WO2020155888A1 - 调光玻璃的驱动电路及驱动方法、调光玻璃装置 - Google Patents

调光玻璃的驱动电路及驱动方法、调光玻璃装置 Download PDF

Info

Publication number
WO2020155888A1
WO2020155888A1 PCT/CN2019/125283 CN2019125283W WO2020155888A1 WO 2020155888 A1 WO2020155888 A1 WO 2020155888A1 CN 2019125283 W CN2019125283 W CN 2019125283W WO 2020155888 A1 WO2020155888 A1 WO 2020155888A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
output
sub
signal
Prior art date
Application number
PCT/CN2019/125283
Other languages
English (en)
French (fr)
Inventor
王永波
孟晨
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP19913675.5A priority Critical patent/EP3920174B1/en
Priority to US16/766,812 priority patent/US11467436B2/en
Publication of WO2020155888A1 publication Critical patent/WO2020155888A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/08Arrangements within a display terminal for setting, manually or automatically, display parameters of the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the embodiment of the present disclosure relates to a driving circuit and a driving method of a dimming glass, and a dimming glass device.
  • Dimming glass is also called electrically controlled dimming glass, electrically controlled liquid crystal glass or smart dimming glass, etc. It is a functional laminated glass product formed by sandwiching a high-tech liquid crystal film between two layers of glass after high temperature and high pressure processing. .
  • the dimmer glass can be switched between a transparent state and an opaque state by various methods such as electric control, temperature control, light control, or voltage control. Due to various constraints, almost all of the dimming glasses that are mass-produced on the market are electronically controlled dimming glasses. For example, when the power supply of the dimmer glass is turned off, the liquid crystal molecules in the dimmer glass will appear irregularly dispersed.
  • the electronically controlled dimmer glass has a transparent and opaque appearance; when the dimmer glass is energized, the The liquid crystal molecules in the light glass are arranged neatly, and light can pass through freely. At this time, the light-adjusting glass is instantly transparent.
  • a dye is a substance that absorbs light of a specific wavelength and can make the light reflected from or transmitted through it appear colorful.
  • dyes are added to the liquid crystal, due to the structural characteristics of the liquid crystal molecules, the absorption of light along the molecular axis and the direction perpendicular to the molecular axis are different, so the dye molecules dissolved in the liquid crystal can be affected by the electric field. , With the different orientation of the molecules, showing different colors.
  • At least one embodiment of the present disclosure provides a driving circuit for dimming glass, which includes a controller and a voltage regulating circuit.
  • the input terminal of the controller receives a control instruction, and is configured to output a voltage control signal at the output terminal of the controller according to the control instruction; the control input terminal of the voltage regulation circuit and the output terminal of the controller Connected, the power input terminal of the voltage regulation circuit is connected to the first power source, the voltage output terminal of the voltage regulation circuit is connected to the voltage input terminal of the dimming glass, and is configured to be connected to the voltage control signal according to the voltage control signal.
  • the voltage output terminal of the voltage adjusting circuit generates an output voltage signal; the output voltage signal adjusts the light transmittance of the light adjusting glass by controlling the degree of deflection of the liquid crystal molecules in the light adjusting glass.
  • the voltage adjustment circuit includes a voltage adjustment sub-circuit and a voltage output sub-circuit.
  • the control input terminal of the voltage regulation sub-circuit receives the voltage control signal, and its power input terminal is connected to the first power source to receive the first voltage signal, and is configured to operate at its voltage output terminal according to the voltage control signal.
  • Output a second voltage signal wherein the voltage of the first voltage signal is different from the voltage of the second voltage signal; and the voltage input terminal of the voltage output sub-circuit receives the second voltage signal and is configured to Outputting the output voltage signal at its voltage output terminal based on the second voltage signal to control the light transmittance of the dimming glass.
  • the first voltage signal and the second voltage signal are direct current voltage signals.
  • the voltage output sub-circuit includes: a driving sub-circuit and an output sub-circuit.
  • the voltage input terminal of the driving sub-circuit is connected with the output terminal of the controller to receive a driving control signal
  • the power input terminal of the driving sub-circuit is connected with a second power source and is configured to amplify the driving control signal and Output at its voltage output end
  • the drive control end of the output sub-circuit is connected to the voltage output end of the drive sub-circuit to receive the amplified drive control signal
  • the voltage input end of the output sub-circuit is connected to the
  • the voltage output terminal of the voltage regulation sub-circuit is connected to receive the second voltage signal, and is configured to output the voltage output terminal at its voltage output terminal under the control of the amplified drive control signal. Output voltage signal.
  • the controller outputs the driving control signal to the voltage input terminal of the driving sub-circuit according to the refresh frequency.
  • the output voltage signal output by the output sub-circuit is an AC voltage signal, the amplitude of which is the same as the amplitude of the second voltage signal, and the alternating frequency
  • the refresh frequency is the same as that of the controller.
  • the voltage output terminal of the driving sub-circuit includes a first output terminal, a second output terminal, a third output terminal, and a fourth output terminal.
  • the voltage output terminal includes a first voltage output terminal and a second voltage output terminal
  • the output sub-circuit includes: a first transistor, a second transistor, a third transistor, and a fourth transistor.
  • the gate of the first transistor is connected to the first output terminal of the driving sub-circuit to receive the amplified driving control signal, and the first pole of the first transistor is connected to the voltage output of the voltage regulating sub-circuit
  • the second terminal of the first transistor is connected to the first voltage output terminal of the output sub-circuit; the gate of the second transistor is connected to the first voltage output terminal of the driving sub-circuit.
  • Two output terminals are connected to receive the amplified drive control signal, the first pole of the second transistor is connected to the voltage output terminal of the voltage regulation sub-circuit to receive the second voltage signal, and the second transistor Is connected to the second voltage output terminal of the output sub-circuit; the gate of the third transistor is connected to the third output terminal of the drive sub-circuit to receive the amplified drive control signal, so The first pole of the third transistor is connected to the first voltage terminal to receive a third voltage signal, the second pole of the third transistor is connected to the first voltage output terminal of the output sub-circuit; and The gate of the four transistor is connected to the fourth output terminal of the driving sub-circuit to receive the amplified drive control signal, and the first electrode of the fourth transistor is connected to the first voltage terminal to receive the first voltage terminal. For three voltage signals, the second pole of the fourth transistor is connected to the second voltage output terminal of the output sub-circuit.
  • the output sub-circuit further includes a bootstrap circuit, and the voltage input terminal of the bootstrap circuit is connected to the voltage output terminal of the output sub-circuit to receive the output.
  • the voltage signal is configured to control the voltage of the voltage input terminal of the output sub-circuit according to the output voltage signal.
  • the bootstrap circuit includes: a first capacitor, a first diode, a second capacitor, and a second diode.
  • the first terminal of the first capacitor is connected to the second electrode of the first transistor, and the second terminal of the first capacitor is connected to the gate of the first transistor; the second terminal of the first diode One pole is connected to the second power source, the second pole of the first diode is connected to the gate of the first transistor; the first end of the second capacitor is connected to the second transistor of the second transistor.
  • the second terminal of the second capacitor is connected to the gate of the second transistor; and the first electrode of the second diode is connected to the second power source, and the second diode The second pole of is connected to the gate of the second transistor.
  • the voltage adjustment sub-circuit includes: a digitally controlled potentiometer, a resistor, and an analog-to-digital converter.
  • the first terminal of the numerically controlled potentiometer serves as the control input terminal of the voltage regulation sub-circuit and is connected to the output terminal of the controller to receive the voltage control signal
  • the second terminal of the numerically controlled potentiometer serves as the voltage
  • the power input terminal of the regulating sub-circuit is connected to the first power source to receive the first voltage signal
  • the third terminal of the digitally controlled potentiometer serves as the voltage output terminal of the voltage regulating sub-circuit to output the second voltage signal
  • the first end of the resistor is connected to the third end of the digitally controlled potentiometer; and the first end of the analog-to-digital converter is connected to the second end of the resistor, and the second end of the analog-to-digital converter is connected
  • the terminal is connected with the numerical control potentiometer.
  • the drive circuit provided by some embodiments of the present disclosure further includes a filter circuit connected to the voltage output terminal of the output sub-circuit and configured to filter the output voltage signal output by the output sub-circuit DC voltage.
  • At least one embodiment of the present disclosure further provides a dimming glass device, including: the driving circuit and the dimming glass provided in any embodiment of the present disclosure.
  • the dimming glass includes liquid crystal molecules, and is connected to the voltage output terminal of the driving circuit through its voltage input terminal to receive the output voltage signal, so as to control the deflection of the liquid crystal molecules under the control of the output voltage signal degree.
  • the dimming glass further includes: a first transparent substrate and a second transparent substrate disposed opposite to the first transparent substrate; the liquid crystal molecules are located in the The first transparent substrate and the second transparent substrate are deflected under the control of the output voltage signal output by the driving circuit.
  • the liquid crystal molecules are dye liquid crystal molecules.
  • the dimming glass device provided by some embodiments of the present disclosure further includes a display unit; the display unit is configured to display control information to send the control instruction to the controller according to an operation on the control information.
  • the dimming glass device provided by some embodiments of the present disclosure further includes a control unit configured to send the control instruction to the controller.
  • the dimming glass device provided by some embodiments of the present disclosure further includes a key unit; the key unit is configured to send the control instruction to the controller.
  • At least one embodiment of the present disclosure further provides a driving method of a driving circuit of a dimming glass, including: receiving the control instruction, and the controller outputs the voltage control signal at its output terminal according to the control instruction;
  • the voltage adjustment circuit generates the output voltage signal at its voltage output terminal according to the voltage control signal;
  • the output voltage signal adjusts the transparency of the light adjustment glass by controlling the degree of deflection of the liquid crystal molecules in the light adjustment glass. Luminosity.
  • FIG. 1 is a schematic diagram of a dimming glass device provided by some embodiments of the disclosure.
  • FIG. 2 is a schematic diagram of a dimming glass provided by some embodiments of the present disclosure.
  • FIG. 3 is a schematic block diagram of a driving circuit provided by some embodiments of the disclosure.
  • 4A is a diagram showing an example of the relationship between the light transmittance of a dimming glass and the voltage applied to the dimming glass according to some embodiments of the disclosure
  • 4B is a waveform diagram of an example of an output voltage signal provided by some embodiments of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a driving circuit in another dimming glass device provided by some embodiments of the disclosure.
  • FIG. 6A is a schematic structural diagram of an example of a voltage regulation sub-circuit provided by some embodiments of the present disclosure.
  • 6B is a circuit diagram of a specific implementation example of an output sub-circuit in a dimming glass device provided by some embodiments of the present disclosure
  • FIG. 7A is a schematic diagram when the output sub-circuit shown in FIG. 6B is in the first stage shown in FIG. 4B;
  • FIG. 7B is a schematic diagram when the output sub-circuit shown in FIG. 6B is in the second stage shown in FIG. 4B;
  • FIG. 8 is a schematic structural diagram of yet another dimming driving device according to some embodiments of the disclosure.
  • FIG. 9 is a schematic diagram of another dimming glass device provided by some embodiments of the disclosure.
  • FIG. 10 is a main program control flowchart of a controller provided by some embodiments of the present disclosure.
  • FIG 11 is a flowchart of the interrupt subroutine shown in Figure 10.
  • FIG. 12 is a flowchart of a driving method of a driving circuit provided by some embodiments of the present disclosure.
  • the light transmittance of the dimming glass can be changed, so that the brightness and color of the dimming glass can be adjusted.
  • the dye liquid crystal molecules belong to a capacitive load. For example, it can be driven by providing an alternating current signal to the dimming glass to prevent the dye liquid crystal from being polarized.
  • the light transmittance of the light switch glass is related to the degree of deflection of the dye liquid crystal molecules, and the degree of deflection of the dye liquid crystal molecules is related to the amplitude of the alternating current signal applied to the light switch glass, how can the light transmittance of the light switch glass be The need to provide an AC signal with adjustable amplitude has become an urgent problem to be solved.
  • At least one embodiment of the present disclosure provides a driving circuit for dimming glass, including a controller and a voltage regulating circuit.
  • the input terminal of the controller receives the control instruction and is configured to output a voltage control signal at its output terminal according to the control instruction;
  • the control input terminal of the voltage regulation circuit is connected to the output terminal of the controller, and the power input terminal is connected to the first power source.
  • the voltage output terminal is connected to the voltage input terminal of the dimming glass, and is configured to generate an output voltage signal at its voltage output terminal according to the voltage control signal; the output voltage signal adjusts the adjustment by controlling the degree of deflection of the liquid crystal molecules in the dimming glass
  • the transmittance of light glass At least one embodiment of the present disclosure also provides a dimming glass device and driving method corresponding to the above-mentioned driving circuit.
  • the driving circuit of the dimming glass provided by the above-mentioned embodiments of the present disclosure can generate an alternating current signal with an adjustable amplitude as required, and the degree of deflection of the liquid crystal molecules in the dimming glass is controlled by the alternating current signal to adjust the degree of deflection of the dimming glass.
  • the light transmittance can realize the adjustment of the brightness of the dimming glass, which improves the market competitiveness of the dimming glass.
  • FIG. 1 is a schematic diagram of a dimming glass device provided by some embodiments of the disclosure.
  • the dimming glass device provided by some embodiments of the present disclosure will be described in detail.
  • the dimming glass device 10 includes a driving circuit 100 and a dimming glass 200.
  • the driving circuit 100 is used to generate an output voltage signal for controlling the brightness of the dimming glass 200 and output it at its voltage output terminal OUT1.
  • the dimming glass 200 includes liquid crystal molecules 201, the voltage input terminal INT1 of which is connected to the voltage output terminal OUT1 of the driving circuit 100 to receive the output voltage signal output by the voltage output terminal OUT1, and the modulation is controlled under the control of the output voltage signal.
  • the degree of deflection of the liquid crystal molecules 201 in the light glass 200 is used to adjust the light transmittance of the light control glass, so that the brightness of the light control glass can be changed as required.
  • FIG. 2 is a schematic diagram of a dimming glass provided by some embodiments of the present disclosure, that is, FIG. 2 is a schematic structural diagram of an example of the dimming glass 200 shown in FIG. 1.
  • the dimming glass 200 includes: a first transparent substrate 202, a second transparent substrate 203 and a liquid crystal layer including liquid crystal molecules 201.
  • the first transparent substrate 202 and the second transparent substrate 203 are arranged opposite to each other, for example, the frame sealant 204 is used to align the cells, and the liquid crystal molecules 201 are located between the first transparent substrate 202 and the second transparent substrate 203 to output the output voltage of the driving circuit 100 Deflection under the control of the signal.
  • the materials of the first transparent substrate 202 and the second transparent substrate 203 may be the same or different. They may be transparent materials such as glass substrates and resin substrates, and may also be glass substrates and Any combination of resin substrates is not limited in the embodiments of the present disclosure.
