WO2020161898A1 - Ceramic porous body, and method for producing ceramic porous body - Google Patents

Ceramic porous body, and method for producing ceramic porous body Download PDF

Info

Publication number
WO2020161898A1
WO2020161898A1 PCT/JP2019/004653 JP2019004653W WO2020161898A1 WO 2020161898 A1 WO2020161898 A1 WO 2020161898A1 JP 2019004653 W JP2019004653 W JP 2019004653W WO 2020161898 A1 WO2020161898 A1 WO 2020161898A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
ceramic porous
ceramic
slurry
bioactive glass
Prior art date
Application number
PCT/JP2019/004653
Other languages
French (fr)
Japanese (ja)
Inventor
達郎 杉野
真生 林
琢也 中越
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2019/004653 priority Critical patent/WO2020161898A1/en
Publication of WO2020161898A1 publication Critical patent/WO2020161898A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Definitions

  • the present invention relates to a ceramic porous body and a method for manufacturing the ceramic porous body, and particularly to a ceramic porous body applicable to a bone filling material and a method for manufacturing the ceramic porous body.
  • a bone defect is caused by regenerating bone by replenishing bone by filling a bone defect part caused by trauma such as excision of bone tumor or bone fracture, and a bone defect part caused by spinal surgery or artificial joint surgery. Treatment to repair the part is being performed.
  • high tibial osteotomy HTO
  • High-order tibial osteotomy is performed by resecting a part of the tibia when there is varus deformity of the lower limb, or by making an incision in the tibia from the lateral direction and applying a prescribed correction to the resection or the osteotomy formed in the incision.
  • a method has been proposed in which a ceramic material is mixed with a liquid component to prepare a paste, which is used as a dental cement or the like (for example, Patent Document 1).
  • a porous body that is not toxic, has sufficient mechanical strength, has a high affinity for living tissue and is easily bonded to bone tissue is desired.
  • a ceramic porous body made of a calcium phosphate-based compound is used.
  • a bioactive glass material is known as a material having an excellent affinity with bone tissue and having an effect of promoting bone formation.
  • Patent Document 2 discloses an artificial joint in which a ceramic coating having a porous structure is provided on the surface of a base material made of a metal material or the like in order to achieve both strength and affinity with bone tissue.
  • the conventional porous body containing a calcium phosphate-based compound as a main component has sufficient mechanical strength as a bone filling material, but its bone formation promoting ability is insufficient, and the period until the bone filling material is replaced with new bone It takes time to recover the motor function of the patient.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a ceramic porous body having excellent mechanical properties that can be applied to a bone filling material and a method for manufacturing the ceramic porous body.
  • the ceramic porous body according to the present invention comprises a calcium phosphate compound and a bioactive glass material, has a relative porosity of 50% or more, a compressive strength of 5 MPa or more, and a Young's modulus of 15 MPa or more.
  • the weight ratio is 10% or more and 50% or less.
  • a method for producing a ceramic porous body according to the present invention is a method for producing a ceramic porous body by firing a slurry containing a bioactive glass material and a calcium phosphate-based compound to obtain a ceramic porous body, which comprises bioactive glass particles and a calcium phosphate-based compound.
  • the compound particles are dispersed in an aqueous solvent, the weight ratio of the calcium phosphate-based compound particles to the aqueous solvent is 1.5 to 4.0, the viscosity is 1.0 cPas or more, and the density is 1.1 g/ml or more 2.0 g.
  • a first preparation step of preparing a first slurry having physical properties of /ml or less is included.
  • the ceramic porous body and the method for producing a ceramic porous body of the present invention it is possible to provide a ceramic porous body having excellent mechanical properties that can be applied to a bone prosthetic material.
  • FIG. 2 is an SEM image of the ceramic porous body of Example 1.
  • 4 is an SEM image of the ceramic porous body of Example 2.
  • FIG. 3 is a Si element distribution diagram of the ceramic porous body of Example 1 obtained by an energy dispersive X-ray spectroscopy scanning electron microscope.
  • FIG. 7 is a Si element distribution diagram of the ceramic porous body of Example 2 obtained by an energy dispersive X-ray spectroscopy scanning electron microscope.
  • FIG. 1 is a schematic view of a ceramic porous body according to this embodiment.
  • FIG. 2 is a flowchart showing a method for manufacturing a ceramic porous body according to this embodiment.
  • the ceramic porous body 1 is used, for example, as a bone filling material in tibial osteotomy.
  • it is used as a bone filling material that opens a cut surface formed by cutting from one side surface of the tibia and gradually expands toward one side surface of the tibia and is filled in a bone cutting portion which is a space formed in a wedge shape.
  • FIG. 1 shows a wedge-shaped ceramic porous body 1 as an example of a bone filling material used for a tibial osteotomy, but the shape of the ceramic porous body 1 is not limited to this, and as a bone filling material, It can be appropriately set according to the shape of the part to be embedded in the bone.
  • the ceramic porous body 1 may be formed into a shape that matches the shape of the embedded portion, such as a quadrangular prism shape, a polyhedron, or a pyramid.
  • the ceramic porous body 1 is a hard porous body including a calcium phosphate compound and a bioactive glass material and having a plurality of pores.
  • the calcium phosphate-based compound constituting the ceramic porous body 1 is apatite, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, calcium hydrogen phosphate dihydrate, and calcium hydrogen phosphate anhydrous. Including at least one or more of.
  • ⁇ -type tricalcium phosphate ⁇ -TCP
  • ⁇ -TCP ⁇ -type tricalcium phosphate
  • ⁇ -TCP ⁇ -type tricalcium phosphate
  • HAP hydroxyapatite
  • calcium-deficient hydroxyapatite fluoroapatite, tetracalcium phosphate, octacalcium phosphate.
  • OCP calcium carbonate
  • TTCP tetracalcium phosphate
  • CHA carbonate group-substituted hydroxyapatite
  • the bioactive glass material constituting the ceramic porous body 1 is at least one of conveyorite glass ceramic, 45S5 glass, 45S5 glass ceramic, 58S5 glass, S53P4 glass, apatite-wollastonite glass, and apatite-wollastonite glass ceramic. including.
  • the ceramic porous body 1 has a relative porosity of 50% or more, a compressive strength of 5 MPa or more, and a Young's modulus of 15 MPa or more.
  • a relative porosity of 50% or more When the relative porosity of the ceramic porous body 1 is 50% or more, infiltration of bodily fluids and blood vessels into the ceramic porous body 1 is smoothly performed, and early bone formation can be realized. Further, the flow rate of osteoblasts in the ceramic porous body 1 and the compression resistance strength of the ceramic porous body 1 can be compatible at a high level.
  • the relative porosity of the ceramic porous body 1 is less than 50%, the flow rate of osteoblasts is low, and it takes a long time for bone regeneration.
  • the compressive strength of the ceramic porous body 1 is 5MP.
  • the compressive strength is an index showing load bearing performance (load bearing strength) when the bone prosthetic material is placed in the bone cut portion. If the compressive strength of the ceramic porous body 1 is 5 MPa or more, the ceramic porous body 1 has sufficient strength to withstand a force applied to the ceramic porous body 1 from above when the ceramic porous body 1 is transplanted into a bone cut portion.
  • the porous ceramic body 1 has a high capability of promoting bone formation by sufficiently infiltrating body fluid and high mechanical strength.
  • the weight ratio of the bioactive glass material is 10% or more and 50% or less.
  • the weight ratio of the bioactive glass material of the ceramic porous body 1 is within the above range, it has high reactivity with osteoblasts and high bone formation promoting ability.
  • the upper limit of the weight ratio of the bioactive glass material in the ceramic porous body 1 is 50%, the strength of the ceramic porous body 1 can be maintained.
  • the weight ratio of the bioactive glass material is less than 10%, the effect of adding the bioactive glass material is small because the difference from the conventional bone forming ability hardly appears.
  • the weight ratio of the bioactive glass material is more than 50%, the property of the bioactive glass appears strongly, and the structural reliability deterioration due to the strength reduction and elution in the living body becomes remarkable, and it is used as a bone filling material. Can not meet the requirements of.
  • the ceramic porous body 1 has a degree of dispersion (w) of the bioactive glass material of 0.95 or more.
  • the degree of dispersion (w) of the bioactive glass material in the ceramic porous body 1 is 0.95 or more, and the dispersibility of the bioactive glass material is high.
  • the ceramic porous body 1 has a high strength and an ability to promote bone formation, and has conditions suitable for a bone filling material.
  • the dispersity (w) of the bioactive glass material is measured using an energy dispersive X-ray spectroscopy scanning electron microscope. Specifically, an area of 10 mm ⁇ 10 mm of the ceramic porous body 1 is magnified 1000 times with an energy dispersive X-ray spectroscopy scanning electron microscope (SEM-EDX) to obtain an image (see FIG. 6). In the obtained image, the bioactive glass material is analyzed by the coordinates of the Si element to calculate the dispersity (w).
  • SEM-EDX energy dispersive X-ray spectroscopy scanning electron microscope
  • the ceramic porous body 1 has a plurality of communicating holes formed by communicating a plurality of pores.
  • FIG. 2 shows an enlarged schematic view of the communication hole 3.
  • the communication hole 3 is a hole in which two or more spherical pores 2 are in close proximity and communicate with each other.
  • the communication hole 3 is formed between the adjacent spherical pores 2.
  • the average pore diameter of the plurality of spherical pores 2 is 10 to 200 ⁇ m.
  • the average pore diameter is within the above range, the flow of osteoblasts in the ceramic porous body 1 is promoted, the ceramic porous body 1 is easily replaced with new bone, and the treatment period of HTO can be shortened.
