WO2020153440A1 - Electricity cost simulation device - Google Patents

Electricity cost simulation device Download PDF

Info

Publication number
WO2020153440A1
WO2020153440A1 PCT/JP2020/002382 JP2020002382W WO2020153440A1 WO 2020153440 A1 WO2020153440 A1 WO 2020153440A1 JP 2020002382 W JP2020002382 W JP 2020002382W WO 2020153440 A1 WO2020153440 A1 WO 2020153440A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power cost
simulation
cost
attribute
Prior art date
Application number
PCT/JP2020/002382
Other languages
French (fr)
Japanese (ja)
Inventor
英一 馬本
Original Assignee
日本テクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テクノ株式会社 filed Critical 日本テクノ株式会社
Priority to JP2020518563A priority Critical patent/JP7058730B2/en
Publication of WO2020153440A1 publication Critical patent/WO2020153440A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to an apparatus that performs a simulation for selecting a power rate plan with the greatest merit among contract plans of a plurality of power supply companies.
  • the person who receives the power supply wants to receive the power supply with the cheapest price plan. Therefore, a system for comparing power supply plans has been desired.
  • Patent document 1 is mentioned as such a thing.
  • the present invention aims to provide an electric power cost simulation device that can realize a business model of selling electric power at the same amount as the consideration for the type of electric power supply that is optimal for the person who receives the electric power supply. is there.
  • the present invention includes a power consumption attribute acquisition unit that acquires a power consumption attribute of a power consumer, a power cost attribute acquisition unit that acquires a power cost attribute for each power supply type, and a simulation period described below.
  • the simulation period acquisition unit that acquires a certain simulation period and the power consumption attribute of the consumer and the power cost attribute defined by the power supply type for each of the plurality of power supply types
  • the power is chronologically set in the simulation period.
  • An electric power cost simulation arithmetic expression holding unit that holds an electric power cost simulation arithmetic expression that is an arithmetic expression for simulating the electric power cost for each supply type, an acquired power consumption attribute, and an acquired electric power cost attribute are held.
  • a power cost simulation device having a power cost simulation arithmetic expression and a selection unit that selects a power supply type having the lowest power cost among a plurality of power supply types based on the time series in a simulation period.
  • the present invention provides a power cost calculation unit that calculates a power cost when power is consumed during a simulation period according to the selection of the power supply type selected in time series by the selection unit, and the power cost.
  • a power cost simulation device further including a post-selection power cost simulation result output section which outputs a post-selection power cost simulation result which is a calculation result in a calculation section.
  • the present invention provides a power cost simulation device further including a power cost simulation result comparison output unit that outputs the power cost simulation results calculated for a plurality of power supply types in a comparable manner.
  • the present invention provides a post-selection power cost simulation result comparison output unit that outputs a power cost simulation result calculated for one or more power supply types and a post-selection power cost simulation result in a comparable manner.
  • a power cost simulation device further having:
  • the figure which shows the hardware constitutions of the electric power cost simulation apparatus in Embodiment 1. The figure which shows the flow of a process at the time of using the power cost simulation device in Embodiment 1.
  • the figure which shows the functional structure of the electric power cost simulation apparatus in Embodiment 2. The figure which shows the hardware constitutions of the electric power cost simulation apparatus in Embodiment 2.
  • the figure which shows the functional structure of the electric power cost simulation apparatus in Embodiment 3. The figure which shows the hardware constitutions of the electric power cost simulation apparatus in Embodiment 3.
  • FIG. 18 is a diagram showing an example of a screen when inputting a power consumption attribute in a pull-down format.
  • the figure which shows an example of the selection of "Available power supply classification" which is an option among many power supply companies Diagram showing an example of power consumption attributes
  • the power consumption attribute of the power consumer and the power cost attribute defined in the power supply type and the simulation period are acquired, and the power consumption attribute and the power supply type of the user are acquired for each of the plurality of power supply types.
  • a power cost simulation calculation formula which is a calculation formula for simulating the power cost for each power supply type in a time series during a simulation period according to the defined power cost attribute, is held, and the acquired power consumption attribute is held.
  • a power cost simulation apparatus configured to select a power supply type having the lowest power cost among a plurality of power supply types in time series during a simulation period based on the power cost simulation calculation formula ..
  • FIG. 16 is a diagram showing an overall image of this embodiment.
  • the power cost simulation device acquires “power cost attributes” from four power supply companies, Pacific Power, Tokai Power, Japan Power, and Yamato Power, respectively, and acquires the “power consumption attributes” of the ABC coffee chain, Using the acquired “simulation period”, the “selection result within the simulation period of the power supply type with the lowest power cost” is calculated based on the “power cost simulation calculation formula”.
  • Power supply type means an electric power supply service provided by an electric power company or/and an individual electric power company.
  • the electric power company means a “retail electric power company, a general power transmission and distribution company, a power transmission company, a specific power transmission and distribution company, and a power generation company”, and a combination of these may be included in the power supply type. For example, a combination of a power selling company and a power transmitting company.
  • a part of the Electricity Business Law was amended by "June 24, 1995, Law No. 47", in line with the full deregulation of electricity retailing from April 1, 2016.
  • FIG. 19 is a diagram illustrating an example of selection of “available power supply type”, which is an option, among many power supply companies.
  • FIG. 1 is a diagram showing a functional configuration of a power cost simulation apparatus according to this embodiment.
  • the power cost simulation device includes a power consumption attribute acquisition unit (0101), a power cost attribute acquisition unit (0102), a simulation period acquisition unit (0103), a power cost simulation arithmetic expression holding unit (0104), and a selection unit ( 0105).
  • a power consumption attribute acquisition unit (0101)
  • a power cost attribute acquisition unit (0102)
  • a simulation period acquisition unit (0103
  • a power cost simulation arithmetic expression holding unit (0104
  • a selection unit 0105
  • the “power consumption attribute acquisition unit” has a function of acquiring the power consumption attribute of a power consumer.
  • the “power consumption attribute” indicates a power consumption pattern in time series. Examples of the time series include consumption patterns such as year, month, and week.
  • the "consumer” may be an actual specific consumer, a representative virtual consumer of the assumed industry, or a virtual consumer not even aware of the industry itself. May be That is, a consumer is a consumer of electricity.
  • the power consumption attribute acquisition unit may be selected from a plurality of patterns of power consumption attributes that are prepared in advance, or the power consumption attributes that are prepared in advance and are filled with blanks. May be obtained. Alternatively, the power consumption attribute may be obtained by first selecting this fill-in-the-blanks expression (which may be text) and then filling in the blanks. The filling may be performed by selecting a pull-down menu.
  • FIG. 20 is a diagram illustrating an example of the power consumption attribute.
  • the power consumption attribute is information indicating the power consumption tendency of a specific power consumer. For example, it can be derived from the past one year to the past five years of electric power consumption of the electric power consumer. Alternatively, it can be derived based on the past power consumption record of a group composed of a plurality of power consumers who can be assumed to have similar power consumption propensities. Alternatively, rather than actual results, it is designed based on the assumption that what kind of power consumption tendency a virtual electric power consumer is likely to exhibit is based on the past experience of the designer and administrator of this device. It is prone to power consumption.
  • This virtual electric power consumer has an industrial classification (for example, Japanese standard industry, an industrial classification designed by the designer) and an industrial classification (GICS industrial classification, an industrial classification designed by the designer) to which the electric power consumer belongs. Alternatively, it may be prepared in advance according to the business scale of the power consumer.
  • the power consumption attribute is a power consumption attribute applied during the simulation period described later. That is, the power consumption attribute is a value obtained as a function whose time axis is the simulation period described later.
  • FIG. 18 is a diagram illustrating an example of a screen when the power consumption attribute is input in the pull-down format.
  • the company name of the target power consumer is entered as "ABC coffee chain”, and then the target period "month day to month day” can be entered.
  • the items listed in FIG. 17 can be selected. By selecting a specific item and then selecting it from the pull-down menu, the input can be completed automatically. By doing so, it is possible to prevent the input contents from spreading innumerably.
  • the power consumption attribute acquisition unit a basic equipment operating amount holding means for holding the basic equipment operating amount that is the equipment operating amount that constitutes the basic power consumption attribute in the unit time length unit in the simulation period, and in the simulation period
  • a test facility operation amount acquisition means for acquiring a test facility operation amount, which is a test facility operation amount in a unit of time unit, and a test power consumption attribute for generating a power consumption attribute including the test facility operation amount. It may have a generation means.
  • the unit time length may be at least one of 30 minutes from the hour, a natural number multiple of 30 minutes from the hour, and 24 hours from the hour. good.
  • the trial facility operating amount acquisition means may include a replacement device that exchanges the facility operating amount of a certain unit time length with the facility operating amount of another unit time length.
  • the trial facility operating amount is preferably configured to be obtained by editing the held basic facility operating amount. There is an effect that how much the basic equipment operation amount is changed and what kind of power supply type is advantageous to select can be obtained from the selection result of the selection unit. Further, it is possible to simulate the electric power cost based on the selection result, and it is possible to know how the cost changes when the basic equipment operating amount is changed.
  • the “power cost attribute acquisition unit” has a function of acquiring the power cost attribute for each power supply type.
  • the "electric power cost attribute” is an attribute related to a so-called electric power supply price, which condition, what kind of rule and price should be set for the electric power consumer, or what price should be set. This information indicates whether there is a tendency. For example, when there is no available power supply capacity in the whole country or in a specific area (eg, East Japan, West Japan, Okinawa, Hokkaido, West Coast, East Coast in the United States, etc.), or power supply in the whole country or in a specific area This is information indicating the relationship between the power supply condition and the power supply price at that time, such as what price should be set when there is a lot of spare capacity.
  • the power supply conditions include season, month, day of the week, time zone, region, supply amount, power generation cost, power supply price determination policy, and the like. It may be an average value of past achievements, a latest achievement, or an estimated cost attribute based on the past achievements for each power supply type, not based on the achievement value.
  • the power cost attribute in the simulation period described later may be predicted based on the future forecast trend of the crude oil price, the future forecast trend of the exchange rate, etc. and the past actual value, and may be another person.
  • the power cost attribute is acquired as what should be applied during the simulation period described later. When predicting the power cost attribute as described above, the power cost attribute predicting unit may be provided.
  • the "demand period” is a period used to determine the basic rate of electricity rate, and in Japan, it is every hour on the hour (1:00, 2:00, 3:00, 4:00, 5:00, 6:00, 7.8). Hours, 9 o'clock, 10 o'clock, 11 o'clock, 12 o'clock, 13 o'clock, 14 o'clock, 15 o'clock, 16 o'clock, 17 o'clock, 18 o'clock, 19 o'clock, 20 o'clock, 21 o'clock, 22 o'clock, 23 o'clock, 24 o'clock ( 30 minutes from 0:00)) is one demand period, and 30 minutes until the next hour is one demand period.
  • FIG. 22 is a diagram showing specific power cost attributes of four companies, Pacific Power, Tokai Power, Japan Power, and Yamato Power.
  • Taiheiyo Electric has a feature (electricity cost attribute) that it is cheaper for large consumers during the daytime during the New Year and the Bon Festival.
  • Tokai Electric Power has a feature (electricity cost attribute) that it supplies electricity at a relatively low price throughout the year.
  • Japan Electric Power has a characteristic that the basic charge is low, but the power charge is relatively high (power cost attribute).
  • Daiwa Electric Power has a feature that it is extremely cheap (electricity cost attribute) before and after the settlement month (December, June).
  • the “simulation period acquisition unit” has a function of acquiring a simulation period, which is a simulation period described later.
  • the minimum unit of the simulation period is usually the demand period, which is a set of a plurality of demand periods. That is, the start and end of the simulation period are the start of the demand period, and the end is the end of the demand period.
  • the "demand period” is a period used to determine the basic rate of electricity rate, and in Japan, it is every hour on the hour (1:00, 2:00, 3:00, 4:00, 5:00, 6:00, 7.8).
  • the largest value of the maximum demand power of each month in the past year including the current month is the contract power.
  • a typical example of the simulation period is one year, and if you are going to enter into a power supply contract with a new power supplier, it is convenient to set it as one year from the expected contract start date. is there. This is because it will be possible to see how switching to a new electricity supplier will reduce electricity costs in the coming year.
  • a typical example of a new power supplier assumed here is a power supplier (power supplier who always supplies power to the power consumer at a lowest cost in each time period and time period throughout the year. This is one electric power supplier who promises to supply electric power at the same cost when the type is switched.
  • the "electric power cost simulation equation holding unit” means, for each of a plurality of electric power supply types, power consumption in time series during the simulation period according to the power consumption attribute of the consumer and the electric power cost attribute determined by the electric power supply type. It has a function of holding an electric power cost simulation arithmetic expression which is an arithmetic expression for simulating the electric power cost for each supply type.
  • Yamato Electric has “15.0” in November, “20.0” in December, “22.5” in January, “20.5” in February, “21.0” in March, and 4 Month is “20.5”, May is “19.5”, June is “15.5”, July is “18.0”, August is “22.5”, and September is “25. 5” and October are “23.5”. Assuming the above power cost, the power supply type with the lowest power cost is the part enclosing the numbers in the figure.
  • FIG. 14 is a graph showing an example of the contents selected by the selection unit. Also here, the selection period unit in the time series is set to the month unit, and the simulation period is shown as an example of one year in which the season makes one round.
  • the content of each numerical value is as shown in FIG. 21, but in a graph with the power cost on the vertical axis, the lowest power supply type is the power supply type with the lowest power cost.
  • the selected power supply type is the lowest power supply type in each month.
  • FIG. 15 is a graph showing a comparison of the power cost with the selected power supply type, taking the case where the ABC coffee chain uses Pacific power as an example. Since the selected power supply type is “the power supply type with the lowest power cost”, the power cost will not be higher than Pacific power. For example, in January and August when the power cost of the Pacific power is the lowest among the four power supply companies, the power supply type ( Pacific power) of the power cost is selected. On the other hand, for the months other than January and August, the power costs of the companies other than Pacific Power were the lowest, so the power supply type of the power company that was the lowest was selected. Therefore, the electricity cost for the month will be lower than the electricity cost by Pacific Power.
  • the power supply type determined to have the lowest power cost based on the power consumption attribute and the power cost attribute that does not directly adopt the actual value. May be configured to be selected.
  • the power cost attribute predicted in the future for each power supply type is derived based on the past actual value and used. Is. Specifically, if the large-scale consumers have large seasonal fluctuations as the "power consumption attribute", the "power cost attribute” predicted in the future, which is the simulation period, is used to select the power supply type that is disadvantageous to the large-scale consumer.
  • the power supply type that is the cheapest (the power supply type that has the lowest unit price of the power cost when a large amount of power is consumed) is selected in consideration of the contents of seasonal fluctuations.
  • the person who manages the invention device may decide which one is selected from the plurality, or the power consumer who requests the manager to perform the simulation may select one.
  • the invention device may be configured to arbitrarily select using a random number or the like.
  • a scenario configuration unit may be provided so that an appropriate scenario can be prepared according to social events related to various types of power supply and power demand. It is preferable that the scenario configuration unit has a variable that influences the scenario according to the predicted social situation, and the scenario is generated by substituting a value for the variable according to the actual social situation. For that purpose, it is preferable that the power cost simulation apparatus is provided with a scenario variable acquisition unit that gives a value of the variable to the scenario configuration unit.
  • FIG. 17 is a diagram illustrating an example of selecting an electric power supply type that is determined to have the lowest electric power cost based on the electric power consumption attribute and the electric power cost attribute, taking the ABC coffee chain as an example. It is assumed that the ABC coffee chain has the power consumption attributes of "the number of customers will increase sharply and the power consumption will increase at the time of returning home during New Year holidays and Obon" and "being a large consumer". In that case, considering the power cost attribute of each company (power supply type) in FIG. 22, Japan Electric Power, which is disadvantageous to large-scale customers, is excluded from the selection. On top of that, you can select "Pacific power” during the New Year and Obon periods, “Tokai power” for normal months, and “Yamato power” for particularly cheap Yamato power.
  • Japan Electric Power which is disadvantageous to large-scale customers
  • a "chipset” is a set of large-scale integrated circuits (LSI) that is mounted on a motherboard of a computer and that has a function of connecting a CPU external bus and a standard bus that connects a memory and peripheral devices, that is, a bridge function. .. There are cases where the two-chip set configuration is adopted and cases where the one-chip set configuration is adopted.
  • a north bridge is provided on the side close to the CPU and main memory, and a south bridge is provided on the side far from the interface with the relatively slow external I/O. (Northbridge)
  • the north bridge includes a CPU interface, a memory controller, and a graphic interface. Most of the functions of the conventional north bridge may be assigned to the CPU.
  • the north bridge is connected to the memory slot of the main memory via a memory bus, and is connected to the graphic card slot of the graphic card by a high speed graphic bus (AGP, PCI Express).
  • AGP high speed graphic bus
  • PCI Express high speed graphic bus
  • the south bridge is connected to a PCI interface (PCI slot) via a PCI bus, and has an I/O function and a sound function with an ATA (SATA) interface, a USB interface, an Ethernet interface, and the like.
  • SATA ATA
  • USB interface USB interface
  • Ethernet interface an Ethernet interface
  • the CPU sequentially reads a sequence of instructions called a program on the main memory, interprets and executes it, and outputs information consisting of signals to the main memory as well.
  • the CPU functions as a center for performing calculations in the computer.
  • the CPU is composed of a CPU core portion which is the center of calculation and a peripheral portion thereof, and has a register, a cache memory inside the CPU, an internal bus connecting the cache memory and the CPU core, a DMA controller, a timer, a north bridge. Includes interfaces to and from the connection bus.
  • a plurality of CPU cores may be included in one CPU (chip).
  • the processing may be performed by a graphic interface (GPU) or FPU in addition to the CPU.
  • GPU graphic interface
  • FPU FPU
  • the basic structure of a hard disk drive is composed of a magnetic disk, a magnetic head, and an arm carrying the magnetic head.
  • the external interface can adopt SATA (in the past, ATA).
  • a high performance controller for example SCSI, is used to support communication between hard disk drives. For example, when copying a file to another hard disk drive, the controller can read the sectors and transfer to another hard disk drive for writing. At this time, the memory of the host CPU is not accessed. Therefore, it is not necessary to increase the load on the CPU.
  • Main memory The CPU directly accesses and executes various programs on the main memory.
  • the main memory is a volatile memory and a DRAM is used.
  • the program on the main memory is expanded from the non-volatile memory to the main memory in response to the program start instruction. After that, the CPU executes the program according to various execution instructions and the execution procedure in the program.
  • FIG. 3 is a diagram showing a flow of processing when the power cost simulation device according to the present embodiment is used.
  • a power consumption attribute acquisition step (S0301), a power cost attribute acquisition step (S0302), a simulation period acquisition step (S0303), a power cost simulation arithmetic expression acquisition step (S0304), and a selection step.
  • S0305 is the processing method.
  • the "power consumption attribute acquisition step” is a step of acquiring the power consumption attribute of the power consumer.
  • Electricity cost simulation calculation formula acquisition step means that, for each of a plurality of power supply types, the power consumption attribute of the consumer and the power cost attribute determined by the power supply type are set, and the power consumption is time-series in the simulation period according to It is a stage of acquiring an electric power cost simulation arithmetic expression which is an arithmetic expression for simulating the electric power cost for each supply type.
  • the “selection step” is a simulation period in which the power supply type with the lowest power cost is selected from the plurality of power supply types based on the acquired power consumption attribute and the stored power cost simulation calculation formula. This is the stage of selecting in time series.
  • the present embodiment calculates the power cost when power is consumed during the simulation period according to the selection of the power supply type selected in time series, and calculates the selected power cost simulation as the calculation result.
  • a power cost simulation device configured to output a result.
  • FIG. 4 is a diagram showing a functional configuration of the power cost simulation apparatus according to this embodiment.
  • the power cost simulation device includes a power consumption attribute acquisition unit (0401 ), a power cost attribute acquisition unit (0402 ), a simulation period acquisition unit (0403 ), a power cost simulation formula holding unit (0404 ), and a selection unit ( 0405), a power cost calculation unit (0406), and a selected power cost simulation result output unit (0407).
  • the contents of each function will be specifically described below. Since the respective functions except the power cost calculation unit and the selected power cost simulation result output unit are the same as those of the first embodiment, the functions are limited to the functions of the power cost calculation unit and the selected power cost simulation result output unit. explain.
  • the “power cost calculation unit” has a function of calculating the power cost when power is consumed during the simulation period according to the selection of the power supply type selected in time series by the selection unit.
  • the "electric power cost” is a consideration to be paid for consuming electric power, and is generally shown in a unit of currency.
  • the present invention is not limited to money, and may be converted into electronic money that is in circulation or points that have value as securities that are in circulation.
  • points can be points issued by each power supply type.
  • the electric power cost may be the electric power cost corresponding to the electric power consumption calculated for the electric power consumption predicted by the electric power consumption attribute during the simulation of the electric power consumer, or the electric power consumption not the electric power consumption predicted by the electric power consumption attribute.
  • the power cost per unit power consumption may be calculated based on the power consumption.
  • the calculated power cost may be calculated by dividing the simulation period into a plurality of sub-periods and showing the result.
  • the power cost is the power cost attribute used to calculate the power cost, the representative value of the power consumption attribute, or the value calculated by an example, and the re-simulation is immediately shown by changing these values. It may be a power cost with such a dynamic function. That is, although a graph of power cost is temporarily displayed, the values used as power cost attributes and power consumption attributes are displayed on a display, etc., and the values displayed on the display are managed by power consumers and power cost simulation devices.
  • the arithmetic unit can be configured to have a dynamic function type arithmetic result arithmetic means so that the arithmetic result itself is a dynamic function that accepts a change of a variable.
  • the “selected power cost simulation result output unit” has a function of outputting a selected power cost simulation result which is a calculation result in the power cost calculation unit.
  • the output is output to the non-volatile memory, the main memory, and then displayed on the display, or to the terminal communicating with the power cost simulation device via the network.
  • the printer or the printing machine may be configured to print on paper and output. Further, it may be configured to output in a plurality of output formats at the same time. For example, it can be configured so that it is output as a web page for browsing via the Internet, and can be configured so that it can be browsed on a terminal used by electric power consumers such as electronic mail and SNS. Of course, it may be output as voice.
  • the power cost simulation result after selection is not only the cost in units of money, but also information for identifying the power supply type selected in each period of the simulation, and the reason why the power supply type is selected, Further, it may include comparison with the case where another power supply type is selected. Furthermore, it is possible to include the circumstances (forecast of fluctuations in fuel prices such as crude oil prices, forecasts of fluctuations in foreign exchange), etc. that were assumed in the power cost simulation. If the output is performed via a web page or the like, the variables of the power cost attribute and the power consumption attribute can be changed on the web page, and the change result can be dynamically viewed.
  • FIG. 23 is a diagram showing an example of the output contents of the simulation result.
  • the conventional electric power charge was “2,6050,000 yen” for one year, but when the electric power was consumed during the simulation period according to the selection of the power supply type selected in time series in the selection unit. According to the electricity cost, it will be “20,580,000 yen” in one year. In this example, it can be seen at a glance that the electric power cost will be reduced by "5.47 million yen" in one year.
  • FIG. 5 is a figure which shows the hardware constitutions of the power cost simulation apparatus in this embodiment.
  • the computer is configured on a motherboard and includes a chipset (0510), a CPU (0501), a non-volatile memory (0503), a main memory (0504), various buses (0502a to 0502e), and a BIOS. (0507) It consists of various interfaces (0505, 0506, 0508), real-time clock (0509) and so on. These operate in cooperation with the operating system, device drivers, and various programs. Various programs and various data that constitute the present invention are configured to efficiently use these hardware resources to execute various processes.
  • the “main memory” provides a work area which is also a work area of the program, at the same time as the program for performing various processes is read for execution by the “CPU”. Further, a plurality of addresses are respectively assigned to the “main memory” and the “HDD”, and the program executed by the "CPU” exchanges data with each other by specifying and accessing the address. It is possible to perform processing.
  • the programs stored in the "main memory” are selected as a power consumption attribute acquisition program, a power cost attribute acquisition program, a simulation period acquisition program, a power cost simulation calculation formula holding program, a selection program, and a power cost calculation program. It is a post-power cost simulation result output program.
  • the power consumption attribute, the power cost attribute, the simulation period, the power cost simulation calculation formula, and the like are stored, as in the first embodiment. Further, in this embodiment, the power cost and the post-selection power cost simulation result are stored.
  • the “CPU” executes the power consumption attribute acquisition program stored in the “main memory” and acquires the power consumption attribute from the user terminal device through the “network interface”. Then, the power cost attribute acquisition program stored in the “main memory” is executed to acquire the power cost attribute from the user terminal device through the “network interface”. Then, the simulation period acquisition program stored in the "main memory” is executed to acquire the simulation period, which is the simulation period. Then, the selection program stored in the "main memory” is executed, and the lowest power cost among the plurality of power supply types is obtained based on the acquired power consumption attribute and the stored power cost simulation calculation formula. The power supply type that becomes is selected in time series during the simulation period.
  • FIG. 6 is a diagram showing a flow of processing when the power cost simulation device according to the present embodiment is used.
  • a power consumption attribute acquisition step S0601
  • a power cost attribute acquisition step S0602
  • a simulation period acquisition step S0603
  • a power cost simulation arithmetic expression acquisition step S0604
  • a selection step S0605
  • a power cost calculation step S0606
  • a selected power cost simulation result output step S0607
  • the “power cost calculation step” is a step of calculating the power cost when the power is consumed during the simulation period according to the selection of the power supply type selected in time series in the selection step.
  • the “power cost calculation step” is a step of outputting the selected power cost simulation result which is the calculation result in the power cost calculation step.
  • the present embodiment provides a power cost simulation apparatus configured to output the power cost simulation results calculated for a plurality of power supply types in a comparable manner. ..
  • the “power cost simulation result comparison output unit” outputs the power cost simulation results calculated for a plurality of power supply types in a comparable manner.
  • the output is as shown in FIG. In this figure, each month's costs for Pacific Electric Power, Tokai Electric Power, Japan Electric Power, and Yamato Electric Power are shown.
  • the power costs for a plurality of power supply types are calculated and output in a comparable manner at the same time, so that the power supply types can be compared with each other in terms of cost. It may be configured to have a “power cost simulation calculation unit”, and thereby to be configured to calculate power costs of a plurality of types of power supply at the same time.
  • the costs of Pacific Power, Tokai Electric Power, Japan Electric Power, and Yamato Electric Power are calculated as described above. This calculation is performed based on the power supply attribute of each power supply type, the power consumption attribute of the power consumer, and the power cost simulation calculation formula of each power supply type. It is also conceivable that it is configured to have a “power cost acquisition unit” and that the function of the power cost simulation calculation unit is performed outside the power cost simulation device.
  • the power cost acquisition unit may be configured to acquire the accumulated power cost of each power supply type at the same time and pass it to the power cost simulation result comparison output unit. It is preferable to have a "display section".
  • the display unit may display the power cost of each power supply type to be compared in a numerical form in a tabular form, or may display the numerical values in a graph. Further, it is preferable to display the power cost of the lowest cost power supply type from other power costs from the comparison result of a plurality of power supply types at the same time so that it can be easily distinguished from other power costs. In order to make the identification easy, it can be realized by expressing the value of the lowest power cost in bold or in a different color. Further, the power supply type can be displayed by placing a pointer such as a cursor on the graph. As a method of displaying the comparison result, it may be possible to display the power costs of the same power supply type in different simulation periods in a comparable manner. For example, the charging policy of the power supplier (power supply type) may change between the period when the power plant was suspended and the organization where the suspended power plant was restarted. Compare the changes before and after the policy was changed. It becomes possible to do it.
  • FIG. 8 is a diagram showing a hardware configuration of the power cost simulation apparatus in this embodiment.
  • the computer is configured on a motherboard and includes a chip set (0810), a CPU (0801), a non-volatile memory (0803), a main memory (0804), various buses (0802a to 0802e), and a BIOS. (0807)
  • Various interfaces (0805, 0806, 0808), real time clock (0809), etc.
  • Various programs and various data that constitute the present invention are configured to efficiently use these hardware resources to execute various processes.
  • the “main memory” provides a work area which is also a work area of the program, at the same time as the program for performing various processes is read for execution by the “CPU”. Further, a plurality of addresses are respectively assigned to the “main memory” and the “HDD”, and the program executed by the "CPU” exchanges data with each other by specifying and accessing the address. It is possible to perform processing.
  • the programs stored in the "main memory” are the power consumption attribute acquisition program, the power cost attribute acquisition program, the simulation period acquisition program, the power cost simulation arithmetic expression holding program, the selection program, and the power cost simulation result comparison output. It is a program.
  • the power consumption attribute, the power cost attribute, the simulation period, the power cost simulation calculation formula, and the like are stored, as in the first embodiment. Further, in the present embodiment, the power cost simulation result is stored.
  • the “CPU” executes the power consumption attribute acquisition program stored in the “main memory” and acquires the power consumption attribute from the user terminal device through the “network interface”. Then, the power cost attribute acquisition program stored in the “main memory” is executed to acquire the power cost attribute from the user terminal device through the “network interface”. Then, the simulation period acquisition program stored in the "main memory” is executed to acquire the simulation period, which is the simulation period. Then, the selection program stored in the "main memory” is executed, and the lowest power cost among the plurality of power supply types is obtained based on the acquired power consumption attribute and the stored power cost simulation calculation formula. The power supply type that becomes is selected in time series during the simulation period. Then, the power cost simulation result comparison output program stored in the “main memory” is executed to output the power cost simulation results calculated for a plurality of power supply types in a comparable manner.
  • FIG. 9 is a diagram showing a flow of processing when the power cost simulation device according to the present embodiment is used.
  • a power consumption attribute acquisition step S0901
  • a power cost attribute acquisition step S0902
  • a simulation period acquisition step S0903
  • a power cost simulation arithmetic expression acquisition step S0904
  • a selection step S0905
  • a power cost simulation result comparison output step S0906
  • the “Power cost simulation result comparison output” is a stage at which the power cost simulation results calculated for a plurality of power supply types are output in a comparable manner.
  • the “selection step” includes a step of selecting two or more power supply types from the plurality of power supply types, in addition to the function of selecting the power supply type with the lowest power cost among the plurality of power supply types. It has a function to execute.
  • the above-described power cost acquisition unit is caused to execute the step of acquiring each power cost, or the acquisition step of acquiring the power cost of the power supply type from an external storage unit or the like. Can be configured to run.
  • FIG. 10 is a diagram showing the functional configuration of the power cost simulation apparatus according to this embodiment.
  • the power cost simulation device includes a power consumption attribute acquisition unit (1001), a power cost attribute acquisition unit (1002), a simulation period acquisition unit (1003), a power cost simulation calculation formula holding unit (1004), and a selection unit ( 1005), a power cost calculation unit (1006), a selected power cost simulation result output unit (1007), and a selected power cost simulation result comparison output unit (1008).
  • the contents of each function will be specifically described below.
  • the functions other than the selected power cost simulation result comparison output unit are the same as those in the second embodiment, and thus the description will be limited to the function of the selected power cost simulation result comparison output unit.
  • the “selected power cost simulation result comparison output unit” has a function of outputting the power cost simulation result calculated for one or more power supply types and the selected power cost simulation result in a comparable manner.
  • FIG. 11 is a diagram showing a hardware configuration of the power cost simulation apparatus according to this embodiment.
  • the computer is configured on a motherboard and includes a chipset (1110), a CPU (1101), a non-volatile memory (1103), a main memory (1104), various buses (1102a to 1102e), and a BIOS.
  • (1107) Consists of various interfaces (1105, 1106, 1108), real-time clock (1109), and the like. These operate in cooperation with the operating system, device drivers, and various programs.
  • Various programs and various data that constitute the present invention are configured to efficiently use these hardware resources to execute various processes.
  • the “main memory” provides a work area which is also a work area of the program, at the same time as the program for performing various processes is read for execution by the “CPU”. Further, a plurality of addresses are respectively assigned to the "main memory” and the “HDD”, and the program executed by the "CPU” exchanges data with each other by specifying and accessing the address. It is possible to perform processing.
  • the programs stored in the "main memory” are selected as a power consumption attribute acquisition program, a power cost attribute acquisition program, a simulation period acquisition program, a power cost simulation calculation formula holding program, a selection program, and a power cost calculation program.
  • the “main memory” and the “HDD” store the power consumption attribute, the power cost attribute, the simulation period, the power cost simulation calculation formula, the power cost and the selected power cost simulation result, and the like. ing. Further, in the present embodiment, the power cost simulation result is stored.
  • the “CPU” executes the power consumption attribute acquisition program stored in the “main memory” and acquires the power consumption attribute from the user terminal device through the “network interface”. Then, the power cost attribute acquisition program stored in the “main memory” is executed to acquire the power cost attribute from the user terminal device through the “network interface”. Then, the simulation period acquisition program stored in the "main memory” is executed to acquire the simulation period, which is the simulation period. Then, the selection program stored in the "main memory” is executed, and the lowest power cost among the plurality of power supply types is obtained based on the acquired power consumption attribute and the stored power cost simulation calculation formula. The power supply type that becomes is selected in time series during the simulation period.
  • the power cost calculation program stored in the “main memory” is executed to calculate the power cost when power is consumed during the simulation period according to the selection of the power supply type selected in time series.
  • the post-selection power cost simulation result output program stored in the "main memory” is executed to output the post-selection power cost simulation result, which is the calculation result in the power cost calculation unit.
  • the selected power cost simulation result comparison output program stored in the "main memory” is executed to compare the calculated power cost simulation result for one or more power supply types with the selected power cost simulation result. Output as possible.
  • FIG. 12 is a diagram showing a flow of processing when the power cost simulation device according to the present embodiment is used.
  • a power consumption attribute acquisition step S1201
  • a power cost attribute acquisition step S1202
  • a simulation period acquisition step S1203
  • a power cost simulation arithmetic expression acquisition step S1204
  • a selection step S1205
  • a power cost calculation step S1206
  • a selected power cost simulation result output step S1207
  • a selected power cost simulation result comparison output step S1208. Note that among these steps, each step except the selected power cost simulation result comparison and output step is the same as that of the first embodiment. In the following, the post-selection power cost simulation result comparison and output step will be described.
  • the power consumption of the power consumer, the power cost attribute for each power supply type, and the power charge calculation period which is the period for calculating the power charge described later, are acquired, and the demand is calculated for each of the plurality of power supply types.
  • Power cost calculation formula that is a calculation formula for calculating the power cost for each power supply type in time series during the power charge calculation period according to the power consumption of the user and the power cost attribute determined by the power supply type Of the plurality of power supply types based on the power consumption amount, the power cost attribute, and the power cost calculation formula, and selects the power supply type with the lowest power cost in time series in the power charge calculation period.
  • An electric power charge calculation device is provided.
  • FIG. 24 is a diagram showing a functional configuration of the power rate calculation device in the present embodiment.
  • the power charge calculation device according to the present embodiment includes a power consumption acquisition unit (2501), a power cost attribute acquisition unit (2502), a power charge calculation period acquisition period acquisition unit (2503), and a power cost calculation formula holding unit (2504). And a selection unit (2505).
  • a power consumption acquisition unit (2501) a power consumption acquisition unit (2501)
  • a power cost attribute acquisition unit 2502
  • a power charge calculation period acquisition period acquisition unit 2503
  • a power cost calculation formula holding unit 2504
  • a selection unit 2505
  • the “power consumption acquisition unit” has a function of acquiring the power consumption attribute of the power consumer.
  • the “power consumption” indicates the actual power consumption in time series. Examples of the time series include year, month, and week.
  • Electricity cost calculation formula storage unit means, for each of multiple power supply types, a time series in the power charge calculation period according to the power consumption of the consumer and the power cost attribute defined by the power supply type. In addition, it has a function of holding a power cost calculation formula, which is a formula for calculating the power cost for each power supply type.
  • the “selection unit” in the present embodiment is the most power cost among a plurality of power supply types based on the acquired power consumption amount, the acquired power cost attribute, and the stored power cost calculation formula. Has a function of selecting a power supply type with a low price in time series in the power charge calculation period.
  • the minimum period unit for selecting the power supply type is the demand period. Since the demand period is as described above, it can be designed to select the power supply type most frequently at intervals of 30 minutes. However, the present invention is not limited to this, and a period of a natural number multiple of 30 minutes can be selected as the time length for which the power supply type can be switched. The feature of this device is that it is not necessary to comply with the actual rules for switching between electric power companies. Further, the switching period of the power supply type can be configured to select the switching period. In that case, it is conceivable to provide the selection unit with switching period selection means.
  • FIG. 25 is a diagram showing a hardware configuration of the power rate calculation device according to the present embodiment.
  • the computer is configured on a motherboard and includes a chip set (2510), a CPU (2501), a non-volatile memory (2503), a main memory (2504), various buses (2502a to 2502e), and a BIOS. (2507) It is composed of various interfaces (2505, 2506, 2508), real-time clock (2509) and the like. These operate in cooperation with the operating system, device drivers, and various programs.
  • the various programs and various data constituting the present invention are configured to efficiently utilize these hardware resources to execute various processes.
  • the "main memory” provides a work area which is also a work area of the program, at the same time as the program for performing various processes is read for execution by the "CPU".
  • a plurality of addresses are assigned to each of the “main memory” and the “HDD”, and a program executed by the "CPU” exchanges data with each other by specifying and accessing the address. It is possible to perform processing.
  • the programs stored in the “main memory” are a power consumption amount acquisition program, a power cost attribute acquisition program, a power charge calculation period acquisition program, a power cost calculation arithmetic expression holding program, and a selection program.
  • the "main memory” and “HDD” store power consumption, power cost attributes, power charge calculation period, power cost calculation formula, and the like.
  • the "CPU” executes the power consumption acquisition program stored in the “main memory” to acquire the power consumption from the user terminal device through the "network interface”. Then, the power cost attribute acquisition program stored in the “main memory” is executed to acquire the power cost attribute from the user terminal device through the "network interface”. Then, the power charge calculation period acquisition program stored in the "main memory” is executed to acquire the power charge calculation period. Then, the selection program stored in the "main memory” is executed, and the lowest power cost among the plurality of power supply types is obtained based on the acquired power consumption and the stored power cost calculation formula. The power supply type that becomes is selected in time series in the power charge calculation period.
  • FIG. 26 is a diagram showing a flow of processing when the power rate calculation device according to the present embodiment is used.
  • a power consumption acquisition step (S2701) a power cost attribute acquisition step (S2702), a power charge calculation period acquisition step (S2703), a power cost calculation formula acquisition step (S2704),
  • S2705 a selection step
  • the "power consumption acquisition step” is a step of acquiring the power consumption of the power consumer.
  • the "power cost attribute acquisition step” is a step of acquiring the power cost attribute for each power supply type.
  • Electric power cost calculation formula acquisition step means, for each of a plurality of power supply types, a time series in a power charge calculation period according to the power consumption of the consumer and the power cost attribute defined by the power supply type. It is a stage of acquiring a power cost calculation formula that is a formula for calculating the power cost for each power supply type.
  • the “selection step” is the calculation of the power charge for the power supply type with the lowest power cost among the multiple power supply types based on the acquired power consumption and the stored power cost calculation formula. It is the stage of selecting in time series by the period.
  • an equipment operation calculation period holding unit configured to have a plurality of unit time lengths and holding an equipment operation calculation period of equipment that is operated by energy consumption, and a unit time length unit in the equipment operation calculation period
  • the basic equipment operating amount holding unit that holds the basic equipment operating amount, which is the equipment operating amount
  • the energy consumption unit price acquisition unit that acquires the energy consumption unit price, which is the unit energy consumption unit time in the equipment operation planning period.
  • Negawatt request acquisition unit that acquires Negawatt request, and edits or changes the basic equipment operating amount according to the Negawatt request (may be a case where a completely new equipment operation plan is created without editing or changing).
  • the power consumption attribute acquisition unit that acquires the power consumption attribute of the power consumer
  • the power cost attribute acquisition unit that acquires the power cost attribute for each power supply type
  • a plurality of unit time lengths For maintaining the equipment operation calculation period of the equipment to be operated, and for maintaining the basic equipment operation amount that retains the basic equipment operation amount that is the basic equipment operation amount in the unit time length unit in the equipment operation calculation period Section, an energy consumption unit price acquisition section that acquires an energy consumption unit price, which is a unit price of energy consumption in a unit time length unit during an equipment operation planning period, for each energy supply type, a negawatt request acquisition section that acquires a negawatt request, and a negawatt Negawatt facility operation plan calculation formula storage unit that holds one or more Negawatt facility operation plan calculation formulas for calculating the facility operation plan amount upon request, and the acquired energy unit price for each energy supply type and the acquired Negawatt When the sum of the product of the equipment operation amount of each unit time and the acquired energy consumption unit price in the equipment operation planning period is operating at the basic equipment
  • Negawatt facility operation plan calculation formula a Negawatt facility operation plan amount calculation unit that calculates the facility operation plan amount in each unit time in the facility operation plan period, It may be an equipment operation plan support device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