  • the dimming glass 200 further includes a first driving electrode 205 and a second driving electrode 206.
  • the first driving electrode 205 is located on the opposite side of the first transparent substrate 202 and the second transparent substrate 203
  • the second driving electrode 206 is located on the opposite side of the second transparent substrate 203 and the first transparent substrate 202.
  • the first driving electrode 205 and the second driving electrode 206 can be arranged horizontally or vertically, and the arrangement direction is not limited, as long as they have overlapping parts to form an electric field and can control the deflection of the liquid crystal molecules 201.
  • the material of the first driving electrode 205 and the second driving electrode 206 may be a transparent conductive material.
  • the transparent conductive material may be a material including transparent metal oxides such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the first driving electrode 205 and the second driving electrode 206 may be strip-shaped electrodes or planar electrodes, which are not limited in the embodiment of the present disclosure.
  • the first driving electrode 205 and the second driving electrode 206 are respectively connected to the voltage input terminal INT1 (as shown in FIG. 1) on the left and right sides of the first transparent substrate 202 and the second transparent substrate 203.
  • the wires (not shown in the figure) are connected to the driving circuit 100 to input corresponding output voltage signals to the first transparent substrate 202 and the second transparent substrate 203, so as to be between the first driving electrode 205 and the second driving electrode 206
  • An electric field is generated in between to control the deflection of the liquid crystal molecules 201, thereby realizing the adjustment of the light transmittance of the dimming glass and changing the brightness of the dimming glass.
  • the liquid crystal molecules 201 may dye liquid crystal molecules.
  • it may be negative dielectric anisotropy dye liquid crystal, etc., which is not limited in the embodiments of the present disclosure.
  • FIG. 3 is a schematic block diagram of a driving circuit provided by some embodiments of the present disclosure, that is, FIG. 3 is a schematic block diagram of the driving circuit 100 shown in FIG. 1.
  • the driving circuit 100 includes a controller 110 and a voltage regulating circuit 120.
  • the input terminal INT11 of the controller 110 receives a control instruction, and is configured to output a voltage control signal at the output terminal OUT2 of the controller 110 according to the control instruction.
  • the controller 110 may be implemented as a micro-chip unit (MCU).
  • the controller 10 can also be implemented as other processing units, as long as the relevant functions can be implemented, which is not limited in the embodiments of the present disclosure.
  • the control instruction is an instruction to adjust the brightness of the dimming glass 200 to be brighter or lower, and the control instruction can be sent to the controller 110 through a mobile phone APP or a key device.
  • the controller 110 may also be connected to a first power source to receive the first voltage signal.
  • the specific form of the voltage control signal may be a pulse width modulation ((Pulse Width Modulation, PWM) signal, etc., depending on the actual situation, which is not limited in the embodiment of the present disclosure.
  • PWM Pulse Width Modulation
  • the voltage control signal is a voltage signal corresponding to the light transmittance of the dimming glass 200 (that is, the brightness of the dimming glass 200).
  • Figure 4A shows some embodiments of the present disclosure The example provides a diagram of the relationship between the light transmittance of a dimming glass and the voltage applied to the dimming glass.
  • the voltage applied to the first transparent substrate or the second transparent substrate corresponding to the same light transmittance is different.
  • curve A shows the relationship between the deflection of twisted nematic (TN) type dye liquid crystal and the applied voltage
  • curve B shows the relationship between the degree of deflection of the vertical alignment (VA) type dye liquid crystal and the applied voltage.
  • TN twisted nematic
  • VA vertical alignment
  • the controller 110 when the controller 110 receives a control instruction (for example, an instruction to adjust the light transmittance of the dimming glass 200 to 80%) sent from, for example, a mobile phone, The controller 110 can obtain a voltage control signal (for example, a PWM signal) corresponding to the voltage applied to the dimmer glass 200 according to the graph in FIG. 4A, so that the subsequent circuit (for example, the voltage regulating circuit 120) is executed according to the voltage control signal. ) Generates the voltage applied to the dimming glass 200, that is, the voltage corresponding to the control command shown in FIG. 4A (ie, the output voltage signal).
  • a control instruction for example, an instruction to adjust the light transmittance of the dimming glass 200 to 80%
  • the controller 110 can obtain a voltage control signal (for example, a PWM signal) corresponding to the voltage applied to the dimmer glass 200 according to the graph in FIG. 4A, so that the subsequent circuit (for example, the voltage regulating circuit 120) is executed according to the voltage control
  • the control input terminal INT12 of the voltage regulation circuit 120 is connected to the output terminal OUT2 of the controller 110, the power input terminal INT13 of the voltage regulation circuit 120 is connected to the first power source 130 to receive the first voltage signal, and the voltage output of the voltage regulation circuit 120 is
  • the terminal OUT1 serves as the voltage output terminal OUT1 of the driving circuit and is connected to the voltage input terminal INT1 of the dimming glass 200 shown in FIG. 1, and is configured to generate an output voltage signal at the voltage output terminal OUT1 of the voltage regulation circuit 120 according to the voltage control signal .
  • the output voltage signal adjusts the light transmittance (or light transmittance) of the light control glass 200 by controlling the degree of deflection of the liquid crystal molecules 201 in the light control glass 200.
  • the first power source is a DC voltage source
  • the first voltage signal provided by it is a DC voltage signal
  • the output voltage signal may be an AC voltage signal or a DC voltage signal.
  • the voltage regulating circuit 120 may convert the first voltage signal (for example, a DC voltage signal) into an output voltage signal (for example, an AC voltage signal) according to the voltage control signal, so as to realize the driving of the dimmer glass.
  • FIG. 4B is a waveform diagram of an example of an output voltage signal provided by some embodiments of the present disclosure. As shown in FIG. 4B, the output voltage signal is an AC voltage signal. The specific generation process will be described in detail below, and will not be repeated here.
  • the dimming glass device provided by the above-mentioned embodiments of the present disclosure can generate an alternating current signal with adjustable amplitude as required, and the degree of deflection of the liquid crystal molecules in the dimming glass is controlled by the alternating current signal to adjust the light transmission of the dimming glass Therefore, the brightness of the dimming glass can be adjusted and the market competitiveness of the dimming glass can be improved.
  • the voltage adjustment circuit 120 includes a voltage adjustment sub-circuit 121 and a voltage output sub-circuit 122.
  • the control input terminal (not shown in the figure) of the voltage regulation sub-circuit 121 receives the voltage control signal V1 output by the controller 110, and its power input terminal (not shown in the figure) is connected to the first power supply 130 to receive the first
  • the voltage signal (direct current voltage signal) is configured to output a second voltage signal V2 at its voltage output terminal (not shown in the figure) according to the voltage control signal V1.
  • the voltage of the first voltage signal is different from the voltage of the second voltage signal, and the voltage of the second voltage signal is the same as the voltage of the output voltage signal.
  • the voltage adjustment circuit 120 when the light transmittance of the dimming glass including the VA-type dye liquid crystal molecules shown in FIG. 4A is adjusted to 80%, it can be seen from the curve B in FIG. 4A that the voltage adjustment circuit 120 is required.
  • To generate an output voltage signal with an amplitude of 8V that is, it is necessary to generate a second voltage signal V2 of 8V.
  • the first voltage signal V1 provided by the first power supply can be set to 27V, so that the first voltage signal (DC voltage signal) of, for example, 27V can be adjusted to, for example, 8V through the voltage adjustment sub-circuit 121.
  • the second voltage signal (DC voltage signal).
  • the voltage adjustment sub-circuit 121 includes a digitally controlled potentiometer 1211, an ADC (digital-to-analog converter) 1212, and a resistor 1213.
  • ADC digital-to-analog converter
  • the first terminal of the digitally controlled potentiometer 1211 is used as the control input terminal of the voltage regulating sub-circuit 121 to connect to the output terminal of the controller 110 to receive a voltage control signal (for example, PWM), and the second terminal of the digitally controlled potentiometer 1211 is used for voltage regulation.
  • the power input terminal of the sub-circuit 121 is connected to the first power source 130 to receive the first voltage signal, and the third terminal of the digitally controlled potentiometer 1211 serves as the voltage output terminal of the voltage regulating sub-circuit 121 to output the second voltage signal.
  • the digitally controlled potentiometer can change the first voltage signal input from the first power source 130 into a second voltage signal corresponding to the light transmittance and output it according to the voltage control signal.
  • the digitally controlled potentiometer may be implemented as a variable resistor, which is not limited in the embodiment of the present disclosure.
  • the first end of the resistor 1213 is connected to the third end of the digitally controlled potentiometer 1211.
  • the resistor is a feedback resistor, and the second voltage signal output by the numerically controlled potentiometer 1211 can be fed back to the numerically controlled potentiometer 1211, and its value can be determined according to actual conditions, which is not limited in the embodiment of the present disclosure.
  • the first end of the analog-to-digital converter 1212 is connected to the second end of the resistor 1211, and the second end of the analog-to-digital converter 1212 is connected to the numerical control potentiometer 1211.
  • the analog-to-digital converter 1212 is used to sample the second voltage signal V2 transmitted from the feedback resistor 1212 to feed it back to the digitally controlled potentiometer.
  • the digitally controlled potentiometer 1211 can further adjust according to the feedback voltage signal to make it The second voltage signal can be output more accurately.
  • the structure of the voltage regulating sub-circuit 121 is not limited to the circuit shown in FIG. 6A, and can also be implemented in other structures in the field, which will not be repeated here.
  • the voltage input terminal (not shown in the figure) of the voltage output sub-circuit 122 receives the second voltage signal and is configured to output the output voltage signal at its voltage output terminal (not shown in the figure) based on the second voltage signal S1 is used to control the light transmittance of the dimming glass 200.
  • the voltage output sub-circuit 122 may be connected to the output terminal (not shown in the figure) of the controller 110 and the output terminal (not shown in the figure) of the voltage regulating sub-circuit 121, and is configured to be at the output terminal of the controller 110
  • the output drive control signal S2 is turned on under the control, so that the output terminal (not shown in the figure) of the voltage output sub-circuit 122 is connected to the output terminal (not shown in the figure) of the voltage regulating sub-circuit 121, thereby connecting the first
  • the two voltage signals are output to the dimming glass 200.
  • the polarity of the voltage applied to the dimming glass 200 can also be controlled under the control of the drive control signal S2 output from the output terminal of the controller 110.
  • the voltage applied to the dimming glass 200 shown in FIG. 7A is positive (for example, the positive square wave corresponding to the first phase 1 in FIG. 4B), and the current flows
  • the dashed line 1 with an arrow shown in FIG. 7A for example, the voltage applied to the dimming glass 200 shown in FIG. 7B is of negative polarity (for example, the negative square wave corresponding to the second stage 2 in FIG. 4B ), the current flow direction is, for example, shown as the dotted line 2 with an arrow shown in FIG. 7B, which will be described in detail below, and will not be repeated here.
  • the controller 110 may send driving control signals corresponding to voltages of different polarities of the dimming glass 200 to the voltage output sub-circuit 122 at a refresh frequency, and control the second voltage signal to change the polarity at the refresh frequency, so as to generate FIG. 4B
  • the electric field applied to the dye liquid crystal in the dimming glass can be changed at the refresh frequency to prevent the liquid crystal from being polarized under the electric field in the same direction for a long time, which will affect the normality of the dimming glass. jobs.
  • the refresh frequency is used to control the alternating time of the positive polarity voltage and the negative polarity voltage applied to the dimming glass 200 (for example, the width of the AC square wave signal shown in FIG. 4B), so that the positive polarity voltage and the negative polarity Voltage can be alternately applied to the dimming glass 200 at the refresh frequency, so as to prevent the liquid crystal molecules from being polarized under the voltage control of one polarity for a long time.
  • the refresh frequency can be set before leaving the factory, and the specific setting value can be determined according to specific conditions, as long as it can meet the requirements and does not affect the human senses. For example, it can be 60 Hz (HZ), which is not discussed in the embodiments of the present disclosure. limit.
  • the controller 110 when the refresh frequency is 60HZ, in the first refresh stage (for example, the first 1/60s), the controller 110 provides the first driving control signal to the voltage regulation sub-circuit 122 to generate a positive voltage. In the second refresh phase (for example, the second 1/60s), the controller 110 provides a second driving control signal to the voltage regulation sub-circuit 122 to generate a negative voltage, thereby outputting a voltage signal with alternating polarities to dimming glass.
  • the level of the driving control signal alternately changes at the refresh frequency.
  • the alternating frequency of the level of the output voltage signal S1 is related to the frequency at which the controller 110 sends the driving control signal S2, for example, the alternating frequency of the output voltage signal S1 is the same as the refresh frequency of the controller 110.
  • the specific working process of the voltage output sub-circuit 122 will be described in detail below, and will not be repeated here.
  • the voltage output sub-circuit 122 can generate an AC voltage signal that drives the deflection of liquid crystal molecules, for example, adjust the second voltage signal V2 (a DC voltage signal with an amplitude of 8V) to an output voltage signal S1 (an AC voltage with an amplitude of 8V). Signal), so that the output voltage signal S1 can be output to the dimming glass 200 to control the dye liquid crystal molecules in the dimming glass 200 to perform corresponding deflection.
  • V2 a DC voltage signal with an amplitude of 8V
  • S1 an AC voltage with an amplitude of 8V
  • the voltage output sub-circuit 122 includes a driving sub-circuit 1221 and an output sub-circuit 1222.
  • the voltage input terminal (not shown in the figure) of the driving sub-circuit 1221 is connected to the output terminal (not shown in the figure) of the controller 110 to receive the driving control signal S2, and the power input terminal of the driving sub-circuit 1221 (not shown in the figure) Not shown) is connected to the second power supply 140 and is configured to amplify the driving control signal and output it at its voltage output terminal (not shown in the figure).
  • the driving control signal S2 output from the output terminal of the controller 110 is not enough to reach the driving output sub-circuit 1222. Therefore, the driving sub-circuit 1221 can control the driving output of the controller 110.
  • the signal is subjected to, for example, amplification processing, so that the output voltage can make the output sub-circuit 1222 work normally.
  • the driving sub-circuit can be implemented by using a circuit structure in the field, for example, it can be implemented by using two H-bridge circuits, etc., which will not be repeated here.
  • an independent power supply may be used, for example, the second power supply 140 may be used to supply power to the driving sub-circuit 1221.
  • the voltage provided by the second power supply is less than the voltage provided by the first power supply, so that the driving sub-circuit 1221 can achieve a lower voltage output under the driving of the second power supply 140.
  • the drive control terminal (not shown in the figure) of the output sub-circuit 1222 is connected to the voltage output terminal (not shown in the figure) of the drive sub-circuit 1221 to receive the amplified drive control signal
  • the voltage input terminal (not shown in the figure) Shown) is connected to the voltage output terminal (not shown in the figure) of the voltage regulating sub-circuit 121 to receive the second voltage signal V2, and is configured to be controlled by the amplified drive control signal according to the second voltage signal Its voltage output terminal (not shown in the figure) outputs the output voltage signal S1.
  • the output sub-circuit 1222 is turned on under the control of the amplified drive control signal, so that the voltage output terminal (not shown in the figure) of the voltage regulation sub-circuit 121 and the voltage output terminal (not shown in the figure) of the output sub-circuit 1222 Out) connection to output the second voltage signal to the dimming glass 200.
  • the controller 110 outputs a driving control signal to the voltage input terminal (not shown in the figure) of the driving sub-circuit 1221 according to the refresh frequency.
  • FIG. 6B is a circuit diagram of a specific implementation example of an output sub-circuit provided by some embodiments of the disclosure.
  • the voltage output terminal (not shown in the figure) of the driving sub-circuit 1221 includes a first output terminal OUT11, a second output terminal OUT12, a third output terminal OUT13, and a fourth output terminal.