  • the average pore diameter of the communication holes is 5 ⁇ m or more.
  • the average pore diameter of the communication holes is 5 ⁇ m or more, infiltration of bodily fluids and blood vessels into the ceramic porous body 1 is smoothly performed, and early bone formation can be realized.
  • FIG. 3 shows a flowchart of the method for manufacturing a ceramic porous body according to this embodiment.
  • the method for manufacturing a ceramic porous body according to the present embodiment is a method for obtaining a ceramic porous body by firing a slurry containing a bioactive glass material and a calcium phosphate compound.
  • the first slurry is prepared (first preparation step S1).
  • the first slurry is a mixed slurry in which bioactive glass particles and calcium phosphate-based compound particles are dispersed in an aqueous solvent.
  • the weight ratio of the calcium phosphate compound particles to the aqueous solvent is 1.5 to 4.0
  • the viscosity is 1.0 cPas or more
  • the density is 1.1 g/ml or more and 2.0 g/ml or less.
  • a first slurry having physical properties is prepared.
  • the average particle diameter da (mode diameter) of the bioactive glass particles added to the aqueous solvent is 30 ⁇ m or less, and the average particle diameter db (mode diameter) of the calcium phosphate-based compound particles is 10 ⁇ m or less. Further, the bioactive glass particles and the calcium phosphate-based compound particles are prepared so that the average particle diameter ratio db/da of the bioactive glass particles added to the aqueous solvent and the calcium phosphate-based compound particles is 1.5 or more and 8.0 or less. ..
  • a uniform slurry can be obtained when the average particle diameters of the calcium phosphate compound particles and the bioactive glass particles are within the above ranges. Further, when the average particle diameter ratio db/da of the bioactive glass particles added to the aqueous solvent and the calcium phosphate-based compound particles is 1.5 or more and 8.0 or less, the ceramic having the mechanical strength and the relative porosity described above. The porous body 1 is obtained.
  • ⁇ -TCP powder can be preferably used.
  • ⁇ -TCP powder When ⁇ -TCP powder is used, it has a high bone affinity and can promote binding with bone.
  • the weight ratio of the calcium phosphate compound particles to the aqueous solvent By setting the weight ratio of the calcium phosphate compound particles to the aqueous solvent to be 1.5 to 4.0 or more, the ceramic porous body 1 having high compressive strength can be formed.
  • the viscosity of the first slurry is 1.0 cPas or more, sufficient foaming is possible during stirring.
  • the viscosity is adjusted by adjusting the amount of ceramic particles added.
  • the surfactant used in the aqueous solvent is not particularly limited, polyoxyethylene alkyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene alkyl amine, polyethylene glycol fatty acid ester, decaglycerin monolaurate, Alkanolamides, nonionic surfactants such as polyethylene glycol and polypropylene glycol copolymers, or these nonionic surfactants to which ethylene oxide is added can be used.
  • the surfactant functions as a dispersant and a foaming agent for the first slurry.
  • a heat-gelling organic binder may be further added to the first slurry.
  • heating the first slurry to a temperature not lower than the gelation temperature of the heat-gelling organic binder stabilizes the dispersibility of bubbles in the foamed slurry.
  • the pH of the prepared first slurry is adjusted (pH adjusting step S2). Specifically, the pH of the first slurry is adjusted within the range of 6 to 11 so that the zeta potential of the first slurry is 20 mV or higher or -20 mV or lower. By setting the pH of the first slurry within the range of 6 to 11, the zeta potential of the first slurry becomes 20 mV or higher or -20 mV or lower. In the case of a slurry containing bioactive glass particles, the pH is basic and the bioactive glass particles aggregate with each other to lower the dispersity (w).
  • the dispersity (w) of the first slurry is increased, and the dispersity (w) of the bioactive glass in the obtained ceramic porous body 1 is increased. Can be manufactured within the above range.
  • the first slurry is stirred and foamed, and then dried to form a bulk body (drying step S3).
  • the first slurry is stirred for a predetermined time and foamed to obtain a foamed slurry.
  • the obtained foamed slurry is put into a mold that conforms to the shape of the bone substitute material to be prepared and dried to obtain a bulk body.
  • the drying is performed at a drying temperature of 100° C. or lower, and the drying is continued until the moisture content of the bulk body becomes 20% or lower.
  • the solvent in the foamed slurry is evaporated by the drying step S3 to obtain a bulk body.
  • the bulk body obtained in the drying step S3 is fired to obtain the ceramic porous body 1 (firing step S4).
  • the bulk body is placed in a heating furnace and heated at a high temperature of 1000° C. or higher and 1100° C. or lower for firing.
  • the ceramic porous body 1 is a sintered body obtained by sintering the ⁇ -TCP powder in a bulk body by heating.
  • the ceramic porous body 1 having sufficient porosity and mechanical strength as a bone filling material can be formed by the first preparation step S1. Further, the pH adjusting step S2 can enhance the dispersibility of the bioactive glass particles in the first slurry. As a result, the degree of dispersion (w) of the bioactive glass in the produced ceramic porous body 1 can be adjusted within a desired range, and the ceramic porous body 1 having a high bone formation promoting ability can be produced.
  • the bulk body is obtained by drying at a drying temperature of 100° C. or lower until the water content becomes 20% or lower.
  • the mechanical strength of the ceramic porous body 1 obtained through the firing step S4 can be sufficiently ensured.
  • the mechanical strength of the ceramic porous body 1 can be sufficiently ensured by the firing process.
  • Example 1 A first slurry containing 75 parts by weight of ⁇ -calcium phosphate particles, 75 parts by weight of 45S5 bioglass particles, 40 parts by weight of purified water, and 20 parts by weight of a dispersant was prepared. An aqueous solution prepared by adding 10 parts by weight of a polycarboxylic acid ammonium salt as a deflocculant to 40 parts by weight of purified water was used as a dispersant. The weight ratio of ⁇ -calcium phosphate to water in the first slurry was 1.88. The pH of the first slurry was adjusted to 10 so that the zeta potential of the first slurry was ⁇ 30 mV.
  • Example 2 A first slurry containing 126 parts by weight of ⁇ -calcium phosphate particles, 54 parts by weight of 45S5 bioglass particles, 40 parts by weight of purified water, and 20 parts by weight of a dispersant was prepared.
  • the dispersant is the same as in Example 1.
  • the first slurry had a weight ratio of ⁇ -calcium phosphate to water of 3.15.
  • a ceramic porous body was obtained under the same conditions as in Example 1 except for the above. Other manufacturing conditions are shown in Table 1. An SEM image of an arbitrary cut surface of the ceramic porous body obtained in Example 2 is shown in FIG.
  • Example 3 A first slurry containing 135 parts by weight of ⁇ -calcium phosphate particles, 15 parts by weight of 45S5 bioglass particles, 40 parts by weight of purified water, and 20 parts by weight of a dispersant was prepared.
  • the dispersant is the same as in Example 1.
  • the first slurry had a weight ratio of ⁇ -calcium phosphate particles to water of 3.38.
  • a ceramic porous body was obtained under the same conditions as in Example 1 except for the above. Other manufacturing conditions are shown in Table 1.
  • Example 1 A porous ceramic body was obtained under the same conditions as in Example 3 except that the zeta potential of the first slurry of Example 3 was adjusted to -10 mV. Other manufacturing conditions are shown in Table 1.
  • Example 2 A porous ceramic body was obtained under the same conditions as in Example 3, except that the drying temperature in Example 3 was 110°C. Other manufacturing conditions are shown in Table 1.
  • Example 3 A porous ceramic body was obtained under the same conditions as in Example 1 except that the temperature during firing in Example 1 was set to 900°C. Other manufacturing conditions are shown in Table 1.
  • the relative porosity, average pore diameter, compressive strength, Young's modulus, weight ratio and dispersity of the bioactive glass material, average pore diameter of pores, and average pore diameter of continuous pores of the ceramic porous body were measured by the following methods.
  • the average pore diameters of the pores and the communicating pores were obtained by using a microfocus X-ray CT apparatus (SU1510 manufactured by Hitachi, Ltd.) to obtain micro X-ray CT images of three cross sections of the ceramic porous bodies of Examples and Comparative Examples. It was Image analysis of the obtained micro X-ray CT image was performed to calculate the average pore diameter. Specifically, the pore diameter r2 of the spherical pores (see FIG. 2) was measured in a predetermined range on the micro X-ray CT image, and the average pore diameter was calculated by arithmetic average. Regarding the pore diameter r3 of the communicating pores (see FIG. 2), the communicating pores were specified in a predetermined range on the micro X-ray CT image, and the average pore diameter was calculated by the arithmetic mean of the measurement results.
  • the weight ratio of the bioactive glass was calculated from the formula of bioactive glass added weight/(calcium phosphate compound addition material+bioactive glass added weight).
  • the slurry is divided into 5 or more, the pH of each of the subdivided slurries is adjusted to be different by 2 and the zeta potential of each slurry is measured.
  • the pH is adjusted by adding hydrochloric acid, sulfuric acid or the like when shifting to the acidic side, and by adding an appropriate amount of an aqueous ammonium solution, sodium hydroxide or the like when shifting to the basic side.
  • All of the ceramic porous bodies of Examples 1 to 3 had a relative porosity of 60% or more and a compressive strength of 20 MPa or more. Therefore, a ceramic porous body having a high relative porosity and a high compressive strength was obtained.
  • Each of the ceramic porous bodies of Examples 1 to 3 has a degree of dispersion of the bioactive glass material of 0.95 or more, has a high strength and an ability to promote bone formation, and has a condition suitable for a bone substitute material. I got a body.
  • the weight ratio of the bioactive glass material is 10% or more and 50% or less, and the ceramic porous bodies have high reactivity with osteoblasts and high bone formation promoting ability. was gotten.

