本発明は、この実施の形態に限定されるものではない。
 本発明の一実施の形態であるPOFのコア径計測方法(以下、単に「コア径計測方法」という場合がある)は、POFの一方の側面に向って光を照射する光照射機構と、上記POFの、光が照射される側面の反対側の側面を撮像する撮像機構とを設け、上記光照射機構によりPOFの側面に光を照射し、上記撮像機構によって上記POFの反対側の側面を撮像し画像データを得る撮像工程と、上記撮像機構により得られたPOFの画像データを処理するデータ処理工程とを備えている。そして、上記撮像工程において、上記光照射機構の発光幅をWとし、光照射機構の発光位置と上記POFの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)が0.9~1.3となるように上記POFを配置し、上記データ処理工程において、上記POFの画像データからPOFの側面における光強度分布を取得し、上記光強度分布に基づき上記POFのコア径を算出するものである。
 本発明の一実施の形態であるコア径計測方法を実施するための装置の一例を、図1に模式的に示す。この装置は、図において太矢印で示すように走行するPOF1のコア径を計測するためのもので、POF1の側面に向って、垂直方向に光照射を行う第1の光照射機構2と、上記POF1に対して上記光照射機構2と反対側に設けられ、上記POF1の、光が照射される側面の反対側の側面を撮像する第1の撮像機構3とを備えている。この第1の光照射機構2と第1の撮像機構3は、図2(a)およびその右側面図である図2(b)に模式的に示すように、POF1を介して、互いに対峙するように配置されており、両者によって、1セットの撮像ユニットAが構成されている。
 そして、上記撮像ユニットA(図1に戻る)に対しPOF1の周方向に90°角度を変えた方向、すなわち光照射を水平方向に行う配置で、第2の光照射機構2'と第2の撮像機構3'からなる撮像ユニットBが設けられている。
 なお、上記撮像ユニットAがPOF1と交差する位置Pと、撮像ユニットBがPOF1と交差する位置Qは、POF1の長手方向に沿って所定距離だけずれている。この距離は、POF1の走行によって移動する距離を考慮して設定されており、Pの位置において撮像ユニットAによって撮像される第1の画像データと、Qの位置において撮像ユニットBによって撮像される第2の画像データとが、POF1の同じ位置の、90°角度を変えた2つの側面の画像データとなるよう予め設定されている。
 この装置が計測の対象とするPOF1は、図3に示すとおり、重合体をマトリックスとする有機化合物からなるコア4と、このコア4と屈折率の異なる有機化合物からなるクラッド5と、その外側にこれを被覆するオーバークラッド6とで構成されている。通常、コア4は、クラッド5と比較して屈折率が高く設計されており、光をほぼ全反射させることができる。このため、POF1は、光をコア4内に閉じこめた状態で伝搬させることができるようになっている。なお、この例では、オーバークラッド6を設けているが、クラッド5が非常に硬質である等、コア4およびクラッド5を保護する必要がない場合には、オーバークラッド6は設けなくてもよい。
 上記POF1に光を照射する第1および第2の光照射機構2、2'としては、例えば、発光ダイオード(LED)、レーザー、ハロゲンランプ等の各種光源を用いることができる。なかでも、屈折率波長分散による画像や検出精度の低下を防止できる点から、複数の波長の光が混在したような白色光よりも、単一波長に近い光を光源とするものが好ましい。単一波長の光としては、例えば、青、緑、赤色等の可視光を用いることができるが、撮像対象であるPOF1の材料の波長分散の影響が小さい波長を用いることが好ましく、POF1の材料として、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)を用いる場合には、屈折率波長分散は長波長に行くほど収束し、長波長分散の影響が少なくなることから、赤色の波長の光源を用いることが好ましい。また、光源からの出射光としては、平行光、拡散光のいずれも用いることができるが、様々な角度からPOF1に入射させることができる点から、拡散光を用いることが好ましい。
 そして、上記第1および第2の光照射機構2、2'は、光照射機構2、2'の発光幅をWとしたときに、光照射機構2、2'の発光位置と上記POF1の側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)が0.9~1.3となるように配置することが重要である[図2(a)を参照]。
 すなわち、この装置では、POF1の一方の側面に向って光を照射し、その光が照射される側面の反対側の側面を撮像すると、上記POF1がいわばレンズのように働き、POF1を構成するコア4、クラッド5、オーバークラッド6の各層の屈折率の違いにより、光の明暗が、各界面でそれぞれずれて表れることから、上記POF1のコア4とクラッド5の界面、クラッド5とオーバークラッド6との界面、の各位置を特定できる、という原理にもとづいて、画像データの解析を行うことを特徴としている。
 そして、上記画像データの明暗による解析を精度よく行うには、POF1に対する光量および光の当たり方が重要であり、そのためには、発光幅Wに対する最短距離Dの比(D/W)が上記のとおり、0.9~1.3となるように設定することが必要である。なかでも、この比が1.0~1.25であることが好ましく、1.1~1.15であることがより好適である。
