WO2020152969A1 - Copolymer, aqueous solution, cross-linked product, photocurable composition, coating film, medical device material and medical device - Google Patents

Copolymer, aqueous solution, cross-linked product, photocurable composition, coating film, medical device material and medical device Download PDF

Info

Publication number
WO2020152969A1
WO2020152969A1 PCT/JP2019/045860 JP2019045860W WO2020152969A1 WO 2020152969 A1 WO2020152969 A1 WO 2020152969A1 JP 2019045860 W JP2019045860 W JP 2019045860W WO 2020152969 A1 WO2020152969 A1 WO 2020152969A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
medical device
meth
mass
copolymer
Prior art date
Application number
PCT/JP2019/045860
Other languages
French (fr)
Japanese (ja)
Inventor
善知 中田
賢 田中
Original Assignee
株式会社日本触媒
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒, 国立大学法人九州大学 filed Critical 株式会社日本触媒
Priority to JP2020567386A priority Critical patent/JP7194949B2/en
Publication of WO2020152969A1 publication Critical patent/WO2020152969A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/353Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment

Definitions

  • the present invention relates to a copolymer, an aqueous solution, a crosslinked product, a photocurable composition, a coating film, and a medical device material and a medical device using the crosslinked product or coating film.
  • Medical devices are used in an environment where they come into contact with biological components such as blood and biological tissues. If the surface of the medical device has a low affinity for biological components and biological tissues, the biological defense mechanism is activated and blood coagulates. As a result, problems such as blood clot formation occur. Therefore, it is necessary that at least the surface of the medical device that comes into contact with a biological component or biological tissue is made of a material having high biocompatibility.
  • Patent Document 1 has a structural unit derived from a glycerol group-containing monomer and a structural unit derived from an unsaturated monomer having a structure in which an organic group having 4 or more carbon atoms is bonded to an ethylenically unsaturated group.
  • a polymer having a predetermined glass transition temperature as a material for medical devices.
  • the polymer of Patent Document 1 is said to have excellent antithrombotic properties.
  • the polymer material used for medical devices has a small tack and excellent durability, especially water resistance, from the viewpoint of handleability and the like.
  • the present invention is excellent in antithrombogenicity and water resistance, and has a small tack material for medical devices, a copolymer used in the production of the material for medical devices, an aqueous solution, a crosslinked product, a photocurable composition, a coating.
  • An object of the present invention is to provide a medical device including a film and the above-mentioned material for medical device.
  • excellent antithrombogenicity and water resistance, and small tack material for medical devices a copolymer used in the production of the material for medical devices, an aqueous solution, a crosslinked product, a photocurable composition, A coating device and a medical device including the material for medical device can be provided.
  • (meth)acrylic acid means acrylic acid or methacrylic acid.
  • (meth)acrylate means acrylic acid or methacrylic acid.
  • the crosslinked product of the first embodiment is a structural unit derived from a polymerizable double bond-containing monomer having 70% by mass or more of two or more hydroxyl groups (hereinafter, also referred to as “monomer (A)”), And a copolymer containing a structural unit derived from a polymerizable double bond-containing monomer having a carboxy group (hereinafter, also referred to as “monomer (B)”), and a predetermined crosslinking agent (A) described later. It is a cross-linked product obtained by cross-linking a composition containing.
  • Such a crosslinked product is excellent in hydrophilicity, antithrombogenicity and water resistance, and has low tack.
  • the reason why such an effect is obtained by the crosslinked product of the present embodiment is not always clear, but the present inventors consider it as follows. That is, since the crosslinked product of the present embodiment contains 70% by mass or more of the structural unit derived from the monomer (A) having two or more hydroxyl groups, it is excellent in hydrophilicity and antithrombogenicity. Furthermore, since the carboxyl group derived from the monomer (B) in the copolymer is cross-linked by the cross-linking agent (A), the cross-linked product of the present embodiment has excellent water resistance and small tack.
  • the monomer (A) is not particularly limited as long as it has a polymerizable double bond and two or more hydroxyl groups, but is preferably a compound represented by the following formula (I), for example.
  • the monomer (A) one type may be used alone, or two or more types may be used in combination.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an organic group having two or more hydroxyl groups.
  • R 2 is an organic group having two or more hydroxyl groups.
  • —COOR 3 group, —OCOR 3 group, —OR 3 group, —CONHR 3 group, —CH 2 OR 3 group, —CH 2 OCOR 3 group, —CONHR 3 group It is preferably —CON(R 3 ) 2 group or —NHCOR 3 group (R 3 represents an organic group having two or more hydroxyl groups).
  • R 3 is an organic group having 2 or more hydroxyl groups, and from the viewpoint of improving hydrophilicity, it is preferably an organic group having 1 to 30 carbon atoms and having 2 or more hydroxyl groups, and more preferably 2 or more hydroxyl groups. It is an organic group having 1 to 20 carbon atoms. Examples of the organic group include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a polyoxyalkylene group having 4 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. When two or more R 3 are contained in one molecule, each R 3 may be the same or different. Further, R 3 may contain, for example, a halogen atom such as a fluorine atom or a chlorine atom, a nitrogen atom, or a functional group other than a hydroxyl group.
  • a halogen atom such as a fluorine atom or a chlorine atom, a nitrogen
  • an ester of a polyhydric alcohol having 3 or more hydroxyl groups and (meth)acrylic acid an ester of a saccharide and (meth)acrylic acid, a saccharide having an amino group and (meth)
  • esters with acrylic acid examples thereof include esters with acrylic acid. These esters may be prepared not only by esterification reaction but also by transesterification reaction or ring-opening reaction of glycidyl (meth)acrylate ester.
  • polyhydric alcohol having 3 or more hydroxyl groups examples include glycerin, diglycerin, triglycerin, tetraglycerin, pentaglycerin, hexaglycerin, pentaerythritol, 1,2,6-hexanetriol, 2-hydroxymethyl-2- Examples thereof include methyl-1,3-propanediol and 2-ethyl-2-hydroxymethyl-1,3-propanediol.
  • saccharides include monosaccharides such as glucose, mannose, galactose, gulose, fructose, and D-ribose, glucosides derived from the monosaccharides, galactoside, fructoside, and dimers and trimers thereof. Can be mentioned.
  • saccharide having an amino group include D-glucosamine.
  • the monomer (A) is more preferably a (meth)acrylic acid ester represented by the following formula (IA).
  • R 1 represents a hydrogen atom or a methyl group
  • R 4 represents an alkylene group having 1 to 4 carbon atoms.
  • the molecular weight of the monomer (A) is preferably 500 or less from the viewpoint of improving hydrophilicity.
  • the content of the structural unit derived from the monomer (A) is 70% by mass or more based on the total amount of the copolymer. From the viewpoint of further improving hydrophilicity and antithrombogenicity, the content of the structural unit derived from the monomer (A) is preferably 80% by mass to 99% by mass with respect to the total amount of the copolymer, It is more preferably 90% by mass to 97% by mass.