  • the terminal OUT14, the voltage output terminal (not shown in the figure) of the output sub-circuit 1222 includes a first voltage output terminal OUT21 and a second voltage output terminal OUT22.
  • the first voltage output terminal OUT21 of the output sub-circuit 1222 is connected to the first driving electrode on the first transparent substrate 202 of the dimming glass 200, and the second voltage output terminal OUT22 of the output sub-circuit 1222 is connected to the dimming glass 200
  • the second driving electrode on the second transparent substrate 203 is connected, which is not limited in the embodiment of the present disclosure.
  • the output sub-circuit 1222 may be implemented as an H-bridge circuit.
  • the H-bridge circuit includes a first transistor T1 to a fourth transistor T4.
  • each transistor is an N-type transistor as an example, but this does not constitute a limitation to the embodiment of the present disclosure.
  • the gate of the first transistor T1 is connected to the first output terminal OUT11 of the driving sub-circuit 1221 to receive the amplified driving control signal
  • the first electrode of the first transistor T1 is connected to the voltage output terminal of the voltage regulating sub-circuit 121 ( Figure Not shown in) connected to receive the second voltage signal V2
  • the second pole of the first transistor T1 is connected to the first voltage output terminal OUT21 of the output sub-circuit 1222, so that when the first transistor T1 responds to the first voltage signal of the driving sub-circuit 1221
  • the amplified drive control signal output by an output terminal OUT11 is turned on
  • the first voltage output terminal OUT21 is connected to the voltage output terminal (not shown in the figure) of the voltage regulation sub-circuit 121 to connect the second voltage signal V2 Output from the first voltage output terminal OUT21.
  • the gate of the second transistor T2 is connected to the second output terminal OUT12 of the driving sub-circuit 1221 to receive the amplified driving control signal, and the first terminal of the second transistor T2 is connected to the voltage output terminal of the voltage regulating sub-circuit 121 ( Figure Not shown in) connected to receive the second voltage signal V2, the second pole of the second transistor T2 is connected to the second voltage output terminal OUT22 of the output sub-circuit 1222, so that when the second transistor T2 outputs in response to the second output terminal OUT12 When the amplified drive control signal is turned on, the second voltage output terminal OUT22 is connected to the voltage output terminal (not shown in the figure) of the voltage regulation sub-circuit 121, so as to transmit the second voltage signal V2 from the second voltage output terminal OUT22 output.
  • the gate of the third transistor T3 is connected to the third output terminal OUT13 of the driving sub-circuit 1221 to receive the amplified driving control signal
  • the first electrode of the third transistor T3 is connected to the first voltage terminal VSS (for example, the ground terminal, Provide a low-level DC signal) connection to receive a third voltage signal (for example, a DC low-level signal, lower than the first voltage signal, such as 0V), the second pole of the third transistor T3 and the output sub-circuit 1222
  • the first voltage output terminal OUT21 is connected, so that when the third transistor T3 is turned on in response to the amplified drive control signal output from the third output terminal OUT13, the first voltage output terminal OUT21 is connected to the first voltage terminal.
  • the gate of the fourth transistor T4 is connected to the fourth output terminal OUT14 of the driving sub-circuit 1221 to receive the amplified drive control signal, and the first electrode of the fourth transistor T4 is connected to the first voltage terminal VSS to receive the third voltage Signal, the second pole of the fourth transistor T4 is connected to the second voltage output terminal OUT22 of the output sub-circuit 1222, so that when the fourth transistor T4 is turned on in response to the amplified drive control signal output by the fourth output terminal OUT14, The second voltage output terminal OUT22 is connected to the first voltage terminal.
  • the connection line between the first voltage terminal VSS and the first voltage terminal VSS is omitted in the figure.
  • FIG. 7A is a schematic diagram of the output sub-circuit 1222 (for example, the H-bridge circuit) shown in FIG. 6B in the first stage 1 shown in FIG. 4B, and FIG. 7B is the output sub-circuit 1222 (for example, , H-bridge circuit) is in the second stage 2 shown in FIG. 4B.
  • the control levels provided by the first output terminal OUT11 to the fourth output terminal OUT14 are 0, 1, 1, and 0 respectively; in the second stage 2, the first output terminal OUT11 to the fourth output terminal OUT14
  • the control levels provided are 1, 0, 0, 1.
  • 1 means high level and 0 means low level.
  • the levels 0110 or 1001 provided by the first output terminal OUT11 to the fourth output terminal OUT14 are drive control signals amplified by the drive sub-circuit 1221, that is, the controller 110 corresponds to the output 0110 or 1001 through the corresponding interface.
  • the level signal is low, so it is sent to the driving sub-circuit 1221, amplified by the driving sub-circuit 1221, and output at the first output terminal OUT11 to the fourth output terminal OUT14.
  • the transistors marked with dashed lines in FIGS. 7A to 7B all indicate that they are in an off state in the corresponding stage, and the dashed line with arrows in FIGS. 7A to 7B indicates the direction in which the current flows through the dimming glass 200 in the corresponding stage.
  • the transistors shown in FIGS. 7A to 7B all use the first transistor T1 and the fourth transistor T4 as N-type transistors, that is, the gate of each N-type transistor is turned on when connected to a high level, and when connected to a low level
  • the first transistor T1 and the fourth transistor T4 are turned off, and the second transistor T2 and the third transistor T3 respond to the second output terminal OUT12 and the third output terminal, respectively.
  • the high level output from OUT13 is turned on, so that the second voltage output terminal OUT22 is connected to the voltage output terminal (not shown in the figure) of the voltage regulation sub-circuit 121, and the first voltage output terminal OUT21 is connected to the first voltage terminal, thereby
  • the second voltage signal provided by the voltage regulating sub-circuit 121 can be applied from the second voltage output terminal OUT22 to the second driving electrode 206 on the second transparent substrate 203 of the dimming glass 200, and from the first voltage signal of the dimming glass 200.
  • the first voltage output terminal OUT21 connected to the first driving electrode 205 on the transparent substrate 202 flows out through the third transistor T3, thereby forming a current loop 1 as shown by the broken line with an arrow in FIG. 7A.
  • the voltage waveform in this direction is as The forward square wave in the first stage 1 shown in Figure 4B.
  • the second transistor T2 and the third transistor T3 are turned off, and the first transistor T1 and the fourth transistor T4 respond to the first output terminal OUT11 and the fourth output terminal, respectively.
  • the high level output by OUT14 is turned on, so that the first voltage output terminal OUT21 is connected to the voltage output terminal (not shown in the figure) of the voltage regulating sub-circuit 121, and the second voltage output terminal OUT22 is connected to the first voltage terminal, thereby
  • the second voltage signal provided by the voltage regulating sub-circuit 121 can be applied from the first voltage output terminal OUT21 to the first driving electrode 205 on the first transparent substrate 202 of the dimming glass 200, and connected to the second voltage signal of the dimming glass 200.
  • the second voltage output terminal OUT22 connected to the second driving electrode 206 on the transparent substrate 203 flows out through the fourth transistor T4, thereby forming the current loop 2 as shown by the broken line with arrow in FIG. 7B.
  • the voltage waveform in this direction is as The negative square wave in the second stage 2 shown in Figure 4B.
  • the second transistor T2 and the third transistor T3 are turned on at the same time, and the two groups of transistors are turned on at different stages, so that the application
  • the electric field to the dimming glass 200 changes, so that the output second voltage signal V2 is converted into an AC output voltage signal, so as to prevent the dye liquid crystal from being polarized under the electric field in the same direction for a long time, and to ensure the dimming glass 200 works normally.
  • the frequency can be used to control, for example, the level signals 0110 and 1001 to alternately output, thereby generating an AC square wave signal as shown in FIG. 4B.
  • the amplified drive control signal may cause the first transistor T1 and the second transistor T2 to be turned off when they should be turned on, which affects the normal operation of the circuit.
  • the output sub-circuit 1222 in the driving circuit 100 of some embodiments of the present disclosure may further include a bootstrap circuit (not shown in the figure).
  • the voltage input terminal of the bootstrap circuit is connected to the voltage output terminal of the output sub-circuit 1222 to receive the output voltage signal, and is configured to control the voltage of the voltage input terminal of the output sub-circuit 1222 according to the output voltage signal.
  • the first transistor T1 or the second transistor T2 when the voltage of the second electrode of the first transistor T1 or the second transistor T2 becomes the voltage of the first electrode (when the transistor is turned on, it is equal to the voltage of the first electrode), the first transistor T1 or the second transistor The voltage at the gate of T2 bootstraps the voltage at the second pole of the first transistor T1 or the second transistor T2 to the gate of the first transistor T1 or the second transistor T2 (that is, keeping the first transistor T1 or the second transistor T2 The voltage difference Vgs between the gate voltage of T2 and the second electrode remains unchanged), so that the voltage of the gate of the first transistor T1 or the second transistor T2 is greater than the voltage of the first electrode, and the first transistor T1 and the second The phenomenon that the transistor T2 is turned off when it should be turned on improves the reliability and stability of the circuit.
  • the bootstrap circuit can be implemented as a first capacitor C1, a first diode L1, a second capacitor C2, and a second diode L2.
  • the first capacitor C1 and the first diode L1 are used for the bootstrap of the first transistor T1
  • the second capacitor C2 and the second diode L2 are used for the bootstrap of the second transistor T2.
  • the first terminal of the first capacitor C1 is connected to the second terminal of the first transistor T1, and the second terminal of the first capacitor C1 is connected to the gate of the first transistor T1.
  • the first pole of the first diode L1 is connected to the second power source 140, and the second pole of the first diode L1 is connected to the gate of the first transistor T1.
  • the first end of the second capacitor C2 is connected to the second electrode of the second transistor T2, and the second end of the second capacitor C2 is connected to the gate of the second transistor T2.
  • the first pole of the second diode L2 is connected to the second power supply 140, and the second pole of the second diode L2 is connected to the gate of the second transistor T2.
  • FIG. 8 is a schematic structural diagram of another dimming driving device proposed by some embodiments of the disclosure.
  • the driving circuit 100 further includes a filter circuit 150.
  • the filter circuit 150 can filter out the DC voltage component included in the second voltage signal, so that the voltage output to the dimming glass is more accurate.
  • the filter circuit 150 can also reduce the power consumption of the dimming glass device.
  • the filter circuit 150 is connected to the voltage output terminals (for example, the first voltage output terminal and the second voltage output terminal) of the output sub-circuit 1222, or is connected to the first transparent substrate and the second transparent substrate of the dimming glass 200, And it is configured to filter the DC voltage in the output voltage signal output by the output sub-circuit 1222.
  • the filter circuit may be implemented as a resistor R; in other examples, the filter circuit 150 may also be implemented as a resistor R and an inductance L.
  • the resistance value of the circuit R may be determined according to specific conditions, which is not limited in the embodiment of the present disclosure.
  • the filter circuit 150 can be implemented as a resistor R or a resistor R and an inductance L, it can form a high-impedance circuit in parallel with the dye liquid crystal molecules presenting a capacitive load in the dimming glass, which exhibits high-impedance characteristics, that is, it can be equivalent to a resistor .
  • the output voltage signal can store the charge in the filter circuit 150 during the discharge process from the first transparent substrate or the second transparent substrate.
  • the inductor is discharged when the light-adjustable glass 200 is subsequently driven, so that the driving power consumption of the light-adjustable glass can be reduced.
  • FIG. 9 is a schematic diagram of another dimming glass device provided by some embodiments of the disclosure.
  • the driving sub-circuit in the dimming glass device 10 also includes some other units, such as JTAG interface, DDR3, synchronous serial interface (SPI Flash), reset terminal, crystal oscillator, communication module, etc.
  • the dimming glass device 10 may further include a display unit 300.
  • the display unit 300 is configured to display control information to send control instructions to the controller 110 according to operations on the control information.
  • the control information may include display selection buttons for adjusting the brightness of the dimming glass to brighten or dim. The user can send the control instruction to the controller 110 by touching the corresponding button to realize the control of the brightness of the dimming glass. .
  • the dimming glass device 10 may further include a control unit 400.
  • the control unit 400 is configured to send control instructions to the controller 110.
  • the control unit can be an application on the client or a remote control, etc., so that the brightness of the dimming glass can be controlled by a device such as a mobile phone, which improves the portability of life.
  • the dimming glass device 10 may further include a button unit 500.
  • the key unit 500 is configured to send control instructions to the controller 110.
  • the key unit 500 may include keys provided on the dimming glass device 10, and the user can send corresponding control instructions to the controller 110 through the keys.
  • the above-mentioned display unit 300, control unit 400 or key unit 500 and the controller 110 can communicate through wired means such as CAN bus or RST232, or can send control commands to the controller 110 through wireless communication means such as Bluetooth and Wifi.
  • wired means such as CAN bus or RST232
  • wireless communication means such as Bluetooth and Wifi.
  • FIG. 10 is a main program control flowchart of a controller 110 provided by some embodiments of the present disclosure.
  • the main program first initialize the output voltage signal of the driving circuit 100, and read the setting of the voltage adjustment sub-circuit 121 during the last operation (for example, setting the last adjustment value of the numerical control potentiometer) ), output a second voltage signal based on the last adjustment value, and adjust the resistance value of the feedback resistor included in the voltage adjustment sub-circuit based on the setting of the voltage adjustment sub-circuit during the last operation.
  • the voltage adjustment sub-circuit 121 After the voltage adjustment sub-circuit 121 is set, initialize the timer in the controller 110, set the timer's timing frequency to the refresh frequency, and initialize the connection with the controller 110 to each serial port (such as the JTAC interface shown in Figure 9) After) and the button port, start the timer interrupt, start the serial port interrupt and the button interrupt.
  • the H-bridge drive control of the refresh frequency (for example, 60Hz) can be realized by setting the timing interrupt, the last setting output can be maintained by setting the last adjustment value of the numerical control potentiometer, and the key operation action can be received through the key interrupt, and corresponding control
  • the operation control commands sent by the mobile phone APP are received through the serial port interrupt, and the relevant commands are analyzed and processed in the corresponding subroutines to realize the control and adjustment of the light transmittance of the dimming glass through the mobile phone APP.
  • the function of light rate is not limited in the embodiment of the present disclosure.
  • Fig. 11 is a flowchart of the interrupt subroutine shown in Fig. 10.
  • the interrupt subroutine used by the dimming glass device includes: timing interrupt, serial port interrupt, and key interrupt.
  • the level of the output IO port is reversed to produce an AC voltage signal and the interrupt flag is cleared; when a serial port interrupt is detected, the received control command is read, and the corresponding control command is generated
  • the output voltage signal is used to adjust the brightness of the dimming glass through the mobile phone APP; when the key interruption is detected, the key interruption flag is set, and the interruption flag is cleared, so as to control the brightness of the dimming glass according to the key unit.
  • Some embodiments of the present disclosure also provide a driving method of the driving circuit 100, which can be used to drive the driving circuit 100 provided in any embodiment of the present disclosure.
  • the driving method includes:
  • Step S110 receiving a control instruction, and the controller 110 outputs a voltage control signal at its output terminal according to the control instruction.
  • Step S120 The voltage regulation circuit 120 generates an output voltage signal at its voltage output terminal according to the voltage control signal.
  • the output voltage signal adjusts the light transmittance of the light control glass 200 by controlling the degree of deflection of the liquid crystal molecules in the light control glass 200.
  • the driving control of the driving method can be realized by the flowchart shown in FIG. 10 and FIG. 11.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种调光玻璃(200)的驱动电路(100)、调光玻璃装置(10)和驱动方法。调光玻璃(200)的驱动电路(100),包括:控制器(110),其输入端(INT11)接收控制指令,并且被配置为根据控制指令在其输出端(OUT2)输出电压控制信号;以及电压调节电路(120),其控制输入端(INT12)与控制器(110)的输出端(OUT2)连接,电源输入端(INT13)与第一电源(130)连接,其电压输出端(OUT1)与调光玻璃(200)的电压输入端(INT1)连接,并且被配置为根据电压控制信号在其电压输出端(OUT1)产生输出电压信号(S1),输出电压信号(S1)通过控制调光玻璃(200)中的液晶分子的偏转程度,来调整调光玻璃(200)的透光度。驱动电路(100)可以调整调光玻璃(200)的透光率,实现对调光玻璃(200)的亮度的调节。

