WO2020153682A1 - 전동 압축기 - Google Patents

전동 압축기 Download PDF

Info

Publication number
WO2020153682A1
WO2020153682A1 PCT/KR2020/000918 KR2020000918W WO2020153682A1 WO 2020153682 A1 WO2020153682 A1 WO 2020153682A1 KR 2020000918 W KR2020000918 W KR 2020000918W WO 2020153682 A1 WO2020153682 A1 WO 2020153682A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
refrigerant
electric compressor
driving unit
housing
Prior art date
Application number
PCT/KR2020/000918
Other languages
English (en)
French (fr)
Inventor
박현준
김영민
김홍민
임권수
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Publication of WO2020153682A1 publication Critical patent/WO2020153682A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means

Definitions

  • the present invention relates to a compressor, and more particularly, to an electric compressor that improves the cooling effect of a winding coil by improving the position and shape of a flow path through which the coolant moves and a positional defect groove of the stator core provided in the electric compressor. .
  • a compressor installed to supply cooling air regulated to a specific temperature to a passenger on a vehicle has various types of structures, and an electric compressor is used as an example and will be described with reference to the drawings.
  • the conventional electric compressor 10 is largely composed of a driving unit 3, a compression unit 5 and a control unit 7, the driving unit 3 is a driving unit housing forming an outer shape ( 30) and a stator 33 and a rotor 35 mounted coaxially in the drive unit housing 30.
  • the compression unit 5 is a compression unit housing 51 coupled to one side of the driving unit housing 30, a pivoting scroll 53 and a fixed scroll 55 mounted to rotate relative to the compression unit housing 51 ).
  • the control unit 7 is configured to include various driving circuits and elements such as a cover housing 75 that is formed on the outside and is coupled to the other side of the driving unit housing 30 and a PCB 78 mounted inside the cover housing 75. .
  • control unit 7 When the refrigerant is to be compressed by the motor-driven compressor 10, external power is applied to the control unit 7 through a connection terminal or the like, and the control unit 7 signals an operation to the driving unit 3 through a driving circuit or the like. To send.
  • the stator 33 in the form of an electromagnet pressed into the inner circumferential surface of the driving unit housing 30 is excited and magnetic, and is rotated by electromagnetic interaction with the rotor 35.
  • the electrons 35 are rotated at high speed.
  • the rotating shaft 41 of the driving unit 3 rotates at high speed
  • the orbiting scroll 53 of the compression unit 5 coupled with the rotating shaft 41 rotates at high speed in synchronization.
  • the refrigerant of the outer circumferential scroll fluidly connected from the driving unit to the compression unit 5 by the interaction with the orbiting scroll 53 and the fixed scroll 55 matched in a state facing the high pressure compression of the scroll to the center of the scroll to the refrigerant line. Will be discharged.
  • the driving unit 3 provided in the conventional electric compressor operated as described above is a driving source for generating rotational power of the electric compressor 10 for refrigerant compression, and the stator 33 is provided with a rotor 35 mounted coaxially. Corresponds to the driving part that creates the rotational driving force.
  • the stator 33 is composed of a stator core 37 that is fixedly mounted on the inner circumferential surface of the driving unit housing 30 by press-fitting or the like, and a winding coil 38 wound around the stator core 37.
  • the stator core 37 is a hollow cylindrical member as shown, and a through hole through which the rotor 35 is inserted is formed on a central axis, and a plurality of ribs protrude radially inward on the inner circumferential surface of the stator core 37. It is arranged at regular intervals in the circumferential direction.
  • the ribs extend in the axial direction of the stator core 37 to wind the winding coil 38, and positioning grooves (not shown) are formed at predetermined intervals in the circumferential direction.
  • the conventional stator 33 has a problem in that the cooling effect of the winding coil 38 decreases as the positioning groove (not shown) is in close contact with the inner end of the flow path after being pressed into the housing 30 of the driving unit. .
  • the winding coil 38 may not be stably cooled, and thus a malfunction of the electric compressor due to overheating may occur, and thus a countermeasure is needed.
  • the present invention was devised to solve the above-mentioned problems, and matched the position defect groove formed in the stator and the flow path formed inside the driving unit housing, and improved the shape of the flow path to improve the cooling of the winding coil. It is intended to provide a compressor.
  • the present invention for achieving the above object is inserted into the interior of the drive unit housing 300 to generate a rotational driving force for refrigerant compression, extends in the axial direction on the outer edge in the circumferential direction, and is spaced apart from each other by a predetermined distance.
  • a driving part 3 including a stator core 370 formed with a positioning groove 370a and a winding coil 380 wound on the stator core 370; And a compression unit 5 for compressing the refrigerant introduced through the driving unit 3 by the rotational driving force generated by the driving unit 3, wherein the stator core 370 is inserted into the driving unit housing 300.
  • a flow path 340 through which the refrigerant moves is formed at a position corresponding to the positioning groove 370a.
  • the flow path 340 includes a central flow path 342 positioned at the bottom of the driving unit housing 300 when viewed from the front, based on the direction of gravity; A side channel 344 spaced apart from the inner circumferential direction of the driving unit housing 300 based on the center channel 342, wherein the center channel 342 extends longer in the width direction than the side channel 344 Is formed,
  • the side channel 344 is disposed symmetrically to the left and right when looking at the driving unit housing 300 from the front.
  • the central flow path 342 has a relatively deep radial depth of the side flow path 344 when the driving unit housing 300 is viewed from the front.
  • the positioning groove 370a is located in the center of the width direction of the central flow path 342 and the side flow path 344.
  • the central flow path 342 and the side flow path 344 communicate with the inner bottom surface 304 of the driving unit housing 300.
  • the driving unit housing 300 is formed with a refrigerant inlet 302 that is opened for movement of the refrigerant, and the refrigerant inlet 302 is disposed in communication with any one of the side flow paths 344.
  • the side channel 344 is located on the same axis as the refrigerant intake 302 opened in the driving unit housing 300.
  • the flow path 340 increases in width W1 as it moves away from the refrigerant inlet 302 based on the axial direction of the driving unit housing 300.
  • the depth dl in the radial direction of the drive unit housing 300 increases as the flow path 340 moves away from the refrigerant suction port 302.
  • the side channel 344 extends obliquely toward the refrigerant intake 302 based on the axial direction of the driving unit housing 300.
  • the unevenness 346 is formed in the flow path 340 to increase the contact surface with the refrigerant and improve the direction of movement.
  • the irregularities 346 are spaced at different intervals in the width direction.
  • the unevenness 346 may include a first unevenness 346a formed in the center of the flow path 340 in the width direction; It includes a second concavo-convex (346b) formed on both sides of the flow path 340 in the width direction.
  • the second unevenness 346b is characterized in that the spacing between the first unevenness 346a is shorter.
  • the positioning groove is eccentric to one side and is not positioned, so that the winding coil can be stably cooled.
  • Embodiments of the present invention can change the internal shape and arrangement of the flow path in order to improve the cooling effect of the winding coil, so as to simultaneously promote the diffusion and movement speed of the refrigerant.
  • 1 is a sectional view showing a conventional electric compressor.
  • Figure 2 is a perspective view showing a stator provided in the electric compressor according to an embodiment of the present invention.
  • FIG. 3 is a plan view of FIG. 2;
  • Figure 4 is a cross-sectional view showing an electric compressor according to an embodiment of the present invention.
  • FIG 5 is a view showing a state in which the stator core is inserted into the drive unit housing of the present invention.
  • FIG. 6 is a view showing a flow path formed in the drive unit housing of the present invention.
  • FIG. 7 is a perspective view showing a central flow path according to an embodiment of the present invention.
  • FIG. 8 is a view showing a side channel according to an embodiment of the present invention.
  • FIG. 9 is a perspective view showing a state in which irregularities are formed in a central flow path according to another embodiment of the present invention.
  • FIG. 2 is a perspective view showing a stator provided in an electric compressor according to an embodiment of the present invention
  • FIG. 3 is a plan view of FIG. 2
  • FIG. 4 is an electric compressor according to an embodiment of the present invention
  • 5 is a view showing a state in which the stator core is inserted into the drive unit housing of the present invention
  • FIG. 6 is a view showing a flow path formed in the drive unit housing of the present invention.
  • the electric compressor 1 is inserted into the interior of the drive unit housing 300 to generate a rotational driving force for compressing refrigerant, and is axially circumferentially circumferential on the outer edge.
  • a driving part 3 including a stator core 370 extending toward each other and spaced apart from each other at predetermined intervals, and a winding coil 380 wound on the stator core 370; And a compression unit 5 for compressing the refrigerant introduced through the driving unit 3 by the rotational driving force generated by the driving unit 3.
  • the driving unit 3 is located in the center of the electric compressor 1, the compression unit 5 is located on the left side (based on the drawing) of the driving unit 3, and the control unit 7 is located on the right side (based on the drawing). Is located.
  • the control unit 7 is electrically connected to the stator 330 of the driving unit 3 to control the operation of the driving unit 3.
  • the driving unit 3 is provided with a driving unit housing 300 forming an outer shape, and when a stator core 370 is inserted into the driving unit housing 300, refrigerant is located at a position corresponding to the positioning groove 370a.
  • a moving flow path 340 is formed, and the flow path 340 is located on the same axis as the refrigerant suction port 302 opened in the driving unit housing 300.
  • the driving part housing 300 is a part forming the outer shape of the driving part 3 and is generally formed in a cylindrical shape.
  • the rotor 350 is coaxially coupled to the stator 330 and the rotation shaft is coupled.
  • the rotating shaft 410 is provided with a rotor core 430 on the outside, and the rotor 350 is driven by interaction with the stator 330 by the driving principle of the motor when the stator 330 is excited. This is done.
  • the rotating shaft 410 may be rotated at a high speed inside the driving unit housing 300.