  • the constitutional unit derived from the monomer (A) may be any constitutional unit having two or more hydroxyl groups in the copolymer. That is, it may be a constitutional unit obtained by polymerizing using a monomer (A), and after polymerizing a monomer in which two or more hydroxyl groups are protected by a protecting group, depolymerizing the protecting group such as deprotecting the protecting group. By doing so, a structure having two or more hydroxyl groups may be introduced.
  • Examples of the monomer (B) include (meth)acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, maleic anhydride, maleic acid monomethyl ester, maleic acid monobutyl ester, and itaconic acid monomethyl.
  • Examples include carboxy group-containing aliphatic monomers such as esters, monobutyl itaconic acid esters, and vinyl benzoic acid. Among these, acrylic acid, methacrylic acid or itaconic acid is preferable, and acrylic acid or methacrylic acid is more preferable.
  • the monomer (B) one type may be used alone, or two or more types may be used in combination.
  • the content of the structural unit derived from the monomer (B) is 1% by mass or more based on the total amount of the copolymer. From the viewpoint of further improving the water resistance, the content of the structural unit derived from the monomer (B) is preferably 2% by mass to 25% by mass with respect to the total amount of the copolymer, and 3% by mass to It is more preferably 20% by mass.
  • the constituent unit derived from the monomer (B) may be any constituent unit having a carboxy group in the copolymer. That is, it may be a constitutional unit polymerized using the monomer (B), and after polymerizing a monomer having another substituent such as an ester group, the ester group is converted to a carboxy group by hydrolysis or the like. It may be a converted structural unit.
  • the copolymer of the present embodiment may include a structural unit derived from the monomer (C) which is neither the monomer (A) nor the monomer (B).
  • the monomer (C) include monomers having a structure in which an organic group having 4 or more carbon atoms is bonded to an ethylenically unsaturated group.
  • Examples of such a monomer include a (meth)acrylic acid ester represented by the formula (II).
  • R 5 represents a hydrogen atom or a methyl group.
  • R 6 represents an organic group having a carbon chain in which four or more carbons are continuously bonded.
  • Examples of the (meth)acrylic acid ester represented by the formula (II) include n-butyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, and n-methacrylate.
  • any of (meth)acrylic acid selected from methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and isopropyl (meth)acrylate.
  • Alkyl esters such as vinyl acetate and vinyl propionate; vinyl chloride, vinylidene chloride; etc.; olefins such as ethylene, propylene, butene, isoprene; N-vinyl compounds such as N-vinylformamide, N-vinylacetamide; It is also possible to use vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether and the like; methyl maleimide and the like.
  • the content of the structural unit derived from the monomer (C) is preferably 25% by mass or less, more preferably 20% by mass or less, and more preferably 10% by mass or less, based on the total amount of the copolymer. And more preferable.
  • the above copolymer can be produced by appropriately selecting the above monomers and carrying out a polymerization reaction.
  • the preferred amount of the monomer used in the polymerization reaction is the same as the preferred content of the structural unit derived from these monomers in the copolymer.
  • the polymerization reaction is preferably performed in the presence of a polymerization initiator.
  • a polymerization initiator examples include hydrogen peroxide; persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate; dimethyl 2,2′-azobis(2-methylpropionate), 2,2′-azobis. Azo compounds such as (isobutyronitrile); organic peroxides such as benzoyl peroxide, peracetic acid, and di-t-butyl peroxide are preferable.
  • These polymerization initiators may be used alone or in the form of a mixture of two or more kinds.
  • the amount of the polymerization initiator used is preferably 0.01 g or more and 10 g or less, and more preferably 0.1 g or more and 5 g or less, based on 1 mol of the monomer used in the polymerization reaction.
  • the above polymerization reaction may be carried out without using a solvent, but it is preferable to use a solvent.
  • the solvent include water, acetonitrile, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropyl alcohol and the like, and water is preferable from the viewpoint of preventing environmental pollution.
  • These solvents may be used alone or in the form of a mixture of two or more kinds.
  • the amount of the solvent used is preferably 40 to 250 parts by mass with respect to 100 parts by mass of the monomer used in the polymerization reaction.
  • the above-mentioned polymerization reaction is usually preferably carried out at 0°C or higher, and preferably at 150°C or lower.
  • the temperature is more preferably 40° C. or higher, further preferably 60° C. or higher, and particularly preferably 80° C. or higher. Further, it is more preferably 120°C or lower, and further preferably 110°C or lower.
  • the above-mentioned polymerization temperature does not always have to be kept substantially constant in the polymerization reaction and may be changed once or twice (heating or cooling).
  • the polymerization reaction may be carried out under any conditions of normal pressure, increased pressure and reduced pressure.
  • the monomers, the polymerization initiator, etc. may be added to the reactor all at once, or may be added sequentially or continuously.
  • the method for producing the copolymer may include steps other than the above polymerization reaction step. Examples of other steps include an aging step, a neutralization step, a deactivation step of a polymerization initiator and a chain transfer agent, a dilution step, a drying step, a concentration step, and a purification step.
  • the cross-linking agent (A) of the present embodiment is a cross-linking agent or a melamine resin-based cross-linking agent having any functional group selected from an oxazoline group, an epoxy group and a carbodiimide group. These crosslinking agents may be used alone or in combination of two or more.
  • the crosslinking agent having an oxazoline group is an oxazoline group-containing compound having two or more oxazoline groups.
  • Examples of the oxazoline group-containing compound include 2,2′-bis(2-oxazoline), 2,2′-methylene-bis(2-oxazoline), 2,2′-ethylene-bis(2-oxazoline), 2 ,2'-trimethylene-bis(2-oxazoline),2,2'-tetramethylene-bis(2-oxazoline),2,2'-hexamethylene-bis(2-oxazoline),2,2'-octamethylene -Bis(2-oxazoline), 2,2'-ethylene-bis(4,4'-dimethyl-2-oxazoline), 2,2'-p-phenylene-bis(2-oxazoline), 2,2'- m-phenylene-bis(2-oxazoline), 2,2'-m-phenylene-bis(4,4'-dimethyl-2-oxazoline), bis(2-oxazolinylcyclohexane)sulfide, bis(2-oxa) Examples include zolinyl norbornane)
  • the oxazoline ring-containing polymer is easily commercially available, for example, as trade name: Epocros WS-500, Epocros WS-700, Epocros K-2010, Epocros K-2020, Epocros K-2030 manufactured by Nippon Shokubai Co., Ltd. can do.
  • water-soluble oxazoline ring-containing polymers such as Epocros WS-500 and Epocros WS-700 manufactured by Nippon Shokubai Co., Ltd. are preferable from the viewpoint of improving reactivity.
  • a crosslinking agent having an epoxy group is an epoxy group-containing compound having two or more epoxy groups.
  • Examples of the epoxy group-containing compound include diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, bisphenol A type diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerin diglycidyl ether, and other epoxy groups.
  • Compounds having three or more functional groups compounds having three or more epoxy groups such as trifunctional or higher functional polyethylene glycol glycidyl ether, trimethylolpropane polyglycidyl ether, sorbitol polyglycidyl ether, sorbitan polyglycidyl ether, and polyglycerol polyglycidyl ether.