Description

调光玻璃的驱动电路及驱动方法、调光玻璃装置
本申请要求于2019年2月3日递交的中国专利申请第201910108654.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种调光玻璃的驱动电路及驱动方法、调光玻璃装置。
背景技术
调光玻璃也叫电控调光玻璃、电控液晶玻璃或智能调光玻璃等,是一种将高科技液晶膜夹层在两层玻璃之间,经过高温高压加工后而形成的功能夹层玻璃产品。例如,根据控制手段及控制原理的不同,调光玻璃可由电控、温控、光控或压控等各种方式实现透明状态与不透明状态的切换。由于各种条件限制,目前市场上实现量产的调光玻璃,几乎都是电控型调光玻璃。例如,当调光玻璃关闭电源时,调光玻璃中的液晶分子会呈现不规则的散布状态,此时电控调光玻璃呈现透光而不透明的外观状态;当给调光玻璃通电后,调光玻璃中的液晶分子呈现整齐排列,光线可以自由穿透,此时调光玻璃瞬间呈现透明状态。
染料是一种吸收特定波长的光的物质,可以使得从它反射或通过它透射的光呈现彩色。当在液晶中加入染料时,由于液晶分子的结构特点,其沿分子轴与垂直于分子轴的方向上对光的吸收是不同的,因此溶于液晶中的染料分子,可以在电场的作用下,随着分子的取向不同,呈现不同的色彩。
发明内容
本公开至少一实施例提供一种调光玻璃的驱动电路,包括:控制器和电压调节电路。所述控制器的输入端接收控制指令,并且被配置为根据所述控制指令在所述控制器的输出端输出电压控制信号;所述电压调节电路的控制输入端与所述控制器的输出端连接,所述电压调节电路的电源输入端与第一 电源连接,所述电压调节电路的电压输出端与所述调光玻璃的电压输入端连接,并且被配置为根据所述电压控制信号在所述电压调节电路的电压输出端产生输出电压信号;所述输出电压信号通过控制所述调光玻璃中的液晶分子的偏转程度,来调整所述调光玻璃的透光度。
例如,在本公开一些实施例提供的驱动电路中,所述电压调节电路包括电压调节子电路和电压输出子电路。所述电压调节子电路的控制输入端接收所述电压控制信号,其电源输入端与所述第一电源连接以接收第一电压信号,并且被配置为根据所述电压控制信号在其电压输出端输出第二电压信号,其中,所述第一电压信号的电压与所述第二电压信号的电压不同;以及所述电压输出子电路的电压输入端接收所述第二电压信号,并且被配置为基于所述第二电压信号在其电压输出端输出所述输出电压信号以控制所述调光玻璃的透光度。
例如,在本公开一些实施例提供的驱动电路中,所述第一电压信号和所述第二电压信号是直流电压信号。
例如,在本公开一些实施例提供的驱动电路中,所述电压输出子电路包括:驱动子电路和输出子电路。所述驱动子电路的电压输入端与所述控制器的输出端连接以接收驱动控制信号,所述驱动子电路的电源输入端与第二电源连接,且被配置为放大所述驱动控制信号并在其电压输出端输出;以及所述输出子电路的驱动控制端与所述驱动子电路的电压输出端连接以接收所述放大后的驱动控制信号,所述输出子电路的电压输入端与所述电压调节子电路的电压输出端连接以接收所述第二电压信号,且配置为在所述放大后的驱动控制信号的控制下,根据所述第二电压信号在其电压输出端输出所述输出电压信号。
例如,在本公开一些实施例提供的驱动电路中,所述控制器按照刷新频率向所述驱动子电路的电压输入端输出所述驱动控制信号。
例如,在本公开一些实施例提供的驱动电路中,所述输出子电路输出的所述输出电压信号为交流电压信号,其幅值与所述第二电压信号的幅值相同,其交变频率与所述控制器的刷新频率相同。
例如,在本公开一些实施例提供的驱动电路中,所述驱动子电路的电压输出端包括第一输出端、第二输出端、第三输出端和第四输出端,所述输出 子电路的电压输出端包括第一电压输出端和第二电压输出端,所述输出子电路包括:第一晶体管、第二晶体管、第三晶体管和第四晶体管。所述第一晶体管的栅极与所述驱动子电路的第一输出端连接以接收所述放大后的驱动控制信号,所述第一晶体管的第一极与所述电压调节子电路的电压输出端连接以接收所述第二电压信号,所述第一晶体管的第二极与所述输出子电路的第一电压输出端连接;所述第二晶体管的栅极与所述驱动子电路的第二输出端连接以接收所述放大后的驱动控制信号,所述第二晶体管的第一极与所述电压调节子电路的电压输出端连接以接收所述第二电压信号,所述第二晶体管的第二极与所述输出子电路的第二电压输出端连接;所述第三晶体管的栅极与所述驱动子电路的第三输出端连接以接收所述放大后的驱动控制信号,所述第三晶体管的第一极与第一电压端连接以接收第三电压信号,所述第三晶体管的第二极与所述输出子电路的所述第一电压输出端连接;以及所述第四晶体管的栅极与所述驱动子电路的第四输出端连接以接收所述放大后的驱动控制信号,所述第四晶体管的第一极与所述第一电压端连接以接收所述第三电压信号,所述第四晶体管的第二极与所述输出子电路的所述第二电压输出端连接。
例如,在本公开一些实施例提供的驱动电路中,所述输出子电路还包括自举电路,所述自举电路的电压输入端与所述输出子电路的电压输出端连接以接收所述输出电压信号,且配置为根据所述输出电压信号控制所述输出子电路的电压输入端的电压。
例如,在本公开一些实施例提供的驱动电路中,所述自举电路包括:第一电容、第一二极管、第二电容和第二二极管。所述第一电容的第一端与所述第一晶体管的第二极连接,所述第一电容的第二端与所述第一晶体管的栅极连接;所述第一二极管的第一极与所述第二电源连接,所述第一二极管的第二极与所述第一晶体管的栅极连接;所述第二电容的第一端与所述第二晶体管的第二极连接,所述第二电容的第二端与所述第二晶体管的栅极连接;以及所述第二二极管的第一极与所述第二电源连接,所述第二二极管的第二极与所述第二晶体管的栅极连接。
例如,在本公开一些实施例提供的驱动电路中,所述电压调节子电路包括:数控电位器、电阻和模数转换器。所述数控电位器的第一端作为所述电 压调节子电路的控制输入端与所述控制器的输出端连接以接收所述电压控制信号,所述数控电位器的第二端作为所述电压调节子电路的电源输入端与所述第一电源连接以接收所述第一电压信号,所述数控电位器的第三端作为所述电压调节子电路的电压输出端输出所述第二电压信号;所述电阻的第一端与所述数控电位器的第三端连接;以及所述模数转换器的第一端与所述电阻的第二端连接,所述模数转换器的第二端与所述数控电位器连接。
例如,本公开一些实施例提供的驱动电路,还包括过滤电路,所述过滤电路与所述输出子电路的电压输出端连接,且配置为过滤所述输出子电路输出的所述输出电压信号中的直流电压。
本公开至少一实施例还提供一种调光玻璃装置,包括:本公开任一实施例提供的驱动电路和调光玻璃。所述调光玻璃包括液晶分子,且通过其电压输入端与所述驱动电路的电压输出端连接以接收所述输出电压信号,以在所述输出电压信号的控制下控制所述液晶分子的偏转程度。
例如,在本公开一些实施例提供的调光玻璃装置中,所述调光玻璃还包括:第一透明基板以及与所述第一透明基板相对设置的第二透明基板;所述液晶分子位于所述第一透明基板和所述第二透明基板之间,以在所述驱动电路输出的所述输出电压信号的控制下偏转。
例如,在本公开一些实施例提供的调光玻璃装置中,所述液晶分子为染料液晶分子。
例如,本公开一些实施例提供的调光玻璃装置,还包括显示单元;所述显示单元配置为显示控制信息,以根据对所述控制信息的操作发送所述控制指令至所述控制器。
例如,本公开一些实施例提供的调光玻璃装置,还包括控制单元,所述控制单元配置为向所述控制器发送所述控制指令。
例如,本公开一些实施例提供的调光玻璃装置,还包括按键单元;所述按键单元配置为向所述控制器发送所述控制指令。
本公开至少一实施例还提供一种调光玻璃的驱动电路的驱动方法,包括:接收所述控制指令,所述控制器根据所述控制指令在其输出端输出所述电压控制信号;所述电压调节电路根据所述电压控制信号在其电压输出端产生所述输出电压信号;所述输出电压信号通过控制所述调光玻璃中的液晶分子的 偏转程度,来调整所述调光玻璃的透光度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开一些实施例提供的一种调光玻璃装置的示意图;
图2为本公开一些实施例提供的一种调光玻璃的示意图;
图3为本公开一些实施例提供的一种驱动电路的示意框图;
图4A为本公开一些实施例提供的一种调光玻璃的透光率与调光玻璃上所加电压的一个示例的关系图;
图4B为本公开一些实施例提供的一种输出电压信号的一个示例的波形图;
图5为本公开一些实施例提供的另一种调光玻璃装置中的驱动电路的结构示意图;
图6A为本公开一些实施例提供的一种电压调节子电路的一个示例的结构示意图;
图6B为本公开一些实施例提供的一种调光玻璃装置中输出子电路的一个具体实现示例的电路图;
图7A为图6B中所示的输出子电路处于图4B中所示的第一阶段时的示意图;
图7B为图6B中所示的输出子电路处于图4B中所示的第二阶段时的示意图;
图8为本公开一些实施例提出的又一种调光驱动装置的结构示意图;
图9为本公开一些实施例提供的另一种调光玻璃装置的示意图;
图10为本公开一些实施例提供的一种控制器的主程序控制流程图;
图11为图10中所示的中断子程序的流程图;以及
图12为本公开一些实施例提供的一种驱动电路的驱动方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
下面通过一些具体的实施例对本公开进行说明。为了保持本公开实施例的以下说明清楚且简明,可省略已知功能和已知部件的详细说明。当本公开实施例的任一部件在一个以上的附图中出现时,该部件在每个附图中由相同或类似的参考标号表示。
当在调光玻璃的液晶分子中添加染料后,通过控制液晶分子的偏转,可以实现调光玻璃的透光率变化,从而可以实现调光玻璃的亮度的调节和色彩的调节。染料液晶分子属于容性负载,例如,可以通过向调光玻璃提供交流电信号驱动以避免该染料液晶发成极化。又由于调光玻璃的透光率与染料液晶分子的偏转程度有关,而染料液晶分子的偏转程度与施加在调光玻璃上的交流电信号的幅值有关,因此,如何根据调光玻璃透光率的需求向其提供幅值可调的交流信号成为当前亟需解决的问题。
本公开至少一实施例提供一种调光玻璃的驱动电路,包括控制器和电压调节电路。控制器的输入端接收控制指令,并且被配置为根据控制指令在其输出端输出电压控制信号;电压调节电路的控制输入端与控制器的输出端连接,电源输入端与第一电源连接,其电压输出端与调光玻璃的电压输入端连 接,并且被配置为根据电压控制信号在其电压输出端产生输出电压信号;输出电压信号通过控制调光玻璃中的液晶分子的偏转程度,来调整调光玻璃的透光度。本公开至少一实施例还提供一种对应于上述驱动电路的调光玻璃装置和驱动方法。
本公开上述实施例提供的调光玻璃的驱动电路,可以根据需要产生幅度可调的交流电信号,并通过该交流电信号控制调光玻璃中的液晶分子的偏转程度,来调整调光玻璃的透光率,从而可以实现对调光玻璃的亮度的调节,提高了调光玻璃的市场竞争力。
下面结合附图对本公开的实施例及其示例进行详细说明。
本公开一些实施例提供了一种调光玻璃装置,可以通过产生幅度可调的交流电信号,调整调光玻璃的透光率,实现调光玻璃的亮度的调节。例如,该调光玻璃装置可以应用于汽车、飞机、动车、家居、商场和博物馆等各个领域,通过控制施加至调光玻璃的电信号来控制调光玻璃的颜色和亮度,从而可以调节外界光的入射强度,其相当于一个有电控装置的窗帘一样,不仅其透光率可以变化自如,而且可以省去设置窗帘的结构和空间。图1为本公开一些实施例提供的一种调光玻璃装置的示意图。下面参考图1,对本公开一些实施例提供的调光玻璃装置进行详细地介绍。
如图1所示,该调光玻璃装置10包括驱动电路100和调光玻璃200。例如,该驱动电路100用于产生控制该调光玻璃200的亮度的输出电压信号,并在其电压输出端OUT1输出。例如,调光玻璃200包括液晶分子201,其电压输入端INT1与驱动电路100的电压输出端OUT1连接以接收该电压输出端OUT1输出的输出电压信号,且在该输出电压信号的控制下控制调光玻璃200中液晶分子201的偏转程度,来调整调光玻璃的透光率,从而可以根据需要改变调光玻璃的亮度。
图2为本公开一些实施例提供的一种调光玻璃的示意图,也就是说,图2为图1中所示的调光玻璃200的一个示例的结构示意图。如图2所示,该调光玻璃200包括:第一透明基板202、第二透明基板203和包括液晶分子201的液晶层。第一透明基板202和第二透明基板203相对设置例如通过封框胶204以对盒,液晶分子201位于第一透明基板202和第二透明基板203之间,以在驱动电路100输出的输出电压信号的控制下偏转。
例如,在本公开的一些实施例中,第一透明基板202和第二透明基板203的材质可以相同也可以不同,可以为玻璃基材、树脂基材等透明材料,还可以为玻璃基材和树脂基材的任意组合,本公开的实施例对此不作限制。
如图2所示,调光玻璃200还包括第一驱动电极205和第二驱动电极206。例如,该第一驱动电极205位于第一透明基板202与第二透明基板203相对的一侧上,第二驱动电极206位于第二透明基板203与第一透明基板202相对的一侧上。例如,第一驱动电极205和第二驱动电极206可以横向排列或纵向排列,其排列方向不作限定,只要满足具有交叉重叠的部分以形成电场,可以控制液晶分子201的偏转即可。例如,该第一驱动电极205和第二驱动电极206的材质可以是透明导电材料。例如,该透明导电材料可以是包括铟锡氧化物(ITO)或铟锌氧化物(IZO)等透明金属氧化物的材料。例如,该第一驱动电极205和第二驱动电极206可以条形电极,也可以是面状电极,本公开的实施例对此不作限制。
