WO2020156372A1 - 一种分布式激光雷达***和激光测距方法 - Google Patents

一种分布式激光雷达***和激光测距方法 Download PDF

Info

Publication number
WO2020156372A1
WO2020156372A1 PCT/CN2020/073448 CN2020073448W WO2020156372A1 WO 2020156372 A1 WO2020156372 A1 WO 2020156372A1 CN 2020073448 W CN2020073448 W CN 2020073448W WO 2020156372 A1 WO2020156372 A1 WO 2020156372A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
fiber
receiving
optical fiber
Prior art date
Application number
PCT/CN2020/073448
Other languages
English (en)
French (fr)
Inventor
孙伟伟
王海瑛
Original Assignee
无锡流深光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡流深光电科技有限公司 filed Critical 无锡流深光电科技有限公司
Publication of WO2020156372A1 publication Critical patent/WO2020156372A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • the invention relates to the technical field of laser detection and ranging, in particular to a laser radar system and a laser ranging method.
  • LiDAR Laser detection and ranging
  • the basic working principle of lidar is that the laser transmitter emits laser light to the target object, the receiver receives the reflected light of the target object, and the lidar calculates the distance from the lidar to the target object according to the principle of laser ranging.
  • a laser transmitter and a receiver form a laser ranging channel.
  • the common three-dimensional lidar is a mechanical rotating lidar, which contains multiple pairs of laser transmitters and receivers, each pair of laser transmitters and receivers face a different spatial angle position to form a sector coverage, and then use a single-axis rotating mechanism to drive The above-mentioned multiple pairs of laser transmitters and receivers rotate as a whole to realize three-dimensional laser scanning.
  • each laser ranging channel of the mechanical rotating lidar need to be accurately calibrated to ensure accurate focusing, accurate parallel transmission and receiving optical axes, and ensure that the distance between adjacent laser ranging channels is small
  • an embodiment of the present invention provides a distributed lidar system, including: an optical transceiver component and a plurality of scanning components.
  • the optical transceiver component includes a plurality of optical transceiver groups, wherein each optical transceiver group corresponds to a scanning component.
  • each of the above-mentioned optical transceiver groups includes a laser transmitter and a laser receiver;
  • the distributed lidar system also includes a transmitting fiber corresponding to the above-mentioned laser transmitter one-to-one, and a receiving fiber corresponding to the above-mentioned laser receiver one-to-one
  • the above-mentioned laser transmitter is used to emit laser light; one end of the above-mentioned transmitting fiber is coupled with the corresponding laser transmitter, and the other end is used as the light emitting end in the corresponding scanning component to emit the detection laser; one end of the above-mentioned receiving fiber is coupled with the corresponding laser receiver , The other end is used as a light incident end in the corresponding scanning component to receive the reflected light of the detection laser; the laser receiver is used to receive the reflected light conducted by the receiving optical fiber.
  • the above-mentioned optical transceiver group includes a plurality of laser transmitters and a plurality of laser receivers;
  • the above-mentioned plurality of laser transmitters correspond to a plurality of emission fibers one to one, and the above-mentioned plurality of emission fibers
  • One ends of the above-mentioned emitting fibers are respectively coupled with corresponding laser transmitters, the other ends of the above-mentioned multiple emitting fibers form a emitting fiber array in the corresponding scanning component, and the end faces of the above-mentioned emitting fiber arrays are used as light emitting ends to emit detection laser
  • the above-mentioned multiple laser receivers One-to-one correspondence with multiple receiving fibers, one ends of the multiple receiving fibers are respectively coupled with corresponding laser receivers, the other ends of the multiple receiving fibers form a receiving fiber array in the corresponding scanning component, and the end face of the receiving fiber array As the light incident end, it receives the reflected light of the detection laser
  • the above-mentioned optical transceiver group includes a laser transmitter and a laser receiver;
  • the above-mentioned laser transmitter corresponds to a transmitting optical fiber, and one end of the above-mentioned transmitting optical fiber corresponds to the corresponding laser transmitting optical fiber.
  • the other end of the transmitting fiber is used as the light emitting end to emit the detection laser in the corresponding scanning component;
  • the one laser receiver corresponds to a receiving fiber, and one end of the receiving fiber is coupled to the corresponding laser receiver.
  • the other end of the corresponding scanning component serves as the light incident end to receive the reflected light of the detection laser.
  • the scanning component includes a transmitting lens, a receiving lens, and a reflecting mirror assembly
  • the reflecting mirror assembly includes a rotating shaft and a plurality of reflecting mirrors, and the angle between the normal line of each reflecting mirror and the axis of the rotating shaft is different
  • the above-mentioned rotating shaft drives the above-mentioned multiple mirrors to rotate;
  • the above-mentioned emission lens is used to collimate the detection laser;
  • the above-mentioned mirror assembly is used to reflect the laser light collimated by the above-mentioned emission lens to the detection area, and is also used to The reflected light of the detection laser is reflected to the receiving lens;
  • the receiving lens is used to converge the received reflected light to the receiving optical fiber.
  • the transmitting fiber between each optical transceiver group and the corresponding scanning component is connected by a multi-core fiber connector; the receiving fiber between each optical transceiver group and the corresponding scanning component is connected by a multi-core fiber connector; or , The transmitting optical fiber and the receiving optical fiber between each optical transceiver group and the corresponding scanning component are connected by a multi-core optical fiber connector.
  • microlens between each of the foregoing laser receivers and the corresponding receiving optical fiber, and the microlens is used to converge the reflected light received by the foregoing receiving optical fiber to the corresponding laser receiver.
  • each of the foregoing laser transmitters and the corresponding emitting fiber there is a beam shaper between each of the foregoing laser transmitters and the corresponding emitting fiber, and the beam shaper is used to couple the laser light emitted by the laser transmitter to the foregoing corresponding emitting fiber.
  • the beam shaper is a double cylindrical lens, and the generatrices of the two cylindrical surfaces of the double cylindrical lens are orthogonal to each other.
  • the above-mentioned beam shaper is a beam shaper based on optical diffraction, comprising: a collimating lens, a first diffractive element and a second diffractive element; the above-mentioned collimating lens is used to transmit the light beam emitted by the laser transmitter Collimating in the fast axis direction to become a slender strip beam; the first diffractive element is used to divide the slender strip beam into several beams, except for the central beam, the other beams are deflected to different spatial orientations; The second diffractive element is used for correcting the remaining light beams, so that the remaining light beams overlap with the central light beam and focus on the end face of the corresponding emitting fiber.
  • the above-mentioned beam shaper is a beam shaper based on optical diffraction, comprising: a first lens, a first diffractive element, a second diffractive element and a second lens; the first lens is used to emit the laser The beam emitted by the device is collimated in the fast axis direction to become a slender beam; the first diffractive element is used to divide the slender beam into several beams, except for the central beam, the other beams are respectively deflected and turned Different spatial orientation; the second diffractive element is used to correct the remaining light beams so that the remaining light beams are parallel to the center beam; the second lens is used to combine the remaining light beams from the second diffractive element and The above-mentioned center beams overlap and focus on the end face of the corresponding emitting fiber.
  • the laser ranging method uses a distributed laser radar system for laser ranging.
  • the distributed laser radar includes an optical transceiver component and a plurality of scanning components, wherein the optical transceiver
  • the components include multiple optical transceiver groups, and each optical transceiver group corresponds to a scanning component.
  • Each of the above-mentioned optical transceiver groups includes a laser transmitter and a laser receiver; the distributed lidar system also includes one-to-one with the above-mentioned laser transmitter.
  • the corresponding emitting fiber and the receiving fiber corresponding to the above-mentioned laser receiver one-to-one.