  • the cross-linking agent having a carbodiimide group is a carbodiimide group-containing compound having two or more carbodiimide groups. Specific examples thereof include Carbodilite SV-02 and Carbodilite E-01 (trade name; manufactured by Nisshinbo Chemical Inc.).
  • Examples of the melamine resin-based cross-linking agent include a compound obtained by reacting melamine with formalin or an alkyl-modified product thereof. Specific examples thereof include “Cymel” (registered trademark) 300, 301, 303, 350, 736, 738, 370, 771, 325, 327, 703, 701, 266, 267, 285, 232 manufactured by Cytec Industries. , 235, 238, 1141, 272, 254, 202, 1156, 1158, "Nikalac” (registered trademark) E-2151, MW-100LM, MX-750LM manufactured by Sanwa Chemical Co., Ltd. may be mentioned.
  • Cymel registered trademark 300, 301, 303, 350, 736, 738, 370, 771, 325, 327, 703, 701, 266, 267, 285, 232 manufactured by Cytec Industries. , 235, 238, 1141, 272, 254, 202, 1156, 1158, "Nikalac” (registered trademark) E-21
  • the amount of the crosslinking agent (A) used is preferably 0.5 to 30 parts by mass, more preferably 1 to 25 parts by mass, and 3 to 3 parts by mass based on 100 parts by mass of the copolymer. It is more preferably 20 parts by mass.
  • the copolymer and the crosslinking agent (A) before crosslinking are preferably an aqueous solution containing the copolymer and the crosslinking agent (A) from the viewpoint of handleability and the like.
  • the aqueous liquid can be easily applied to the base material, and a crosslinked product can be formed on the base material by crosslinking the resulting coating film.
  • “Aqueous solution” means a solution of water or a mixed solvent of water having a water content of 50% by mass or more and a hydrophilic organic solvent.
  • the hydrophilic organic solvent include monohydric alcohols such as methanol, ethanol, isopropyl alcohol, n-propyl alcohol, and allyl alcohol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, dipropylene glycol.
  • Polyhydric alcohols such as acetone, ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl formate, ethyl formate, methyl acetate, aliphatic organic acid alkyl esters such as methyl acetoacetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, Examples thereof include alkyl ethers of polyhydric alcohols such as diethylene glycol diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and dipropylene glycol monomethyl ether. These hydrophilic organic solvents may be used alone or in combination of two or more. Water is preferred as the aqueous medium.
  • concentrations of the copolymer and the cross-linking agent (A) in the aqueous solution are not particularly limited, but can be, for example, 0.5 to 20% by mass.
  • the conditions for crosslinking the above-mentioned copolymer and the crosslinking agent (A) can be adjusted according to the type of the crosslinking agent (A) used, but for example, heat treatment is performed at 50 to 150° C. for 5 to 120 minutes. It can be crosslinked under the conditions.
  • the crosslinked product of the present embodiment is excellent in hydrophilicity and antithrombogenicity, paints such as ship bottom paints and antifouling paints, and also metals, fibers, cloths, glass, resins, hollow fibers, ceramics, porosity, membranes, etc.
  • Suitable for surface treatment such as antifouling treatment, antifogging treatment, antistatic treatment, hydrophilization treatment, antifouling treatment, antifouling treatment, etc. of various base materials, and particularly suitable for surface treatment of medical devices and equipment. is there.
  • the crosslinked body of the second embodiment is a crosslinked body obtained by crosslinking a polymer containing 60% by mass or more of a structural unit derived from a polymerizable double bond-containing monomer having two or more hydroxyl groups by energy beam irradiation. Is.
  • Such a crosslinked product is excellent in hydrophilicity, antithrombogenicity and water resistance, and has low tack.
  • the reason why such an effect is obtained by the crosslinked product of the present embodiment is not always clear, but the present inventors consider it as follows. That is, since the crosslinked product of the present embodiment contains 60% by mass or more of the structural unit derived from the monomer having two or more hydroxyl groups, it is excellent in hydrophilicity and antithrombotic property. Furthermore, in the crosslinked product of the present embodiment, the polymer is crosslinked by irradiation with energy rays, so that the water resistance is excellent and the tack is small.
  • the same monomer (A) as in the above-described first embodiment can be used.
  • the content of the structural unit derived from the monomer (A) is 60% by mass or more, preferably 75% by mass or more, and more preferably 90% by mass or more, based on the total amount of the polymer. More preferably, it is 100% by mass.
  • the polymer of this embodiment may contain a monomer other than the monomer (A), for example, the monomer (B) and/or the monomer (C) in the above-described first embodiment. ..
  • a monomer other than the monomer (A) its content is preferably 40% by mass or less, more preferably 25% by mass or less, and more preferably 10% by mass. The following is more preferable.
  • the polymer of this embodiment can be produced, for example, under the same polymerization reaction conditions as the copolymer in the above-described first embodiment.
  • ultraviolet rays having a wavelength of 150 to 450 nm are preferable.
  • the light source that emits such a wavelength include sunlight, low-pressure mercury lamp, high-pressure mercury lamp, ultra-high-pressure mercury lamp, metal halide lamp, gallium lamp, xenon lamp, flash type xenon lamp, carbon arc lamp, and LED type UV light source. ..
  • the illuminance at the time of ultraviolet irradiation is preferably 0.1 to 100 mW/cm 2 , more preferably 1 to 75 mW/cm 2 , and further preferably 5 to 50 mW/cm 2 , and the irradiation time is preferably 15 to 180. Minutes, more preferably 30 to 120 minutes, still more preferably 45 to 90 minutes.
  • UV irradiation is performed under such conditions, the above-mentioned polymer can be crosslinked even without a photoradical generator.
  • the crosslinked product of the present embodiment is excellent in hydrophilicity and antithrombogenicity, paints such as ship bottom paints and antifouling paints, and also metals, fibers, cloths, glass, resins, hollow fibers, ceramics, porosity, membranes, etc.
  • Suitable for surface treatment such as antifouling treatment, antifogging treatment, antistatic treatment, hydrophilization treatment, antifouling treatment, antifouling treatment, etc. of various base materials, and particularly suitable for surface treatment of medical devices and equipment. is there.
  • the crosslinked product of the third embodiment is a crosslinker having a polymerizable double bond-containing monomer having 60% by mass or more and 2 or more hydroxyl groups, and a crosslinker having 2 or more (meth)acryloyl groups (hereinafter, "crosslinking agent ( B)”)), and a photocurable composition containing a photoradical generator are polymerized and crosslinked by ultraviolet irradiation.
  • Such a crosslinked product is excellent in hydrophilicity, antithrombogenicity and water resistance, and has low tack.
  • the reason why such an effect is obtained by the crosslinked product of the present embodiment is not always clear, but the present inventors consider it as follows. That is, since the crosslinked product of the present embodiment contains 60% by mass or more of the structural unit derived from the monomer having two or more hydroxyl groups, it is excellent in hydrophilicity and antithrombotic property. Further, in the crosslinked product of the present embodiment, the monomers are crosslinked by the crosslinking agent (B), so that the water resistance is excellent and the tack is small.
  • Photocurable resin composition As the polymerizable double bond-containing monomer having two or more hydroxyl groups, the same monomer as the monomer (A) in the above first embodiment can be used.