Abstract

This ceramic porous body (1) is configured by comprising a calcium phosphate compound and a bioactive glass material, and has: a relative porosity of 50% or more; a compressive strength of 5 MPa or more; and a Young's modulus of 15 MPa or more, and the weight ratio of the bioactive glass material is 10-50%.

Description

セラミック多孔体及びセラミック多孔体の製造方法Ceramic porous body and method for manufacturing ceramic porous body
 本発明は、セラミック多孔体及びセラミック多孔体の製造方法に関し、特に骨補填材に適用できるセラミック多孔体及びセラミック多孔体の製造方法に関する。 The present invention relates to a ceramic porous body and a method for manufacturing the ceramic porous body, and particularly to a ceramic porous body applicable to a bone filling material and a method for manufacturing the ceramic porous body.
 医療の分野において、骨腫瘍の摘出や骨折等の外傷により生じた骨欠損部、及び、脊椎手術や人工関節手術で生じた骨欠損部に骨補填材を補填し、骨を再生させて骨欠損部を修復する治療が行われている。この他、骨を再生する治療の一例として、高位脛骨骨切り術(High Tibial Osteotomy:HTO)が挙げられる。高位脛骨骨切り術は、下肢の内反変形がある場合に脛骨の一部を切除し、あるいは脛骨に横方向から切り込みを入れ、切除部分あるいは切り込み部分に形成された骨切り部に所定の矯正角度に対応する楔形状の骨補填材を埋植する。骨補填材の埋植から所定期間が経過すると、体内の骨形成細胞と接触した骨補填材の成分が置換されて再生骨が形成され、下肢の内反変形を矯正する治療法である。この他、セラミックス材料を液体成分と混合してペーストを作製し、歯科用セメント等として使用する方法が提案されている(例えば、特許文献1)。 In the medical field, a bone defect is caused by regenerating bone by replenishing bone by filling a bone defect part caused by trauma such as excision of bone tumor or bone fracture, and a bone defect part caused by spinal surgery or artificial joint surgery. Treatment to repair the part is being performed. In addition, high tibial osteotomy (HTO) is an example of a treatment for regenerating bones. High-order tibial osteotomy is performed by resecting a part of the tibia when there is varus deformity of the lower limb, or by making an incision in the tibia from the lateral direction and applying a prescribed correction to the resection or the osteotomy formed in the incision. Implant a wedge-shaped bone substitute corresponding to the angle. This is a treatment method for correcting varus deformity of the lower limbs by replacing the components of the bone prosthetic material in contact with the bone forming cells in the body to form regenerated bone after a predetermined period has elapsed since the implantation of the bone prosthetic material. In addition, a method has been proposed in which a ceramic material is mixed with a liquid component to prepare a paste, which is used as a dental cement or the like (for example, Patent Document 1).
 骨補填材としては、毒性がなく、十分な機械的強度を有し、生体組織と親和性が高く骨組織と結合し易い多孔体が望まれている。骨補填材としては、例えば、リン酸カルシウム系化合物で構成されたセラミック多孔体が用いられている。この他、骨組織との親和性に優れ、骨形成の促進効果を有する材料として生体活性ガラス材料が知られている。 As a bone filling material, a porous body that is not toxic, has sufficient mechanical strength, has a high affinity for living tissue and is easily bonded to bone tissue is desired. As the bone filling material, for example, a ceramic porous body made of a calcium phosphate-based compound is used. In addition, a bioactive glass material is known as a material having an excellent affinity with bone tissue and having an effect of promoting bone formation.
日本国特表2007-501845号公報Japanese special table 2007-501845 日本国特開昭63-212350号公報Japanese Patent Laid-Open No. 63-212350
 しかし、生体活性ガラス材料を用いた従来の骨補填材は、骨補填材としての機械的強度が不十分である。例えば、特許文献2には、強度と骨組織との親和性を両立させるため、金属材料等からなる基材の表面にポーラス構造を有するセラミック被膜を設けた人工関節が開示されている。 However, the conventional bone filling material using a bioactive glass material has insufficient mechanical strength as a bone filling material. For example, Patent Document 2 discloses an artificial joint in which a ceramic coating having a porous structure is provided on the surface of a base material made of a metal material or the like in order to achieve both strength and affinity with bone tissue.
 リン酸カルシウム系化合物を主成分とする従来の多孔体は、骨補填材として十分な機械的強度を有するが、骨形成促進能が不十分であり、骨補填材が新生骨に置換されるまでの期間に時間を要し、患者の運動機能の回復に時間を要する。 The conventional porous body containing a calcium phosphate-based compound as a main component has sufficient mechanical strength as a bone filling material, but its bone formation promoting ability is insufficient, and the period until the bone filling material is replaced with new bone It takes time to recover the motor function of the patient.
 本発明は上記事情に鑑みて成されたものであり、骨補填材に適用できる力学的特性に優れたセラミック多孔体及びセラミック多孔体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a ceramic porous body having excellent mechanical properties that can be applied to a bone filling material and a method for manufacturing the ceramic porous body.
 本発明に係るセラミック多孔体は、リン酸カルシウム系化合物および生体活性ガラス材料を含んで構成され、相対気孔率が50%以上、圧縮強度が5MPa以上、かつヤング率15MPa以上であり、生体活性ガラス材料の重量比率が10%以上50%以下である。 The ceramic porous body according to the present invention comprises a calcium phosphate compound and a bioactive glass material, has a relative porosity of 50% or more, a compressive strength of 5 MPa or more, and a Young's modulus of 15 MPa or more. The weight ratio is 10% or more and 50% or less.
 本発明に係るセラミック多孔体の製造方法は、生体活性ガラス材料とリン酸カルシウム系化合物とを含むスラリーを焼成させてセラミック多孔体を得るセラミック多孔体の製造方法であって、生体活性ガラス粒子およびリン酸カルシウム系化合物粒子を水性溶媒に分散させ、前記水性溶媒に対する前記リン酸カルシウム系化合物粒子の重量比が1.5~4.0であり、粘度が1.0cPas以上、密度が1.1g/ml以上2.0g/ml以下の物性を有する第一スラリーを調製する第一調製工程を含む。 A method for producing a ceramic porous body according to the present invention is a method for producing a ceramic porous body by firing a slurry containing a bioactive glass material and a calcium phosphate-based compound to obtain a ceramic porous body, which comprises bioactive glass particles and a calcium phosphate-based compound. The compound particles are dispersed in an aqueous solvent, the weight ratio of the calcium phosphate-based compound particles to the aqueous solvent is 1.5 to 4.0, the viscosity is 1.0 cPas or more, and the density is 1.1 g/ml or more 2.0 g. A first preparation step of preparing a first slurry having physical properties of /ml or less is included.
 本発明のセラミック多孔体及びセラミック多孔体の製造方法によれば、骨補填材に適用できる力学的特性に優れたセラミック多孔体を提供できる。 According to the ceramic porous body and the method for producing a ceramic porous body of the present invention, it is possible to provide a ceramic porous body having excellent mechanical properties that can be applied to a bone prosthetic material.
本発明の一実施形態に係るセラミック多孔体の模式図である。It is a schematic diagram of the ceramic porous body which concerns on one Embodiment of this invention. 本実施形態に係るセラミック多孔体の連通孔の模式図である。It is a schematic diagram of the communicating hole of the ceramic porous body which concerns on this embodiment. 本発明の一実施形態に係るセラミック多孔体の製造方法を示すフローチャートである。It is a flow chart which shows the manufacturing method of the ceramic porous object concerning one embodiment of the present invention. 実施例1のセラミック多孔体のSEM画像である。2 is an SEM image of the ceramic porous body of Example 1. 実施例2のセラミック多孔体のSEM画像である。4 is an SEM image of the ceramic porous body of Example 2. エネルギー分散型X線分光法走査型電子顕微鏡で得られた実施例1のセラミック多孔体のSi元素分布図である。FIG. 3 is a Si element distribution diagram of the ceramic porous body of Example 1 obtained by an energy dispersive X-ray spectroscopy scanning electron microscope. エネルギー分散型X線分光法走査型電子顕微鏡で得られた実施例2のセラミック多孔体のSi元素分布図である。FIG. 7 is a Si element distribution diagram of the ceramic porous body of Example 2 obtained by an energy dispersive X-ray spectroscopy scanning electron microscope.
 以下、本発明の一実施形態に係るセラミック多孔体について、図面を参照して説明する。図1は、本実施形態に係るセラミック多孔体の模式図である。図2は、本実施形態に係るセラミック多孔体の製造方法を示すフローチャートである。 Hereinafter, a ceramic porous body according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a ceramic porous body according to this embodiment. FIG. 2 is a flowchart showing a method for manufacturing a ceramic porous body according to this embodiment.
 本実施形態に係るセラミック多孔体1は、例えば、脛骨の骨切術において骨補填材として使用される。つまり、脛骨の一側面から切り込んで形成された切断面を開き、脛骨の一側面に向かって漸次広がり楔状に形成された空間である骨切り部内に補填される骨補填材として使用される。図1には、脛骨の骨切術に使用する骨補填材の例として、楔形状のセラミック多孔体1を示しているが、セラミック多孔体1の形状はこれに限定されず、骨補填材として骨に埋設する箇所の形状に応じて適宜設定可能である。セラミック多孔体1は、例えば、四角柱形状、多面体、角錐等、埋設箇所の形状に合わせた形状に成形すればよい。 The ceramic porous body 1 according to the present embodiment is used, for example, as a bone filling material in tibial osteotomy. In other words, it is used as a bone filling material that opens a cut surface formed by cutting from one side surface of the tibia and gradually expands toward one side surface of the tibia and is filled in a bone cutting portion which is a space formed in a wedge shape. FIG. 1 shows a wedge-shaped ceramic porous body 1 as an example of a bone filling material used for a tibial osteotomy, but the shape of the ceramic porous body 1 is not limited to this, and as a bone filling material, It can be appropriately set according to the shape of the part to be embedded in the bone. The ceramic porous body 1 may be formed into a shape that matches the shape of the embedded portion, such as a quadrangular prism shape, a polyhedron, or a pyramid.
 セラミック多孔体1は、リン酸カルシウム系化合物および生体活性ガラス材料を含んで構成され、複数の気孔を備える硬質な多孔質体である。 The ceramic porous body 1 is a hard porous body including a calcium phosphate compound and a bioactive glass material and having a plurality of pores.
 セラミック多孔体1を構成するリン酸カルシウム系化合物は、アパタイト、リン酸二カルシウム、リン酸三カルシウム、リン酸四カルシウム、リン酸八カルシウム、リン酸水素カルシウム二水和物、およびリン酸水素カルシウム無水物の少なくとも一種以上を含む。例えば、β型リン酸三カルシウム(β-TCP)、α型リン酸三カルシウム(α-TCP)、ハイドロキシアパタイト(HAP)、カルシウム欠損型ハイドロキシアパタイト、フルオロアパタイト、リン酸四カルシウム、リン酸八カルシウム(OCP)、炭酸カルシウム、リン酸水素カルシウム無水和物、リン酸水素カルシウム二水和物、リン酸四カルシウム(TTCP)、二リン酸カルシウム、メタリン酸カルシウム、及び炭酸基置換型ハイドロキシアパタイト(CHA)のうちのいずれかであればよい。 The calcium phosphate-based compound constituting the ceramic porous body 1 is apatite, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, calcium hydrogen phosphate dihydrate, and calcium hydrogen phosphate anhydrous. Including at least one or more of. For example, β-type tricalcium phosphate (β-TCP), α-type tricalcium phosphate (α-TCP), hydroxyapatite (HAP), calcium-deficient hydroxyapatite, fluoroapatite, tetracalcium phosphate, octacalcium phosphate. (OCP), calcium carbonate, calcium hydrogen phosphate anhydrate, calcium hydrogen phosphate dihydrate, tetracalcium phosphate (TTCP), calcium diphosphate, calcium metaphosphate, and carbonate group-substituted hydroxyapatite (CHA) Either of
