WO2020158642A1 - ロボットの制御装置、ロボットの制御方法、及びプログラム - Google Patents

ロボットの制御装置、ロボットの制御方法、及びプログラム Download PDF

Info

Publication number
WO2020158642A1
WO2020158642A1 PCT/JP2020/002686 JP2020002686W WO2020158642A1 WO 2020158642 A1 WO2020158642 A1 WO 2020158642A1 JP 2020002686 W JP2020002686 W JP 2020002686W WO 2020158642 A1 WO2020158642 A1 WO 2020158642A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
external force
interaction
joint
control device
Prior art date
Application number
PCT/JP2020/002686
Other languages
English (en)
French (fr)
Inventor
祐介 川部
謙典 北村
功久 井藤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/425,365 priority Critical patent/US20220097230A1/en
Priority to JP2020569604A priority patent/JPWO2020158642A1/ja
Publication of WO2020158642A1 publication Critical patent/WO2020158642A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H11/00Self-movable toy figures
    • A63H11/18Figure toys which perform a realistic walking motion
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H11/00Self-movable toy figures
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H13/00Toy figures with self-moving parts, with or without movement of the toy as a whole
    • A63H13/02Toy figures with self-moving parts, with or without movement of the toy as a whole imitating natural actions, e.g. catching a mouse by a cat, the kicking of an animal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0005Manipulators having means for high-level communication with users, e.g. speech generator, face recognition means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H2200/00Computerized interactive toys, e.g. dolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0003Home robots, i.e. small robots for domestic use