  • the content of the monomer (A) in the photocurable resin composition is 60% by mass or more, preferably 65% by mass or more, and more preferably 70% by mass or more.
  • cross-linking agent (B) examples include ethylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate.
  • Alkane diol di(meth)acrylates such as; polyoxyalkylene glycol di(meth)acrylates such as diethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate; ethoxylated bisphenol A Bisphenol-modified di(meth)acrylates such as di(meth)acrylate and propoxylated ethoxylated bisphenol A diacrylate; trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, Examples thereof include trifunctional or higher functional (meth)acrylic acid esters such as dipentaerythritol hexa(meth)acrylate, isocyanuric acid tris[ethyloxy(meth)acrylate], and glycerin tri(meth)acrylate, or partial esters
  • the content of the crosslinking agent (B) in the photocurable resin composition is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and more preferably 1 to More preferably, it is 5% by mass.
  • photo radical generator examples include benzoin, benzoin methyl ether, benzoin ethyl ether, and other benzoins and their alkyl ethers; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, and other acetophenones.
  • Anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone and 1-chloroanthraquinone; thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone and 2-chlorothioxanthone; Ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone; 1-hydroxycyclohexyl phenyl ketone (Irgacure 184), 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propane- Examples thereof include 1-one and 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1; acylphosphine oxides and xanthones.
  • the content of the photoradical generator in the photocurable resin composition is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and more preferably 1 to 5%. More preferably, it is mass %.
  • the photocurable resin composition of the present embodiment may contain components other than the above components. Specific examples thereof include the monomer (B) or (C) in the above-described first embodiment, and the (meth)acrylic acid ester represented by the formula (II) is preferable.
  • the photocurable resin composition of the present embodiment contains a component other than the above-mentioned components, its content is preferably 35% by mass or less, more preferably 30% by mass or less, and 25% by mass or less. Is more preferable.
  • ultraviolet rays having a wavelength of 150 to 450 nm can be applied.
  • the conditions of the ultraviolet irradiation are not particularly limited, but for example, the conditions of the irradiation of the ultraviolet of 0.1 to 100 mW/cm 2 and the irradiation time of 1 to 15 minutes can be used.
  • the crosslinked product of the present embodiment is excellent in hydrophilicity and antithrombogenicity, paints such as ship bottom paints and antifouling paints, and also metals, fibers, cloths, glass, resins, hollow fibers, ceramics, porosity, membranes, etc.
  • Suitable for surface treatment such as antifouling treatment, antifogging treatment, antistatic treatment, hydrophilization treatment, antifouling treatment, antifouling treatment, etc. of various base materials, and particularly suitable for surface treatment of medical devices and equipment. is there.
  • the coating film of the present embodiment includes the crosslinked body of the above-mentioned first, second or third embodiment.
  • Such a coating film can be obtained, for example, by applying a solution of the above-mentioned crosslinked product or its precursor on a medical device or an appropriate substrate, drying it under appropriate conditions, and then subjecting it to crosslinking conditions if necessary. ..
  • absorbance at the absorbance / wavelength 1720 cm -1 in absorbance ratio Is preferably 0.2 or more and less than 1.0, more preferably 0.25 or more and 0.8 or less, and further preferably 0.3 or more and 0.6 or less.
  • the wavelength of 3350 cm ⁇ 1 or the wavelength of 1720 cm ⁇ 1 is the wavelength corresponding to the hydroxyl group or the carboxy group in the crosslinked product, and the absorbance ratio corresponds to the ratio of the amount of the carboxy group to the amount of the hydroxyl group in the crosslinked product. To do.
  • the thickness of the coating film can be appropriately adjusted according to the application, but can be, for example, 0.01 to 5 ⁇ m.
  • the material for medical device of the present embodiment includes the above-mentioned crosslinked body or coating film. Since such a material for a medical device contains the above-mentioned crosslinked body or coating film, it has excellent antithrombogenicity and water resistance, and has low tack. Since the medical device material of the present embodiment has such properties, it is an antithrombotic material that hardly causes a thrombus even when it comes into contact with blood, and a material that constitutes a portion in contact with a biological component or a biological tissue in the medical device. It can be suitably applied as a cell culture substrate.
  • the medical device of the present embodiment has a surface coated with the above-mentioned medical device material. Since such a medical device contains the above-mentioned crosslinked product or coating film, it has excellent antithrombogenicity and water resistance, and has low tack.
  • the medical device of the present embodiment at least a portion of the portion in contact with a biological component or biological tissue may be configured using the material for a medical device, the area of the portion in contact with a biological component or biological tissue It is preferable that 50% or more is covered with the medical device material, more preferably 80% or more, and all the portions that come into contact with biological components or tissues are covered with the medical device material. More preferably.
  • the medical device according to the present embodiment can be used for the purpose of contacting any living body component or body tissue, but it is one of the preferred embodiments to be used for the purpose of contacting blood.
  • a method of coating the surface of the medical device or a part thereof with the material for a medical device As a method of holding the material for a medical device in a portion that comes into contact with a biological component or a biological tissue of various medical devices, a method of coating the surface of the medical device or a part thereof with the material for a medical device, radiation, electron beam, ultraviolet ray, etc.
  • any method such as a coating method, a spray method, or a dipping method may be used as a method of coating the surface of the medical device or the component thereof with the material for a medical device.
  • the material of the medical device for holding the material for the medical device is not particularly limited, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, halogenated polyolefin, polyethylene terephthalate, polycarbonate, polyamide, It may be made of any material such as acrylic resin, styrene resin, polyurethane resin, silicone resin, polysulfone, polyether sulfone, cellulose and cellulose acetate. In addition, metals, ceramics, and composite materials thereof can be exemplified, and the base material may be composed of a plurality of bases.
  • the metal examples include noble metals such as gold and silver, base metals such as copper, aluminum, tungsten, nickel, chromium and titanium, and alloys of these metals and those whose surfaces are plated with gold, but are not limited thereto. Not something.
  • the metal may be used alone, or may be used as an alloy with another metal or as an oxide of the metal in order to impart functionality. From the viewpoints of price and availability, it is preferable to use nickel, copper, and metals containing these as the main components.
  • the main component means a component that accounts for 50% by weight or more of the material forming the base.
  • the form of the base material is not particularly limited, and may be any form such as a molded body, fiber, non-woven fabric, porous body, particles, film, sheet, tube, hollow fiber or powder.
  • the material for medical device of the present embodiment When the material for medical device of the present embodiment is used as a cell culture substrate, the material for medical device may be used as it is or may be used by coating it on a predetermined substrate.
  • the material of the base material is not particularly limited, and natural polymers such as cotton and hemp, polyester, nylon, olefin, polyamide, polyurethane, polyacrylonitrile, poly(meth)acrylate, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, Synthetic polymers such as polyvinylidene fluoride, polytetrafluoroethylene, halogenated polyolefin, polycarbonate, styrene resin, and silicone resin can be used.
  • the base material may be composed of a plurality of bases.
  • the metal include noble metals such as gold and silver, base metals such as copper, aluminum, tungsten, nickel, chromium and titanium, and alloys of these metals and those whose surfaces are plated with gold, but are not limited thereto. Not something.