 ちなみに、上記D/Wが0.9よりも小さいと、発光部が光量のわりに近すぎて、得られる画像データが、例えば図4(a)に模式的に示すように、POF1全体が白く光り、オーバークラッド6の周囲だけが暗く陰になるため、本来視認できるはずのコア4とクラッド5の界面を示す線10(図では破線)も、クラッド5とオーバークラッド6の界面を示す線11(図では破線)も全くわからない。
 これに対し、上記D/Wが適正範囲であると、得られる画像データが、例えば図4(b)に模式的に示すように、光の明暗が各層の屈折率に応じてずれて表れるため、コア4とクラッド5の界面を示す線10と、クラッド5とオーバークラッド6の界面を示す線11とを、線としてはっきり視認することができる。
 そして、逆に、上記D/Wが1.3よりも大きいと、発光部が光量のわりに遠すぎて、得られる画像データが、例えば図4(c)に模式的に示すように、暗い部分が多くなりすぎるため、この場合も、各界面を示す線10、11(図では破線)がわからない。
 なお、上記第1の光照射機構2の発光幅Wは、POF1を介して第1の光照射機構2を第1の撮像機構3と対峙させたときに、第1の撮像機構3の撮像面と第1の光照射機構2の発光面とが平行になる配置において、その発光面の最長幅(発光面が平面視円状のときは最長径)をいう。第2の光照射機構2'のWについても同様である。
 上記光が照射されたPOF1の側面を撮像する第1の撮像機構3としては、例えば、ラインセンサカメラ、エリアセンサカメラ等の、対象物の画像をレンズによって素子面に結像させ、光の量を信号に変換して出力させるものを好ましく用いることができる。なかでも、シャッタースピードを速くすることで走行中の被写体の振れの影響を低減できる点から、エリアセンサカメラを用いることがより好ましい。第2の撮像機構3'についても同様である。
 上記第1の撮像機構3は、上記POF1を介して上記第1の光照射機構2と対峙した位置に配置される。そして、上記第1の光照射機構2と第1の撮像機構3は、互いの中心が、POF1を介して同一軸上に配置されることが好ましいが、後述するデータ処理機構によって画像データ処理を補正できる範囲において、必ずしも同一軸上に配置されなくてもよい。第2の撮像機構3'についても同様である。
 上記装置では、上記第1の光照射機構2および撮像機構3からなる撮像ユニットAと、第2の光照射機構2'および撮像機構3'からなる撮像ユニットBの、2つの撮像ユニットにより、POF1の、90°角度を変えた2つの側面の画像データが得られるようになっている。そして、得られた画像データは、予めコア径計測のための演算処理回路等が組み込まれたデータ処理機構(図1において図示せず)に送られて、処理されるようになっている。
 上記2つの撮像ユニット、すなわち、第1の光照射機構2および撮像機構3からなる撮像ユニットAと、第2の光照射機構2'および撮像機構3'からなる撮像ユニットBとは、POF1を長手方向に横切る同一平面上に配置されることが好ましい。2つの撮像ユニットが上記同一平面上に配置されると、各撮像ユニットによりPOF1を径方向に水平な平面上において画像を得ることができるため、走行中にPOF1が安定しない場合であっても高い精度でPOF1のコア径を算出することができる。
 なお、上記2つの撮像ユニットを上記同一平面上に配置する場合には、各撮像ユニットの光照射機構から発せられる光が干渉し合い、正確な算出および検出ができなくなることがあるが、例えば、各撮像ユニットの光照射機構から発せられる光の波長を互いに異なるものとし、各撮像機構の前に特定の波長帯のみ透過し得るバンドパスフィルタを設置することにより正確な算出および検出を維持することができるため好ましい。
 上記データ処理機構は、どのような画像解析ソフトをベースにするものであっても、全く専用に作成されたソフトであってもよいが、上記第1の撮像機構3および第2の撮像機構3'から送られてきた画像データの光強度分布を取得し、その分布状態を解析して所定の演算式に当てはめることにより、目的とするコア径が算出されるようになっている。このとき、90°角度を変えて得られた2つの画像データから、POF1自体が傾いていたり、コア4がPOF1において偏心していたりして、2つの画像データにずれがある場合、そのずれ方に応じて、さらに補正処理がなされるようになっている。
 例えば、図5に示すように、一方の画像データ(0°画像)と他方の画像データ(90°画像)が、互いに異なる傾きで傾いた状態で撮像されている場合、両方の画像データ(0°画像、90°画像)を画像回転処理によって、互いに所定角度ずつ周方向に回転させて両者が極力傾いていない画像として再修正することが行われる。
 また、2つの画像データから得られたコア4とクラッド5の界面の位置、クラッド5とオーバークラッド6の界面の位置から、例えば図6に示すように、各層の径の大きさと中心位置を求め、各層の中心位置のずれからコア4の偏心量を算出し、コア径を修正して、より高い精度でコア径を求めることができるようになっている。
 このように、上記装置によれば、長手方向に延びるPOF1に対し、特定の配置で第1の光照射機構2と第1の撮像機構3を設け、上記撮像機構3から得られる画像データを、特定のデータ処理機構によって処理するだけで、簡単かつ正確にPOF1のコア径を算出することができる。
 そして、上記画像データの取得を、POF1の側面方向から行うため、POF1の製造ラインの途中にもしくは末端において、この装置をインラインで組み込むことができ、POF1を断続的に走行させながら、コア径の計測を行うことができる。特に、対象物が移動していても撮像が可能な第1の撮像機構3を用いる場合には、とりわけ、POF1の製造スピードを下げることなく、効率よくPOF1のコア径の計測を行うことができ、好適である。しかも、上記装置の設置には、大幅な設備変更や追加スペースの確保がいらないという利点を有する。