Definitions

  • the present disclosure relates to a robot control device, a robot control method, and a program.
  • Patent Document 1 relates to a robot apparatus and a control method thereof, and causes a user to recognize an operation state corresponding to the operation command in response to the operation command even if any operation command is input from the outside. Is described.
  • an animal robot in a household robot, it is desirable for an animal robot to react in the same way as a real animal when touched by the user.
  • Patent Document 1 assumes that when a robot detects a sound as a motion command, the user is made to recognize the motion state corresponding to the motion command. However, no consideration was given to the reaction due to the interaction when the user touches it.
  • a detection unit that detects an external force applied to a movable part of a robot based on a parameter obtained from a joint that drives the movable part, and a drive that controls interaction of the robot according to the detected external force.
  • a control device for a robot is provided that includes a control unit.
  • the external force applied to the movable portion of the robot is detected based on the parameter obtained from the joint that drives the movable portion, and the interaction of the robot is controlled according to the detected external force.
  • a method of controlling a robot including:
  • a program for operating a computer is provided.
  • FIG. 1 is a schematic diagram illustrating an appearance of a robot device 1000 according to an embodiment of the present disclosure and a rotation axis of a joint.
  • the robot apparatus 1000 includes four legs 100, 110, 120 and 130 driven by an electric motor such as a servo motor.
  • the robot device 1000 includes a plurality of joints.
  • the robot device 1000 will be classified into a right front leg system, a left front leg system, a right rear leg system, a left rear leg system, a body (Body) system, and a head system based on the movement thereof.
  • the right front leg system has a joint portion 102, a joint portion 104, and a joint portion 106.
  • the left front foot system has a joint 112, a joint 114, and a joint 116.
  • the right hind foot system includes a joint 122, a joint 124, and a joint 126.
  • the left hind foot system includes a joint part 132, a joint part 134, and a joint part 136.
  • the main body system has a joint 142.
  • the head system has a joint portion 152, a joint portion 154, a joint portion 156, and a joint portion 158. Each of these systems is connected to the body 140.
  • Each joint shown in FIG. 1 is a main joint driven by an electric motor.
  • the robot apparatus 1000 has, in addition to the joints shown in FIG. 1, joints that follow the movements of the other joints.
  • the robot apparatus 1000 also has a plurality of movable parts such as a mouth, an ear, and a tail, and these movable parts are also driven by an electric motor or the like.
  • each joint is shown as a cylinder.
  • the central axis of the cylinder corresponds to the rotation axis of the joint.
  • the joint section 152 is provided, when the robot apparatus 1000 is viewed from the front, the operation of tilting the neck to the left and right is realized.
  • the joint portion 142 is provided, when the robot apparatus 1000 is viewed from above, the motion of swinging the waist to the left and right is realized. As a result, it is possible to realize more various movements by the robot apparatus 1000 than ever before.
  • each joint is driven by an electric motor such as a servo motor (hereinafter simply referred to as a motor).
  • the drive source is not particularly limited.
  • the motor of each joint is housed in one box together with a gear mechanism, an encoder, and a microcontroller for driving the motor.
  • the box is made of a resin material (plastic or the like).
  • the motors, gear mechanisms, encoders, and microcontrollers of the joints 132 and 134 are housed in one box, and this box constitutes two rotation axes.
  • the motor, gear mechanism, and microcontroller of the joint 136 are housed in a single box, and this box constitutes a single rotary shaft.
  • the joint portion 152, the joint portion 154, and the joint portion 156 constitute a triaxial rotation axis.
  • each system such as the right forefoot system described above is controlled by a microcomputer provided in each joint.
  • the head system joint 158 is configured to be electrically braked. If the joint 158 is allowed to rotate freely when the power is turned off, the head may go down and hit the user's hand or the like. By braking the joint 158, such a situation can be avoided. Braking can be realized by a method of determining the rotation of the motor based on the electromotive force generated by the rotation of the motor of the joint 158 when the power is off, and generating a driving force in the direction opposite to the direction in which the motor is about to rotate.
  • FIG. 2 is a schematic diagram showing the head 150 of the robot apparatus 1000, particularly the face.
  • the eyes 350 of the robot apparatus 1000 shown in FIG. 2 are configured to perform various movements and displays according to the operation of the robot apparatus 1000. Therefore, the robot apparatus 1000 includes a self-luminous display device (OLED) in each of the left and right eyes 350.
  • OLED self-luminous display device
  • FIG. 3 is a schematic diagram showing the configuration of the control device 2000 that controls the robot device 1000.
  • the control device 2000 is mounted on the robot device 1000.
  • the control device 2000 includes an external force detection system 200, a feature recognition unit 300, a situation acquisition unit 400, a control unit 500, an emotion/personality acquisition unit 600, and a drive unit 700. There is.
  • the external force detection system 200 detects information (external force determination value) indicating whether or not external force is applied from each motor of the joint of the robot apparatus 1000.
  • the feature recognition unit 300 includes a camera, an inertial measurement device (IMU: Initial Measurement Unit), and the like, and recognizes whether the robot device 1000 has been touched or stroked by a user.
  • the feature recognition unit 400 recognizes the feature of the captured image by performing image processing on the captured image of the camera.
  • the status acquisition unit 400 includes a camera and the like, and acquires the status around the robot apparatus 1000, particularly the characteristics of the user who touches the robot apparatus 1000.
  • a camera 700 is attached to the nose of the robot apparatus 1000, and the camera 700 corresponds to the camera of the feature recognition unit 300 and the situation acquisition unit 400.
  • the drive unit 700 corresponds to the motor, encoder, and gear mechanism of each joint.
  • the control unit 500 uses the judgment value obtained from the external force detection system 200 to obtain information regarding the place to be touched, the strength to be touched, and the like. Since the external force detection system 200 is provided in each joint, it is possible to obtain information such as what part was touched and how based on the determination value obtained from the external force detection system 200. The control unit 500 can also obtain information such as how to touch by machine learning using the external force determination value by the external force detection system 200, the recognition result by the feature recognition unit 300, and the result of the situation acquisition by the situation acquisition unit 400. The control unit 500 controls the drive unit 700 of each joint based on information such as how to touch.
  • the emotion/personality acquisition unit 600 acquires the emotion and character of the robot device 1000.
  • the robot apparatus 1000 can be set to any one of a plurality of emotions according to the state at that time.
  • the emotion/personality acquisition unit 500 acquires the emotion of the robot device 1000 that is currently set.
  • the emotions that are set include "anger”, “joy”, and "sadness”.
  • the robot device 1000 has a personality that is set congenitally or acquired.
  • the emotion/personality acquisition unit 600 acquires the set personality of the robot apparatus 1000.
  • the emotions to be set include "wild”, “cute”, “shy”, “amaenbo”, and the like.
  • the control unit 500 provides an optimal interaction to the user in response to the response of the external force detection system 200, or the robot apparatus 1000 itself selects an optimal action, based on the emotion and personality information.
  • FIG. 4 is a schematic diagram showing the configuration of the external force detection system 200.
  • the external force detection system 200 is provided at each joint of the robot apparatus 1000.
  • the external force detection system 200 includes a joint angle sensor 202, an output shaft 204, a gear mechanism 206, a motor 208, a current detection unit 210, a drive amplifier unit 212, a feedback control unit 214, and an external force detection unit 216. It is configured to have.
  • the external force detection system 200 makes it possible to estimate an external force without using a mechanism for detecting force such as a torque sensor or a touch sensor.
  • the robot apparatus 1000 can express an expression for an action performed by the user on the robot apparatus.
  • the motor 208 outputs the driving force that drives the joint.
  • the gear mechanism 206 is a mechanism that reduces the output of the motor 208.
  • the output shaft 204 is a shaft that outputs a driving force that has been decelerated by the gear mechanism 206.
  • the joint is driven by the driving force output from the output shaft.
  • the joint angle sensor 202 corresponds to the encoder described above, and detects the angle of the joint.
  • the joint angle command value is input to the feedback control unit 214.
  • the joint angle command value is also input to the external force detection unit 216.
  • a current command value is input to the drive amplifier section 212 from the feedback control section 214.
  • the current command value is a command value that specifies the drive amount of the motor 208.
  • the drive amplifier section 212 amplifies and outputs the current command value.
  • the current amplified by the drive amplifier section 212 flows to the motor 208, and the motor 208 is driven.
  • the current detector 210 detects the current (actuator current value) flowing through the motor 208.
  • the external force detection unit 216 detects an external force based on the actuator current value detected by the current detection unit 210, the joint angle measurement value measured by the joint angle sensor 202, and the joint angle command value.
  • FIG. 5 is a schematic diagram showing the configuration of the external force detection unit 216.
  • the external force detector 216 includes a servo deviation calculator 220, a first calculator 222, a shift buffer 224, and a second calculator 226.
  • the external force detection unit 216 acquires the joint angle command value, the joint angle measurement value, and the actuator current value in time series, and determines whether or not the external force is applied to the target joint.
  • the joint deviation command value and the joint angle measurement value are input to the servo deviation calculation unit 220.
  • the servo deviation calculator 220 calculates the deviation ⁇ Error between the joint angle command value and the joint angle measurement value.
  • the deviation ⁇ Error and the actuator current value I are input to the first calculation unit 222.
  • the first calculation unit calculates the output F from the deviation ⁇ Error and the actuator current value I based on the following equation (1).
  • F a ⁇ Error ⁇ I+b ⁇ Error +c ⁇ I+d (1)
  • the servo deviation ⁇ Error which is the difference between the joint angle command value and the joint angle measurement value, and the actuator current value I flowing in the actuator are input to the first calculation unit 222, and the output F is acquired.
  • the coefficients a, b, c, d in the equation (1) are appropriately determined by a machine learning method or the like.
  • the output F is input to the shift buffer unit 224.