In order to ensure that the appropriate electrical supply category can be selected for a receiver of a supply of electricity, provided is an electricity cost simulation device comprising a selection unit which: acquires an electricity consumption attribute of an electricity consumer and an electricity cost attribute for each electricity supply category; acquires a simulation period; retains an electricity cost simulation arithmetic expression which is an arithmetic expression for simulating the electricity cost over time for each of the electricity supply categories in the simulation period; and, on the basis of the acquired electricity consumption attribute and the retained electricity cost simulation arithmetic expression, selects over time in the simulation period the electricity supply category having the lowest electricity cost among a plurality of the electricity supply categories.

Description

電力コストシミュレーション装置Power cost simulation device
本発明は、複数存在する電力供給会社の契約プランのうち、最もメリットの大きい電力料金プランを選択するためのシミュレーションを行う装置に関するものである。 The present invention relates to an apparatus that performs a simulation for selecting a power rate plan with the greatest merit among contract plans of a plurality of power supply companies.
電力供給主体は複数者存在し、その主体ごとに電力料金(基本料金及び従量料金)のプラン内容が異なる。 There are a plurality of power supply entities, and the content of the plan of the power rate (basic rate and meter rate) differs for each entity.
電力供給を受ける者からすれば、なるべく安い料金プランにて、電力供給を受けることを望む。そのため、電力供給プランを比較するためのシステムが望まれていた。 The person who receives the power supply wants to receive the power supply with the cheapest price plan. Therefore, a system for comparing power supply plans has been desired.
このようなとして、特許文献1が挙げられる。 Patent document 1 is mentioned as such a thing.
特開2018-173872Japanese Patent Laid-Open No. 2018-138772
特許文献1は、電気需要における電力使用量とその該当する時間帯に関する情報と、電力事業者が電気以外に販売する電気外商材の購入量や購入消費形態と、を基に各電気料金メニュー毎に対応する電力事業者に支払う対価を算出し比較し、最安値となる電気料金メニューを選択し、電気需要家に通知する電力自由化に伴う電気料金削減システムを提供するものである。 Patent Document 1 is for each electricity rate menu based on information on the amount of electricity used in the electricity demand and the corresponding time zone, and the purchase amount and purchase consumption form of non-electric products sold by the electric power company other than electricity. It provides an electricity bill reduction system associated with the liberalization of electricity, which calculates and compares the consideration paid to the electric power company corresponding to, selects the lowest electricity bill menu, and notifies the electricity consumer.
しかし、特許文献1では、1つの特定の電力供給者内の複数の電力料金メニュー間での比較であり、電力の供給を受ける者にとって最適な電力供給種別を選択するということには繋がらなかった。都度契約を変更するということは現実的でないからである。しかし、第三者のサービスとして、比較供給者間での最安値の供給者に対する対価と同額で電力を販売するというビジネスモデルは考えられる。 However, in Patent Document 1, it is a comparison between a plurality of power rate menus within one specific power supplier, and it does not lead to selection of an optimum power supply type for a person who receives the power supply. .. It is not realistic to change the contract each time. However, as a third-party service, a business model is conceivable in which electric power is sold at the same price as the price for the lowest priced supplier among comparative suppliers.
本発明は、そのような問題を踏まえて、電力の供給を受ける者にとって最適な電力供給種別に対する対価と同額で電力を販売するというビジネスモデルを実現できる電力コストシミュレーション装置を提供しようとするものである。 In view of such a problem, the present invention aims to provide an electric power cost simulation device that can realize a business model of selling electric power at the same amount as the consideration for the type of electric power supply that is optimal for the person who receives the electric power supply. is there.
具体的には、本発明は、電力需要者の電力消費属性を取得する電力消費属性取得部と、電力供給種別ごとの電力コスト属性を取得する電力コスト属性取得部と、後記するシミュレーションの期間であるシミュレーション期間を取得するシミュレーション期間取得部と、複数の電力供給種別毎に、需要者の電力消費属性と電力供給種別で定められている電力コスト属性と、に応じてシミュレーション期間で時系列に電力供給種別ごとの電力コストをシミュレーションするための演算式である電力コストシミュレーション演算式を保持する電力コストシミュレーション演算式保持部と、取得した電力消費属性と、取得した電力コスト属性と、保持されている電力コストシミュレーション演算式と、に基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別をシミュレーション期間で時系列に選択する選択部とを有する電力コストシミュレーション装置を提供する。 Specifically, the present invention includes a power consumption attribute acquisition unit that acquires a power consumption attribute of a power consumer, a power cost attribute acquisition unit that acquires a power cost attribute for each power supply type, and a simulation period described below. According to the simulation period acquisition unit that acquires a certain simulation period and the power consumption attribute of the consumer and the power cost attribute defined by the power supply type for each of the plurality of power supply types, the power is chronologically set in the simulation period. An electric power cost simulation arithmetic expression holding unit that holds an electric power cost simulation arithmetic expression that is an arithmetic expression for simulating the electric power cost for each supply type, an acquired power consumption attribute, and an acquired electric power cost attribute are held. There is provided a power cost simulation device having a power cost simulation arithmetic expression and a selection unit that selects a power supply type having the lowest power cost among a plurality of power supply types based on the time series in a simulation period.
また、本発明は、前記特徴に加えて、選択部での時系列に選択された電力供給種別の選択に従ってシミュレーション期間に電力を消費した場合の電力コストを演算する電力コスト演算部と、電力コスト演算部での演算結果である選択後電力コストシミュレーション結果を出力する選択後電力コストシミュレーション結果出力部とをさらに有する電力コストシミュレーション装置を提供する。 Further, in addition to the above characteristics, the present invention provides a power cost calculation unit that calculates a power cost when power is consumed during a simulation period according to the selection of the power supply type selected in time series by the selection unit, and the power cost. Provided is a power cost simulation device further including a post-selection power cost simulation result output section which outputs a post-selection power cost simulation result which is a calculation result in a calculation section.
また、本発明は、前記特徴に加えて、複数の電力供給種別について演算された電力コストシミュレーション結果を比較可能に出力する電力コストシミュレーション結果比較出力部をさらに有する電力コストシミュレーション装置を提供する。 Further, in addition to the above characteristics, the present invention provides a power cost simulation device further including a power cost simulation result comparison output unit that outputs the power cost simulation results calculated for a plurality of power supply types in a comparable manner.
また、本発明は、前記特徴に加えて、一以上の電力供給種別について演算された電力コストシミュレーション結果と、選択後電力コストシミュレーション結果とを比較可能に出力する選択後電力コストシミュレーション結果比較出力部をさらに有する電力コストシミュレーション装置を提供する。 In addition to the above characteristics, the present invention provides a post-selection power cost simulation result comparison output unit that outputs a power cost simulation result calculated for one or more power supply types and a post-selection power cost simulation result in a comparable manner. There is provided a power cost simulation device further having:
また、それらの電力コストシミュレーション装置の動作方法、及び計算機である電力コストシミュレーション装置に読取実行可能に記述した電力コストシミュレーションプログラムをも提供する。 Further, it also provides an operation method of these power cost simulation devices, and a power cost simulation program readable and executable in the power cost simulation device which is a computer.
以上により、電力の供給を受ける者にとって最適な電力供給種別に対する対価と同額で電力を販売するというビジネスモデルを実現できる電力コストシミュレーション装置を提供しようとするものである。 As described above, it is an object of the present invention to provide a power cost simulation device that can realize a business model of selling power at the same price as the price for the type of power supply that is most suitable for the person who receives the power.
実施形態1における電力コストシミュレーション装置の機能的構成を示す図The figure which shows the functional structure of the electric power cost simulation apparatus in Embodiment 1. 実施形態1における電力コストシミュレーション装置のハードウェア構成を示す図The figure which shows the hardware constitutions of the electric power cost simulation apparatus in Embodiment 1. 実施形態1における電力コストシミュレーション装置を利用した場合の処理の流れを示す図The figure which shows the flow of a process at the time of using the power cost simulation device in Embodiment 1. 実施形態2における電力コストシミュレーション装置の機能的構成を示す図The figure which shows the functional structure of the electric power cost simulation apparatus in Embodiment 2. 実施形態2における電力コストシミュレーション装置のハードウェア構成を示す図The figure which shows the hardware constitutions of the electric power cost simulation apparatus in Embodiment 2. 実施形態2における電力コストシミュレーション装置を利用した場合の処理の流れを示す図The figure which shows the flow of a process at the time of using the electric power cost simulation apparatus in Embodiment 2. 実施形態3における電力コストシミュレーション装置の機能的構成を示す図The figure which shows the functional structure of the electric power cost simulation apparatus in Embodiment 3. 実施形態3における電力コストシミュレーション装置のハードウェア構成を示す図The figure which shows the hardware constitutions of the electric power cost simulation apparatus in Embodiment 3. 実施形態3における電力コストシミュレーション装置を利用した場合の処理の流れを示す図The figure which shows the flow of a process at the time of using the electric power cost simulation apparatus in Embodiment 3. 実施形態4における電力コストシミュレーション装置の機能的構成を示す図The figure which shows the functional structure of the electric power cost simulation apparatus in Embodiment 4. 実施形態4における電力コストシミュレーション装置のハードウェア構成を示す図The figure which shows the hardware constitutions of the electric power cost simulation apparatus in Embodiment 4. 実施形態4における電力コストシミュレーション装置を利用した場合の処理の流れを示す図The figure which shows the flow of a process at the time of using the electric power cost simulation apparatus in Embodiment 4. 電力需要者との関係で電力供給者別の電力コスト属性の一例を示す図The figure which shows an example of the electric power cost attribute for every electric power supplier in relation with an electric power consumer 選択部での選択内容の一例をグラフにしてを示す図The figure which shows an example of the selection content in the selection part in the form of a graph ABCコーヒーチェーンが太平洋電力を利用している場合を例にとって、選択後電力供給種別との電力コストの比較をグラフにした図A graph showing a comparison of power costs with selected power supply types, using the case where the ABC coffee chain uses Pacific power as an example. 本実施形態の全体像を示す図The figure which shows the whole picture of this execution form ABCコーヒーチェーンを例にとって、電力消費属性と電力コスト属性とに基づいて、最も電力コストが低額になると判断される電力供給種別を選択する場合の一例を示す図A diagram showing an example of selecting an electric power supply type that is determined to have the lowest electric power cost based on an electric power consumption attribute and an electric power cost attribute, taking an ABC coffee chain as an example. 図18は、電力消費属性をプルダウン形式にて入力する場合の画面の一例を示す図FIG. 18 is a diagram showing an example of a screen when inputting a power consumption attribute in a pull-down format. 多く存在する電力供給会社のうち、選択肢となる「利用可能電力供給種別」の選択の一例を示す図The figure which shows an example of the selection of "Available power supply classification" which is an option among many power supply companies 電力消費属性の一例を示す図Diagram showing an example of power consumption attributes 特定の電力需要者の電力消費属性に基づく電力供給会社4社の月々の特定の電力需要者に対して発生する電力コスト(円/kw)の一例を示す図The figure which shows an example of the electric power cost (yen/kw) which arises with respect to the monthly specific power demand of four power supply companies based on the power consumption attribute of a specific power demander. 太平洋電力、東海電力、日本電力、大和電力の4社における具体的な電力コスト属性を示す図Diagram showing specific power cost attributes of four companies: Pacific Power, Tokai Power, Japan Power, and Yamato Power シミュレーション結果の出力内容の一例を示す図Figure showing an example of the output contents of the simulation result
以下、本件発明の実施の形態について、添付図面を用いて説明する。なお、実施形態と請求項の相互の関係は以下の通りである。主として、実施形態1の説明は請求項1、請求項5、請求項9、請求項13から請求項15に関し、実施形態2の説明は請求項2、請求項6、請求項10に関し、実施形態3の説明は請求項3、請求項7、請求項11に関し、実施形態4の説明は請求項4、請求項8、請求項12に関し、実施形態5説明は請求項16から請求項19に関するものである。本件発明は、これら実施形態に何ら限定されるべきものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施し得る。 Embodiments of the present invention will be described below with reference to the accompanying drawings. The mutual relationship between the embodiment and the claims is as follows. Mainly, the description of the first embodiment relates to claims 1, 5, 9, 13 to 15, and the description of the second embodiment relates to claims 2, 6, and 10. The description of No. 3 relates to Claims 3, 7, and 11, the description of Embodiment 4 relates to Claims 4, 8, and 12, and the description of Embodiment 5 relates to Claims 16 to 19. Is. The present invention should not be limited to these embodiments, and may be implemented in various modes without departing from the spirit of the invention.
実施形態1 Embodiment 1
 本実施形態は、電力需要者の電力消費属性と電力供給種別で定められている電力コスト属性とシミュレーション期間を取得し、複数の電力供給種別毎に、需要者の電力消費属性と電力供給種別で定められている電力コスト属性とに応じてシミュレーション期間で時系列に電力供給種別ごとの電力コストをシミュレーションするための演算式である電力コストシミュレーション演算式を保持し、取得した電力消費属性と保持されている電力コストシミュレーション演算式とに基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別をシミュレーション期間で時系列に選択するように構成された電力コストシミュレーション装置を提供する。 In the present embodiment, the power consumption attribute of the power consumer and the power cost attribute defined in the power supply type and the simulation period are acquired, and the power consumption attribute and the power supply type of the user are acquired for each of the plurality of power supply types. A power cost simulation calculation formula, which is a calculation formula for simulating the power cost for each power supply type in a time series during a simulation period according to the defined power cost attribute, is held, and the acquired power consumption attribute is held. A power cost simulation apparatus configured to select a power supply type having the lowest power cost among a plurality of power supply types in time series during a simulation period based on the power cost simulation calculation formula ..
図16は、本実施形態の全体像を示す図である。一例として、電力コストシミュレーション装置は、太平洋電力、東海電力、日本電力、大和電力の電力供給会社4社からそれぞれ「電力コスト属性」を取得し、取得したABCコーヒーチェーンの「電力消費属性」と、取得した「シミュレーション期間」とを用いて、「電力コストシミュレーション演算式」に基づいて「最も電力コストが低額となる電力供給種別のシミュレーション期間内の選択結果」を演算するという具合である。 FIG. 16 is a diagram showing an overall image of this embodiment. As an example, the power cost simulation device acquires “power cost attributes” from four power supply companies, Pacific Power, Tokai Power, Japan Power, and Yamato Power, respectively, and acquires the “power consumption attributes” of the ABC coffee chain, Using the acquired “simulation period”, the “selection result within the simulation period of the power supply type with the lowest power cost” is calculated based on the “power cost simulation calculation formula”.
「電力供給種別」とは、電気事業者又は/及び個々の電気事業者が提供する電力供給サービスを言う。電気事業者とは、「小売電気事業者、一般送配電事業者、送電事業者、特定送配電事業者及び発電事業者」を言い、これらの組合せも電力供給種別に含まれてもよい。例えば、売電事業者と送電事業者の組合せなどである。2015年に「平成二十七年六月二十四日法律第四十七号」によって電気事業法の一部が改正され、2016年4月1日からの電力の小売り全面自由化にあわせて、改正された電気事業法が同日施行されたが、この改正前の旧来の名称で特定されていた電気事業者である「一般電気事業者、卸電気事業者、特定電気事業者及び特定規模電気事業者」が日本国では該当する。特別高圧・高圧受電による契約電力50kW以上の需要家へ、一般電気事業者が管理する送電線を通じて小売りを行う事業者である「新電力」と呼ばれるようになった事業者も含まれる。
 図19は、多く存在する電力供給会社のうち、選択肢となる「利用可能電力供給種別」の選択の一例を示す図である。候補としては「太平洋電力」「東海電力」「日本電力」「大和電力」「奈良電力」「沖縄電力」があり、「ABCコーヒーチェーン」が利用可能な利用可能電力供給種別としては、「太平洋電力」「東海電力」「日本電力」「大和電力」が選択されている。後述する選択部での「最も電力コストが低額となる電力供給種別」は、この選択されている電力供給種別の範囲で行われることとなる。
以下の図を用いた説明における具体例では、仮想の企業として、電力供給者である「太平洋電力」「東海電力」「日本電力」「大和電力」、電力需要者として「ABCコーヒーチェーン」を例に説明していく。
“Power supply type” means an electric power supply service provided by an electric power company or/and an individual electric power company. The electric power company means a “retail electric power company, a general power transmission and distribution company, a power transmission company, a specific power transmission and distribution company, and a power generation company”, and a combination of these may be included in the power supply type. For example, a combination of a power selling company and a power transmitting company. In 2015, a part of the Electricity Business Law was amended by "June 24, 1995, Law No. 47", in line with the full deregulation of electricity retailing from April 1, 2016. , The revised Electricity Business Law came into effect on the same day, but the electric utilities that were identified by the old name before this revision are "General Electricity Utility, Wholesale Electricity Utility, Specified Electricity Utility and Specified Scale Electricity "Business operator" is applicable in Japan. Included are companies that have come to be called “new power”, which is a business that retails to customers with contract power of 50 kW or more by extra high voltage/high voltage power reception through a transmission line managed by a general electric power company.
FIG. 19 is a diagram illustrating an example of selection of “available power supply type”, which is an option, among many power supply companies. Candidates include "Taiwan Electric Power", "Tokai Electric Power", "Japan Electric Power", "Yamato Electric Power", "Nara Electric Power", "Okinawa Electric Power", and the available power supply type that can be used by "ABC Coffee Chain" is "Pacific Electric Power". "Tokai Electric Power", "Japan Electric Power", and "Daiwa Electric Power" are selected. The "power supply type with the lowest power cost" in the selection unit described below is performed within the range of the selected power supply type.
In the concrete example in the explanation using the following figures, as an imaginary company, "Pacific Electric Power", "Tokai Electric Power", "Japan Electric Power", "Daiwa Electric Power" are electric power suppliers, and "ABC Coffee Chain" is an electric power consumer. I will explain to you.
以下、本実施形態における電力コストシミュレーション装置について、機能的構成、ハードウェア構成及び処理の流れについて、順に説明する。 Hereinafter, the functional configuration, the hardware configuration, and the flow of processing of the power cost simulation device according to the present embodiment will be sequentially described.
<機能的構成>
図1は、本実施形態における電力コストシミュレーション装置の機能的構成を示す図である。本実施形態における電力コストシミュレーション装置は、電力消費属性取得部(0101)と電力コスト属性取得部(0102)とシミュレーション期間取得部(0103)と電力コストシミュレーション演算式保持部(0104)と選択部(0105)を有する。以下、機能的構成については、具体的に各機能の内容につき説明する。
<Functional configuration>
FIG. 1 is a diagram showing a functional configuration of a power cost simulation apparatus according to this embodiment. The power cost simulation device according to the present embodiment includes a power consumption attribute acquisition unit (0101), a power cost attribute acquisition unit (0102), a simulation period acquisition unit (0103), a power cost simulation arithmetic expression holding unit (0104), and a selection unit ( 0105). Hereinafter, regarding the functional configuration, the content of each function will be specifically described.
「電力消費属性取得部」とは、電力の需要者の電力消費属性を取得する機能を有する。「電力消費属性」とは、時系列での電力消費のパターンを示すものである。時系列とは、例えば、年、月、週などの消費パターンが挙げられる。なお、「需要者」は、実在する特定の需要者であってもよいし、想定する業界の代表的かつ仮想的な需要者であてもよいし、業界自体もとくに意識しない仮想的な需要者であってもよい。つまり需要者とは、電力の消費者である。
電力消費属性取得部は、あらかじめ準備されている電力消費属性の複数のパターンから選択されてもよいし、あらかじめ準備されている電力消費属性のひながたであって、空欄を穴埋めすることによって電力消費属性を取得できるようなものであってもよい。あるいは、この穴埋め式(テキストの場合もあり。)を最初に選択させて、その後穴埋めをするようにして電力消費属性を取得するように構成してもよい。穴埋めはプルダウンメニューの選択によって行われるように構成してもよい。
The “power consumption attribute acquisition unit” has a function of acquiring the power consumption attribute of a power consumer. The “power consumption attribute” indicates a power consumption pattern in time series. Examples of the time series include consumption patterns such as year, month, and week. The "consumer" may be an actual specific consumer, a representative virtual consumer of the assumed industry, or a virtual consumer not even aware of the industry itself. May be That is, a consumer is a consumer of electricity.
The power consumption attribute acquisition unit may be selected from a plurality of patterns of power consumption attributes that are prepared in advance, or the power consumption attributes that are prepared in advance and are filled with blanks. May be obtained. Alternatively, the power consumption attribute may be obtained by first selecting this fill-in-the-blanks expression (which may be text) and then filling in the blanks. The filling may be performed by selecting a pull-down menu.
図20は、電力消費属性の一例を示す図である。電力消費属性とは、特定の電力需要者の電力消費性向を示す情報である。例えば電力需要者の過去1年ないし過去5年の電力消費実績などから導き出すことができる。あるいは電力消費性向が近似していると仮定できる複数の電力需要者から構成されるグループの過去の電力消費実績に基づいて導き出すことができる。あるいは、実績によるよりは、本装置の設計者、管理者の過去の経験に基づいて仮想の電力需要者であればどのような電力消費性向を示すと考えられるかという仮定に基づいて設計される電力消費性向である。この仮想の電力需要者は、その電力需要者が属する産業分類(例えば日本標準産業分、設計者が適宜設計した産業分類)や業種分類(GICS業種分類、設計者が適宜設計した業種分類)と、その電力需要者の事業規模などに応じてあらかじめ準備されるものであってもよい。なお、電力消費属性は後述するシミュレーション期間に適用される電力消費属性である。つまり、電力消費属性は後述するシミュレーション期間を時間軸とした関数として得られる値となる。
 例えば、「最大消費ピーク時間帯(デマンド期間)」「(平均)使用電力量(デマンド期間別)」「最大使用電力(デマンド期間別)」「契約電力供給種別」「消費電力変化傾向(増加率、減少率)」「電力需要者の属する産業分類」「企業規模を示す情報(年間売上、従業員数、上場企業の場合には時価総額)」「電力を消費する機器別の電力消費割合」「電力消費地(地域、住所)」「電力需要者の節電履歴(節電予想)」などが挙げられる。
FIG. 20 is a diagram illustrating an example of the power consumption attribute. The power consumption attribute is information indicating the power consumption tendency of a specific power consumer. For example, it can be derived from the past one year to the past five years of electric power consumption of the electric power consumer. Alternatively, it can be derived based on the past power consumption record of a group composed of a plurality of power consumers who can be assumed to have similar power consumption propensities. Alternatively, rather than actual results, it is designed based on the assumption that what kind of power consumption tendency a virtual electric power consumer is likely to exhibit is based on the past experience of the designer and administrator of this device. It is prone to power consumption. This virtual electric power consumer has an industrial classification (for example, Japanese standard industry, an industrial classification designed by the designer) and an industrial classification (GICS industrial classification, an industrial classification designed by the designer) to which the electric power consumer belongs. Alternatively, it may be prepared in advance according to the business scale of the power consumer. The power consumption attribute is a power consumption attribute applied during the simulation period described later. That is, the power consumption attribute is a value obtained as a function whose time axis is the simulation period described later.
For example, "maximum peak consumption time zone (demand period)""(average) power consumption (by demand period)""maximum power consumption (by demand period)""contract power supply type""power consumption change tendency (increase rate , Decrease rate) "Industry classification to which power consumers belong""Information indicating company size (annual sales, number of employees, market capitalization in the case of listed companies)""Power consumption ratio by device that consumes power"" Examples include power consumption areas (regions and addresses), "electricity consumers' electricity saving history (electricity saving forecast)", and the like.
これらの電力消費属性の入力については、予め候補を用意しておいてプルダウン形式にすることが考えられる。 For inputting these power consumption attributes, it is conceivable to prepare a candidate in advance and use a pull-down format.
図18は、電力消費属性をプルダウン形式にて入力する場合の画面の一例を示す図である。対象である電力需要者である社名が「ABCコーヒーチェーン」と入力され、その上で対象期間である「  月  日~  月  日」入力できるようになっている。その上で、上記図17で挙げた項目が選択できるようになっており、特定の項目を選択した上でプルダウンで選択することにより、自動的に入力を完了することができる。このようにすることにより、入力内容が無数に広がることを防ぐことができる。 FIG. 18 is a diagram illustrating an example of a screen when the power consumption attribute is input in the pull-down format. The company name of the target power consumer is entered as "ABC coffee chain", and then the target period "month day to month day" can be entered. In addition, the items listed in FIG. 17 can be selected. By selecting a specific item and then selecting it from the pull-down menu, the input can be completed automatically. By doing so, it is possible to prevent the input contents from spreading innumerably.
さらに、電力消費属性取得部は、シミュレーション期間における単位時間長単位での基本となる電力消費属性を構成する設備稼働量である基本設備稼働量を保持する基本設備稼働量保持手段と、シミュレーション期間における単位時間長単位での試験的となる設備稼働量である試験的設備稼働量を取得する試験的設備稼働量取得手段と、試験的設備稼働量を含む電力消費属性を生成する試験的電力消費属性生成手段とを有していても良い。この場合、前記単位時間長は、正時からの30分単位、正時からの30分単位の自然数倍、正時からの24時間単位、のいずれか一以上の単位時間長であっても良い。さらに、試験的設備稼働量取得手段は、ある単位時間長の設備稼働量と、他の単位時間長の設備稼働量とを入れ替える入替器を有していても良い。
試験的設備稼働量は、保持されている基本設備稼働量を編集することによって得られるように構成することが好ましい。基本的設備稼働量をどの程度変化させると、どのような電力供給種別の選択が有利であるかが選択部の選択結果から得られるという効果がある。さらに、この選択結果に基づいて電力コストのシミュレーションも可能であり、基本設備稼働量をどう変化させると、コストがどのように変化するかを知ることができる。さらに一の基本的設備稼働量を出発として、複数の試験的設備稼働量を取得し、これらのそれぞれについて選択部での選択結果を比較したり、コストのシミュレーション結果を比較することで、設備の仮想的な稼働計画での差異を見ることができる。さらにこれに重ねて、シミュレーション期間の同一期間で異なる複数種の電力供給種別をそれぞれ選んだ結果も比較できるようになる。なお、電力コスト属性には電力のコストの他に例えばCO2の排出コストや、炭素税額が含まれるように構成してもよい。炭素税は、電力供給者に課される場合には電力コストに一般に含まれるが、炭素税の部分を明示的に抜き出して示すことによって、社会的責任投資のバロメーターとして意識するための指標とすることもできる。