 また、上記の装置は、POF1に対し、2つの撮像ユニットA、Bを設けて、周方向に異なる2方向の画像データを得ることができるため、コア4の芯ずれやPOF1自体の傾き等を修正して、高い精度でコア径計測を行うことができるようになっている。したがって、一方向からの画像データに基づいてコア径を計測する場合に比べて、より高品質のPOF1を提供することができる。そして、さらに計測精度を高めるために、3セット以上の、方向の異なる撮像ユニットを用いることもできる。
 3セット以上の、方向の異なる撮像ユニットを用いると、走行中のPOFのコア径の計測の精度が向上するだけでなく、欠陥が存在する層を特定することができる。例えば、異物や気泡等がコア層に存在すると、上記異物等は光の伝送損失を大きくする原因となる。一方で、コア層以外、例えば、クラッド層に異物等が存在しても、上記異物等は光の伝送損失に影響を与えない。よって、コア層を特定した上で異物等を検出することにより、伝送損失の原因となる異物等のみを効率的に特定することができ、過検出を抑制することができる。
 すなわち、図7に示すように、3セットの方向の異なる撮像ユニットA,B,Cを用い、各撮像ユニット間をPOF1の周方向に等間隔、すなわち各撮像ユニットを、周方向に120°ずつ向きを変え、POF1の長手方向を横切る同一平面上に配置すると、POF1について周方向に120°ずつ向きを変えた異なる3方向の画像データが得られる。上記周方向に120°ずつ向きを変えた3方向からの画像データを用いて欠陥の検出を行うと、周方向の死角がなくなり、欠陥の検出漏れを抑制することができる。なお、図7において、符号Rは撮像ユニットCがPOF1と交差する位置であり、符号2''は撮像ユニットCが有する第3の光照射機構であり、符号3''は同じく撮像ユニットCが有する第3の撮像機構である。また、図7では、3セットの方向の異なる撮像ユニットA,B,Cを用いた例を示しているが、当然、4セット以上の方向の異なる撮像ユニットを用いてもよいし、単一の撮像ユニットをPOF1の周方向に等間隔に配置を変えて撮像し、POF1について周方向に向きを変えた異なる複数方向の画像データを得るようにしてもよい。
 もちろん、非常に真円度の高いコア4を有するPOF1を対象とする場合や、POF1の直線度を高めた状態で計測できる場合等においては、必ずしも、複数の撮像ユニットを設ける必要はなく、単一の撮像ユニットを用いても差し支えない。
 なお、周方向に異なる2つ以上の画像データを得るために、上記の装置のように、POF1の周囲に、複数の撮像ユニットを、方向を変えて配置するのではなく、単一の撮像ユニットを、POF1に対して相対的に配置を変えうるように設定してもよい。その例を、図8に模式的に示す。
 この装置は、第1の光照射機構2と第1の撮像機構3とで構成される単一の撮像ユニットと交差するようにPOF1を保持する保持機構12を設け、この保持機構12を、保持したPOF1ごと周方向に回動させて、POF1の、方向の異なる少なくとも2つの側面の画像データを得ることができるようにしたものである。なお、13は、POF1と第1の光照射機構2との距離を微調整するための調整機構、14は、POF1に対する計測位置を上下方向に微調整するための調整機構である。
 この装置によれば、図1に示す装置のように、複数の撮像ユニットを配置しなくても、POF1の周方向の向きを変えて複数の画像データを得ることができ、高い精度でコア径の計測および異物や気泡の混入を検出することができる。しかしながら、POF1を走行させながら計測や検出ができないため、試作品や完成品の検査等の用途に限られる。
 また、上記の装置とは逆に、走行するPOF1を中心として、その周囲に、周方向に回動しうる環状ベースを設け、この環状ベースの対角線上の一方に第1の光照射機構2を取り付け、他方に第1の撮像機構3を取り付けて、上記環状ベースを回動させることにより、POF1の、方向の異なる少なくとも2つの側面の画像データを得るようにしてもよい。この場合、異なる方向からの撮像は、POF1が停止するタイミングで行うことが好ましい。
 なお、すでに述べたとおり、少なくとも2方向から撮像した画像データに基づいてコア径を算出する場合、その補正処理のために、コア径のみならず、クラッド5およびオーバークラッド6のそれぞれの径も算出して、各層の外径と中心の位置を求める処理を行うことから、これらの数値を利用して、コア4の偏心量、POF1自体の外径の真円度等を求めることができる。
 特に、コア4の偏心量が大きく規格を外れる場合、光の伝送損失が大きくなるおそれがあることから、上記コア4の偏心量を併せて計測することは、実用的ニーズに沿うものである。
 以下、実施例および比較例をあげて、本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
[実施例1~5、比較例1~3]
 まず、図1に示す装置において、撮像ユニットAの第1の光照射機構2の発光幅Wと、上記光照射機構2とPOF1の最短距離Dを、後記の表1に示すように設定することにより、実施例1~5および比較例1~3のコア径計測装置を作製した。なお、上記光照射機構2としてLED(波長630nmtyp.、拡散光、CCS社製)を用い、POF1のすぐ外側(地合部)におけるカメラ受光量が128/256諧調以上となるよう光量を調整して使用した。また、撮像ユニットBについても上記撮像Aと同様の設定を行っている。
 そして、これらの装置を用いて、画像データの光強度分布に基づいてPOF1のコアとクラッドとの界面、およびクラッドとオーバークラッドとの界面の位置の特定を行うことができるか計測した。計測の結果、位置の特定ができたものを〇とし、できなかったものを×として、後記の表1に示した。