  • the metal may be used alone, or may be used as an alloy with another metal or as an oxide of the metal in order to impart functionality. From the viewpoints of price and availability, it is preferable to use nickel, copper, and metals containing these as the main components.
  • the main component means a component that accounts for 50% by weight or more of the material forming the base.
  • the form of the base material is not particularly limited, and may be any form such as a molded body, fiber, non-woven fabric, porous body, particles, film, sheet, tube, hollow fiber or powder.
  • the medical device material of the present embodiment is used for artificial biological tissues such as artificial blood vessels and artificial organs, blood filters, various catheters, various stents, etc.; members for devices that come into contact with biological tissues, and cell culture substrates. It can be applied as a material, a member for a hemodialysis device, a member for a blood or tissue testing instrument, and the like; a member for a tool that comes into contact with a living body-derived component (cell, blood, etc.). That is, the medical device in the present embodiment includes a device that comes into contact with a living tissue, a device that comes into contact with a living body-derived component (such as cells and blood), and the like.
  • a living tissue such as cells and blood
  • a gas introduction tube was provided in a round-bottomed flask containing a stirrer, 160 ml of purified water and 80 g of iPGLMA were added and dissolved therein, and then 35 g of solid acid catalyst Amberlyst 15Jwet (manufactured by Organo) which had been previously air-dried in water was added.
  • the reaction solution was stirred while blowing an oxygen/nitrogen mixed gas (oxygen concentration 7 vol%) through the gas introduction tube, and the deprotection reaction was started at room temperature.
  • the area ratio of GLMA/iPGLMA was traced by GC analysis, and it was confirmed that the area ratio exceeded 99/1, and the reaction was completed in 4 hours.
  • the filtrate obtained by filtering off the solid acid catalyst was washed with n-hexane to remove unreacted iPGLMA.
  • the aqueous layer was concentrated under reduced pressure to obtain 53 g of the target GLMA.
  • the reaction was continued for 7 hours, during which 1 hour, 3 hours, and 5 hours after the start of the reaction, 0.0035 g of VA086 was dissolved in 0.5 g of ion-exchanged water. Was thrown in.
  • the obtained polymer had a weight average molecular weight measured by GPC (converted to standard polystyrene) of 369,000.
  • the solution viscosity of the reaction solution measured by an E-type viscometer was 19.1 mPa ⁇ s at 25°C.
  • a reaction vessel containing a stirrer was equipped with a gas introduction tube, a thermometer, and a cooling tube, and GLMA 40.0 g as a monomer, acrylic acid (AA) 5.0 g, butyl acrylate (BA) 45.0 g, and an ion as a solvent 25.0 g of exchanged water and 75.0 g of ethanol were charged, and the temperature was raised to 88° C. while flowing nitrogen gas.
  • the reaction was continued for 5 hours, during which time, a solution prepared by dissolving 0.015 g of V-601 in 0.5 g of ethanol was added 2 hours and 3 hours after the reaction started. ..
  • the obtained polymer had a weight average molecular weight (converted to standard polystyrene) of 36,000 as measured by GPC.
  • the solution viscosity of the reaction solution measured by an E-type viscometer was 2410 mPa ⁇ s at 25°C.
  • GLMA homopolymer A reaction vessel equipped with a stirrer was equipped with a gas inlet tube, thermometer, and cooling tube, and 14.0 g of GLMA as a monomer and 125.0 g of ion-exchanged water as a solvent were charged, and the temperature was raised to 98°C while flowing nitrogen gas. did. A solution prepared by dissolving 0.007 g of an azo radical polymerization initiator (manufactured by Wako Pure Chemical Industries, Ltd., trade name: VA086) in 1.0 g of ion-exchanged water was added to initiate a polymerization reaction. While maintaining the temperature at 99° C.
  • an azo radical polymerization initiator manufactured by Wako Pure Chemical Industries, Ltd., trade name: VA086
  • the reaction was continued for 7 hours, during which 1 hour, 3 hours, and 5 hours after the start of the reaction, 0.0035 g of VA086 was dissolved in 0.5 g of ion-exchanged water. Was thrown in.
  • the obtained polymer had a weight average molecular weight (converted to standard polystyrene) of 292,000 as measured by GPC.
  • the solution viscosity of the reaction solution measured by an E-type viscometer was 19.1 mPa ⁇ s at 25°C.
  • Example 1 100 parts by weight of the above-mentioned copolymer 1 as a copolymer in terms of solid content and 10 parts by weight of Epocros WS-700 (oxazoline-based crosslinking agent; manufactured by Nippon Shokubai Co., Ltd.) in terms of solid content in terms of solid content were compounded.
  • Ethanol/ion-exchanged water 75/25 (wt/wt) mixed solvent to adjust the concentration to 10%.
  • the obtained solution was applied on a PET film (Toray mirror) as a substrate using a bar coater, dried at room temperature, and then heat-treated at 120° C. for 30 minutes by a hot air dryer to obtain a sample film.
  • Examples 2 to 5 Comparative Examples 1 and 2> A sample film was obtained in the same manner as in Example 1 except that the types and blending ratios of the copolymer and the crosslinking agent, and the base material were changed as shown in Table 1. Details of the trade names or abbreviations in Table 1 are shown below.
  • (Crosslinking agent) WS700 Epocros WS-700 (oxazoline group-containing crosslinking agent; manufactured by Nippon Shokubai Co., Ltd.)
  • DEGDGE diethylene glycol diglycidyl ether (epoxy group-containing crosslinking agent; manufactured by Wako Pure Chemical Industries, Ltd.)
  • MX035 Nikalac MX035 (melamine resin crosslinking agent; manufactured by Nippon Carbide Industry Co., Ltd.)
  • V-02 Carbodilite V-02 (carbodiimide group-containing crosslinking agent; manufactured by Nisshinbo Chemical Inc.) (Base material)
  • PET Polyethylene terephthalate
  • OPP Biaxially oriented polypropylene
  • a solution of Epocros WS-700 was applied on a PET film (Toray mirror) using a bar coater, dried at room temperature, and then a solution of copolymer 1 was applied thereon using a bar coater. After drying at room temperature, it was heat-treated at 120° C. for 30 minutes with a hot air dryer to obtain a sample film.
  • Example 7 A solution prepared by diluting the reaction solution of the GLMA homopolymer 10 times with ethanol was applied on a polypropylene standard plate (Japan Test Panel Co., Ltd.) using a bar coater and dried at room temperature, and then a desktop UV curing device HCT400B- Using 28HB (manufactured by Sen Special Light Source Co., Ltd.), UV irradiation was performed for 1 hour at an illuminance of 20 mW/cm 2 at 365 nm to obtain a sample film.
  • a desktop UV curing device HCT400B- Using 28HB manufactured by Sen Special Light Source Co., Ltd.
  • Example 8 Comparative Examples 4 and 5> A monomer, a cross-linking agent and a photo-radical generating agent are mixed in the composition shown in Table 3 and coated on a PET film (Toray mirror) using a bar coater, and a desktop UV curing device HCT400B-28HB (sen special (Manufactured by Light Source Co., Ltd.), and UV irradiation was performed for 3 minutes at an illuminance of 20 mW/cm 2 at 365 nm to obtain a sample film. Details of trade names or abbreviations in Table 3 are shown below.