  • the second arithmetic unit 226 performs arithmetic operations on the n pieces of time-series data and outputs them as external force determination values.
  • the calculation performed by the second calculation unit 226 may be one that calculates the average value of n time-series data and removes noise in the time direction. Further, the calculation performed by the second calculation unit 226 may be a calculation excluding high frequencies through a filter, a binarized value through a hysteresis comparator, or the like.
  • the calculation performed by the second calculation unit 226 may be performed using a calculator obtained by a machine learning method.
  • the information input to the second calculation unit 226 may be not only the time series information of the output F but also the time series information of the joint angle command value (joint angular velocity or posture information).
  • the control unit 500 includes a position determination unit 502, an external force determination value acquisition unit 504, a touch method determination unit 506, a user attribute acquisition unit 508, an emotion/personality determination unit 510, and a frequency acquisition unit. 512, a reaction level determination unit 513, a drive control unit 514, and a motion determination unit 516.
  • Each component of the control unit 500 can be configured by a circuit (hardware) or a central processing unit such as a CPU and a program (software) for operating the central processing unit.
  • the position determination unit 502 determines which part of the robot apparatus 1000 the user has touched.
  • the external force determination value acquisition unit 504 acquires the external force determination value detected by the external force detection system 200.
  • the touch method determination unit 506 determines how the user touches the robot apparatus 1000 based on the information recognized by the feature recognition unit 300.
  • the user attribute acquisition unit 508 determines whether the user who touched the robot apparatus 1000 is a stranger or the owner of the robot apparatus 1000 based on the information acquired by the situation acquisition unit 300, particularly the facial image information. Get information about.
  • the emotion/personality determination unit 510 determines the emotion/personality of the robot apparatus 1000 based on the emotion/personality of the robot apparatus 1000 acquired by the emotion/personality acquisition unit 600.
  • the frequency acquisition unit 512 acquires the frequency with which the user touches the robot apparatus 1000.
  • the motion determination unit 516 determines a motion to be expressed according to the position touched by the user, the magnitude of the external force when touching, the touching method, the user attribute, the emotion, the personality, the touch frequency, etc. when the robot apparatus 1000 performs the interaction. To do.
  • the reaction level determination unit 513 determines a reaction level when performing interaction according to the magnitude of external force when touching, how to touch, user attribute, emotion, personality, touch frequency, and the like.
  • the drive control unit 514 controls the drive unit 700 according to the position touched by the user, the magnitude of the external force when touching, how to touch, user attributes, emotions, personality, touch frequency, etc., and controls the interaction of the robot apparatus 1000. ..
  • the external force detection system 200 detects the external force applied at that time and realizes interaction according to the external force determination value. At this time, the motion of the robot apparatus 1000 is determined according to the place to be touched, the strength of touching, the way of touching, the person touching, the emotion of the robot, the frequency of touching, etc., and the interaction is performed.
  • the interaction of the robot apparatus 1000 is configured to show a reaction for each touched block when the robot apparatus 1000 is divided into a plurality of blocks.
  • Blocks include ears, head+neck, legs, tails, and so on. For example, when the user touches the tail, the interaction of shaking the tail is performed.
  • the interaction changes depending on where you touch it.
  • a reaction is performed by shaking the tail
  • a reaction is performed by shaking the head
  • the same reaction as that of an actual animal can be caused in the robot apparatus 1000.
  • the place to be touched can be obtained from the joint where the external force determination value is obtained, based on the value of the external force determination value.
  • a touch sensor such as an arm, a leg, or a tail
  • the place to be touched can be determined from the detection value of the touch sensor.
  • FIG. 6 is a schematic diagram showing how the interaction changes according to the strength of touch.
  • the size of the arrow indicates the touch strength.
  • the interaction of the robot apparatus 1000 changes according to touching method. For example, when the tail is moving, if it is forcibly moved in the direction opposite to the movement of the tail, a large reaction will occur. On the other hand, when the tail is moved when it is stopped, it reacts weakly. Further, the interaction of the robot apparatus 1000 also changes depending on how it is touched, such as hitting or stroking. For example, when the robot apparatus 1000 is hit, it reacts largely, and when it is stroked, it reacts weakly.
  • the touching method is determined by the touching method determination unit 506 of the control unit 500.
  • the touching method can be obtained from the magnitude of the external force determination value, or can be obtained by machine learning the measurement value of the inertial measurement device of the feature recognition unit 300.
  • FIG. 7 is a schematic diagram showing how the interaction changes depending on the person who touches it. As shown in FIG. 7, when a stranger who is not recognized by the robot apparatus 1000 touches it, it strongly reacts. On the other hand, when the owner of the robot apparatus 1000, which the robot apparatus 1000 recognizes well, touches weakly. As described above, the robot apparatus 1000 strongly reacts to a person who is not subject to the obedience, and weakly reacts to the owner who is subject to the obedience.
  • the attribute of the person to touch is acquired by the user attribute acquisition unit 508 of the control unit 500.
  • FIG. 8 is a schematic diagram showing how the interaction changes according to the emotion. As shown in FIG. 8, when the robot apparatus 1000 is in a bad mood, the reaction is increased. If the robot apparatus 1000 has a happy emotion, the reaction is reduced.
  • FIG. 9 is a schematic diagram showing how the interaction changes according to the frequency with which the user touches. As shown in FIG. 9, when the frequency of the user's touch is low, it reacts greatly. On the other hand, if the user frequently touches it, the reaction becomes small. In other words, a movement that becomes unpleasant when first touched but gradually becomes less responsive after repeated touching is realized.
  • the motion determination unit 514 determines the motion of the robot apparatus 1000 in the interaction based on the motion determination parameter.
  • the parameter acquired for the touch strength is b
  • the weight component for the touch strength is w2
  • the parameter acquired for the touch method is c
  • the weight component for the touch strength is w3
  • the parameter acquired for the toucher is d
  • the toucher is
  • w4 is the weight component of the emotion
  • e is the parameter obtained for the emotion
  • w5 is the parameter obtained for the frequency
  • f is the parameter obtained for the frequency
  • w6 is the weight component of the frequency
  • the reaction level of the motion is expressed by the following equation.
  • ⁇ Reaction by interaction may be performed in blocks other than the touched block.
  • the reaction level is weak, the reaction may be shown by eyes or voice without driving the driving unit.
  • the expression of the eyes may be changed to an expression showing a comfortable state, and it may be directed to be touched more. For example, you may make a voice that sounds like "kuun” and ask that you touch it more.
  • a hard object or a soft object that cannot be determined by the feature recognition unit 300 is identified. For example, it is possible to distinguish between a hard object and a soft object by using the external force detection value obtained by pushing the driving unit against a target object such as clay. Similarly, it is possible to determine the material of the floor by determining the hardness and softness of the floor.
  • FIG. 10 is a flowchart showing a process performed by the control unit 500.
  • the process of FIG. 10 is performed every predetermined control cycle.
  • step S10 an external force determination value is acquired from the external force detection system 200.
  • step S12 the position determination unit 502 determines the block touched by the user among the plurality of blocks included in the robot apparatus 1000. Specifically, in step S12, it is determined which of the blocks such as the ears, the head+neck, the legs, and the tail is touched by the user.
  • the touch determination unit 506 acquires information about the touch when the user touches the robot apparatus 1000, and determines the touch.
  • the user attribute acquisition unit 508 acquires information on the person who touched the robot apparatus 1000.
  • the emotion/personality determination unit 510 acquires the emotion of the robot apparatus 1000.
  • the frequency acquisition unit 512 acquires the frequency of past touches of the touched block.
  • the reaction level determination unit 513 determines the reaction level in the interaction.
  • the motion determination unit 516 determines the motion to be expressed. The process ends after step S24.
  • the effects described in the present specification are merely explanatory or exemplifying ones, and are not limiting. That is, the technique according to the present disclosure may have other effects that are apparent to those skilled in the art from the description of the present specification, in addition to or instead of the above effects.
  • a detection unit that detects an external force applied to a movable portion of a robot based on a parameter obtained from a joint that drives the movable portion, A drive control unit that controls the interaction of the robot according to the detected external force;
  • a control device for a robot comprising: (2) The control device for a robot according to (1), wherein the detection unit detects the external force without directly sensing the force.
  • the drive control unit changes the reaction of the robot due to the interaction according to the magnitude of the external force applied to the movable unit.
  • Control device. (5) The robot control device according to (4), wherein the drive control unit increases the reaction as the external force increases.
  • (6) The robot according to any one of (1) to (5), wherein the drive control unit changes a reaction of the robot by the interaction according to an attribute of a user who touches the movable unit by the external force.
  • Control device. The robot control device according to (6), wherein the drive control unit increases the reaction as the degree of recognition of the user by the robot is higher.
  • the detection unit detects the external force based on a measurement value of a joint angle sensor that measures an angle of the joint, a current value of a motor that drives the joint, and a command value of the joint angle.
  • the robot controller according to any one of (1) to (11) above.
  • (13) The robot control device according to (12), wherein the detection unit estimates the external force based on the deviation between the measured value and the command value and the current value.
  • a method for controlling a robot comprising: (15) means for detecting an external force applied to a movable part of the robot based on a parameter obtained from a joint that drives the movable part, Means for controlling the interaction of the robot according to the detected external force, A program for operating a computer as a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Manipulator (AREA)
  • Toys (AREA)