Further, the power consumption attribute acquisition unit, a basic equipment operating amount holding means for holding the basic equipment operating amount that is the equipment operating amount that constitutes the basic power consumption attribute in the unit time length unit in the simulation period, and in the simulation period A test facility operation amount acquisition means for acquiring a test facility operation amount, which is a test facility operation amount in a unit of time unit, and a test power consumption attribute for generating a power consumption attribute including the test facility operation amount. It may have a generation means. In this case, the unit time length may be at least one of 30 minutes from the hour, a natural number multiple of 30 minutes from the hour, and 24 hours from the hour. good. Further, the trial facility operating amount acquisition means may include a replacement device that exchanges the facility operating amount of a certain unit time length with the facility operating amount of another unit time length.
The trial facility operating amount is preferably configured to be obtained by editing the held basic facility operating amount. There is an effect that how much the basic equipment operation amount is changed and what kind of power supply type is advantageous to select can be obtained from the selection result of the selection unit. Further, it is possible to simulate the electric power cost based on the selection result, and it is possible to know how the cost changes when the basic equipment operating amount is changed. Furthermore, starting from one basic equipment operation amount, multiple test equipment operation amounts are acquired, and the selection results in the selection unit for each of these are compared, or the simulation results of costs are compared to determine the equipment You can see the difference in the virtual operation plan. Furthermore, it becomes possible to compare the results of selecting different power supply types in the same period of the simulation period. The power cost attribute may be configured to include, for example, CO2 emission cost and carbon tax amount in addition to the power cost. The carbon tax is generally included in the electricity cost when it is imposed on the electricity supplier, but it is used as an indicator for recognizing it as a barometer of socially responsible investment by explicitly showing the portion of the carbon tax. You can also
「電力コスト属性取得部」とは、電力供給種別ごとの電力コスト属性を取得する機能を有する。「電力コスト属性」とは、いわゆる電力供給価格に関する属性であり、電力需要者に対してどのような条件、どのようなルールでどのような価格を設定するのか、あるいはどのような価格を設定する傾向があるのか、を示す情報である。例えば、国全体のあるいは、特定地域(例えば東日本、西日本、沖縄、北海道、米国であれば西海岸、東海岸など)での電力供給余力がなくなった場合あるいは国全体のあるいは、特定地域での電力供給余力が多くある場合にいかなる価格を設定するのか、など、電力供給条件と、その時の電力供給価格の関係を示す情報である。電力供給条件としては、季節、月、曜日、時間帯、地域、供給量、発電コスト、電力供給価格決定方針などである。電力供給種別毎に過去の実績の平均値や、直近の実績、あるいは実績値を基準としたものでなく過去の実績に基づく推定のコスト属性などであってよい。例えば原油価格の将来予測動向、為替相場の将来予測動向などと、過去の実績値とに基づいて後述するシミュレーション期間での電力コスト属性を予測し他者であってもよい。電力コスト属性は、後述するシミュレーション期間に適用されるべきものとして取得される。また、前述のように電力コスト属性を予測する場合には、電力コスト属性予測部を備えるように構成してもよい。そして、電力コスト属性予測部は、複数の変数を所定の演算式に入力することによって電力コスト属性の予測値を演算するための電力コスト属性予測値演算ルールを保持させ、予測される、あるいは実際の変数をそのルールに入力することによって電力コスト属性が予測値として取得されるように構成することができる。電力コスト属性は前述の通りシミュレーション期間の電力コスト属性であるので、シミュレーション期間の時間軸の関数として得られる値となる。電力コスト属性は、シミュレーション期間を構成している最小の単位に対応して定められている。
 シミュレーション期間は、通常,最小の単位はデマンド期間となり複数のデマンド期間の集合で成り立つ。つまり、シミューレーション期間の始期と終期は、デマンド期間の始期であり、同じく終期はデマンド期間の終期である。従って、この場合には電力コスト属性は、デマンド期間単位で定められることとなる。
 「デマンド期間」とは、電気料金の基本料金を定めるために用いられる期間で、日本国では毎時正時(1時、2時、3時、4時、5時、6時、7時.8時、9時、10時、11時、12時、13時、14時、15時、16時、17時、18時、19時、20時、21時、22時、23時、24時(0時))から30分間が1デマンド期間であり、さらに次の正時までの30分間が1デマンド期間となる。
The “power cost attribute acquisition unit” has a function of acquiring the power cost attribute for each power supply type. The "electric power cost attribute" is an attribute related to a so-called electric power supply price, which condition, what kind of rule and price should be set for the electric power consumer, or what price should be set. This information indicates whether there is a tendency. For example, when there is no available power supply capacity in the whole country or in a specific area (eg, East Japan, West Japan, Okinawa, Hokkaido, West Coast, East Coast in the United States, etc.), or power supply in the whole country or in a specific area This is information indicating the relationship between the power supply condition and the power supply price at that time, such as what price should be set when there is a lot of spare capacity. The power supply conditions include season, month, day of the week, time zone, region, supply amount, power generation cost, power supply price determination policy, and the like. It may be an average value of past achievements, a latest achievement, or an estimated cost attribute based on the past achievements for each power supply type, not based on the achievement value. For example, the power cost attribute in the simulation period described later may be predicted based on the future forecast trend of the crude oil price, the future forecast trend of the exchange rate, etc. and the past actual value, and may be another person. The power cost attribute is acquired as what should be applied during the simulation period described later. When predicting the power cost attribute as described above, the power cost attribute predicting unit may be provided. The power cost attribute prediction unit holds a power cost attribute predicted value calculation rule for calculating the predicted value of the power cost attribute by inputting a plurality of variables into a predetermined calculation formula, and the predicted or actual The power cost attribute can be configured to be obtained as a predicted value by inputting the variable of the above into the rule. Since the power cost attribute is the power cost attribute of the simulation period as described above, it has a value obtained as a function of the time axis of the simulation period. The power cost attribute is defined in correspondence with the smallest unit that constitutes the simulation period.
The minimum unit of the simulation period is usually the demand period, which is a set of a plurality of demand periods. That is, the start and end of the simulation period are the start of the demand period, and the end is the end of the demand period. Therefore, in this case, the power cost attribute is determined in the demand period unit.
The "demand period" is a period used to determine the basic rate of electricity rate, and in Japan, it is every hour on the hour (1:00, 2:00, 3:00, 4:00, 5:00, 6:00, 7.8). Hours, 9 o'clock, 10 o'clock, 11 o'clock, 12 o'clock, 13 o'clock, 14 o'clock, 15 o'clock, 16 o'clock, 17 o'clock, 18 o'clock, 19 o'clock, 20 o'clock, 21 o'clock, 22 o'clock, 23 o'clock, 24 o'clock ( 30 minutes from 0:00)) is one demand period, and 30 minutes until the next hour is one demand period.
図13は、電力需要者との関係で電力供給者別の電力コスト属性の一例を示す図である。例えば、「基本料金・基本料金履歴」「電力料料金・電力料料金履歴」「燃料調整費・燃料調整費履歴」(「燃料調整費」とは、燃料費は経済情勢(為替レートや原油価格)の影響を大きく受けるために、電力会社の経営効率化の成果を明確にするため、燃料費の変動を迅速に電気料金に反映させたもの。)「単位電力当たりのコストの変動履歴(単年度実績又は複数年平均)」「為替の変動によって受ける単位電力当たりのコストの変動」「原油その他の燃料価格の変動によって受ける単位電力当たりのコストの変動」「関税率の変動によって受ける単位電力当たりのコストの変動」「仕入元の発電所からの託送料の変動によって受ける単位電力当たりのコストの変動」などが挙げられる。 FIG. 13: is a figure which shows an example of the electric power cost attribute for every electric power supplier in relation with an electric power consumer. For example, "basic charge/basic charge history", "electric charge fee/electric charge fee history", "fuel adjustment cost/fuel adjustment cost history" ("fuel adjustment cost" means the fuel cost is the economic situation (exchange rate and crude oil price). ), the change in fuel cost is promptly reflected in the electricity rate in order to clarify the results of the efficiency improvement of the electric power company.) "Cost change history per unit electricity (single (FY actual or multi-year average)" "Cost fluctuations per unit power due to exchange rate fluctuations" "Cost fluctuations per unit power due to fluctuations in crude oil and other fuel prices" "Per unit power fluctuations due to fluctuations in tariff rates" Cost fluctuations” and “cost fluctuations per unit power received due to fluctuations in the shipping charges from the power source of the supplier”.
図22は、太平洋電力、東海電力、日本電力、大和電力の4社における具体的な電力コスト属性を示す図である。太平洋電力は、正月やお盆期の昼間の大口需要家に割安という特徴(電力コスト属性)がある。東海電力は、年間を通じて一定程度割安に電力供給しているという特徴(電力コスト属性)がある。日本電力は、基本料金は安いが、電力料料金は比較的高いという特徴(電力コスト属性)がある。大和電力は、決算月(12月、6月)の前後で飛びぬけて安い料金という特徴(電力コスト属性)がある。このように、電力供給会社独自の電力料金プランがあり、各々の特徴を有している。例えば、日本電力の場合には、家庭や小規模会社には有利であるが、電力を大量に消費する会社には不利である。また、家庭や小規模会社であっても、季節ごとに有利(低コスト)な電力供給会社が変わるというのが実際である。 FIG. 22 is a diagram showing specific power cost attributes of four companies, Pacific Power, Tokai Power, Japan Power, and Yamato Power. Taiheiyo Electric has a feature (electricity cost attribute) that it is cheaper for large consumers during the daytime during the New Year and the Bon Festival. Tokai Electric Power has a feature (electricity cost attribute) that it supplies electricity at a relatively low price throughout the year. Japan Electric Power has a characteristic that the basic charge is low, but the power charge is relatively high (power cost attribute). Daiwa Electric Power has a feature that it is extremely cheap (electricity cost attribute) before and after the settlement month (December, June). Thus, there are power rate plans unique to power supply companies, and each has its own characteristics. For example, in the case of Nippon Electric Power, it is advantageous for homes and small companies, but disadvantageous for companies that consume large amounts of electricity. In fact, even in households and small companies, the advantageous (low-cost) power supply company changes from season to season.
「シミュレーション期間取得部」とは、後記するシミュレーションの期間であるシミュレーション期間を取得する機能を有する。シミュレーション期間は、通常,最小の単位はデマンド期間となり複数のデマンド期間の集合で成り立つ。つまり、シミューレーション期間の始期と終期は、デマンド期間の始期であり、同じく終期はデマンド期間の終期である。
 「デマンド期間」とは、電気料金の基本料金を定めるために用いられる期間で、日本国では毎時正時(1時、2時、3時、4時、5時、6時、7時.8時、9時、10時、11時、12時、13時、14時、15時、16時、17時、18時、19時、20時、21時、22時、23時、24時(0時))から30分間と、さらに次の正時までの30分間を言う。
 「電気料金」は通常は次のようにして定められる。
「電気料金」=「基本料金(固定課金)」+「電力量料金(従量課金)」+「再生可能エネルギー発電促進賦課金」(電気料金には消費税などの相当額が含まれる。)
「基本料金」=「料金単価」×「契約電力(kW)」×「(185-力率)/100」
「電力量料金」=「電力量料金単価(円/kWh)」×「使用電力量(kWh)」±「燃料費調整額」である。ここで「燃料費調整額」は、燃料[原油・LNG〈液化天然ガス〉・石炭]の価格変動に応じて電気料金を調整する額である。燃料費調整額は、燃料費調整単価(円/kWh)に使用電力量(kWh)を乗じて算出する。
 次に契約電力の決定方法を説明する。「契約電力(kW)」の決定方法は、例えば、高圧500kW未満の電力需要者の場合、毎月の契約電力(kW)は、メーターの計量値に基づき実量制により決定される。「実量制」とは、最大需要電力計の組み込まれた電子式電力量計で、消費された30分ごとの電力量の平均を計量し、そのうち月間で最も大きい値を最大デマンド値・最大需要電力とする。当月を含む過去1年間の各月の最大需要電力のうちで最も大きい値が契約電力となる。
 上述のように、シミュレーション期間の代表的な例では1年間であり、新たな電力供給者と電力供給契約を結ぼうとしている場合には、その想定される契約開始日から1年間とすると便利である。新たな電力供給者に乗り換えるとどの程度向こう1年間で電力コストを抑えられるか見ることができるからである。ここで想定している新たな電力供給者の代表例は、1年を通して、常にその電力需要者に対して時系列でその期間その期間ごとに最低コストで電力を供給する電力供給者(電力供給種別)を切り替えてゆくとした場合にそれと同コストで電力を供給することを約する一の電力供給者等である。つまり、現実にはできない頻繁な電力供給者(電力供給種別)の切り替えを仮想的に行うことを可能とする電力供給ビジネスモデルをサービスする電力供給者である。つまり、その電力供給者は、前述のような、硬直的な電力料金体系(「電気料金」=「基本料金(固定課金)」+「電力量料金(従量課金)」+「再生可能エネルギー発電促進賦課金」)を採用しないのである。
 その他にも,シミュレーション期間は,分単位であっても良いし,1時間単位であっても良いし,3時間単位であっても良いし,午前・午後単位であっても良いし,日単位であっても良いし,週単位であっても良いし,月単位であっても良いし,年単位であっても良い。
The “simulation period acquisition unit” has a function of acquiring a simulation period, which is a simulation period described later. The minimum unit of the simulation period is usually the demand period, which is a set of a plurality of demand periods. That is, the start and end of the simulation period are the start of the demand period, and the end is the end of the demand period.
The "demand period" is a period used to determine the basic rate of electricity rate, and in Japan, it is every hour on the hour (1:00, 2:00, 3:00, 4:00, 5:00, 6:00, 7.8). Hours, 9 o'clock, 10 o'clock, 11 o'clock, 12 o'clock, 13 o'clock, 14 o'clock, 15 o'clock, 16 o'clock, 17 o'clock, 18 o'clock, 19 o'clock, 20 o'clock, 21 o'clock, 22 o'clock, 23 o'clock, 24 o'clock ( 30 minutes from 0:00)) to the next hour.
The "electricity charge" is usually determined as follows.
"Electricity charge" = "Basic charge (fixed charge)" + "Electricity charge (pay-as-you-go)" + "Renewable energy power generation promotion levy" (Electricity charges include consumption tax and other equivalent amounts.)
"Basic rate" = "Unit price" x "Contracted electricity (kW)" x "(185-Power factor)/100"
"Electric power charge" = "Electric power charge unit price (yen/kWh)" x "Electric power consumption (kWh)" ± "Fuel cost adjustment amount". Here, the "fuel cost adjustment amount" is an amount for adjusting the electricity price according to the price fluctuation of fuel [crude oil/LNG <liquefied natural gas>coal]. The fuel cost adjustment amount is calculated by multiplying the fuel cost adjustment unit price (yen/kWh) by the power consumption (kWh).
Next, a method for determining contracted power will be described. As for the method of determining the "contracted power (kW)", for example, in the case of a power consumer with a high voltage of less than 500 kW, the monthly contracted power (kW) is determined by the actual amount system based on the metered value. "Actual amount system" is an electronic watt-hour meter with a built-in maximum demand watt-hour meter. It measures the average of the amount of electricity consumed every 30 minutes, and the largest value in the month is the maximum demand value/maximum value. Demand power. The largest value of the maximum demand power of each month in the past year including the current month is the contract power.
As described above, a typical example of the simulation period is one year, and if you are going to enter into a power supply contract with a new power supplier, it is convenient to set it as one year from the expected contract start date. is there. This is because it will be possible to see how switching to a new electricity supplier will reduce electricity costs in the coming year. A typical example of a new power supplier assumed here is a power supplier (power supplier who always supplies power to the power consumer at a lowest cost in each time period and time period throughout the year. This is one electric power supplier who promises to supply electric power at the same cost when the type is switched. In other words, it is a power supplier that provides a power supply business model that enables virtual switching of frequent power supply (power supply type) that cannot be done in reality. In other words, the electric power supplier has a rigid electricity charge system as described above (“electricity charge” = “basic charge (fixed charge)” + “electricity charge (metered charge)” + “renewable energy power generation promotion”). The levy") is not adopted.
In addition, the simulation period may be a minute unit, an hour unit, a three hour unit, an am/pm unit, or a day unit. , Weekly, monthly, or yearly.
「電力コストシミュレーション演算式保持部」とは、複数の電力供給種別毎に、需要者の電力消費属性と電力供給種別で定められている電力コスト属性と、に応じてシミュレーション期間で時系列に電力供給種別ごとの電力コストをシミュレーションするための演算式である電力コストシミュレーション演算式を保持する機能を有する。
 代表的な「電力コストシミュレーション演算式」としては、シミューレーション期間の単位時間(例えばデマンド単位期間)ごとに、電力消費属性に含まれている電力消費量の値(例えば1000kwh)と、電力コスト属性に含まれている単位電力量当たりのコスト(金銭単位であっても、それ以外の単位であっても構わない。例えば10円/1kwh)を掛け合わせる処理(例えば1000kwh×(10円/1kwh)=10000円)をするための演算式となる。
The "electric power cost simulation equation holding unit" means, for each of a plurality of electric power supply types, power consumption in time series during the simulation period according to the power consumption attribute of the consumer and the electric power cost attribute determined by the electric power supply type. It has a function of holding an electric power cost simulation arithmetic expression which is an arithmetic expression for simulating the electric power cost for each supply type.
As a typical “power cost simulation arithmetic expression”, the value of the power consumption included in the power consumption attribute (for example, 1000 kwh) and the power cost for each unit time of the simulation period (for example, demand unit period) A process for multiplying the cost per unit amount of electric power included in the attribute (whether it is a monetary unit or another unit. For example, 10 yen/1 kwh) (for example, 1000 kwh×(10 yen/1 kwh) )=10000 yen).
「選択部」とは、取得した電力消費属性と、取得した電力コスト属性と、保持されている電力コストシミュレーション演算式と、に基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別をシミュレーション期間内で時系列に選択する機能を有する。シミュレーション期間はシーズンが1周する1年間が典型的である。電力消費パターンは、通常1年間で1サイクルするからである。
 電力供給種別の選択をする最小の期間単位は、デマンド期間である。デマンド期間は前述の通りであるので、最も頻繁には30分間隔で電力供給種別を選択するように設計できる。ただし、これに限定されるものでなく、30分の自然数倍の期間を電力供給種別の切り替えを行うことができる時間長として選択することができる。電力事業者の切り替えの現実のルールに合わせる必要がない点がこの装置の特徴である。また、この電力供給種別の切り替え期間は、切換期間を選択するように構成することも可能である。その場合には、選択部に切換期間選択手段を設けることが考えられる。
The “selection unit” has the lowest power cost among the plurality of power supply types based on the acquired power consumption attribute, the acquired power cost attribute, and the held power cost simulation calculation formula. It has a function to select the power supply type in time series within the simulation period. The simulation period is typically one year with one season. This is because the power consumption pattern normally makes one cycle in one year.
The minimum period unit for selecting the power supply type is the demand period. Since the demand period is as described above, it can be designed to select the power supply type most frequently at intervals of 30 minutes. However, the present invention is not limited to this, and a period of a natural number multiple of 30 minutes can be selected as the time length for which the power supply type can be switched. The feature of this device is that it is not necessary to comply with the actual rules for switching between electric power companies. Further, the switching period of the power supply type can be configured to select the switching period. In that case, it is conceivable to provide the selection unit with switching period selection means.
図21は、特定の電力需要者の電力消費属性に基づく電力供給会社4社の月々の特定の電力需要者に対して発生する電力コスト(円/kw)の一例を示す図である。ここでは、時系列での選択期間単位を月単位とし、シミュレーション期間はシーズンが1周する1年間という例で示している。
太平洋電力は、11月が「23.0」、12月が「21.5」、1月が「21.5」、2月が「22.5」、3月が「23.5」、4月が「25.0」、5月が「23.5」、6月が「22.5」、7月が「21.0」、8月が「21.5」、9月が「23.5」、10月が「25.0」である。
東海電力は、11月が「17.5」、12月が「19.0」、1月が「21.5」、2月が「25.0」、3月が「19.5」、4月が「17.0」、5月が「17.5」、6月が「18.5」、7月が「24.0」、8月が「25.5」、9月が「20.0」、10月が「19.0」である。
日本電力は、11月が「17.5」、12月が「20.5」、1月が「23.5」、2月が「25.0」、3月が「22.0」、4月が「22.5」、5月が「20.5」、6月が「18.5」、7月が「21.0」、8月が「23.0」、9月が「22.0」、10月が「22.5」である。
大和電力は、11月が「15.0」、12月が「20.0」、1月が「22.5」、2月が「20.5」、3月が「21.0」、4月が「20.5」、5月が「19.5」、6月が「15.5」、7月が「18.0」、8月が「22.5」、9月が「25.5」、10月が「23.5」である。
以上の電力コストを前提とすると、最も電力コストが低額となる電力供給種別は、図中の数字を囲んでいる部分である。具体的には、11月は「15.0」(大和電力)、12月は「19.0」(東海電力)、1月は「21.5」(太平洋電力、東海電力)、2月は「20.5」(大和電力)、3月は「19.5」(東海電力)、4月は「17.0」(東海電力)、5月は「17.5」(東海電力)、6月は「15.5」(大和電力)、7月は「18.0」(大和電力)、8月は「21.5」(太平洋電力)、9月は「20.0」(東海電力)、10月は「19.0」(東海電力)が最も電力コストが低額となる電力供給種別である。選択部では、当該供給種別が選択される。
FIG. 21: is a figure which shows an example of the electric power cost (yen/kw) which arises with respect to the monthly specific power consumer of four power supply companies based on the power consumption attribute of a specific power consumer. Here, an example is shown in which the selection period unit in the time series is the monthly unit, and the simulation period is one year in which the season makes one round.
For Pacific Power, “23.0” in November, “21.5” in December, “21.5” in January, “22.5” in February, “23.5” in March, 4 Month is “25.0”, May is “23.5”, June is “22.5”, July is “21.0”, August is “21.5”, and September is “23. 5" and October are "25.0".
Tokai Electric Power has “17.5” in November, “19.0” in December, “21.5” in January, “25.0” in February, “19.5” in March, and 4 Month is “17.0”, May is “17.5”, June is “18.5”, July is “24.0”, August is “25.5”, and September is “20. 0" and October are "19.0".
For Nippon Electric Power, "17.5" in November, "20.5" in December, "23.5" in January, "25.0" in February, "22.0" in March, and 4 Month is “22.5”, May is “20.5”, June is “18.5”, July is “21.0”, August is “23.0”, and September is “22. 0" and October are "22.5".
Yamato Electric has “15.0” in November, “20.0” in December, “22.5” in January, “20.5” in February, “21.0” in March, and 4 Month is “20.5”, May is “19.5”, June is “15.5”, July is “18.0”, August is “22.5”, and September is “25. 5” and October are “23.5”.
Assuming the above power cost, the power supply type with the lowest power cost is the part enclosing the numbers in the figure. Specifically, “15.0” (Yamato Electric Power) in November, “19.0” (Tokai Electric Power) in December, “21.5” (Pacific Electric Power, Tokai Electric Power) in January, and February "20.5" (Yamato Electric Power), "19.5" (Tokai Electric Power) in March, "17.0" (Tokai Electric Power) in April, "17.5" (Tokai Electric Power) in May, 6 Month is "15.5" (Yamato Electric Power), July is "18.0" (Yamato Electric Power), August is "21.5" (Pacific Electric Power), September is "20.0" (Tokai Electric Power) In October, “19.0” (Tokai Electric Power) is the type of power supply with the lowest power cost. The selection unit selects the supply type.
図14は、選択部での選択内容の一例をグラフにして示す図である。ここでも、時系列での選択期間単位を月単位とし、シミュレーション期間はシーズンが1周する1年間という例で示している。各数値の内容は図21のとおりであるが、電力コストを縦軸にとったグラフにしてみた場合、最も下にくる電力供給種別が最も電力コストが低額となる電力供給種別なわけであるから、選択される電力供給種別は、各月における最も下にくる電力供給種別ということになる。 FIG. 14 is a graph showing an example of the contents selected by the selection unit. Also here, the selection period unit in the time series is set to the month unit, and the simulation period is shown as an example of one year in which the season makes one round. The content of each numerical value is as shown in FIG. 21, but in a graph with the power cost on the vertical axis, the lowest power supply type is the power supply type with the lowest power cost. The selected power supply type is the lowest power supply type in each month.
図15は、ABCコーヒーチェーンが太平洋電力を利用している場合を例にとって、選択後電力供給種別との電力コストの比較をグラフにした図である。選択後電力供給種別は「最も電力コストが低額となる電力供給種別」なわけであるから、太平洋電力よりも電力コストが高額になることはない。例えば、電力供給会社4社の中で太平洋電力の電力コストが最も低額であった1月と8月は、その電力コストの電力供給種別(太平洋電力)が選択されている。他方、1月と8月を除く月については、太平洋電力以外の会社の電力コストが最も低額であったことから、当該最も低額であった電力会社の電力供給種別が選択される。そのため、その月については、太平洋電力による電力コストよりも低額となる。そのため、年間を通じてみると、ABCコーヒーチェーンにとって、大幅な電力コストのダウンにつながることがシミュレーションによって明らかになる。つまり新たな電力事業者のビジネスモデルとしてこのような料金体系を電力需要者に提示できれば今までにない低コストでの電力供給が電力需要者に対して可能となるので、電力需要者も大きなコスト削減ができその事業者を選択する動機づけとなる。 FIG. 15 is a graph showing a comparison of the power cost with the selected power supply type, taking the case where the ABC coffee chain uses Pacific power as an example. Since the selected power supply type is “the power supply type with the lowest power cost”, the power cost will not be higher than Pacific power. For example, in January and August when the power cost of the Pacific power is the lowest among the four power supply companies, the power supply type (Pacific power) of the power cost is selected. On the other hand, for the months other than January and August, the power costs of the companies other than Pacific Power were the lowest, so the power supply type of the power company that was the lowest was selected. Therefore, the electricity cost for the month will be lower than the electricity cost by Pacific Power. As a result, simulations show that the ABC coffee chain will lead to a significant reduction in electricity costs over the course of the year. In other words, if such a tariff system can be presented to electric power consumers as a business model of a new electric power company, it will be possible to supply electric power consumers with an unprecedented low cost. It is possible to reduce, and it becomes an incentive to select the business operator.
以上は実績値をコスト属性として採用した場合の選択であるが、電力消費属性と実績値を直接的に採用しない電力コスト属性とに基づいて、最も電力コストが低額になると判断される電力供給種別を選択するように構成しても良い。つまり、電力供給種別毎の過去の実績値そのものを電力コスト属性とする者ではないが、過去の実績値などに基づいて各電力供給種別毎の将来に予測される電力コスト属性を導き出し利用する場合である。具体的には、「電力消費属性」として大口需要家で季節変動が激しいのであれば、シミュレーション期間である将来に予測される「電力コスト属性」で、大口需要家に不利な電力供給種別の選択は避け、しかも季節変動の内容に鑑みて最も安くなる電力供給種別(大量に電力消費する時期に電力コストの単価が安い電力供給種別)を選択するという具合である。この場合には例えば大口需要家に有利と考えられる電力供給種別は複数存在する可能性があってもよい。そしてそのような場合には複数の中からいずれを選択するかは、発明装置を管理する者が決定してもよいし、管理者にシミュレーションを依頼する電力需要者が選択するようにしてもよいし、発明装置が乱数などを利用して任意に選択するように構成してもよい。
 また、いずれの電力供給種別を選択するかに関して選択性向が異なるシナリオを複数準備して電力需要者等にシナリオを選択させ、その選択されたシナリオに沿って電力供給種別を選択するように構成することもできる。このために電力コストシミュレーション装置には、シナリオ保持部と、シナリオ選択受付部と、シナリオによって選択部を制御するシナリオ選択制御部を備えるように構成することができる。さらに、電力コストシミュレーション装置は、複数のシナリオをすべて自動的に順次選択して選択部を制御しながら選択を実行し、実行結果を比較して最も電力コストがシミューレーション期間の全体で比較したときに最低となる結果となったシナリオによって選択された選択結果を選択部の選択結果とするように構成することもできる。そのために電力コストシミュレーション装置は、自動シナリオ実行部を有するように構成することができる。また、各種の電力供給や電力需要に関する社会的な出来事に応じて適切なシナリオを準備できるように、シナリオ構成部を設けるようにしてもよい。シナリオ構成部は予測される社会情勢に応じてシナリオに影響を与える変数を有し、実際の社会情勢に応じてその変数に値を代入することでシナリオが生成されるようにすることが好ましい。そのためにはシナリオ構成部に対して変数の値を与えるシナリオ変数取得部を電力コストシミュレーション装置に備えることが好ましい。