 なお、上記POF1は、コア径が120μmであり、上記コアおよびクラッドは、いずれもメチルメタクリレート(MMA)を主成分とする樹脂からなり、上記コアは、屈折率調整剤により屈折率が高められている。また、オーバークラッドはポリカーボネート(PC)系樹脂からなっている。上記「主成分」とは、その材料の特性に影響を与える成分の意味であり、その成分の含有量は、通常、材料全体の50質量%以上である。
 そして、上記計測の結果に基づいて装置の評価を行い、その結果を後記の表1に併せて示した。評価方法は、以下のとおりである。
<評価>
◎:コアとクラッドとの界面およびクラッドとオーバークラッドとの界面のいずれも容易に特定できた。
〇:コアとクラッドとの界面およびクラッドとオーバークラッドとの界面のいずれも特定できた。
×:コアとクラッドとの界面およびクラッドとオーバークラッドとの界面のいずれかが特定できなかった。
Figure JPOXMLDOC01-appb-T000001
 上記の結果から、発光幅Wに対する最短距離Dの比(D/W)が0.9~1.3の範囲に設定された装置において、コア径を容易に計測できることがわかる。
[実施例6]
 つぎに、図7に示す装置を用い、POF1のコア4(図3参照)の径および偏心量の計測を、計測箇所を変えて10回、インラインで行った。なお、図7の装置は、撮像ユニットCを追加している以外は実施例2と同様の構成(発光幅等)である。また、計測対象のPOF1についても実施例2と同様のものを用いている。得られたコア4の径および偏心量を、実際に測定したコア4の径および偏心量と対比した結果を図9および図10に示す。
 両者を対比した結果、コア4の径の差は最大で2.2μmであり、コア4の偏心量の差は最大で1.6μmであった。
 なお、実際に測定したPOF1のコア4の径および偏心量は、以下のとおりにして求めたものである。すなわち、POF1のコア4の径および偏心量を計測した箇所を実際に切断し、研磨する。その研磨面を顕微鏡にて拡大して観察し、顕微鏡断面画像を得る。この顕微鏡断面画像から、POF1のコア4の径および偏心量を特定し、この値を実際のコア4の径および偏心量とした。
[実施例7]
 図1に示す装置を用い、計測箇所を4箇所にした以外は、実施例6と同様にしてPOF1のコア4(図3参照)の径および偏心量の計測を行った。得られたコア4の径および偏心量を、実際に測定したコア4の径および偏心量と対比した結果を図11および図12に示す。
 両者を対比した結果、コア4の径の差は最大で2.9μmであり、コア4の偏心量の差は最大で3.3μmであった。
[実施例8]
 そして、図7に示す装置を用い、後記に示す欠陥の検出方法に従って、6.5mのPOF1において層を特定せず、POF1の全体に含まれる欠陥の検出を行った。その結果を下記の表2に示す。表2の結果から、層を特定せずに欠陥の検出を行った場合、コア4(図3参照)の欠陥も検出できるものの、伝送損失に関係のないオーバークラッド6内の異物が過剰に検出されることがわかる。
Figure JPOXMLDOC01-appb-T000002
[実施例9]
 さらに、図7に示す装置を用い、後記に示す欠陥の検出方法に従って、24mのPOF1においてコア4(図3参照)を特定して、POF1の全体に含まれる欠陥の検出を行った。その結果を下記の表3に示す。表3の結果から、コア4を特定して欠陥の検出を行った場合、伝送損失に関係のないオーバークラッド6内の欠陥の過剰な検出が抑制され、コア4内の欠陥が効率よく検出できた。
Figure JPOXMLDOC01-appb-T000003
[欠陥の検出方法]
 まず、図7に示す装置において、撮像ユニットA,B,Cを用いて、POF1について周方向に120°ずつ向きを変えた、3方向からの異なる画像データを得る。
 得られた画像データそれぞれに対し、図13および下記に示す処理フロー(I)のとおり、検出候補物の重心座標を取得する。なお、処理フロー(I)において、「5.2値化抽出」は、閾値を10とし、8bit画像データ256諧調の内、正常部に対し10諧調差がある箇所を検出候補物として抽出している。
 つぎに、得られた検出候補物を、図14および後記に示す処理フロー(II)に従って処理することにより、POF1の欠点(欠陥)を検出することができる。
[処理フロー(I)]
1.撮像ユニットA,B,Cを用いて異なる画像データを取得し、メモリに格納する。
2.画像データに対しエッジ検出処理を行い、画像内のPOF1の座標を取得する。
3.取得したPOF1の座標と設定値とを用い、POF1部分の画像を切出す。
4.切出されたPOF1の画像を予め登録している良品画像に照らして差分を異常部として特定する。
5.異常部の画像を設定された閾値に照らして2値化処理を行う。
6.異常部の2値化画像に対してブロブ処理解析を行い、異常部の重心座標を取得し、検出候補物として抽出する。
[処理フロー(II)]
1.処理フロー(I)により抽出された検出候補物の座標データのうち、POF1の流れ方向座標の若い順に、各撮像ユニットの検出候補物の座標データを準備する。
2.準備された座標データにおいて、互いのPOF1の流れ方向座標の差異が設定閾値以下のものを抽出する。
3.抽出された検出候補物の2つの流れ方向座標を使用し、2視野からそれぞれ光線追跡を行いPOF1断面における交点の座標を求める。
4.上記交点とコア4の中心座標との間の距離を計算して求める。
5.上記距離が設定閾値以下であるか否かを評価する。