  • the compression part 5 is a part that compresses the refrigerant by rotating by the rotational driving force generated by the driving part 3, and is connected to the front end of the rotation shaft 410 of the driving part 3.
  • the compression part 5 is in a state facing each other with the compression part housing 510 forming an outer shape, the orbiting scroll 530 rotatably mounted inside the compression part housing 510, and the orbiting scroll 530. It comprises a fixed scroll 550 coupled to.
  • the compression unit housing 510 is a cylindrical body opened toward the driving unit 3 and forms an outer body of the compression unit 5.
  • the rear housing 570 is provided with a gas-liquid separator 610 to separate the refrigerant into a gaseous phase and a liquid phase, and is configured to discharge the compressed gaseous refrigerant through the discharge port 590 opened on one side.
  • the orbiting scroll 530 is provided with an orbiting scroll wrap 690 extending in a spiral shape toward the center protruding from the rear, so that the eccentric shaft 670 of the driving unit 3 rotation axis 410 is located at the central portion of the orbiting scroll wrap 690. ) Is coupled to rotate in synchronization with the rotor 350 around the rotation shaft 410.
  • the orbiting and fixed scroll wrap from the driving unit 3 is fixed by the interaction of the orbiting and fixed scroll wraps 690 and 700.
  • the refrigerant sucked into the outer edges of 690 and 700 is compressed to the center, and then discharged to the rear housing 570 through the discharge port 730.
  • the control unit 7 is a part that controls the operation of the driving unit 3, and is mounted on the driving unit housing 300 by the cover housing 750 while mounted on the PCB 780.
  • the control unit 7 rotates or stops the rotor 350 by exciting or demagnetizing the stator 330 by a current supplied from an external power source.
  • the terminal assembly 390 consists of a female terminal housing 400 and a male terminal plug 420 to fit into a male and female form.
  • the terminal housing 400 and the terminal plug 420 mesh between the three-phase terminals 440 connected to the ends of each of the three-phase winding coils drawn from the UVW three-phase winding coil 380 of the stator 330 to each other. Is installed.
  • Each three-phase terminal 440 is interposed between the terminal housing 400 and the terminal plug 420 in a state where the terminal housing 400 and the terminal plug 420 are coupled, and each coupled to the terminal plug 420.
  • the corresponding connector pin 460 is connected.
  • the stator core 370 is formed with a positioning groove 370a extending in an axial direction at an outer edge in a circumferential direction and spaced apart from each other at a predetermined distance.
  • the positioning groove 370a serves to easily adjust the position of the stator 33 by being located in a section of a flow path formed in the inner circumferential direction of the driving unit housing 30.
  • the stator 330 is the width of the central flow path 342 and the side flow path 344 without pressing the positioning groove 370a to the inner end of the flow path after being pressed into the driving part housing 300 Because it is located in the center of the refrigerant is moved stably without clogging in the left and right positions of the positioning groove (37a).
  • the positioning groove 370a is positioned at the center of the central flow path 342 and the side flow path 344 in the width direction, and when a worker inserts the stator core 370 into the driving unit housing 300, the positioning groove ( Since 370a) is not eccentrically located in either the central flow path 342 or the side flow path 344, accurate mounting can be achieved.
  • the positioning groove 370a is not located at one end with respect to the width direction of the central flow path 342 and the side flow path 344, a stable heat exchange is performed with a low-temperature refrigerant when the refrigerant moves along the flow path 340. .
  • the winding coil 380 can improve cooling efficiency and prevent problems due to overheating.
  • a flow path 340 is formed inside the drive unit housing 300, and the flow path 340 is a central flow path located at the bottom of the driving unit housing 300 based on the direction of gravity when looking from the front. 342 and a side channel 344 spaced apart from the inner circumferential direction of the driving unit housing 300 based on the central channel 342.
  • the central flow path 342 has a longer length in the width direction than the side flow path 344.
  • the central flow path 342 corresponds to a lower side in the weight direction when the electric compressor 1 is installed in the vehicle, and corresponds to a position where the refrigerant and the oil contained in the refrigerant are relatively more concentrated than the side flow path 344.
  • the central flow path 342 extends relatively longer in the width direction than the side flow path 344 so that a large amount of refrigerant is stably moved, so the winding coil 380 according to heat exchange with the positioning groove 370a Its cooling efficiency is improved.
  • the central flow path 342 has a relatively deep radial depth when viewed from the front of the driving unit housing 300, thereby securing an area in which heat exchanges with a larger amount of refrigerant are obtained, and is more effective in diffusion of refrigerant due to movement. It becomes advantageous.
  • the side channel 344 is disposed symmetrically when viewed from the front of the driving unit housing 300 from the front, so the cooling efficiency of the winding coil 380 wound on the stator core 370 is not concentrated at a specific position and is uniformly Since it is maintained, stable cooling can be achieved.
  • the refrigerant primarily exchanges heat with the area corresponding to the inner bottom surface 304, , Cooling due to heat exchange is secondary while moving along the central flow path 342 and the side flow path 344.
  • the driving unit housing 300 is formed with a refrigerant inlet 302 that is opened for movement of the refrigerant, and the refrigerant inlet 302 is disposed in communication with any one of the side flow paths 344.
  • the meaning of communication means a state in which adjacent refrigerants are disposed in a state in which they can move.
  • the side flow path 344 is located on the same axis as the refrigerant intake 302 opened in the driving unit housing 300, thereby enabling stable movement of the refrigerant.
  • the refrigerant inlet 302 When the refrigerant inlet 302 is located on the same axis as the side passage 344, the refrigerant flows directly toward the refrigerant inlet 302 after moving along the extended movement path of the side passage 344 The copper wire according to the movement is shortened and the stable movement of the refrigerant can be simultaneously achieved.
  • the flow path 340 increases in width W1 as it moves away from the refrigerant inlet 302 based on the axial direction of the driving unit housing 300.
  • the width W1 corresponds to a circumferential length of the central flow path 342 and the side flow path 344 when the driving unit housing 300 is viewed from the front.
  • the front end corresponds to the front side when the driving unit housing 300 is viewed from the front
  • the rear end corresponds to the position where the refrigerant intake 302 is formed.
  • the side channel 344 increases the width W1 toward the front end as compared with the width W2 of the rear end portion adjacent to the refrigerant inlet 302, thereby inducing the diffusion of the refrigerant, thereby improving the heat exchange efficiency of the winding coil 380. Since it can be improved, the cooling performance of the winding coil 380 can be improved.
  • the side passage 344 of the passage 340 is closer to the position corresponding to the front end than the radial depth d2 of the driving housing 300 at the rear end adjacent to the refrigerant suction port 302, so that the driving passage housing 300 The depth d1 in the radial direction is increased.
  • the increase in the depth d1 is advantageous in improving the cooling performance of the winding coil 380 due to diffusion and contact area increase due to the movement of the refrigerant when the refrigerant moves to the side channel 344.
  • the central flow path 342 may also be configured with the same structure as the side flow path 344, and the width W1 may be changed.
  • the side passage 344 extends obliquely toward the upper upper direction and the lower lower direction based on the drawing as it goes toward the refrigerant inlet 302 based on the axial direction of the driving unit housing 300.
  • the inclined angle is not limited, it is possible to increase the mobility of the refrigerant by being obliquely extended to the side channel 344 located on the side of the electric compressor 1 for improving the moving speed and stability of the refrigerant.
  • the heat exchange efficiency in the side channel 344 is improved due to the diffusion effect and the contact area increase due to the movement of the refrigerant along with the above-described change in width and depth.
  • the concave-convex 346 is formed in the flow path 340 toward the refrigerant inlet 302 so as to increase the contact surface with the refrigerant and improve movement safety.
  • the unevenness 346 may be any of a polygonal or circular cross-sectional shape or a mixed shape, and is not particularly limited to a specific shape.
  • the unevenness 346 imparts directionality when the refrigerant is moved, and increases the heat exchange efficiency by increasing the contact area, thereby improving the cooling efficiency of the winding coil 380.
  • the unevenness 346 maintains directionality in one direction in the flow path 340 and the extended path has a straightness in one direction, thereby reducing unnecessary flow due to the movement of the refrigerant and stably moving toward the intended position.
  • the unevenness 346 includes a first unevenness 346a formed at the center of the flow path 340 in the width direction and a second unevenness 346b formed at both right and left sides of the flow path 340.
  • the second unevenness 346b is shorter than each other in the width direction than the first unevenness 346a.
  • the moving speed of the refrigerant in the place where the first unevenness 346a and the second unevenness 346b are formed is different from each other.
  • the movement speed of the refrigerant in the position where the second unevenness 346b is formed is slower due to resistance than the position where the first unevenness 346a is formed, the separation interval of the second unevenness 346b is shortened to prevent speed reduction. And, it is possible to improve the moving speed of the refrigerant through a reduction in resistance.
  • the speed drop is reduced by the width W1 compared to the position where the second unevenness 346b is formed, so that the spacing is wide.
  • the coolant can promote stable movement of the coolant regardless of the position of the flow path 340, and a phenomenon in which turbulence occurs at a specific position is prevented, so that the heat exchange efficiency of the winding coil 380 is kept constant.
  • the unevenness 346 may be formed in both the central flow path 342 and the side flow path 344, and it may also be formed in only one of the central flow path 342 or the side flow path 344.
  • the unevenness 346 may be possible to confirm where the movement of the refrigerant is unstable through experiments in advance and to form only at the corresponding position.
  • the present exemplary embodiments may provide an electric compressor capable of stably cooling the winding coil provided in the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