The above is the selection when the actual value is adopted as the cost attribute, but the power supply type determined to have the lowest power cost based on the power consumption attribute and the power cost attribute that does not directly adopt the actual value. May be configured to be selected. In other words, if the past actual value of each power supply type is not the person who uses it as the power cost attribute, but the power cost attribute predicted in the future for each power supply type is derived based on the past actual value and used. Is. Specifically, if the large-scale consumers have large seasonal fluctuations as the "power consumption attribute", the "power cost attribute" predicted in the future, which is the simulation period, is used to select the power supply type that is disadvantageous to the large-scale consumer. In addition, the power supply type that is the cheapest (the power supply type that has the lowest unit price of the power cost when a large amount of power is consumed) is selected in consideration of the contents of seasonal fluctuations. In this case, for example, there may be a plurality of power supply types that are considered to be advantageous to large-scale customers. In such a case, the person who manages the invention device may decide which one is selected from the plurality, or the power consumer who requests the manager to perform the simulation may select one. However, the invention device may be configured to arbitrarily select using a random number or the like.
In addition, it is configured to prepare a plurality of scenarios having different selectivity with respect to which power supply type is selected, allow the power consumer or the like to select the scenario, and select the power supply type according to the selected scenario. You can also For this reason, the power cost simulation apparatus can be configured to include a scenario holding unit, a scenario selection receiving unit, and a scenario selection control unit that controls the selection unit according to the scenario. Further, the power cost simulation device automatically selects a plurality of scenarios in sequence and executes the selection while controlling the selection unit, compares the execution results, and compares the most power costs in the entire simulation period. It is also possible to configure the selection result selected by the scenario having the lowest result to be the selection result of the selection unit. Therefore, the power cost simulation device can be configured to have an automatic scenario execution unit. Further, a scenario configuration unit may be provided so that an appropriate scenario can be prepared according to social events related to various types of power supply and power demand. It is preferable that the scenario configuration unit has a variable that influences the scenario according to the predicted social situation, and the scenario is generated by substituting a value for the variable according to the actual social situation. For that purpose, it is preferable that the power cost simulation apparatus is provided with a scenario variable acquisition unit that gives a value of the variable to the scenario configuration unit.
図17は、ABCコーヒーチェーンを例にとって、電力消費属性と電力コスト属性とに基づいて、最も電力コストが低額になると判断される電力供給種別を選択する場合の一例を示す図である。ABCコーヒーチェーンは、「正月やお盆の帰省時期に顧客数が急増し、電力消費が増大する」「大口需要家である」という電力消費属性を有するとする。その場合、図22における各社(電力供給種別)の電力コスト属性を踏まえると、大口需要家に不利である日本電力は選択から外れる。その上で、正月やお盆の期間は「太平洋電力」、通常月は「東海電力」、特に大和電力が安い月は「大和電力」という具合に選択することができる。 FIG. 17 is a diagram illustrating an example of selecting an electric power supply type that is determined to have the lowest electric power cost based on the electric power consumption attribute and the electric power cost attribute, taking the ABC coffee chain as an example. It is assumed that the ABC coffee chain has the power consumption attributes of "the number of customers will increase sharply and the power consumption will increase at the time of returning home during New Year holidays and Obon" and "being a large consumer". In that case, considering the power cost attribute of each company (power supply type) in FIG. 22, Japan Electric Power, which is disadvantageous to large-scale customers, is excluded from the selection. On top of that, you can select "Pacific power" during the New Year and Obon periods, "Tokai power" for normal months, and "Yamato power" for particularly cheap Yamato power.
<ハードウェア構成>
本実施形態における電力コストシミュレーション装置のハードウェア構成について、図を用いて説明する。
<Hardware configuration>
The hardware configuration of the power cost simulation apparatus according to this embodiment will be described with reference to the drawings.
図2は、本実施形態における電力コストシミュレーション装置のハードウェア構成を示す図である。 この図にあるように、コンピュータは、マザーボード上に構成される、チップセット(0210)、CPU(0201)、不揮発性メモリ(0203)、メインメモリ(0204)、各種バス(0202a~0202e)、BIOS(0207)各種インターフェイス(0205、0206、0208)、リアルタイムクロック(0209)等からなる。これらはオペレーティングシステムやデバイスドライバー、各種プログラムなどと協働して動作する。本発明を構成する各種プログラムや各種データはこれらのハードウエア資源を効率的に利用して各種の処理を実行するように構成されている。
<チップセット>
 「チップセット」は、コンピュータのマザーボードに実装され、CPUの外部バスと、メモリや周辺機器を接続する標準バスとの連絡機能、つまりブリッジ機能を集積した大規模集積回路(LSI)のセットである。2チップセット構成を採用する場合と、1チップセット構成を採用する場合とがある。CPUやメインメモリに近い側をノースブリッジ、遠い側で比較的低速な外部I/Oとのインタフェースの側にサウスブリッジが設けられる。
(ノースブリッジ)
ノースブリッジには、CPUインターフェース、メモリコントローラ、グラフィックインターフェースが含まれる。従来のノースブリッジの機能のほとんどをCPUに担わせてもよい。ノースブリッジは、メインメモリのメモリスロットとはメモリバスを介して接続し、グラフィックカードのグラフィックカードスロットとは、ハイスピードグラフィックバス(AGP、PCI Express)で接続される。
(サウスブリッジ)
サウスブリッジには、PCIインターフェイス(PCIスロット)とはPCIバスを介して接続し、ATA(SATA)インターフェイス、USBインターフェイス、EthernetインターフェイスなどとのI/O機能やサウンド機能を担う。高速な動作が必要でない、あるいは不可能であるようなPS/2ポート、フロッピーディスクドライブ、シリアルポート、パラレルポート、ISAバスをサポートする回路を組み込むことは、チップセット自体の高速化の足かせとなるためサウスブリッジのチップから分離させ、スーパーI/Oチップと呼ばれる別のLSIに担当させることとしてもよい。CPU(MPU)と、周辺機器や各種制御部を繋ぐためにバスが用いられる。バスはチップセットによって連結される。メインメモリとの接続に利用されるメモリバスは、高速化を図るために、これに代えてチャネル構造を採用してもよい。バスとしてはシリアルバスかパラレルバスを採用できる。パラレルバスは、シリアルバスが1ビットずつデータを転送するのに対して、元データそのものや元データから切り出した複数ビットをひとかたまりにして、同時に複数本の通信路で伝送する。クロック信号の専用線がデータ線と平行して設け、受信側でのデータ復調の同期を行う。CPU(チップセット)と外部デバイスをつなぐバスとしても用いられ、GPIB、IDE/(パラレル)ATA、SCSI、PCIなどがある。高速化に限界があるため、PCIの改良版PCI ExpressやパラレルATAの改良版シリアルATAでは、データラインはシリアルバスでもよい。
<CPU>
CPUはメインメモリ上にあるプログラムと呼ばれる命令列を順に読み込んで解釈・実行することで信号からなる情報を同じくメインメモリ上に出力する。CPUはコンピュータ内での演算を行なう中心として機能する。なお、CPUは演算の中心となるCPUコア部分と、その周辺部分とから構成され、CPU内部にレジスタ、キャッシュメモリや、キャッシュメモリとCPUコアとを接続する内部バス、DMAコントローラ、タイマー、ノースブリッジとの接続バスとのインターフェイスなどが含まれる。なお、CPUコアは一つのCPU(チップ)に複数備えられていてもよい。また,CPUに加えて,グラフィックインターフェイス(GPU)若しくはFPUによって,処理を行っても良い。
<不揮発性メモリ>
(HDD)
ハードディスクドライブの基本構造は、磁気ディスク、磁気ヘッド、および磁気ヘッドを搭載するアームから構成される。外部インターフェイスは、SATA(過去ではATA)を採用することができる。高機能なコントローラ、例えばSCSIを用いて、ハードディスクドライブ間の通信をサポートする。例えば、ファイルを別のハードディスクドライブにコピーする時、コントローラがセクタを読み取って別のハードディスクドライブに転送して書き込むといったことができる。この時ホストCPUのメモリにはアクセスしない。したがってCPUの負荷を増やさないで済む。
<メインメモリ>
 CPUが直接アクセスしてメインメモリ上の各種プログラムを実行する。メインメモリは揮発性のメモリでDRAMが用いられる。メインメモリ上のプログラムはプログラムの起動命令を受けて不揮発性メモリからメインメモリ上に展開される。その後もプログラム内で各種実行命令や、実行手順に従ってCPUがプログラムを実行する。
<オペレーティングシステム(OS)>
 オペレーティングシステムはコンピュータ上の資源をアプリケーションに利用させるための管理をしたり、各種デバイスドライバを管理したり、ハードウエアであるコンピュータ自身を管理するために用いられる。小型のコンピュータではオペレーティングシステムとしてファームウエアを用いることもある。
<BIOS>
 BIOSは、コンピュータのハードウエアを立上てオペレーティングシステムを稼働させるための手順をCPUに実行させるもので、最も典型的にはコンピュータの起動命令を受けるとCPUが最初に読取りに行くハードウエアである。ここには、ディスク(不揮発性メモリ)に格納されているオペレーティングシステムのアドレスが記載されており、CPUに展開されたBIOSによってオペレーティングシステムが順次メインメモリに展開されて稼働状態となる。なお、BIOSは、バスに接続されている各種デバイスの有無をチェックするチェック機能をも有している。チェックの結果はメインメモリ上に保存され、適宜オペレーティングシステムによって利用可能な状態となる。なお、外部装置などをチェックするようにBIOSを構成してもよい。
FIG. 2 is a diagram showing a hardware configuration of the power cost simulation apparatus according to this embodiment. As shown in this figure, the computer is configured on a motherboard and includes a chip set (0210), a CPU (0201), a non-volatile memory (0203), a main memory (0204), various buses (0202a to 0202e), and a BIOS. (0207) Various interfaces (0205, 0206, 0208), real time clock (0209), etc. These operate in cooperation with the operating system, device drivers, and various programs. Various programs and various data that constitute the present invention are configured to efficiently use these hardware resources to execute various processes.
<Chipset>
A "chipset" is a set of large-scale integrated circuits (LSI) that is mounted on a motherboard of a computer and that has a function of connecting a CPU external bus and a standard bus that connects a memory and peripheral devices, that is, a bridge function. .. There are cases where the two-chip set configuration is adopted and cases where the one-chip set configuration is adopted. A north bridge is provided on the side close to the CPU and main memory, and a south bridge is provided on the side far from the interface with the relatively slow external I/O.
(Northbridge)
The north bridge includes a CPU interface, a memory controller, and a graphic interface. Most of the functions of the conventional north bridge may be assigned to the CPU. The north bridge is connected to the memory slot of the main memory via a memory bus, and is connected to the graphic card slot of the graphic card by a high speed graphic bus (AGP, PCI Express).
(South Bridge)
The south bridge is connected to a PCI interface (PCI slot) via a PCI bus, and has an I/O function and a sound function with an ATA (SATA) interface, a USB interface, an Ethernet interface, and the like. Incorporating circuits that support PS/2 ports, floppy disk drives, serial ports, parallel ports, and ISA buses that do not require or are not capable of high-speed operation is a hindrance to speeding up the chipset itself. Therefore, it may be separated from the south bridge chip and assigned to another LSI called a super I/O chip. A bus is used to connect the CPU (MPU) to peripheral devices and various control units. The buses are connected by chipsets. The memory bus used for connection with the main memory may have a channel structure instead of this in order to increase the speed. The bus can be a serial bus or a parallel bus. The parallel bus transfers data one bit at a time, whereas the serial bus transfers the original data itself or multiple bits cut out from the original data as a group and transmits them simultaneously on multiple communication paths. A dedicated line for the clock signal is provided in parallel with the data line to synchronize the data demodulation on the receiving side. It is also used as a bus that connects a CPU (chipset) and external devices, and includes GPIB, IDE/(parallel) ATA, SCSI, PCI, and the like. Since there is a limit to the speedup, in the improved PCI Express of PCI and the improved serial ATA of parallel ATA, the data line may be a serial bus.
<CPU>
The CPU sequentially reads a sequence of instructions called a program on the main memory, interprets and executes it, and outputs information consisting of signals to the main memory as well. The CPU functions as a center for performing calculations in the computer. It should be noted that the CPU is composed of a CPU core portion which is the center of calculation and a peripheral portion thereof, and has a register, a cache memory inside the CPU, an internal bus connecting the cache memory and the CPU core, a DMA controller, a timer, a north bridge. Includes interfaces to and from the connection bus. A plurality of CPU cores may be included in one CPU (chip). Further, the processing may be performed by a graphic interface (GPU) or FPU in addition to the CPU.
<Nonvolatile memory>
(HDD)
The basic structure of a hard disk drive is composed of a magnetic disk, a magnetic head, and an arm carrying the magnetic head. The external interface can adopt SATA (in the past, ATA). A high performance controller, for example SCSI, is used to support communication between hard disk drives. For example, when copying a file to another hard disk drive, the controller can read the sectors and transfer to another hard disk drive for writing. At this time, the memory of the host CPU is not accessed. Therefore, it is not necessary to increase the load on the CPU.
<Main memory>
The CPU directly accesses and executes various programs on the main memory. The main memory is a volatile memory and a DRAM is used. The program on the main memory is expanded from the non-volatile memory to the main memory in response to the program start instruction. After that, the CPU executes the program according to various execution instructions and the execution procedure in the program.
<Operating system (OS)>
The operating system is used to manage the resources on the computer for use by applications, to manage various device drivers, and to manage the computer itself, which is hardware. In a small computer, firmware may be used as an operating system.
<BIOS>
The BIOS causes the CPU to execute the procedure for booting up the computer hardware and operating the operating system, and is most typically the hardware that the CPU first reads when receiving the boot instruction of the computer. .. Here, the address of the operating system stored in the disk (nonvolatile memory) is described, and the operating system is sequentially expanded in the main memory by the BIOS expanded in the CPU to be in the operating state. Note that the BIOS also has a check function for checking the presence/absence of various devices connected to the bus. The result of the check is saved in the main memory and can be appropriately used by the operating system. The BIOS may be configured to check an external device or the like.
以上については,他の実施形態でも同様である。 The above is the same in other embodiments.
ここに「主メモリ」は、各種処理を行うプログラムを「CPU」に実行させるために読み出すと同時に、そのプログラムの作業領域でもあるワーク領域を提供する。また、この「主メモリ」や「HDD」にはそれぞれ複数のアドレスが割り当てられており、「CPU」で実行されるプログラムは、そのアドレスを特定しアクセスすることで相互にデータのやりとりを行い、処理を行うことが可能になっている。本実施形態において「主メモリ」に格納されているプログラムは、電力消費属性取得プログラムと電力コスト属性取得プログラムとシミュレーション期間取得プログラムと電力コストシミュレーション演算式保持プログラムと選択プログラムである。また、「主メモリ」と「HDD」には、電力消費属性、電力コスト属性、シミュレーション期間、電力コストシミュレーション演算式などが格納されている。 Here, the “main memory” provides a work area which is also a work area of the program, at the same time as the program for performing various processes is read for execution by the “CPU”. Further, a plurality of addresses are respectively assigned to the "main memory" and the "HDD", and the program executed by the "CPU" exchanges data with each other by specifying and accessing the address. It is possible to perform processing. In this embodiment, the programs stored in the "main memory" are a power consumption attribute acquisition program, a power cost attribute acquisition program, a simulation period acquisition program, a power cost simulation arithmetic expression holding program, and a selection program. The "main memory" and "HDD" store power consumption attributes, power cost attributes, simulation periods, power cost simulation arithmetic expressions, and the like.
「CPU」は、「主メモリ」に格納されている電力消費属性取得プログラムを実行して、「ネットワーク・インターフェース」を通じてユーザ端末装置から電力消費属性を取得する。そして、「主メモリ」に格納されている電力コスト属性取得プログラムを実行して、「ネットワーク・インターフェース」を通じてユーザ端末装置から電力コスト属性を取得する。そして、「主メモリ」に格納されているシミュレーション期間取得プログラムを実行して、シミュレーションの期間であるシミュレーション期間を取得する。そして、「主メモリ」に格納されている選択プログラムを実行して、取得した電力消費属性と保持されている電力コストシミュレーション演算式とに基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別をシミュレーション期間で時系列に選択する。 The “CPU” executes the power consumption attribute acquisition program stored in the “main memory” and acquires the power consumption attribute from the user terminal device through the “network interface”. Then, the power cost attribute acquisition program stored in the “main memory” is executed to acquire the power cost attribute from the user terminal device through the “network interface”. Then, the simulation period acquisition program stored in the "main memory" is executed to acquire the simulation period, which is the simulation period. Then, the selection program stored in the "main memory" is executed, and the lowest power cost among the plurality of power supply types is obtained based on the acquired power consumption attribute and the stored power cost simulation calculation formula. The power supply type that becomes is selected in time series during the simulation period.
<処理の流れ>
図3は、本実施形態における電力コストシミュレーション装置を利用した場合の処理の流れを示す図である。図3にあるように、電力消費属性取得ステップ(S0301)と、電力コスト属性取得ステップ(S0302)と、シミュレーション期間取得ステップ(S0303)と、電力コストシミュレーション演算式取得ステップ(S0304)と、選択ステップ(S0305)からなる処理方法である。
<Process flow>
FIG. 3 is a diagram showing a flow of processing when the power cost simulation device according to the present embodiment is used. As shown in FIG. 3, a power consumption attribute acquisition step (S0301), a power cost attribute acquisition step (S0302), a simulation period acquisition step (S0303), a power cost simulation arithmetic expression acquisition step (S0304), and a selection step. (S0305) is the processing method.
「電力消費属性取得ステップ」とは、電力需要者の電力消費属性を取得する段階である。 The "power consumption attribute acquisition step" is a step of acquiring the power consumption attribute of the power consumer.
「電力コスト属性取得ステップ」とは、電力供給種別ごとの電力コスト属性を取得する段階である。 The "power cost attribute acquisition step" is a step of acquiring the power cost attribute for each power supply type.
「シミュレーション期間取得ステップ」とは、後記するシミュレーションの期間であるシミュレーション期間を取得する段階である。 The “simulation period acquisition step” is a stage of acquiring a simulation period which is a period of a simulation described later.
「電力コストシミュレーション演算式取得ステップ」とは、複数の電力供給種別毎に、需要者の電力消費属性と電力供給種別で定められている電力コスト属性と、に応じてシミュレーション期間で時系列に電力供給種別ごとの電力コストをシミュレーションするための演算式である電力コストシミュレーション演算式を取得する段階である。 "Electricity cost simulation calculation formula acquisition step" means that, for each of a plurality of power supply types, the power consumption attribute of the consumer and the power cost attribute determined by the power supply type are set, and the power consumption is time-series in the simulation period according to It is a stage of acquiring an electric power cost simulation arithmetic expression which is an arithmetic expression for simulating the electric power cost for each supply type.
「選択ステップ」とは、取得した電力消費属性と、保持されている電力コストシミュレーション演算式と、に基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別をシミュレーション期間で時系列に選択する段階である。 The “selection step” is a simulation period in which the power supply type with the lowest power cost is selected from the plurality of power supply types based on the acquired power consumption attribute and the stored power cost simulation calculation formula. This is the stage of selecting in time series.
<まとめ>
以上により、電力の供給を受ける者にとって最適な電力供給種別に対する対価と同額で電力を販売するというビジネスモデルを実現できる電力コストシミュレーション装置を提供することができる。
<Summary>
As described above, it is possible to provide a power cost simulation device that can realize a business model in which power is sold at the same price as the price for the type of power supply that is optimal for the person who receives the power supply.
実施形態2 Embodiment 2
本実施形態は、実施形態1の特徴に加えて、時系列に選択された電力供給種別の選択に従ってシミュレーション期間に電力を消費した場合の電力コストを演算し、演算結果である選択後電力コストシミュレーション結果を出力するように構成されている電力コストシミュレーション装置を提供する。 In addition to the features of the first embodiment, the present embodiment calculates the power cost when power is consumed during the simulation period according to the selection of the power supply type selected in time series, and calculates the selected power cost simulation as the calculation result. A power cost simulation device configured to output a result.
以下、本実施形態における電力コストシミュレーション装置について、機能的構成、ハードウェア構成及び処理の流れについて、順に説明する。 Hereinafter, the functional configuration, the hardware configuration, and the flow of processing of the power cost simulation device according to the present embodiment will be sequentially described.
<機能的構成>
図4は、本実施形態における電力コストシミュレーション装置の機能的構成を示す図である。本実施形態における電力コストシミュレーション装置は、電力消費属性取得部(0401)と電力コスト属性取得部(0402)とシミュレーション期間取得部(0403)と電力コストシミュレーション演算式保持部(0404)と選択部(0405)と電力コスト演算部(0406)と選択後電力コストシミュレーション結果出力部(0407)を有する。以下、具体的に各機能の内容につき説明する。なお、電力コスト演算部と選択後電力コストシミュレーション結果出力部を除く各機能については、実施形態1と同様であるため、電力コスト演算部と選択後電力コストシミュレーション結果出力部の機能に限定して説明する。
<Functional configuration>
FIG. 4 is a diagram showing a functional configuration of the power cost simulation apparatus according to this embodiment. The power cost simulation device according to the present embodiment includes a power consumption attribute acquisition unit (0401 ), a power cost attribute acquisition unit (0402 ), a simulation period acquisition unit (0403 ), a power cost simulation formula holding unit (0404 ), and a selection unit ( 0405), a power cost calculation unit (0406), and a selected power cost simulation result output unit (0407). The contents of each function will be specifically described below. Since the respective functions except the power cost calculation unit and the selected power cost simulation result output unit are the same as those of the first embodiment, the functions are limited to the functions of the power cost calculation unit and the selected power cost simulation result output unit. explain.
「電力コスト演算部」とは、選択部での時系列に選択された電力供給種別の選択に従ってシミュレーション期間に電力を消費した場合の電力コストを演算する機能を有する。
 「電力コスト」とは、電力を消費するために支払うべき対価であって、一般的には通貨の単位で示される。ただし、金銭にのみ限られず、流通している電子マネーや流通して有価証券として価値を有するポイントなどに換算して示してもよい。例えばポイントとしては、各電力供給種別が発行するポイントなどを挙げることができる。
 さらに電力コストは電力需要者のシミュレーション期間中に電力消費属性によって予測される電力消費量に対して演算した電力消費量見合いの電力コストでもよいし、電力消費属性によって予測される電力消費量でなく、その電力消費を前提として単位電力消費量当たりの電力コストを算出してもよい。
 さらに演算される電力コストは、シミュレーション期間を複数のサブ期間に分けてサブ期間単位で算出され結果が示されるものであってもよい。また、電力コストは、電力コストを演算するために用いた電力コスト属性や、電力消費属性の代表値あるいは、一例で演算されたものであり、これらの値を変更して再シミュレーションが直ちに示されるようなダイナミック関数を有する電力コストであってもよい。つまり、電力コストのグラフなどが一旦は示されるが電力コスト属性や電力消費属性として利用された値がディスプレイなどに表示され、そのディスプレイに表示された値を電力需要者や電力コストシミュレーション装置の管理者が変更できるように構成し、変更した後に再計算ボタンなどを押下すると、新たな演算が直ちに行われグラフが動的に変化するように構成することができる。そのために演算結果自体が変数の変更を受付けるダイナミック関数であるように演算部はダイナミック関数型演算結果演算手段を有するように構成することができる。
The “power cost calculation unit” has a function of calculating the power cost when power is consumed during the simulation period according to the selection of the power supply type selected in time series by the selection unit.
The "electric power cost" is a consideration to be paid for consuming electric power, and is generally shown in a unit of currency. However, the present invention is not limited to money, and may be converted into electronic money that is in circulation or points that have value as securities that are in circulation. For example, points can be points issued by each power supply type.
Further, the electric power cost may be the electric power cost corresponding to the electric power consumption calculated for the electric power consumption predicted by the electric power consumption attribute during the simulation of the electric power consumer, or the electric power consumption not the electric power consumption predicted by the electric power consumption attribute. Alternatively, the power cost per unit power consumption may be calculated based on the power consumption.
Further, the calculated power cost may be calculated by dividing the simulation period into a plurality of sub-periods and showing the result. Further, the power cost is the power cost attribute used to calculate the power cost, the representative value of the power consumption attribute, or the value calculated by an example, and the re-simulation is immediately shown by changing these values. It may be a power cost with such a dynamic function. That is, although a graph of power cost is temporarily displayed, the values used as power cost attributes and power consumption attributes are displayed on a display, etc., and the values displayed on the display are managed by power consumers and power cost simulation devices. It can be configured so that a person can change the graph, and when the recalculation button or the like is pressed after the change, a new calculation is immediately performed and the graph is dynamically changed. Therefore, the arithmetic unit can be configured to have a dynamic function type arithmetic result arithmetic means so that the arithmetic result itself is a dynamic function that accepts a change of a variable.