6.上記閾値以下のものを欠点として検出する。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明のPOFのコア径計測方法およびコア径計測装置は、インラインでPOFのコア径を計測する場合に有用である。
 1 POF
 2 第1の光照射機構
 2' 第2の光照射機構
 3 第1の撮像機構
 3' 第2の撮像機構

Claims (14)

  1.  プラスチック光ファイバのコア径を計測する方法であって、
     上記プラスチック光ファイバの一方の側面に向って光を照射する光照射機構と、上記プラスチック光ファイバの、光が照射される側面の反対側の側面を撮像する撮像機構とを設け、上記光照射機構によりプラスチック光ファイバの側面に光を照射し、上記撮像機構によって上記プラスチック光ファイバの反対側の側面を撮像し画像データを得る撮像工程と、
     上記撮像機構により得られたプラスチック光ファイバの画像データを処理するデータ処理工程とを備え、
     上記撮像工程において、上記光照射機構の発光幅をWとし、光照射機構の発光位置と上記プラスチック光ファイバの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)が0.9~1.3となるように上記光照射機構とプラスチック光ファイバを配置し、
     上記データ処理工程において、上記プラスチック光ファイバの画像データからプラスチック光ファイバの側面における光強度分布を取得し、上記光強度分布に基づき上記プラスチック光ファイバのコア径を算出することを特徴とするプラスチック光ファイバのコア径計測方法。
  2.  上記撮像工程において、上記プラスチック光ファイバに対する光照射と撮像を、少なくとも2方向から行い、上記プラスチック光ファイバの、方向の異なる少なくとも2つの側面の画像データを得るとともに、上記データ処理工程において、上記少なくとも2つの画像データから取得される光強度分布に基づき上記プラスチック光ファイバのコア径を算出する請求項1記載のプラスチック光ファイバのコア径計測方法。
  3.  上記データ処理工程において、上記プラスチック光ファイバの画像データから取得したプラスチック光ファイバの径方向における光強度分布に基づいて、上記プラスチック光ファイバのコア径とともにクラッド径を算出する請求項1または2記載のプラスチック光ファイバのコア径計測方法。
  4.  上記データ処理工程において、算出された上記プラスチック光ファイバのコア径とクラッド径に基づき上記プラスチック光ファイバの偏心量を算出する請求項3記載のプラスチック光ファイバのコア径計測方法。
  5.  コアとクラッドとを有するプラスチック光ファイバのコア径を計測する装置であって、
     上記プラスチック光ファイバの一方の側面に向って光を照射する光照射機構と、上記プラスチック光ファイバに対して上記光照射機構と反対側に設けられ、上記プラスチック光ファイバの、光が照射される側面の反対側の側面を撮像する撮像機構と、上記撮像機構によって得られたプラスチック光ファイバの画像データを処理するデータ処理機構とを備え、
     上記光照射機構の発光幅をWとし、上記光照射機構の発光位置と上記プラスチック光ファイバの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)が0.9~1.3となるように上記光照射機構が配置されており、
     上記データ処理機構が、上記プラスチック光ファイバの画像データからプラスチック光ファイバの径方向における光強度分布を取得し、上記光強度分布に基づき上記プラスチック光ファイバのコア径を算出するよう設定されていることを特徴とするプラスチック光ファイバのコア径計測装置。
  6.  上記光照射機構による光照射と撮像機構による撮像が、上記プラスチック光ファイバに対し少なくとも2方向から行われ、上記プラスチック光ファイバの、方向の異なる少なくとも2つの側面の画像データが得られるようになっており、上記データ処理機構が、上記少なくとも2つの画像データから取得される光強度分布に基づき上記プラスチック光ファイバのコア径を算出するよう設定されている請求項5記載のプラスチック光ファイバのコア径計測装置。
  7.  上記プラスチック光ファイバを介して対峙する光照射機構と撮像機構からなる撮像ユニットが、少なくとも2セット、プラスチック光ファイバに対し方向が異なる配置で設けられている請求項6記載のプラスチック光ファイバのコア径計測装置。
  8.  上記プラスチック光ファイバを介して対峙する光照射機構と撮像機構からなる撮像ユニットが単一で設けられており、上記プラスチック光ファイバと、上記撮像ユニットとの相対的な配置が変更可能になっている請求項6記載のプラスチック光ファイバのコア径計測装置。
  9.  上記データ処理機構が、上記プラスチック光ファイバの画像データから取得したプラスチック光ファイバの径方向における光強度分布に基づいて、上記プラスチック光ファイバのコア径とともにクラッド径を算出するよう設定されている請求項5~8のいずれか一項に記載のプラスチック光ファイバのコア径計測装置。
  10.  上記データ処理機構が、算出された上記プラスチック光ファイバのコア径とクラッド径に基づき上記プラスチック光ファイバの偏心量を算出するよう設定されている請求項9記載のプラスチック光ファイバのコア径計測装置。
  11.  プラスチック光ファイバの欠陥を検出する方法であって、
     上記プラスチック光ファイバの一方の側面に向って光を照射する光照射機構と、上記プラスチック光ファイバの、光が照射される側面の反対側の側面を撮像する上記光照射機構に対応する撮像機構とを設け、上記光照射機構がいずれもプラスチック光ファイバの側面に光を照射し、上記光照射機構に対応する撮像機構によって上記プラスチック光ファイバの反対側の側面を撮像し画像データを得る撮像工程と、