例如,第一驱动电极205和第二驱动电极206通过分别位于第一透明基板202和第二透明基板203上左右侧的电压输入端INT1(如图1所示)以及和该电压输入端INT1连接的导线(图中未示出),与驱动电路100相连,以向第一透明基板202和第二透明基板203输入相应的输出电压信号,以在第一驱动电极205和第二驱动电极206之间产生电场,控制液晶分子201的偏转,从而实现对调光玻璃的透光率的调节,改变调光玻璃的亮度。
例如,该液晶分子201可以染料液晶分子。例如,可以是负介电各向异性染料液晶等,本公开的实施例对此不作限制。
本公开一些实施例还提供一种调光玻璃的驱动电路。图3为本公开一些实施例提供的一种驱动电路的示意框图,也就是说,图3为图1中所示的驱动电路100的示意框图。如图3所示,该驱动电路100包括控制器110和电压调节电路120。
例如,该控制器110的输入端INT11接收控制指令,并且被配置为根据控制指令在控制器110的输出端OUT2输出电压控制信号。例如,在一些示例中,该控制器110可以实现为微控制单元(Micro-chip Unit,MCU)。当然控制器10还可以实现为其他处理单元,只要能实现相关的功能即可,本公开的实施例对此不作限制。例如,该控制指令为将调光玻璃200的亮度调亮或 调低的指令,可以通过手机APP或按键装置等向控制器110发送该控制指令。例如,控制器110还可以和第一电源连接,以接收第一电压信号。
例如,该电压控制信号具体形式可以是脉冲宽度调制((Pulse Width Modulation,PWM)信号等,具体可视实际情况而定,本公开的实施例对此不作限制。由于该调光玻璃200的亮度与调光玻璃200的透光率有关,因此,该电压控制信号是与调光玻璃200的透光率(即调光玻璃200的亮度)对应的电压信号。图4A示出了本公开一些实施例提供的一种调光玻璃的透光率与调光玻璃上所加电压的一个示例的关系图。
如图4A所示,对于不同类型的液晶分子,同一透光率对应的施加在第一透明基板或第二透明基板上的电压也不相同。例如,如图4A所示,曲线A表示扭曲向列(TN)型染料液晶的偏转与施加的电压的关系,曲线B表示垂直排列(VA)型染料液晶的偏转程度与施加电压的关系。例如,对于TN型染料液晶会随着施加至其上的电压的升高,使得调光玻璃200的透光率变小;对于VA型染料液晶会随着施加至其上的电压的升高,使得调光玻璃200的透光率变大。
根据图4A中示出的电压与透光率的关系,当控制器110接收到例如手机端发送过来的控制指令(例如,将调光玻璃200的透光率调至80%的指令)时,控制器110可以根据图4A中的曲线图获取与施加至调光玻璃200的电压相对应的电压控制信号(例如,PWM信号),从而根据该电压控制信号在后续电路(例如,电压调节电路120)中产生该施加至调光玻璃200的电压,即在图4A中示出的与控制指令对应的电压(即,输出电压信号)。
例如,电压调节电路120的控制输入端INT12与控制器110的输出端OUT2连接,电压调节电路120的电源输入端INT13与第一电源130连接以接收第一电压信号,电压调节电路120的电压输出端OUT1作为驱动电路的电压输出端OUT1与图1中所示的调光玻璃200的电压输入端INT1连接,并且被配置为根据电压控制信号在电压调节电路120的电压输出端OUT1产生输出电压信号。例如,输出电压信号通过控制调光玻璃200中的液晶分子201的偏转程度,来调整调光玻璃200的透光度(或透光率)。
例如,在本公开的一些实施例中,第一电源为直流电压源,其提供的第一电压信号为直流电压信号,输出电压信号可以为交流电压信号,也可以为 直流电压信号。由于染料液晶分子为容性负载,因此为了避免该染料液晶分子出现极化,可以使输出电压信号为交流电压信号,但是本公开的实施例对此不作限制。例如,电压调节电路120可以根据电压控制信号将第一电压信号(例如,直流电压信号)转变成输出电压信号(例如,交流电压信号)输出,从而可以实现对调光玻璃的驱动。
图4B为本公开一些实施例提供的一种输出电压信号的一个示例的波形图。如图4B所示,该输出电压信号为交流电压信号。其具体生成过程将在下面进行详细地介绍,在此不再赘述。
本公开上述实施例提供的调光玻璃装置,可以根据需要产生幅度可调的交流电信号,并通过该交流电信号控制调光玻璃中的液晶分子的偏转程度,来调整调光玻璃的透光率,从而可以实现对调光玻璃的亮度的调节,提高了调光玻璃的市场竞争力。
图5为本公开一些实施例提供的另一种调光玻璃装置中的驱动电路的结构示意图。例如,如图5所示,在一些示例中,电压调节电路120包括电压调节子电路121和电压输出子电路122。
例如,电压调节子电路121的控制输入端(图中未示出)接收控制器110输出的电压控制信号V1,其电源输入端(图中未示出)与第一电源130连接以接收第一电压信号(直流电压信号),并且被配置为根据电压控制信号V1在其电压输出端(图中未示出)输出第二电压信号V2。例如,第一电压信号的电压与第二电压信号的电压不同,第二电压信号的电压与输出电压信号的电压相同。
例如,在一些示例中,当将图4A中所示的包括VA型染料液晶分子的调光玻璃的透光率调整为80%时,由图4A中的曲线B可知,需要通过电压调节电路120生成幅值为8V的输出电压信号,即需要生成8V的第二电压信号V2。例如,为了保证电路的正常工作,可以将第一电源提供的第一电压信号V1设置为27V,从而通过电压调节子电路121可以将例如27V的第一电压信号(直流电压信号)调节为例如8V的第二电压信号(直流电压信号)。
例如,如图6A所示,该电压调节子电路121包括数控电位器1211、ADC(数模转换器)1212和电阻1213。
例如,数控电位器1211的第一端作为电压调节子电路121的控制输入端 与控制器110的输出端连接以接收电压控制信号(例如,PWM),数控电位器1211的第二端作为电压调节子电路121的电源输入端与第一电源130连接以接收第一电压信号,数控电位器1211的第三端作为电压调节子电路121的电压输出端输出第二电压信号。例如,该数控电位器可以根据电压控制信号,将第一电源130输入的第一电压信号变为与透光率对应的第二电压信号并输出。例如,在一些示例中,该数控电位器可以实现为可变电阻,本公开的实施例对此不做限制。
例如,电阻1213的第一端与数控电位器1211的第三端连接。例如,该电阻为反馈电阻,可以将数控电位器1211输出的第二电压信号反馈至数控电位器1211,其取值可以根据实际情况而定,本公开的实施例对此不作限制。
例如,模数转换器1212的第一端与电阻1211的第二端连接,模数转换器1212的第二端与数控电位器1211连接。例如,模数转换器1212用于从反馈电阻1212传输过来的第二电压信号V2进行采样,以将其反馈至数控电位器中,数控电位器1211可以根据反馈的电压信号作进一步调节,使其可以输出更准确地第二电压信号。
例如,电压调节子电路121的结构不限于图6A中所示的电路,还可以实现为本领域内的其他结构,在此不再赘述。
例如,电压输出子电路122的电压输入端(图中未示出)接收第二电压信号,并且被配置为基于第二电压信号在其电压输出端(图中未示出)输出该输出电压信号S1以控制调光玻璃200的透光度。例如,电压输出子电路122可以与控制器110的输出端(图中未示出)以及电压调节子电路121的输出端(图中未示出)连接,且配置为在控制器110的输出端输出的驱动控制信号S2的控制下导通,使得电压输出子电路122的输出端(图中未示出)与该电压调节子电路121的输出端(图中未示出)连接,从而将第二电压信号输出至调光玻璃200。例如,还可以在控制器110的输出端输出的驱动控制信号S2的控制下,控制施加至调光玻璃200的电压的极性。如下面图7A和图7B中所示,例如,施加至图7A中所示的调光玻璃200的电压为正极性(例如,对应图4B中的第一阶段1的正方波),其电流流向例如表示为图7A中所示的带箭头的虚线1;例如,施加至图7B中所示的调光玻璃200的电压为负极性(例如,对应图4B中的第二阶段2的负方波),其电流流向例如表 示为图7B中所示的带箭头的虚线2,具体的将在下面进行详细地介绍,在此不再赘述。
例如,控制器110可以以刷新频率发送对应于调光玻璃200的不同极性电压的驱动控制信号至电压输出子电路122,控制第二电压信号以该刷新频率转变极性,以产生如图4B所示的波形图,从而可以使得施加至调光玻璃中的染料液晶上的电场以该刷新频率变化,以避免液晶长时间处于同一方向的电场下而出现极化现象,影响调光玻璃的正常工作。
例如,该刷新频率用于控制施加至调光玻璃200上的正极性电压和负极性电压的交替时间(例如,图4B中所示的交流方波信号的宽度),使得正极性电压和负极性电压可以以该刷新频率交替施加至调光玻璃200上,从而可以避免液晶分子长时间处于一个极性的电压控制下发生极化。例如,该刷新频率可以在出厂前设置,具体设置数值可视具体情况而定,只要可以满足不影响人眼感官即可,例如,可以是60赫兹(HZ),本公开的实施例对此不作限制。
例如,当该刷新频率为60HZ时,第一刷新阶段(例如,第一个1/60s),控制器110向电压调节子电路122提供第一驱动控制信号,以产正极性的电压,在第二刷新阶段(例如,第二个1/60s),控制器110向电压调节子电路122提供第二驱动控制信号,以产生负极性的电压,由此可以输出极***替的电压信号至调光玻璃。
例如,该驱动控制信号的电平以该刷新频率交替变化。
由于输出电压信号S1的电平的交变频率与控制器110发送该驱动控制信号S2的频率有关,因此,例如,输出电压信号S1的交变频率与控制器110的刷新频率相同。例如,该电压输出子电路122的具体工作过程将在下面进行详细地介绍,在此不再赘述。
例如,该电压输出子电路122可以产生驱动液晶分子偏转的交流电压信号,例如将第二电压信号V2(幅值为8V的直流电压信号)调节为输出电压信号S1(幅值为8V的交流电压信号),从而可以将输出电压信号S1输出至调光玻璃200中,以控制调光玻璃200中的染料液晶分子进行相应的偏转。
例如,在另一些示例中,电压输出子电路122包括驱动子电路1221和输出子电路1222。
例如,驱动子电路1221的电压输入端(图中未示出)与控制器110的输出端(图中未示出)连接以接收驱动控制信号S2,驱动子电路1221的电源输入端(图中未示出)与第二电源140连接,且被配置为放大驱动控制信号并在其电压输出端(图中未示出)输出。例如,由于受限于控制器110的驱动能力,控制器110的输出端输出的驱动控制信号S2不足以达到驱动输出子电路1222,因此,可以通过驱动子电路1221将控制器110输出的驱动控制信号进行例如放大处理等,以使其输出的电压可以使得输出子电路1222正常工作。
需要注意的是,该驱动子电路可以采用本领域内的电路结构实现,例如,可以采用两个H桥电路实现等,在此不再赘述。
例如,为了使得驱动子电路可以实现较低电压(例如,5V以下电压)的输出,可以采用独立的电源供电,例如采用第二电源140为驱动子电路1221供电。例如,第二电源提供的电压小于第一电源提供的电压,从而驱动子电路1221在该第二电源140的驱动下可以实现较低电压的输出。
例如,输出子电路1222的驱动控制端(图中未示出)与驱动子电路1221的电压输出端(图中未示出)连接以接收放大后的驱动控制信号,电压输入端(图中未示出)和电压调节子电路121的电压输出端(图中未示出)连接,以接收第二电压信号V2,且配置为在放大后的驱动控制信号的控制下,根据第二电压信号在其电压输出端(图中未示出)输出该输出电压信号S1。例如,输出子电路1222在放大后的驱动控制信号的控制下导通,使得电压调节子电路121的电压输出端(图中未示出)与输出子电路1222的电压输出端(图中未示出)连接,从而将第二电压信号输出至调光玻璃200。
例如,控制器110按照刷新频率向驱动子电路1221的电压输入端(图中未示出)输出驱动控制信号。
图6B为本公开一些实施例提供的一种输出子电路的一个具体实现示例的电路图。例如,如图6B所示,在该示例中,驱动子电路1221的电压输出端(图中未示出)包括第一输出端OUT11、第二输出端OUT12、第三输出端OUT13和第四输出端OUT14,输出子电路1222的电压输出端(图中未示出)包括第一电压输出端OUT21和第二电压输出端OUT22。例如,该输出子电路1222的第一电压输出端OUT21与调光玻璃200的第一透明基板202 上的第一驱动电极连接,该输出子电路1222的第二电压输出端OUT22与调光玻璃200的第二透明基板203上的第二驱动电极连接,本公开的实施例对此不作限制。
如图6B所示,在一些示例中,该输出子电路1222可以实现为H桥电路,例如,该H桥电路包括第一晶体管T1至第四晶体管T4。需要注意的是,在下面的说明中以各晶体管为N型晶体管为例进行说明,但这并不构成对本公开实施例的限制。