 セラミック多孔体1を構成する生体活性ガラス材料は、コンベアイトガラスセラミック、45S5ガラス、45S5ガラスセラミック、58S5ガラス、S53P4ガラス、アパタイト-ワラストナイトガラス、およびアパタイト-ワラストナイトガラスセラミックの少なくとも一つを含む。 The bioactive glass material constituting the ceramic porous body 1 is at least one of conveyorite glass ceramic, 45S5 glass, 45S5 glass ceramic, 58S5 glass, S53P4 glass, apatite-wollastonite glass, and apatite-wollastonite glass ceramic. including.
 セラミック多孔体1は、相対気孔率が50%以上、圧縮強度が5MPa以上、かつヤング率15MPa以上である。セラミック多孔体1は、相対気孔率が50%以上であると、セラミック多孔体1内へ体液や血管の侵入が円滑に行われて骨形成の早期化を実現できる。また、セラミック多孔体1内の骨芽細胞の流通量と、セラミック多孔体1の耐圧縮強度とを高いレベルで両立できる。一方、セラミック多孔体1の相対気孔率が50%未満であると、骨芽細胞の流通量が低く、骨再生に時間が掛かる。 The ceramic porous body 1 has a relative porosity of 50% or more, a compressive strength of 5 MPa or more, and a Young's modulus of 15 MPa or more. When the relative porosity of the ceramic porous body 1 is 50% or more, infiltration of bodily fluids and blood vessels into the ceramic porous body 1 is smoothly performed, and early bone formation can be realized. Further, the flow rate of osteoblasts in the ceramic porous body 1 and the compression resistance strength of the ceramic porous body 1 can be compatible at a high level. On the other hand, when the relative porosity of the ceramic porous body 1 is less than 50%, the flow rate of osteoblasts is low, and it takes a long time for bone regeneration.
 セラミック多孔体1は、圧縮強度が5MPである。圧縮強度は、骨補填材を骨切部に配置した際の耐荷重性能(耐荷重強度)を示す指標となる。セラミック多孔体1の圧縮強度が5MPa以上であれば、セラミック多孔体1が骨切部に移植された際に、セラミック多孔体1へ上方から掛かる力に耐え得る十分な強度を有する。セラミック多孔体1は、相対気孔率、圧縮強度、およびヤング率について上記条件を満たすことにより、体液が十分に侵入して骨形成促進能が高く、かつ機械的強度が高い。 The compressive strength of the ceramic porous body 1 is 5MP. The compressive strength is an index showing load bearing performance (load bearing strength) when the bone prosthetic material is placed in the bone cut portion. If the compressive strength of the ceramic porous body 1 is 5 MPa or more, the ceramic porous body 1 has sufficient strength to withstand a force applied to the ceramic porous body 1 from above when the ceramic porous body 1 is transplanted into a bone cut portion. By satisfying the above-mentioned conditions with respect to the relative porosity, compressive strength, and Young's modulus, the porous ceramic body 1 has a high capability of promoting bone formation by sufficiently infiltrating body fluid and high mechanical strength.
 セラミック多孔体1は、生体活性ガラス材料の重量比率が10%以上50%以下である。セラミック多孔体1の生体活性ガラス材料の重量比率が上記範囲であることにより、骨芽細胞との反応性が高く骨形成促進能が高い。また、セラミック多孔体1における生体活性ガラス材料の重量比の上限が50%であるため、セラミック多孔体1の強度を保持できる。一方、生体活性ガラス材料の重量比率が10%未満の場合、従来の骨形成能との差異が現れ難く生体活性ガラス材料を添加する効果が小さい。また、生体活性ガラス材料の重量比率が50%より大きい場合、生体活性ガラスの性質が強く現れ、強度低下や生体内での溶出に伴う構造上の信頼性の低下が顕著となり、骨補填材としての要求を満たせない。 In the ceramic porous body 1, the weight ratio of the bioactive glass material is 10% or more and 50% or less. When the weight ratio of the bioactive glass material of the ceramic porous body 1 is within the above range, it has high reactivity with osteoblasts and high bone formation promoting ability. Moreover, since the upper limit of the weight ratio of the bioactive glass material in the ceramic porous body 1 is 50%, the strength of the ceramic porous body 1 can be maintained. On the other hand, when the weight ratio of the bioactive glass material is less than 10%, the effect of adding the bioactive glass material is small because the difference from the conventional bone forming ability hardly appears. Further, when the weight ratio of the bioactive glass material is more than 50%, the property of the bioactive glass appears strongly, and the structural reliability deterioration due to the strength reduction and elution in the living body becomes remarkable, and it is used as a bone filling material. Can not meet the requirements of.
 セラミック多孔体1は、生体活性ガラス材料の分散度(w)が0.95以上である。セラミック多孔体1は、生体活性ガラス材料の分散度(w)0.95以上であり、生体活性ガラス材料の分散性が高い。この結果、セラミック多孔体1は強度および骨形成促進能が高く、骨補填材に好適な条件を有する。 The ceramic porous body 1 has a degree of dispersion (w) of the bioactive glass material of 0.95 or more. The degree of dispersion (w) of the bioactive glass material in the ceramic porous body 1 is 0.95 or more, and the dispersibility of the bioactive glass material is high. As a result, the ceramic porous body 1 has a high strength and an ability to promote bone formation, and has conditions suitable for a bone filling material.
 生体活性ガラス材料の分散度(w)は、エネルギー分散型X線分光法走査型電子顕微鏡を用いて測定される。具体的には、セラミック多孔体1の10mm×10mmの範囲をエネルギー分散型X線分光法走査型電子顕微鏡(SEM-EDX)で1000倍に拡大して画像を得る(図6参照)。得られた画像において、生体活性ガラス材料は、Si元素の座標により分析し、分散度(w)を算出する。 The dispersity (w) of the bioactive glass material is measured using an energy dispersive X-ray spectroscopy scanning electron microscope. Specifically, an area of 10 mm×10 mm of the ceramic porous body 1 is magnified 1000 times with an energy dispersive X-ray spectroscopy scanning electron microscope (SEM-EDX) to obtain an image (see FIG. 6). In the obtained image, the bioactive glass material is analyzed by the coordinates of the Si element to calculate the dispersity (w).
 セラミック多孔体1は、複数の気孔が連通して形成された複数の連通孔を有する。図2に、連通孔3の模式図を拡大して示す。図2に示すように、連通孔3は、2以上の球状の気孔2が近接して連通した気孔である。連通孔3は、隣接する球状の気孔2間に形成される。 The ceramic porous body 1 has a plurality of communicating holes formed by communicating a plurality of pores. FIG. 2 shows an enlarged schematic view of the communication hole 3. As shown in FIG. 2, the communication hole 3 is a hole in which two or more spherical pores 2 are in close proximity and communicate with each other. The communication hole 3 is formed between the adjacent spherical pores 2.
 複数の球状の気孔2の平均気孔径が10~200μmである。平均気孔径が上記範囲内であると、セラミック多孔体1内における骨芽細胞の流通が促進され、セラミック多孔体1が新生骨に置換され易く、HTOの治療期間を短縮させることができる。 The average pore diameter of the plurality of spherical pores 2 is 10 to 200 μm. When the average pore diameter is within the above range, the flow of osteoblasts in the ceramic porous body 1 is promoted, the ceramic porous body 1 is easily replaced with new bone, and the treatment period of HTO can be shortened.
 連通孔の平均気孔径が5μm以上である。連通孔の平均気孔径が5μm以上であると、セラミック多孔体1内へ体液や血管の侵入が円滑に行われて早期の骨形成が実現できる。 ∙ The average pore diameter of the communication holes is 5 μm or more. When the average pore diameter of the communication holes is 5 μm or more, infiltration of bodily fluids and blood vessels into the ceramic porous body 1 is smoothly performed, and early bone formation can be realized.
(骨補填材の製造方法)
 次に、本実施形態に係るセラミック多孔体の製造方法について説明する。図3に本実施形態に係るセラミック多孔体の製造方法のフローチャートを示す。本実施形態に係るセラミック多孔体の製造方法は、生体活性ガラス材料とリン酸カルシウム系化合物とを含むスラリーを焼成させてセラミック多孔体を得る方法である。
(Method of manufacturing bone filling material)
Next, a method for manufacturing the ceramic porous body according to this embodiment will be described. FIG. 3 shows a flowchart of the method for manufacturing a ceramic porous body according to this embodiment. The method for manufacturing a ceramic porous body according to the present embodiment is a method for obtaining a ceramic porous body by firing a slurry containing a bioactive glass material and a calcium phosphate compound.
 まず、第一スラリーを調製する(第一調製工程S1)。第一スラリーは、生体活性ガラス粒子およびリン酸カルシウム系化合物粒子を水性溶媒に分散させた混合スラリーである。第一調製工程S1では、水性溶媒に対するリン酸カルシウム系化合物粒子の重量比が1.5~4.0であり、粘度が1.0cPas以上、密度が1.1g/ml以上2.0g/ml以下の物性を有する第一スラリーを調製する。 First, the first slurry is prepared (first preparation step S1). The first slurry is a mixed slurry in which bioactive glass particles and calcium phosphate-based compound particles are dispersed in an aqueous solvent. In the first preparation step S1, the weight ratio of the calcium phosphate compound particles to the aqueous solvent is 1.5 to 4.0, the viscosity is 1.0 cPas or more, and the density is 1.1 g/ml or more and 2.0 g/ml or less. A first slurry having physical properties is prepared.
 水性溶媒に加える生体活性ガラス粒子の平均粒子径da(モード径)は30μm以下であり、リン酸カルシウム系化合物粒子の平均粒子径db(モード径)は10μm以下である。また、水性溶媒に加える生体活性ガラス粒子と、リン酸カルシウム系化合物粒子との平均粒子径比率db/daが1.5以上8.0以下となるように生体活性ガラス粒子およびリン酸カルシウム系化合物粒子を用意する。 The average particle diameter da (mode diameter) of the bioactive glass particles added to the aqueous solvent is 30 μm or less, and the average particle diameter db (mode diameter) of the calcium phosphate-based compound particles is 10 μm or less. Further, the bioactive glass particles and the calcium phosphate-based compound particles are prepared so that the average particle diameter ratio db/da of the bioactive glass particles added to the aqueous solvent and the calcium phosphate-based compound particles is 1.5 or more and 8.0 or less. ..
 リン酸カルシウム系化合物粒子および生体活性ガラス粒子の平均粒子径がそれぞれ上記範囲であると、均一なスラリーが得られる。また、水性溶媒に加える生体活性ガラス粒子と、リン酸カルシウム系化合物粒子との平均粒子径比率db/daが1.5以上8.0以下であると、上述した機械的強度と相対気孔率を備えるセラミック多孔体1が得られる。 A uniform slurry can be obtained when the average particle diameters of the calcium phosphate compound particles and the bioactive glass particles are within the above ranges. Further, when the average particle diameter ratio db/da of the bioactive glass particles added to the aqueous solvent and the calcium phosphate-based compound particles is 1.5 or more and 8.0 or less, the ceramic having the mechanical strength and the relative porosity described above. The porous body 1 is obtained.