Abstract

本開示によれば、ロボットの可動部に加わる外力を、前記可動部を駆動する関節から得られるパラメータに基づいて検出する検出部と、検出した前記外力に応じて前記ロボットのインタラクションを制御する駆動制御部と、を備える、ロボットの制御装置が提供される。この構成により、ロボットにユーザが触れた場合に、それに応じてロボットがインタラクションを行うことが可能となる。

Description

ロボットの制御装置、ロボットの制御方法、及びプログラム
 本開示は、ロボットの制御装置、ロボットの制御方法、及びプログラムに関する。
 従来、下記の特許文献1には、ロボット装置及びその制御方法に関し、外部からいかなる動作指令が入力された場合であってもその動作指令に反応して、動作指令に対する動作状態をユーザに認識させることが記載されている。
特開2000-158367号公報
 例えば、家庭用のロボットなどにおいて、動物型のロボットなどでは、ユーザが触れた場合に、実際の動物と同様の反応をさせることが望ましい。
 上記特許文献1に記載された技術は、ロボットが動作指令として音を検出すると、動作指令に対する動作状態をユーザに認識させることを想定している。しかしながら、ユーザが触れた場合のインタラクションによる反応については何ら考慮していなかった。
 そこで、ロボットにユーザが触れた場合に、それに応じてロボットがインタラクションを行うことが望まれていた。
 本開示によれば、ロボットの可動部に加わる外力を、前記可動部を駆動する関節から得られるパラメータに基づいて検出する検出部と、検出した前記外力に応じて前記ロボットのインタラクションを制御する駆動制御部と、を備える、ロボットの制御装置が提供される。
 また、本開示によれば、ロボットの可動部に加わる外力を、前記可動部を駆動する関節から得られるパラメータに基づいて検出することと、検出した前記外力に応じて前記ロボットのインタラクションを制御することと、を備える、ロボットの制御方法が提供される。
 また、本開示によれば、ロボットの可動部に加わる外力を、前記可動部を駆動する関節から得られるパラメータに基づいて検出する手段、検出した前記外力に応じて前記ロボットのインタラクションを制御する手段、としてコンピュータを機能させるためのプログラムが提供される。
ロボット装置の外観と、関節の回転軸を示す模式図である。 ロボット装置の頭部を示す模式図である。 ロボット装置を制御する制御装置の構成を示す模式図である。 外力検出システムの構成を示す模式図である。 外力検出部の構成を示す模式図である。 触る強さに応じてインタラクションが変化する様子を示す模式図である。 触る人に応じてインタラクションが変化する様子を示す模式図である。 感情に応じてインタラクションが変化する様子を示す模式図である。 ユーザが触る頻度に応じてインタラクションが変化する様子を示す模式図である。 制御部で行われる処理を示すフローチャートである。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.ロボット装置の構成
 2.制御装置の構成
 3.外力検出システムの構成
 4.制御部の構成
 5.ロボット装置のインタラクションの例
  5.1.触る場所に応じたインタラクション
  5.2.触る強さに応じたインタラクション
  5.3.触り方に応じたインタラクション
  5.4.触る人に応じたインタラクション
  5.5.感情に応じたインタラクション
  5.6.触る頻度に応じたインタラクション
  5.7.モーションの例
  5.8.インタラクションの実例
  5.9.ユーザとのインタラクション以外の実例
 6.制御部で行われる処理
 1.ロボット装置の構成
 図1は、本開示の一実施形態に係るロボット装置1000の外観と、関節の回転軸を示す模式図である。ロボット装置1000は、サーボモータ等の電動モータにより駆動される4本の足100,110,120,130を備える。
 図1に示すように、ロボット装置1000は、複数の関節部を備える。ここで、説明の便宜上、ロボット装置1000をその動きから右前足系統、左前足系統、右後足系統、左後足系統、本体(Body)系統、頭系統に分類することにする。右前足系統は、関節部102、関節部104、関節部106を有する。左前足系統は、関節部112、関節部114、関節部116を有する。右後足系統は、関節部122、関節部124、関節部126を有する。左後足系統は、関節部132、関節部134、関節部136を有する。また、本体系統は、関節部142を有する。頭系統は関節部152、関節部154、関節部156、関節部158を有する。これらの各系統は、胴体140に対して連結されている。なお、図1に示す各関節部は、電動モータにより駆動される主要な関節部を示している。ロボット装置1000は、図1に示す関節部の他にも、他の関節部の動きに従って従動的に動く関節部を有する。また、ロボット装置1000は、口、耳、尻尾などの複数の可動部を有し、これらの可動部も電動モータ等によって駆動される。
 図1では、各関節部を円筒で示している。各関節部において、円筒の中心軸が関節部の回転軸に対応している。頭系統では、関節部152が設けられていることにより、ロボット装置1000を正面から見た場合に、首を左右に傾ける動作が実現される。また、本体系統では、関節部142が設けられていることにより、ロボット装置1000を上から見た場合に、腰を左右に振る動きが実現される。これにより、ロボット装置1000による、今まで以上に多彩な動きを実現することが可能である。
 各関節部は、サーボモータ等の電動モータ(以下、単にモータという)によって駆動される。なお、駆動源は特に限定されるものではない。各関節部のモータは、ギヤ機構、エンコーダ、及びモータを駆動するためのマイクロコントローラとともに、1つのボックス(箱)に収められている。ボックスは、樹脂材料(プラスチックなど)から構成される。モータとギヤ機構を1つのボックスの中に収納して密閉することで、ロボット装置1000の静粛性を高めることが可能である。
 右後足系統を例に挙げると、関節部132と関節部134のモータ、ギヤ機構、エンコーダ、マイクロコントローラは、1つのボックスに収納されており、このボックスは2軸の回転軸を構成する。一方、関節部136のモータ、ギヤ機構、マイクロコントローラは、1つのボックスに収納されており、このボックスは1軸の回転軸を構成する。また、頭系統では、関節部152、関節部154、関節部156により3軸の回転軸が構成されている。
 なお、2軸の回転軸を1つのボックスに収納することで、球体の関節を実現することができる。また、2軸の回転軸を1つのボックスに収納することで、関節部に関わるスペースを抑制することができ、デザインを重視してロボット装置1000の形状を決定することが可能となる。
 上述した右前足系統などの各系統は、各関節部が備えるマイクロコンピュータによって制御される。関節部のうち、例えば頭系統の関節部158は、電気的にブレーキがかかるように構成されている。電源オフ時などに関節部158が自在に回転できるようになると、頭部が下に降りて、ユーザの手などに当たる可能性がある。関節部158にブレーキをかけておくことで、このような事態を回避できる。ブレーキは、電源オフ時に関節部158のモータの回転により生じる起電力に基づいて、モータの回転を判定し、モータが回転しようとする方向と逆方向に駆動力を生じさせる方法により実現できる。
 図2は、ロボット装置1000の頭部150、特に顔を示す模式図である。図2に示すロボット装置1000の目350は、ロボット装置1000の動作に応じて、様々な動きや表示を行うように構成されている。このため、ロボット装置1000は、左右のそれぞれの目350に自発光型の表示装置(OLED)を備えている。
 2.制御装置の構成
 図3は、ロボット装置1000を制御する制御装置2000の構成を示す模式図である。制御装置2000は、ロボット装置1000に搭載される。図3に示すように、この制御装置2000は、外力検出システム200、特徴認識部300、状況取得部400、制御部500、感情・性格取得部600、駆動部700、を有して構成されている。
 外力検出システム200は、ロボット装置1000の関節の各モータのそれぞれから、外力が加えられたか否かを示す情報(外力判定値)を検出する。特徴認識部300は、カメラ、慣性計測装置(IMU:Inertial Measurement Unit)等を含み、ロボット装置1000がユーザから触られたか、撫でられたか等を認識する。特徴認識部400は、カメラの撮像画像を画像処理することで、撮像画像の特徴を認識する。
 状況取得部400は、カメラ等を含み、ロボット装置1000の周辺の状況、特にロボット装置1000を触るユーザの特徴を取得する。図2に示すように、ロボット装置1000の鼻には、カメラ700が装着されており、カメラ700は、特徴認識部300、状況取得部400のカメラに相当する。駆動部700は、各関節のモータ、エンコーダ、ギヤ機構に対応する。
 制御部500は、外力検出システム200から得た判定値を利用して、触る場所や触る強さなどに関する情報を得る。外力検出システム200は各関節に設けられるため、外力検出システム200から得られる判定値に基づき、どの部位がどのように触られたかといった情報を得ることができる。制御部500は、外力検出システム200による外力判定値と、特徴認識部300による認識結果、状況取得部400による状況取得の結果を用い、機械学習により触り方などの情報を得ることもできる。制御部500は、触り方などの情報に基づいて、各関節の駆動部700を制御する。
 感情・性格取得部600は、ロボット装置1000の感情、性格を取得する。ロボット装置1000は、その時々の状態に応じて、複数の感情のうちのいずれかに設定されることができる。感情・性格取得部500は、現時点で設定されているロボット装置1000の感情を取得する。設定される感情としては、「怒り」、「喜び」、「悲しみ」などが挙げられる。
 また、ロボット装置1000は、先天的または後天的に設定された性格を有している。感情・性格取得部600は、設定されているロボット装置1000の性格を取得する。設定される感情としては、「ワイルド」、「キュート」、「シャイ」、「甘えん坊」などが挙げられる。
 制御部500は、これらの感情、性格の情報に基づき、外力検出システム200の応答に対して、ユーザへ最適なインタラクションを提供したり、ロボット装置1000自身が最適な行動を選択する。
 3.外力検出システムの構成
 次に、外力検出システム200の構成について説明する。図4は、外力検出システム200の構成を示す模式図である。外力検出システム200は、ロボット装置1000の各関節に設けられる。図4に示すように、外力検出システム200は、関節角センサ202、出力軸204、ギヤ機構206、モータ208、電流検出部210、駆動アンプ部212、フィードバック制御部214、外力検出部216、を有して構成されている。外力検出システム200は、トルクセンサやタッチセンサなど力の検出を目的とする機構を用いていなくても、外部からの力を推定することを可能とする。この外力検出システム200の出力を利用することで、ユーザがロボット装置に対して行った行為に対する表現をロボット装置1000が表出できるようになる。
 モータ208は、関節を駆動する駆動力を出力する。ギヤ機構206は、モータ208の出力を減速する機構である。出力軸204は、ギヤ機構206により減速された駆動力を出力する軸である。出力軸から出力される駆動力により、関節が駆動される。関節角センサ202は、上述したエンコーダに相当し、関節の角度を検出する。
 フィードバック制御部214には、関節角指令値が入力される。関節角指令値は、外力検出部216にも入力される。駆動アンプ部212には、フィードバック制御部214から電流指令値が入力される。電流指令値は、モータ208の駆動量を指定する指令値である。駆動アンプ部212は、電流指令値を増幅して出力する。駆動アンプ部212により増幅された電流がモータ208に流れ、モータ208が駆動される。このとき、電流検出部210がモータ208に流れる電流(アクチュエータ電流値)を検出する。外力検出部216は、電流検出部210が検出したアクチュエータ電流値、関節角センサ202が計測した関節角計測値、関節角指令値に基づいて、外力を検出する。
 図5は、外力検出部216の構成を示す模式図である。図5に示すように、外力検出部216は、サーボ偏差算出部220、第1の演算部222、シフトバッファ部224、第2の演算部226、を有して構成される。外力検出部216は、関節角指令値、関節角計測値、アクチュエータ電流値を時系列で取得し、対象とする関節に外力が加わったか否かを判定する。
 サーボ偏差算出部220には、関節角指令値と関節角計測値が入力される。サーボ偏差算出部220は、関節角指令値と関節角計測値との偏差θErrorを算出する。第1の演算部222には、偏差θErrorとアクチュエータ電流値Iが入力される。
 第1の演算部は、偏差θErrorとアクチュエータ電流値Iから、以下の式(1)に基づいて出力Fを演算する。
F=a×θError×I+b×θError+c×I+d   ・・・(1)
 以上のように、関節角指令値と関節角計測値のズレであるサーボ偏差θErrorとアクチュエータに流しているアクチュエータ電流値Iを第1の演算部222に入力し、出力Fを取得する。式(1)の係数a,b,c,dは、機械学習の手法などにより適切に決定する。
 図5に示すように、出力Fはシフトバッファ部224に入力される。出力Fをシフトバッファ部224へ入力することで、連続したn個の時系列データを逐次取得する。n個の時系列データは、第2の演算部226へ入力される。第2の演算部226は、n個の時系列データに対して演算を行い、外力判定値として出力する。第2の演算部226が行う演算は、n個の時系列データの平均値を演算して時間方向のノイズを除去するものであっても良い。また、第2の演算部226が行う演算は、フィルタを通して高周波を除く演算、ヒステリシスコンパレータを通して二値化した値などであっても良い。この場合、外力判定値が閾値以上の場合に「触られた」と判定する。また、第2の演算部226が行う演算は、機械学習の手法により得られた演算器を用いて行われるものであっても良い。なお、第2の演算部226に入力される情報は、出力Fの時系列情報のみならず、関節角指令値の時系列情報(関節角速度や姿勢情報)などであっても良い。
 4.制御部の構成
 図3に示すように、制御部500は、位置判定部502、外力判定値取得部504、触り方判定部506、ユーザ属性取得部508、感情・性格判定部510、頻度取得部512、反応レベル決定部513、駆動制御部514、モーション決定部516、を有して構成されている。なお、制御部500の各構成要素は、回路(ハードウェア)、またはCPUなどの中央演算処理装置とこれを機能させるためのプログラム(ソフトウェア)から構成することができる。
 位置判定部502は、ロボット装置1000のどの部分にユーザが触れたかを判定する。外力判定値取得部504は、外力検出システム200が検出した外力判定値を取得する。触り方判定部506は、特徴認識部300が認識した情報に基づき、ユーザによるロボット装置1000への触り方を判定する。ユーザ属性取得部508は、状況取得部300が取得した情報、特に顔の画像情報に基づいて、ロボット装置1000を触ったユーザが見知らぬ人なのか、ロボット装置1000のオーナなのか等、ユーザの属性に関する情報を取得する。
 感情・性格判定部510は、感情・性格取得部600が取得したロボット装置1000の感情、性格に基づいて、ロボット装置1000の感情、性格を判定する。頻度取得部512は、ユーザがロボット装置1000を触る頻度を取得する。モーション決定部516は、ロボット装置1000がインタラクションを行うに当たって、ユーザが触る位置、触る際の外力の大きさ、触り方、ユーザ属性、感情、性格、触る頻度などに応じて表出させるモーションを決定する。反応レベル決定部513は、触る際の外力の大きさ、触り方、ユーザ属性、感情、性格、触る頻度などに応じて、インタラクションを行う際の反応のレベルを決定する。駆動制御部514は、ユーザが触る位置、触る際の外力の大きさ、触り方、ユーザ属性、感情、性格、触る頻度などに応じて駆動部700を制御し、ロボット装置1000のインタラクションを制御する。
 5.ロボット装置のインタラクションの例
 次に、ユーザがロボット装置1000を触った際のインタラクションについて説明する。本実施形態では、ユーザがロボット装置1000を触ったり撫でたりした場合に、その際に加わる外力を外力検出システム200が検出し、外力判定値に応じたインタラクションを実現する。この際、触る場所、触る強さ、触り方、触る人、ロボットの感情、触る頻度、などに応じてロボット装置1000のモーションを決定し、インタラクションを行う。
  5.1.触る場所に応じたインタラクション
 ロボット装置1000のインタラクションは、ロボット装置1000を複数のブロックに分けた場合に、触られたブロック毎に反応を示すように構成されている。ブロックとして、耳、頭部+首、脚、尻尾、などが挙げられる。例えば、ユーザが尻尾を触った場合、尻尾を振るインタラクションが行われる。
 また、インタラクションは、触る場所に応じて変化する。例えば、尻尾の場合は尻尾を振って反応を示す、頭部の場合には頭を振って反応を示すなど、実際の動物と同様の反応をロボット装置1000に生じさせることができる。触る場所は、外力判定値の値に基づいて、外力判定値が得られた関節から求めることができる。また、腕や足、尻尾などのタッチセンサを備えている場合、タッチセンサの検出値から触る場所を判定することができる。
  5.2.触る強さに応じたインタラクション
 ロボット装置1000のインタラクションは、触る強さに応じて変化する。図6は、触る強さに応じてインタラクションが変化する様子を示す模式図である。図6において、矢印の大きさは触る強さを示している。尻尾の先端に触る場合を例に挙げると、尻尾の先端を強く触る場合は大きく反応し、尻尾が大きく振られる。一方、尻尾の先端を弱く触った場合、反応が弱くなり、尻尾が小さく振られる。触る強さは、外力判定値から求めることができる。
  5.3.触り方に応じたインタラクション
 ロボット装置1000のインタラクションは、触り方に応じて変化する。例えば、尻尾が動いている場合に、尻尾の動きと反対方向に無理に動かした場合は、大きく反応する。一方、尻尾が止まっている場合に尻尾を動かした場合は、弱く反応する。また、ロボット装置1000のインタラクションは、叩き、撫でなどの触り方によっても変化する。例えば、ロボット装置1000が叩かれた場合は大きく反応し、撫でられた場合は弱く反応する。触り方は、制御部500の触り方判定部506が判定する。触り方は、外力判定値の大きさから求めることができる他、特徴認識部300の慣性計測装置の計測値を機械学習することによって求めることもできる。
  5.4.触る人に応じたインタラクション
 ロボット装置1000のインタラクションは、触る人に応じて変化する。図7は、触る人に応じてインタラクションが変化する様子を示す模式図である。図7に示すように、ロボット装置1000が認識していない見知らぬ人が触った場合は、強く反応する。一方、ロボット装置1000が良く認識している、ロボット装置1000のオーナが触った場合は、弱く反応する。このように、ロボット装置1000が服従していない人には強く反応し、服従しているオーナに対しては弱く反応する。触る人の属性は、制御部500のユーザ属性取得部508が取得する。