     上記撮像機構により得られた画像データを処理するデータ処理工程とを備え、
     上記撮像工程において、上記光照射機構の発光幅をWとし、光照射機構の発光位置と上記プラスチック光ファイバの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)がいずれも0.9~1.3となるように上記光照射機構とプラスチック光ファイバを配置し、
     上記撮像工程において、上記プラスチック光ファイバに対する光照射と撮像を、少なくとも2方向から行い、上記プラスチック光ファイバの、方向の異なる少なくとも2つの側面の画像データを得るとともに、上記データ処理工程において、上記少なくとも2つの画像データからプラスチック光ファイバの側面における少なくとも2つの光強度分布を取得し、上記少なくとも2つの光強度分布に基づき上記プラスチック光ファイバの欠陥を検出することを特徴とするプラスチック光ファイバの欠陥検出方法。
  12.  プラスチック光ファイバの欠陥を検出する装置であって、
     上記プラスチック光ファイバの一方の側面に向って光を照射する光照射機構と、上記プラスチック光ファイバの、光が照射される側面の反対側の側面を撮像する上記光照射機構に対応する撮像機構とを設け、上記光照射機構がいずれもプラスチック光ファイバの側面に光を照射し、上記光照射機構に対応する撮像機構によって上記プラスチック光ファイバの反対側の側面を撮像し画像データを得る撮像機構と、
     上記撮像機構により得られた画像データを処理するデータ処理機構とを備え、
     上記光照射機構の発光幅をWとし、光照射機構の発光位置と上記プラスチック光ファイバの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)がいずれも0.9~1.3となるように上記光照射機構が配置されており、
     上記記撮像工程において、上記プラスチック光ファイバに対する光照射と撮像が、少なくとも2方向から行われ、上記プラスチック光ファイバの、方向の異なる少なくとも2つの側面の画像データが得られるようになっており、
     上記データ処理機構が、上記少なくとも2つの画像データから取得される光強度分布に基づき上記プラスチック光ファイバの欠陥を検出するよう設定されていることを特徴とするプラスチック光ファイバの欠陥検出装置。
  13.  プラスチック光ファイバの欠陥を検出する方法であって、
     上記プラスチック光ファイバの一方の側面に向って光を照射する少なくとも3つの光照射機構と、上記プラスチック光ファイバの、光が照射される側面の反対側の側面を撮像する上記光照射機構に対応する撮像機構とを設け、上記光照射機構がいずれもプラスチック光ファイバの側面に光を照射し、上記光照射機構に対応する撮像機構によって上記プラスチック光ファイバの反対側の側面を撮像し少なくとも3つの画像データを得る撮像工程と、
     上記撮像機構により得られた少なくとも3つの画像データを処理するデータ処理工程とを備え、
     上記撮像工程において、上記光照射機構の発光幅をWとし、光照射機構の発光位置と上記プラスチック光ファイバの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)がいずれも0.9~1.3となるように上記光照射機構とプラスチック光ファイバを配置し、
     上記データ処理工程において、上記少なくとも3つの画像データからプラスチック光ファイバの側面における少なくとも3つの光強度分布を取得し、上記少なくとも3つの光強度分布に基づき上記プラスチック光ファイバの欠陥を検出することを特徴とするプラスチック光ファイバの欠陥検出方法。
  14.  プラスチック光ファイバの欠陥を検出する装置であって、
     上記プラスチック光ファイバの一方の側面に向って光を照射する少なくとも3つの光照射機構と、上記プラスチック光ファイバの、光が照射される側面の反対側の側面を撮像する上記光照射機構に対応する撮像機構とを設け、上記光照射機構がいずれもプラスチック光ファイバの側面に光を照射し、上記光照射機構に対応する撮像機構によって上記プラスチック光ファイバの反対側の側面を撮像し少なくとも3つの画像データを得る撮像機構と、
     上記撮像機構により得られた少なくとも3つの画像データを処理するデータ処理機構とを備え、
     上記光照射機構の発光幅をWとし、光照射機構の発光位置と上記プラスチック光ファイバの側面との最短距離をDとして、上記発光幅Wに対する最短距離Dの比(D/W)がいずれも0.9~1.3となるように上記光照射機構が配置されており、
     上記データ処理機構が、上記少なくとも3つの画像データからプラスチック光ファイバの側面における少なくとも3つの光強度分布を取得し、上記少なくとも3つの光強度分布に基づき上記プラスチック光ファイバの欠陥を検出するよう設定されていることを特徴とするプラスチック光ファイバの欠陥検出装置。