  • the distance measurement method includes: the laser transmitter emits laser light, the laser light is coupled to the emission fiber corresponding to the laser transmitter, is conducted to the corresponding scanning component through the emission fiber, and is emitted from one end of the emission fiber as a detection laser
  • the receiving optical fiber in the corresponding scanning component receives the reflected light of the detecting laser, and the reflected light of the detecting laser is transmitted to the corresponding laser receiver through the receiving optical fiber; the laser receiver receives the reflected light conducted by the receiving optical fiber.
  • the scanning component includes a transmitting lens, a receiving lens, and a mirror assembly.
  • the mirror assembly includes a rotating shaft and a plurality of mirrors, and the angle between the normal of each mirror and the axis of the rotating shaft is different.
  • the laser ranging method further includes: the rotation axis drives the multiple mirrors to rotate; the emission lens collimates the detection laser; the mirror assembly reflects the laser collimated by the emission lens to the detection area, and The reflected light of the detection laser is reflected to the receiving lens; the receiving lens condenses the received reflected light to the receiving optical fiber.
  • a laser transmitter and a laser receiver are concentrated in an optical transceiver component, and the detection laser emitted by the laser transmitter is sent to a plurality of distributed lasers through an optical fiber Scanning part, the reflected light of the detection laser is also transmitted to the corresponding laser receiver through the optical fiber.
  • the distributed lidar system provided by the embodiments of the present invention can fix the optical transceiver components at any position of the lidar carrier (such as automobiles, aircraft), and the scanning direction and field of view of the lidar can be adjusted by adjusting the number of scanning components and the installation angle Meet different needs.
  • each laser transmitter in the distributed lidar system provided by the embodiment of the present invention corresponds to a transmitting fiber
  • each laser receiver corresponds to a receiving fiber
  • the maintenance and repair costs of equipment can be reduced.
  • a certain scanning component When there is a light path failure, only the laser transmitter and receiver corresponding to the scanning component need to be repaired; and if a laser transmitter or receiver fails, it will not affect other detection light paths.
  • each laser transmitter in the distributed lidar system provided by the embodiment of the present invention corresponds to a transmitting fiber, different scanning components can be configured with different laser transmitters according to actual scanning requirements, for example, lower power The laser transmitter acts as a light source, thereby reducing the cost of lidar.
  • FIG. 1 is an architecture diagram of a distributed lidar system provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of optical transceiver components in a distributed lidar system provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a distributed lidar system provided by an embodiment of the present invention.
  • FIG. 4 is another schematic diagram of the structure of a distributed lidar system provided by an embodiment of the present invention.
  • FIG. 5 is another schematic structural diagram of a distributed lidar system provided by an embodiment of the present invention.
  • FIG. 6 is a structural schematic diagram 1 of a mirror assembly in a distributed lidar system provided by an embodiment of the present invention
  • FIG. 7 is a second structural diagram of a mirror assembly in a distributed lidar system according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the structure of a mid-cylindrical lens provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a beam shaper based on optical diffraction provided by an embodiment of the present invention.
  • Fig. 10 is a schematic structural diagram of another beam shaper based on optical diffraction provided by an embodiment of the present invention.
  • this embodiment provides a distributed lidar system, which includes an optical transceiver 110 and multiple scanning components, such as M scanning components 120-1, 120-2, 120-3 shown in FIG. ...120-M, the above-mentioned optical transceiving unit 110 and each scanning unit are connected by optical fibers 11, 12, 13... 1M.
  • the above-mentioned optical transceiving component 110 includes a plurality of optical transceiving groups, wherein each optical transceiving group corresponds to a scanning component.
  • the optical transceiver 110 includes M optical transceiver groups 201, 301...M01, and the above M optical transceiver groups correspond to the M scanning components 120-1, 120-2, 120- in FIG. 3 whil120-M.
  • Each of the foregoing optical transceiver groups includes a laser transmitter and a laser receiver, and the laser transmitter is used to emit laser light.
  • the above-mentioned distributed laser radar system also includes a transmitting fiber corresponding to the laser transmitter one-to-one, and a receiving fiber corresponding to the laser receiver one-to-one; one end of the transmitting fiber is coupled with the corresponding laser transmitter, and the other end is corresponding
  • the scanning component is used as the light emitting end to emit the detection laser; one end of the receiving fiber is coupled with the corresponding laser receiver, and the other end is used as the light incident end in the corresponding scanning component to receive the reflected light of the detection laser.
  • the laser receiver is used to receive the reflected light conducted by the receiving optical fiber.
  • the laser light emitted by the above-mentioned laser transmitter is coupled to the emission fiber corresponding to the laser transmitter, is conducted to the corresponding scanning component through the emission fiber, and is emitted as a detection laser from one end of the above-mentioned emission fiber; the above-mentioned corresponding scanning component
  • the receiving optical fiber in the receiving optical fiber receives the reflected light of the detection laser, and the reflected light of the detecting laser is transmitted to the corresponding laser receiver through the receiving optical fiber; the laser receiver receives the reflected light conducted by the receiving optical fiber.
  • the optical transceiver group may include multiple laser transmitters and multiple laser receivers, or may include one laser transmitter and one laser receiver.
  • each light emitting group shown in FIG. 2 includes multiple laser transmitters and multiple laser receivers.
  • the optical transceiver group 201 includes N 1 laser transmitters 211-1, 211-2...211-N 1 , and correspondingly N 1 laser receivers 212-1, 212-2...212- N 1 ;
  • the optical transceiver group 301 includes N 2 laser transmitters 311-1, 311-2...311-N 2 , and correspondingly N 2 laser receivers 312-1, 312-2...312- N 2 ;
  • the optical transceiver group M01 includes N n laser transmitters M11-1, M11-2...M11-N n , correspondingly also includes N 2 laser receivers M12-1, M12-2...M12- N n .
  • One end of the above N 1 emitting fibers 111-1, 111-2...111-N 1 is respectively coupled with the corresponding laser transmitter 211-1, 211-2...211-N 1 , and the other end is at the corresponding scanning component 120-1 constitutes a launching fiber array 231, and the end surface of the launching fiber array 231 serves as a light emitting end to emit detection laser light.
  • One end of the above-mentioned N 1 receiving fibers 112-1, 112-2...112-N 1 is respectively coupled with the corresponding laser receiver 212-1, 212-2... 212-N 1 , and the other end is at the corresponding scanning component 120-1 constitutes a receiving optical fiber array 232, and the end face of the receiving optical fiber array 232 serves as a light incident end to receive the reflected light of the detection laser.
  • the transmitting fibers 111-1, 111-2...111-N 1 between the optical transceiver group 201 and the corresponding scanning component 120-1 can pass through the multi-core optical fiber connector 221 Connection;
  • the receiving fibers 112-1, 112-2...112-N 1 between the optical transceiver group 201 and the corresponding scanning component 120-1 are connected by a multi-core optical fiber connector 222.
  • FIG. 5 shows an embodiment in which an optical transceiver group 601 in the optical transceiver unit 60 includes a laser transmitter 61 and a laser receiver 62.
  • the laser transmitter 61 corresponds to the emission fiber 610
  • one end of the emission fiber 610 is coupled with the corresponding laser transmitter 61
  • the other end is used as a light emitting end in the corresponding scanning component 70 to emit detection laser light.
  • the laser receiver 62 corresponds to the receiving optical fiber 620.
  • One end of the receiving optical fiber 620 is coupled with the corresponding laser receiver 62, and the other end is used as a light incident end in the corresponding scanning component 70 to receive the reflected light of the detection laser.