「選択後電力コストシミュレーション結果出力部」とは、電力コスト演算部での演算結果である選択後電力コストシミュレーション結果を出力する機能を有する。出力は不揮発性メモリ、主メモリ、に出力されたのちにディスプレイに表示されたり、ネットワークを介して電力コストシミュレーション装置と通信をしている端末に対して出力されたり、するように構成してもよい。さらにはプリンターや印刷機から紙に印刷等されて出力されるように構成してもよい。また複数の出力形式で同時に出力されるように構成してもよい。例えばインターネットを介して閲覧させるためにウエブページとして出力されるように構成するとともに、電子メールやSNSなどの電力需要者が利用している端末で閲覧可能となるように構成することもできる。もちろん音声で出力されてもよい。さらに、選択後電力コストシミュレーション結果には、単に金銭単位等のコストのみでなく、シミュレーションの各期に選択された電力供給種別を特定するための情報や、その電力供給種別が選択された理由、さらに、他の電力供給種別を選択した場合との比較などを含めたものであってもよい。さらに、その電力コストシミュレーションを行うにあたって想定した事情(原油価格などの燃料価格の変動予想、為替の変動予想)などを含めてもよい。なお出力がウエブページなどを介して行われる場合には、電力コスト属性や電力消費属性の各変数をウエブページ上で操作変更でき、その変更結果もダイナミックに閲覧できるように構成してもよい。 The “selected power cost simulation result output unit” has a function of outputting a selected power cost simulation result which is a calculation result in the power cost calculation unit. The output is output to the non-volatile memory, the main memory, and then displayed on the display, or to the terminal communicating with the power cost simulation device via the network. Good. Further, the printer or the printing machine may be configured to print on paper and output. Further, it may be configured to output in a plurality of output formats at the same time. For example, it can be configured so that it is output as a web page for browsing via the Internet, and can be configured so that it can be browsed on a terminal used by electric power consumers such as electronic mail and SNS. Of course, it may be output as voice. Furthermore, the power cost simulation result after selection is not only the cost in units of money, but also information for identifying the power supply type selected in each period of the simulation, and the reason why the power supply type is selected, Further, it may include comparison with the case where another power supply type is selected. Furthermore, it is possible to include the circumstances (forecast of fluctuations in fuel prices such as crude oil prices, forecasts of fluctuations in foreign exchange), etc. that were assumed in the power cost simulation. If the output is performed via a web page or the like, the variables of the power cost attribute and the power consumption attribute can be changed on the web page, and the change result can be dynamically viewed.
図23は、シミュレーション結果の出力内容の一例を示す図である。この一例では、従来の電力料金では1年間で「2、605万円」であったのが、選択部での時系列に選択された電力供給種別の選択に従ってシミュレーション期間に電力を消費した場合の電力コストによれば1年間で「2、058万円」ということになる。この例では、1年間で「547万円」の電力コスト削減になるということが一見して分かるようになっている。 FIG. 23 is a diagram showing an example of the output contents of the simulation result. In this example, the conventional electric power charge was “2,6050,000 yen” for one year, but when the electric power was consumed during the simulation period according to the selection of the power supply type selected in time series in the selection unit. According to the electricity cost, it will be "20,580,000 yen" in one year. In this example, it can be seen at a glance that the electric power cost will be reduced by "5.47 million yen" in one year.
<ハードウェア構成>
図5は、本実施形態における電力コストシミュレーション装置のハードウェア構成を示す図である。この図にあるように、コンピュータは、マザーボード上に構成される、チップセット(0510)、CPU(0501)、不揮発性メモリ(0503)、メインメモリ(0504)、各種バス(0502a~0502e)、BIOS(0507)各種インターフェイス(0505、0506、0508)、リアルタイムクロック(0509)等からなる。これらはオペレーティングシステムやデバイスドライバー、各種プログラムなどと協働して動作する。本発明を構成する各種プログラムや各種データはこれらのハードウエア資源を効率的に利用して各種の処理を実行するように構成されている。
<Hardware configuration>
FIG. 5: is a figure which shows the hardware constitutions of the power cost simulation apparatus in this embodiment. As shown in this figure, the computer is configured on a motherboard and includes a chipset (0510), a CPU (0501), a non-volatile memory (0503), a main memory (0504), various buses (0502a to 0502e), and a BIOS. (0507) It consists of various interfaces (0505, 0506, 0508), real-time clock (0509) and so on. These operate in cooperation with the operating system, device drivers, and various programs. Various programs and various data that constitute the present invention are configured to efficiently use these hardware resources to execute various processes.
ここに「主メモリ」は、各種処理を行うプログラムを「CPU」に実行させるために読み出すと同時に、そのプログラムの作業領域でもあるワーク領域を提供する。また、この「主メモリ」や「HDD」にはそれぞれ複数のアドレスが割り当てられており、「CPU」で実行されるプログラムは、そのアドレスを特定しアクセスすることで相互にデータのやりとりを行い、処理を行うことが可能になっている。本実施形態において「主メモリ」に格納されているプログラムは、電力消費属性取得プログラムと電力コスト属性取得プログラムとシミュレーション期間取得プログラムと電力コストシミュレーション演算式保持プログラムと選択プログラムと電力コスト演算プログラムと選択後電力コストシミュレーション結果出力プログラムである。 Here, the “main memory” provides a work area which is also a work area of the program, at the same time as the program for performing various processes is read for execution by the “CPU”. Further, a plurality of addresses are respectively assigned to the "main memory" and the "HDD", and the program executed by the "CPU" exchanges data with each other by specifying and accessing the address. It is possible to perform processing. In the present embodiment, the programs stored in the "main memory" are selected as a power consumption attribute acquisition program, a power cost attribute acquisition program, a simulation period acquisition program, a power cost simulation calculation formula holding program, a selection program, and a power cost calculation program. It is a post-power cost simulation result output program.
また、「主メモリ」と「HDD」には、実施形態1と同様に、電力消費属性、電力コスト属性、シミュレーション期間、電力コストシミュレーション演算式などが格納されている。さらに、本実施形態では、電力コストと選択後電力コストシミュレーション結果が格納されている。 Further, in the “main memory” and the “HDD”, the power consumption attribute, the power cost attribute, the simulation period, the power cost simulation calculation formula, and the like are stored, as in the first embodiment. Further, in this embodiment, the power cost and the post-selection power cost simulation result are stored.
「CPU」は、「主メモリ」に格納されている電力消費属性取得プログラムを実行して、「ネットワーク・インターフェース」を通じてユーザ端末装置から電力消費属性を取得する。そして、「主メモリ」に格納されている電力コスト属性取得プログラムを実行して、「ネットワーク・インターフェース」を通じてユーザ端末装置から電力コスト属性を取得する。そして、「主メモリ」に格納されているシミュレーション期間取得プログラムを実行して、シミュレーションの期間であるシミュレーション期間を取得する。そして、「主メモリ」に格納されている選択プログラムを実行して、取得した電力消費属性と保持されている電力コストシミュレーション演算式とに基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別をシミュレーション期間で時系列に選択する。そして、「主メモリ」に格納されている電力コスト演算プログラムを実行して、時系列に選択された電力供給種別の選択に従ってシミュレーション期間に電力を消費した場合の電力コストを演算する。そして、「主メモリ」に格納されている選択後電力コストシミュレーション結果出力プログラムを実行して、電力コスト演算部での演算結果である選択後電力コストシミュレーション結果を出力する。 The “CPU” executes the power consumption attribute acquisition program stored in the “main memory” and acquires the power consumption attribute from the user terminal device through the “network interface”. Then, the power cost attribute acquisition program stored in the “main memory” is executed to acquire the power cost attribute from the user terminal device through the “network interface”. Then, the simulation period acquisition program stored in the "main memory" is executed to acquire the simulation period, which is the simulation period. Then, the selection program stored in the "main memory" is executed, and the lowest power cost among the plurality of power supply types is obtained based on the acquired power consumption attribute and the stored power cost simulation calculation formula. The power supply type that becomes is selected in time series during the simulation period. Then, the power cost calculation program stored in the “main memory” is executed to calculate the power cost when power is consumed during the simulation period according to the selection of the power supply type selected in time series. Then, the post-selection power cost simulation result output program stored in the "main memory" is executed to output the post-selection power cost simulation result, which is the calculation result in the power cost calculation unit.
<処理の流れ>
図6は、本実施形態における電力コストシミュレーション装置を利用した場合の処理の流れを示す図である。図6にあるように、電力消費属性取得ステップ(S0601)と、電力コスト属性取得ステップ(S0602)と、シミュレーション期間取得ステップ(S0603)と、電力コストシミュレーション演算式取得ステップ(S0604)と、選択ステップ(S0605)と、電力コスト演算ステップ(S0606)と、選択後電力コストシミュレーション結果出力ステップ(S0607)からなる処理方法である。なお、このうち、電力コスト演算ステップと選択後電力コストシミュレーション結果出力ステップを除く各ステップは、実施形態1と同様である。以下では、電力コスト演算ステップと選択後電力コストシミュレーション結果出力ステップについて説明する。
<Process flow>
FIG. 6 is a diagram showing a flow of processing when the power cost simulation device according to the present embodiment is used. As shown in FIG. 6, a power consumption attribute acquisition step (S0601), a power cost attribute acquisition step (S0602), a simulation period acquisition step (S0603), a power cost simulation arithmetic expression acquisition step (S0604), and a selection step. (S0605), a power cost calculation step (S0606), and a selected power cost simulation result output step (S0607). Of these, each step except the power cost calculation step and the selected power cost simulation result output step is the same as in the first embodiment. The power cost calculation step and the selected power cost simulation result output step will be described below.
「電力コスト演算ステップ」とは、選択ステップでの時系列に選択された電力供給種別の選択に従ってシミュレーション期間に電力を消費した場合の電力コストを演算する段階である。 The “power cost calculation step” is a step of calculating the power cost when the power is consumed during the simulation period according to the selection of the power supply type selected in time series in the selection step.
「電力コスト演算ステップ」とは、電力コスト演算ステップでの演算結果である選択後電力コストシミュレーション結果を出力する段階である。 The “power cost calculation step” is a step of outputting the selected power cost simulation result which is the calculation result in the power cost calculation step.
<まとめ>
これらにより、最も電力コストが低額となる電力供給種別を選択した場合の電力コストのシミュレーション結果を出力することができる電力コストシミュレーション装置を提供することができる。
<Summary>
As a result, it is possible to provide the power cost simulation device that can output the power cost simulation result when the power supply type with the lowest power cost is selected.
実施形態3 Embodiment 3
本実施形態は、実施形態1又は実施形態2の特徴に加えて、複数の電力供給種別について演算された電力コストシミュレーション結果を比較可能に出力するように構成されている電力コストシミュレーション装置を提供する。 In addition to the features of the first or second embodiment, the present embodiment provides a power cost simulation apparatus configured to output the power cost simulation results calculated for a plurality of power supply types in a comparable manner. ..
以下、本実施形態における電力コストシミュレーション装置について、機能的構成、ハードウェア構成及び処理の流れについて、順に説明する。 Hereinafter, the functional configuration, the hardware configuration, and the flow of processing of the power cost simulation device according to the present embodiment will be sequentially described.
<機能的構成>
図7は、本実施形態における電力コストシミュレーション装置の機能的構成を示す図である。本実施形態における電力コストシミュレーション装置は、電力消費属性取得部(0701)と、電力コスト属性取得部(0702)と、シミュレーション期間取得部(0703)と、電力コストシミュレーション演算式保持部(0704)と、選択部(0705)と、電力コスト演算部(0706)と、電力コストシミュレーション結果比較出力部(0707)を有する。以下、具体的に各機能の内容につき説明する。なお、電力コストシミュレーション結果比較出力部を除く各機能については、実施形態1と同様であるため、電力コストシミュレーション結果比較出力部の機能に限定して説明する。
<Functional configuration>
FIG. 7 is a diagram showing a functional configuration of the power cost simulation apparatus according to this embodiment. The power cost simulation device according to the present embodiment includes a power consumption attribute acquisition unit (0701), a power cost attribute acquisition unit (0702), a simulation period acquisition unit (0703), and a power cost simulation formula holding unit (0704). , A selection unit (0705), a power cost calculation unit (0706), and a power cost simulation result comparison output unit (0707). The contents of each function will be specifically described below. Each function except the power cost simulation result comparison output unit is the same as that of the first embodiment, and therefore the description will be limited to the function of the power cost simulation result comparison output unit.
「電力コストシミュレーション結果比較出力部」とは、複数の電力供給種別について演算された電力コストシミュレーション結果を比較可能に出力する。例えば、図14に示すような出力をするものである。この図では各月に太平洋電力、東海電力、日本電力、大和電力のそれぞれのコストが示されている。このように同時期に複数の電力供給種別についての電力コストを算出して比較可能に出力することによって、各電力供給種別を相互にコスト面から比較可能とする。
 「電力コストシミュレーション演算部」を有するように構成し、これによって同時期に複数種類の電力供給種別の電力コストを算出するように構成することもできる。例えば、同月に前述のように太平洋電力、東海電力、日本電力、大和電力のそれぞれのコストを算出する。この算出は各電力供給種別の電力供給属性と、電力需要者の電力消費属性と、それぞれの電力供給種別の電力コストシミュレーション演算式と、に基づいて演算される。
 「電力コスト取得部」を有するように構成し、電力コストシミュレーション演算部の機能は電力コストシミュレーション装置外で行うように構成することも考えられる。電力コスト取得部は、蓄積されている各電力供給種別の同時期の電力コストを取得し、前記電力コストシミュレーション結果比較出力部に渡すように構成してもよい。
 「表示部」を有するように構成するのが好ましい。表示部は比較対象となる各電力供給種別の電力コストを数値で表して表形式にして表示してもよいし、数値をグラフ化して表示するように構成することもできる。また、複数の電力供給種別の同時期の比較結果の中から最低コストの電力供給種別の電力コストを他の電力コストと識別することが容易になるように表示することが好ましい。識別容易とするためには、最低の電力コストの値を太字で表したり、他と異なる色彩で表したりすることで実現できる。さらに、電力供給種別がカーソルなどのポインターをグラフ上に置くことで表示されるように構成することもできる。
 なお、比較結果の表示の方式としては、異なるシミュレーション期間の同一の電力供給種別の電力コストを比較可能に表示するように構成することも考えられる。例えば発電所の休止期間と、その休止していた発電所が再稼働した機関とでは、電力供給者(電力供給種別)の課金ポリシーが変更されることがあり、そのポリシーの変更の前後を比較するなどが可能となる。
The “power cost simulation result comparison output unit” outputs the power cost simulation results calculated for a plurality of power supply types in a comparable manner. For example, the output is as shown in FIG. In this figure, each month's costs for Pacific Electric Power, Tokai Electric Power, Japan Electric Power, and Yamato Electric Power are shown. In this way, the power costs for a plurality of power supply types are calculated and output in a comparable manner at the same time, so that the power supply types can be compared with each other in terms of cost.
It may be configured to have a “power cost simulation calculation unit”, and thereby to be configured to calculate power costs of a plurality of types of power supply at the same time. For example, in the same month, the costs of Pacific Power, Tokai Electric Power, Japan Electric Power, and Yamato Electric Power are calculated as described above. This calculation is performed based on the power supply attribute of each power supply type, the power consumption attribute of the power consumer, and the power cost simulation calculation formula of each power supply type.
It is also conceivable that it is configured to have a “power cost acquisition unit” and that the function of the power cost simulation calculation unit is performed outside the power cost simulation device. The power cost acquisition unit may be configured to acquire the accumulated power cost of each power supply type at the same time and pass it to the power cost simulation result comparison output unit.
It is preferable to have a "display section". The display unit may display the power cost of each power supply type to be compared in a numerical form in a tabular form, or may display the numerical values in a graph. Further, it is preferable to display the power cost of the lowest cost power supply type from other power costs from the comparison result of a plurality of power supply types at the same time so that it can be easily distinguished from other power costs. In order to make the identification easy, it can be realized by expressing the value of the lowest power cost in bold or in a different color. Further, the power supply type can be displayed by placing a pointer such as a cursor on the graph.
As a method of displaying the comparison result, it may be possible to display the power costs of the same power supply type in different simulation periods in a comparable manner. For example, the charging policy of the power supplier (power supply type) may change between the period when the power plant was suspended and the organization where the suspended power plant was restarted. Compare the changes before and after the policy was changed. It becomes possible to do it.
<ハードウェア構成>
図8は、本実施形態における電力コストシミュレーション装置のハードウェア構成を示す図である。この図にあるように、コンピュータは、マザーボード上に構成される、チップセット(0810)、CPU(0801)、不揮発性メモリ(0803)、メインメモリ(0804)、各種バス(0802a~0802e)、BIOS(0807)各種インターフェイス(0805、0806、0808)、リアルタイムクロック(0809)等からなる。これらはオペレーティングシステムやデバイスドライバー、各種プログラムなどと協働して動作する。本発明を構成する各種プログラムや各種データはこれらのハードウエア資源を効率的に利用して各種の処理を実行するように構成されている。
<Hardware configuration>
FIG. 8 is a diagram showing a hardware configuration of the power cost simulation apparatus in this embodiment. As shown in this figure, the computer is configured on a motherboard and includes a chip set (0810), a CPU (0801), a non-volatile memory (0803), a main memory (0804), various buses (0802a to 0802e), and a BIOS. (0807) Various interfaces (0805, 0806, 0808), real time clock (0809), etc. These operate in cooperation with the operating system, device drivers, and various programs. Various programs and various data that constitute the present invention are configured to efficiently use these hardware resources to execute various processes.
ここに「主メモリ」は、各種処理を行うプログラムを「CPU」に実行させるために読み出すと同時に、そのプログラムの作業領域でもあるワーク領域を提供する。また、この「主メモリ」や「HDD」にはそれぞれ複数のアドレスが割り当てられており、「CPU」で実行されるプログラムは、そのアドレスを特定しアクセスすることで相互にデータのやりとりを行い、処理を行うことが可能になっている。本実施形態において「主メモリ」に格納されているプログラムは、電力消費属性取得プログラムと電力コスト属性取得プログラムとシミュレーション期間取得プログラムと電力コストシミュレーション演算式保持プログラムと選択プログラムと電力コストシミュレーション結果比較出力プログラムである。 Here, the “main memory” provides a work area which is also a work area of the program, at the same time as the program for performing various processes is read for execution by the “CPU”. Further, a plurality of addresses are respectively assigned to the "main memory" and the "HDD", and the program executed by the "CPU" exchanges data with each other by specifying and accessing the address. It is possible to perform processing. In the present embodiment, the programs stored in the "main memory" are the power consumption attribute acquisition program, the power cost attribute acquisition program, the simulation period acquisition program, the power cost simulation arithmetic expression holding program, the selection program, and the power cost simulation result comparison output. It is a program.
また、「主メモリ」と「HDD」には、実施形態1と同様に、電力消費属性、電力コスト属性、シミュレーション期間、電力コストシミュレーション演算式などが格納されている。さらに、本実施形態では、電力コストシミュレーション結果が格納されている。 Further, in the “main memory” and the “HDD”, the power consumption attribute, the power cost attribute, the simulation period, the power cost simulation calculation formula, and the like are stored, as in the first embodiment. Further, in the present embodiment, the power cost simulation result is stored.
「CPU」は、「主メモリ」に格納されている電力消費属性取得プログラムを実行して、「ネットワーク・インターフェース」を通じてユーザ端末装置から電力消費属性を取得する。そして、「主メモリ」に格納されている電力コスト属性取得プログラムを実行して、「ネットワーク・インターフェース」を通じてユーザ端末装置から電力コスト属性を取得する。そして、「主メモリ」に格納されているシミュレーション期間取得プログラムを実行して、シミュレーションの期間であるシミュレーション期間を取得する。そして、「主メモリ」に格納されている選択プログラムを実行して、取得した電力消費属性と保持されている電力コストシミュレーション演算式とに基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別をシミュレーション期間で時系列に選択する。そして、「主メモリ」に格納されている電力コストシミュレーション結果比較出力プログラムを実行して、複数の電力供給種別について演算された電力コストシミュレーション結果を比較可能に出力する。 The “CPU” executes the power consumption attribute acquisition program stored in the “main memory” and acquires the power consumption attribute from the user terminal device through the “network interface”. Then, the power cost attribute acquisition program stored in the “main memory” is executed to acquire the power cost attribute from the user terminal device through the “network interface”. Then, the simulation period acquisition program stored in the "main memory" is executed to acquire the simulation period, which is the simulation period. Then, the selection program stored in the "main memory" is executed, and the lowest power cost among the plurality of power supply types is obtained based on the acquired power consumption attribute and the stored power cost simulation calculation formula. The power supply type that becomes is selected in time series during the simulation period. Then, the power cost simulation result comparison output program stored in the “main memory” is executed to output the power cost simulation results calculated for a plurality of power supply types in a comparable manner.
<処理の流れ>
図9は、本実施形態における電力コストシミュレーション装置を利用した場合の処理の流れを示す図である。図9にあるように、電力消費属性取得ステップ(S0901)と、電力コスト属性取得ステップ(S0902)と、シミュレーション期間取得ステップ(S0903)と、電力コストシミュレーション演算式取得ステップ(S0904)と、選択ステップ(S0905)と、電力コストシミュレーション結果比較出力ステップ(S0906)からなる処理方法である。なお、このうち、選択ステップと、電力コストシミュレーション結果比較出力ステップと、を除く各ステップは、実施形態1と同様である。以下では、電力コストシミュレーション結果比較出力について説明する。
<Process flow>
FIG. 9 is a diagram showing a flow of processing when the power cost simulation device according to the present embodiment is used. As shown in FIG. 9, a power consumption attribute acquisition step (S0901), a power cost attribute acquisition step (S0902), a simulation period acquisition step (S0903), a power cost simulation arithmetic expression acquisition step (S0904), and a selection step. (S0905) and a power cost simulation result comparison output step (S0906). Note that, of these, each step except the selection step and the power cost simulation result comparison and output step is the same as that of the first embodiment. The power cost simulation result comparison output will be described below.
「電力コストシミュレーション結果比較出力」とは、複数の電力供給種別について演算された電力コストシミュレーション結果を比較可能に出力する段階である。
 「選択ステップ」は、複数の電力供給種別の中で最も電力コストが低額となる電力供給種別を選択する機能以外に、複数の電力供給種別の中から二以上の電力供給種別を選択するステップを実行する機能を有している。この複数の電力供給種別を選択することにより、前述の電力コスト取得部にそれぞれの電力コストを取得するステップを実行させたり、その電力供給種別の電力コストを外部の蓄積部などから取得する取得ステップを実行させるように構成することができる。
"Power cost simulation result comparison output" is a stage at which the power cost simulation results calculated for a plurality of power supply types are output in a comparable manner.
The “selection step” includes a step of selecting two or more power supply types from the plurality of power supply types, in addition to the function of selecting the power supply type with the lowest power cost among the plurality of power supply types. It has a function to execute. By selecting the plurality of power supply types, the above-described power cost acquisition unit is caused to execute the step of acquiring each power cost, or the acquisition step of acquiring the power cost of the power supply type from an external storage unit or the like. Can be configured to run.
<まとめ>
これらにより、需要者にて、複数の電力供給種別につき、電力コストのシミュレーション結果を比較することを可能とする電力コストシミュレーション装置を提供することができる。
<Summary>
As a result, it is possible to provide a power cost simulation apparatus that enables a consumer to compare power cost simulation results for a plurality of power supply types.
実施形態4 Embodiment 4
本実施形態は、実施形態2に加えた実施形態3の特徴に加えて、一以上の電力供給種別について演算された電力コストシミュレーション結果と、選択後電力コストシミュレーション結果とを比較可能に出力するように構成されている事業継続性格付システムを提供する。 In addition to the features of the third embodiment in addition to the second embodiment, the present embodiment outputs a power cost simulation result calculated for one or more power supply types and a selected power cost simulation result in a comparable manner. To provide a business continuity rating system configured to.
以下、本実施形態における電力コストシミュレーション装置について、機能的構成、ハードウェア構成及び処理の流れについて、順に説明する。 Hereinafter, the functional configuration, the hardware configuration, and the flow of processing of the power cost simulation device according to the present embodiment will be sequentially described.
<機能的構成>
図10は、本実施形態における電力コストシミュレーション装置の機能的構成を示す図である。本実施形態における電力コストシミュレーション装置は、電力消費属性取得部(1001)と電力コスト属性取得部(1002)とシミュレーション期間取得部(1003)と電力コストシミュレーション演算式保持部(1004)と選択部(1005)と電力コスト演算部(1006)と選択後電力コストシミュレーション結果出力部(1007)と選択後電力コストシミュレーション結果比較出力部(1008)を有する。以下、具体的に各機能の内容につき説明する。なお、選択後電力コストシミュレーション結果比較出力部を除く各機能については、実施形態2と同様であるため、選択後電力コストシミュレーション結果比較出力部の機能に限定して説明する。
<Functional configuration>
FIG. 10 is a diagram showing the functional configuration of the power cost simulation apparatus according to this embodiment. The power cost simulation device according to the present embodiment includes a power consumption attribute acquisition unit (1001), a power cost attribute acquisition unit (1002), a simulation period acquisition unit (1003), a power cost simulation calculation formula holding unit (1004), and a selection unit ( 1005), a power cost calculation unit (1006), a selected power cost simulation result output unit (1007), and a selected power cost simulation result comparison output unit (1008). The contents of each function will be specifically described below. The functions other than the selected power cost simulation result comparison output unit are the same as those in the second embodiment, and thus the description will be limited to the function of the selected power cost simulation result comparison output unit.
「選択後電力コストシミュレーション結果比較出力部」とは、一以上の電力供給種別について演算された電力コストシミュレーション結果と、選択後電力コストシミュレーション結果とを比較可能に出力する機能を有する。 The “selected power cost simulation result comparison output unit” has a function of outputting the power cost simulation result calculated for one or more power supply types and the selected power cost simulation result in a comparable manner.
<ハードウェア構成>
図11は、本実施形態における電力コストシミュレーション装置のハードウェア構成を示す図である。この図にあるように、コンピュータは、マザーボード上に構成される、チップセット(1110)、CPU(1101)、不揮発性メモリ(1103)、メインメモリ(1104)、各種バス(1102a~1102e)、BIOS(1107)各種インターフェイス(1105、1106、1108)、リアルタイムクロック(1109)等からなる。これらはオペレーティングシステムやデバイスドライバー、各種プログラムなどと協働して動作する。本発明を構成する各種プログラムや各種データはこれらのハードウエア資源を効率的に利用して各種の処理を実行するように構成されている。
<Hardware configuration>
FIG. 11 is a diagram showing a hardware configuration of the power cost simulation apparatus according to this embodiment. As shown in this figure, the computer is configured on a motherboard and includes a chipset (1110), a CPU (1101), a non-volatile memory (1103), a main memory (1104), various buses (1102a to 1102e), and a BIOS. (1107) Consists of various interfaces (1105, 1106, 1108), real-time clock (1109), and the like. These operate in cooperation with the operating system, device drivers, and various programs. Various programs and various data that constitute the present invention are configured to efficiently use these hardware resources to execute various processes.