PCT/JP2020/003967 2019-02-04 2020-02-03 プラスチック光ファイバのコア径計測方法およびそれに用いるプラスチック光ファイバのコア径計測装置、プラスチック光ファイバの欠陥検出方法およびそれに用いるプラスチック光ファイバの欠陥検出装置 WO2020162409A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/427,829 US12025529B2 (en) 2019-02-04 2020-02-03 Plastic optical fiber core diameter measuring method, plastic optical fiber core diameter measuring apparatus used therefor, plastic optical fiber defect detecting method, and plastic optical fiber defect detecting apparatus used therefor
CN202080012417.3A CN113518892B (zh) 2019-02-04 2020-02-03 塑料光纤的芯径测量方法及装置、缺陷检测方法及装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-018118 2019-02-04
JP2019018118 2019-02-04
JP2020-015936 2020-02-03
JP2020015936A JP7495235B2 (ja) 2019-02-04 2020-02-03 プラスチック光ファイバのコア径計測方法およびそれに用いるプラスチック光ファイバのコア径計測装置、プラスチック光ファイバの欠陥検出方法およびそれに用いるプラスチック光ファイバの欠陥検出装置

Publications (1)

Publication Number Publication Date
WO2020162409A1 true WO2020162409A1 (ja) 2020-08-13

Family

ID=71947700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003967 WO2020162409A1 (ja) 2019-02-04 2020-02-03 プラスチック光ファイバのコア径計測方法およびそれに用いるプラスチック光ファイバのコア径計測装置、プラスチック光ファイバの欠陥検出方法およびそれに用いるプラスチック光ファイバの欠陥検出装置

Country Status (2)

Country Link
US (1) US12025529B2 (ja)
WO (1) WO2020162409A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102750A1 (ja) * 2020-11-13 2022-05-19 住友電気工業株式会社 光ファイバの製造方法及び製造装置
WO2023122341A1 (en) * 2021-12-23 2023-06-29 Texas Tech University System Methods and systems for evaluating fiber qualities

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120242A (en) * 1975-04-14 1976-10-21 Hitachi Ltd Fiber diameter measuring instrument
JPS5797263U (ja) * 1980-12-08 1982-06-15
JPS63165726A (ja) * 1986-08-15 1988-07-09 Sumitomo Electric Ind Ltd 光フアイバ構造測定法
JPH08122556A (ja) * 1994-10-25 1996-05-17 Sumitomo Electric Ind Ltd 光ファイバ撮像画像の処理装置
JP2008304239A (ja) * 2007-06-06 2008-12-18 Furukawa Electric Co Ltd:The 円柱透明体中のコア形状測定装置及びコア形状測定方法
WO2014206450A1 (en) * 2013-06-25 2014-12-31 Prysmian S.P.A. Method for detecting defects in a rod-shaped transparent object

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882497A (en) 1986-08-15 1989-11-21 Sumitomo Electric Industries, Ltd. Method and apparatus of measuring outer diameter and structure of optical fiber
JP4018071B2 (ja) * 2004-03-30 2007-12-05 富士フイルム株式会社 光ファイバの欠陥検出装置及び方法
JP4825430B2 (ja) 2005-02-22 2011-11-30 信越化学工業株式会社 光ファイバ母材のコア部非円率測定方法。
JP2014002002A (ja) 2012-06-18 2014-01-09 Sekisui Chem Co Ltd プラスチック光ファイバーの検査装置およびプラスチック光ファイバーの製造装置
JP2016085138A (ja) 2014-10-27 2016-05-19 株式会社フジクラ 被覆異常部検出方法および装置
JP6790401B2 (ja) 2016-03-24 2020-11-25 住友電気工業株式会社 光ファイバ検査装置、光ファイバ製造装置、及び光ファイバ製造方法
CN105890872A (zh) 2016-03-31 2016-08-24 罗炜 大芯径光纤端面检测方法及设备