 リン酸カルシウム系化合物粒子としては、β-TCPの粉体が好適に使用できる。β-TCP粉を用いると、骨親和性が高く、骨との結合を促進できる。水性溶媒に対するリン酸カルシウム系化合物粒子の重量比が1.5~4.0以上とすることで、圧縮強度の高いセラミック多孔体1が形成可能である。 As the calcium phosphate compound particles, β-TCP powder can be preferably used. When β-TCP powder is used, it has a high bone affinity and can promote binding with bone. By setting the weight ratio of the calcium phosphate compound particles to the aqueous solvent to be 1.5 to 4.0 or more, the ceramic porous body 1 having high compressive strength can be formed.
 第一スラリーの粘度は1.0cPas以上であると、撹拌時に十分な発泡が可能である。粘度の調整はセラミック粒子添加量の調整により行う。 When the viscosity of the first slurry is 1.0 cPas or more, sufficient foaming is possible during stirring. The viscosity is adjusted by adjusting the amount of ceramic particles added.
 水性溶媒に用いる界面活性剤は特に限定しないが、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルアミン、ポリエチレングリコール脂肪酸エステル、デカグリセリンモノラウレート、アルカノールアミド、およびポリエチレングリコール、ポリプロピレングリコール共重合体等の非イオン性界面活性剤、またはこれら非イオン性界面活性剤に酸化エチレンを添加したものが使用出来る。界面活性剤は第一スラリーの分散剤及び発泡剤として機能する。 The surfactant used in the aqueous solvent is not particularly limited, polyoxyethylene alkyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene alkyl amine, polyethylene glycol fatty acid ester, decaglycerin monolaurate, Alkanolamides, nonionic surfactants such as polyethylene glycol and polypropylene glycol copolymers, or these nonionic surfactants to which ethylene oxide is added can be used. The surfactant functions as a dispersant and a foaming agent for the first slurry.
 第一スラリーには、さらに、加熱ゲル化有機バインダーを添加してもよい。加熱ゲル化バインダーを添加する場合、第一スラリーを加熱ゲル化有機バインダーのゲル化温度以上に加熱すると、発泡したスラリー中の気泡の分散性が安定する。 A heat-gelling organic binder may be further added to the first slurry. When the heat-gelling binder is added, heating the first slurry to a temperature not lower than the gelation temperature of the heat-gelling organic binder stabilizes the dispersibility of bubbles in the foamed slurry.
 次に、調製した第一スラリーのpHを調整する(pH調整工程S2)。具体的には、第一スラリーのゼータ電位が20mV以上または-20mV以下となるように第一スラリーのpHを6~11の範囲内に調整する。第一スラリーのpHが6~11の範囲とすることで第一スラリーのゼータ電位が20mV以上または-20mV以下となる。生体活性ガラス粒子を含むスラリーの場合、pHが塩基性であり生体活性ガラス粒子同士が凝集し分散度(w)が低下する。しかし、第一スラリーのゼータ電位を上記の範囲となるようpH調整を行うことで、第一スラリーの分散度(w)を高め、得られるセラミック多孔体1における生体活性ガラスの分散度(w)を上述した範囲で作製することができる。 Next, the pH of the prepared first slurry is adjusted (pH adjusting step S2). Specifically, the pH of the first slurry is adjusted within the range of 6 to 11 so that the zeta potential of the first slurry is 20 mV or higher or -20 mV or lower. By setting the pH of the first slurry within the range of 6 to 11, the zeta potential of the first slurry becomes 20 mV or higher or -20 mV or lower. In the case of a slurry containing bioactive glass particles, the pH is basic and the bioactive glass particles aggregate with each other to lower the dispersity (w). However, by adjusting the pH so that the zeta potential of the first slurry is in the above range, the dispersity (w) of the first slurry is increased, and the dispersity (w) of the bioactive glass in the obtained ceramic porous body 1 is increased. Can be manufactured within the above range.
 次に、第一スラリーを撹拌させて発泡させた後、乾燥させてバルク体を形成する(乾燥工程S3)。具体的には、第一スラリーを所定時間撹拌して発泡させて発泡スラリーを得る。得られた発泡スラリーを作製する骨補填材の形状に沿った型枠に入れて乾燥させてバルク体を得る。乾燥工程S3では、乾燥温度100℃以下で乾燥させて、バルク体の水分含有量が20%以下となるまで乾燥を続ける。乾燥工程S3により発泡スラリー内の溶媒が蒸発し、バルク体を得る。 Next, the first slurry is stirred and foamed, and then dried to form a bulk body (drying step S3). Specifically, the first slurry is stirred for a predetermined time and foamed to obtain a foamed slurry. The obtained foamed slurry is put into a mold that conforms to the shape of the bone substitute material to be prepared and dried to obtain a bulk body. In the drying step S3, the drying is performed at a drying temperature of 100° C. or lower, and the drying is continued until the moisture content of the bulk body becomes 20% or lower. The solvent in the foamed slurry is evaporated by the drying step S3 to obtain a bulk body.
 次に、乾燥工程S3にて得られたバルク体を焼成してセラミック多孔体1を得る(焼成工程S4)。具体的には、バルク体を加熱炉に入れて1000℃以上1100℃以下で高温加熱し焼成する。加熱により、バルク体のβ-TCP粉を焼結させて得られた焼結体がセラミック多孔体1である。 Next, the bulk body obtained in the drying step S3 is fired to obtain the ceramic porous body 1 (firing step S4). Specifically, the bulk body is placed in a heating furnace and heated at a high temperature of 1000° C. or higher and 1100° C. or lower for firing. The ceramic porous body 1 is a sintered body obtained by sintering the β-TCP powder in a bulk body by heating.
 本実施形態に係るセラミック多孔体の製造方法では、第一調製工程S1により、骨補填材として十分な気孔率と機械的強度とを備えるセラミック多孔体1を形成できる。また、pH調整工程S2により、第一スラリー中の生体活性ガラス粒子の分散性を高めることができる。その結果、作製されるセラミック多孔体1の生体活性ガラスの分散度(w)を所望の範囲に調製可能であり、骨形成促進能が高いセラミック多孔体1を製造できる。 In the method for manufacturing a ceramic porous body according to this embodiment, the ceramic porous body 1 having sufficient porosity and mechanical strength as a bone filling material can be formed by the first preparation step S1. Further, the pH adjusting step S2 can enhance the dispersibility of the bioactive glass particles in the first slurry. As a result, the degree of dispersion (w) of the bioactive glass in the produced ceramic porous body 1 can be adjusted within a desired range, and the ceramic porous body 1 having a high bone formation promoting ability can be produced.
 本実施形態に係るセラミック多孔体の製造方法によれば、乾燥工程S3により、乾燥温度100℃以下で乾燥させて、水分含有量が20%以下となるまで乾燥させてバルク体を得るため、その後の焼成工程S4を経て得られるセラミック多孔体1の機械的強度を十分に確保できる。 According to the method for manufacturing a ceramic porous body according to the present embodiment, in the drying step S3, the bulk body is obtained by drying at a drying temperature of 100° C. or lower until the water content becomes 20% or lower. The mechanical strength of the ceramic porous body 1 obtained through the firing step S4 can be sufficiently ensured.
 本実施形態に係るセラミック多孔体の製造方法によれば、焼成工程により、セラミック多孔体1の機械的強度を十分に確保できる。 According to the method for manufacturing a ceramic porous body of the present embodiment, the mechanical strength of the ceramic porous body 1 can be sufficiently ensured by the firing process.
 以上、本発明の一実施形態について説明したが、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、各構成要素に種々の変更を加えたり、削除したり、各実施形態の構成要素を組み合わせたりすることが可能である。 Although one embodiment of the present invention has been described above, the technical scope of the present invention is not limited to the above embodiment, and various modifications may be made to each component without departing from the spirit of the present invention. , Or it is possible to combine the constituent elements of each embodiment.
 以下、本発明の実施例及び比較例について説明する。
(実施例1)
 β-リン酸カルシウム粒子75重量部、45S5バイオガラス粒子75重量部、精製水40重量部、分散剤20重量部を含有する第一スラリーを調製した。分散剤として、精製水40重量部に、解膠剤としてポリカルボン酸アンモニウム塩を10重量部添加した水溶液を用いた。第一スラリーは、水に対するβ-リン酸カルシウムの重量比が1.88であった。第一スラリーのゼータ電位が-30mVとなるように第一スラリーをpH10に調整した。ゼータ電位の調整方法は後述する。その後、第一スラリーに発泡剤としてポリオキシエチレンアルキルエーテル2重量部を加え、貫通孔(丸孔:孔径6mm、センターピッチ3mm)を有する邪魔板を内部に設けた撹拌容器を用いて自転公転式・撹拌脱泡機(共立精機製、「HM-400WV」)にて3分間、700rpmで混合し、発泡スラリーを得た。次に、発泡スラリーを型枠に入れて、25℃の大気中に晒し、水分含有量が20%以下となるまで乾燥させてバルク体を得た。バルク体を大気中1050℃で2時間焼成してセラミック多孔体を得た。その他の作製条件は表1に示す。実施例1で得られたセラミック多孔体の任意の切断面のSEM画像を図4に示す。
Hereinafter, examples and comparative examples of the present invention will be described.
(Example 1)
A first slurry containing 75 parts by weight of β-calcium phosphate particles, 75 parts by weight of 45S5 bioglass particles, 40 parts by weight of purified water, and 20 parts by weight of a dispersant was prepared. An aqueous solution prepared by adding 10 parts by weight of a polycarboxylic acid ammonium salt as a deflocculant to 40 parts by weight of purified water was used as a dispersant. The weight ratio of β-calcium phosphate to water in the first slurry was 1.88. The pH of the first slurry was adjusted to 10 so that the zeta potential of the first slurry was −30 mV. The method of adjusting the zeta potential will be described later. Then, 2 parts by weight of polyoxyethylene alkyl ether as a foaming agent was added to the first slurry, and a revolution container was provided with a stirring container having a baffle plate having through holes (round holes: hole diameter 6 mm, center pitch 3 mm). -The mixture was mixed at 700 rpm for 3 minutes with a stirring and defoaming machine (manufactured by Kyoritsu Seiki, "HM-400WV") to obtain a foamed slurry. Next, the foamed slurry was put into a mold, exposed to the atmosphere at 25° C., and dried until the water content became 20% or less to obtain a bulk body. The bulk body was fired in the atmosphere at 1050° C. for 2 hours to obtain a ceramic porous body. Other manufacturing conditions are shown in Table 1. An SEM image of an arbitrary cut surface of the ceramic porous body obtained in Example 1 is shown in FIG.
(実施例2)
 β-リン酸カルシウム粒子126重量部、45S5バイオガラス粒子54重量部、精製水40重量部、分散剤20重量部を含有する第一スラリーを調製した。分散剤は実施例1と同じである。第一スラリーは、水に対するβ-リン酸カルシウムの重量比が3.15であった。その他は実施例1と同じ条件でセラミック多孔体を得た。その他の作製条件は表1に示す。実施例2で得られたセラミック多孔体の任意の切断面のSEM画像を図5に示す。
(Example 2)
A first slurry containing 126 parts by weight of β-calcium phosphate particles, 54 parts by weight of 45S5 bioglass particles, 40 parts by weight of purified water, and 20 parts by weight of a dispersant was prepared. The dispersant is the same as in Example 1. The first slurry had a weight ratio of β-calcium phosphate to water of 3.15. A ceramic porous body was obtained under the same conditions as in Example 1 except for the above. Other manufacturing conditions are shown in Table 1. An SEM image of an arbitrary cut surface of the ceramic porous body obtained in Example 2 is shown in FIG.
(実施例3)
 β-リン酸カルシウム粒子135重量部、45S5バイオガラス粒子15重量部、精製水40重量部、分散剤20重量部を含有する第一スラリーを調製した。分散剤は実施例1と同じである。第一スラリーは、水に対するβ-リン酸カルシウム粒子の重量比が3.38であった。その他は実施例1と同じ条件でセラミック多孔体を得た。その他の作製条件は表1に示す。