ここに「主メモリ」は、各種処理を行うプログラムを「CPU」に実行させるために読み出すと同時に、そのプログラムの作業領域でもあるワーク領域を提供する。また、この「主メモリ」や「HDD」にはそれぞれ複数のアドレスが割り当てられており、「CPU」で実行されるプログラムは、そのアドレスを特定しアクセスすることで相互にデータのやりとりを行い、処理を行うことが可能になっている。本実施形態において「主メモリ」に格納されているプログラムは、電力消費属性取得プログラムと電力コスト属性取得プログラムとシミュレーション期間取得プログラムと電力コストシミュレーション演算式保持プログラムと選択プログラムと電力コスト演算プログラムと選択後電力コストシミュレーション結果出力プログラムと選択後電力コストシミュレーション結果比較出力プログラムである。 Here, the “main memory” provides a work area which is also a work area of the program, at the same time as the program for performing various processes is read for execution by the “CPU”. Further, a plurality of addresses are respectively assigned to the "main memory" and the "HDD", and the program executed by the "CPU" exchanges data with each other by specifying and accessing the address. It is possible to perform processing. In the present embodiment, the programs stored in the "main memory" are selected as a power consumption attribute acquisition program, a power cost attribute acquisition program, a simulation period acquisition program, a power cost simulation calculation formula holding program, a selection program, and a power cost calculation program. A post-power cost simulation result output program and a post-selection power cost simulation result comparison output program.
また、「主メモリ」と「HDD」には、実施形態2と同様に、電力消費属性、電力コスト属性、シミュレーション期間、電力コストシミュレーション演算式、電力コストと選択後電力コストシミュレーション結果などが格納されている。さらに、本実施形態では、電力コストシミュレーション結果が格納されている。 Further, as in the second embodiment, the “main memory” and the “HDD” store the power consumption attribute, the power cost attribute, the simulation period, the power cost simulation calculation formula, the power cost and the selected power cost simulation result, and the like. ing. Further, in the present embodiment, the power cost simulation result is stored.
「CPU」は、「主メモリ」に格納されている電力消費属性取得プログラムを実行して、「ネットワーク・インターフェース」を通じてユーザ端末装置から電力消費属性を取得する。そして、「主メモリ」に格納されている電力コスト属性取得プログラムを実行して、「ネットワーク・インターフェース」を通じてユーザ端末装置から電力コスト属性を取得する。そして、「主メモリ」に格納されているシミュレーション期間取得プログラムを実行して、シミュレーションの期間であるシミュレーション期間を取得する。そして、「主メモリ」に格納されている選択プログラムを実行して、取得した電力消費属性と保持されている電力コストシミュレーション演算式とに基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別をシミュレーション期間で時系列に選択する。そして、「主メモリ」に格納されている電力コスト演算プログラムを実行して、時系列に選択された電力供給種別の選択に従ってシミュレーション期間に電力を消費した場合の電力コストを演算する。そして、「主メモリ」に格納されている選択後電力コストシミュレーション結果出力プログラムを実行して、電力コスト演算部での演算結果である選択後電力コストシミュレーション結果を出力する。さらに、「主メモリ」に格納されている選択後電力コストシミュレーション結果比較出力プログラムを実行して、一以上の電力供給種別について演算された電力コストシミュレーション結果と、選択後電力コストシミュレーション結果とを比較可能に出力する。 The “CPU” executes the power consumption attribute acquisition program stored in the “main memory” and acquires the power consumption attribute from the user terminal device through the “network interface”. Then, the power cost attribute acquisition program stored in the “main memory” is executed to acquire the power cost attribute from the user terminal device through the “network interface”. Then, the simulation period acquisition program stored in the "main memory" is executed to acquire the simulation period, which is the simulation period. Then, the selection program stored in the "main memory" is executed, and the lowest power cost among the plurality of power supply types is obtained based on the acquired power consumption attribute and the stored power cost simulation calculation formula. The power supply type that becomes is selected in time series during the simulation period. Then, the power cost calculation program stored in the “main memory” is executed to calculate the power cost when power is consumed during the simulation period according to the selection of the power supply type selected in time series. Then, the post-selection power cost simulation result output program stored in the "main memory" is executed to output the post-selection power cost simulation result, which is the calculation result in the power cost calculation unit. Further, the selected power cost simulation result comparison output program stored in the "main memory" is executed to compare the calculated power cost simulation result for one or more power supply types with the selected power cost simulation result. Output as possible.
<処理の流れ>
図12は、本実施形態における電力コストシミュレーション装置を利用した場合の処理の流れを示す図である。図12にあるように、電力消費属性取得ステップ(S1201)と、電力コスト属性取得ステップ(S1202)と、シミュレーション期間取得ステップ(S1203)と、電力コストシミュレーション演算式取得ステップ(S1204)と、選択ステップ(S1205)と、電力コスト演算ステップ(S1206)と、選択後電力コストシミュレーション結果出力ステップ(S1207)と、選択後電力コストシミュレーション結果比較出力ステップ(S1208)からなる処理方法である。なお、このうち、選択後電力コストシミュレーション結果比較出力ステップを除く各ステップは、実施形態1と同様である。以下では、選択後電力コストシミュレーション結果比較出力ステップについて説明する。
<Process flow>
FIG. 12 is a diagram showing a flow of processing when the power cost simulation device according to the present embodiment is used. As shown in FIG. 12, a power consumption attribute acquisition step (S1201), a power cost attribute acquisition step (S1202), a simulation period acquisition step (S1203), a power cost simulation arithmetic expression acquisition step (S1204), and a selection step. (S1205), a power cost calculation step (S1206), a selected power cost simulation result output step (S1207), and a selected power cost simulation result comparison output step (S1208). Note that among these steps, each step except the selected power cost simulation result comparison and output step is the same as that of the first embodiment. In the following, the post-selection power cost simulation result comparison and output step will be described.
「選択後電力コストシミュレーション結果比較出力ステップ」とは、一以上の電力供給種別について演算された電力コストシミュレーション結果と、選択後電力コストシミュレーション結果とを比較可能に出力する段階である。 The “post-selection power cost simulation result comparison output step” is a stage in which the power cost simulation result calculated for one or more power supply types and the post-selection power cost simulation result are output in a comparable manner.
<まとめ>
これらにより、最も電力コストが低額となる電力供給種別を選択した場合の電力コストのシミュレーション結果と、他の電力供給種別における電力コストシミュレーション結果を比較可能に出力することができる電力コストシミュレーション装置を提供することができる。
<Summary>
With these, a power cost simulation device that can output the power cost simulation result when the power supply type with the lowest power cost is selected and the power cost simulation result in another power supply type in a comparable manner can do.
実施形態5 Embodiment 5
 本実施形態は、電力需要者の電力消費量と、電力供給種別ごとの電力コスト属性と、後記する電力料金算出の期間である電力料金算出期間を取得し、複数の電力供給種別毎に、需要者の電力消費量と電力供給種別で定められている電力コスト属性とに応じて電力料金算出期間で時系列に電力供給種別ごとの電力コストを算出するための演算式である電力コスト算出演算式を保持し、電力消費量と電力コスト属性と電力コスト算出演算式とに基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別を電力料金算出期間で時系列に選択する電力料金算出装置を提供する。 In the present embodiment, the power consumption of the power consumer, the power cost attribute for each power supply type, and the power charge calculation period, which is the period for calculating the power charge described later, are acquired, and the demand is calculated for each of the plurality of power supply types. Power cost calculation formula that is a calculation formula for calculating the power cost for each power supply type in time series during the power charge calculation period according to the power consumption of the user and the power cost attribute determined by the power supply type Of the plurality of power supply types based on the power consumption amount, the power cost attribute, and the power cost calculation formula, and selects the power supply type with the lowest power cost in time series in the power charge calculation period. An electric power charge calculation device is provided.
以下、本実施形態における電力料金算出装置について、機能的構成、ハードウェア構成及び処理の流れについて、順に説明する。
「電力供給種別」「電力コスト属性」の定義は,実施形態1で述べたことと同様である。
Hereinafter, the functional configuration, the hardware configuration, and the flow of processing of the power charge calculation device according to the present embodiment will be sequentially described.
The definitions of “power supply type” and “power cost attribute” are the same as those described in the first embodiment.
<機能的構成>
図24は、本実施形態における電力料金算出装置の機能的構成を示す図である。本実施形態における電力料金算出装置は、電力消費量取得部(2501)と電力コスト属性取得部(2502)と電力料金算出期間取得期間取得部(2503)と電力コスト算出演算式保持部(2504)と選択部(2505)を有する。以下、機能的構成については、具体的に各機能の内容につき説明する。
<Functional configuration>
FIG. 24 is a diagram showing a functional configuration of the power rate calculation device in the present embodiment. The power charge calculation device according to the present embodiment includes a power consumption acquisition unit (2501), a power cost attribute acquisition unit (2502), a power charge calculation period acquisition period acquisition unit (2503), and a power cost calculation formula holding unit (2504). And a selection unit (2505). Hereinafter, regarding the functional configuration, the content of each function will be specifically described.
「電力消費量取得部」とは、電力需要者の電力消費属性を取得する機能を有する。「電力消費量」とは、時系列での実際の電力消費量を示すものである。時系列とは、例えば、年、月、週などが挙げられる。 The “power consumption acquisition unit” has a function of acquiring the power consumption attribute of the power consumer. The "power consumption" indicates the actual power consumption in time series. Examples of the time series include year, month, and week.
「電力コスト属性取得部」は、実施形態1の説明と同様である。 The “power cost attribute acquisition unit” is the same as that described in the first embodiment.
「電力料金算出期間取得部」とは、電力料金算出の期間である電力料金算出期間を取得する機能を有する。電力料金算出期間は最小の単位はデマンド期間となり複数のデマンド期間の集合で成り立つ。つまり、シミューレーション期間の始期と終期は、デマンド期間の始期であり、同じく終期はデマンド期間の終期である。 The “electric power charge calculation period acquisition unit” has a function of acquiring the electric power charge calculation period, which is a period for calculating the electric power charge. The minimum unit of the power charge calculation period is the demand period, and it consists of a set of multiple demand periods. That is, the start and end of the simulation period are the start of the demand period, and the end is the end of the demand period.
「電力コスト算出演算式保持部」とは、複数の電力供給種別毎に、需要者の電力消費量と電力供給種別で定められている電力コスト属性と、に応じて電力料金算出期間で時系列に電力供給種別ごとの電力コストを算出するための演算式である電力コスト算出演算式を保持する機能を有する。 "Electricity cost calculation formula storage unit" means, for each of multiple power supply types, a time series in the power charge calculation period according to the power consumption of the consumer and the power cost attribute defined by the power supply type. In addition, it has a function of holding a power cost calculation formula, which is a formula for calculating the power cost for each power supply type.
本実施例における「選択部」とは、取得した電力消費量と、取得した電力コスト属性と、保持されている電力コスト算出演算式と、に基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別を電力料金算出期間で時系列に選択する機能を有する。
 電力供給種別の選択をする最小の期間単位は、デマンド期間である。デマンド期間は前述の通りであるので、最も頻繁には30分間隔で電力供給種別を選択するように設計できる。ただし、これに限定されるものでなく、30分の自然数倍の期間を電力供給種別の切り替えを行うことができる時間長として選択することができる。電力事業者の切り替えの現実のルールに合わせる必要がない点がこの装置の特徴である。また、この電力供給種別の切り替え期間は、切換期間を選択するように構成することも可能である。その場合には、選択部に切換期間選択手段を設けることが考えられる。
The “selection unit” in the present embodiment is the most power cost among a plurality of power supply types based on the acquired power consumption amount, the acquired power cost attribute, and the stored power cost calculation formula. Has a function of selecting a power supply type with a low price in time series in the power charge calculation period.
The minimum period unit for selecting the power supply type is the demand period. Since the demand period is as described above, it can be designed to select the power supply type most frequently at intervals of 30 minutes. However, the present invention is not limited to this, and a period of a natural number multiple of 30 minutes can be selected as the time length for which the power supply type can be switched. The feature of this device is that it is not necessary to comply with the actual rules for switching between electric power companies. Further, the switching period of the power supply type can be configured to select the switching period. In that case, it is conceivable to provide the selection unit with switching period selection means.
さらに電気料金算出装置は,選択部での選択結果と、その選択された電力供給種別の電力供給属性とに基づいて電力料金算出期間内でのその電力需要者に対する電力料金の算出する電力料金算出部をさらに有していても良い。 Further, the electricity rate calculation device calculates the electricity rate for the electricity consumer within the electricity rate calculation period based on the selection result of the selection section and the electricity supply attribute of the selected electricity supply type. You may further have a part.
以上のとおり、複数の電力供給種別の中で最も低額である電力供給種別を時系列ごとに選択するという基本的な発想は実施形態1と同様であるが、予測というシミュレーションではなく、実際の電力消費量に応じて,時系列ごとに最も低額な電力供給種別を選択して電力料金を課金するという点が実施形態1とは異なるものである。 As described above, the basic idea of selecting the lowest-priced power supply type among a plurality of power supply types for each time series is the same as that of the first embodiment, but not the simulation of prediction but the actual power consumption. This is different from the first embodiment in that the lowest priced power supply type is selected for each time series according to the consumption amount and the power charge is charged.
<ハードウェア構成>
本実施形態における電力料金算出装置のハードウェア構成について、図を用いて説明する。
<Hardware configuration>
The hardware configuration of the power rate calculation device according to the present embodiment will be described with reference to the drawings.
図25は、本実施形態における電力料金算出装置のハードウェア構成を示す図である。この図にあるように、コンピュータは、マザーボード上に構成される、チップセット(2510)、CPU(2501)、不揮発性メモリ(2503)、メインメモリ(2504)、各種バス(2502a~2502e)、BIOS(2507)各種インターフェイス(2505、2506、2508)、リアルタイムクロック(2509)等からなる。これらはオペレーティングシステムやデバイスドライバー、各種プログラムなどと協働して動作する。本発明を構成する各種プログラムや各種データはこれらのハードウエア資源を効率的に利用して各種の処理を実行するように構成されている。 FIG. 25 is a diagram showing a hardware configuration of the power rate calculation device according to the present embodiment. As shown in this figure, the computer is configured on a motherboard and includes a chip set (2510), a CPU (2501), a non-volatile memory (2503), a main memory (2504), various buses (2502a to 2502e), and a BIOS. (2507) It is composed of various interfaces (2505, 2506, 2508), real-time clock (2509) and the like. These operate in cooperation with the operating system, device drivers, and various programs. The various programs and various data constituting the present invention are configured to efficiently utilize these hardware resources to execute various processes.
ここに「主メモリ」は、各種処理を行うプログラムを「CPU」に実行させるために読み出すと同時に、そのプログラムの作業領域でもあるワーク領域を提供する。また、この「主メモリ」や「HDD」にはそれぞれ複数のアドレスが割り当てられており、「CPU」で実行されるプログラムは、そのアドレスを特定しアクセスすることで相互にデータのやりとりを行い、処理を行うことが可能になっている。本実施形態において「主メモリ」に格納されているプログラムは、電力消費量取得プログラムと電力コスト属性取得プログラムと電力料金算出期間取得プログラムと電力コスト算出演算式保持プログラムと選択プログラムである。また、「主メモリ」と「HDD」には、電力消費量、電力コスト属性、電力料金算出期間、電力コスト算出演算式などが格納されている。 Here, the "main memory" provides a work area which is also a work area of the program, at the same time as the program for performing various processes is read for execution by the "CPU". In addition, a plurality of addresses are assigned to each of the "main memory" and the "HDD", and a program executed by the "CPU" exchanges data with each other by specifying and accessing the address. It is possible to perform processing. In the present embodiment, the programs stored in the “main memory” are a power consumption amount acquisition program, a power cost attribute acquisition program, a power charge calculation period acquisition program, a power cost calculation arithmetic expression holding program, and a selection program. Further, the "main memory" and "HDD" store power consumption, power cost attributes, power charge calculation period, power cost calculation formula, and the like.
「CPU」は、「主メモリ」に格納されている電力消費量取得プログラムを実行して、「ネットワーク・インターフェース」を通じてユーザ端末装置から電力消費量を取得する。そして、「主メモリ」に格納されている電力コスト属性取得プログラムを実行して、「ネットワーク・インターフェース」を通じてユーザ端末装置から電力コスト属性を取得する。そして、「主メモリ」に格納されている電力料金算出期間取得プログラムを実行して、電力料金算出期間を取得する。そして、「主メモリ」に格納されている選択プログラムを実行して、取得した電力消費量と保持されている電力コスト算出演算式とに基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別を電力料金算出期間で時系列に選択する。 The "CPU" executes the power consumption acquisition program stored in the "main memory" to acquire the power consumption from the user terminal device through the "network interface". Then, the power cost attribute acquisition program stored in the "main memory" is executed to acquire the power cost attribute from the user terminal device through the "network interface". Then, the power charge calculation period acquisition program stored in the "main memory" is executed to acquire the power charge calculation period. Then, the selection program stored in the "main memory" is executed, and the lowest power cost among the plurality of power supply types is obtained based on the acquired power consumption and the stored power cost calculation formula. The power supply type that becomes is selected in time series in the power charge calculation period.
<処理の流れ>
図26は、本実施形態における電力料金算出装置を利用した場合の処理の流れを示す図である。図3にあるように、電力消費量取得ステップ(S2701)と、電力コスト属性取得ステップ(S2702)と、電力料金算出期間取得ステップ(S2703)と、電力コスト算出演算式取得ステップ(S2704)と、選択ステップ(S2705)からなる処理方法である。
<Process flow>
FIG. 26 is a diagram showing a flow of processing when the power rate calculation device according to the present embodiment is used. As shown in FIG. 3, a power consumption acquisition step (S2701), a power cost attribute acquisition step (S2702), a power charge calculation period acquisition step (S2703), a power cost calculation formula acquisition step (S2704), This is a processing method including a selection step (S2705).
「電力消費量取得ステップ」とは、電力需要者の電力消費量を取得する段階である。 The "power consumption acquisition step" is a step of acquiring the power consumption of the power consumer.
「電力コスト属性取得ステップ」とは、電力供給種別ごとの電力コスト属性を取得する段階である。 The "power cost attribute acquisition step" is a step of acquiring the power cost attribute for each power supply type.
「電力料金算出期間取得ステップ」とは、電力料金算出の期間である電力料金算出期間を取得する段階である。 The “electricity charge calculation period acquisition step” is a stage of acquiring an electric power charge calculation period which is a period for calculating the electric power charge.
「電力コスト算出演算式取得ステップ」とは、複数の電力供給種別毎に、需要者の電力消費量と電力供給種別で定められている電力コスト属性と、に応じて電力料金算出期間で時系列に電力供給種別ごとの電力コストを算出するための演算式である電力コスト算出演算式を取得する段階である。 "Electric power cost calculation formula acquisition step" means, for each of a plurality of power supply types, a time series in a power charge calculation period according to the power consumption of the consumer and the power cost attribute defined by the power supply type. It is a stage of acquiring a power cost calculation formula that is a formula for calculating the power cost for each power supply type.
「選択ステップ」とは、取得した電力消費量と、保持されている電力コスト算出演算式と、に基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別を電力料金算出期間で時系列に選択する段階である。 The “selection step” is the calculation of the power charge for the power supply type with the lowest power cost among the multiple power supply types based on the acquired power consumption and the stored power cost calculation formula. It is the stage of selecting in time series by the period.
<まとめ>
以上により、電力の供給を受ける者にとって最適な電力供給種別に対する対価と同額で電力を販売するというビジネスモデルを実現できる電力料金算出装置を提供することができる。
<Summary>
As described above, it is possible to provide a power charge calculation device that can realize a business model in which power is sold at the same amount as the price for the type of power supply that is optimal for the person who receives the power supply.
<その他の実施形態>
 以上に代えて,単位時間長の複数で構成され,エネルギー消費によって稼働される設備の設備稼働演算期間を保持する設備稼働演算期間保持部と,設備稼働演算期間における単位時間長単位での基本となる設備稼働量である基本設備稼働量を保持する基本設備稼働量保持部と,設備稼働計画期間における単位時間長単位での消費エネルギーの単価である消費エネルギー単価を取得する消費エネルギー単価取得部と,ネガワット要請を取得するネガワット要請取得部と、ネガワット要請に応じて基本設備稼働量を編集ないしは変更等(編集・変更しないで全く新たに設備稼働計画を策定する場合でもよい。)して新たに設備稼働計画量を演算するためのネガワット設備稼働計画演算式を一以上保持するネガワット設備稼働計画量演算式保持部と、取得された消費エネルギー単価と取得したネガワット要請と保持されているネガワット設備稼働計画演算式とに基づいて,設備稼働計画期間における各単位時間の設備稼働量と取得された消費エネルギー単価との積の総和が基本設備稼働量で稼働した場合に比較して少なくなり,かつ,ネガワット要請を満たし,さらに,総設備稼働量(又は総消費エネルギー)が基本設備稼働量(又は基本設備稼働量に対応する総消費エネルギー)を所定の範囲内で下回らないようにネガワット設備稼働計画演算式を用いて設備稼働計画期間における各単位時間での設備稼働計画量を演算するネガワット設備稼働計画量演算部と、をさらに有する設備稼働計画支援装置であっても良い。
 また,電力需要者の電力消費属性を取得する電力消費属性取得部と、電力供給種別ごとの電力コスト属性を取得する電力コスト属性取得部と、単位時間長の複数で構成され,エネルギー消費によって稼働される設備の設備稼働演算期間を保持する設備稼働演算期間保持部と,設備稼働演算期間における単位時間長単位での基本となる設備稼働量である基本設備稼働量を保持する基本設備稼働量保持部と,設備稼働計画期間における単位時間長単位での消費エネルギーの単価である消費エネルギー単価をエネルギー供給種別毎に取得する消費エネルギー単価取得部と,ネガワット要請を取得するネガワット要請取得部と、ネガワット要請に応じて設備稼働計画量を演算するためのネガワット設備稼働計画演算式を一以上保持するネガワット設備稼働計画量演算式保持部と、取得されたエネルギー供給種別毎の消費エネルギー単価と取得したネガワット要請と保持されているネガワット設備稼働計画演算式とに基づいて,設備稼働計画期間における各単位時間の設備稼働量と取得された消費エネルギー単価との積の総和が基本設備稼働量で稼働した場合に比較して少なくなる電力供給種別を選択したうえで,かつ,ネガワット要請を満たし,さらに,総設備稼働量(又は総消費エネルギー)が基本設備稼働量(又は基本設備稼働量に対応する総消費エネルギー)を所定の範囲内で下回らないようにネガワット設備稼働計画演算式を用いて設備稼働計画期間における各単位時間での設備稼働計画量を演算するネガワット設備稼働計画量演算部と、をさらに有する設備稼働計画支援装置であっても良い。
<Other embodiments>
Instead of the above, an equipment operation calculation period holding unit configured to have a plurality of unit time lengths and holding an equipment operation calculation period of equipment that is operated by energy consumption, and a unit time length unit in the equipment operation calculation period The basic equipment operating amount holding unit that holds the basic equipment operating amount, which is the equipment operating amount, and the energy consumption unit price acquisition unit that acquires the energy consumption unit price, which is the unit energy consumption unit time in the equipment operation planning period. , Negawatt request acquisition unit that acquires Negawatt request, and edits or changes the basic equipment operating amount according to the Negawatt request (may be a case where a completely new equipment operation plan is created without editing or changing). Negawatt facility operation plan calculation formula storage unit that holds one or more Negawatt facility operation plan calculation formulas to calculate the facility operation plan amount, the acquired energy consumption unit price, the acquired Negawatt request and the held Negawatt facility operation Based on the plan calculation formula, the sum of the products of the equipment operating amount for each unit time and the acquired energy consumption unit price during the equipment operating planning period becomes smaller than when operating at the basic equipment operating amount, and Negawatt equipment operation plan calculation is performed so that the total equipment operation amount (or total energy consumption) does not fall below the basic equipment operation amount (or total energy consumption corresponding to the basic equipment operation amount) within a prescribed range The equipment operation plan support apparatus may further include a negawatt equipment operation plan amount calculation unit that calculates the equipment operation plan amount in each unit time in the equipment operation plan period using a formula.
Further, the power consumption attribute acquisition unit that acquires the power consumption attribute of the power consumer, the power cost attribute acquisition unit that acquires the power cost attribute for each power supply type, and a plurality of unit time lengths For maintaining the equipment operation calculation period of the equipment to be operated, and for maintaining the basic equipment operation amount that retains the basic equipment operation amount that is the basic equipment operation amount in the unit time length unit in the equipment operation calculation period Section, an energy consumption unit price acquisition section that acquires an energy consumption unit price, which is a unit price of energy consumption in a unit time length unit during an equipment operation planning period, for each energy supply type, a negawatt request acquisition section that acquires a negawatt request, and a negawatt Negawatt facility operation plan calculation formula storage unit that holds one or more Negawatt facility operation plan calculation formulas for calculating the facility operation plan amount upon request, and the acquired energy unit price for each energy supply type and the acquired Negawatt When the sum of the product of the equipment operation amount of each unit time and the acquired energy consumption unit price in the equipment operation planning period is operating at the basic equipment operation amount based on the request and the stored operation formula of the Negawatt equipment operation plan In addition to selecting a power supply type that is smaller than the above, and satisfying the requirement for negative watts, the total equipment operating amount (or total energy consumption) is equal to the basic equipment operating amount (or the total consumption corresponding to the basic equipment operating amount). (Energy) so that it does not fall below a predetermined range, using a Negawatt facility operation plan calculation formula, a Negawatt facility operation plan amount calculation unit that calculates the facility operation plan amount in each unit time in the facility operation plan period, It may be an equipment operation plan support device.
チップセット:0210,0510
CPU:0201,0501
不揮発性メモリ:0203,0503
メインメモリ:0204,0504
各種バス:0202a~0202e,0502a~0502e
BIOS:0207,0507
各種インターフェイス:0205、0206、0208,0505、0506、0508
リアルタイムクロック:0209,0509
Chipset: 0210,0510
CPU: 0201, 0501
Non-volatile memory: 0203,0503
Main memory: 0204, 0504
Various buses: 0202a to 0202e, 0502a to 0502e
BIOS: 0207,0507
Various interfaces: 0205, 0206, 0208, 0505, 0506, 0508
Real-time clock: 0209, 0509