본 발명은 전동 압축기에 관한 것으로서, 보다 상세하게는 구동부 하우징의 내측에 형성된 유로에 고정자 코어에 형성된 위치결정 홈이 안정적으로 위치되도록 하고, 냉매의 이동 안정성을 통해 권선코일의 냉각 효과 향상을 도모하기 위하고자 한다.

Description

전동 압축기
본 발명은 압축기에 관한 것으로써, 보다 상세하게는 전동 압축기에 구비된 고정자 코어의 위치결점 홈과 냉매가 이동하는 유로의 위치 및 형태를 개선하여 권선코일의 냉각 효과를 향상시킨 전동 압축기에 관한 것이다.
일반적으로 차량에 탑승한 탑승객에게 특정 온도로 조절된 냉각 공기를 공급하기 위해 설치된 압축기는 다양한 형태의 구조로 구성되며 일 예로 전동 압축기가 사용되며 도면을 참조하여 설명한다.
첨부된 도 1을 참조하면, 종래의 상기 전동 압축기(10)는 크게 구동부(3)와, 압축부(5) 및 제어부(7)로 구성되고, 상기 구동부(3)는 외형을 이루는 구동부 하우징(30)과, 상기 구동부 하우징(30) 내에 동축 상으로 장착되는 고정자(33) 및 회전자(35)를 포함하여 구성된다.
상기 압축부(5)는 상기 구동부 하우징(30)의 일측에 결합되는 압축부 하우징(51)과, 상기 압축부 하우징(51) 내부에서 상대 회전하도록 장착되는 선회 스크롤(53) 및 고정 스크롤(55)을 포함하여 구성된다.
상기 제어부(7)는 외형을 이루며 구동부 하우징(30) 타측에 결합되는 커버 하우징(75)과, 상기 커버 하우징(75) 내부에 장착되는 PCB(78) 등 각종 구동회로 및 소자들을 포함하여 구성된다.
상기 전동 압축기(10)에 의해 냉매를 압축하고자 하는 경우에는, 접속단 등을 통해 제어부(7)로 외부 전원이 인가되고, 상기 제어부(7)는 구동회로 등을 통해 구동부(3)로 동작 신호를 전송한다.
상기 구동부(3)로 동작 신호가 전송되면, 구동부 하우징(30) 내주면에 압입되어 있는 전자석 형태의 고정자(33)가 여자되어 자성을 띠게 되며, 회전자(35)와의 전자기적인 상호 작용에 의해 회전자(35)를 고속으로 회전시키게 된다.
이 경우 구동부(3)의 회전축(41)이 고속 회전하게 되고, 상기 회전축(41)과결합된 압축부(5)의 선회 스크롤(53)이 동기 하여 고속으로 회전하게 된다.
또한 상기 선회 스크롤(53)과 마주보는 상태로 정합된 고정 스크롤(55)과의 상호 작용에 의해 구동부에서 압축부(5)로 유체 연결된 스크롤 외주연의 냉매를 스크롤 중심부로 고압 압축하여 냉매 라인으로 토출하게 된다.
이와 같이 작동되는 종래의 전동 압축기에 구비된 구동부(3)는 냉매 압축을 위한 전동 압축기(10)의 회전 동력을 만들어내는 구동원으로써 고정자(33)는 동축 상으로 장착되는 회전자(35)와 함께 회전 구동력을 만드는 구동부분에 해당된다.
상기 고정자(33)는 구동부 하우징(30) 내주면에 압입 등에 의해 고정되어 장착되는 고정자 코어(37)와, 상기 고정자 코어(37)에 권선되는 권선코일(38)로 이루어진다.
상기 고정자 코어(37)는 도시된 것처럼 중공 원통형의 부재로서, 중심 축선 상에 회전자(35)가 삽입되는 통공이 형성되어 있고, 고정자 코어(37)의 내주면에는 복수의 리브가 반경방향 안쪽으로 돌출되어, 원주방향으로 일정 간격을 두고 배열된다. 상기 리브는 권선코일(38)을 권선하기 위해 고정자 코어(37)의 축 방향으로 연장되고, 원주 방향에서 소정의 간격으로 위치결정 홈(미도시)이 형성된다.
종래의 고정자(33)는 상기 구동부 하우징(30)에 압입한 후에 상기 위치결정 홈(미도시)이 상기 유로의 내측 단부에 밀착되면서 상기 권선코일(38)의 냉각 효과가 저하되는 문제점이 유발되었다.
이 경우 상기 권선코일(38)은 안정적인 냉각이 이루어지지 않아 과열로 인한 전동 압축기의 오작동이 발생될 수 있어 이에 대한 대책이 필요하게 되었다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 고정자에 형성된 위치결점 홈과 구동부 하우징의 내측에 형성된 유로를 일치시키고, 유로의 형태를 개선하여 권선코일의 안정적인 냉각을 도모할 수 있는 전동 압축기를 제공하고자 한다.
상기와 같은 목적을 달성하기 위한 본 발명은 냉매 압축을 위한 회전 구동력을 발생시키기 위해 구동부 하우징(300)의 내부로 삽입되고, 원주 방향 외측 가장자리에 축 방향을 향해 연장되며 서로 간에 소정의 간격으로 이격된 위치결정 홈(370a) 형성된 고정자 코어(370)와, 상기 고정자 코어(370)에 권선된 권선코일(380)을 포함하는 구동부(3); 및 상기 구동부(3)에서 발생되는 회전 구동력에 의해 상기 구동부(3)를 통해 유입된 냉매를 압축하는 압축부(5)를 포함하되, 상기 구동부 하우징(300)은 상기 고정자 코어(370)가 삽입될 경우 상기 위치결정 홈(370a)과 대응되는 위치에 냉매가 이동하는 유로(340)가 형성된다.
상기 유로(340)는 상기 구동부 하우징(300)을 정면에서 바라볼 때 중력 방향을 기준으로 최하측에 위치된 중앙 유로(342); 상기 중앙 유로(342)를 기준으로 구동부 하우징(300)의 내측 원주 방향에서 이격된 측면 유로(344)를 포함하되, 상기 중앙 유로(342)는 상기 측면 유로(344) 보다 폭 방향 길이가 길게 연장형성된다,
상기 측면 유로(344)는 상기 구동부 하우징(300)을 정면에서 바라볼 때 좌우 대칭으로 배치된다.
상기 중앙 유로(342)는 상기 구동부 하우징(300)을 정면에서 바라볼 때 상기 측면 유로(344)의 반경 방향 깊이가 상대적으로 깊게 형성된다.
상기 위치결정 홈(370a)은 상기 중앙 유로(342)와 상기 측면 유로(344)의 폭 방향 중앙에 위치된다.
상기 중앙 유로(342)와 상기 측면 유로(344)는 상기 구동부 하우징(300)의 내측 바닥면(304)과 연통된다.