  • the scanning component in the foregoing embodiment includes a transmitting lens, a receiving lens, and a mirror assembly, wherein the mirror assembly includes a rotating shaft and a plurality of mirrors, and the angle between the normal of each mirror and the axis of the rotating shaft is The degrees are not the same.
  • the rotation axis drives the multiple mirrors to rotate, the emission lens collimates the detection laser, and the mirror assembly reflects the laser collimated by the emission lens to the detection area, and reflects the reflected light of the detection laser to the detection area.
  • the receiving lens the above-mentioned receiving lens converges the received reflected light to the receiving optical fiber.
  • the scanning components 120-1 and 70 in the embodiment of the present invention include a transmitting lens 241, a receiving lens 242 and a mirror assembly 25.
  • the mirror assembly 25 includes a rotating shaft and a plurality of mirrors.
  • the rotating shaft drives the multiple mirrors to rotate, and the angle between the normal of each mirror and the axis of the rotating shaft is different;
  • the emitting lens 241 is used for The detection laser is collimated;
  • the mirror assembly 25 is used to reflect the laser collimated by the transmitting lens 241 to the detection area, and also used to reflect the reflected light of the detection laser to the receiving lens 242;
  • the receiving lens 242 is used to The received reflected light is converged to the receiving fiber.
  • the transmitting fiber array 231 may be a one-dimensional fiber array or a two-dimensional fiber array, and the end surface of the transmitting fiber array 231 is on the focal plane of the transmitting lens 241.
  • the receiving optical fiber array 232 may be a one-dimensional optical fiber array or a two-dimensional optical fiber array, and the end surface of the receiving optical fiber array 232 is on the focal plane of the receiving lens 242.
  • the structure of the mirror assembly 25 is introduced.
  • the mirror assembly 25 includes a rotating shaft 251 and mirrors 6A, 6B, 6C, and the rotating shaft 251 drives the mirrors 6A, 6B, 6C to rotate.
  • the angle between the normal of each mirror and the axis of the rotating shaft is different.
  • the axis of the rotating shaft 251 is X
  • the number of angles between the mirror 6A and the axis X of the rotating shaft 251 is ⁇ 1
  • the number of angles between the mirror 6B and the axis X of the rotating shaft 251 is ⁇ 2
  • the angle between the 6C and the axis X of the rotating shaft 251 is ⁇ 3 (not shown in the figure), and ⁇ 1 , ⁇ 2 and ⁇ 3 are different.
  • the rotation of the rotating shaft can be driven by the rotation of the motor.
  • the present invention does not limit the connection between the motor and the rotating shaft and the connection between the mirrors and the rotating shaft. Therefore, it is not shown in the figure. Those skilled in the art can Select the connection method according to actual needs.
  • the three mirrors of the above-mentioned mirror assembly 25 rotate under the drive of a motor, and sequentially enter the laser irradiation range, reflect the laser, and change the propagation direction of the laser. Specifically, as the rotating shaft 251 rotates, the reflecting mirror 6A scans the reflected light of the laser in the vertical plane of the rotating axis X.
  • the reflecting mirror 6B enters the laser irradiation range, because ⁇ 2 ⁇ ⁇ 1 , therefore, in the direction parallel to the rotation axis X, the reflected light has a large angular deviation, that is, the reflected light of the mirror 6B is also scanned in the plane of the rotation axis X; at the same time, because the laser is rotating
  • the gradual sweep in the vertical plane of the axis X is equivalent to laser scanning in both the plane and the vertical plane of the rotation axis X.
  • each laser transmitter in the foregoing embodiment there is a beam shaper between each laser transmitter in the foregoing embodiment and the corresponding emission fiber, and the beam shaper is used to couple the laser light emitted by the laser transmitter to the corresponding emission fiber.
  • the above-mentioned beam shaper may be a double-cylindrical lens as shown in FIG. 8.
  • the generatrix of the two cylindrical surfaces of the double-cylindrical lens is orthogonal to each other, that is, the generatrix L1 of the cylindrical surface A of the double-cylindrical lens and the column
  • the bus bars L2 of the surface B are orthogonal to each other.
  • the high-power pulse laser diode commonly used in multi-line lidar is an edge emitting semiconductor laser diode (Edge Emitting Laser Diode), and its light source is the end face of the chip P/N junction (PN Junction), that is, the junction of the two planes of the P/N junction Slit.
  • the characteristics of this laser transmitter are: parallel to the direction of the P/N junction plane, the linear size of the beam is larger (for example, 50um to hundreds of um), and the divergence angle is small (for example, 10 degrees); perpendicular to the P/N junction In the direction of the plane, the linear size of the beam is small (for example, 1 um-10um), and the divergence angle is large (for example, 45 degrees).
  • the direction with large linear size and small divergence angle is called slow axis; the direction with small linear size and large divergence angle is called fast axis.
  • the double cylindrical lens shown in FIG. 8 used in this embodiment forms two independent optical systems for the fast axis and the slow axis of the laser beam.
  • the laser light emitted by the laser transmitter passes through the above-mentioned double cylindrical lens, the divergence angle of the fast axis is reduced, and the divergence angle of the slow axis is increased, so that the divergence angle of the light beam on the fast axis and the slow axis is balanced and close. Therefore, the bi-cylindrical lens used in this embodiment can shape an elliptical spot with a large difference between the fast axis and the slow axis into a circle or a square with less difference between the fast axis and the slow axis. The light spot enables the beam to be efficiently coupled into the optical fiber.
  • the aforementioned beam shaper may also be a beam shaper based on optical diffraction.
  • a beam shaper based on optical diffraction includes: a collimator lens 91, a first diffractive element 92 and a second diffractive element 93.
  • the collimating lens 91 is used to collimate the light beam emitted by the laser transmitter in the fast axis direction, and transform the light beam into a long and narrow beam.
  • the collimating lens may be a miniature cylindrical lens.
  • the first diffractive element 92 is used to divide the above-mentioned elongated beam into several beams, except for the central beam, the other beams are respectively deflected to different spatial orientations; the second diffractive element 93 is used to correct the above-mentioned other beams so that The rest of the above-mentioned beams overlap with the central beam and focus on the end face of the corresponding optical fiber.
  • the laser beam passes through the collimator lens 91 and becomes an elongated strip beam, which is divided into three beams by the first diffraction element 92: beam 1, beam 2 (central beam ) And beam 3, beam 1 is deflected downward and to the right; beam 2 is the central beam, maintaining a propagation direction parallel to the optical axis of the system; beam 3 is deflected upward and to the left.
  • the second diffractive element 93 corrects the beam 1 and the beam 3 so that the above beam 1 and the beam 3 overlap the central beam 2 to form a square spot with relatively balanced linear dimensions and divergence angles in both directions of the fast axis and the slow axis, and Focus on the end face of the corresponding fiber.
  • the above-mentioned optical diffraction-based beam shaper can efficiently couple the beam into the optical fiber.
  • another beam shaper based on optical diffraction includes: a first lens 1001, a first diffractive element 1002, a second diffractive element 1003, and a second lens 1004.
  • the first lens 1001 is used to collimate the light beam emitted by the laser transmitter in the fast axis direction into a slender beam;
  • the first diffractive element 1002 is used to divide the above slender beam into several beams, except for the central beam
  • the remaining light beams are deflected to different spatial orientations;
  • the second diffractive element 1003 is used to correct the remaining light beams so that the remaining light beams are parallel to the center beam;
  • the second lens 1004 is used to redirect the light beams from the second
  • the remaining light beams of the diffraction element 1003 overlap the central light beam and focus on the end face of the corresponding optical fiber.
  • the above-mentioned optical diffraction-based beam shaper can efficiently couple the beam into the optical fiber.