Claims (19)

  1.  電力需要者の電力消費属性を取得する電力消費属性取得部と、
     電力供給種別ごとの電力コスト属性を取得する電力コスト属性取得部と、
     後記するシミュレーションの期間であるシミュレーション期間を取得するシミュレーション期間取得部と、
     複数の電力供給種別毎に、需要者の電力消費属性と電力供給種別で定められている電力コスト属性と、に応じてシミュレーション期間で時系列に電力供給種別ごとの電力コストをシミュレーションするための演算式である電力コストシミュレーション演算式を保持する電力コストシミュレーション演算式保持部と、
     取得した電力消費属性と、取得した電力コスト属性と、保持されている電力コストシミュレーション演算式と、に基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別をシミュレーション期間で時系列に選択する選択部と、
    を有する電力コストシミュレーション装置。
    A power consumption attribute acquisition unit that acquires a power consumption attribute of a power consumer,
    A power cost attribute acquisition unit that acquires a power cost attribute for each power supply type,
    A simulation period acquisition unit that acquires a simulation period, which is the period of the simulation described below,
    Calculation for simulating the power cost for each power supply type in time series during the simulation period according to the power consumption attribute of the consumer and the power cost attribute determined by the power supply type for each of the plurality of power supply types An electric power cost simulation arithmetic expression holding unit that holds an electric power cost simulation arithmetic expression that is an expression,
    Based on the acquired power consumption attribute, the acquired power cost attribute, and the stored power cost simulation calculation formula, the power supply type with the lowest power cost among the multiple power supply types is set in the simulation period. A selection section for selecting in time series,
    Power cost simulation device having a.
  2.  選択部での時系列に選択された電力供給種別の選択に従ってシミュレーション期間に電力を消費した場合の電力コストを演算する電力コスト演算部と、
     電力コスト演算部での演算結果である選択後電力コストシミュレーション結果を出力する選択後電力コストシミュレーション結果出力部と、
    をさらに有する請求項1に記載の電力コストシミュレーション装置。
    A power cost calculation unit that calculates a power cost when power is consumed during the simulation period according to the selection of the power supply type selected in time series in the selection unit,
    A selected power cost simulation result output unit for outputting a selected power cost simulation result which is a calculation result in the power cost calculation unit,
    The power cost simulation device according to claim 1, further comprising:
  3.  シミュレーション期間中の同時期に異なる複数の電力供給種別を選択した結果について演算された電力コストシミュレーション結果を比較可能に出力する電力コストシミュレーション結果比較出力部をさらに有する請求項1又は請求項2に記載の電力コストシミュレーション装置。 The power cost simulation result comparison output unit that outputs the power cost simulation result calculated for the result of selecting different power supply types at the same time during the simulation period in a comparable manner. Power cost simulation device.
  4.  一以上の電力供給種別について演算された電力コストシミュレーション結果と、選択後電力コストシミュレーション結果とを比較可能に出力する選択後電力コストシミュレーション結果比較出力部をさらに有する請求項2に従属する請求項3に記載の電力コストシミュレーション装置。 A subordinate to claim 2, further comprising a post-selection power cost simulation result comparison output unit that outputs the post-selection power cost simulation result and the post-selection power cost simulation result calculated for one or more power supply types in a comparable manner. The power cost simulation device according to.
  5.  電力コストシミュレーション装置の動作方法であって、
     電力需要者の電力消費属性を取得する電力消費属性取得ステップと、
     電力供給種別ごとの電力コスト属性を取得する電力コスト属性取得ステップと、
     後記するシミュレーションの期間であるシミュレーション期間を取得するシミュレーション期間取得ステップと、
     複数の電力供給種別毎に、需要者の電力消費属性と電力供給種別で定められている電力コスト属性と、に応じてシミュレーション期間で時系列に電力供給種別ごとの電力コストをシミュレーションするための演算式である電力コストシミュレーション演算式を取得する電力コストシミュレーション演算式取得ステップと、
     取得した電力消費属性と、取得した電力コスト属性と、取得した電力コストシミュレーション演算式と、に基づいて複数の電力供給種別中で最も電力コストが低額となる電力供給種別をシミュレーション期間で時系列に選択する選択ステップと、
    を有する電力コストシミュレーション装置の動作方法。
    A method of operating a power cost simulation device, comprising:
    A power consumption attribute acquisition step of acquiring a power consumption attribute of a power consumer,
    A power cost attribute acquisition step of acquiring a power cost attribute for each power supply type,
    A simulation period acquisition step of acquiring a simulation period which is a simulation period described later,
    Calculation for simulating the power cost for each power supply type in time series during the simulation period according to the power consumption attribute of the consumer and the power cost attribute determined by the power supply type for each of the plurality of power supply types An electric power cost simulation arithmetic expression acquisition step of acquiring an electric power cost simulation arithmetic expression that is an expression,
    Based on the acquired power consumption attribute, the acquired power cost attribute, and the acquired power cost simulation calculation formula, the power supply type with the lowest power cost among the plurality of power supply types is set in time series during the simulation period. A selection step to select,
    Method of operating a power cost simulation device having a.
  6.  選択ステップでの時系列な電力供給種別の選択に従ってシミュレーション期間に電力を消費した場合の電力コストを演算する電力コスト演算ステップと、
     電力コスト演算ステップでの演算結果である選択後電力コストシミュレーション結果を出力する選択後電力コストシミュレーション結果出力ステップと、
    をさらに有する請求項5に記載の電力コストシミュレーション装置の動作方法。
    A power cost calculation step of calculating a power cost when power is consumed in the simulation period according to the selection of the time-series power supply type in the selection step,
    A selected power cost simulation result output step for outputting a selected power cost simulation result which is a calculation result in the power cost calculation step,
    The method for operating the power cost simulation apparatus according to claim 5, further comprising:
  7.  複数の電力供給種別について演算された電力コストシミュレーション結果を比較可能に出力する電力コストシミュレーション結果比較出力ステップ
    をさらに有する請求項5又は請求項6に記載の電力コストシミュレーション装置の動作方法。
    The operation method of the power cost simulation apparatus according to claim 5, further comprising a power cost simulation result comparison output step of outputting the power cost simulation results calculated for a plurality of power supply types in a comparable manner.
  8.  一以上の電力供給種別について演算された電力コストシミュレーション結果と、選択後電力コストシミュレーション結果とを比較可能に出力する選択後電力コストシミュレーション結果比較出力ステップ
    をさらに有する請求項6又は請求項6に従属する請求項7に記載の電力コストシミュレーション装置の動作方法。
    7. The selected power cost simulation result comparison output step of outputting the power cost simulation result calculated for one or more power supply types and the selected power cost simulation result in a comparable manner. The method of operating the power cost simulation apparatus according to claim 7.
  9. 計算機である電力コストシミュレーション装置に読取実行可能に記述した電力コストシミュレーションプログラムであって、
     電力需要者の電力消費属性を取得する電力消費属性取得ステップと、
     電力供給種別ごとの電力コスト属性を取得する電力コスト属性取得ステップと、
     後記するシミュレーションの期間であるシミュレーション期間を取得するシミュレーション期間取得ステップと、
     複数の電力供給種別毎に、需要者の電力消費属性と電力供給種別で定められている電力コスト属性と、に応じてシミュレーション期間で時系列に電力供給種別ごとの電力コストをシミュレーションするための演算式である電力コストシミュレーション演算式を取得する電力コストシミュレーション演算式取得ステップと、
     取得した電力消費属性と、取得した電力コスト属性と、取得した電力コストシミュレーション演算式と、に基づいて複数の電力供給種別中で最も電力コストが低額となる電力供給種別をシミュレーション期間で時系列に選択する選択ステップと、
    を有する計算機である電力コストシミュレーション装置に読取実行可能に記述した電力コストシミュレーションプログラム。
    A power cost simulation program that is readable and executable in a power cost simulation device that is a computer,
    A power consumption attribute acquisition step of acquiring a power consumption attribute of a power consumer,
    A power cost attribute acquisition step of acquiring a power cost attribute for each power supply type,
    A simulation period acquisition step of acquiring a simulation period which is a simulation period described later,
    Calculation for simulating the power cost for each power supply type in time series during the simulation period according to the power consumption attribute of the consumer and the power cost attribute determined by the power supply type for each of the plurality of power supply types An electric power cost simulation arithmetic expression acquisition step of acquiring an electric power cost simulation arithmetic expression that is an expression,
    Based on the acquired power consumption attribute, the acquired power cost attribute, and the acquired power cost simulation calculation formula, the power supply type with the lowest power cost among the plurality of power supply types is set in time series during the simulation period. A selection step to select,
    A power cost simulation program written so as to be readable and executable in a power cost simulation device which is a computer having
  10. 計算機である電力コストシミュレーション装置に読取実行可能に記述した電力コストシミュレーションプログラムであって、
     選択ステップでの時系列な電力供給種別の選択に従ってシミュレーション期間に電力を消費した場合の電力コストを演算する電力コスト演算ステップと、
     電力コスト演算ステップでの演算結果である選択後電力コストシミュレーション結果を出力する選択後電力コストシミュレーション結果出力ステップと、
    をさらに実行させるための請求項9に記載の計算機である電力コストシミュレーション装置に読取実行可能に記述した電力コストシミュレーションプログラム。
    A power cost simulation program that is readable and executable in a power cost simulation device that is a computer,
    A power cost calculation step of calculating a power cost when power is consumed in the simulation period according to the selection of the time-series power supply type in the selection step,
    A selected power cost simulation result output step for outputting a selected power cost simulation result which is a calculation result in the power cost calculation step,
    A power cost simulation program, which is readable and executable in the power cost simulation apparatus, which is the computer according to claim 9, for executing the above.
  11. 計算機である電力コストシミュレーション装置に読取実行可能に記述した電力コストシミュレーションプログラムであって、
     複数の電力供給種別について演算された電力コストシミュレーション結果を比較可能に出力する電力コストシミュレーション結果比較出力ステップ
    をさらに実行させるための請求項9又は請求項10に記載の計算機である電力コストシミュレーション装置に読取実行可能に記述した電力コストシミュレーションプログラム。
    A power cost simulation program that is readable and executable in a power cost simulation device that is a computer,
    The power cost simulation device, which is the computer according to claim 9 or 10, for further executing a power cost simulation result comparison and output step of comparably outputting the power cost simulation results calculated for a plurality of power supply types. A power cost simulation program that is readable and executable.
  12. 計算機である電力コストシミュレーション装置に読取実行可能に記述した電力コストシミュレーションプログラムであって、
     一以上の電力供給種別について演算された電力コストシミュレーション結果と、選択後電力コストシミュレーション結果とを比較可能に出力する選択後電力コストシミュレーション結果比較出力ステップ
    をさらに実行させるための請求項10又は請求項10に従属する請求項11に記載の計算機である電力コストシミュレーション装置に読取実行可能に記述した電力コストシミュレーションプログラム。
    A power cost simulation program that is readable and executable in a power cost simulation device that is a computer,
    The claim 10 or claim for further executing a selected power cost simulation result comparison output step of outputting a power cost simulation result calculated for one or more power supply types and a selected power cost simulation result in a comparable manner. A power cost simulation program readable and executable in a power cost simulation device, which is the computer according to claim 11, which is dependent on 10.
  13. 電力消費属性取得部は、
    シミュレーション期間における単位時間長単位での基本となる電力消費属性を構成する設備稼働量である基本設備稼働量を保持する基本設備稼働量保持手段と、
     シミュレーション期間における単位時間長単位での試験的となる設備稼働量である試験的設備稼働量を取得する試験的設備稼働量取得手段と、
     試験的設備稼働量を含む電力消費属性を生成する試験的電力消費属性生成手段
    を有する請求項1から請求項4に記載の電力コストシミュレーション装置。
    The power consumption attribute acquisition unit
    A basic equipment operating amount holding means for holding a basic equipment operating amount which is an operating amount of equipment constituting a basic power consumption attribute in a unit time length unit in a simulation period;
    A test equipment operation amount acquisition means for acquiring a test equipment operation amount, which is a test equipment operation amount in a unit time length unit in the simulation period,
    The power cost simulation device according to claim 1, further comprising a trial power consumption attribute generation unit that generates a power consumption attribute including a trial facility operation amount.
  14.  前記単位時間長は、正時からの30分単位、正時からの30分単位の自然数倍、正時からの24時間単位、のいずれか一以上の単位時間長である請求項13に記載の電力コストシミュレーション装置。 14. The unit time length is a unit time length of at least one of 30 minutes from the hour, a natural multiple of 30 minutes from the hour, and 24 hours from the hour. Power cost simulation device.
  15.  試験的設備稼働量取得手段は、ある単位時間長の設備稼働量と、他の単位時間長の設備稼働量とを入れ替える入替器を有する請求項13又は請求項14に記載の電力コストシミュレーション装置。 15. The electric power cost simulation apparatus according to claim 13 or 14, wherein the trial facility operating amount acquisition means includes a switch that exchanges the facility operating amount of a certain unit time length with the facility operating amount of another unit time length.
  16.  電力需要者の電力消費量を取得する電力消費量取得部と、
     電力供給種別ごとの電力コスト属性を取得する電力コスト属性取得部と、
     後記する電力料金算出の期間である電力料金算出期間を取得する電力料金算出期間取得部と、
     複数の電力供給種別毎に、需要者の電力消費量と電力供給種別で定められている電力コスト属性と、に応じて電力料金算出期間で時系列に電力供給種別ごとの電力コストを算出するための演算式である電力コスト算出演算式を保持する電力コスト算出演算式保持部と、
     取得した電力消費量と、取得した電力コスト属性と、保持されている電力コスト算出演算式と、に基づいて複数の電力供給種別の中で最も電力コストが低額となる電力供給種別を電力料金算出期間で時系列に選択する選択部と、
    を有する電力料金算出装置。
    A power consumption acquisition unit that acquires the power consumption of a power consumer,
    A power cost attribute acquisition unit that acquires a power cost attribute for each power supply type,
    A power charge calculation period acquisition unit that acquires a power charge calculation period that is a power charge calculation period described later,
    To calculate the power cost for each power supply type in time series during the power charge calculation period according to the power consumption of the consumer and the power cost attribute defined by the power supply type for each of the power supply types. A power cost calculation formula holding unit that holds a power cost calculation formula that is a calculation formula of
    Calculates the power charge type that has the lowest power cost among multiple power supply types based on the acquired power consumption amount, the acquired power cost attribute, and the stored power cost calculation formula A selection part that selects in time series by period,
    An electric power charge calculation device having.
  17.  選択部での選択結果と、その選択された電力供給種別の電力供給属性とに基づいて電力料金算出期間内でのその電力需要者に対する電力料金の算出する電力料金算出部をさらに有する請求項16に記載の電力料金算出装置。 17. The power charge calculation unit further calculates a power charge for the power consumer within the power charge calculation period based on the selection result of the selection unit and the power supply attribute of the selected power supply type. The electricity charge calculation device described in.
  18. 電力料金算出装置の動作方法であって、
     電力需要者の電力消費量を取得する電力消費量取得ステップと、
     電力供給種別ごとの電力コスト属性を取得する電力コスト属性取得ステップと、
     後記する電力料金算出の期間である電力料金算出期間期間を取得する電力料金算出期間期間取得ステップと、
     複数の電力供給種別毎に、需要者の電力消費量と電力供給種別で定められている電力コスト属性と、に応じて電力料金算出期間期間で時系列に電力供給種別ごとの電力コストを算出するための演算式である電力コスト算出演算式を取得する電力コスト算出演算式取得ステップと、
     取得した電力消費量と、取得した電力コスト属性と、取得した電力コスト算出演算式と、に基づいて複数の電力供給種別中で最も電力コストが低額となる電力供給種別を電力料金算出期間で時系列に選択する選択ステップと、
    を有する電力料金算出装置の動作方法。
    A method of operating a power rate calculation device, comprising:
    A power consumption acquisition step of acquiring the power consumption of the power consumer,
    A power cost attribute acquisition step of acquiring a power cost attribute for each power supply type,
    A power charge calculation period period acquisition step of acquiring a power charge calculation period period, which is a power charge calculation period described later,
    For each of a plurality of power supply types, the power cost for each power supply type is calculated in time series during the power charge calculation period period according to the power consumption of the consumer and the power cost attribute determined by the power supply type. An electric power cost calculation arithmetic expression acquisition step for acquiring an electric power cost calculation arithmetic expression that is an arithmetic expression for
    Based on the acquired power consumption amount, the acquired power cost attribute, and the acquired power cost calculation formula, the power supply type with the lowest power cost among the multiple power supply types is set in the power charge calculation period. A selection step to select for the series,
    Method of operating a power rate calculating device having a.
  19. 計算機である電力料金算出装置に読取実行可能に記述した電力コスト算出プログラムであって、
     電力需要者の電力消費量を取得する電力消費量取得ステップと、
     電力供給種別ごとの電力コスト属性を取得する電力コスト属性取得ステップと、
     後記する電力料金算出の期間である電力料金算出期間期間を取得する電力料金算出期間期間取得ステップと、
     複数の電力供給種別毎に、需要者の電力消費量と電力供給種別で定められている電力コスト属性と、に応じて電力料金算出期間期間で時系列に電力供給種別ごとの電力コストを算出するための演算式である電力コスト算出演算式を取得する電力コスト算出演算式取得ステップと、
     取得した電力消費量と、取得した電力コスト属性と、取得した電力コスト算出演算式と、に基づいて複数の電力供給種別中で最も電力コストが低額となる電力供給種別を電力料金算出期間で時系列に選択する選択ステップと、
    を計算機である電力料金算出装置に実行させるための電力料金算出装置に読取実行可能に記述した電力料金算出装置の動作プログラム。
    A power cost calculation program written readable and executable on a power rate calculation device, which is a computer,
    A power consumption acquisition step of acquiring the power consumption of the power consumer,
    A power cost attribute acquisition step of acquiring a power cost attribute for each power supply type,
    A power charge calculation period period acquisition step of acquiring a power charge calculation period period, which is a power charge calculation period described later,
    For each of a plurality of power supply types, the power cost for each power supply type is calculated in time series during the power charge calculation period period according to the power consumption of the consumer and the power cost attribute determined by the power supply type. An electric power cost calculation arithmetic expression acquisition step for acquiring an electric power cost calculation arithmetic expression that is an arithmetic expression for
    Based on the acquired power consumption, the acquired power cost attribute, and the acquired power cost calculation formula, the power supply type with the lowest power cost among the multiple power supply types is calculated in the power charge calculation period. A selection step to select for the series,
    An operation program of a power charge calculation device, which is readable and executable in the power charge calculation device for causing a power charge calculation device, which is a computer, to execute.
PCT/JP2020/002382 2019-01-25 2020-01-23 Electricity cost simulation device WO2020153440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020518563A JP7058730B2 (en) 2019-01-25 2020-01-23 Power cost simulation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019010890 2019-01-25
JP2019-010890 2019-01-25