CN108122556B (zh) 2017-08-08 2021-09-24 大众问问(北京)信息科技有限公司 减少驾驶人语音唤醒指令词误触发的方法及装置
CN109115787B (zh) 2018-09-14 2023-11-14 苏州康代智能科技股份有限公司 一种直线型光纤质量检测装置及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120242A (en) * 1975-04-14 1976-10-21 Hitachi Ltd Fiber diameter measuring instrument
JPS5797263U (ja) * 1980-12-08 1982-06-15
JPS63165726A (ja) * 1986-08-15 1988-07-09 Sumitomo Electric Ind Ltd 光フアイバ構造測定法
JPH08122556A (ja) * 1994-10-25 1996-05-17 Sumitomo Electric Ind Ltd 光ファイバ撮像画像の処理装置
JP2008304239A (ja) * 2007-06-06 2008-12-18 Furukawa Electric Co Ltd:The 円柱透明体中のコア形状測定装置及びコア形状測定方法
WO2014206450A1 (en) * 2013-06-25 2014-12-31 Prysmian S.P.A. Method for detecting defects in a rod-shaped transparent object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102750A1 (ja) * 2020-11-13 2022-05-19 住友電気工業株式会社 光ファイバの製造方法及び製造装置
WO2023122341A1 (en) * 2021-12-23 2023-06-29 Texas Tech University System Methods and systems for evaluating fiber qualities

Also Published As

Publication number Publication date
US20220146371A1 (en) 2022-05-12
US12025529B2 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
KR102049142B1 (ko) 검사 장치 및 중공체의 내벽들을 검사하는 방법
JP4018071B2 (ja) 光ファイバの欠陥検出装置及び方法
WO2020162409A1 (ja) プラスチック光ファイバのコア径計測方法およびそれに用いるプラスチック光ファイバのコア径計測装置、プラスチック光ファイバの欠陥検出方法およびそれに用いるプラスチック光ファイバの欠陥検出装置
US20110128368A1 (en) Hole Inspection Method and Apparatus
KR20080031922A (ko) 불일치의 복합 구조를 검사하기 위한 장치 및 방법
CN109406542B (zh) 光学检测***
CN103105403A (zh) 透明光学元件表面缺陷的检测方法及装置
KR102128214B1 (ko) 광섬유 모재의 기하학적 속성을 결정하기 위한 방법 및 장치
CN103076337A (zh) 一种多光源检测装置
WO2020162410A1 (ja) プラスチック光ファイバのコア径計測方法およびそれに用いるプラスチック光ファイバのコア径計測装置
JP7495235B2 (ja) プラスチック光ファイバのコア径計測方法およびそれに用いるプラスチック光ファイバのコア径計測装置、プラスチック光ファイバの欠陥検出方法およびそれに用いるプラスチック光ファイバの欠陥検出装置
JP2008298569A (ja) 中空糸口金検査装置および検査・判定方法
JP2015068670A (ja) シート状物の欠点検査装置およびシート状物の欠点検査方法
JP2001183124A (ja) 表面性状検査方法および表面性状検査装置
US10867379B2 (en) Method and apparatus for optically inspecting a mold for manufacturing ophthalmic lenses for possible mold defects
JP2009236760A (ja) 画像検出装置および検査装置
TWI840498B (zh) 塑膠光纖的芯徑計測方法及用於其之塑膠光纖的芯徑計測裝置、塑膠光纖的缺陷檢測方法及用於其之塑膠光纖的缺陷檢測裝置
JP2014222221A (ja) 発光体の検査装置
JP2021167845A (ja) 表面異物検出装置およびそれを用いた表面異物検出方法
KR101516351B1 (ko) 투과율 측정 장치
JP5768349B2 (ja) スリット光輝度分布設計方法および光切断凹凸疵検出装置
KR101546906B1 (ko) 미세홀 위치 검출 방법 및 광학적 정렬 방법
JP2014130112A (ja) 走査露光用マイクロレンズアレイの検査装置及び検査方法
JP2009074815A (ja) レンズ欠陥検査装置
CN116109552A (zh) 一种光纤缺陷检测方法和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752557

Country of ref document: EP

Kind code of ref document: A1