(Example 3)
A first slurry containing 135 parts by weight of β-calcium phosphate particles, 15 parts by weight of 45S5 bioglass particles, 40 parts by weight of purified water, and 20 parts by weight of a dispersant was prepared. The dispersant is the same as in Example 1. The first slurry had a weight ratio of β-calcium phosphate particles to water of 3.38. A ceramic porous body was obtained under the same conditions as in Example 1 except for the above. Other manufacturing conditions are shown in Table 1.
(比較例1)
 実施例3の第一スラリーのゼータ電位を-10mVに調製した以外は実施例3と同じ条件でセラミック多孔体を得た。その他の作製条件は表1に示す。
(Comparative Example 1)
A porous ceramic body was obtained under the same conditions as in Example 3 except that the zeta potential of the first slurry of Example 3 was adjusted to -10 mV. Other manufacturing conditions are shown in Table 1.
(比較例2)
 実施例3における乾燥時の温度を110℃にした以外は、実施例3と同じ条件でセラミック多孔体を得た。その他の作製条件は表1に示す。
(Comparative example 2)
A porous ceramic body was obtained under the same conditions as in Example 3, except that the drying temperature in Example 3 was 110°C. Other manufacturing conditions are shown in Table 1.
(比較例3)
 実施例1における焼成時の温度を900℃にした以外は、実施例1と同じ条件でセラミック多孔体を得た。その他の作製条件は表1に示す。
(Comparative example 3)
A porous ceramic body was obtained under the same conditions as in Example 1 except that the temperature during firing in Example 1 was set to 900°C. Other manufacturing conditions are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 実施例1から実施例3および比較例1から比較例3で得られた各セラミック多孔体の相対気孔率、圧縮強度、ヤング率、生体活性ガラス材料の重量比率および分散度、気孔の平均気孔径、および連通孔の平均気孔径を測定した。測定結果を表2に示す。 Relative porosity, compressive strength, Young's modulus, weight ratio and dispersity of bioactive glass material, average pore diameter of pores of the respective ceramic porous bodies obtained in Examples 1 to 3 and Comparative Examples 1 to 3 , And the average pore diameter of the communicating holes were measured. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 セラミック多孔体の相対気孔率、平均気孔径、圧縮強度、ヤング率、生体活性ガラス材料の重量比率および分散度、気孔の平均気孔径、および連通孔の平均気孔径は以下の方法で測定した。 The relative porosity, average pore diameter, compressive strength, Young's modulus, weight ratio and dispersity of the bioactive glass material, average pore diameter of pores, and average pore diameter of continuous pores of the ceramic porous body were measured by the following methods.
 (相対気孔率)
 実施例および比較例のセラミック多孔体の切断面のSEM画像上で複数の気孔の気孔径を計測し、各セラミック多孔体の相対気孔率を算出した。相対気孔率は、以下の方法で測定した。試験片の嵩密度Dを求め、相対気孔率=(1-嵩密度D/3.07)×100の式に基づき相対気孔率を算出した。
(Relative porosity)
The pore diameters of a plurality of pores were measured on the SEM images of the cut surfaces of the ceramic porous bodies of Examples and Comparative Examples, and the relative porosity of each ceramic porous body was calculated. The relative porosity was measured by the following method. The bulk density D of the test piece was obtained, and the relative porosity was calculated based on the formula of relative porosity=(1-bulk density D/3.07)×100.
 (平均気孔径)
 気孔および連通孔の平均気孔径は、マイクロフォーカスX線CT装置(日立製作所社製、SU1510)を用いて実施例および比較例のセラミック多孔体の3か所の断面のマイクロX線CT画像を得た。得られたマイクロX線CT画像の画像解析を行い、平均気孔径を算出した。具体的には、マイクロX線CT画像上の所定範囲において、球状の気孔の気孔径r2(図2参照)を測定し、算術平均により平均気孔径を算出した。連通孔の気孔径r3(図2参照)も、マイクロX線CT画像上の所定範囲において、連通孔を特定し、測定結果の算術平均により平均気孔径を算出した。
(Average pore size)
The average pore diameters of the pores and the communicating pores were obtained by using a microfocus X-ray CT apparatus (SU1510 manufactured by Hitachi, Ltd.) to obtain micro X-ray CT images of three cross sections of the ceramic porous bodies of Examples and Comparative Examples. It was Image analysis of the obtained micro X-ray CT image was performed to calculate the average pore diameter. Specifically, the pore diameter r2 of the spherical pores (see FIG. 2) was measured in a predetermined range on the micro X-ray CT image, and the average pore diameter was calculated by arithmetic average. Regarding the pore diameter r3 of the communicating pores (see FIG. 2), the communicating pores were specified in a predetermined range on the micro X-ray CT image, and the average pore diameter was calculated by the arithmetic mean of the measurement results.
 (圧縮強度)
 圧縮試験機(島津製作所社製、AUTO GRAPH 2000GE)を用いて、実施例および比較例の各セラミック多孔体の圧縮強度を計測した。
(Compressive strength)
Using a compression tester (manufactured by Shimadzu Corp., AUTO GRAPH 2000GE), the compressive strength of each of the ceramic porous bodies of Examples and Comparative Examples was measured.
 (ヤング率)
 オートグラフ等の機器を用い、実施例および比較例の各サンプルの圧縮強度を測定し、サンプルが破断した最大圧縮強度に達した時のサンプル変位率(ストローク長/サンプル長)を算出した。最大圧縮強度をサンプル変位で割り、ヤング率を算出した。
(Young's modulus)
Using a device such as an autograph, the compressive strength of each sample of Examples and Comparative Examples was measured, and the sample displacement rate (stroke length/sample length) when the maximum compressive strength at which the sample broke was reached was calculated. The Young's modulus was calculated by dividing the maximum compressive strength by the sample displacement.
 (生体活性ガラス材料の重量比率)
 生体活性ガラスの重量比率は、生体活性ガラス添加重量/(リン酸カルシウム系化合物添加材料 + 生体活性ガラス添加重量)の式より算出した。
(Weight ratio of bioactive glass material)
The weight ratio of the bioactive glass was calculated from the formula of bioactive glass added weight/(calcium phosphate compound addition material+bioactive glass added weight).
 (生体活性ガラス材料の分散度)
 各セラミック多孔体の10mm×10mmの範囲をエネルギー分散型X線分光法走査型電子顕微鏡(SEM-EDX)で1000倍に拡大して画像を得る。得られた画像において、生体活性ガラス材料の各検出点を抽出し、以下の式に基づき生体活性ガラス材料の分散度を求めた。以下に示す式1により、各点から最も近い点までの距離の平均値である平均最近隣距離(W)を算出する。式2により平均最近隣距離E(W)の期待値を算出する。式1および式2で得られた結果に基づき、式3により分散度(w)を算出する。
(Dispersion of bioactive glass material)
An area of 10 mm×10 mm of each ceramic porous body is magnified 1000 times with an energy dispersive X-ray spectroscopy scanning electron microscope (SEM-EDX) to obtain an image. In the obtained image, each detection point of the bioactive glass material was extracted, and the degree of dispersion of the bioactive glass material was calculated based on the following formula. The average nearest neighbor distance (W), which is the average value of the distance from each point to the closest point, is calculated by the following Equation 1. The expected value of the average nearest neighbor distance E(W) is calculated by Equation 2. The dispersion degree (w) is calculated by Expression 3 based on the results obtained by Expression 1 and Expression 2.
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
(ゼータ電位)
 ゼータ電位は、スラリーを5つ以上に分け、小分けにした各スラリーのpHをそれぞれpH2ずつ異なるように調整し、各スラリーのゼータ電位を測定する。pH調整は酸性側へシフトさせる場合は塩酸や硫酸等、塩基側へシフトさせる場合はアンモニウム水溶液、水酸化ナトリウム等を適量加えて調整する。
(Zeta potential)
Regarding the zeta potential, the slurry is divided into 5 or more, the pH of each of the subdivided slurries is adjusted to be different by 2 and the zeta potential of each slurry is measured. The pH is adjusted by adding hydrochloric acid, sulfuric acid or the like when shifting to the acidic side, and by adding an appropriate amount of an aqueous ammonium solution, sodium hydroxide or the like when shifting to the basic side.
 実施例1および実施例2のサンプルにおいて、SEM-EDXで得られた画像においてケイ素(Si)の検出点を抽出した画像を図6および図7に示す。 6 and 7 show images obtained by extracting silicon (Si) detection points from the images obtained by SEM-EDX in the samples of Examples 1 and 2.
 実施例1から実施例3のセラミック多孔体は、いずれも相対気孔率が60%以上であり、かつ、圧縮強度が20Mpa以上となった。したがって、相対気孔率が高く、圧縮強度が高いセラミック多孔体が得られた。 All of the ceramic porous bodies of Examples 1 to 3 had a relative porosity of 60% or more and a compressive strength of 20 MPa or more. Therefore, a ceramic porous body having a high relative porosity and a high compressive strength was obtained.
 実施例1から実施例3のセラミック多孔体は、いずれも生体活性ガラス材料の分散度が0.95以上であり、強度および骨形成促進能が高く、骨補填材に好適な条件を有するセラミック多孔体が得られた。 Each of the ceramic porous bodies of Examples 1 to 3 has a degree of dispersion of the bioactive glass material of 0.95 or more, has a high strength and an ability to promote bone formation, and has a condition suitable for a bone substitute material. I got a body.
 実施例1から実施例3のセラミック多孔体は、いずれも生体活性ガラス材料の重量比率が10%以上50%以下であり、骨芽細胞との反応性が高く骨形成促進能が高いセラミック多孔体が得られた。 In each of the ceramic porous bodies of Examples 1 to 3, the weight ratio of the bioactive glass material is 10% or more and 50% or less, and the ceramic porous bodies have high reactivity with osteoblasts and high bone formation promoting ability. was gotten.
 実施例1から実施例3のセラミック多孔体は、いずれも気孔の平均気孔径および連通孔の平均気孔径が高く液体の侵入性が高いセラミック多孔体が得られた。 In each of the ceramic porous bodies of Examples 1 to 3, a ceramic porous body having a high average pore diameter of pores and a high average pore diameter of communicating pores and a high liquid infiltration property was obtained.
 一方、比較例1のセラミック多孔体は、スラリー中の生体活性ガラス粒子の凝集により、多孔質体が得られなかった。そのため、気孔率、機械的強度等の測定を行わなかった。 On the other hand, in the ceramic porous body of Comparative Example 1, a porous body could not be obtained due to aggregation of bioactive glass particles in the slurry. Therefore, the porosity and mechanical strength were not measured.
 比較例2および比較例3のセラミック多孔体は、圧縮強度およびヤング率が実施例1から実施例3より劣る結果となった。 The compressive strength and Young's modulus of the ceramic porous bodies of Comparative Examples 2 and 3 were inferior to those of Examples 1 to 3.
 骨補填材に適用できる力学的特性に優れたセラミック多孔体を提供できる。 It is possible to provide a ceramic porous body with excellent mechanical properties that can be applied to bone filling materials.
 1  セラミック多孔体
 2  気孔
 4  連通孔
 S1 第一調製工程
 S2 pH調整工程
 S3 乾燥工程
 S4 焼成工程
DESCRIPTION OF SYMBOLS 1 Ceramic porous body 2 Pore 4 Communication hole S1 First preparation step S2 pH adjustment step S3 Drying step S4 Firing step