  • the laser beam passes through the collimator lens 1001 and becomes a long and narrow strip beam, which is divided into three beams by the first diffractive element 1002: beam 1, beam 2 (central beam ) And beam 3, beam 1 is deflected downward and to the right; beam 2 is the central beam, maintaining a propagation direction parallel to the optical axis of the system; beam 3 is deflected upward and to the left.
  • the second diffraction element 1003 corrects the beam 1 and the beam 3 so that the beam 1 and the beam 3 are parallel to the central beam 2.
  • the second lens 1004 overlaps the parallel beam 1, beam 2 and beam 3 to form a square spot with relatively balanced linear dimensions and divergence angles in both directions of the fast axis and the slow axis, and focuses it on the end face of the corresponding fiber.
  • the above-mentioned optical diffraction-based beam shaper can efficiently couple the beam into the optical fiber.
  • the embodiment of the present invention also provides a laser ranging method.
  • the laser ranging method uses the lidar system provided in the foregoing embodiment to perform laser ranging.
  • the specific structure and working process of the lidar system are as described in the foregoing embodiment. I won't repeat it here.
  • the laser transmitter and the laser receiver are concentrated in the optical transceiver component, and the detection of the laser transmitter emission through the optical fiber
  • the laser is sent to multiple distributed laser scanning components, and the reflected light of the detection laser is also transmitted to the corresponding laser receiver through the optical fiber.
  • the distributed lidar system provided by the embodiments of the present invention can fix the optical transceiver components at any position of the lidar carrier (such as automobiles, aircraft), and the scanning direction and field of view of the lidar can be adjusted by adjusting the number of scanning components and the installation angle Meet different needs.
  • each laser transmitter in the distributed lidar system provided by the embodiment of the present invention corresponds to a transmitting fiber
  • each laser receiver corresponds to a receiving fiber
  • the maintenance and repair costs of equipment can be reduced.
  • a certain scanning component When there is a light path failure, only the laser transmitter and receiver corresponding to the scanning component need to be repaired; and if a laser transmitter or receiver fails, it will not affect other detection light paths.
  • each laser transmitter in the distributed lidar system provided by the embodiment of the present invention corresponds to a transmitting fiber, different scanning components can be configured with different laser transmitters according to actual scanning requirements, for example, lower power The laser transmitter acts as a light source, thereby reducing the cost of lidar.
  • the scanning component of the distributed lidar drives the polygon mirror to rotate through a single axis to realize scanning in two dimensions of the rotation plane and the rotation axis plane.
  • the optical transceiver component and the scanning component are connected by a multi-core fiber connector, the optical transceiver component and the scanning component of the laser radar realize a modular structure, thereby realizing optical transceiver
  • the grouping, disassembly and plug-and-play of components and scanning components reduces the maintenance cost of lidar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明实施例提供一种分布式激光雷达***和激光测距方法。其中分布式激光雷达***包括:一个光收发部件和多个扫描部件,上述光收发部件中包含多个光收发组,其中每个光收发组对应一个扫描部件,上述每个光收发组中包含激光发射器和激光接收器;该分布式激光雷达***还包括与上述激光发射器一一对应的发射光纤,和与上述激光接收器一一对应的接收光纤。本发明实施例提供的分布式激光雷达***,通过每个激光发射器对应一个发射光纤,每个激光接收器对应一个接收光纤,可降低设备维护和维修成本。

Description

一种分布式激光雷达***和激光测距方法