Publications (1)

Publication Number Publication Date
WO2020153440A1 true WO2020153440A1 (en) 2020-07-30

Family

ID=71736226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002382 WO2020153440A1 (en) 2019-01-25 2020-01-23 Electricity cost simulation device

Country Status (3)

Country Link
JP (1) JP7058730B2 (en)
TW (1) TW202042167A (en)
WO (1) WO2020153440A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7060748B1 (en) 2021-08-03 2022-04-26 booost technologies株式会社 Information processing equipment, information processing methods, and programs for building a carbon-free society
JP7474380B1 (en) 2022-12-26 2024-04-24 日本テクノ株式会社 Electricity billing system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078747A (en) * 1998-08-27 2000-03-14 Hitachi Ltd Selecting method of electric power company and selection supporting system
JP2003006289A (en) * 2001-06-19 2003-01-10 Mitsubishi Electric Corp Automated power retail system
JP2013015922A (en) * 2011-06-30 2013-01-24 Daikin Ind Ltd Equipment controlling device
JP2013097673A (en) * 2011-11-02 2013-05-20 Mitsubishi Electric Building Techno Service Co Ltd Electricity charge trial calculation system and electricity charge trial calculation program
JP2015106218A (en) * 2013-11-29 2015-06-08 Kddi株式会社 Demand-responsive aggregator selection server device and aggregator selection program
JP2016144370A (en) * 2015-02-04 2016-08-08 富士通株式会社 Measurement device, program, method and power management device
US9426320B1 (en) * 2015-05-26 2016-08-23 Kabushiki Kaisha Toshiba Image processing apparatus having a power supply source selector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078747A (en) * 1998-08-27 2000-03-14 Hitachi Ltd Selecting method of electric power company and selection supporting system
JP2003006289A (en) * 2001-06-19 2003-01-10 Mitsubishi Electric Corp Automated power retail system
JP2013015922A (en) * 2011-06-30 2013-01-24 Daikin Ind Ltd Equipment controlling device
JP2013097673A (en) * 2011-11-02 2013-05-20 Mitsubishi Electric Building Techno Service Co Ltd Electricity charge trial calculation system and electricity charge trial calculation program
JP2015106218A (en) * 2013-11-29 2015-06-08 Kddi株式会社 Demand-responsive aggregator selection server device and aggregator selection program
JP2016144370A (en) * 2015-02-04 2016-08-08 富士通株式会社 Measurement device, program, method and power management device
US9426320B1 (en) * 2015-05-26 2016-08-23 Kabushiki Kaisha Toshiba Image processing apparatus having a power supply source selector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7060748B1 (en) 2021-08-03 2022-04-26 booost technologies株式会社 Information processing equipment, information processing methods, and programs for building a carbon-free society
JP2023022715A (en) * 2021-08-03 2023-02-15 booost technologies株式会社 Information processing device, information processing method, and program toward construction of de-carbonized society
JP7474380B1 (en) 2022-12-26 2024-04-24 日本テクノ株式会社 Electricity billing system

Also Published As

Publication number Publication date
JP7058730B2 (en) 2022-04-22
TW202042167A (en) 2020-11-16
JPWO2020153440A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
US20190130423A1 (en) Management apparatus and management method
WO2020153440A1 (en) Electricity cost simulation device
JP4896084B2 (en) Generator operation plan creation method
US20170200238A1 (en) Aggregation of bids from multiple energy providers
Schill et al. Testing regulatory regimes for power transmission expansion with fluctuating demand and wind generation
Mitra Warranty parameters for extended two-dimensional warranties incorporating consumer preferences
JP2020166666A (en) Co2-free valued electric power purchase intermediation system and co2-free valued electric power purchase intermediation method
Li et al. Deregulated power prices: changes over time
US8364510B2 (en) Revenue optimization for customers or customer subsets
JP2006072902A (en) Renewal proposal support system
Liu et al. Carbon emissions reduction and transfer in supply chains under A cap-and-trade system with emissions-sensitive demand
JP6772400B1 (en) Business continuity rating system
Bouët et al. Strategic trade policy under asymmetric information with screening
Ravn The Balmorel model structure
JP2005250523A (en) Power consumption management device, power consumption management method, power consumption management program and storage medium with the same program stored
JP2015125630A (en) Point allocation device and program for same
JP6444554B1 (en) Charge calculation device and charge calculation program
JP7474380B1 (en) Electricity billing system
Rutherford et al. A general equilibrium model for tax policy analysis in Colombia
JP2020091819A (en) Transaction method for electric power derived from renewable energy, and transaction system
JP7496042B1 (en) Charge/discharge control system
WO2020153441A1 (en) Facility operation plan assistance device
Zhang et al. A multi-period mixed integer programming model for the problem of relocating a global manufacturing facility
JP4990514B2 (en) Electricity cost estimation device and program
US20240104599A1 (en) Systems and methods for allocating blockchain incentives

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020518563

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20745539

Country of ref document: EP

Kind code of ref document: A1