WO2020157966A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2020157966A1
WO2020157966A1 PCT/JP2019/003673 JP2019003673W WO2020157966A1 WO 2020157966 A1 WO2020157966 A1 WO 2020157966A1 JP 2019003673 W JP2019003673 W JP 2019003673W WO 2020157966 A1 WO2020157966 A1 WO 2020157966A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
transmission
reference signal
uplink
channel
Prior art date
Application number
PCT/JP2019/003673
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/003673 priority Critical patent/WO2020157966A1/ja
Priority to EP19913128.5A priority patent/EP3920642A4/en
Priority to JP2020569318A priority patent/JP7244548B2/ja
Priority to MX2021009230A priority patent/MX2021009230A/es
Priority to US17/426,410 priority patent/US20220104254A1/en
Priority to CN201980091067.1A priority patent/CN113383606A/zh
Publication of WO2020157966A1 publication Critical patent/WO2020157966A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G+(plus), New Radio (NR), 3GPP Rel.15 or later) is also under consideration.
  • 5G 5th generation mobile communication system
  • 5G+(plus) 5th generation mobile communication system
  • NR New Radio
  • 3GPP Rel.15 or later 3th generation mobile communication system
  • a user terminal uses an uplink shared channel (Physical Uplink Shared Channel) based on downlink control information (DCI).
  • DCI Downlink control information
  • PUSCH Physical Uplink Shared Channel
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • BPSK Phase Shift Keying
  • a user terminal prior to establishment of a radio resource control (RRC) connection, performs demodulation reference signal (based on ⁇ /2-BPSK modulation) in at least one uplink transmission of an uplink shared channel and an uplink control channel ( It is characterized by comprising a transmitter for transmitting DMRS) and a controller for establishing the RRC connection based on the uplink transmission.
  • RRC radio resource control
  • uplink transmission using ⁇ /2-BPSK modulation can be appropriately performed.
  • FIG. 1 is a diagram showing an example of a binary CGS having a length of 12.
  • FIG. 2 is a diagram showing an example of a binary CGS having a length of 18.
  • FIG. 3 is a diagram showing an example of a binary CGS having a length of 24.
  • FIG. 4 is a diagram illustrating an example of a difference in coverage according to DMRS.
  • FIG. 5 shows that the second reference signal sequence is supported by Msg.
  • FIG. 6 is a diagram showing an example of an operation of notifying using 1.
  • FIG. 6 shows the use of the second DMRS in Msg.
  • FIG. 7 is a diagram showing an example of an operation when an instruction is given using 2.
  • FIG. 7 shows that the second DMRS is used.
  • FIG. 1 is a diagram showing an example of a binary CGS having a length of 12.
  • FIG. 2 is a diagram showing an example of a binary CGS having a length of 18.
  • FIG. 3 is a diagram showing an example of a
  • FIG. 6 is a diagram showing an example of an operation when not instructing using 2.
  • FIG. 8 is a diagram showing an example of an arrangement of data symbols and DMRS symbols for each PUCCH time length in PUCCH format 1.
  • FIG. 9 is a diagram showing an example of the multiple capacity of the time domain OCC.
  • FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of the base station according to the embodiment.
  • FIG. 12 is a diagram illustrating an example of the configuration of the user terminal according to the embodiment.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the UE types DL (UL) DMRS, for example, type 2 if the RRC information element (“dmrs-Type” information element) is set for DL (UL), if not set It may be determined that the type 1 is (default).
  • the DMRS to be mapped has a comb-like (comb tooth) configuration in the frequency direction.
  • One of the combs is DMRS and the other is null. With null resources, nothing may be sent or data may be sent. That is, in DMRS configuration type 1, 6RE per 1 PRB and 1 port may be used as DMRS.
  • DMRS configuration type 2 4RE may be mapped per PRB and 1 port, for example.
  • the DMRS configuration type may have a configuration in which the above two types are defined in the specifications, or a configuration in which three or more types are defined in the specifications.
  • RS reference signals
  • PAPR peak-to-average power ratio
  • DMRS for CP-OFDM
  • Cyclic Prefix (CP)-Data for all port combinations specified in the specifications for Physical Downlink Shared Channel (PDSCH) Demodulation (DM) RS and Physical Uplink Shared Channel (PUSCH)
  • DMRS in Orthogonal Frequency Division Multiplex (OFDM)
  • OFDM Orthogonal Frequency Division Multiplex
  • each Code Division Multiplexing (CDM) group may be set with a different initial value C init .
  • n SCID 0,1 respectively.
  • n SCID may be provided by the DMRS initialization field in the DCI scheduling PUSCH or PDSCH.
  • Two C init may be used for each port of two CDM groups.
  • a CDM Group Index may be introduced for C init .
  • TRP Dynamic Transmission/Reception Point
  • MU Multi-User
  • MIMO Multiple Input Multiple Output
  • the DMRS extension carefully considers the backward compatibility issue and the total number of c init configured per UE.
  • Radio Resource Control (RRC) parameters (DMRS-DownlinkConfig and DMRS-UplinkConfig) are Rel. It may be extended to configure the selective use of 16 sequences and the operation for the second and third CDM groups for PDSCH and PUSCH respectively and CP-OFDM only.
  • Downlink Control Information (DCI) is Rel. 15 and Rel. It may not be used for selection during the 16 operations.
  • the UE generates a pseudo-random sequence r(n) that is a Gold sequence of length 31 according to the following equation (1).
  • the DMRS sequence for PUSCH to which CP-OFDM is applied is given by r(n) in equation (1), and the generator of its pseudo-random sequence c(i) is c in equation (2) below. Initialized by init .
  • N ID 0 may be given by an upper layer parameter (scrambling ID 0 )
  • N ID 1 may be given by an upper layer parameter (scrambling ID 1)
  • N ID nSCID is an N ID cell.
  • n SCID 0 or 1 may be indicated by the DM-RS initialization field, and n SCID may be 0.
  • the 15 PUSCH DMRSs are based on Quadrature Phase Shift Keying (QPSK) modulation.
  • QPSK Quadrature Phase Shift Keying
  • n SCID may be provided by DCI (eg, DM-RS initialization field).
  • may be an absolute CDM group index.
  • the PUSCH DMRS sequence for DFT-S-OFDM is a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence or a sequence based on the CAZAC sequence.
  • CAZAC Constant Amplitude Zero Auto-Correlation
  • the sequence length is longer than 36, it is a Zadoff-Chu sequence or a sequence obtained by cyclically shifting the Zadoff-Chu sequence.
  • CGS Computer Generated Sequence
  • this CGS sequence was generated based on QPSK modulation.
  • NR Rel NR Rel.
  • 16 is a DMRS sequence for ⁇ (pi)/2-Binary Phase Shift Keying (BPSK) modulation in both PDSCH and PUSCH for Discrete Fourier Transform (DFT)-spread(S)-OFDM, and has a length of 12 , 18 and 24, binary CGS followed by ⁇ /2-BPSK modulation and DFT may be supported.
  • This sequence may be applied to a single symbol DMRS configuration.
  • FIG. 1 shows an example of a binary CGS having a length of 12
  • FIG. 2 shows an example of a binary CGS having a length of 18
  • FIG. 3 shows an example of a binary CGS having a length of 24.
  • ⁇ /2-BPSK ( ⁇ /2 shift BPSK) is a BPSK that shifts the phase by ⁇ /2 for each data symbol.
  • PUSCH having a length of 30 or more Rel. for ⁇ /2-BPSK for DMRS 16 series of designs are under consideration.
  • the cell ID may be used as the default scrambling parameter.
  • Rel. 16 series are Rel. Using C init expressions DMRS for 15 CP-OFDM, Rel. Fifteen Gold sequence generators may be reused.
  • n ID n SCID may be set by RRC signaling for CP-OFDM DMRS.
  • DCI may be used to indicate n SCID for CP-OFDM.
  • n SCID may be set by RRC signaling for CP-OFDM DMRS.
  • DCI may be used to indicate n SCID for CP-OFDM.
  • gNB can dynamically select sequences to reduce the probability of selecting the wrong sequence.
  • (coverage) Rel In contrast to the existing DMRS based on QPSK modulation in 15, the new DMRS based on ⁇ /2-BPSK modulation has low PAPR. In addition, Rel. From the CP-OFDM DMRS sequence in Rel. The CP-OFDM DMRS sequence in 16 has a lower PAPR. In addition, Rel. 15 from the DMRS sequence of DFT-S-OFDM in Rel. The DMPR sequence of DFT-S-OFDM in 16 has a lower PAPR. Therefore, Rel. 16 by applying the new DMRS to at least one of DFT-S-OFDM and CP-OFDM. The UL channel quality can be improved as compared with 15. As shown in FIG. 16, Rel. In order to improve (expand) the coverage over 15, it is preferable to support the new DMRS even before the RRC connection establishment (setup or establishment).
  • Rel. 15 functions are essential, and Rel.
  • the NW determines that the UE is in Rel. until the RRC connection is established with the UE (reception of UE capability information). It is not possible to know whether it supports 16 functions (whether the UE is a Rel.15 UE or a Rel.16 UE).
  • Rel The coverage obtained by 16 new DMRSs is Rel. Even if the coverage is wider than 15 coverage areas, Rel. By using the function of Rel. Limited to 15 coverages.
  • the inventors of the present invention came up with the idea of using ⁇ /2-BPSK before establishing the RRC connection.
  • the upper layer signaling may be, for example, any of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or the like, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • Broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be downlink control information (Downlink Control Information (DCI)), for example.
  • DCI Downlink Control Information
  • Rel. 16 is Rel. It may be read as a specific release after 16th.
  • DFT-S-OFDM when DFT-S-OFDM is applied, when transform precoding (TP) is enabled (applied), and when the transmission waveform is DFT-S-OFDM , May be read as each other.
  • TP transform precoding
  • CP-OFDM When CP-OFDM is applied, TP is disabled (does not apply), and when the transmission waveform is CP-OFDM, they may be read as each other.
  • data Uplink (UL)-Shared Channel (SCH), Uplink Control Information (UCI), and data symbol may be replaced with each other.
  • SCH Uplink Control Information
  • UCI Uplink Control Information
  • UL DMRS, DMRS for PUSCH (PUSCH DMRS), and DMRS for PUCCH (PUCCH DMRS) may be read as each other.
  • the 15 PUSCH DMRSs, PUCCH DMRSs, existing DMRSs, and first reference signal sequences may be replaced with each other.