  5.5.感情に応じたインタラクション
 上述したように、ロボット装置1000には感情が設定される。ロボット装置1000のインタラクションは、ロボット装置1000の感情に応じて変化する。図8は、感情に応じてインタラクションが変化する様子を示す模式図である。図8に示すように、ロボット装置1000の機嫌が悪い時は反応を大きくする。また、ロボット装置1000が嬉しい感情の場合は、反応を小さくする。
  5.6.触る頻度に応じたインタラクション
 ロボット装置1000のインタラクションは、ユーザが触る頻度に応じて変化する。図9は、ユーザが触る頻度に応じてインタラクションが変化する様子を示す模式図である。図9に示すように、ユーザが触る頻度が低い場合、大きく反応する。一方、ユーザが触る頻度が高い場合、反応は小さくなる。つまり、最初触ったときは嫌がるが、何度も触っているうちに徐々に反応が小さくなる動きを実現する。
  5.7.モーションの例
 インタラクションにおけるロボット装置1000のモーションは、モーション決定部514が、モーション決定パラメータにより決定する。例えば、触る強さについて取得したパラメータをb、触る強さの重み成分をw2、触り方について取得したパラメータをc、触る強さの重み成分をw3、触る人について取得したパラメータをd、触る人の重み成分をw4、感情について取得したパラメータをe、感情の重み成分をw5、頻度について取得したパラメータをf、頻度の重み成分をw6、とすると、モーションの反応レベルは以下の式で表すことができる。
モーションの反応レベル=bw2×cw3×dw4×ew5×fw6
 なお、各重み成分(w2~w6)は、ロボット装置の性格や個性に合わせて変更する。例えば、調教されたフレンドリーな犬などのように、誰とでも接することに慣れている場合であれば、触る人dに対する、重み成分w4は非常に小さい値とすればよい。
 以下では、モーションの6通りの例を示す。なお、以下に示す6通りの例では、先に記したものほどモーションは大きい。
・(頭部)かみつく/(尻尾)上に振り上げる、振り下げる
・(頭部)いやいやする/(尻尾)大きく2回ふる
・(頭部)力方向に早く流す/(尻尾)上下で細かく振動させる
・(頭部)力方向にゆっくり流す/(尻尾)ゆっくり1回振る
・(頭部)力方向に耐える/(尻尾)ゆっくり上げて、ぽんと落とす
  5.8.インタラクションの実例
 以上のような手法により実現されるインタラクションの実例を以下に示す。
・尻尾が軸方向に引っ張られると、尻尾を体の方に素早く引き寄せ、外力を払うように1回以上振り返す
・尻尾が軸を中心に回転させられると、回転させられた同じ方向に、力を逃がすように回転する
・尻尾が軸を中心に回転させられると、回転させられた反対方向に、力を返すように回転する
・尻尾が上げられると、下方向に素早く払うように振り返す、尻尾が下げられると、上方向に素早く払うように振り返す
・尻尾が左右方向にふられると、軸中心に戻し、上下に振動させる
・尻尾の根本を持って細かく回転させられると、尻尾を上にあげて、1回以上細かく振動させる(喜び)
・尻尾を触る人が親しい人(オーナーなど)だと、反応が小さくなる
・尻尾を触る人が見知らぬ人だと、反応が大きくなる
・尻尾を触る回数が、事前のある期間にN回以上の場合、次に触られたときの反応が小さくなる(慣れ)
・尻尾を触る回数が、事前のある期間にM回以下の場合、次に触られたときの反応が大きくなる(驚き)
・ロボットの持つ感情が高まっていると、反応が大きくなる、ロボットの持つ感情が落ち着いていると、反応が小さくなる
 インタラクションによる反応は、触られたブロック以外のブロックで行われても良い。反応レベルが弱かった場合には、駆動部を駆動せずに、目や声で反応を示してもよい。例えば、目の表現を心地よい状態を示す表現に変更して、もっと触ってほしいと演出してもよい。例えば、「くぅーん」と甘えるような声を出して、もっと触ってほしいと演出してもよい。
 また、ユーザが触ったブロックが頭部の場合に、頭部の反応レベルが極端に高い場合には、頭部だけでなく、脚のブロックなどにもモーションを表出し、体全体で嫌がっている動作を演出してもよい。
  5.9.ユーザとのインタラクション以外の実例
 以下では、ユーザとのインタラクション以外の実例を示す。
・ロボット装置1000の鼻先に設けられたToFセンサが反応できないような壁際で外力を検知した場合、壁に接していると判断し、行動計画を変更する。
・オーナーの手に向かって、ロボットの手を差し出す、いわゆる「お手」の最中に、ユーザから得た外力をロボットの個性として登録し、ロボットの行動選択要素とする。例えば、やさしい「お手」をするオーナーのロボットは、「お手」に対する反応もやさしくなる。一方、強引に「お手」を触るオーナーのロボットは、「お手」に対する反応もワイルドになる。
・特徴認識部300では判断できない、硬いもの、やわらかいものを識別する。例えば、粘土などの対象物体に対し、駆動部を押し込む動作をすることで得られた外力検出値を利用し、硬いもの、柔らかいものを識別することが可能である。同様に、床面の硬さ、柔らかさを判定することで、床面の素材判定を行うことも可能である。
 6.制御部で行われる処理
 図10は、制御部500で行われる処理を示すフローチャートである。図10の処理は、所定の制御周期毎に行われる。先ず、ステップS10では、外力検出システム200から外力判定値を取得する。次のステップS12では、位置判定部502が、ロボット装置1000が備える複数のブロックのうち、ユーザが触ったブロックを判定する。具体的には、ステップS12では、耳、頭部+首、脚、尻尾などのブロックのいずれにユーザが触ったかを判定する。
 次のステップS14では、触り方判定部506が、ユーザがロボット装置1000を触った際の触り方に関する情報を取得し、触り方を判定する。次のステップS16では、ユーザ属性取得部508が、ロボット装置1000を触った人の情報を取得する。次のステップS18では、感情・性格判定部510が、ロボット装置1000の感情を取得する。次のステップS20では、頻度取得部512が、触られたブロックに関し、過去に触られた頻度を取得する。次のステップS22では、反応レベル決定部513が、インタラクションにおける反応のレベルを決定する。次のステップS24では、モーション決定部516が、表出するモーションを決定する。ステップS24の後は処理を終了する。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1) ロボットの可動部に加わる外力を、前記可動部を駆動する関節から得られるパラメータに基づいて検出する検出部と、
 検出した前記外力に応じて前記ロボットのインタラクションを制御する駆動制御部と、
 を備える、ロボットの制御装置。
(2) 前記検出部は、力の直接的なセンシングを行うことなく前記外力を検出する、前記(1)に記載のロボットの制御装置。
(3) 前記駆動制御部は、前記可動部に前記外力が加わる位置に応じて、前記インタラクションによる前記ロボットの反応を変化させる、前記(1)又は(2)に記載のロボットの制御装置。
(4) 前記駆動制御部は、前記可動部に加わる前記外力の大きさに応じて、前記インタラクションによる前記ロボットの反応を変化させる、前記(1)~(3)のいずれかに記載のロボットの制御装置。
(5) 前記駆動制御部は、前記外力が大きいほど前記反応を大きくする、前記(4)に記載のロボットの制御装置。
(6) 前記駆動制御部は、前記外力により前記可動部を触るユーザの属性に応じて、前記インタラクションによる前記ロボットの反応を変化させる、前記(1)~(5)のいずれかに記載のロボットの制御装置。
(7) 前記駆動制御部は、前記ロボットによる前記ユーザの認知度が高いほど、前記反応を大きくする、前記(6)に記載のロボットの制御装置。
(8) 前記駆動制御部は、前記ロボットに設定された感情に応じて、前記インタラクションによる前記ロボットの反応を変化させる、前記(1)~(7)のいずれかに記載のロボットの制御装置。
(9) 前記駆動制御部は、前記感情がネガティブなほど、前記反応を大きくする、前記(8)に記載のロボットの制御装置。
(10) 前記駆動制御部は、前記外力が加わる頻度に応じて、前記インタラクションによる前記ロボットの反応を変化させる、前記(1)~(9)のいずれかに記載のロボットの制御装置。
(11) 前記駆動制御部は、前記外力が加わる頻度が低いほど、前記反応を大きくする、前記(10)記載のロボットの制御装置。
(12) 前記検出部は、前記関節の角度を計測する関節角センサの計測値と、前記関節を駆動するモータの電流値と、前記関節の角度の指令値と、に基づいて前記外力を検出する、前記(1)~(11)のいずれかに記載のロボットの制御装置。
(13) 前記検出部は、前記計測値と前記指令値との偏差と、前記電流値とに基づいて、前記外力を推定する、前記(12)に記載のロボットの制御装置。
(14) ロボットの可動部に加わる外力を、前記可動部を駆動する関節から得られるパラメータに基づいて検出することと、
 検出した前記外力に応じて前記ロボットのインタラクションを制御することと、
 を備える、ロボットの制御方法。
(15) ロボットの可動部に加わる外力を、前記可動部を駆動する関節から得られるパラメータに基づいて検出する手段、
 検出した前記外力に応じて前記ロボットのインタラクションを制御する手段、
 としてコンピュータを機能させるためのプログラム。
 200  外力検出システム
 514  駆動制御部
 1000 ロボット装置
 2000 制御装置