例如,第一晶体管T1的栅极与驱动子电路1221的第一输出端OUT11连接以接收放大后的驱动控制信号,第一晶体管T1的第一极与电压调节子电路121的电压输出端(图中未示出)连接以接收第二电压信号V2,第一晶体管T1的第二极与输出子电路1222的第一电压输出端OUT21连接,从而当第一晶体管T1响应于驱动子电路1221的第一输出端OUT11输出的放大后的驱动控制信号而导通时,使得第一电压输出端OUT21与电压调节子电路121的电压输出端(图中未示出)连接,以将第二电压信号V2从第一电压输出端OUT21输出。
例如,第二晶体管T2的栅极与驱动子电路1221的第二输出端OUT12连接以接收放大后的驱动控制信号,第二晶体管T2的第一极与电压调节子电路121的电压输出端(图中未示出)连接以接收第二电压信号V2,第二晶体管T2的第二极与输出子电路1222的第二电压输出端OUT22连接,从而当第二晶体管T2响应于第二输出端OUT12输出的放大后的驱动控制信号导通时,使得第二电压输出端OUT22与电压调节子电路121的电压输出端(图中未示出)连接,以将第二电压信号V2从第二电压输出端OUT22输出。
例如,第三晶体管T3的栅极与驱动子电路1221的第三输出端OUT13连接以接收放大后的驱动控制信号,第三晶体管T3的第一极与第一电压端VSS(例如,接地端,提供低电平直流信号)连接以接收第三电压信号(例如,为直流低电平信号,低于第一电压信号,例如为0V),第三晶体管T3的第二极与输出子电路1222的第一电压输出端OUT21连接,从而当第三晶体管T3响应于第三输出端OUT13输出的放大后的驱动控制信号而导通时,使得第一电压输出端OUT21与第一电压端连接。
例如,第四晶体管T4的栅极与驱动子电路1221的第四输出端OUT14 连接以接收放大后的驱动控制信号,第四晶体管T4的第一极与第一电压端VSS连接以接收第三电压信号,第四晶体管T4的第二极与输出子电路1222的第二电压输出端OUT22连接,从而当第四晶体管T4响应于第四输出端OUT14输出的放大后的驱动控制信号而导通时,使得第二电压输出端OUT22与第一电压端连接。为了表示清楚、简洁,图中省略了第一电压端VSS与第一电压端VSS之间的连接线。
图7A为图6B中所示的输出子电路1222(例如,H桥电路)处于图4B中所示的第一阶段1时的示意图,图7B为图6B中所示的输出子电路1222(例如,H桥电路)处于图4B中所示的第二阶段2时的示意图。例如,第一阶段1,第一输出端OUT11至第四输出端OUT14提供的控制电平分别为0,1,1,0;在第二阶段2,第一输出端OUT11至第四输出端OUT14提供的控制电平分别为1,0,0,1。例如,1表示高电平,0表示低电平。例如,该第一输出端OUT11至第四输出端OUT14提供的电平0110或1001分别为经过驱动子电路1221放大后的驱动控制信号,即,控制器110通过相应的接口对应于输出0110或1001的电平信号,但是该电平信号的电平较低,因此将其发送至驱动子电路1221,并经驱动子电路1221放大后在第一输出端OUT11至第四输出端OUT14输出。
另外,图7A至图7B中用虚线标识的晶体管均表示在对应阶段内处于截止状态,图7A至图7B中带箭头的虚线表示在对应阶段内的电流流经调光玻璃200方向。图7A至图7B中所示的晶体管均以第一晶体管T1和第四晶体管T4为N型晶体管,即各个N型晶体管的栅极在接入高电平时导通,而在接入低电平时截止,以下实施例与此相同,不再赘述。
例如,如图4B和图7A所示,在第一阶段1,第一晶体管T1和第四晶体管T4截止,第二晶体管T2和第三晶体管T3分别响应于第二输出端OUT12和第三输出端OUT13输出的高电平而导通,使得第二电压输出端OUT22与电压调节子电路121的电压输出端(图中未示出)连接,第一电压输出端OUT21与第一电压端连接,从而可以使得电压调节子电路121提供的第二电压信号由第二电压输出端OUT22施加至调光玻璃200的第二透明基板203上的第二驱动电极206,并从与调光玻璃200的第一透明基板202上的第一驱动电极205连接的第一电压输出端OUT21经第三晶体管T3流出,从而形 成如图7A中带箭头的虚线所示的电流回路1,例如,该方向的电压波形如图4B中所示的第一阶段1中的正向方波。
例如,如图4B和图7B所示,在第二阶段2,第二晶体管T2和第三晶体管T3截止,第一晶体管T1和第四晶体管T4分别响应于第一输出端OUT11和第四输出端OUT14输出的高电平而导通,使得第一电压输出端OUT21与电压调节子电路121的电压输出端(图中未示出)连接,第二电压输出端OUT22与第一电压端连接,从而可以使得电压调节子电路121提供的第二电压信号由第一电压输出端OUT21施加至调光玻璃200的第一透明基板202上的第一驱动电极205,并从与调光玻璃200的第二透明基板203上的第二驱动电极206连接的第二电压输出端OUT22经第四晶体管T4流出,从而形成如图7B中带箭头的虚线所示的电流回路2,例如,该方向的电压波形如图4B中所示的第二阶段2中的负向方波。
如上所述,根据H桥电路的原理,由于第一晶体管T1和第四晶体管T4同时导通,第二晶体管T2和第三晶体管T3同时导通,且二组晶体管在不同阶段导通,使得施加至调光玻璃200上的电场发生变化,从而实现了将输出的第二电压信号V2转换为交流的输出电压信号,以避免染料液晶长时间处于同一方向的电场下发生极化,保证调光玻璃200的正常工作。
例如,当控制器110的刷新频率为60HZ时,可以以此频率控制例如电平信号0110和1001交替输出,从而生成如图4B所示的交流方波信号。
例如,当第一晶体管T1和第二晶体管T2的第一极输入的第二电压信号,大于第一输出端OUT11和第二输出端OUT12分别输出至第一晶体管T1和第二晶体管T2的栅极的放大后的驱动控制信号时,可能会导致使得第一晶体管T1和第二晶体管T2在应该导通的阶段截止,影响电路的正常工作。
为了提高电路的可靠性和稳定性,本公开一些实施例的驱动电路100中的输出子电路1222还可以包括自举电路(图中未示出)。例如,该自举电路的电压输入端与输出子电路1222的电压输出端连接以接收输出电压信号,且配置为根据输出电压信号控制输出子电路1222的电压输入端的电压。即,通过第一晶体管T1或第二晶体管T2的第二极的电压变为第一极的电压时(在晶体管导通时,与第一极的电压相等),第一晶体管T1或第二晶体管T2的栅极的电压会将在第一晶体管T1或第二晶体管T2的第二极的电压自举至第 一晶体管T1或第二晶体管T2的栅极(即保持第一晶体管T1或第二晶体管T2的栅极电压和第二极的电压差Vgs不变),从而使得第一晶体管T1或第二晶体管T2的栅极的电压大于第一极的电压,不会出现第一晶体管T1和第二晶体管T2在应该导通的阶段截止的现象,提高了电路的可靠性和稳定性。
例如,如图6B所示,该自举电路可以实现为第一电容C1、第一二极管L1、第二电容C2和第二二极管L2。例如,第一电容C1和第一二极管L1用于第一晶体管T1的自举,第二电容C2和第二二极管L2用于第二晶体管T2的自举。
例如,第一电容C1的第一端与第一晶体管T1的第二极连接,第一电容C1的第二端与第一晶体管T1的栅极连接。第一二极管L1的第一极与第二电源140连接,第一二极管L1的第二极与第一晶体管T1的栅极连接。第二电容C2的第一端与第二晶体管T2的第二极连接,第二电容C2的第二端与第二晶体管T2的栅极连接。第二二极管L2的第一极与第二电源140连接,第二二极管L2的第二极与第二晶体管T2的栅极连接。
图8为本公开一些实施例提出的又一种调光驱动装置的结构示意图。例如,如图8所示,在图5所示的示例的基础上,该驱动电路100还包括过滤电路150。该过滤电路150可以过滤掉第二电压信号中包括的直流电压分量,使得输出至调光玻璃的电压更加准确。另外,该过滤电路150还可以降低该调光玻璃装置的功耗。
例如,该过滤电路150与输出子电路1222的电压输出端(例如,第一电压输出端和第二电压输出端)连接,或与调光玻璃200的第一透明基板和第二透明基板连接,且配置为过滤输出子电路1222输出的输出电压信号中的直流电压。
例如,在一些示例中,该过滤电路可以实现为电阻R;在另一些示例中,该过滤电路150还可以实现为电阻R和电感L。例如,该电路R的阻值可以视具体情况而定,本公开的实施例对此不作限制。
由于过滤电路150可以实现为电阻R或电阻R和电感L,因此其和调光玻璃中呈现容性负载的染料液晶分子并联可以形成高阻抗电路,呈现高阻特征,即可以等效为一个电阻。例如,在调光玻璃中的染料液晶在输出电压信号的控制下偏转完成后,该输出电压信号在从第一透明基板或第二透明基板 放电的过程中,可以将电荷存储至过滤电路150的电感中,以在后续对调光玻璃200进行驱动时放电,从而可以降低调光玻璃的驱动功耗。
图9为本公开一些实施例提供的另一种调光玻璃装置的示意图。如图9所示,该调光玻璃装置10中的驱动子电路还包括一些其他单元,例如,JTAG接口、DDR3、同步串行接口(SPI Flash)、复位端、晶振以及通信模块等。
如图9所示,在一些示例中,该调光玻璃装置10还可以包括显示单元300。例如,该显示单元300配置为显示控制信息,以根据对控制信息的操作发送控制指令至控制器110。例如,该控制信息可以包括将调光玻璃的亮度调亮、调暗的显示选择按钮,用户可以通过触摸相应的按钮,将该控制指令发送至控制器110,实现对调光玻璃的亮度的控制。
如图9所示,例如,在另一些示例中,该调光玻璃装置10还可以包括控制单元400。例如,该控制单元400配置为向控制器110发送控制指令。例如,该控制单元可以客户端上的应用或遥控器等,从而可以通过手机等装置实现对调光玻璃的亮度的控制,提高了生活的便携性。
如图9所示,例如,在另一些示例中,该调光玻璃装置10还可以包括按键单元500。例如,该按键单元500配置为向控制器110发送控制指令。例如,该按键单元500可以包括设置在调光玻璃装置10上的按键,用户可以通过按键发送相应的控制指令至控制器110。
例如,上述显示单元300、控制单元400或按键单元500与控制器110,可以通过CAN总线或RST232等有线方式通信,也可以通过蓝牙、Wifi等无线通信方式实现控制指令向控制器110的发送,本公开的实施例对此不作限制,且以下实施例中的通信方式与此相同,不在赘述。
例如,本公开实施例中的其他电路结构可以参考本公开上述实施例中的详细介绍,在此不再赘述。
需要说明的是,为表示清楚、简洁,并没有给出该调光玻璃装置10的全部结构。为实现调光玻璃装置10的必要功能,本领域技术人员可以根据具体应用场景进行设置其他未示出的结构,本公开的实施例对此不做限制。
图10为本公开一些实施例提供的一种控制器110的主程序控制流程图。例如,如图10所示,在主程序中,首先初始化驱动电路100的输出电压信号,并读取电压调节子电路121的上次运行时的设置(例如,设置数控电位器的 上次调整值),基于上次调整值输出第二电压信号,并基于电压调节子电路的上次运行时的设置调整电压调节子电路中包括的反馈电阻的阻值。将电压调节子电路121设置完成后,初始化控制器110中的定时器,并将定时器的定时频率设置为刷新频率,初始化与控制器110连接各个串口(如图9中所示的JTAC接口等)和按键口之后,启动定时中断,启动串口中断和按键中断。例如,可以通过按键中断接收按键操作动作,并进行相应的控制调光玻璃的透光率调整;可以通过串口中断接收手机APP发送过来的控制指令,并分别在相应子程序中进行相关命令解析和处理,以实现通过手机APP控制和调整调光玻璃的透光率的功能。因此,在后续步骤中,如果收到按键改变,则执行按键处理子程序;如果收到串口数据改变,则执行串口处理子程序。
例如,通过设置定时中断可以实现刷新频率(例如60Hz)的H桥驱动控制,通过设置数控电位器的上次调整值可以保持上次设置输出,通过按键中断接收按键操作动作,并进行相应的控制调光玻璃的透光率的调整,通过串口中断接收手机APP发送过来的操作控制命令,并分别在相应子程序中进行相关命令解析和处理,以实现通过手机APP控制和调整调光玻璃的透光率的功能,本公开的实施例对此不作限制。
图11为图10中所示的中断子程序的流程图。例如,如图11所示,调光玻璃装置使用的中断子程序包括:定时中断、串口中断、按键中断。
例如,当检测到定时中断时,反转输出IO口的电平,从而生产交流电压信号,并清空中断标志;当检测到串口中断时,读取所接收的控制指令,并根据控制指令产生相应的输出电压信号,以通过手机APP调节调光玻璃的亮度;当检测到按键中断时,将按键中断标志置位,并清空中断标志,从而根据按键单元对调光玻璃的亮度进行控制。
本公开一些实施例还提供一种驱动电路100的驱动方法,可以用于驱动本公开任一实施例提供的驱动电路100。例如,如图12所示,在一些示例中,该驱动方法包括:
步骤S110:接收控制指令,控制器110根据控制指令在其输出端输出电压控制信号。
步骤S120:电压调节电路120根据电压控制信号在其电压输出端产生输出电压信号。
例如,该输出电压信号通过控制调光玻璃200中的液晶分子的偏转程度,来调整调光玻璃200的透光度。
例如,该驱动方法的驱动控制可以通过图10和图11所示的流程图实现。
本公开的实施例提供的驱动电路100的驱动方法的技术效果和原理可以参考上述实施例中关于驱动电路100的相应描述,这里不再赘述。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (18)