상기 구동부 하우징(300)은 냉매의 이동을 위해 개구된 냉매 흡입구(302)가 형성되고, 상기 냉매 흡입구(302)는 상기 측면 유로(344) 중의 어느 하나와 연통되게 배치된다.
상기 측면 유로(344)는 구동부 하우징(300)에 개구된 냉매 흡입구(302)와 동일 축선상에 위치된다.
상기 유로(340)는 상기 구동부 하우징(300)의 축 방향을 기준으로 상기 냉매 흡입구(302)에서 멀어질수록 너비(W1)가 증가된다.
상기 유로(340)는 상기 냉매 흡입구(302)에서 멀어질수록 상기 구동부 하우징(300)의 반경 방향에서의 깊이(d1)가 증가된다.
상기 측면 유로(344)는 상기 구동부 하우징(300)의 축 방향을 기준으로 상기 냉매 흡입구(302)로 갈수록 경사지게 연장된다.
상기 유로(340)에는 냉매와의 접촉면 증가와 이동 방향성이 향상되도록 요철(346)이 형성된다.
상기 요철(346)은 폭 방향에서 서로 다른 간격으로 이격된다.
상기 요철(346)은 상기 유로(340)의 폭 방향 중앙에 형성된 제1 요철(346a); 상기 유로(340)의 폭방향 좌우 양측에 형성된 제2 요철(346b)을 포함한다.
상기 제2 요철(346b)은 상기 제1 요철(346a) 보다 이격 간격이 짧은 것을 특징으로 한다.
본 실시 예에 의한 전동 압축기는 고정자 코어가 구동부 하우징에 삽입될 경우 위치결정 홈이 일측으로 편심되어 위치되지 않고 정위치 되므로 권선코일의 안정적인 냉각을 도모할 수 있다.
본 발명의 실시 예들은 유로의 내부 형태와 배치를 권선코일의 냉각 효과 향상을 위해 변경하여, 냉매의 확산 및 이동속도 증가를 동시에 도모할 수 있다.
도 1은 종래의 전동 압축기를 도시한 단면도.
도 2는 본 발명의 일 실시 예에 의한 전동 압축기에 구비된 고정자를 도시한 사시도.
도 3은 도 2의 평면도.
도 4는 본 발명의 일 실시 예에 의한 전동 압축기를 도시한 단면도.
도 5는 본 발명의 구동부 하우징에 고정자 코어가 삽입된 상태를 도시한 도면.
도 6은 본 발명의 구동부 하우징에 형성된 유로를 도시한 도면.
도 7은 본 발명의 일 실시 예에 의한 중앙 유로를 도시한 사시도.
도 8은 본 발명의 일 실시 예에 의한 측면 유로를 도시한 도면.
도 9는 본 발명의 다른 실시 예에 의한 중앙 유로에 요철이 형성된 상태를 도시한 사시도.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 첨부된 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의를 위해 과장되게 도시되어 있을 수 있다.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 판례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 하여 내려져야 할 것이다.
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세하게 설명한다. 참고로 도 2는 본 발명의 일 실시 예에 의한 전동 압축기에 구비된 고정자를 도시한 사시도이고, 도 3은 도 2의 평면도이며, 도 4는 본 발명의 일 실시 예에 의한 전동 압축기를 도시한 단면도이고, 도 5는 본 발명의 구동부 하우징에 고정자 코어가 삽입된 상태를 도시한 도면이며, 도 6은 본 발명의 구동부 하우징에 형성된 유로를 도시한 도면이다.
첨부된 도 2 내지 도 6을 참조하면, 본 실시 예에 의한 전동 압축기(1)는 냉매 압축을 위한 회전 구동력을 발생시키기 위해 구동부 하우징(300)의 내부로 삽입되고, 원주 방향 외측 가장자리에 축 방향을 향해 연장되며 서로 간에 소정의 간격으로 이격된 위치결정 홈(370a) 형성된 고정자 코어(370)와, 상기 고정자 코어(370)에 권선된 권선코일(380)을 포함하는 구동부(3); 및 상기 구동부(3)에서 발생되는 회전 구동력에 의해 상기 구동부(3)를 통해 유입된 냉매를 압축하는 압축부(5)를 포함한다.
상기 구동부(3)는 전동 압축기(1)를 기준으로 중앙에 위치되고, 상기 구동부(3)의 좌측(도면 기준)에 압축부(5)가 위치되며, 우측(도면 기준)에 제어부(7)가 위치된다.
상기 제어부(7)는 상기 구동부(3)의 고정자(330)에 전기적으로 연결되어 상기 구동부(3)의 동작을 제어한다.
상기 구동부(3)는 외형을 이루는 구동부 하우징(300)이 구비되고, 상기 구동부 하우징(300)의 내부로 고정자 코어(370)가 삽입될 경우 상기 위치결정 홈(370a)과 대응되는 위치에 냉매가 이동하는 유로(340)가 형성되며, 상기 유로(340)는 구동부 하우징(300)에 개구된 냉매 흡입구(302)와 동일 축 선상에 위치된다.
상기 구동부 하우징(300)은 구동부(3)의 외형을 이루는 부분으로 일반적으로 원통 형태로 형성된다. 회전자(350)는 고정자(330)와 동축으로 결합되고 회전축이 결합된다.
상기 회전축(410)에는 외측에 회전자 코어(430)가 구비되고, 상기 회전자(350)는 상기 고정자(330)가 여자될 경우 모터의 구동 원리에 의해 고정자(330)와의 상호 작용에 의해 구동이 이루어진다.
상기 회전축(410)에는 선단부와 후단부에 축 회전에 따른 안정적인 지지를 하기 위해 베어링(230, 240)이 설치되므로 상기 구동부 하우징(300)의 내측에서 상기 회전축(410)이 고속 회전될 수 있다.
상기 압축부(5)는 구동부(3)에서 발생되는 회전 구동력에 의해 회전함으로써 냉매를 압축하는 부분으로, 상기 구동부(3)의 회전축(410)의 선단부에 연결된다.
상기 압축부(5)는 외형을 이루는 압축부 하우징(510)과, 상기 압축부 하우징(510)의 내부에서 회전 가능하게 장착된 선회 스크롤(530) 및 상기 선회 스크롤(530)과 서로 마주보는 상태로 결합된 고정 스크롤(550)을 포함하여 구성된다.