Claims (15)

  1.  ロボットの可動部に加わる外力を、前記可動部を駆動する関節から得られるパラメータに基づいて検出する検出部と、
     検出した前記外力に応じて前記ロボットのインタラクションを制御する駆動制御部と、
     を備える、ロボットの制御装置。
  2.  前記検出部は、力の直接的なセンシングを行うことなく前記外力を検出する、請求項1に記載のロボットの制御装置。
  3.  前記駆動制御部は、前記可動部に前記外力が加わる位置に応じて、前記インタラクションによる前記ロボットの反応を変化させる、請求項1に記載のロボットの制御装置。
  4.  前記駆動制御部は、前記可動部に加わる前記外力の大きさに応じて、前記インタラクションによる前記ロボットの反応を変化させる、請求項1に記載のロボットの制御装置。
  5.  前記駆動制御部は、前記外力が大きいほど前記反応を大きくする、請求項4に記載のロボットの制御装置。
  6.  前記駆動制御部は、前記外力により前記可動部を触るユーザの属性に応じて、前記インタラクションによる前記ロボットの反応を変化させる、請求項1に記載のロボットの制御装置。
  7.  前記駆動制御部は、前記ロボットによる前記ユーザの認知度が高いほど、前記反応を大きくする、請求項6に記載のロボットの制御装置。
  8.  前記駆動制御部は、前記ロボットに設定された感情に応じて、前記インタラクションによる前記ロボットの反応を変化させる、請求項1に記載のロボットの制御装置。
  9.  前記駆動制御部は、前記感情がネガティブなほど、前記反応を大きくする、請求項8に記載のロボットの制御装置。
  10.  前記駆動制御部は、前記外力が加わる頻度に応じて、前記インタラクションによる前記ロボットの反応を変化させる、請求項1に記載のロボットの制御装置。
  11.  前記駆動制御部は、前記外力が加わる頻度が低いほど、前記反応を大きくする、請求項10に記載のロボットの制御装置。
  12.  前記検出部は、前記関節の角度を計測する関節角センサの計測値と、前記関節を駆動するモータの電流値と、前記関節の角度の指令値と、に基づいて前記外力を検出する、請求項1に記載のロボットの制御装置。
  13.  前記検出部は、前記計測値と前記指令値との偏差と、前記電流値とに基づいて、前記外力を推定する、請求項12に記載のロボットの制御装置。
  14.  ロボットの可動部に加わる外力を、前記可動部を駆動する関節から得られるパラメータに基づいて検出することと、
     検出した前記外力に応じて前記ロボットのインタラクションを制御することと、
     を備える、ロボットの制御方法。
  15.  ロボットの可動部に加わる外力を、前記可動部を駆動する関節から得られるパラメータに基づいて検出する手段、
     検出した前記外力に応じて前記ロボットのインタラクションを制御する手段、
     としてコンピュータを機能させるためのプログラム。
PCT/JP2020/002686 2019-01-31 2020-01-27 ロボットの制御装置、ロボットの制御方法、及びプログラム WO2020158642A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/425,365 US20220097230A1 (en) 2019-01-31 2020-01-27 Robot control device, robot control method, and program
JP2020569604A JPWO2020158642A1 (ja) 2019-01-31 2020-01-27 ロボットの制御装置、ロボットの制御方法、及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019015697 2019-01-31
JP2019-015697 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158642A1 true WO2020158642A1 (ja) 2020-08-06