Claims (10)

  1.  リン酸カルシウム系化合物および生体活性ガラス材料を含んで構成され、
     相対気孔率が50%以上、圧縮強度が5MPa以上、かつヤング率15MPa以上であり、
     生体活性ガラス材料の重量比率が10%以上50%以下である
     セラミック多孔体。
    Comprised of a calcium phosphate-based compound and a bioactive glass material,
    The relative porosity is 50% or more, the compressive strength is 5 MPa or more, and the Young's modulus is 15 MPa or more,
    A porous ceramic body in which the weight ratio of the bioactive glass material is 10% or more and 50% or less.
  2.  エネルギー分散型X線分光法走査型電子顕微鏡を用いて得られる画像において測定される前記セラミック多孔体の前記生体活性ガラス材料の分散度が0.95以上である
     請求項1に記載のセラミック多孔体。
    The ceramic porous body according to claim 1, wherein the degree of dispersion of the bioactive glass material in the ceramic porous body measured in an image obtained by using an energy dispersive X-ray spectroscopy scanning electron microscope is 0.95 or more. ..
  3.  複数の気孔と、
     前記複数の気孔が連通して形成された連通孔と、を有し、
     前記複数の気孔の平均気孔径が10~200μmであり、
     前記連通孔の平均気孔径が5μm以上である
     請求項1または請求項2に記載のセラミック多孔体。
    Multiple pores,
    A communication hole formed by communicating the plurality of pores,
    The average pore diameter of the plurality of pores is 10 to 200 μm,
    The ceramic porous body according to claim 1 or 2, wherein the communicating pores have an average pore diameter of 5 µm or more.
  4.  前記生体活性ガラス材料は、コンベアイトガラスセラミック、45S5ガラス、45S5ガラスセラミック、58S5ガラス、S53P4ガラス、アパタイト-ワラストナイトガラス、およびアパタイト-ワラストナイトガラスセラミックの少なくとも一つを含む
     請求項1から請求項3のいずれか一項に記載のセラミック多孔体。
    The bioactive glass material comprises at least one of conveyor glass ceramic, 45S5 glass, 45S5 glass ceramic, 58S5 glass, S53P4 glass, apatite-wollastonite glass, and apatite-wollastonite glass ceramic. The ceramic porous body according to claim 3.
  5.  前記リン酸カルシウム系化合物は、アパタイト、リン酸二カルシウム、リン酸三カルシウム、リン酸四カルシウム、リン酸八カルシウム、リン酸水素カルシウム二水和物、およびリン酸水素カルシウム無水物の少なくとも一種以上を含む
     請求項1から請求項4のいずれか一項に記載のセラミック多孔体。
    The calcium phosphate-based compound includes at least one or more of apatite, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, calcium hydrogen phosphate dihydrate, and calcium hydrogen phosphate anhydrous. The ceramic porous body according to any one of claims 1 to 4.
  6.  生体活性ガラス材料とリン酸カルシウム系化合物とを含むスラリーを焼成させてセラミック多孔体を得るセラミック多孔体の製造方法であって、
     生体活性ガラス粒子およびリン酸カルシウム系化合物粒子を水性溶媒に分散させ、前記水性溶媒に対する前記リン酸カルシウム系化合物粒子の重量比が1.5~4.0であり、粘度が1.0cPas以上、密度が1.1g/ml以上2.0g/ml以下の物性を有する第一スラリーを調製する第一調製工程を含む
     セラミック多孔体の製造方法。
    A method for producing a ceramic porous body, which comprises firing a slurry containing a bioactive glass material and a calcium phosphate-based compound to obtain a ceramic porous body,
    The bioactive glass particles and the calcium phosphate-based compound particles are dispersed in an aqueous solvent, the weight ratio of the calcium phosphate-based compound particles to the aqueous solvent is 1.5 to 4.0, the viscosity is 1.0 cPas or more, and the density is 1. A method for producing a ceramic porous body, comprising a first preparation step of preparing a first slurry having physical properties of 1 g/ml or more and 2.0 g/ml or less.
  7.  前記第一スラリーのゼータ電位が20mV以上または-20mV以下となるように前記第一スラリーのpHを6~11の範囲内に調整するpH調整工程をさらに含む
     請求項6に記載のセラミック多孔体の製造方法。
    The ceramic porous body according to claim 6, further comprising a pH adjusting step of adjusting the pH of the first slurry within a range of 6 to 11 so that the zeta potential of the first slurry becomes 20 mV or more or -20 mV or less. Production method.
  8.  前記第一調製工程において、
      前記第一スラリーに含まれる前記生体活性ガラス粒子の平均粒子径daが30μm以下であり、前記リン酸カルシウム系化合物粒子の平均粒子径dbが10μm以下であり、
      前記生体活性ガラス粒子と、前記リン酸カルシウム系化合物粒子との平均粒子径比率db/daが1.5以上8.0以下となるように前記第一スラリーを調製する
     請求項6または請求項7に記載のセラミック多孔体の製造方法。
    In the first preparation step,
    The average particle diameter da of the bioactive glass particles contained in the first slurry is 30 μm or less, and the average particle diameter db of the calcium phosphate-based compound particles is 10 μm or less,
    The first slurry is prepared so that the average particle diameter ratio db/da of the bioactive glass particles and the calcium phosphate-based compound particles is 1.5 or more and 8.0 or less. Of the porous ceramic body of.
  9.  前記第一スラリーを、乾燥温度100℃以下で乾燥させて、水分含有量が20%以下となるまで乾燥させてバルク体を得る乾燥工程を有する
     請求項6から請求項8のいずれか一項に記載のセラミック多孔体の製造方法。
    The method according to claim 6, further comprising a drying step of drying the first slurry at a drying temperature of 100° C. or lower until the water content becomes 20% or lower to obtain a bulk body. A method for producing the porous ceramic body described above.
  10.  前記バルク体を1000℃以上1100℃以下で焼成する焼成工程を有する
     請求項9に記載のセラミック多孔体の製造方法。
    The method for producing a ceramic porous body according to claim 9, further comprising a firing step of firing the bulk body at 1000°C or higher and 1100°C or lower.
PCT/JP2019/004653 2019-02-08 2019-02-08 Ceramic porous body, and method for producing ceramic porous body WO2020161898A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004653 WO2020161898A1 (en) 2019-02-08 2019-02-08 Ceramic porous body, and method for producing ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004653 WO2020161898A1 (en) 2019-02-08 2019-02-08 Ceramic porous body, and method for producing ceramic porous body