本申请要求于2019年01月31日提交中国专利局、申请号为201910100225.7、发明名称为“一种分布式激光雷达***和激光测距方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及激光探测和测距技术领域,尤其涉及一种激光雷达***和激光测距方法。
背景技术
激光探测和测距(Light Detection And Ranging,LiDAR)***通常被称为激光雷达***。激光雷达的基本工作原理是激光发射器发射激光到目标物体,接收器接收目标物体的反射光,激光雷达根据激光测距原理计算从激光雷达到目标物体的距离。其中,一个激光发射器和一个接收器组成一个激光测距通道。当激光对目标物体不断地扫描,可获得该目标物体上全部目标点的数据,对该数据进行成像处理后可得到该目标物体的三维立体图像。
常见的三维激光雷达是机械旋转式激光雷达,其包含多对激光发射器和接收器,每对激光发射器和接收器朝向不同的空间角度位置,形成扇面覆盖,然后用单轴旋转机构,驱动上述多对激光发射器和接收器整体旋转,实现三维激光扫描。
机械旋转式激光雷达的每个激光测距通道的激光发射器和接收器都需要进行精确校准,以保证对焦准确、发射和接收光轴精确平行,且需要保证相邻激光测距通道之间微小而精确的角度间隔,但是由于激光发射器和接收器都随机械旋转式激光雷达高速旋转,机械旋转式激光雷达的稳定性较低。
发明内容
有鉴于此,本发明实施例提供一种分布式激光雷达***,包含:一个光收发部件和多个扫描部件,上述光收发部件中包含多个光收发组,其中每个光收发组对应一个扫描部件,上述每个光收发组中包含激光发射器和激光接收器;该分布式激光雷达***还包括与上述激光发射器一一对应的发射光纤,和与上述激光接收器一一对应的接收光纤;上述激光发射器用 于发射激光;上述发射光纤的一端与对应的激光发射器耦合,另一端在对应的扫描部件中作为光出射端发射探测激光;上述接收光纤的一端与对应的激光接收器耦合,另一端在对应的扫描部件中作为光入射端接收探测激光的反射光;上述激光接收器用于接收上述接收光纤传导的反射光。
在本发明的一个可选实施例中,当上述光收发组中包含多个激光发射器和多个激光接收器;上述多个激光发射器与多个发射光纤一一对应,上述多个发射光纤的一端分别与对应的激光发射器耦合,上述多个发射光纤的另一端在对应的扫描部件中组成发射光纤阵列,上述发射光纤阵列的端面作为光出射端发射探测激光;上述多个激光接收器与多个接收光纤一一对应,上述多个接收光纤的一端分别与对应的激光接收器耦合,上述多个接收光纤的另一端在对应的扫描部件中组成接收光纤阵列,上述接收光纤阵列的端面作为光入射端接收探测激光的反射光。
在本发明的另一可选实施例中,当上述光收发组中包含一个激光发射器和一个激光接收器;上述一个激光发射器与一个发射光纤对应,上述发射光纤的一端与对应的激光发射器耦合,上述发射光纤的另一端在对应的扫描部件中作为光出射端发射探测激光;上述一个激光接收器与一个接收光纤对应,上述接收光纤的一端与对应的激光接收器耦合,上述接收光纤的另一端在对应的扫描部件中作为光入射端接收探测激光的反射光。
可选地,上述扫描部件中包含发射透镜、接收透镜和反射镜组件,上述反射镜组件包含旋转轴和多个反射镜,每个反射镜的法线与上述旋转轴轴线的夹角度数不相同,上述旋转轴带动上述多个反射镜旋转;上述发射透镜用于将所述探测激光进行准直;上述反射镜组件用于将上述发射透镜准直后的激光反射到探测区域,还用于将探测激光的反射光反射到所述接收透镜;上述接收透镜用于将接收到的反射光汇聚到所述接收光纤。
可选地,上述每个光收发组和对应扫描部件之间的发送光纤通过多芯光纤连接器连接;每个光收发组和对应扫描部件之间的接收光纤通过多芯光纤连接器连接;或者,上述每个光收发组和对应扫描部件之间的发送光纤和接收光纤通过多芯光纤连接器连接。
可选地,上述每个激光接收器与对应的接收光纤之间有一个微透镜,该微透镜用于将上述接收光纤接收到的反射光汇聚到对应的激光接收器。
可选地,上述每个激光发射器与对应的发射光纤之间有一个光束整形器,该光束整形器用于将激光发射器发射的激光耦合到上述对应的发射光纤中。
作为一个可选方案,上述光束整形器是双柱面透镜,上述双柱面透镜的两个柱面的母线相互正交。
作为另一可选方案,上述光束整形器是基于光学衍射的光束整形器,包括:准直透镜,第一衍射元件和第二衍射元件;上述准直透镜用于将上述激光发射器发射的光束在快轴方向进行准直,变成细长条形光束;上述第一衍射元件用于将该细长条形光束分成若干光束,除中心光束外,其余各光束分别偏转向不同的空间方位;上述第二衍射元件用于对上述其余各光束进行校正,使上述其余各光束与上述中心光束重叠,并聚焦到对应发射光纤的端面。
作为又一可选方案,上述光束整形器是基于光学衍射的光束整形器,包括:第一透镜,第一衍射元件、第二衍射元件和第二透镜;上述第一透镜用于将上述激光发射器发射的光束在快轴方向进行准直,变成细长条形光束;上述第一衍射元件用于将该述细长条形光束分成若干光束,除中心光束外,其余各光束分别偏转向不同的空间方位;上述第二衍射元件用于对上述其余各光束进行校正,使上述其余各光束与上述中心光束平行;上述第二透镜用于将来自上述第二衍射元件的上述其余各光束和上述中心光束重叠并聚焦到对应发射光纤的端面。
本发明另一实施例还提供一种激光测距方法,该激光测距方法使用分布式激光雷达***进行激光测距,该分布式激光雷达包含一个光收发部件和多个扫描部件,其中光收发部件中包含多个光收发组,每个光收发组对应一个扫描部件,上述每个光收发组中包含激光发射器和激光接收器;上述分布式激光雷达***还包括与上述激光发射器一一对应的发射光纤,和与上述激光接收器一一对应的接收光纤。上述测距方法包括:上述激光发射器发射激光,上述激光被耦合到与该激光发射器对应的发射光纤中,通过该发射光纤传导到对应扫描部件,并作为探测激光从上述发射光纤的一端发射;上述对应扫描部件中的接收光纤接收上述探测激光的反射光,该探测激光的反射光通过上述接收光纤传导给对应的激光接收器;该激光接收器接收上述接收光纤传导的反射光。
进一步地,上述扫描部件中包含发射透镜、接收透镜和反射镜组件,上述反射镜组件包含旋转轴和多个反射镜,每个反射镜的法线与上述旋转轴轴线的夹角度数不相同。上述激光测距方法还包括:上述旋转轴带动上述多个反射镜旋转;上述发射透镜将上述探测激光进行准直;上述反射镜组件将上述发射透镜准直后的激光反射到探测区域,并将探测激光的反射光反射到上述接收透镜;上述接收透镜将接收到的反射光汇聚到所述接收光纤。
本发明实施例提供的分布式激光雷达***和激光测距方法,将激光发射器和激光接收器集中在光收发部件中,通过光纤将激光发射器发射的探测激光发送到分布式的多个激光扫描 部件,探测激光的反射光也通过光纤传输到对应的激光接收器。本发明实施例提供的分布式激光雷达***可以将光收发部件固定在激光雷达载体(如汽车、飞行器)的任何位置,激光雷达的扫描方向和视场可以通过调整扫描部件的个数和安装角度满足不同需求。进一步地,由于本发明实施例提供的分布式激光雷达***中的每个激光发射器对应一个发射光纤,每个激光接收器对应一个接收光纤,可降低设备维护和维修成本,当某一个扫描部件出现光路故障时,只需检修该扫描部件对应的激光发射器和接收器;并且,如果某一激光发射器或接收器发生故障,不会影响其他探测光路。此外,由于本发明实施例提供的分布式激光雷达***中的每个激光发射器对应一个发射光纤,因此可根据实际扫描需求给不同的扫描部件配置不同的激光发射器,例如选择较低功率的激光发射器作为光源,从而降低激光雷达的成本。
附图说明
为了清楚地说明本发明实施例提供的技术方案,下面将对实施例描述所需要使用的附图作简单介绍。显而易见地,下面描述的附图仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1是本发明实施例提供的分布式激光雷达***的架构图;
图2是本发明实施例提供的分布式激光雷达***中光收发部件的示意图;
图3是本发明实施例提供的分布式激光雷达***的结构示意图;
图4是本发明实施例提供的分布式激光雷达***的另一结构示意图;
图5是本发明实施例提供的分布式激光雷达***的又一结构示意图;
图6是本发明实施例提供的分布式激光雷达***中反射镜组件的结构示意图一;
图7是本发明实施例提供的分布式激光雷达***中反射镜组件的结构示意图二;
图8是本发明实施例提供的中双柱面透镜的结构示意图;
图9是本发明实施例提供的一种基于光学衍射的光束整形器的结构示意图;
图10是本发明实施例提供的另一种基于光学衍射的光束整形器的结构示意图。
具体实施方式
下面将结合本发明实施例的附图,对本发明实施例的技术方案进行详细地描述,显然,以下所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于以下实施例,本领 域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本实施例提供一种分布式激光雷达***,包括一个光收发部件110和多个扫描部件,例如图1所示M个扫描部件120-1、120-2、120-3……120-M,上述光收发部件110和各扫描部件之间通过光纤11、12、13……1M连接。上述光收发部件110中包含多个光收发组,其中每个光收发组对应一个扫描部件。如图2所示,光收发部件110中包含M个光收发组201、301……M01,上述M个光收发组分别对应图1中的M个扫描部件120-1、120-2、120-3……120-M。
上述每个光收发组中包含激光发射器和激光接收器,激光发射器用于发射激光。上述分布式激光雷达***还包括与上述激光发射器一一对应的发射光纤,和与上述激光接收器一一对应的接收光纤;上述发射光纤的一端与对应的激光发射器耦合,另一端在对应的扫描部件中作为光出射端发射探测激光;上述接收光纤的一端与对应的激光接收器耦合,另一端在对应的扫描部件中作为光入射端接收探测激光的反射光。上述激光接收器用于接收上述接收光纤传导的反射光。具体地,上述激光发射器发射的激光被耦合到与该激光发射器对应的发射光纤中,通过该发射光纤传导到对应扫描部件,并作为探测激光从上述发射光纤的一端发射;上述对应扫描部件中的接收光纤接收上述探测激光的反射光,该探测激光的反射光通过上述接收光纤传导给对应的激光接收器;该激光接收器接收上述接收光纤传导的反射光。
可选地,光收发组中可以包含多个激光发射器和多个激光接收器,也可以包含一个激光发射器和一个激光接收器。例如图2所示的每个光发射组中都包含多个激光发射器和多个激光接收器。具体地,光收发组201中包含N 1个激光发射器211-1、211-2……211-N 1,相应地也包含N 1个激光接收器212-1、212-2……212-N 1;光收发组301中包含N 2个激光发射器311-1、311-2……311-N 2,相应地也包含N 2个激光接收器312-1、312-2……312-N 2;光收发组M01中包含N n个激光发射器M11-1、M11-2……M11-N n,相应地也包含N 2个激光接收器M12-1、M12-2……M12-N n
如图3和图4所示,以光收发部件110中的光收发组201以及对应的扫描部件120-1为例,激光发射器211-1、211-2……211-N 1与发射光纤111-1、111-2……111-N 1一一对应;激光接收器212-1、212-2……212-N 1与接收光纤112-1、112-2……112-N 1一一对应。上述N 1个发射光纤111-1、111-2……111-N 1的一端分别与对应的激光发射器211-1、211-2……211-N 1耦合,另一端在对应的扫描部件120-1中组成发射光纤阵列231,该发射光纤阵列231的端面 作为光出射端发射探测激光。上述N 1个接收光纤112-1、112-2……112-N 1的一端分别与对应的激光接收器212-1、212-2……212-N 1耦合,另一端在对应的扫描部件120-1中组成接收光纤阵列232,该接收光纤阵列232的端面作为光入射端接收探测激光的反射光。
作为一个可选实施例,如图3所示,光收发组201和对应扫描部件120-1之间的发送光纤111-1、111-2……111-N 1可以通过多芯光纤连接器221连接;光收发组201和对应扫描部件120-1之间的接收光纤112-1、112-2……112-N 1通过多芯光纤连接器222连接。
作为另一可选实施例,如图4所示,光收发组201和对应扫描部件120-1之间的发送光纤111-1、111-2……111-N 1和接收光纤112-1、112-2……112-N 1通过多芯光纤连接器220连接。
图5示出的是光收发部件60中的一个光收发组601中包含一个激光发射器61和一个激光接收器62的实施例。激光发射器61与发射光纤610对应,该发射光纤610的一端与对应的激光发射器61耦合,另一端在对应的扫描部件70中作为光出射端发射探测激光。激光接收器62与接收光纤620对应,该接收光纤620的一端与对应的激光接收器62耦合,另一端在对应的扫描部件70中作为光入射端接收探测激光的反射光。
进一步地,上述实施例中的扫描部件中包含发射透镜、接收透镜和反射镜组件,其中反射镜组件包含旋转轴和多个反射镜,每个反射镜的法线与上述旋转轴轴线的夹角度数不相同。上述旋转轴带动上述多个反射镜旋转,上述发射透镜将上述探测激光进行准直,上述反射镜组件将上述发射透镜准直后的激光反射到探测区域,并将探测激光的反射光反射到上述接收透镜;上述接收透镜将接收到的反射光汇聚到所述接收光纤。
如图3、图4和图5所示,本发明实施例中的扫描部件120-1和70中包含发射透镜241、接收透镜242和反射镜组件25。该反射镜组件25包含旋转轴和多个反射镜,旋转轴带动上述多个反射镜旋转,并且每个反射镜的法线与所述旋转轴轴线的夹角度数不相同;发射透镜241用于将上述探测激光进行准直;反射镜组件25用于将上述发射透镜241准直后的激光反射到探测区域,还用于将探测激光的反射光反射到接收透镜242;接收透镜242用于将接收到的反射光汇聚到接收光纤。
作为一个具体实施方式,上述发射光纤阵列231可以是一维光纤阵列或二维光纤阵列,上述发射光纤阵列231的端面在上述发射透镜241的焦平面上。上述接收光纤阵列232可以是一维光纤阵列或二维光纤阵列,上述接收光纤阵列232的端面在上述接收透镜242的焦平面上。
如图6和图7所示,以反射镜组件25包含3个反射镜为例,介绍反射镜组件25的结构。
如图6所示,反射镜组件25包含旋转轴251和反射镜6A、6B、6C,旋转轴251带动反射镜6A、6B、6C旋转。每个反射镜的法线与旋转轴轴线的夹角度数不相同。如图7所示,旋转轴251的轴线为X,反射镜6A与旋转轴251轴线X的夹角度数为θ 1,反射镜6B与旋转轴251轴线X的夹角度数为θ 2,反射镜6C与旋转轴251轴线X的夹角度数为θ 3(图中未示出),θ 1、θ 2和θ 3不相同。在具体实现过程中,可以通过电机旋转带动旋转轴旋转,本发明不限定电机与旋转轴的连接方式、以及各反射镜与旋转轴的连接方式,因此图中未示出,本领域技术人员可根据实际需要选择连接方式。
上述反射镜组件25的3面反射镜在电机驱动下旋转,依次进入激光照射范围,将激光反射,改变了激光的传播方向。具体地,随着旋转轴251的转动,反射镜6A使激光的反射光在旋转轴线X的垂直面内扫描,随着旋转轴251的继续转动,反射镜6B进入激光照射范围,由于θ 2≠θ 1,因此,在平行于旋转轴线X的方向内,反射光发生了大的角度偏移,即反射镜6B的反射光在旋转轴线X的平面内也进行了扫描;同时,由于激光在旋转轴线X的垂直面内逐渐扫过,相当于在旋转轴线X的平面和垂直面两个方向上,都产生了激光扫描。
作为可选实施例,上述实施例中的每个激光发射器与对应的发射光纤之间有一个光束整形器,该光束整形器用于将激光发射器发射的激光耦合到对应的发射光纤中。作为另一可选实施例,上述实施例中每个激光接收器与对应的接收光纤之间有一个微透镜,该微透镜用于将接收光纤接收到的反射光汇聚到对应的激光接收器。
可选地,上述光束整形器可以是图8所示的双柱面透镜,该双柱面透镜的两个柱面的母线相互正交,即双柱面透镜的柱面A的母线L1和柱面B的母线L2相互正交。
多线激光雷达常用的高功率脉冲激光二极管是边发射半导体激光二极管(Edge Emitting Laser Diode),其发光源是芯片P/N结(P-N Junction)的端面,即P/N结两个平面交界的狭缝。这种激光发射器的特性是:平行于P/N结平面的方向,光束的线性尺寸较大(例如50um至数百um),发散角较小(例如10度);垂直于P/N结平面的方向,光束的线性尺寸较小(例如1 um-10um),发散角较大(例如45度)。线性尺寸大、发散角小的方向,被称为慢轴(Slow Axis);线性尺寸小、发散角大的方向,被称为快轴(Fast Axis)。
本实施例采用的图8所示的双柱面透镜对激光光束的快轴和慢轴分别构成两个独立的光学***。激光发射器发出的激光经过上述双柱面透镜,快轴的发散角减小、慢轴的发散角增加,从而实现光束在快轴和慢轴的发散角均衡、接近。因此,本实施例采用的双柱面透镜可 以将快轴和慢轴两个方向差异性很大的椭圆形光斑,整形为快轴和慢轴两个方向的差异性较小的圆形或方形光斑,使光束高效耦合到光纤中。
可选地,上述光束整形器还可以是基于光学衍射的光束整形器。作为一种实现方式,如图9所示,一种基于光学衍射的光束整形器包括:准直透镜91,第一衍射元件92和第二衍射元件93。准直透镜91用于将激光发射器发射的光束在快轴方向进行准直,将光束变成细长条形光束。作为一个可选实施方案,该准直透镜可以是微型柱面镜。第一衍射元件92用于将上述细长条形光束分成若干光束,除中心光束外,其余各光束分别偏转向不同的空间方位;第二衍射元件93用于对上述其余各光束进行校正,使上述其余各光束与中心光束重叠,并聚焦到对应光纤的端面。
具体地,如图9所示,激光光束经过准直透镜91后变成细长条形光束,该细长条形光束被第一衍射元件92分成3个光束:光束1、光束2(中心光束)和光束3,光束1向下、向右偏转;光束2是中心光束,保持与***光轴平行的传播方向;光束3向上、向左偏转。第二衍射元件93对光束1和光束3进行校正,使上述光束1和光束3与中心光束2重叠,形成快轴和慢轴两个方向的线性尺寸和发散角都相对均衡的方形光斑,并聚焦到对应光纤的端面。上述基于光学衍射的光束整形器可以使光束高效地耦合到光纤中。