Family

ID=71841084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002686 WO2020158642A1 (ja) 2019-01-31 2020-01-27 ロボットの制御装置、ロボットの制御方法、及びプログラム

Country Status (3)

Country Link
US (1) US20220097230A1 (ja)
JP (1) JPWO2020158642A1 (ja)
WO (1) WO2020158642A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4201609A1 (en) * 2021-12-21 2023-06-28 Casio Computer Co., Ltd. Robot

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070101A (ja) * 2019-10-31 2021-05-06 セイコーエプソン株式会社 制御方法および算出装置
US11957991B2 (en) * 2020-03-06 2024-04-16 Moose Creative Management Pty Limited Balloon toy
KR102386009B1 (ko) * 2020-07-30 2022-04-13 네이버랩스 주식회사 로봇 작업의 학습 방법 및 로봇 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239963A (ja) * 2001-02-21 2002-08-28 Sony Corp ロボット装置、ロボット装置の動作制御方法、プログラム及び記録媒体
WO2008004487A1 (fr) * 2006-07-04 2008-01-10 Panasonic Corporation Appareil et procédé de commande de bras robotisé, robot et programme de commande de bras robotisé

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010053322A (ko) * 1999-04-30 2001-06-25 이데이 노부유끼 전자 페트 시스템, 네트워크 시스템, 로봇, 및 기억 매체
US6754560B2 (en) * 2000-03-31 2004-06-22 Sony Corporation Robot device, robot device action control method, external force detecting device and external force detecting method
CN101213052B (zh) * 2006-01-13 2011-01-12 松下电器产业株式会社 机械手臂的控制装置
DK2744579T3 (en) * 2011-08-16 2017-01-23 Seebo Interactive Ltd CONNECTED MULTIFUNCTIONAL SYSTEM AND METHOD OF APPLICATION
US9802314B2 (en) * 2015-10-01 2017-10-31 Disney Enterprises, Inc. Soft body robot for physical interaction with humans
WO2017169826A1 (ja) * 2016-03-28 2017-10-05 Groove X株式会社 お出迎え行動する自律行動型ロボット
JP6354796B2 (ja) * 2016-06-23 2018-07-11 カシオ計算機株式会社 ロボット、ロボットの制御方法及びプログラム
JP7298860B2 (ja) * 2018-06-25 2023-06-27 Groove X株式会社 仮想キャラクタを想定する自律行動型ロボット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239963A (ja) * 2001-02-21 2002-08-28 Sony Corp ロボット装置、ロボット装置の動作制御方法、プログラム及び記録媒体
WO2008004487A1 (fr) * 2006-07-04 2008-01-10 Panasonic Corporation Appareil et procédé de commande de bras robotisé, robot et programme de commande de bras robotisé

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4201609A1 (en) * 2021-12-21 2023-06-28 Casio Computer Co., Ltd. Robot

Also Published As

Publication number Publication date
JPWO2020158642A1 (ja) 2021-12-02
US20220097230A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2020158642A1 (ja) ロボットの制御装置、ロボットの制御方法、及びプログラム
JP2016131018A (ja) 触覚信号を制御するためのシステムおよび方法
JP4517509B2 (ja) ロボット装置及びその制御方法
JP3714268B2 (ja) ロボット装置
JP2002239963A (ja) ロボット装置、ロボット装置の動作制御方法、プログラム及び記録媒体
US20120239196A1 (en) Natural Human to Robot Remote Control
JP7484962B2 (ja) ロボット
JP2005193331A (ja) ロボット装置及びその情動表出方法
JP7081619B2 (ja) 機器の制御装置、機器、機器の制御方法及びプログラム
JP2024023193A (ja) 情報処理装置及び情報処理方法
WO2020105309A1 (ja) 情報処理装置、情報処理方法、およびプログラム
JP4433273B2 (ja) ロボット装置及びロボット装置の制御方法
JP2003271958A (ja) 画像処理方法、その装置、そのプログラム、その記録媒体及び画像処理装置搭載型ロボット装置
Balaji et al. Smart phone accelerometer sensor based wireless robot for physically disabled people
JPWO2019175936A1 (ja) ロボット
JP2003208161A (ja) ロボット装置及びその制御方法
JP2001157980A (ja) ロボット装置及びその制御方法
JP2001154707A (ja) ロボット装置及びその制御方法
JP2001157982A (ja) ロボット装置及びその制御方法
WO2024071164A1 (ja) ロボット、学習装置、制御方法およびプログラム
WO2024071165A1 (ja) ロボット、学習装置、制御方法およびプログラム
CN117251058B (zh) 一种多信息体感交互***的控制方法
JP2001038658A (ja) ロボットにおける触覚表現システム
JP2004130428A (ja) ロボット装置及びロボット装置の動作制御方法、記録媒体、並びにプログラム
JP7415956B2 (ja) ロボットの制御装置、ロボットの制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569604

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748640

Country of ref document: EP

Kind code of ref document: A1