  • the 16 PUCCH DMRSs, new DMRSs, and second reference signal sequences may be read as each other.
  • Msg. 1 the random access channel (RACH) and the physical random access channel (PRACH) may be read as each other.
  • Msg. 2, RAR, Msg. 2 DCI, Msg. 2 PDCCH, Msg. 2 PDSCH, PDSCH carrying RAR, and DCI scheduling RAR may be read as each other.
  • Msg. 3, Msg. 3 PUSCH, PUSCH scheduled by Random Access Response (RAR), PUSCH scheduled by RAR UL grant may be read as each other.
  • the UE having the specific capability may support the first reference signal sequence generation method (first reference signal sequence, first DMRS) and the second reference signal sequence generation method (second reference signal sequence, second DMRS).
  • the specific ability is Rel. It may be 16 abilities (abilities not in Rel. 15).
  • the first DMRS sequence generation method may generate the first reference signal sequence.
  • the first reference signal sequence may be a reference signal sequence based on QPSK (for example, a reference signal sequence used in the DMRS of Rel.15, a reference signal sequence based on Formula (1) and Formula (2)).
  • the second reference signal sequence generation method may generate the second reference signal sequence.
  • the second reference signal sequence is Rel. It may be a reference signal sequence used for 16 DMRSs.
  • the second reference signal sequence may be a sequence generated using ⁇ /2-BPSK modulation.
  • the second reference signal sequence may be a CPRS-DMDM sequence for CP-OFDM based on ⁇ /2-BPSK modulation (for example, a reference signal sequence based on equations (1) and (3)). Good.
  • the second reference signal sequence may be a DMRS sequence for DFT-S-OFDM (for example, a reference signal sequence based on one of FIGS. 1 to 3).
  • the UE supporting the second reference signal sequence may be configured to use either the first reference signal sequence or the second reference signal sequence by RRC signaling.
  • the PAPR of the DMRS can be lowered by using the second reference signal sequence for the DMRS.
  • the UE When applying ⁇ /2-BPSK to data in at least one of PUSCH and PUCCH using DFT-S-OFDM, the UE preferably applies ⁇ /2-BPSK to DMRS.
  • the DMRS to which ⁇ /2-BPSK is applied may be a DMRS that uses the second reference signal sequence (second DMRS).
  • the DMRS to which ⁇ /2-BPSK is not applied may be a DMRS that uses the first reference signal sequence (first DMRS).
  • the first reference signal sequence is generated using QPSK. Although the PAPR of data symbols is reduced by using ⁇ /2-BPSK for data, the performance is not improved because the PAPR of DMRS symbols is not reduced by using QPSK for DMRS.
  • the ⁇ /2-BPSK modulation can be applied to the PUSCH or PUCCH data only after the RRC connection is established.
  • the PUSCH setting information (for example, tp-pi2BPSK in PUSCH-Config) after establishing the RRC connection enables ⁇ /2-BPSK modulation when DFT-S-OFDM is applied. Therefore, Rel. 15, Msg. 3 ⁇ /2-BPSK modulation cannot be used for PUSCH.
  • PUCCH formats 3 and 4 are used only after establishing an RRC connection.
  • the UE can use ⁇ /2-BPSK modulation for PUCCH format 3 and 4 UCI symbols according to the PUCCH configuration information (pi2BPSK in PUCCH-FormatConfig in PUCCH-Config) after establishing the RRC connection.
  • UE may use ⁇ /2-BPSK modulation before establishing RRC connection.
  • ⁇ /2-BPSK modulation is performed before Rel. It may have 16 functions.
  • Rel. 16 is the coverage when Rel. It can be expanded beyond the coverage of 15.
  • the UE may report UE capability information on the second reference signal sequence (second DMRS).
  • the UE capability information may indicate whether to support the second reference signal sequence.
  • the UE capability information may include information on the length of the second reference signal sequence (sequence length).
  • sequence length When a plurality of sequence lengths of the second reference signal sequence are specified in the specifications, the UE capability information may indicate whether to support the second reference signal sequence of each sequence length, or which sequence length of the second reference signal sequence is supported. It may indicate whether to support two reference signal sequences.
  • the UE may be set (instructed) by the network (NW, eg, base station) to use the second reference signal sequence.
  • NW eg, base station
  • the UE does not have to expect to be configured to use the second reference signal sequence that has not been reported to be supported.
  • the UE may use the first reference signal sequence for DMRS.
  • the UE may use the first reference signal sequence for DMRS.
  • the UE that has reported that only the second reference signal sequence of length 12 is supported is set to use the second reference signal sequence of length 24, the UE transmits the first reference signal sequence. It may be used for DMRS.
  • the UE may be configured to use the second reference signal sequence by RRC signaling.
  • the PUSCH setting information and the PUCCH setting information may include using the second reference signal sequence.
  • the UE may be instructed to use the second reference signal sequence by DCI.
  • the DCI may be a DCI (UL grant) for PUSCH scheduling or a DCI (DL assignment) for PDSCH scheduling.
  • the UE may be instructed to use the second reference signal sequence by a specific field in DCI.
  • the specific field may be a new field or a combination of existing fields in the DCI.
  • a UE that has reported that it supports the second reference signal sequence may transmit the second DMRS in PUSCH transmission after reporting.
  • This UE is Msg. 3
  • the first DMRS may be transmitted.
  • the quality (for example, SN ratio) after establishing the RRC connection is improved by transmitting the second DMRS after establishing the RRC connection. be able to.
  • Msg. 3 When DFT-S-OFDM is applied to PUSCH and CP-OFDM is applied to PUSCH after RRC connection is established, if the first DMRS is transmitted in PUSCH transmission after RRC connection is established, coverage is increased due to increase in PAPR of CP-OFDM Shrinks. By transmitting the second DMRS in PUSCH transmission after establishing the RRC connection, the PAPR increase can be suppressed, and the coverage can be improved as compared with the case of transmitting the first DMRS.
  • a UE that has reported that it supports the second reference signal sequence may transmit the second DMRS in PUSCH (including Msg.3 PUSCH) transmission.
  • the UE reporting that it supports the second reference signal sequence according to the UE capability information may transmit the second DMRS in all PUSCH transmissions.
  • second DMRS second reference signal sequence
  • a UE that reports that it supports the second reference signal sequence and that is configured to use ⁇ /2-BPSK for PUSCH transmission may transmit PUSCH with a second DMRS.
  • a UE that reports to support a second reference signal sequence and that is configured to use ⁇ /2-BPSK and DFT-S-OFDM for PUSCH transmission may transmit PUSCH with a second DMRS.
  • a UE that reports that it supports the second reference signal sequence and that is configured to use ⁇ /2-BPSK for PUSCH transmission may transmit PUCCH with a second DMRS.
  • a UE that reports to support a second reference signal sequence and that is configured to use ⁇ /2-BPSK and DFT-S-OFDM for PUSCH transmission may send a PUCCH with a second DMRS.
  • a UE that reports that it supports the second reference signal sequence and that is configured to use ⁇ /2-BPSK for PUCCH transmission may transmit PUSCH with a second DMRS.
  • a UE that reports to support a second reference signal sequence and that is configured to use ⁇ /2-BPSK and DFT-S-OFDM for PUCCH transmission may transmit PUSCH with a second DMRS.
  • a UE that reports that it supports the second reference signal sequence and that is configured to use ⁇ /2-BPSK for PUCCH transmission may transmit PUCCH with a second DMRS.
  • a UE that reports to support a second reference signal sequence and that is configured to use ⁇ /2-BPSK and DFT-S-OFDM for PUCCH transmission may transmit PUCCH with a second DMRS.
  • the UE may perform at least one of transmission and reception of information regarding the second reference signal sequence (second DMRS) in the random access procedure (before establishing RRC connection).
  • second DMRS second reference signal sequence
  • the UE supporting the second reference signal sequence is Msg. 1 may report that the second reference signal sequence is supported.
  • the UE determines the first RACH resource (for example, contention-based preamble, PRACH occasion) by the following RACH resource determination method, determines the second RACH resource by adding a resource offset to the first RACH resource, and determines the second RACH resource.
  • the resource offset may be at least one of a preamble (sequence) index, a frequency resource (eg PRB) index, and a time resource (eg at least one of slot and symbol) index.
  • the UE uses N upper layer parameters (ssb-perRACH-OccasionAndCB-PreamblesPerSSB) to associate N SS/PBCH blocks with one PRACH occasion and R contention-based (collision-based random number) SS/PBCH blocks. Access) preamble, provided. If N is less than 1, one SS/PBCH block is mapped to 1/N consecutive PRACH occasions. If N is greater than or equal to 1, then for each PRACH occasion, R contention-based preambles with consecutive indices associated with SS/PBCH block n (0 ⁇ n ⁇ N ⁇ 1) are preamble index n ⁇ 64/ Start with N. The SS/PBCH block index is mapped to the next PRACH occasion.
  • N upper layer parameters ssb-perRACH-OccasionAndCB-PreamblesPerSSB
  • the UE that supports the second reference signal sequence may determine the RACH resource for reporting that the second reference signal sequence is supported by replacing the RACH resource configured from the NW using a predetermined method. Good. If the UE is Msg. In 3, whether to send a request to send the second DMRS (report to support the second reference signal sequence) may be instructed to the UE by the broadcast information, or may depend on the UE ( It may depend on the UE implementation).
  • UE that does not support the second reference signal sequence determines the first RACH resource by the above-mentioned RACH resource determination method, and uses Msg. 1 may report that the second reference signal sequence is supported.
  • the third DMRS may be transmitted in 3.
  • the UE support the second reference signal sequence (second DMRS) by Msg.
  • second DMRS second reference signal sequence
  • the UE supporting the second reference signal sequence is Msg. 3 of transmitting the second DMRS in PUSCH transmission, Msg. It may be set (instructed) by 2.
  • the UE that supports the second reference signal sequence is Msg. 2 Depending on the specific field in DCI, Msg. 3 In PUSCH transmission, it may be instructed to transmit the second DMRS.
  • the specific field may be a new field.
  • the new field may be 1 bit.
  • the specific field may be a combination of existing fields.
  • Msg. 2 By at least one of the physical resource and frequency resource of PDCCH, Msg. 3 In PUSCH transmission, it may be instructed to transmit the second DMRS.
  • Msg. 2 Either the value of the (leading) CCE index/aggregation level of the PDCCH is even or odd, and Msg. 3 May be associated with transmitting the second DMRS in PUSCH transmission.
  • the UE supporting the second reference signal sequence is Msg. 2 Depending on whether the (leading) CCE index/aggregation level value of PDCCH is even or odd, Msg. 3 In PUSCH transmission, it may be instructed to transmit the second DMRS.
  • Msg. 3 Whether or not to transmit the second DMRS in PUSCH transmission is Msg. 2 May be associated with the search space (ID) or CORESET (ID) of the PDCCH.
  • the UE supporting the second reference signal sequence is Msg. 2
  • the search space of PDCCH or CORESET allows Msg. 3 In PUSCH transmission, it may be instructed to transmit the second DMRS.
  • the UE that supports the second reference signal sequence is Msg. 2 Msg. 3 In PUSCH transmission, it may be instructed to transmit the second DMRS.
  • the UE is Msg. 2
  • Msg. 3 In PUSCH transmission it may be instructed to transmit the second DMRS.
  • Msg. 3 Whether or not to transmit the second DMRS in PUSCH transmission is Msg. 2 PDSCH resources and Msg. At least one of 2 PDSCH DMRS resources may be associated.
  • the UE supporting the second reference signal sequence is Msg. 2 PDSCH resources and Msg. 2 At least one of PDSCH and DMRS resources allows Msg. 3 In PUSCH transmission, it may be instructed to transmit the second DMRS.
  • the Msg By being instructed using 2, it is possible to appropriately control whether or not to transmit the second DMRS before establishing the RRC connection.
  • Frequency Division Multiplexing for example, multiple UEs use different Combs in DMRS frequency resources
  • Cyclic Shift for example, multiple UEs use DMRS
  • different time domain OCCs eg, multiple UEs use different OCCs in a 2-symbol DMRS.
  • the UE supporting the second reference signal sequence is Msg. 3 In PUSCH transmission, it is not necessary to set (instruct) whether or not to transmit the second DMRS.
  • the UE supporting the second reference signal sequence is Msg. 3
  • the second DMRS may be transmitted in PUSCH transmission.
  • the second DMRS may be transmitted in PUSCH transmission, and the second DMRS may be transmitted in PUSCH transmission during the period from the establishment of the RRC connection.
  • the UE supporting the second reference signal sequence is Msg. 3
  • the second DMRS may be transmitted in PUSCH transmission, and the first DMRS may be transmitted in PUSCH transmission during the period from the establishment of the RRC connection.
  • the second DMRS may be transmitted in PUSCH transmission and the second DMRS may be transmitted in PUSCH transmission after the RRC connection is established.
  • the UE supporting the second reference signal sequence is Msg. 3.
  • the second DMRS may be transmitted in PUSCH transmission and the second DMRS is set to be used for PUSCH transmission by RRC signaling after establishing RRC connection.
  • the second DMRS may be transmitted in PUSCH transmission.
  • the UE supporting the second reference signal sequence is Msg. 3 If the second DMRS is transmitted in PUSCH transmission and the use of the second DMRS for PUSCH transmission is not set by RRC signaling after establishing the RRC connection, the first DMRS may be transmitted in PUSCH transmission.
  • the coverage can be improved by transmitting the second DMRS before establishing the RRC connection.
  • the UE may apply ⁇ /2-BPSK modulation to PUCCH format 1.
  • the UE may be set by RRC signaling whether or not to apply ⁇ /2-BPSK modulation to PUCCH format 1.
  • information indicating that ⁇ /2-BPSK is applied may be included in the PUCCH resource setting (PUCCH-Resource) of RRC signaling.
  • a UE configured to apply ⁇ /2-BPSK to PUCCH format 1 may transmit the second DMRS in PUCCH transmission.
  • a UE configured to apply ⁇ /2-BPSK to PUCCH format 1 applies ⁇ /2-BPSK to UCI in PUCCH format 1 data symbols and ⁇ /2 to DMRS in PUCCH format 1 DMRS symbols.
  • -BPSK may be applied (second DMRS may be transmitted in DMRS symbols).
  • FIG. 8 is a diagram showing an example of an arrangement of data symbols and DMRS symbols for each PUCCH time length (4 to 14 symbols) in PUCCH format 1.
  • a symbol with an even (0, 2,...) Symbol index in the PUCCH may be a DMRS symbol, and a symbol with an odd (1, 3,...) Symbol index in the PUCCH may be a data symbol.
  • the bandwidth of PUCCH format 1 may be 1 Physical Resource Block (PRB) (12 subcarriers).
  • PRB Physical Resource Block
  • the length of the second reference signal sequence used for the second DMRS may be 12.
  • a UE configured to apply ⁇ /2-BPSK to PUCCH format 1 may apply time domain OCC to PUCCH format 1.
  • PUCCH format 1 of multiple UEs may be multiplexed in the same time resource and the same frequency resource.
  • the time domain OCC multiple capacity may be determined depending on whether or not frequency hopping is applied to PUCCH format 1.
  • the quality of PUCCH can be improved by using at least one of ⁇ /2-BPSK modulation and second DMRS for PUCCH after establishing RRC connection.
  • Msg. 3. Transmitting the second DMRS in PUSCH transmission may be read as applying ⁇ /2-BPSK modulation.
  • the UE may be instructed to apply ⁇ /2-BPSK modulation by the method of Embodiment 4 before establishing the RRC connection.
  • the UE instructed to apply the ⁇ /2-BPSK modulation (using the ⁇ /2-BPSK modulation to the data symbols of Msg.3 PUSCH) is PUCCH by the method of the fourth embodiment.
  • ⁇ /2-BPSK may be applied to (PUCCH format 1).
  • the UE instructed to apply the ⁇ /2-BPSK modulation (using the ⁇ /2-BPSK modulation to the data symbols of Msg.3 PUSCH) is PUCCH by the method of the fourth embodiment.
  • ⁇ /2-BPSK modulation may be applied in the DMRS symbol of (PUCCH format 1) (the second DMRS may be transmitted).
  • PUCCH is Msg. 4 HARQ-ACK (HARQ-ACK for Msg.4) may be used.
  • the coverage can be expanded by using at least one of ⁇ /2-BPSK modulation and the second DMRS for the PUCCH before establishing the RRC connection.
  • wireless communication system Wireless communication system
  • communication is performed using any of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication by using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between multiple Radio Access Technologies (RATs).
  • MR-DC has dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) with LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and dual connectivity (NR-E) with NR and LTE.
  • E-UTRA-NR Dual Connectivity EN-DC
  • NR-E Dual Connectivity
  • NE-DC Dual Connectivity
  • the base station (eNB) of LTE (E-UTRA) is the master node (Master Node (MN)), and the base station (gNB) of NR is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC)
  • N-DC dual connectivity
  • MN and SN are NR base stations (gNB).
  • the wireless communication system 1 includes a base station 11 forming a macro cell C1 having a relatively wide coverage and a base station 12 (12a-12c) arranged in the macro cell C1 and forming a small cell C2 narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement and number of each cell and user terminal 20 are not limited to those shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) using multiple component carriers (Component Carrier (CC)) and dual connectivity (DC).
  • CA Carrier Aggregation
  • CC Component Carrier
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication in each CC using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is the Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is the IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one of, for example, Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing (OFDM)) based wireless access method may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • other wireless access methods such as another single carrier transmission method and another multicarrier transmission method may be used as the UL and DL wireless access methods.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • an uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • an uplink control channel Physical Uplink Control Channel (PUCCH)
  • a random access channel that are shared by each user terminal 20.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH, for example.
  • DCI Downlink Control Information
  • DCI for scheduling PDSCH may be referred to as DL assignment, DL DCI, etc.
  • DCI for scheduling PUSCH may be referred to as UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and the search method of the PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting” and the like of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • scheduling request (Scheduling Request (Scheduling Request ( Uplink Control Information (UCI) including at least one of (SR))
  • CSI Channel State Information
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • ACK/NACK ACK/NACK
  • scheduling request Scheduling Request (Scheduling Request ( Uplink Control Information (UCI) including at least one of (SR)
  • a random access preamble for establishing a connection with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding “link”. Further, it may be expressed without adding “Physical” to the head of each channel.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), etc. may be transmitted.
  • a DL-RS a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation) Reference Signal (DMRS), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc.
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as an SS/PBCH block, SS Block (SSB), or the like. Note that SS and SSB may also be referred to as reference signals.
  • the wireless communication system even if the measurement reference signal (Sounding Reference Signal (SRS)), the demodulation reference signal (DMRS), etc. are transmitted as the uplink reference signal (Uplink Reference Signal (UL-RS)). Good.
  • the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
  • FIG. 11 is a diagram illustrating an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission/reception unit 120, a transmission/reception antenna 130, and a transmission line interface 140. It should be noted that the control unit 110, the transmission/reception unit 120, the transmission/reception antenna 130, and the transmission path interface 140 may each be provided with one or more.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field of the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission/reception using the transmission/reception unit 120, the transmission/reception antenna 130, and the transmission path interface 140, measurement, and the like.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer the generated data to the transmission/reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, radio resource management, and the like.
  • the transmission/reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission/reception unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission/reception circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured by a transmission unit and a reception unit.
  • the transmitting unit may include a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may include a reception processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmission/reception antenna 130 can be configured by an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
  • the transmitting/receiving unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission/reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission/reception unit 120 processes the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer (for example, for data and control information acquired from the control unit 110) (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • the transmission/reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) on the bit string to be transmitted. Processing (as necessary), inverse fast Fourier transform (Inverse Fast Fourier Transform (IFFT)) processing, precoding, digital-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • channel coding may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering discrete Fourier transform
  • DFT discrete Fourier Transform
  • IFFT inverse fast Fourier transform
  • precoding coding
  • digital-analog conversion digital-analog conversion
  • the transmitter/receiver 120 may perform modulation, filtering, amplification, etc. on the baseband signal in a radio frequency band, and transmit the radio frequency band signal via the transmission/reception antenna 130. ..
  • the transmission/reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc., on the signal in the radio frequency band received by the transmission/reception antenna 130.
  • the transmission/reception unit 120 performs analog-digital conversion, fast Fourier transform (Fast Fourier Transform (FFT)) processing, and inverse discrete Fourier transform (Inverse Discrete Fourier Transform (IDFT) on the acquired baseband signal. ))
  • FFT Fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Apply reception processing such as processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing, User data and the like may be acquired.
  • the transmission/reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 receives power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • channel information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission path interface 140 transmits/receives signals (backhaul signaling) to/from devices included in the core network 30, other base stations 10, and the like, and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 may be configured by at least one of the transmission/reception unit 120, the transmission/reception antenna 130, and the transmission path interface 140.
  • the transmission/reception unit 120 may transmit a reference signal (for example, SSB, CSI-RS, etc.).
  • the transceiver unit 120 may transmit information (MAC CE or DCI) indicating the TCI state for the specific DL channel.
  • FIG. 12 is a diagram illustrating an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission/reception unit 220, and a transmission/reception antenna 230. Note that each of the control unit 210, the transmission/reception unit 220, and the transmission/reception antenna 230 may be provided with one or more.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 may be assumed to also have other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured by a controller, a control circuit, and the like that are described based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, and the like using the transmission/reception unit 220 and the transmission/reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer the data to the transmission/reception unit 220.
  • the transmitter/receiver 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter/receiver 220 may include a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, and the like, which are described based on common knowledge in the technical field of the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured by a transmission unit and a reception unit.
  • the transmission unit may include a transmission processing unit 2211 and an RF unit 222.
  • the reception unit may include a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
  • the transmission/reception antenna 230 can be configured by an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission/reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission/reception unit 220 processes the PDCP layer, the RLC layer (for example, RLC retransmission control), and the MAC layer (for example, for the data and control information acquired from the control unit 210). , HARQ retransmission control) or the like to generate a bit string to be transmitted.
  • the transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filter processing, DFT processing (if necessary), and IFFT processing on the bit string to be transmitted.
  • the baseband signal may be output by performing transmission processing such as precoding and digital-analog conversion.
  • the transmission/reception unit 220 (transmission processing unit 2211) is configured to transmit the channel using a DFT-s-OFDM waveform when transform precoding is enabled for the channel (for example, PUSCH).
  • the DFT process may be performed as the transmission process, or otherwise, the DFT process may not be performed as the transmission process.
  • the transmitter/receiver 220 may perform modulation, filtering, amplification, etc. on the baseband signal in the radio frequency band, and transmit the radio frequency band signal via the transmission/reception antenna 230. ..
  • the transmission/reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc., on a signal in the radio frequency band received by the transmission/reception antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, decoding (error correction) on the acquired baseband signal.
  • User data and the like may be acquired by applying reception processing such as MAC layer processing, RLC layer processing, and PDCP layer processing.
  • the transmission/reception unit 220 may perform measurement on the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmission unit and the reception unit of the user terminal 20 may be configured by at least one of the transmission/reception unit 220 and the transmission/reception antenna 230.
  • the transceiver unit 220 refers to a demodulation reference based on ⁇ /2-BPSK modulation in at least one uplink transmission of an uplink shared channel (PUSCH) and an uplink control channel (PUCCH) before establishing a radio resource control (RRC) connection.
  • a signal (DMRS) (second DMRS, second reference signal sequence) may be transmitted.
  • the control unit 210 may perform the RRC connection establishment (for example, a random access procedure) based on the uplink transmission.
  • the transmission/reception unit 220 may transmit the DMRS in the transmission of the uplink shared channel (for example, Msg.3) scheduled by the random access response (fourth embodiment).
  • the transmitter/receiver 220 may also transmit a random access channel (for example, Msg.1) using a random access channel resource corresponding to supporting the DMRS (embodiment 4).
  • a random access channel for example, Msg.1
  • Msg.1 a random access channel resource corresponding to supporting the DMRS
  • the transmission/reception unit 220 may transmit the capability information regarding the DMRS (third embodiment).
  • the transmitter/receiver 220 determines that the uplink shared channel and the uplink control channel.
  • the DMRS may be transmitted in the transmission of the second channel of the channels (third embodiment).
  • the transmission/reception unit 220 may transmit a DMRS based on ⁇ /2-BPSK modulation on the uplink control channel (fifth embodiment).
  • each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
  • the functional blocks may be realized by combining the one device or the plurality of devices with software.
  • the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting (notifying), notifying (communicating), forwarding (forwarding), configuring (reconfiguring), allocating (allocating, mapping), allocating (assigning), etc.
  • a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the implementation method is not particularly limited.
  • the base station, the user terminal, and the like may function as a computer that performs the process of the wireless communication method of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the terms such as a device, a circuit, a device, a section, and a unit are interchangeable with each other.
  • the hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, the processor 1001 performs an arithmetic operation by loading predetermined software (program) on hardware such as the processor 1001, the memory 1002, and the communication via the communication device 1004. Is controlled, and at least one of reading and writing of data in the memory 1002 and the storage 1003 is controlled.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the control unit 110 (210) and the transmission/reception unit 120 (220) described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), software module, data, and the like from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, and for example, at least Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other appropriate storage media. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 may store an executable program (program code), a software module, etc. for implementing the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, and/or other suitable storage medium May be configured by.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 for example, realizes at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)), a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like. May be included.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission/reception unit 120 (220) and the transmission/reception antenna 130 (230) described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated from the transmitter 120a (220a) and the receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and part or all of each functional block may be realized by using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • CMOS complementary metal-oxide-semiconductor
  • CC component carrier
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • the numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and radio frame configuration. , At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • the slot may be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot. Minislots may be configured with a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent the time unit for signal transmission. Radio frames, subframes, slots, minislots, and symbols may have different names corresponding to them. It should be noted that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be
  • the unit representing the TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI means, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, a codeword, or a processing unit such as scheduling or link adaptation.
  • transport block channel-encoded data packet
  • code block code block
  • codeword codeword
  • processing unit such as scheduling or link adaptation.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and a short TTI (eg, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may be configured by one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a subcarrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • Bandwidth Part (may be called partial bandwidth etc.) represents a subset of continuous common RBs (common resource blocks) for a certain neurology in a certain carrier. Good.
  • the common RB may be specified by the index of the RB based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE does not have to expect to send and receive a given signal/channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be read as “BWP”.
  • the structure of the radio frame, subframe, slot, minislot, symbol, etc. described above is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, and included in RBs The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
  • Information and signals may be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, etc. may be input and output via a plurality of network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated or added. The output information, signal, etc. may be deleted. The input information, signal, etc. may be transmitted to another device.
  • notification of information is not limited to the aspect/embodiment described in the present disclosure, and may be performed using another method.
  • notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (Downlink Control Information (DCI)), uplink control information (Uplink Control Information (UCI))), upper layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (Master Information Block (MIB)), system information block (System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals or a combination thereof May be implemented by.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of the predetermined information is not limited to the explicit notification, and may be implicitly (for example, by not issuing the notification of the predetermined information or another information). May be carried out).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. , May be performed by comparison of numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) , Servers, or other remote sources, these wired and/or wireless technologies are included within the definition of transmission media.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state "Transmission Configuration Indication state”
  • space "Spatial relation”
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port”
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)", “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • Cell Cell
  • femto cell femto cell
  • pico cell femto cell
  • a base station can accommodate one or more (eg, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being defined by a base station subsystem (for example, a small indoor base station (Remote Radio Head (RRH))) to provide communication services.
  • a base station subsystem for example, a small indoor base station (Remote Radio Head (RRH))
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem providing communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmission device, a reception device, a wireless communication device, or the like.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned).
  • At least one of the base station and the mobile station also includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by the user terminal.
  • the communication between the base station and the user terminal is replaced with communication between a plurality of user terminals (eg, may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the function of the base station 10 described above.
  • the words such as “up” and “down” may be replaced with the words corresponding to the communication between terminals (for example, “side”).
  • the uplink channel and the downlink channel may be replaced with the side channel.
  • the user terminal in the present disclosure may be replaced by the base station.
  • the base station 10 may have the function of the user terminal 20 described above.
  • the operation supposed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal include a base station and one or more network nodes other than the base station (for example, Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. are conceivable, but not limited to these) or a combination of these is clear.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution. Further, the order of the processing procedure, sequence, flowchart, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps in a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM Global System for Mobile communications
  • CDMA2000 CDMA2000
  • Ultra Mobile Broadband UMB
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.11 WiMAX (registered trademark)
  • IEEE 802.11 WiMAX (registered trademark)
  • IEEE 802.11 WiMAX (registered trademark)
  • Ultra-WideBand (UWB), Bluetooth (registered trademark), a system using another appropriate wireless communication method, and a next-generation system extended based on these may be applied. Further, a plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
  • the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” means both "based only on” and “based at least on.”
  • references to elements using the designations “first,” “second,” etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, references to first and second elements do not mean that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions.
  • judgment means “judging", “calculating”, “computing”, “processing”, “deriving”, “investigating”, “searching” (looking up, search, inquiry) ( For example, it may be considered to be a “decision” for a search in a table, database or another data structure), ascertaining, etc.
  • “decision (decision)” means receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access ( Accessing) (eg, accessing data in memory) and the like may be considered to be a “decision.”
  • judgment (decision) is regarded as “decision (decision)” of resolving, selecting, choosing, choosing, establishing, establishing, comparing, etc. Good. That is, “determination (decision)” may be regarded as “determination (decision)” of some operation.
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the connections or connections between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • radio frequency domain microwave Regions
  • electromagnetic energy having wavelengths in the light (both visible and invisible) region, etc. can be used to be considered “connected” or “coupled” to each other.
  • the term “A and B are different” may mean “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • the terms “remove”, “coupled” and the like may be construed similarly as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本開示の一態様に係るユーザ端末は、無線リソース制御(RRC)接続確立の前において、上り共有チャネル及び上り制御チャネルの少なくとも1つの上り送信において、π/2-BPSK変調に基づく復調参照信号(DMRS)を送信する送信部と、前記上り送信に基づいて、前記RRC接続確立を行う制御部と、を有する。本開示の一態様によれば、π/2-BPSK変調を用いる上り送信を適切に行うことができる。

Description

ユーザ端末及び無線通信方法
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-14)において、ユーザ端末(UE:User Equipment)は、下り制御情報(Downlink Control Information(DCI))に基づいて、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))の送信を制御する。
 将来の無線通信システムにおいて、低いピーク電力対平均電力比(Peak-to-Average Power Ratio:PAPR)を実現するための、π/2-Binary Phase Shift Keying(BPSK)変調を用いる上り送信が検討されている。
 しかしながら、π/2-BPSK変調を用いる上り送信と、π/2-BPSK変調を用いない上り送信と、が混在すると、性能を十分に改善できない場合がある。
 そこで、本開示は、π/2-BPSK変調を用いる上り送信を適切に行うユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係るユーザ端末は、無線リソース制御(RRC)接続確立の前において、上り共有チャネル及び上り制御チャネルの少なくとも1つの上り送信において、π/2-BPSK変調に基づく復調参照信号(DMRS)を送信する送信部と、前記上り送信に基づいて、前記RRC接続確立を行う制御部と、を有することを特徴とする。
 本開示の一態様によれば、π/2-BPSK変調を用いる上り送信を適切に行うことができる。
図1は、長さ12の2値CGSの一例を示す図である。 図2は、長さ18の2値CGSの一例を示す図である。 図3は、長さ24の2値CGSの一例を示す図である。 図4は、DMRSによるカバレッジの違いの一例を示す図である。 図5は、第2参照信号系列をサポートすることをMsg.1を用いて通知する動作の一例を示す図である。 図6は、第2DMRSを用いることをMsg.2を用いて指示する場合の動作の一例を示す図である。 図7は、第2DMRSを用いることをMsg.2を用いて指示しない場合の動作の一例を示す図である。 図8は、PUCCHフォーマット1におけるPUCCH時間長毎のデータシンボルとDMRSシンボルの配置の一例を示す図である。 図9は、時間ドメインOCCの多重キャパシティの一例を示す図である。 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図11は、一実施形態に係る基地局の構成の一例を示す図である。 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 DMRS構成(configuration)タイプに対し、UEは、DL(UL) DMRSを、例えばDL(UL)についてRRC情報要素(「dmrs-Type」情報要素)が設定される場合にはタイプ2、設定されない場合(デフォルト)にはタイプ1であると判断してもよい。
 DMRS構成タイプ1では、マッピングされるDMRSが、周波数方向において櫛(コム(comb))状(櫛の歯状)の構成をとる。当該櫛の片方はDMRSで、もう片方はヌル(null)である。ヌルリソースでは、何も送信されない又はデータが送信されてもよい。つまり、DMRS構成タイプ1では、1PRB及び1ポートにつき6REがDMRSとして用いられてもよい。
 DMRS構成タイプ2では、例えば1PRB及び1ポートにつき4REがマッピングされてもよい。なお、DMRS構成タイプは、上記2タイプが仕様に定義される構成としてもよいし、3種類以上のタイプが仕様に定義される構成としてもよい。
 将来の無線通信システム(例えば、Rel.16以降)において、低いピーク電力対平均電力比(Peak-to-Average Power Ratio:PAPR)を実現する参照信号(RS)が検討されている。
(CP-OFDM用DMRS)
 Cyclic Prefix(CP)-Orthogonal Frequency Division Multiplex(OFDM)におけるPhysical Downlink Shared Channel(PDSCH) Demodulation(DM)RS及びPhysical Uplink Shared Channel(PUSCH) DMRSに対し、仕様に規定される全てのポートの組み合わせに対するデータシンボルと同じレベルでPAPRを低減するために、DMRSの拡張が検討されている。
 Rel.16におけるDMRSの拡張において、各Code Division Multiplexing(CDM)グループが異なる初期値Cinitを設定されてもよい。
 タイプ1に対し、2つのCinitがスクランブリングIDnSCID=0,1によってそれぞれ設定されてもよい。nSCID=は、PUSCH又はPDSCHをスケジュールするDCI内のDMRS初期化(initialization)フィールドによって与えられてもよい。2つのCinitが2つのCDMグループのポートに対してそれぞれ用いられてもよい。
 タイプ2に対し、Cinitに対してCDMグループインデックスが導入されてもよい。
 タイプ1及びタイプ2に対し、動的送受信ポイント(Transmission/Reception Point:TRP)選択、又は異なるnSCIDに関連付ける(ペアにする)Multi-User(MU)-Multiple Input Multiple Output(MIMO)と、CDMグループに固有のCinitと、が同時にサポートされてもよい。
 DMRSの拡張において、次の解決策が除外されてもよい。
・Orthogonal Cover Code(OCC)の変更
・より長い系列のサブサンプリングのようなPseudo Noise(PN)系列生成
 DMRSの拡張は、後方互換性の問題と、UE毎に設定されるcinitの総数と、を慎重に考慮する。
 Radio Resource Control(RRC)パラメータ(DMRS-DownlinkConfig及びDMRS-UplinkConfig)が、Rel.16の系列の選択的使用と、PDSCH及びPUSCHのそれぞれとCP-OFDMのみに対する2番目及び3番目のCDMグループに対する動作と、を設定するように拡張されてもよい。Downlink Control Information(DCI)は、Rel.15及びRel.16の動作の間の選択に用いられなくてもよい。
 Rel.15において、UEは、次の式(1)によって長さ31のGold系列である疑似ランダム(pseudo-random)系列r(n)を生成する。
Figure JPOXMLDOC01-appb-M000001
 ここで、MPNはr(n)の長さであり、n=0,1,...,MPN-1、NC=1600、第1m系列x1(n)はx1(0)=1、x1(n)=0、n=1,2,...,30によって初期化され、第2m系列x2(n)はcinitによって初期化される。
 CP-OFDMを適用されるPUSCHのためのDMRSの系列は、式(1)のr(n)によって与えられ、その疑似ランダム系列c(i)の生成器は、次の式(2)のcinitによって初期化される。
Figure JPOXMLDOC01-appb-M000002
 ここで、lは、スロット内のOFDMシンボル数であり、ns,f μはフレーム内のスロット数である。NID 0は上位レイヤパラメータ(スクランブリングID0)によって与えられてもよいし、NID 1は上位レイヤパラメータ(スクランブリングID1)によって与えられてもよいし、NID nSCIDはNID cellであってもよい。nSCIDは0又は1がDM-RS初期化フィールドによって指示されてもよいし、nSCIDは0であってもよい。
 このように、Rel.15のPUSCH DMRSは、Quadrature Phase Shift Keying(QPSK)変調に基づく。
 Rel.16において、DMRS構成タイプ1及び2の両方に対し、DMRSのためにCDMグループλに対する次のcinitが用いられてもよい。
Figure JPOXMLDOC01-appb-M000003
 ここでnSCIDは、DCI(例えば、DM-RS初期化フィールド)によって提供されてもよい。λは絶対的なCDMグループインデックスであってもよい。
 このような新規DMRSによってRel.15 DMRSに比べてPAPRを低減できる。
(DFT-S-OFDM用DMRS)
 Rel.15においては、DFT-S-OFDM用のPUSCH DMRSの系列は、Constant Amplitude Zero Auto-Correlation(CAZAC)系列、または、CAZAC系列に準ずる系列である。例えば、系列長が36より長い場合はZadoff-Chu系列、またはZadoff-Chu系列を巡回シフトした系列である。また、系列長が36以下である場合は、Computer Generated Sequence(CGS)であり、このCGS系列はQPSK変調に基づいて生成された。一方、NR Rel.16が、Discrete Fourier Transform(DFT)-spread(S)-OFDMのための、PDSCH及びPUSCHの両方におけるπ(pi)/2-Binary Phase Shift Keying(BPSK)変調用のDMRS系列として、長さ12、18、24に対し、π/2-BPSK変調及びDFTが続く、2値(binary)のCGSをサポートしてもよい。この系列は、単一シンボルのDMRS構成に適用されてもよい。
 図1は、長さ12の2値CGSの一例を示し、図2は、長さ18の2値CGSの一例を示し、図3は、長さ24の2値CGSの一例を示す。
 π/2-BPSK(π/2シフトBPSK)は、1データシンボル毎に位相をπ/2の位相をシフトさせるBPSKである。
 30以上の長さを有するPUSCH DMRSのためのπ/2-BPSK用のRel.16系列の設計が検討されている。
 デフォルトのスクランブリングパラメータとしてセルIDが用いられてもよい。Rel.16系列が、Rel.15のCP-OFDM用のDMRSのCinitの式を用い、Rel.15のGold系列生成器を再利用してもよい。
 次の選択肢1及び2が検討されている。
(選択肢1)
 Rel.16系列は、DFT-S-OFDMアプローチに従う。nID nSCIDは、上位レイヤパラメータ(DFT-S-OFDMのPUSCH用、nPUSCH-Indentity)として定義されてもよい。nSCID=0のみが適用可能であってもよい。Rel.16系列は、DCIによって変更されず、設定にRRCシグナリングのみが用いられてもよい。
(選択肢2)
 Rel.16系列は、CP-OFDMアプローチに従う。nID nSCIDは、CP-OFDM DMRS用としてRRCシグナリングによって設定されてもよい。CP-OFDM用としてnSCIDを指示するためにDCIが用いられてもよい。Rel.16 DMRSが設定された場合、DCIにおいて常に1ビットが存在してもよい。gNBは、誤った系列を選択する確率を減少させるために、系列を動的に選択できる。
 このような新規DMRSによってRel.15 DMRSに比べてPAPRを低減できる。
(カバレッジ)
 Rel.15におけるQPSK変調に基づく既存DMRSに対し、π/2-BPSK変調に基づく新規DMRSは、PAPRが低い。また、Rel.15におけるCP-OFDMのDMRS系列よりRel.16におけるCP-OFDMのDMRS系列のほうがPAPRが低い。また、Rel.15におけるDFT-S-OFDMのDMRS系列よりRel.16におけるDFT-S-OFDMのDMRS系列のほうがPAPRが低い。そのため、Rel.16のDFT-S-OFDM及びCP-OFDMの少なくとも1つに新規DMRSを適用することによって、Rel.15に比べてULチャネル品質を改善できる。図4に示すように、Rel.16において、Rel.15よりもカバレッジを改善(拡大)するためには、RRC接続確立(setup又はestablishment)前においても新規DMRSをサポートすることが好ましい。
 しかしながら、Rel.15の機能が必須であり、Rel.16の機能がオプショナルである場合、NWは、UEとのRRC接続確立(UE能力情報の受信)まで、当該UEがRel.16の機能をサポートしているか(当該UEがRel.15 UEかRel.16 UEか)を知ることができない。
 Rel.16の新規DMRSによって得られるカバレッジが、Rel.15のカバレッジより広くなる場合であっても、RRC接続前にRel.15の機能を用いることによって、Rel.15のカバレッジに制限される。
 そこで、本発明者らは、RRC接続確立前にπ/2-BPSKを用いることを着想した。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 本開示において、Rel.16は、Rel.16以降の特定のリリースと読み替えられてもよい。
 本開示において、DFT-S-OFDMが適用される場合、トランスフォームプリコーディング(transform Precoding:TP)が有効(enabled)である(適用される)場合、送信波形がDFT-S-OFDMである場合、は互いに読み替えられてもよい。CP-OFDMが適用される場合、TPが無効(disabled)である(適用されない)場合、送信波形がCP-OFDMである場合、は互いに読み替えられてもよい。
 本開示において、データ、Uplink(UL)-Shared Channel(SCH)、Uplink Control Information(UCI)、データシンボル、は互いに読み替えられてもよい。
 本開示において、UL DMRS、PUSCH用のDMRS(PUSCH DMRS)、PUCCH用のDMRS(PUCCH DMRS)、は互いに読み替えられてもよい。第1DMRS、QPSK変調に基づくDMRS、Rel.15のPUSCH DMRS、PUCCH DMRS、既存DMRS、第1参照信号系列、は互いに読み替えられてもよい。第2DMRS、π/2-BPSK変調に基づくDMRS、Rel.16のPUSCH DMRS、Rel.16のPUCCH DMRS、新規DMRS、第2参照信号系列、は互いに読み替えられてもよい。
 本開示において、Msg.1、ランダムアクセスチャネル(RACH)、物理ランダムアクセスチャネル(PRACH)、は互いに読み替えられてもよい。
 本開示において、Msg.2、RAR、Msg.2 DCI、Msg.2 PDCCH、Msg.2 PDSCH、RARを運ぶPDSCH、RARをスケジュールするDCI、は互いに読み替えられてもよい。
 本開示において、Msg.3、Msg.3 PUSCH、Random Access Response(RAR)によってスケジュールされたPUSCH、RAR ULグラントによってスケジュールされたPUSCH、は互いに読み替えられてもよい。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(無線通信方法)
<実施形態1>
 特定能力を有するUEは、第1参照信号系列生成方法(第1参照信号系列、第1DMRS)及び第2参照信号系列生成方法(第2参照信号系列、第2DMRS)をサポートしてもよい。特定能力は、Rel.16の能力(Rel.15にない能力)であってもよい。
 第1DMRS系列生成方法は、第1参照信号系列を生成してもよい。第1参照信号系列は、QPSKに基づく参照信号系列(例えば、Rel.15のDMRSに用いられる参照信号系列、式(1)及び式(2)に基づく参照信号系列)であってもよい。
 第2参照信号系列生成方法は、第2参照信号系列を生成してもよい。第2参照信号系列は、Rel.16のDMRSに用いられる参照信号系列であってもよい。第2参照信号系列は、π/2-BPSK変調を用いて生成される系列であってもよい。
 CP-OFDMを用いる場合、第2参照信号系列は、π/2-BPSK変調に基づくCP-OFDM用DMRS系列(例えば、式(1)及び式(3)に基づく参照信号系列)であってもよい。
 DFT-S-OFDMを用いる場合、第2参照信号系列は、DFT-S-OFDM用DMRS系列(例えば、図1~図3の1つに基づく参照信号系列)であってもよい。
 第2参照信号系列をサポートするUEは、RRCシグナリングによって、第1参照信号系列及び第2参照信号系列のいずれを用いるかを設定されてもよい。
 以上の実施形態1によれば、第2参照信号系列をDMRSに用いることによって、DMRSのPAPRを低くすることができる。
<実施形態2>
 UEは、DFT-S-OFDMを用いるPUSCH及びPUCCHの少なくとも1つにおいて、π/2-BPSKをデータに適用する場合、π/2-BPSKをDMRSに適用することが好ましい。π/2-BPSKを適用されるDMRSは、第2参照信号系列を用いるDMRS(第2DMRS)であってもよい。π/2-BPSKを適用されないDMRSは、第1参照信号系列を用いるDMRS(第1DMRS)であってもよい。
 第1参照信号系列は、QPSKを用いて生成される。データにπ/2-BPSKを用いることによってデータシンボルのPAPRは低減されても、DMRSにQPSKを用いることによってDMRSシンボルのPAPRは低減されないため、性能は改善されない。
 Rel.15においては、RRC接続確立後のみ、π/2-BPSK変調をPUSCH又はPUCCHのデータに適用できる。RRC接続確立後のPUSCH設定情報(例えば、PUSCH-Config内のtp-pi2BPSK)によって、DFT-S-OFDMが適用される場合にπ/2-BPSK変調が有効化できる。よって、Rel.15においては、Msg.3 PUSCHにπ/2-BPSK変調を用いることができない。
 また、PUCCHフォーマット3及び4は、RRC接続確立後のみに使われる。UEは、RRC接続確立後のPUCCH設定情報(PUCCH-Config内のPUCCH-FormatConfig内のpi2BPSK)によって、PUCCHフォーマット3及び4のUCIシンボルに対するπ/2-BPSK変調を用いることができる。
 UEは、RRC接続確立前にπ/2-BPSK変調を用いてもよい。RRC接続確立前にπ/2-BPSK変調が、Rel.16の機能であってもよい。
 以上の実施形態2によれば、Rel.16を用いる場合のカバレッジを、Rel.15のカバレッジよりも拡大することができる。
<実施形態3>
 UEは、第2参照信号系列(第2DMRS)に関するUE能力(capability)情報を報告してもよい。UE能力情報は、第2参照信号系列をサポートするか否かを示してもよい。
 UE能力情報は、第2参照信号系列の長さ(系列長)に関する情報を含んでもよい。第2参照信号系列の複数の系列長が仕様に規定される場合、UE能力情報は、各系列長の第2参照信号系列をサポートするか否かを示してもよいし、どの系列長の第2参照信号系列をサポートするかを示してもよい。
 UEは、第2参照信号系列を用いることをネットワーク(NW、例えば、基地局)から設定(指示)されてもよい。
 UEは、サポートすることを報告していない第2参照信号系列を用いることを設定されると期待しなくてもよい。UE能力情報によってサポートすることを報告していない第2参照信号系列を用いることを設定された場合、UEは、第1参照信号系列をDMRSに用いてもよい。サポートすることを報告していない系列長の第2参照信号系列を用いることを設定された場合、UEは、第1参照信号系列をDMRSに用いてもよい。
 例えば、長さ12の第2参照信号系列のみをサポートすることを報告したUEが、長さ24の第2参照信号系列を用いることを設定された場合、当該UEは、第1参照信号系列をDMRSに用いてもよい。
 UEは、RRCシグナリングによって第2参照信号系列を用いることを設定されてもよい。PUSCH設定情報及びPUCCH設定情報が、第2参照信号系列を用いることを含んでもよい。
 UEは、DCIによって第2参照信号系列を用いることを指示されてもよい。DCIは、PUSCHのスケジューリング用のDCI(ULグラント)であってもよいし、PDSCHのスケジューリング用のDCI(DLアサインメント)であってもよい。UEは、DCI内の特定フィールドによって第2参照信号系列を用いることを指示されてもよい。特定フィールドは、新規フィールドであってもよいし、DCI内の既存フィールドの組み合わせであってもよい。
 第2参照信号系列をサポートすることを報告したUEは、報告後のPUSCH送信において、第2DMRSを送信してもよい。このUEは、Msg.3 PUSCH送信において、第1DMRSを送信してもよい。
 Msg.3 PUSCH送信において第1DMRSを送信することによって、カバレッジを改善することはできなくても、RRC接続確立後に第2DMRSを送信することによって、RRC接続確立後の品質(例えば、SN比)を改善することができる。
 また、Msg.3 PUSCHにDFT-S-OFDMを適用し、RRC接続確立後のPUSCHにCP-OFDMを適用する場合において、RRC接続確立後のPUSCH送信において第1DMRSを送信すると、CP-OFDMのPAPR増大によってカバレッジが縮小する。RRC接続確立後のPUSCH送信において第2DMRSを送信すると、PAPR増大を抑えることができ、第1DMRSを送信する場合に比べてカバレッジを改善できる。
 第2参照信号系列をサポートすることを報告したUEは、PUSCH(Msg.3 PUSCHを含む)送信において第2DMRSを送信してもよい。UE能力情報によって第2参照信号系列をサポートすることを報告したUEは、全てのPUSCH送信において第2DMRSを送信してもよい。
 このように、UEが第2参照信号系列をサポートすることを報告することによって、第2DMRSを用いるか否かを適切に制御できる。
 UEは、第2参照信号系列(第2DMRS)を用いることを明示的に設定されなくてもよい(暗示的に設定されてもよい)。
 第2参照信号系列をサポートすることを報告し、且つPUSCH送信にπ/2-BPSKを用いることを設定されたUEは、第2DMRSを伴うPUSCHを送信してもよい。第2参照信号系列をサポートすることを報告し、且つPUSCH送信にπ/2-BPSK及びDFT-S-OFDMを用いることを設定されたUEは、第2DMRSを伴うPUSCHを送信してもよい。
 第2参照信号系列をサポートすることを報告し、且つPUSCH送信にπ/2-BPSKを用いることを設定されたUEは、第2DMRSを伴うPUCCHを送信してもよい。第2参照信号系列をサポートすることを報告し、且つPUSCH送信にπ/2-BPSK及びDFT-S-OFDMを用いることを設定されたUEは、第2DMRSを伴うPUCCHを送信してもよい。
 第2参照信号系列をサポートすることを報告し、且つPUCCH送信にπ/2-BPSKを用いることを設定されたUEは、第2DMRSを伴うPUSCHを送信してもよい。第2参照信号系列をサポートすることを報告し、且つPUCCH送信にπ/2-BPSK及びDFT-S-OFDMを用いることを設定されたUEは、第2DMRSを伴うPUSCHを送信してもよい。
 第2参照信号系列をサポートすることを報告し、且つPUCCH送信にπ/2-BPSKを用いることを設定されたUEは、第2DMRSを伴うPUCCHを送信してもよい。第2参照信号系列をサポートすることを報告し、且つPUCCH送信にπ/2-BPSK及びDFT-S-OFDMを用いることを設定されたUEは、第2DMRSを伴うPUCCHを送信してもよい。
 このように、第2DMRSを用いることを明示的に設定しないことによって、シグナリングのオーバヘッドを抑えることができる。
<実施形態4>
 UEは、ランダムアクセス手順(RRC接続確立前)において第2参照信号系列(第2DMRS)に関する情報の送信及び受信の少なくとも1つを行ってもよい。
 図5に示すように、第2参照信号系列をサポートするUEは、Msg.1によって、第2参照信号系列をサポートすることを報告してもよい。
 UEは、次のRACHリソース決定方法によって第1RACHリソース(例えば、コンテンションベースプリアンブル、PRACHオケージョン)を決定し、第1RACHリソースに、リソースオフセットを追加することによって第2RACHリソースを決定し、第2RACHリソースを用いたMsg.1によって、第2参照信号系列をサポートすることを報告してもよい。リソースオフセットは、プリアンブル(系列)インデックス、周波数リソース(例えば、PRB)インデックス、時間リソース(例えば、スロット及びシンボルの少なくとも1つ)インデックス、の少なくとも1つであってもよい。
<RACHリソース決定方法>
 UEは、上位レイヤパラメータ(ssb-perRACH-OccasionAndCB-PreamblesPerSSB)によって、1つのPRACHオケージョンに関連付けられたN個のSS/PBCHブロックと、SS/PBCHブロック毎のR個のコンテンションベース(衝突型ランダムアクセス)プリアンブルと、を提供される。Nが1より小さい場合、1つのSS/PBCHブロックが1/Nの連続するPRACHオケージョンにマップされる。Nが1以上である場合、PRACHオケージョン毎に、SS/PBCHブロックn(0≦n≦N-1)に関連付けられた連続インデックスを有するR個のコンテンションベースプリアンブルが、プリアンブルインデックスn・64/Nから開始する。SS/PBCHブロックインデックスは、次の順のPRACHオケージョンにマップされる。
・第1に、単一PRACHオケージョン内のプリアンブルインデックスの昇順
・第2に、周波数多重されたPRACHオケージョンに対する周波数リソースインデックスの昇順
・第3に、PRACHスロット内の時間多重されたPRACHオケージョンに対する時間リソースインデックスの昇順
・第4に、PRACHスロットに対するインデックスの昇順
 第2参照信号系列をサポートするUEは、NWから設定されたRACHリソースを所定の方法を用いて読み替えることによって、第2参照信号系列をサポートすることを報告するためのRACHリソースを決定してもよい。UEが、Msg.3において第2DMRSを送信することの要求(第2参照信号系列をサポートすることの報告)を送るか否かは、ブロードキャスト情報によってUEに指示されてもよいし、UE次第であってもよい(UE実装に依存してもよい)。
 第2参照信号系列をサポートしないUEは、前述のRACHリソース決定方法によって第1RACHリソースを決定し、第1RACHリソースを用いたMsg.1によって、第2参照信号系列をサポートすることを報告してもよい。
 Msg.1によって、第2参照信号系列をサポートすることを報告したUEは、Msg.3において第2DMRSを送信してもよい。
 このように、UEが第2参照信号系列(第2DMRS)をサポートすることをMsg.1を用いて報告することによって、RRC接続確立前に第2DMRSを送信するか否かを適切に制御できる。
 図6に示すように、第2参照信号系列をサポートするUEは、Msg.3 PUSCH送信において第2DMRSを送信することを、Msg.2によって設定(指示)されてもよい。
 第2参照信号系列をサポートするUEは、Msg.2 DCI内の特定フィールドによって、Msg.3 PUSCH送信において第2DMRSを送信することを指示されてもよい。特定フィールドは、新規フィールドであってもよい。新規フィールドは、1ビットであってもよい。特定フィールドは、既存フィールドの組み合わせであってもよい。
 第2参照信号系列をサポートするUEは、Msg.2 PDCCHの物理リソース及び周波数リソースの少なくとも1つによって、Msg.3 PUSCH送信において第2DMRSを送信することを指示されてもよい。例えば、Msg.2 PDCCHの(先頭)CCEインデックス/アグリゲーションレベルの値が偶数であることと奇数であることとのいずれかが、Msg.3 PUSCH送信において第2DMRSを送信することに関連付けられてもよい。第2参照信号系列をサポートするUEは、Msg.2 PDCCHの(先頭)CCEインデックス/アグリゲーションレベルの値が偶数であるか奇数であるかによって、Msg.3 PUSCH送信において第2DMRSを送信することを指示されてもよい。
 Msg.3 PUSCH送信において第2DMRSを送信するか否かが、Msg.2 PDCCHのサーチスペース(ID)又はCORESET(ID)に関連付けられてもよい。第2参照信号系列をサポートするUEは、Msg.2 PDCCHのサーチスペース又はCORESETによって、Msg.3 PUSCH送信において第2DMRSを送信することを指示されてもよい。
 第2参照信号系列をサポートするUEは、Msg.2 PDSCHによって、Msg.3 PUSCH送信において第2DMRSを送信することを指示されてもよい。例えば、UEは、Msg.2 PDSCH内の特定フィールドによって、Msg.3 PUSCH送信において第2DMRSを送信することを指示されてもよい。Msg.3 PUSCH送信において第2DMRSを送信するか否かが、Msg.2 PDSCHのリソースと、Msg.2 PDSCH DMRSのリソースと、の少なくとも1つも関連付けられてもよい。第2参照信号系列をサポートするUEは、Msg.2 PDSCHのリソースと、Msg.2 PDSCH DMRSのリソースとの少なくとも1つによって、Msg.3 PUSCH送信において第2DMRSを送信することを指示されてもよい。
 このように、UEが第2DMRSを送信することをMsg.2を用いて指示されることによって、RRC接続確立前に第2DMRSを送信するか否かを適切に制御できる。
 また、複数のUEからのDMRSを多重する場合、Frequency Division Multiplexing(FDM)(例えば、複数のUEがDMRSの周波数リソースにおいて異なるCombを用いる)、Cyclic Shift(CS)(例えば、複数のUEがDMRSにおいて異なるCSを用いる)、時間ドメインOCC(例えば、複数のUEが2シンボルのDMRSにおいて異なるOCCを用いる)の少なくとも1つによって多重することが考えられる。このうち、CS、時間ドメインOCCの少なくとも1つを用いる場合、複数のUEが同じ時間リソース及び周波数リソースにおいてDMRSを送信するため、多重される全てのUEが第1DMRS及び第2DMRSの一方のみを用いる必要がある。第2DMRSをサポートするUEに対して、第1DMRSを用いることを指示することによって、第2DMRSをサポートしないUEと、第2DMRSをサポートするUEと、を同じ時間リソース及び周波数リソースにおいて多重することができる。
 図7に示すように、第2参照信号系列をサポートするUEは、Msg.3 PUSCH送信において第2DMRSを送信するか否かを設定(指示)されなくてもよい。第2参照信号系列をサポートするUEは、Msg.3 PUSCH送信において第2DMRSを送信してもよい。
 第2参照信号系列をサポートするUEは、Msg.3 PUSCH送信において第2DMRSを送信し、それからRRC接続確立までの間のPUSCH送信において第2DMRSを送信してもよい。第2参照信号系列をサポートするUEは、Msg.3 PUSCH送信において第2DMRSを送信し、それからRRC接続確立までの間のPUSCH送信において第1DMRSを送信してもよい。
 第2参照信号系列をサポートするUEは、Msg.3 PUSCH送信において第2DMRSを送信し、RRC接続確立後のPUSCH送信において第2DMRSを送信してもよい。第2参照信号系列をサポートするUEは、Msg.3 PUSCH送信において第2DMRSを送信し、RRC接続確立後、RRCシグナリングによってPUSCH送信に第2DMRSを用いることを設定された場合、PUSCH送信において第2DMRSを送信してもよい。第2参照信号系列をサポートするUEは、Msg.3 PUSCH送信において第2DMRSを送信し、RRC接続確立後、RRCシグナリングによってPUSCH送信に第2DMRSを用いることを設定されない場合、PUSCH送信において第1DMRSを送信してもよい。
 このように、RRC接続確立前に第2DMRSを送信することによって、カバレッジを改善できる。
<実施形態5>
 UEは、PUCCHフォーマット1にπ/2-BPSK変調を適用してもよい。
 UEは、RRC接続確立後に、RRCシグナリングによって、PUCCHフォーマット1にπ/2-BPSK変調を適用するか否かを設定されてもよい。例えば、RRCシグナリングのPUCCHリソース設定(PUCCH-Resource)にπ/2-BPSKを適用することを示す情報が含まれてもよい。
 PUCCHフォーマット1にπ/2-BPSKを適用することを設定されたUEは、PUCCH送信において第2DMRSを送信してもよい。
 PUCCHフォーマット1にπ/2-BPSKを適用することを設定されたUEは、PUCCHフォーマット1のデータシンボルにおけるUCIにπ/2-BPSKを適用し、PUCCHフォーマット1のDMRSシンボルにおけるDMRSにπ/2-BPSKを適用してもよい(DMRSシンボルにおいて第2DMRSを送信してもよい)。
 図8は、PUCCHフォーマット1におけるPUCCH時間長(4~14シンボル)毎のデータシンボルとDMRSシンボルの配置の一例を示す図である。PUCCH内のシンボルインデックスが偶数(0,2,…)であるシンボルがDMRSシンボルであってもよく、PUCCH内のシンボルインデックスが奇数(1,3,…)であるシンボルがデータシンボルであってもよい。PUCCHフォーマット1の帯域幅は1Physical Resource Block(PRB)(12サブキャリア)であってもよい。第2DMRSに用いられる第2参照信号系列の長さは12であってもよい。
 PUCCHフォーマット1にπ/2-BPSKを適用することを設定されたUEは、PUCCHフォーマット1に時間ドメインOCCを適用してもよい。PUCCHフォーマット1に時間ドメインOCCを適用することによって、複数のUEのPUCCHフォーマット1が同じ時間リソース及び同じ周波数リソースにおいて多重されてもよい。
 図9に示すように、PUCCHフォーマット1に周波数ホッピングを適用するか否かによって、時間ドメインOCCの多重キャパシティが決定されてもよい。
 このように、RRC接続確立後のPUCCHにπ/2-BPSK変調及び第2DMRSの少なくとも1つを用いることによって、PUCCHの品質を向上できる。
 実施形態4において、Msg.3 PUSCH送信において第2DMRSを送信することが、π/2-BPSK変調を適用すること、と読み替えられてもよい。UEは、RRC接続確立前において、実施形態4の方法によって、π/2-BPSK変調を適用することを指示されてもよい。
 RRC接続確立前において、実施形態4の方法によって、π/2-BPSK変調を適用することを指示された(Msg.3 PUSCHのデータシンボルにπ/2-BPSK変調を適用した)UEは、PUCCH(PUCCHフォーマット1)にπ/2-BPSKを適用してもよい。RRC接続確立前において、実施形態4の方法によって、π/2-BPSK変調を適用することを指示された(Msg.3 PUSCHのデータシンボルにπ/2-BPSK変調を適用した)UEは、PUCCH(PUCCHフォーマット1)のDMRSシンボルにおいてπ/2-BPSK変調を適用してもよい(第2DMRSを送信してもよい)。
 PUCCHは、Msg.4 HARQ-ACK(Msg.4に対するHARQ-ACK)であってもよい。
 このように、RRC接続確立前のPUCCHにπ/2-BPSK変調及び第2DMRSの少なくとも1つを用いることによって、カバレッジを拡大できる。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図11は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、参照信号(例えば、SSB、CSI-RSなど)を送信してもよい。送受信部120は、特定DLチャネルのためのTCI状態を指示する情報(MAC CE又はDCI)を送信してもよい。
(ユーザ端末)
 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 また、送受信部220は、無線リソース制御(RRC)接続確立の前において、上り共有チャネル(PUSCH)及び上り制御チャネル(PUCCH)の少なくとも1つの上り送信において、π/2-BPSK変調に基づく復調参照信号(DMRS)(第2DMRS、第2参照信号系列)を送信してもよい。制御部210は、前記上り送信に基づいて、前記RRC接続確立(例えば、ランダムアクセス手順)を行ってもよい。
 また、送受信部220は、ランダムアクセスレスポンスによってスケジュールされる上り共有チャネル(例えば、Msg.3)の送信において、前記DMRSを送信してもよい(実施形態4)。
 また、送受信部220は、前記DMRSをサポートすることに対応するランダムアクセスチャネルリソースによって、ランダムアクセスチャネル(例えば、Msg.1)を送信してもよい(実施形態4)。
 また、前記RRC接続確立の後において、送受信部220は、前記DMRSに関する能力情報を送信してもよい(実施形態3)。
 また、前記RRC接続確立の後において、上り共有チャネル及び上り制御チャネルのうち第1チャネルにπ/2-BPSK変調を適用することを設定された場合、送受信部220は、上り共有チャネル及び上り制御チャネルのうち第2チャネルの送信において、前記DMRSを送信してもよい(実施形態3)。
 上り制御チャネルにπ/2-BPSK変調を用いることを設定された場合、送受信部220は、上り制御チャネルにおいてπ/2-BPSK変調に基づくDMRSを送信してもよい(実施形態5)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  無線リソース制御(RRC)接続確立の前において、上り共有チャネル及び上り制御チャネルの少なくとも1つの上り送信において、π/2-BPSK変調に基づく復調参照信号(DMRS)を送信する送信部と、
     前記上り送信に基づいて、前記RRC接続確立を行う制御部と、を有することを特徴とするユーザ端末。
  2.  前記送信部は、ランダムアクセスレスポンスによってスケジュールされる上り共有チャネルの送信において、前記DMRSを送信することを特徴とする請求項1に記載のユーザ端末。
  3.  前記送信部は、前記DMRSをサポートすることに対応するランダムアクセスチャネルリソースによって、ランダムアクセスチャネルを送信することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記RRC接続確立の後において、前記送信部は、前記DMRSに関する能力情報を送信することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記RRC接続確立の後において、上り共有チャネル及び上り制御チャネルのうち第1チャネルにπ/2-BPSK変調を適用することを設定された場合、前記送信部は、上り共有チャネル及び上り制御チャネルのうち第2チャネルの送信において、前記DMRSを送信することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  無線リソース制御(RRC)接続確立の前において、上り共有チャネル及び上り制御チャネルの少なくとも1つの上り送信において、π/2-BPSK変調に基づく復調参照信号(DMRS)を送信するステップと、
     前記上り送信に基づいて、前記RRC接続確立を行うステップと、を有することを特徴とするユーザ端末の無線通信方法。
PCT/JP2019/003673 2019-02-01 2019-02-01 ユーザ端末及び無線通信方法 WO2020157966A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/003673 WO2020157966A1 (ja) 2019-02-01 2019-02-01 ユーザ端末及び無線通信方法
EP19913128.5A EP3920642A4 (en) 2019-02-01 2019-02-01 USER TERMINAL AND WIRELESS COMMUNICATION METHOD
JP2020569318A JP7244548B2 (ja) 2019-02-01 2019-02-01 端末、無線通信方法、基地局及びシステム
MX2021009230A MX2021009230A (es) 2019-02-01 2019-02-01 Terminal de usuario y metodo de comunicacion por radio.
US17/426,410 US20220104254A1 (en) 2019-02-01 2019-02-01 User terminal and radio communication method
CN201980091067.1A CN113383606A (zh) 2019-02-01 2019-02-01 用户终端以及无线通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003673 WO2020157966A1 (ja) 2019-02-01 2019-02-01 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2020157966A1 true WO2020157966A1 (ja) 2020-08-06

Family

ID=71842409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003673 WO2020157966A1 (ja) 2019-02-01 2019-02-01 ユーザ端末及び無線通信方法

Country Status (6)

Country Link
US (1) US20220104254A1 (ja)
EP (1) EP3920642A4 (ja)
JP (1) JP7244548B2 (ja)
CN (1) CN113383606A (ja)
MX (1) MX2021009230A (ja)
WO (1) WO2020157966A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022033801A1 (en) * 2020-08-11 2022-02-17 Nokia Technologies Oy Pi/2-bpsk for initial access
WO2022149267A1 (ja) * 2021-01-08 2022-07-14 株式会社Nttドコモ 無線基地局及び端末

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102617897B1 (ko) * 2019-02-15 2023-12-26 삼성전자주식회사 무선 통신 시스템에서 상향링크 기준신호 송수신 방법 및 장치
US10951282B2 (en) * 2019-02-15 2021-03-16 At&T Intellectual Property I, L.P. Facilitating selection of demodulation reference signal ports in advanced networks
CN111277383A (zh) * 2019-02-15 2020-06-12 维沃移动通信有限公司 参考信号生成的方法及通信设备
US20220150018A1 (en) * 2019-02-15 2022-05-12 Lg Electronics Inc. Method for transmitting/receiving signal in wireless communication system, and device for supporting same
US20210298083A1 (en) * 2020-03-20 2021-09-23 Qualcomm Incorporated Front-loaded transmission in a random access channel procedure
US20230140036A1 (en) * 2021-10-29 2023-05-04 Qualcomm Incorporated Partial pusch repetition configuration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180132223A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Techniques for configuring reference signal patterns in wireless communications
US20180132282A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Radio (nr) random access procedure (rach) timing designs
US20180198646A1 (en) * 2017-01-09 2018-07-12 Mediatek Inc. Method for Data Transmission and Reception of Random Access Procedure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3877708B2 (ja) * 2003-05-23 2007-02-07 三洋電機株式会社 基地局装置、端末装置、通信システム
CN108464045B (zh) * 2015-12-25 2023-05-30 株式会社Ntt都科摩 用户终端、无线基站及无线通信方法
WO2018043560A1 (ja) * 2016-08-31 2018-03-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
US11399386B2 (en) * 2017-02-01 2022-07-26 Ntt Docomo, Inc. User terminal and radio communication method
KR102409636B1 (ko) * 2017-05-04 2022-06-17 삼성전자 주식회사 무선 통신 시스템에서 피크 대 평균 전력비 감소를 위한 송수신 방법 및 장치
CN109245844B (zh) * 2017-06-30 2020-11-03 华为技术有限公司 无线通信方法、装置及***
US20190149298A1 (en) * 2017-11-15 2019-05-16 Mediatek Inc. Reference Signals With Improved Cross-Correlation Properties In Wireless Communications
CN113329501B (zh) * 2018-12-06 2023-05-09 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及网络设备
CN110535600B (zh) * 2019-01-07 2022-12-02 中兴通讯股份有限公司 传输解调参考信号的方法、终端设备和网络设备
WO2020142937A1 (en) * 2019-01-09 2020-07-16 Nec Corporation Dmrs transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180132223A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Techniques for configuring reference signal patterns in wireless communications
US20180132282A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Radio (nr) random access procedure (rach) timing designs
US20180198646A1 (en) * 2017-01-09 2018-07-12 Mediatek Inc. Method for Data Transmission and Reception of Random Access Procedure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
ERICSSON: "Notes from low PAPR RS offline discussion", 3GPP TSG RAN WG1 MEETING AD-HOC MEETING 1901 RL-1901386,, 23 January 2019 (2019-01-23), XP051594135 *
See also references of EP3920642A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022033801A1 (en) * 2020-08-11 2022-02-17 Nokia Technologies Oy Pi/2-bpsk for initial access
WO2022149267A1 (ja) * 2021-01-08 2022-07-14 株式会社Nttドコモ 無線基地局及び端末

Also Published As

Publication number Publication date
US20220104254A1 (en) 2022-03-31
JPWO2020157966A1 (ja) 2021-12-02
JP7244548B2 (ja) 2023-03-22
EP3920642A1 (en) 2021-12-08
CN113383606A (zh) 2021-09-10
EP3920642A4 (en) 2022-09-14
MX2021009230A (es) 2021-09-08

Similar Documents

Publication Publication Date Title
JP7244548B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018155619A1 (ja) ユーザ端末及び無線通信方法
WO2020090059A1 (ja) ユーザ端末及び無線通信方法
CN113661669B (zh) 用户终端以及无线通信方法
WO2020166045A1 (ja) ユーザ端末及び無線通信方法
WO2020166033A1 (ja) ユーザ端末及び無線通信方法
JP7177168B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018207296A1 (ja) ユーザ端末及び無線通信方法
WO2020144774A1 (ja) ユーザ端末及び無線通信方法
WO2020144818A1 (ja) ユーザ端末及び無線通信方法
JPWO2020166024A1 (ja) ユーザ端末及び無線通信方法
WO2021124585A1 (ja) 端末及び無線通信方法
CN114223251A (zh) 终端以及无线通信方法
CN114365427A (zh) 终端以及无线通信方法
WO2020090061A1 (ja) ユーザ端末
JPWO2020166023A1 (ja) ユーザ端末及び無線通信方法
WO2021161540A1 (ja) 端末、無線通信方法及び基地局
WO2021124586A1 (ja) 端末及び無線通信方法
WO2020261395A1 (ja) 端末及び無線通信方法
WO2020217517A1 (ja) ユーザ端末及び無線通信方法
WO2020144775A1 (ja) ユーザ端末及び無線通信方法
WO2020170458A1 (ja) ユーザ端末及び無線通信方法
WO2021186688A1 (ja) 端末、無線通信方法及び基地局
CN114788235A (zh) 终端以及无线通信方法
CN114208325A (zh) 终端以及无线通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019913128

Country of ref document: EP

Effective date: 20210901