  1. 一种调光玻璃的驱动电路,包括:
    控制器,其中,所述控制器的输入端接收控制指令,并且被配置为根据所述控制指令在所述控制器的输出端输出电压控制信号;以及
    电压调节电路,其中,所述电压调节电路的控制输入端与所述控制器的输出端连接,所述电压调节电路的电源输入端与第一电源连接,所述电压调节电路的电压输出端与所述调光玻璃的电压输入端连接,并且被配置为根据所述电压控制信号在所述电压调节电路的电压输出端产生输出电压信号;
    其中,所述输出电压信号通过控制所述调光玻璃中的液晶分子的偏转程度,来调整所述调光玻璃的透光度。
  2. 根据权利要求1所述的驱动电路,其中,所述电压调节电路包括:
    电压调节子电路,其中,所述电压调节子电路的控制输入端接收所述电压控制信号,其电源输入端与所述第一电源连接以接收第一电压信号,并且被配置为根据所述电压控制信号在其电压输出端输出第二电压信号,其中,所述第一电压信号的电压与所述第二电压信号的电压不同;以及
    电压输出子电路,其中,所述电压输出子电路的电压输入端接收所述第二电压信号,并且被配置为基于所述第二电压信号在其电压输出端输出所述输出电压信号以控制所述调光玻璃的透光度。
  3. 根据权利要求2所述的驱动电路,其中,所述第一电压信号和所述第二电压信号是直流电压信号。
  4. 根据权利要求2或3所述的驱动电路,其中,所述电压输出子电路包括:
    驱动子电路,其中,所述驱动子电路的电压输入端与所述控制器的输出端连接以接收驱动控制信号,所述驱动子电路的电源输入端与第二电源连接,且被配置为放大所述驱动控制信号并在其电压输出端输出;以及
    输出子电路,其中,所述输出子电路的驱动控制端与所述驱动子电路的电压输出端连接以接收所述放大后的驱动控制信号,所述输出子电路的电压输入端与所述电压调节子电路的电压输出端连接以接收所述第二电压信号,且配置为在所述放大后的驱动控制信号的控制下,根据所述第二电压信号在 其电压输出端输出所述输出电压信号。
  5. 根据权利要求4所述的驱动电路,其中,所述控制器按照刷新频率向所述驱动子电路的电压输入端输出所述驱动控制信号。
  6. 根据权利要求4或5所述的驱动电路,其中,所述输出子电路输出的所述输出电压信号为交流电压信号,其幅值与所述第二电压信号的幅值相同,其交变频率与所述控制器的刷新频率相同。
  7. 根据权利要求4-6任一所述的驱动电路,其中,所述驱动子电路的电压输出端包括第一输出端、第二输出端、第三输出端和第四输出端,所述输出子电路的电压输出端包括第一电压输出端和第二电压输出端,
    其中,所述输出子电路包括:
    第一晶体管,其中,所述第一晶体管的栅极与所述驱动子电路的第一输出端连接以接收所述放大后的驱动控制信号,所述第一晶体管的第一极与所述电压调节子电路的电压输出端连接以接收所述第二电压信号,所述第一晶体管的第二极与所述输出子电路的第一电压输出端连接;
    第二晶体管,其中,所述第二晶体管的栅极与所述驱动子电路的第二输出端连接以接收所述放大后的驱动控制信号,所述第二晶体管的第一极与所述电压调节子电路的电压输出端连接以接收所述第二电压信号,所述第二晶体管的第二极与所述输出子电路的第二电压输出端连接;
    第三晶体管,其中,所述第三晶体管的栅极与所述驱动子电路的第三输出端连接以接收所述放大后的驱动控制信号,所述第三晶体管的第一极与第一电压端连接以接收第三电压信号,所述第三晶体管的第二极与所述输出子电路的所述第一电压输出端连接;以及
    第四晶体管,其中,所述第四晶体管的栅极与所述驱动子电路的第四输出端连接以接收所述放大后的驱动控制信号,所述第四晶体管的第一极与所述第一电压端连接以接收所述第三电压信号,所述第四晶体管的第二极与所述输出子电路的所述第二电压输出端连接。
  8. 根据权利要求7所述的驱动电路,其中,所述输出子电路还包括自举电路,
    其中,所述自举电路的电压输入端与所述输出子电路的电压输出端连接以接收所述输出电压信号,且配置为根据所述输出电压信号控制所述输出子 电路的电压输入端的电压。
  9. 根据权利要求8所述的驱动电路,其中,所述自举电路包括:
    第一电容,其中,所述第一电容的第一端与所述第一晶体管的第二极连接,所述第一电容的第二端与所述第一晶体管的栅极连接;
    第一二极管,其中,所述第一二极管的第一极与所述第二电源连接,所述第一二极管的第二极与所述第一晶体管的栅极连接;
    第二电容,其中,所述第二电容的第一端与所述第二晶体管的第二极连接,所述第二电容的第二端与所述第二晶体管的栅极连接;以及
    第二二极管,其中,所述第二二极管的第一极与所述第二电源连接,所述第二二极管的第二极与所述第二晶体管的栅极连接。
  10. 根据权利要求2-9任一所述的驱动电路,其中,所述电压调节子电路包括:
    数控电位器,其中,所述数控电位器的第一端作为所述电压调节子电路的控制输入端与所述控制器的输出端连接以接收所述电压控制信号,所述数控电位器的第二端作为所述电压调节子电路的电源输入端与所述第一电源连接以接收所述第一电压信号,所述数控电位器的第三端作为所述电压调节子电路的电压输出端输出所述第二电压信号;
    电阻,其中,所述电阻的第一端与所述数控电位器的第三端连接;以及
    模数转换器,其中,所述模数转换器的第一端与所述电阻的第二端连接,所述模数转换器的第二端与所述数控电位器连接。
  11. 根据权利要求4-10任一所述的驱动电路,还包括过滤电路,
    其中,所述过滤电路与所述输出子电路的电压输出端连接,且配置为过滤所述输出子电路输出的所述输出电压信号中的直流电压。
  12. 一种调光玻璃装置,包括:
    如权利要求1-11任一所述的驱动电路;以及
    调光玻璃,其中,所述调光玻璃包括液晶分子,且通过其电压输入端与所述驱动电路的电压输出端连接以接收所述输出电压信号,以在所述输出电压信号的控制下控制所述液晶分子的偏转程度。
  13. 根据权利要求12所述的调光玻璃装置,其中,所述调光玻璃还包括:
    第一透明基板;以及
    与所述第一透明基板相对设置的第二透明基板;
    其中,所述液晶分子位于所述第一透明基板和所述第二透明基板之间,以在所述驱动电路输出的所述输出电压信号的控制下偏转。
  14. 根据权利要求12或13所述的调光玻璃装置,其中,所述液晶分子为染料液晶分子。
  15. 根据权利要求12-14任一所述的调光玻璃装置,还包括显示单元,
    其中,所述显示单元配置为显示控制信息,以根据对所述控制信息的操作发送所述控制指令至所述控制器。
  16. 根据权利要求12-15任一所述的调光玻璃装置,还包括控制单元,
    其中,所述控制单元配置为向所述控制器发送所述控制指令。
  17. 根据权利要求12-16任一所述的调光玻璃装置,还包括按键单元,
    其中,所述按键单元配置为向所述控制器发送所述控制指令。
  18. 一种如权利要求1-11任一所述的调光玻璃的驱动电路的驱动方法,包括:
    接收所述控制指令,所述控制器根据所述控制指令在其输出端输出所述电压控制信号;
    所述电压调节电路根据所述电压控制信号在其电压输出端产生所述输出电压信号;
    其中,所述输出电压信号通过控制所述调光玻璃中的液晶分子的偏转程度,来调整所述调光玻璃的透光度。
PCT/CN2019/125283 2019-02-03 2019-12-13 调光玻璃的驱动电路及驱动方法、调光玻璃装置 WO2020155888A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19913675.5A EP3920174B1 (en) 2019-02-03 2019-12-13 Drive circuit and drive method for switchable glass, and switchable glass apparatus
US16/766,812 US11467436B2 (en) 2019-02-03 2019-12-13 Drive circuit and drive method for dimming glass, and dimming glass device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910108654.9 2019-02-03
CN201910108654.9A CN111524491B (zh) 2019-02-03 2019-02-03 调光玻璃的驱动电路及驱动方法、调光玻璃装置