  • GLMA the above glycerol monoacrylate BA: butyl acrylate (crosslinking agent)
  • NPGDA Neopentyl glycol diacrylate (photo radical generator)
  • IQ-184 Irgacure 184
  • Comparative Example 6 The solutions used in Examples 1 to 5 and Comparative Example 1 were diluted with ethanol to adjust the concentration to 1%. The obtained diluted solution was applied on a PET film (Toray mirror) by a spin coater, dried at room temperature, and then heat-treated at 120° C. for 30 minutes by a hot air dryer to obtain a sample film.
  • a PET film Toray mirror
  • Example 14 The solution of Epocros WS-700 and the solution of copolymer 1 used in Example 6 were diluted with ethanol to adjust the concentration to 1%. First, a diluted solution of Epocros WS-700 was applied on a PET film (Toray mirror) by a spin coater, dried at room temperature, and then a solution of copolymer 1 was applied by a spin coater. After drying at room temperature, it was heat-treated at 120° C. for 30 minutes with a hot air dryer to obtain a sample film.
  • a PET film Toray mirror
  • Example 15 The solution used in Example 7 was diluted with ethanol to adjust the concentration to 1%.
  • the diluted solution obtained was applied onto a PET film (Toray mirror) with a spin coater, dried at room temperature, and then with a desktop UV curing device HCT400B-28HB (made by Sen Special Light Source Co., Ltd.), an illuminance of 20 mW at 365 nm. /Cm 2 was irradiated with UV for 1 hour to obtain a sample film.
  • HCT400B-28HB made by Sen Special Light Source Co., Ltd.
  • Example 16 Comparative Examples 7 and 8> The solutions used in Example 8 and Comparative Examples 4 and 5 were diluted with ethanol to adjust the concentration to 1%.
  • the diluted solution obtained was applied onto a PET film (Toray mirror) with a spin coater, dried at room temperature, and then with a desktop UV curing device HCT400B-28HB (made by Sen Special Light Source Co., Ltd.), an illuminance of 20 mW at 365 nm. /Cm 2 and UV irradiation for 3 minutes to obtain a sample film.
  • HCT400B-28HB made by Sen Special Light Source Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Materials Engineering (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Provided are: a copolymer including a structural unit which is derived from a polymerizable double bond-containing monomer having two or more hydroxyl groups in an amount of at least 70% by mass, and a structural unit which is derived from a polymerizable double bond-containing monomer having a carboxyl group; a cross-linked product obtained by cross-linking a composition which contains a cross-linker having any functional group selected from an oxazoline group, an epoxy group and a carbodiimide group or contains a melamine resin-based cross-linker; etc.

Description

共重合体、水性溶液、架橋体、光硬化性組成物、塗膜、医療用具用材料及び医療用具Copolymer, aqueous solution, crosslinked product, photocurable composition, coating film, material for medical device and medical device
 本発明は、共重合体、水性溶液、架橋体、光硬化性組成物、塗膜並びに当該架橋体又は塗膜を用いた医療用具用材料及び医療用具に関する。 The present invention relates to a copolymer, an aqueous solution, a crosslinked product, a photocurable composition, a coating film, and a medical device material and a medical device using the crosslinked product or coating film.
 医療用具は、血液等の生体成分や生体組織と接触する環境下で使用され、医療用具表面と生体成分や生体組織との親和性が低い場合、生体防御機構が活性化され、血液が凝固して血栓が形成される等の不具合が生じる。このため、医療用具は少なくとも生体成分や生体組織と接触する表面が生体適合性の高い材料で形成されていることが必要となる。 Medical devices are used in an environment where they come into contact with biological components such as blood and biological tissues.If the surface of the medical device has a low affinity for biological components and biological tissues, the biological defense mechanism is activated and blood coagulates. As a result, problems such as blood clot formation occur. Therefore, it is necessary that at least the surface of the medical device that comes into contact with a biological component or biological tissue is made of a material having high biocompatibility.
 このような医療用具に用いられる材料として、種々の高分子材料が検討されている。例えば、特許文献1では、グリセロール基含有単量体由来の構造単位と、エチレン性不飽和基に炭素数4以上の有機基が結合した構造を有する不飽和単量体由来の構造単位とを有し、且つ所定のガラス転移温度を有する重合体を医療用具用材料として用いることが提案されている。特許文献1の重合体によれば、抗血栓性に優れるとされている。 Various types of polymer materials are being investigated as materials used for such medical devices. For example, Patent Document 1 has a structural unit derived from a glycerol group-containing monomer and a structural unit derived from an unsaturated monomer having a structure in which an organic group having 4 or more carbon atoms is bonded to an ethylenically unsaturated group. However, it has been proposed to use a polymer having a predetermined glass transition temperature as a material for medical devices. The polymer of Patent Document 1 is said to have excellent antithrombotic properties.
特開2018-33846号公報JP, 2008-33846, A
 ところで、医療用具に用いられる高分子材料は、取り扱い性等の観点から、タックが小さく、且つ耐久性、特に耐水性に優れることが望ましい。 By the way, it is desirable that the polymer material used for medical devices has a small tack and excellent durability, especially water resistance, from the viewpoint of handleability and the like.
 そこで本発明は、抗血栓性及び耐水性に優れ、且つタックが小さい医療用具用材料、当該医療用具用材料の製造に用いられる共重合体、水性溶液、架橋体、光硬化性組成物、塗膜、並びに上記医療用具用材料を備える医療用具を提供することを目的とする。 Therefore, the present invention is excellent in antithrombogenicity and water resistance, and has a small tack material for medical devices, a copolymer used in the production of the material for medical devices, an aqueous solution, a crosslinked product, a photocurable composition, a coating. An object of the present invention is to provide a medical device including a film and the above-mentioned material for medical device.
 上記事情に鑑み、本発明者等は鋭意検討を重ねた結果、以下の[1]~[10]に示す発明を完成させた。
[1] 70質量%以上の2以上の水酸基を有する重合性二重結合含有単量体由来の構造単位、及び、1質量%以上のカルボキシ基を有する重合性二重結合含有単量体由来の構造単位を含む共重合体。
[2] 2以上の水酸基を有する重合性二重結合含有単量体由来の構造単位は、グリセロール(メタ)アクリレート由来の構造単位を含む、[1]に記載の共重合体。
[3] [1]又は[2]に記載の共重合体、並びに、オキサゾリン基、エポキシ基及びカルボジイミド基より選ばれるいずれかの官能基を有する架橋剤又はメラミン樹脂系架橋剤を含有する水性溶液。
[4] [1]又は[2]に記載の共重合体、並びに、オキサゾリン基、エポキシ基及びカルボジイミド基より選ばれるいずれかの官能基を有する架橋剤又はメラミン樹脂系架橋剤を含有する組成物を架橋してなる架橋体。
[5] 60質量%以上の2以上の水酸基を有する重合性二重結合含有単量体由来の構造単位を含む重合体を、エネルギー線照射により架橋してなる架橋体。
[6] 60質量%以上の2以上の水酸基を有する重合性二重結合含有単量体、2以上の(メタ)アクリロイル基を有する架橋剤、及び光ラジカル発生剤を含有する光硬化性組成物。
[7] [6]に記載の光硬化性組成物を、紫外線照射により重合及び架橋してなる架橋体。
[8] [4]、[5]又は[7]に記載の架橋体を含む塗膜であって、当該塗膜の表面の赤外吸収強度をATR法で測定したとき、波長1720cm-1における吸光度に対する波長3350cm-1における吸光度の比が、0.2以上1.0未満である塗膜。
[9] [4]、[5]若しくは[7]に記載の架橋体又は[8]に記載の塗膜を含む医療用具用材料。
[10] [9]に記載の医療用具用材料により表面をコーティングされた医療用具。
In view of the above circumstances, the present inventors have conducted intensive studies, and as a result, completed the inventions shown in [1] to [10] below.