상기 압축부 하우징(510)은 구동부(3)를 향하여 개방된 원통체로서, 압축부(5)의 외체를 형성한다. 후방하우징(570)에는 기액분리기(610)가 구비되어 있어 냉매를 기상과 액상으로 분리하여, 일측에 개구된 토출구(590)를 통해 압축된 기상의 냉매를 토출 하도록 구성된다.
상기 선회 스크롤(530)은 중심을 향해 스파이럴 형태로 연장된 선회 스크롤 랩(690)이 후면에 돌출 형성되므로 선회 스크롤 랩(690)의 중심 부위에 구동부(3) 회전축(410)의 편심축(670)이 결합되어, 상기 회전축(410)을 중심으로 회전자(350)와 동기하여 공전하도록 되어 있다.
상기 선회 스크롤(530)이 회전축(410)에 의해 회전될 경우 고정 스크롤(550)은 선회 및 고정 스크롤 랩(690, 700)의 상호 작용에 의하여, 구동부(3)로 부터 선회 및 고정 스크롤 랩(690, 700)의 외연부로 흡입된 냉매를 중심부로 압축한 다음, 토출구(730)를 통해 후방하우징(570)으로 토출시킨다.
제어부(7)는 구동부(3)의 동작을 제어하는 부분으로서, PCB(780)에 실장된 상태로 커버하우징(750)에 의해 구동부 하우징(300)에 장착된다.
제어부(7)는 외부전원으로부터 공급되는 전류에 의해 고정자(330)를 여자 또는 탈자시킴으로써 회전자(350)를 회전 구동 또는 정지시킨다.
터미널 조립체(390)는 암형의 터미널 하우징(400)과 수형의 터미널 플러그(420)로 이루어져 암수 형태로 끼워 맞춤된다. 터미널 하우징(400)과 터미널 플러그(420)는 고정자(330)의 U-V-W 3상의 권선코일(380)에서 인출된 각각의 3상 권선 코일 말단에 연결된 3상 터미널(440)을 상호 결합된 사이에 맞물리도록 설치된다.
각각의 3상 터미널(440)은 터미널 하우징(400)과 터미널 플러그(420)가 결합된 상태에서 터미널 하우징(400)과 터미널 플러그(420) 사이에 개재되어 터미널 플러그(420)에 결합되는 각각과 대응하는 커넥터 핀(460)과 접속하게 된다.
상기 고정자 코어(370)는 원주 방향 외측 가장자리에 축 방향을 향해 연장되고 서로 간에 소정의 간격으로 이격된 위치결정 홈(370a)이 형성된다. 상기 위치결정 홈(370a)은 구동부 하우징(30)의 내측 원주 방향에 형성된 유로의 구간 안에 위치됨으로써 상기 고정자(33)의 위치를 작업자가 손쉽게 조정하는 역활을 한다.
본 실시 예에 의한 고정자(330)는 상기 구동부 하우징(300)에 압입한 후에 상기 위치결정 홈(370a)이 상기 유로의 내측 단부에 밀착되지 않고 중앙유로(342)와 측면유로(344)의 너비의 중앙에 위치되므로 냉매가 상기 위치결정 홈(37a)의 좌우측 위치에서 막힘없이 안정적으로 이동된다.
이 경우 위치결점 홈(370a)은 구동부 하우징(300) 내측면에 밀폐되는 현상이 발생되지 않으므로 권선코일(380)의 냉각 효과가 향상되고, 상기 권선코일(38)은 안정적인 냉각이 이루어짐으로써 과열로 인한 전동 압축기의 오작동이 발생되지 않는다.
본 실시 예는 구동부 하우징(300)에 고정자 코어(370)가 삽입될 경우 상기 위치결정 홈(370a)과 대응되는 위치에 냉매가 이동하는 유로(340)가 형성된다.
상기 위치결정 홈(370a)은 상기 중앙 유로(342)와 상기 측면 유로(344)의 폭 방향 중앙에 위치되며, 작업자가 고정자 코어(370)를 구동부 하우징(300)에 삽입할 때 위치결정 홈(370a)이 중앙 유로(342) 또는 측면 유로(344)의 어느 한 쪽에 편심되게 위치되지 않으므로 정확한 장착을 도모할 수 있다.
상기 위치결정 홈(370a)은 중앙 유로(342)와 측면 유로(344)의 폭 방향을 기준으로 일측 단부에 위치되지 않으므로 냉매가 상기 유로(340)를 따라 이동할 때 저온의 냉매와 안정적인 열교환이 이루어진다.
따라서 권선코일(380)은 냉각 효율이 향상될 수 있으며 과열로 인한 문제점이 예방된다.
본 실시 예는 구동부 하우징(300)의 내측에 유로(340)가 형성되는데, 상기 유로(340)는 상기 구동부 하우징(300)을 정면에서 바라볼 때 중력 방향을 기준으로 최하측에 위치된 중앙 유로(342)와, 상기 중앙 유로(342)를 기준으로 구동부 하우징(300)의 내측 원주 방향에서 이격된 측면 유로(344)를 포함한다.
상기 중앙 유로(342)는 상기 측면 유로(344) 보다 폭 방향 길이가 길게 연장된다. 상기 중앙 유로(342)는 전동 압축기(1)가 차량에 설치될 경우 중량 방향 하측에 해당되고, 냉매와 상기 냉매에 포함된 오일이 상기 측면 유로(344) 보다 상대적으로 많이 고이는 위치에 해당된다.
상기 중앙 유로(342)는 다량의 냉매가 안정적으로 이동되도록 측면 유로(344) 보다 폭 방향에서 연장된 길이가 상대적으로 길게 연장되므로 상기 위치결정 홈(370a)과의 열교환에 따른 권선코일(380)의 냉각 효율이 향상된다.
또한 상기 중앙 유로(342)는 상기 구동부 하우징(300)을 정면에서 바라볼 때 반경 방향 깊이가 상대적으로 깊게 형성되므로 보다 많은 양의 냉매와 열교환이 이루어지는 면적이 확보되고, 이동에 따른 냉매 확산에도 보다 유리해 진다.
상기 측면 유로(344)는 상기 구동부 하우징(300)을 정면에서 바라볼 때 좌우 대칭으로 배치되므로 상기 고정자 코어(370)에 권취된 권선코일(380)의 냉각 효율이 특정 위치에 집중되지 않고 균일하게 유지되므로 안정적인 냉각을 도모할 수 있다.
상기 중앙 유로(342)와 상기 측면 유로(344)는 상기 구동부 하우징(300)의 내측 바닥면(304)과 연통되므로 냉매가 상기 내측 바닥면(304)에 해당하는 면적과 일차적으로 열교환이 이루어지고, 상기 중앙 유로(342)와 측면 유로(344)를 따라 이동하면서 이차적으로 열교환에 따른 냉각이 이루어진다.
상기 구동부 하우징(300)은 냉매의 이동을 위해 개구된 냉매 흡입구(302)가 형성되고, 상기 냉매 흡입구(302)는 상기 측면 유로(344) 중의 어느 하나와 연통되게 배치된다. 여기서 연통의 의미는 가까이 인접하여 냉매의 이동이 가능한 상태로 배치된 상태를 의미한다.
상기 측면 유로(344)는 구동부 하우징(300)에 개구된 냉매 흡입구(302)와 동일 축선상에 위치되므로 냉매의 안정적인 이동을 도모할 수 있다.
상기 냉매 흡입구(302)가 상기 측면유로(344)와 동일 축선상에 위치될 경우 냉매가 상기 측면유로(344)의 연장된 이동 경로를 따라 이동한 후에 상기 냉매 흡입구(302)를 향해 곧바로 유입되므로 이동에 따른 동선이 단축되고 냉매의 안정적인 이동을 동시에 도모할 수 있다.
첨부된 도 7을 참조하면, 본 실시 예에 의한 유로(340)는 구동부 하우징(300)의 축 방향을 기준으로 상기 냉매 흡입구(302)에서 멀어질수록 너비(W1)가 증가된다. 상기 너비(W1)는 구동부 하우징(300)을 정면에서 바라볼 때 중앙 유로(342)와 측면 유로(344)의 원주 방향 길이에 해당된다. 참고로 선단부는 구동부 하우징(300)을 정면에서 바라볼 때 앞쪽에 해당되고, 후단부는 냉매 흡입구(302)가 형성된 위치에 해당된다.
일 예로 측면유로(344)는 냉매 흡입구(302)와 인접한 후단부의 너비(W2)와 비교해볼 때 선단부로 갈수록 너비(W1)가 증가되므로 냉매의 확산을 유도하여 권선코일(380)의 열교환 효율이 향상될 수 있어 상기 권선코일(380)의 냉각 성능 향상을 도모할 수 있다.
상기 유로(340) 중 측면 유로(344)는 상기 냉매 흡입구(302)와 인접한 후단부에서 구동부 하우징(300)의 반경 방향 깊이(d2) 보다 선단부에 해당하는 위치로 갈수록 상기 구동부 하우징(300)의 반경 방향에서의 깊이(d1)가 증가된다.
상기 깊이(d1) 증가는 측면 유로(344)로 냉매가 이동할 때 냉매의 이동에 따른 확산과 접촉 면적 증가로 권선코일(380)의 냉각 성능 향상에 유리해 진다.
참고로 중앙유로(342) 또한 측면유로(344)와 동일한 구조로 구성될 수 있으며 너비(W1)는 변경될 수 있다.
첨부된 도 8을 참조하면, 측면 유로(344)는 상기 구동부 하우징(300)의 축 방향을 기준으로 상기 냉매 흡입구(302)로 갈수록 도면 기준으로 상측 상부 방향과 하측 하부 방향을 향해 경사지게 연장된다. 경사진 각도는 한정하지 않으나 냉매의 이동 속도 향상과 안정성을 위해 전동 압축기(1)의 측면에 위치된 측면 유로(344)에 경사지게 연장되어 냉매의 이동성 향상을 도모할 수 있다.
이 경우 전술한 너비의 변화와 깊이의 변화와 함께 냉매의 이동에 따른 확산 효과 및 접촉 면적 증가로 인해 측면 유로(344)에서의 열교환 효율이 향상된다.
첨부된 도 9를 참조하면, 본 실시 예는 전술한 실시 예와 더불어 유로(340)에는 냉매와의 접촉면 증가와 이동 안전성이 향상되도록 상기 냉매 흡입구(302)를 향해 요철(346)이 형성된다.
상기 요철(346)은 단면 형태가 다각형 또는 원형 중의 어느 한 형태 또는 혼합된 형태가 모두 가능하고, 특별히 특정 형태로 한정하지 않는다.
상기 요철(346)은 냉매가 이동될 때 방향성을 부여하고, 접촉 면적을 증가시켜 열교환 효율을 향상시켜 권선 코일(380)의 냉각 효율 향상을 도모할 수 있다.
요철(346)은 상기 유로(340)에서 일 방향으로 방향성이 유지되고 연장된 경로가 일 방향으로 직진성을 가지므로 냉매의 이동에 따른 불필요한 유동이 감소되고, 의도된 위치를 향해 안정적으로 이동된다.
상기 요철(346)은 상기 유로(340)의 폭 방향 중앙에 형성된 제1 요철(346a)과, 상기 유로(340)의 폭방향 좌우 양측에 형성된 제2 요철(346b)을 포함한다.
일 예로 중앙유로(342)와 측면유로(344)는 모두 요철(346)이 형성된 것으로 가정할 때 이격 간격이 제1 요철(346a)보다 제2 요철(346b)이 너비 방향에서 서로 간에 짧게 형성된다.
일 예로 측면유로(344)에 요철(346)이 형성될 경우 상기 제1 요철(346a)과 제2 요철(346b)이 형성된 곳에서의 냉매의 이동 속도는 서로 상이해진다. 특히 제2 요철(346b)이 형성된 위치에서 냉매의 이동 속도는 제1 요철(346a)이 형성된 위치에 비해 저항에 의해 느려지므로 상기 제2 요철(346b)의 이격 간격을 짧게 형성하여 속도 저하를 예방하고, 저항 감소를 통해 상기 냉매의 이동 속도를 향상시킬 수 있다.
상기 제1 요철(346a)이 형성된 위치에서는 너비(W1)에 의해 속도 저하가 제2 요철(346b)이 형성된 위치에 비해 감소되므로 이격 간격이 넓게 형성된다.
따라서 냉매는 유로(340) 위치와 상관없이 냉매의 안정적인 이동을 도모할 수 있고, 특정 위치에서 난류가 발생되는 현상이 방지되므로 권선코일(380)의 열교환 효율이 일정하게 유지된다.
참고로 요철(346)은 중앙유로(342) 및 측면유로(344)에 모두 형성될 수 있으며, 중앙유로(342) 또는 측면유로(344) 중의 어느 한 유로에만 형성되는 것도 가능하다. 특히 요철(346)은 냉매의 이동이 불안정한 곳을 사전에 실험을 통해 확인하고 해당 위치에만 형성하는 것도 가능할 수 있다.
앞에서 설명되고 도면에 도시된 본 발명의 일 실시 예는, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 권리범위는 청구범위에 기재된 사항에 의해서만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 및 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경이 통상의 지식을 가진 자에게 자명한 것인 한, 본 발명의 권리범위에 속하게 될 것이다.
본 실시 예들은 압축기에 구비된 권선코일의 안정적인 냉각을 도모할 수 있는 전동 압축기를 제공할 수 있다.

Claims (15)

  1. 냉매 압축을 위한 회전 구동력을 발생시키기 위해 구동부 하우징의 내부로 삽입되고, 원주 방향 외측 가장자리에 축 방향을 향해 연장되며 서로 간에 소정의 간격으로 이격된 위치결정 홈에 형성된 고정자 코어와, 상기 고정자 코어에 권선된 권선코일을 포함하는 구동부; 및
    상기 구동부에서 발생되는 회전 구동력에 의해 상기 구동부를 통해 유입된 냉매를 압축하는 압축부를 포함하되,
    상기 구동부 하우징은 상기 고정자 코어가 삽입될 경우 상기 위치결정 홈과 대응되는 위치에 냉매가 이동하는 유로가 형성된 전동 압축기.
  2. 제1 항에 있어서,
    상기 유로는 상기 구동부 하우징을 정면에서 바라볼 때 중력 방향을 기준으로 최하측에 위치된 중앙 유로;
    상기 중앙 유로를 기준으로 구동부 하우징의 내측 원주 방향에서 이격된 측면 유로를 포함하되,
    상기 중앙 유로는 상기 측면 유로 보다 폭 방향 길이가 길게 연장된 것을 특징으로 하는 전동 압축기.
  3. 제2 항에 있어서,
    상기 측면 유로는 상기 구동부 하우징을 정면에서 바라볼 때 좌우 대칭으로 배치된 전동 압축기.
  4. 제2 항에 있어서,
    상기 중앙 유로는 상기 구동부 하우징을 정면에서 바라볼 때 상기 측면 유로의 반경 방향 깊이가 상대적으로 깊게 형성된 전동 압축기.
  5. 제2 항에 있어서,
    상기 위치결정 홈은 상기 중앙 유로와 상기 측면 유로의 폭 방향 중앙에 위치된 전동 압축기.
  6. 제2 항에 있어서,
    상기 중앙 유로와 상기 측면 유로는 상기 구동부 하우징의 내측 바닥면과 연통된 전동 압축기.
  7. 제2 항에 있어서,
    상기 구동부 하우징은 냉매의 이동을 위해 개구된 냉매 흡입구가 형성되고, 상기 냉매 흡입구는 상기 측면 유로 중의 어느 하나와 연통되게 배치된 전동 압축기.
  8. 제2 항에 있어서,
    상기 측면 유로는 구동부 하우징에 개구된 냉매 흡입구와 동일 축선상에 위치된 전동 압축기.
  9. 제2 항에 있어서,
    상기 유로는 상기 구동부 하우징의 축 방향을 기준으로 상기 냉매 흡입구에서 멀어질수록 너비(W1)가 증가되는 전동 압축기.
  10. 제2 항에 있어서,
    상기 유로는 상기 냉매 흡입구에서 멀어질수록 상기 구동부 하우징의 반경 방향에서의 깊이(d1)가 증가되는 전동 압축기.
  11. 제2 항에 있어서,
    상기 측면 유로는 상기 구동부 하우징의 축 방향을 기준으로 상기 냉매 흡입구로 갈수록 경사지게 연장된 전동 압축기.
  12. 제2 항에 있어서,
    상기 유로에는 냉매와의 접촉면 증가와 이동 방향성이 향상되도록 요철이 형성된 전동 압축기.
  13. 제12 항에 있어서,
    상기 요철은 폭 방향에서 서로 다른 간격으로 이격된 전동 압축기.
  14. 제12 항에 있어서,
    상기 요철은 상기 유로의 폭 방향 중앙에 형성된 제1 요철;
    상기 유로의 폭방향 좌우 양측에 형성된 제2 요철을 포함하는 전동 압축기.
  15. 제14 항에 있어서,
    상기 제2 요철은 상기 제1 요철 보다 이격 간격이 짧은 전동 압축기.
PCT/KR2020/000918 2019-01-25 2020-01-20 전동 압축기 WO2020153682A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0009854 2019-01-25
KR1020190009854A KR20200092668A (ko) 2019-01-25 2019-01-25 전동 압축기