Publications (1)

Publication Number Publication Date
WO2020155888A1 true WO2020155888A1 (zh) 2020-08-06

Family

ID=71841845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125283 WO2020155888A1 (zh) 2019-02-03 2019-12-13 调光玻璃的驱动电路及驱动方法、调光玻璃装置

Country Status (4)

Country Link
US (1) US11467436B2 (zh)
EP (1) EP3920174B1 (zh)
CN (1) CN111524491B (zh)
WO (1) WO2020155888A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111427177A (zh) * 2019-07-24 2020-07-17 魏崴 一种微型调光玻璃驱动电源

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3138535A1 (en) 2019-04-29 2020-11-05 Cardinal Ig Company Leakage current detection and control for one or more electrically controllable privacy glazing structures
MX2021013259A (es) * 2019-04-29 2022-01-06 Cardinal Ig Co Sistemas y metodos para operar una o mas estructuras de acristalamiento con privacia electricamente controlable.
CN113687681A (zh) * 2021-08-20 2021-11-23 京东方科技集团股份有限公司 电源模组、运放驱动及调光玻璃
CN114325501B (zh) * 2021-12-31 2024-04-02 科博达技术股份有限公司 Pdlc玻璃开路检测方法及其电路
TWI793977B (zh) * 2022-01-17 2023-02-21 絢麗光電股份有限公司 調光玻璃切換方法
DE102022134758B4 (de) 2022-12-23 2024-07-11 Tesa Se Montage-Kit mit Steuerungsschaltung für eine schaltbare Sichtschutz-Folie an einem Fenster und dessen Verwendung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120162593A1 (en) * 2010-12-27 2012-06-28 Tsung-Yen Tsai Liquid crystal composite material and liquid crystal electro-optical display device
CN102855851A (zh) * 2011-06-30 2013-01-02 北京众智同辉科技有限公司 聚合物分散型液晶膜的驱动方法及直流电源驱动装置
CN203301391U (zh) * 2013-04-28 2013-11-20 史济云 可连续调整调光玻璃或膜透明度的智慧型电源
CN106873197A (zh) * 2017-02-17 2017-06-20 深圳市万明精工科技有限公司 一种调光玻璃结构及其使用的负介电各向异性染料液晶
CN106970536A (zh) * 2017-05-17 2017-07-21 深圳市泽亮玻璃有限公司 一种调光玻璃自动控制***
CN107040140A (zh) * 2017-05-17 2017-08-11 深圳市国华光电科技有限公司 一种交流信号生成电路和生成方法
CN107147316A (zh) * 2017-05-17 2017-09-08 华南师范大学 一种交流电源电路及其控制方法
CN207586720U (zh) * 2017-10-12 2018-07-06 吉晟光电(深圳)有限公司 一种电致变色器件循环测试控制器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292228B2 (en) * 2007-03-30 2012-10-23 The Boeing Company Control system for dimmable windows
CN101930135A (zh) * 2009-06-26 2010-12-29 北京众智同辉科技有限公司 聚合物分散型液晶膜的驱动方法及电路
JP2013205748A (ja) * 2012-03-29 2013-10-07 Fujitsu Ltd コレステリック液晶表示装置およびコレステリック液晶表示素子の駆動制御方法
JP6391429B2 (ja) * 2014-11-04 2018-09-19 ローム株式会社 スイッチングコンバータおよびその制御回路、制御方法、それを用いた照明装置、電子機器
CN204422913U (zh) * 2015-01-30 2015-06-24 深圳市立昱迅科技有限公司 一种液晶调光玻璃的驱动电路
CN104807147A (zh) * 2015-05-21 2015-07-29 京东方科技集团股份有限公司 一种控制器、室内环境调节***及室内环境的调节方法
CN106712502A (zh) * 2015-08-06 2017-05-24 硕颉科技股份有限公司 整合过电流保护检测和过电压保护检测的升压装置
CN204989687U (zh) * 2015-10-06 2016-01-20 东北石油大学 一种电致液晶雾化玻璃的智能控制电路
US10845665B1 (en) * 2016-02-01 2020-11-24 Apple Inc. Devices with guest-host liquid crystal modulators
CN105551446B (zh) * 2016-02-02 2018-04-20 昆山龙腾光电有限公司 液晶显示面板的驱动方法
TR201602883A2 (tr) * 2016-03-04 2017-09-21 Arcelik As İndüksi̇yon isiticili ocak güç kontrol devresi̇
CN105807463B (zh) * 2016-03-14 2023-09-22 深圳市昂米科技有限公司 一种液晶电子写字板的驱动电路
CN205777078U (zh) * 2016-05-26 2016-12-07 江苏新富瑞节能玻璃有限公司 一种智能幕墙玻璃
DE102017213291B3 (de) * 2017-08-01 2018-10-04 Continental Automotive Gmbh Schaltungsvorrichtung zum Steuern einer in ihrer Transparenz schaltbaren Verglasung sowie schaltbare Verglasungsanordnung, Kraftfahrzeug und Verfahren zum Steuern einer in ihrer Transparenz schaltbaren Verglasung
CN107422532A (zh) * 2017-08-16 2017-12-01 京东方科技集团股份有限公司 一种透明显示面板、其制作方法及显示***
CN207199277U (zh) * 2017-10-11 2018-04-06 京东方科技集团股份有限公司 一种显示装置
CN109152134B (zh) * 2018-08-17 2021-01-22 思力科(深圳)电子科技有限公司 多路调光驱动***
CN110471232A (zh) * 2019-08-20 2019-11-19 深圳传音控股股份有限公司 电致变色材料驱动电路、方法和便携设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120162593A1 (en) * 2010-12-27 2012-06-28 Tsung-Yen Tsai Liquid crystal composite material and liquid crystal electro-optical display device
CN102855851A (zh) * 2011-06-30 2013-01-02 北京众智同辉科技有限公司 聚合物分散型液晶膜的驱动方法及直流电源驱动装置
CN203301391U (zh) * 2013-04-28 2013-11-20 史济云 可连续调整调光玻璃或膜透明度的智慧型电源
CN106873197A (zh) * 2017-02-17 2017-06-20 深圳市万明精工科技有限公司 一种调光玻璃结构及其使用的负介电各向异性染料液晶
CN106970536A (zh) * 2017-05-17 2017-07-21 深圳市泽亮玻璃有限公司 一种调光玻璃自动控制***
CN107040140A (zh) * 2017-05-17 2017-08-11 深圳市国华光电科技有限公司 一种交流信号生成电路和生成方法
CN107147316A (zh) * 2017-05-17 2017-09-08 华南师范大学 一种交流电源电路及其控制方法
CN207586720U (zh) * 2017-10-12 2018-07-06 吉晟光电(深圳)有限公司 一种电致变色器件循环测试控制器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3920174A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111427177A (zh) * 2019-07-24 2020-07-17 魏崴 一种微型调光玻璃驱动电源

Also Published As

Publication number Publication date
US11467436B2 (en) 2022-10-11
EP3920174A4 (en) 2022-11-02
CN111524491B (zh) 2021-05-25
US20210208436A1 (en) 2021-07-08
EP3920174A1 (en) 2021-12-08
EP3920174B1 (en) 2024-03-06
CN111524491A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2020155888A1 (zh) 调光玻璃的驱动电路及驱动方法、调光玻璃装置
CN104364708B (zh) 用于控制滤光器组件的***和方法
CN103680455B (zh) 一种显示面板公共电压调节电路和显示装置
TWI549430B (zh) 具有溫度補償之穩壓電路模組
EP4074531A1 (en) Smart vehicle window system and vehicle-mounted system
US20190228721A1 (en) Display apparatus and method of adjusting brightness thereof
US9007098B1 (en) Current mode DVR or PVCOM with integrated resistors
US9165511B2 (en) Backlight driving circuit, LCD device, and driving method
KR102318646B1 (ko) 출력 전압 조정 회로 및 액정 표시 장치
US20150154938A1 (en) Gamma Voltage Driving Circuit, Source Driving Module, and Liquid Crystal Panel
US20170090628A1 (en) Display device and touch display panel
CN105976788B (zh) 一种像素电路及其驱动方法、显示面板和显示装置
CN111223457A (zh) 背光驱动电路与显示装置
CN102262860A (zh) 一种液晶显示器及其背光驱动装置
CN102682723A (zh) 显示器的驱动装置及驱动方法
CN108806585A (zh) 一种驱动电路、驱动方法及显示装置
CN107978278A (zh) 扫描电路、有机发光显示装置及其驱动方法
US9728141B2 (en) Projection display device and driving method
US20200294440A1 (en) Display panel and boost circuit thereof
CN109616076B (zh) 显示装置及其工作方法
CN204946514U (zh) 可低温使用的液晶显示模块
KR20070075796A (ko) 구동 전압 생성 회로 및 이를 포함하는 액정 표시 장치
CN214152409U (zh) T-con驱动电路及t-con驱动板
CN220691648U (zh) 一种设有双屏自由信号切换功能的显示装置
CN114624908A (zh) 调光模组及调光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019913675

Country of ref document: EP