[1] 70% by mass or more of a structural unit derived from a polymerizable double bond-containing monomer having two or more hydroxyl groups, and 1% by mass or more of a polymerizable double bond-containing monomer derived from a polymerizable double bond-containing monomer A copolymer containing structural units.
[2] The copolymer according to [1], wherein the structural unit derived from the polymerizable double bond-containing monomer having two or more hydroxyl groups includes a structural unit derived from glycerol (meth)acrylate.
[3] An aqueous solution containing the copolymer according to [1] or [2] and a crosslinking agent or a melamine resin-based crosslinking agent having any functional group selected from an oxazoline group, an epoxy group and a carbodiimide group. ..
[4] A composition containing the copolymer according to [1] or [2], and a crosslinking agent or a melamine resin-based crosslinking agent having any functional group selected from an oxazoline group, an epoxy group and a carbodiimide group. A cross-linked body obtained by cross-linking.
[5] A crosslinked body obtained by crosslinking a polymer containing 60% by mass or more of a structural unit derived from a polymerizable double bond-containing monomer having two or more hydroxyl groups by irradiation with energy rays.
[6] A photocurable composition containing 60% by mass or more of a polymerizable double bond-containing monomer having two or more hydroxyl groups, a crosslinking agent having two or more (meth)acryloyl groups, and a photoradical generator. ..
[7] A crosslinked product obtained by polymerizing and crosslinking the photocurable composition according to [6] by irradiation with ultraviolet rays.
[8] A coating film containing the crosslinked product according to [4], [5] or [7], wherein the infrared absorption intensity of the surface of the coating film is measured at a wavelength of 1720 cm -1 by an ATR method. A coating film in which the ratio of the absorbance at a wavelength of 3350 cm -1 to the absorbance is 0.2 or more and less than 1.0.
[9] A material for medical device containing the crosslinked product according to [4], [5] or [7] or the coating film according to [8].
[10] A medical device having a surface coated with the material for a medical device according to [9].
 本発明によれば、抗血栓性及び耐水性に優れ、且つタックが小さい医療用具用材料、当該医療用具用材料の製造に用いられる共重合体、水性溶液、架橋体、光硬化性組成物、塗膜、並びに上記医療用具用材料を備える医療用具を提供することができる。 According to the present invention, excellent antithrombogenicity and water resistance, and small tack material for medical devices, a copolymer used in the production of the material for medical devices, an aqueous solution, a crosslinked product, a photocurable composition, A coating device and a medical device including the material for medical device can be provided.
 以下、本発明の一実施形態を詳細に説明するが、本発明はこれに限定されるものではない。なお、本明細書中、「(メタ)アクリル酸」なる用語は、アクリル酸又はメタクリル酸を意味する。「(メタ)アクリレート」のような類似の表現についても同様である。 An embodiment of the present invention will be described below in detail, but the present invention is not limited to this. In addition, in this specification, the term "(meth)acrylic acid" means acrylic acid or methacrylic acid. The same applies to similar expressions such as “(meth)acrylate”.
<第1の実施形態の架橋体>
 第1の実施形態の架橋体は、70質量%以上の2以上の水酸基を有する重合性二重結合含有単量体(以下、「単量体(A)」ともいう。)由来の構造単位、及び、カルボキシ基を有する重合性二重結合含有単量体(以下、「単量体(B)」ともいう。)由来の構造単位を含む共重合体、並びに後述する所定の架橋剤(A)を含有する組成物を架橋してなる架橋体である。
<Crosslinked product of the first embodiment>
The crosslinked product of the first embodiment is a structural unit derived from a polymerizable double bond-containing monomer having 70% by mass or more of two or more hydroxyl groups (hereinafter, also referred to as “monomer (A)”), And a copolymer containing a structural unit derived from a polymerizable double bond-containing monomer having a carboxy group (hereinafter, also referred to as "monomer (B)"), and a predetermined crosslinking agent (A) described later. It is a cross-linked product obtained by cross-linking a composition containing.
 かかる架橋体は、親水性、抗血栓性及び耐水性に優れ、且つタックが小さい。本実施形態の架橋体によりこのような効果を奏する理由は必ずしも明らかでないが、本発明者等は以下のように考えている。
 すなわち、本実施形態の架橋体は、2以上の水酸基を有する単量体(A)由来の構造単位を70質量%以上含むため、親水性及び抗血栓性に優れたものとなる。さらに、本実施形態の架橋体は、共重合体における単量体(B)由来のカルボキシル基が架橋剤(A)により架橋されているため、耐水性に優れ、且つタックが小さいものとなる。
Such a crosslinked product is excellent in hydrophilicity, antithrombogenicity and water resistance, and has low tack. The reason why such an effect is obtained by the crosslinked product of the present embodiment is not always clear, but the present inventors consider it as follows.
That is, since the crosslinked product of the present embodiment contains 70% by mass or more of the structural unit derived from the monomer (A) having two or more hydroxyl groups, it is excellent in hydrophilicity and antithrombogenicity. Furthermore, since the carboxyl group derived from the monomer (B) in the copolymer is cross-linked by the cross-linking agent (A), the cross-linked product of the present embodiment has excellent water resistance and small tack.
 以下、本実施形態の架橋体について詳述する。 Hereinafter, the crosslinked body of the present embodiment will be described in detail.
(共重合体)
 単量体(A)としては、重合性二重結合及び2以上の水酸基を有するものであれば、特に限定されないが、例えば、下記式(I)で表される化合物であると好ましい。単量体(A)は、1種を単独で用いてもよく、2種類以上を併用してもよい。
(Copolymer)
The monomer (A) is not particularly limited as long as it has a polymerizable double bond and two or more hydroxyl groups, but is preferably a compound represented by the following formula (I), for example. As the monomer (A), one type may be used alone, or two or more types may be used in combination.
Figure JPOXMLDOC01-appb-C000001
(式(I)中、Rは、水素原子またはメチル基、Rは、2以上の水酸基を有する有機基を示す。)
Figure JPOXMLDOC01-appb-C000001
(In the formula (I), R 1 represents a hydrogen atom or a methyl group, and R 2 represents an organic group having two or more hydroxyl groups.)