Publications (1)

Publication Number Publication Date
WO2020161898A1 true WO2020161898A1 (en) 2020-08-13

Family

ID=71948164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004653 WO2020161898A1 (en) 2019-02-08 2019-02-08 Ceramic porous body, and method for producing ceramic porous body

Country Status (1)

Country Link
WO (1) WO2020161898A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250466A (en) * 2020-10-29 2021-01-22 中北大学 Porous conductive ceramic material for heating electronic smoking set and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510723A (en) * 1996-06-14 1999-09-21 バイオランド Method of preparing implantable composite material, resulting material, implant containing this material, and kit for its use
JP2001046491A (en) * 2000-01-01 2001-02-20 Nippon Electric Glass Co Ltd Bioactive complex implant material
JP2004231985A (en) * 2003-01-28 2004-08-19 Nikko Metal Manufacturing Co Ltd High strength copper alloy with excellent bendability
JP2009542347A (en) * 2006-06-29 2009-12-03 オーソヴィータ・インコーポレーテッド Bioactive bone graft substitute
JP2010095399A (en) * 2008-10-15 2010-04-30 Sumitomo Osaka Cement Co Ltd Coating material for forming porous film and porous film, ceramic filter, exhaust gas purifying filter and method for manufacturing ceramic filter
JP2017159116A (en) * 2017-06-07 2017-09-14 オリンパステルモバイオマテリアル株式会社 Kit equipped with bone prosthetic material and bone plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510723A (en) * 1996-06-14 1999-09-21 バイオランド Method of preparing implantable composite material, resulting material, implant containing this material, and kit for its use
JP2001046491A (en) * 2000-01-01 2001-02-20 Nippon Electric Glass Co Ltd Bioactive complex implant material
JP2004231985A (en) * 2003-01-28 2004-08-19 Nikko Metal Manufacturing Co Ltd High strength copper alloy with excellent bendability
JP2009542347A (en) * 2006-06-29 2009-12-03 オーソヴィータ・インコーポレーテッド Bioactive bone graft substitute
JP2010095399A (en) * 2008-10-15 2010-04-30 Sumitomo Osaka Cement Co Ltd Coating material for forming porous film and porous film, ceramic filter, exhaust gas purifying filter and method for manufacturing ceramic filter
JP2017159116A (en) * 2017-06-07 2017-09-14 オリンパステルモバイオマテリアル株式会社 Kit equipped with bone prosthetic material and bone plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAHREZAEE M ET AL.: "An Evaluation of Bioactive Glass/Calcium Phosphate Cement Composite, Synthesized via Sol-Gel Method", KEY ENGINEERING MATERIALS, vol. 720, 2017, pages 162 - 166, XP055728132 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250466A (en) * 2020-10-29 2021-01-22 中北大学 Porous conductive ceramic material for heating electronic smoking set and preparation method thereof
CN112250466B (en) * 2020-10-29 2022-06-28 中北大学 Porous conductive ceramic material for heating electronic smoking set and preparation method thereof

Similar Documents

Publication Publication Date Title
Engin et al. Preparation of Porous Ca10 (PO4) 6 (OH) 2 and β‐Ca3 (PO4) 2 Bioceramics
US7709081B2 (en) Porous bioactive glass and preparation method thereof
US8613876B2 (en) Foamed ceramics
KR100460685B1 (en) Artificial Bone by Calcium Phosphate Compounds And Method Thereof
Kucko et al. Calcium phosphate bioceramics and cements
Zhang et al. Dissolution properties of different compositions of biphasic calcium phosphate bimodal porous ceramics following immersion in simulated body fluid solution
JP3974276B2 (en) Method for producing ceramic composite and ceramic composite
WO2020161898A1 (en) Ceramic porous body, and method for producing ceramic porous body
US11357891B2 (en) Collagen matrix or granulate blend of bone substitute material
US8465582B2 (en) Process for producing inorganic interconnected 3D open cell bone substitutes
US10960107B2 (en) Collagen matrix or granulate blend of bone substitute material
KR20200076753A (en) Bone substitute
Favvas et al. Structural characterization of calcium sulfate bone graft substitute cements
WO2005079880A1 (en) Methods for preparing medical implants from calcium phosphate cement and medical implants
JP4866765B2 (en) Calcium phosphate sintered porous body and calcium phosphate sintered porous granule
WO2020008555A1 (en) Bone substitute and method for producing bone substitute
Porsani et al. Beta-phosphate tricalcium colloidal processing
Sopyan et al. Fabrication of porous ceramic scaffolds via polymeric sponge method using sol-gel derived strontium doped hydroxyapatite powder
Ślósarczyk et al. New bone implant material with calcium sulfate and Ti modified hydroxyapatite
JP4801316B2 (en) Manufacturing method of calcium phosphate porous material
WO2020121518A1 (en) Bone replacement material and bone replacement material production method
Daculsi et al. Bone ingrowth at the expense of a novel macroporous calcium phosphate cement
Albakri et al. The Effect of Manganese and Bismuth on the Properties and Behavior of Calcium Phosphate
Umeda et al. Effect of blood addition on the biocompatibility of calcium phosphate paste
WO2019146012A1 (en) Bone prosthetic material and bone prosthetic material manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP