WO2020155643A1 - Système de commande d'entraînement à inertie rotative à composé actif-passif auto-alimenté - Google Patents

Système de commande d'entraînement à inertie rotative à composé actif-passif auto-alimenté Download PDF

Info

Publication number
WO2020155643A1
WO2020155643A1 PCT/CN2019/105659 CN2019105659W WO2020155643A1 WO 2020155643 A1 WO2020155643 A1 WO 2020155643A1 CN 2019105659 W CN2019105659 W CN 2019105659W WO 2020155643 A1 WO2020155643 A1 WO 2020155643A1
Authority
WO
WIPO (PCT)
Prior art keywords
passive
active
moment
output module
control system
Prior art date
Application number
PCT/CN2019/105659
Other languages
English (en)
Chinese (zh)
Inventor
张春巍
王昊
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2020155643A1 publication Critical patent/WO2020155643A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/16Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
    • F16F15/167Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material having an inertia member, e.g. ring
    • F16F15/173Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material having an inertia member, e.g. ring provided within a closed housing

Definitions

  • the invention relates to the field of vibration suppression in a system, and in particular to a self-powered active and passive composite moment of inertia drive control system.
  • Vibration is a common phenomenon in life. Engineering facilities and structures will often vibrate due to external loads during use, causing severe sway or even damage. In order to solve various problems caused by the vibration of the structure, vibration control technology came into being.
  • Structural vibration control technology is mainly divided into the following four aspects: active control, passive control, semi-active control and hybrid control.
  • active control passive control
  • semi-active control hybrid control
  • proper safety vibration control system can effectively reduce the dynamic response of the structure and reduce the damage or fatigue damage of the structure.
  • the movement of the structure is usually a combination of translation and torsion swing.
  • the structural vibration control system has an indispensable role, but the existing structural vibration control system has the following shortcomings: First, the translational TMD control device can only control the translational motion of the structure and affect the swing The control is invalid. Although the translational AMD control device can control the swing vibration, the control efficiency is extremely low and cannot meet the requirements of use; second, the passive moment of inertia tuned damper is effective for the control of the swing vibration movement, but it needs to be carried out for the structure itself Complicated frequency modulation has low control efficiency and poor effect on some complex structures.
  • control system has shortcomings such as low robustness, low controllability, and small application range; third, the control system has a small application range, limited control force output, and control The effect is limited, and the energy utilization rate of the control system cannot be guaranteed, which cannot meet the economic needs. Fourth, although the active (rotating) control device can solve the above three problems, there is a risk of the accidental energy cut-off control system completely failing.
  • the present invention was produced under this background.
  • the main purpose of the present invention is to provide a self-powered active and passive combined moment of inertia drive control system for the above problems.
  • the self-powered active and passive composite moment of inertia drive control system of the present invention includes an active output module and a passive output module.
  • the active output module includes a driver, an encoder, a transmission and an active moment of inertia disc;
  • the passive output module includes Torsional variable damping box, generator, energy storage unit and passive moment of inertia disc;
  • a system lumen is arranged between the active moment of inertia disc and the passive moment of inertia disc, and the active output module and the passive output module are symmetrically distributed along the center of the system lumen;
  • the driver is fixed on one side of the system lumen.
  • One end of the driver is equipped with an encoder, and the other end is connected with the transmission.
  • the drive shaft of the driver passes through the transmission and is vertically fixed at the center of the active moment of inertia disk;
  • the torsion variable damping box includes an outer connecting plate, an inner connecting plate, an outer sleeve, an inner sleeve and a torsion spring.
  • the outer connecting plate is fixed at the center of the passive moment of inertia disc
  • the inner connecting plate is fixed at the end of the system lumen
  • the inner sleeve The cylinder is fixedly connected with the inner connecting plate
  • the outer sleeve is fixedly connected with the outer connecting plate
  • the inner sleeve is coaxial with the outer sleeve
  • the outer sleeve is sleeved on the outside of the inner sleeve.
  • the two ends are closed by oil-sealed bearings.
  • a closed damping fluid tank is formed between the damping fluid tank, and the damping fluid tank is filled with damping fluid;
  • the torsion spring is arranged in the damping fluid tank, wound around the inner sleeve, one end is fixed to the outer connecting plate, and the other end is fixed to the inner sleeve;
  • the generator is fixed on the other side of the system lumen, coaxial with the driver, the generator shaft passes through the system lumen, inner connecting plate and inner sleeve in turn, and then fixedly connected with the outer connecting plate;
  • An energy storage unit is also installed on the generator, and the energy storage unit is also connected to the drive.
  • the driver is fixed in the lumen of the system through the driver fixing frame.
  • the generator is fixed in the system lumen through the generator fixing frame.
  • the present invention also includes a controller, which is respectively connected to the energy storage unit, generator, driver and encoder.
  • a liquid injection hole is provided on the outer sleeve for filling the damping liquid.
  • the active moment of inertia disc and the passive moment of inertia disc are parallel to the rotating surface of the controlled structure.
  • the active moment of inertia disc and the passive moment of inertia disc rotate coaxially, and when the rotation directions are opposite, the control force in the same direction is generated.
  • the driver is a servo motor or a stepping motor.
  • the control system of the present invention adopts self-powered technology, which can realize the synergy of the active module and the passive module without relying on external energy;
  • the control system of the present invention can realize active and passive composite control, and can realize vibration control under complex conditions. Compared with active control, combined with passive control technology, it has greater stability and energy saving;
  • the control system of the present invention is suitable for the situation where the structure undergoes rotation, torsion, or swing vibration, and has a wide range of applications.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • Figure 2 is a front view of the present invention
  • Figure 3 is a schematic diagram of the torsional variable damping box structure
  • Figure 4 is a schematic diagram of the present invention installed in the pendulum structure
  • the above drawings include the following reference signs: 1. Drive; 2. Encoder; 3. Transmission; 4. Active moment of inertia disc; 5. Torsional variable damping box; 6. Generator; 7. Energy storage unit; 8. Passive moment of inertia disc; 9. System lumen; 10. Drive fixing frame; 11. Outer connecting plate; 12. Inner connecting plate; 13. Outer sleeve; 14. Inner sleeve; 15. Torsion spring; 16 , Liquid injection hole; 17, generator fixing frame; 18, controller; 19, controlled structure.
  • the self-powered active and passive composite moment of inertia drive control system of the present invention includes an active output module and a passive output module.
  • the active output module includes a driver 1, an encoder 2, a transmission 3, and an active moment of inertia disc 4;
  • the passive output module includes a torsion variable damping box 5, a generator 6, an energy storage unit 7 and a passive moment of inertia disc 8;
  • a system lumen 9 is arranged between the active moment of inertia disc and the passive moment of inertia disc.
  • the active output module and the passive output module are symmetrically distributed along the center of the system lumen; the controlled structure 19 is fixed at the center of the system lumen, and the active moment of inertia Both the disc and the passive moment of inertia disc are parallel to the rotating surface of the controlled structure.
  • the driver is fixed on one side of the system lumen by the driver fixing frame 10.
  • One end of the driver is equipped with an encoder, and the other end is connected with the transmission.
  • the drive shaft of the driver passes through the transmission and is vertically fixed at the center of the active moment of inertia disk; the driver is a servo motor Or stepper motor.
  • the torsion variable damping box includes an outer connecting plate 11, an inner connecting plate 12, an outer sleeve 13, an inner sleeve 14 and a torsion spring 15.
  • the outer connecting plate is fixed at the center of the passive moment of inertia disc by bolts, and the inner connecting plate is fixed by bolts
  • the inner sleeve is fixedly connected with the inner connecting plate
  • the outer sleeve is fixedly connected with the outer connecting plate
  • the inner sleeve is coaxial with the outer sleeve
  • the outer sleeve is sleeved outside the inner sleeve, and both ends pass through
  • the oil seal bearing is closed, and a closed damping fluid tank is formed between the two sleeves.
  • the outer sleeve is provided with a liquid injection hole 16 for filling the damping fluid tank with the damping fluid; the torsion spring is arranged in the damping fluid tank along the inner edge
  • the sleeve is wound, one end is fixed to the outer connecting plate, and the other end is fixed to the inner sleeve; by changing the viscosity of the damping fluid in the torsion variable damping box and the stiffness of the torsion spring, the purpose of changing the damping can be achieved for frequency modulation.
  • the generator is fixed on the other side of the system lumen through the generator fixing frame 17, coaxial with the driver, the generator shaft passes through the system lumen, the inner connecting plate and the inner sleeve in turn, and then is fixedly connected to the outer connecting plate;
  • An energy storage unit 7 is also installed on the generator.
  • the energy storage unit is also connected to the drive.
  • the energy storage unit is a battery.
  • the passive moment of inertia disc rotates to generate control force and drive the generator to rotate to generate electrical energy.
  • the self-powered active and passive composite moment of inertia drive control system of the present invention further includes a controller 18, which is respectively connected with the energy storage unit, generator, driver and encoder.
  • a sensor is also provided at the hanging point to collect the rotation data of the controlled structure.
  • the sensor here can be, but is not limited to Photoelectric shaft encoder, angular acceleration sensor or gyroscope.
  • the passive output module can work alone to achieve the vibration control requirements.
  • the generated electric energy is stored in the battery to reserve energy for the active output module.
  • the sensor will detect The response of the structure is fed back to the controller, and the controller determines whether the active output module needs to be turned on.
  • the active output module starts to work, and the active output module can move according to the real-time measured structure State, control the rotation of the moment of inertia disc, adjust the control torque acting on the controlled structure, adjust the drive energy output, control the vibration of the structure, and ensure high control efficiency.
  • the active moment of inertia disc and the passive moment of inertia disc rotate coaxially, and the direction of rotation is opposite to produce the control force in the same direction.
  • the active and passive output modules play a control role at the same time, which produces a good effect of compound control and realizes vibration control. purpose. As the active output module turns on and takes effect, the structural response decreases and gradually enters the range where the passive output module can perform. The sensor feeds back to the controller in real time, the active output module stops working, and the passive output module keeps working until it reaches control. effect.
  • control system of the present invention can be applied to the following but not limited to the following basic prototype motion models of mechanical problems: free swing of a simple pendulum structure; vibration of a constrained inverted pendulum structure; fixed-axis rotation of a rigid body around an arbitrary axis in space, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

La présente invention concerne un système de commande d'entraînement à inertie rotative à composé actif-passif auto-alimenté qui comprend un module de sortie actif et un module de sortie passif, le module de sortie actif comprenant un pilote (1), un encodeur (2), une transmission (3) et un disque inertiel rotatif actif (4) ; le module de sortie passif comprend une boîte d'amortissement variable en torsion (5), un générateur (6), une unité de stockage d'énergie (7) et un disque d'inertie rotatif passif (8) ; une cavité de tuyau de système (9) est agencée entre le disque d'inertie rotatif actif (4) et le disque d'inertie rotatif passif (8), et le module de sortie actif et le module de sortie passif sont symétriquement répartis le long du centre de la cavité de tuyau de système (9). Le système de commande adopte une technologie auto-alimentée, peut réaliser l'effet synergique du module actif et du module passif et n'a pas besoin de dépendre d'une énergie externe ; le système de commande peut réaliser une commande de composé actif et passif et réaliser la commande de vibration dans des conditions complexes, et la combinaison avec la technologie de commande passive fournit une meilleure stabilité par rapport à une commande active.
PCT/CN2019/105659 2019-02-01 2019-09-12 Système de commande d'entraînement à inertie rotative à composé actif-passif auto-alimenté WO2020155643A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910103424.3A CN109630612B (zh) 2019-02-01 2019-02-01 自供能式主被动复合转动惯量驱动控制***
CN201910103424.3 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020155643A1 true WO2020155643A1 (fr) 2020-08-06

Family

ID=66064858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105659 WO2020155643A1 (fr) 2019-02-01 2019-09-12 Système de commande d'entraînement à inertie rotative à composé actif-passif auto-alimenté

Country Status (2)

Country Link
CN (1) CN109630612B (fr)
WO (1) WO2020155643A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414145A (zh) * 2021-12-21 2022-04-29 上海利正卫星应用技术有限公司 帆板驱动机构转动惯量模拟装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630612B (zh) * 2019-02-01 2023-11-24 青岛理工大学 自供能式主被动复合转动惯量驱动控制***
CN110745156B (zh) * 2019-10-31 2021-07-16 青岛理工大学 高速列车动态行为主被动混合控制***
CN110654412B (zh) * 2019-10-31 2021-04-09 青岛理工大学 抑制高速列车侧滚、点头、摇头行为的主被动复合控制***
CN115366927B (zh) * 2022-08-15 2024-06-11 沈阳工业大学 高空吊物不利摆动行为的控制***
CN115404758B (zh) * 2022-08-15 2024-07-16 沈阳工业大学 一种回转力矩主被动复合控制***
CN115233540A (zh) * 2022-08-15 2022-10-25 沈阳工业大学 抑制桥梁多模态耦合振动的主被动混合控制***
CN115387593B (zh) * 2022-08-15 2024-04-02 沈阳工业大学 悬吊物体摇摆止振的主被动复合控制***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277454A (zh) * 2013-05-09 2013-09-04 张春巍 调谐转动惯量阻尼减振装置
CN203834722U (zh) * 2014-04-11 2014-09-17 湖南科技大学 自供电式半主动调谐质量阻尼器
CN106246796A (zh) * 2016-08-10 2016-12-21 安徽工程大学 一种汽车悬架自供电磁流变阻尼器装置
CN106884926A (zh) * 2017-04-11 2017-06-23 重庆大学 被动/主动控制可选择的纵向直线振动抑制装置
JP2018123862A (ja) * 2017-01-31 2018-08-09 住友理工株式会社 能動型制振装置
CN109630612A (zh) * 2019-02-01 2019-04-16 青岛理工大学 自供能式主被动复合转动惯量驱动控制***
CN209511005U (zh) * 2019-02-01 2019-10-18 青岛理工大学 自供能式主被动复合转动惯量驱动控制***

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100487268C (zh) * 2002-10-10 2009-05-13 台达电子工业股份有限公司 旋转盘的振动消除装置与方法
EP1953411B1 (fr) * 2007-01-31 2018-09-19 Schaeffler Technologies AG & Co. KG Amortisseur de vibrations de torsion
FR2939857B1 (fr) * 2008-12-16 2010-12-24 Peugeot Citroen Automobiles Sa Moteur comportant un volant d'inertie et un volant contrarotatif, et ensemble comportant un tel moteur
DE102009007357B4 (de) * 2009-02-04 2024-01-18 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ansteuerung eines aktiven Fahrwerks eines zweiachsigen zweispurigen Kraftfahrzeugs
US8590420B2 (en) * 2010-07-19 2013-11-26 Worcester Polytechnic Institute Fluidic variable inertia flywheel and flywheel accumulator system
US9303751B2 (en) * 2013-01-07 2016-04-05 Schaeffler Technologies AG & Co. KG Power take off gear with a hydraulic impact damper
US20160047435A1 (en) * 2013-04-02 2016-02-18 Schaeffler Technologies AG & Co. KG Damper device for a vehicle and method for designing a damper device
CN203500374U (zh) * 2013-09-27 2014-03-26 长城汽车股份有限公司 可变惯量减振器
CN205706280U (zh) * 2016-06-30 2016-11-23 宝鸡文理学院 一种自供能型车辆主动减振座椅

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277454A (zh) * 2013-05-09 2013-09-04 张春巍 调谐转动惯量阻尼减振装置
CN203834722U (zh) * 2014-04-11 2014-09-17 湖南科技大学 自供电式半主动调谐质量阻尼器
CN106246796A (zh) * 2016-08-10 2016-12-21 安徽工程大学 一种汽车悬架自供电磁流变阻尼器装置
JP2018123862A (ja) * 2017-01-31 2018-08-09 住友理工株式会社 能動型制振装置
CN106884926A (zh) * 2017-04-11 2017-06-23 重庆大学 被动/主动控制可选择的纵向直线振动抑制装置
CN109630612A (zh) * 2019-02-01 2019-04-16 青岛理工大学 自供能式主被动复合转动惯量驱动控制***
CN209511005U (zh) * 2019-02-01 2019-10-18 青岛理工大学 自供能式主被动复合转动惯量驱动控制***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414145A (zh) * 2021-12-21 2022-04-29 上海利正卫星应用技术有限公司 帆板驱动机构转动惯量模拟装置
CN114414145B (zh) * 2021-12-21 2024-03-12 上海利正卫星应用技术有限公司 帆板驱动机构转动惯量模拟装置

Also Published As

Publication number Publication date
CN109630612B (zh) 2023-11-24
CN109630612A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020155643A1 (fr) Système de commande d'entraînement à inertie rotative à composé actif-passif auto-alimenté
US10962077B2 (en) Active composite variable damping rotational control device
KR102259052B1 (ko) 액티브 관성 모멘트 구동 제어 시스템
CN103314212B (zh) 浮体式海上风力发电设备
WO2020155633A1 (fr) Système de commande combiné de vibrations de torsion pour pont
WO2020155635A1 (fr) Système de commande d'entraînement par inertie rotative de plateforme marine de type à alimentation en énergie
WO2021082442A1 (fr) Procédé de régulation de couple généré par moment d'inertie
CN102409775B (zh) 调谐质量阻尼器减振控制装置
WO2020155634A1 (fr) Système combiné de commande de vibrations de translation et de rotation pour bâtiment
WO2020155644A1 (fr) Système de commande utilisant un dispositif d'entraînement mécanique permettant de réaliser un ajustement adaptatif d'inertie de rotation
CN209509214U (zh) 带阻尼液箱的转动惯量主动控制装置
KR102199650B1 (ko) 고속 열차 롤링 동태적 행위의 액티브 제어 시스템
CN209509215U (zh) 自适应机械驱动调节转动惯量式控制***
CN209509216U (zh) 主动转动惯量驱动控制***
CN209511005U (zh) 自供能式主被动复合转动惯量驱动控制***
WO2020155640A1 (fr) Système de commande de rotation utilisant un amortissement électromagnétique variable
CN209511004U (zh) 主动复合变阻尼转动控制装置
WO2020155639A1 (fr) Système de commande d'entraînement à inertie de rotation omnidirectionnel auto-propulsé
CN209568567U (zh) 电磁变阻尼旋转控制***
CN209568566U (zh) 自走式全方向转动惯量驱动控制***
CN109667357B (zh) 带阻尼液箱的转动惯量主动控制装置
CN209509218U (zh) 液压调节转动惯量主动控制装置
CN109610678B (zh) 液压调节转动惯量主动控制装置
CN103762537B (zh) 一种架空输电线路主动防舞执行机构
JPH0333524A (ja) 構造物制振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912364

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)