Publications (1)

Publication Number Publication Date
WO2020153682A1 true WO2020153682A1 (ko) 2020-07-30

Family

ID=71736436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000918 WO2020153682A1 (ko) 2019-01-25 2020-01-20 전동 압축기

Country Status (2)

Country Link
KR (1) KR20200092668A (ko)
WO (1) WO2020153682A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240067697A (ko) 2022-11-09 2024-05-17 현대위아 주식회사 전동식 압축기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179463A (ja) * 1998-12-14 2000-06-27 Denso Corp 密閉型電動圧縮機
JP2003324900A (ja) * 2002-05-01 2003-11-14 Denso Corp 電動圧縮機
KR20120042343A (ko) * 2010-10-25 2012-05-03 학교법인 두원학원 차량용 전동식압축기의 인버터 냉각구조
KR20150033072A (ko) * 2013-09-23 2015-04-01 한라비스테온공조 주식회사 전동 압축기
KR20160133369A (ko) * 2015-05-12 2016-11-22 가부시키가이샤 도요다 지도숏키 전동 압축기

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101098748B1 (ko) 2009-10-01 2011-12-23 (주) 디에이치홀딩스 브러쉬리스 직류모터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179463A (ja) * 1998-12-14 2000-06-27 Denso Corp 密閉型電動圧縮機
JP2003324900A (ja) * 2002-05-01 2003-11-14 Denso Corp 電動圧縮機
KR20120042343A (ko) * 2010-10-25 2012-05-03 학교법인 두원학원 차량용 전동식압축기의 인버터 냉각구조
KR20150033072A (ko) * 2013-09-23 2015-04-01 한라비스테온공조 주식회사 전동 압축기
KR20160133369A (ko) * 2015-05-12 2016-11-22 가부시키가이샤 도요다 지도숏키 전동 압축기

Also Published As

Publication number Publication date
KR20200092668A (ko) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2018038339A1 (ko) 클러스터 조립체 및 이를 포함하는 전동식 압축기
WO2021232835A1 (zh) 一种电机转子、电机及汽车
WO2018088778A1 (ko) 분리된 냉각 기로를 구비한 터보 압축기
US9559570B2 (en) Electrical machine
WO2018097511A1 (ko) 인터쿨러를 구비한 터보 압축기
WO2018084345A1 (ko) 전기적 연결수단을 구비한 전동압축기 및 그를 위한 고정자 조립체
WO2020027436A1 (ko) 전동기
WO2020153682A1 (ko) 전동 압축기
WO2019041915A1 (zh) 电机及压缩机
WO2022025427A1 (ko) 모터 어셈블리 및 이를 포함하는 청소기
WO2021225229A1 (ko) 모터 어셈블리
WO2021225228A1 (ko) 모터 어셈블리
JP2008082279A (ja) 電動コンプレッサ
WO2009108006A2 (ko) 인버터형 스크롤 압축기
WO2022169110A1 (ko) 진공청소기
WO2022203178A1 (ko) 방폭 기능을 구비하는 터보 압축기
WO2020145603A1 (ko) 전동기
CN107592946B (zh) 电池冷却装置
WO2020204652A1 (ko) 플럭스 스위칭 모터 및 이를 이용한 청소기
WO2024136109A1 (ko) 전동 압축기
WO2023075018A1 (ko) 모터
WO2024080465A1 (ko) 전동 압축기
WO2024063236A1 (ko) 전동 압축기
WO2022215887A1 (ko) 모터
WO2023128352A1 (ko) 전동 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20744851

Country of ref document: EP

Kind code of ref document: A1