作为另一种实现方式,如图10所示,另一种基于光学衍射的光束整形器包括:第一透镜1001,第一衍射元件1002、第二衍射元件1003和第二透镜1004。第一透镜1001用于将激光发射器发射的光束在快轴方向进行准直,变成细长条形光束;第一衍射元件1002用于将上述细长条形光束分成若干光束,除中心光束外,其余各光束分别偏转向不同的空间方位;第二衍射元件1003用于对上述其余各光束进行校正,使上述其余各光束与上述中心光束平行;第二透镜1004用于将来自上述第二衍射元件1003的上述其余各光束和上述中心光束重叠并聚焦到对应光纤的端面。上述基于光学衍射的光束整形器可以使光束高效地耦合到光纤中。
具体地,如图10所示,激光光束经过准直透镜1001后变成细长条形光束,该细长条形光束被第一衍射元件1002分成3个光束:光束1、光束2(中心光束)和光束3,光束1向下、向右偏转;光束2是中心光束,保持与***光轴平行的传播方向;光束3向上、向左偏转。第二衍射元件1003对光束1和光束3进行校正,使上述光束1和光束3与中心光束2平行。第二透镜1004将平行的光束1、光束2和光束3重叠,形成快轴和慢轴两个方向的线性尺寸和发散角都相对均衡的方形光斑,并聚焦到对应光纤的端面。上述基于光学衍射的光束整形器可以使光束高效地耦合到光纤中。
本发明实施例还提供一种激光测距方法,该激光测距方法使用前述实施例提供的激光雷达***进行激光测距,该激光雷达***的具体结构和工作过程如上述实施例所述,此处不再赘述。
本发明实施例提供的分布式激光雷达***和使用该分布式激光雷达***进行激光测距的方法,将激光发射器和激光接收器集中在光收发部件中,通过光纤将激光发射器发射的探测激光发送到分布式的多个激光扫描部件,探测激光的反射光也通过光纤传输到对应的激光接收器。本发明实施例提供的分布式激光雷达***可以将光收发部件固定在激光雷达载体(如汽车、飞行器)的任何位置,激光雷达的扫描方向和视场可以通过调整扫描部件的个数和安装角度满足不同需求。进一步地,由于本发明实施例提供的分布式激光雷达***中的每个激光发射器对应一个发射光纤,每个激光接收器对应一个接收光纤,可降低设备维护和维修成本,当某一个扫描部件出现光路故障时,只需检修该扫描部件对应的激光发射器和接收器;并且,如果某一激光发射器或接收器发生故障,不会影响其他探测光路。此外,由于本发明实施例提供的分布式激光雷达***中的每个激光发射器对应一个发射光纤,因此可根据实际扫描需求给不同的扫描部件配置不同的激光发射器,例如选择较低功率的激光发射器作为光源,从而降低激光雷达的成本。
同时,本发明实施例提供的分布式激光雷达的扫描部件,通过单轴驱动多面反射镜旋转,实现在旋转平面和旋转轴线平面两个维度的扫描。
此外,本发明实施例提供的激光雷达***,由于光收发部件与扫描部件之间的光纤通过多芯光纤连接器连接,使激光雷达的光收发部件和扫描部件实现模块化结构,从而实现光收发部件和扫描部件的分组拆装和即插即用,降低了激光雷达的维护成本。
以上实施例和附图仅为本发明技术方案的示例性说明,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种分布式激光雷达***,其特征在于,包含:一个光收发部件和多个扫描部件,所述光收发部件中包含多个光收发组,其中每个光收发组对应一个扫描部件,所述每个光收发组中包含激光发射器和激光接收器;
    所述分布式激光雷达***还包括与所述激光发射器一一对应的发射光纤,和与所述激光接收器一一对应的接收光纤;
    所述激光发射器用于发射激光;
    所述发射光纤的一端与对应的激光发射器耦合,另一端在对应的扫描部件中作为光出射端发射探测激光;
    所述接收光纤的一端与对应的激光接收器耦合,另一端在对应的扫描部件中作为光入射端接收探测激光的反射光;
    所述激光接收器用于接收所述接收光纤传导的反射光。
  2. 根据权利要求1所述的分布式激光雷达***,其特征在于,当所述光收发组中包含多个激光发射器和多个激光接收器;
    所述多个激光发射器与多个发射光纤一一对应,所述多个发射光纤的一端分别与对应的激光发射器耦合,所述多个发射光纤的另一端在对应的扫描部件中组成发射光纤阵列,所述发射光纤阵列的端面作为光出射端发射探测激光;
    所述多个激光接收器与多个接收光纤一一对应,所述多个接收光纤的一端分别与对应的激光接收器耦合,所述多个接收光纤的另一端在对应的扫描部件中组成接收光纤阵列,所述接收光纤阵列的端面作为光入射端接收探测激光的反射光。
  3. 根据权利要求1所述的分布式激光雷达***,其特征在于,当所述光收发组中包含一个激光发射器和一个激光接收器;
    所述一个激光发射器与一个发射光纤对应,所述发射光纤的一端与对应的激光发射器耦合,所述发射光纤的另一端在对应的扫描部件中作为光出射端发射探测激光;
    所述一个激光接收器与一个接收光纤对应,所述接收光纤的一端与对应的激光接收器耦合,所述接收光纤的另一端在对应的扫描部件中作为光入射端接收探测激光的反射光。
  4. 根据权利要求1-3任一所述的分布式激光雷达***,其特征在于,所述扫描部件中包含发射透镜、接收透镜和反射镜组件,所述反射镜组件包含旋转轴和多个反射镜,每个反射镜的法线与所述旋转轴轴线的夹角度数不相同,所述旋转轴带动所述多个反射镜旋转;
    所述发射透镜用于将所述探测激光进行准直;
    所述反射镜组件用于将所述发射透镜准直后的激光反射到探测区域,还用于将探测激光的反射光反射到所述接收透镜;
    所述接收透镜用于将接收到的反射光汇聚到所述接收光纤。
  5. 根据权利要求1-3任一所述的分布式激光雷达***,其特征在于,所述每个光收发组和对应扫描部件之间的发送光纤通过多芯光纤连接器连接;每个光收发组和对应扫描部件之间的接收光纤通过多芯光纤连接器连接。
  6. 根据权利要求1-3任一所述的分布式激光雷达***,其特征在于,所述每个光收发组和对应扫描部件之间的发送光纤和接收光纤通过多芯光纤连接器连接。
  7. 根据权利要求1-3任一所述的分布式激光雷达***,其特征在于,所述每个激光发射器与对应的发射光纤之间有一个光束整形器,所述光束整形器用于将激光发射器发射的激光耦合到所述对应的发射光纤中。
  8. 根据权利要求7所述的分布式激光雷达***,其特征在于,所述光束整形器是双柱面透镜,所述双柱面透镜的两个柱面的母线相互正交。
  9. 根据权利要求7所述的分布式激光雷达***,其特征在于,所述光束整形器是基于光学衍射的光束整形器,包括:准直透镜,第一衍射元件和第二衍射元件;
    所述准直透镜,用于将所述激光发射器发射的光束在快轴方向进行准直,变成细长条形光束;
    所述第一衍射元件,用于将所述细长条形光束分成若干光束,除中心光束外,其余各光束分别偏转向不同的空间方位;
    所述第二衍射元件,用于对所述其余各光束进行校正,使所述其余各光束与所述中心光束重叠,并聚焦到对应发射光纤的端面。
  10. 根据权利要求7所述的分布式激光雷达***,其特征在于,所述光束整形器是基于光学衍射的光束整形器,包括:第一透镜,第一衍射元件、第二衍射元件和第二透镜;
    所述第一透镜,用于将所述激光发射器发射的光束在快轴方向进行准直,变成细长条形光束;
    所述第一衍射元件,用于将所述细长条形光束分成若干光束,除中心光束外,其余各光束分别偏转向不同的空间方位;
    所述第二衍射元件,用于对所述其余各光束进行校正,使所述其余各光束与所述中心光 束平行;
    所述第二透镜,用于将来自所述第二衍射元件的所述其余各光束和所述中心光束重叠并聚焦到对应发射光纤的端面。
  11. 根据权利要求1-3任一所述的分布式激光雷达***,其特征在于,所述每个激光接收器与对应的接收光纤之间有一个微透镜,所述微透镜用于将所述接收光纤接收到的反射光汇聚到对应的激光接收器。
  12. 一种激光测距方法,其特征在于,使用分布式激光雷达***进行激光测距,所述分布式激光雷达包含一个光收发部件和多个扫描部件,所述光收发部件中包含多个光收发组,其中每个光收发组对应一个扫描部件,所述每个光收发组中包含激光发射器和激光接收器;所述分布式激光雷达***还包括与所述激光发射器一一对应的发射光纤,和与所述激光接收器一一对应的接收光纤;所述测距方法包括:
    所述激光发射器发射激光;
    所述激光被耦合到与所述激光发射器对应的发射光纤中,通过所述发射光纤传导到对应扫描部件,并作为探测激光从所述发射光纤的一端发射;
    所述对应扫描部件中的接收光纤接收所述探测激光的反射光,所述探测激光的反射光通过所述接收光纤传导给对应的激光接收器;
    所述激光接收器接收所述接收光纤传导的反射光。
  13. 根据权利要求12所述的激光测距方法,其特征在于,所述扫描部件中包含发射透镜、接收透镜和反射镜组件,所述反射镜组件包含旋转轴和多个反射镜,每个反射镜的法线与所述旋转轴轴线的夹角度数不相同;所述激光测距方法还包括:
    所述旋转轴带动所述多个反射镜旋转;
    所述发射透镜将所述探测激光进行准直;
    所述反射镜组件将所述发射透镜准直后的激光反射到探测区域,并将探测激光的反射光反射到所述接收透镜;
    所述接收透镜将接收到的反射光汇聚到所述接收光纤。
PCT/CN2020/073448 2019-01-31 2020-01-21 一种分布式激光雷达***和激光测距方法 WO2020156372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910100225.7A CN109581400A (zh) 2019-01-31 2019-01-31 一种分布式激光雷达***和激光测距方法
CN201910100225.7 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020156372A1 true WO2020156372A1 (zh) 2020-08-06

Family

ID=65918529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073448 WO2020156372A1 (zh) 2019-01-31 2020-01-21 一种分布式激光雷达***和激光测距方法

Country Status (2)

Country Link
CN (1) CN109581400A (zh)
WO (1) WO2020156372A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020098771A1 (zh) * 2018-11-16 2020-05-22 上海禾赛光电科技有限公司 一种激光雷达***
CN109581400A (zh) * 2019-01-31 2019-04-05 无锡流深光电科技有限公司 一种分布式激光雷达***和激光测距方法
CN111830531A (zh) * 2019-04-12 2020-10-27 华为技术有限公司 光扫描组件及激光雷达
CN110579138B (zh) * 2019-07-12 2022-03-15 赵玉忠 一种高射炮实弹射击报靶方法、***及装置
CN110411342B (zh) * 2019-07-31 2021-10-15 武汉理工大学 光纤到位传感器和光纤到位传感***及到位检测方法
WO2021035427A1 (zh) * 2019-08-23 2021-03-04 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备
CN110531371A (zh) * 2019-09-27 2019-12-03 无锡流深光电科技有限公司 一种激光雷达和激光测距方法
CN112578390A (zh) * 2019-09-29 2021-03-30 睿镞科技(北京)有限责任公司 激光雷达及生成激光点云数据的方法
CN111766587A (zh) * 2020-06-11 2020-10-13 苏州玖物互通智能科技有限公司 一种多线激光雷达光学***
CN113835080A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种雷达及交通工具
CN113050102A (zh) * 2021-04-15 2021-06-29 深圳市镭神智能***有限公司 一种激光雷达***
CN113820721B (zh) * 2021-10-09 2022-09-30 探维科技(北京)有限公司 一种收发分离的激光雷达***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520412A (zh) * 2011-11-18 2012-06-27 西安交通大学 基于微机械mems 二维扫描镜阵列的激光主动探测装置
CN108445468A (zh) * 2018-04-03 2018-08-24 上海禾赛光电科技有限公司 一种分布式激光雷达
CN208188335U (zh) * 2018-04-04 2018-12-04 无锡流深光电科技有限公司 一种激光雷达***
CN109581400A (zh) * 2019-01-31 2019-04-05 无锡流深光电科技有限公司 一种分布式激光雷达***和激光测距方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2125572B (en) * 1982-08-03 1985-12-24 Standard Telephones Cables Ltd Optical fibre sensors
DE102015217908A1 (de) * 2015-09-18 2017-03-23 Robert Bosch Gmbh Lidarsensor
CN106371085A (zh) * 2016-10-27 2017-02-01 上海博未传感技术有限公司 一种基于光纤阵列的激光雷达***
CN209746129U (zh) * 2019-01-31 2019-12-06 无锡流深光电科技有限公司 一种分布式激光雷达***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520412A (zh) * 2011-11-18 2012-06-27 西安交通大学 基于微机械mems 二维扫描镜阵列的激光主动探测装置
CN108445468A (zh) * 2018-04-03 2018-08-24 上海禾赛光电科技有限公司 一种分布式激光雷达
CN208188335U (zh) * 2018-04-04 2018-12-04 无锡流深光电科技有限公司 一种激光雷达***
CN109581400A (zh) * 2019-01-31 2019-04-05 无锡流深光电科技有限公司 一种分布式激光雷达***和激光测距方法

Also Published As

Publication number Publication date
CN109581400A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2020156372A1 (zh) 一种分布式激光雷达***和激光测距方法
US10305247B2 (en) Radiation source with a small-angle scanning array
WO2020187103A1 (zh) 一种棱镜及多线激光雷达***
WO2020182024A1 (zh) 激光收发模块及激光雷达***
CN208188335U (zh) 一种激光雷达***
WO2019196135A1 (zh) 一种激光雷达***和激光测距方法
WO2021035428A1 (zh) 激光雷达及自动驾驶设备
JP2020531826A (ja) コリメートを行うカバー要素によって覆われたスキャンミラーを備えた送信器
JP2021517634A (ja) レーザーレーダーシステム及びレーザー測距方法
CN110389355B (zh) 一种多线激光雷达
WO2020248336A1 (zh) 多线激光雷达
US20190317195A1 (en) Lidar system and laser ranging method
WO2021143665A1 (zh) 一种棱镜及多线激光雷达
WO2020164221A1 (zh) 一种收发装置及激光雷达
CN108872965A (zh) 一种激光雷达
CN208188336U (zh) 一种激光雷达***
US20230035528A1 (en) Lidar and automated driving device
CN110531369B (zh) 一种固态激光雷达
CN111830531A (zh) 光扫描组件及激光雷达
US20230145710A1 (en) Laser receiving device, lidar, and intelligent induction apparatus
CN209746129U (zh) 一种分布式激光雷达***
CN111366907B (zh) 一种mems三维激光雷达***
WO2021035427A1 (zh) 激光雷达及自动驾驶设备
CN110531371A (zh) 一种激光雷达和激光测距方法
CN108226952A (zh) 一种激光扫描成像***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748685

Country of ref document: EP

Kind code of ref document: A1