 式(I)において、Rは、2以上の水酸基を有する有機基である。それらの中で、親水性を向上させる観点から、-COOR基、-OCOR基、-OR基、-CONHR基、-CHOR基、-CH2OCOR基、-CONHR基、-CON(R基または-NHCOR基(Rは、2以上の水酸基を有する有機基を示す)であることが好ましい。 In formula (I), R 2 is an organic group having two or more hydroxyl groups. Among them, from the viewpoint of improving hydrophilicity, —COOR 3 group, —OCOR 3 group, —OR 3 group, —CONHR 3 group, —CH 2 OR 3 group, —CH 2 OCOR 3 group, —CONHR 3 group, It is preferably —CON(R 3 ) 2 group or —NHCOR 3 group (R 3 represents an organic group having two or more hydroxyl groups).
 Rは、2以上の水酸基を有する有機基であり、親水性を向上させる観点から、好ましくは2以上の水酸基を有する炭素数1~30の有機基であり、より好ましくは2以上の水酸基を有する炭素数1~20の有機基である。この有機基としては、例えば、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数4~20のポリオキシアルキレン基、炭素数7~20のアラルキル基が挙げられる。なお、1分子中にRが2以上含まれる場合には、各Rはそれぞれ同一であってもよく、異なっていてもよい。また、Rには、例えば、フッ素原子、塩素原子などのハロゲン原子、窒素原子、水酸基以外の官能基などが含まれていてもよい。 R 3 is an organic group having 2 or more hydroxyl groups, and from the viewpoint of improving hydrophilicity, it is preferably an organic group having 1 to 30 carbon atoms and having 2 or more hydroxyl groups, and more preferably 2 or more hydroxyl groups. It is an organic group having 1 to 20 carbon atoms. Examples of the organic group include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a polyoxyalkylene group having 4 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. When two or more R 3 are contained in one molecule, each R 3 may be the same or different. Further, R 3 may contain, for example, a halogen atom such as a fluorine atom or a chlorine atom, a nitrogen atom, or a functional group other than a hydroxyl group.
 単量体(A)としては、例えば、3以上の水酸基を有する多価アルコールと(メタ)アクリル酸とのエステル、糖類と(メタ)アクリル酸とのエステル、アミノ基を有する糖類と(メタ)アクリル酸とのエステルが挙げられる。これらのエステルは、エステル化反応のみならず、エステル交換反応や(メタ)アクリル酸グリシジルエステルの開環反応によって調製されたものであってもよい。 As the monomer (A), for example, an ester of a polyhydric alcohol having 3 or more hydroxyl groups and (meth)acrylic acid, an ester of a saccharide and (meth)acrylic acid, a saccharide having an amino group and (meth) Examples thereof include esters with acrylic acid. These esters may be prepared not only by esterification reaction but also by transesterification reaction or ring-opening reaction of glycidyl (meth)acrylate ester.
 3以上の水酸基を有する多価アルコールとしては、例えば、グリセリン、ジグリセリン、トリグリセリン、テトラグリセリン、ペンタグリセリン、ヘキサグリセリン、ペンタエリスリトール、1,2,6-ヘキサントリオール、2-ヒドロキシメチル-2-メチル-1,3-プロパンジオール、2-エチル-2-ヒドロキシメチル-1,3-プロパンジオールが挙げられる。糖類としては、例えば、グルコース、マンノース、ガラクトース、グロース、フルクトース、D-リボースなどの単糖類、当該単糖類から誘導されるグルコシド、ガラクトシド、フルクトシドなどをはじめ、これらの二量体、三量体が挙げられる。アミノ基を有する糖類としては、例えば、D-グルコサミンが挙げられる。 Examples of the polyhydric alcohol having 3 or more hydroxyl groups include glycerin, diglycerin, triglycerin, tetraglycerin, pentaglycerin, hexaglycerin, pentaerythritol, 1,2,6-hexanetriol, 2-hydroxymethyl-2- Examples thereof include methyl-1,3-propanediol and 2-ethyl-2-hydroxymethyl-1,3-propanediol. Examples of saccharides include monosaccharides such as glucose, mannose, galactose, gulose, fructose, and D-ribose, glucosides derived from the monosaccharides, galactoside, fructoside, and dimers and trimers thereof. Can be mentioned. Examples of the saccharide having an amino group include D-glucosamine.
 単量体(A)は、親水性を向上させる観点から、下記式(IA)で表される(メタ)アクリル酸エステルであるとより好ましい。 From the viewpoint of improving hydrophilicity, the monomer (A) is more preferably a (meth)acrylic acid ester represented by the following formula (IA).
Figure JPOXMLDOC01-appb-C000002
(式(IA)中、Rは、水素原子またはメチル基、Rは、炭素数1~4のアルキレン基を示す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula (IA), R 1 represents a hydrogen atom or a methyl group, and R 4 represents an alkylene group having 1 to 4 carbon atoms.)
 単量体(A)は、親水性を向上させる観点から、グリセロールモノアクリレート(式(IA)中、R=水素原子、R=メチレン基)又はグリセロールモノメタクリレート(式(IA)中、R=メチル基、R=メチレン基)であると更に好ましい。 From the viewpoint of improving hydrophilicity, the monomer (A) is glycerol monoacrylate (in formula (IA), R 1 =hydrogen atom, R 4 =methylene group) or glycerol monomethacrylate (in formula (IA), R It is more preferable that 1 = methyl group and R 4 = methylene group).
 単量体(A)の分子量は、親水性を向上させる観点から、500以下であると好ましい。 The molecular weight of the monomer (A) is preferably 500 or less from the viewpoint of improving hydrophilicity.
 単量体(A)に由来する構造単位の含有量は、共重合体の総量に対して、70質量%以上である。親水性及び抗血栓性をより向上させる観点から、単量体(A)に由来する構造単位の含有量は、共重合体の総量に対して、80質量%~99質量%であると好ましく、90質量%~97質量%であるとより好ましい。 The content of the structural unit derived from the monomer (A) is 70% by mass or more based on the total amount of the copolymer. From the viewpoint of further improving hydrophilicity and antithrombogenicity, the content of the structural unit derived from the monomer (A) is preferably 80% by mass to 99% by mass with respect to the total amount of the copolymer, It is more preferably 90% by mass to 97% by mass.
 なお、単量体(A)に由来する構成単位は、共重合体中で2以上の水酸基を有する構成単位であればよい。すなわち、単量体(A)を用いて重合した構成単位であってもよく、2以上の水酸基が保護基により保護された単量体を重合した後に、保護基を脱保護する等ポリマーを変性することで水酸基を2以上有する構造を導入してもよい。 The constitutional unit derived from the monomer (A) may be any constitutional unit having two or more hydroxyl groups in the copolymer. That is, it may be a constitutional unit obtained by polymerizing using a monomer (A), and after polymerizing a monomer in which two or more hydroxyl groups are protected by a protecting group, depolymerizing the protecting group such as deprotecting the protecting group. By doing so, a structure having two or more hydroxyl groups may be introduced.
 単量体(B)としては、例えば、(メタ)アクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、無水マレイン酸、マレイン酸モノメチルエステル、マレイン酸モノブチルエステル、イタコン酸モノメチルエステル、イタコン酸モノブチルエステル、ビニル安息香酸などのカルボキシ基含有脂肪族系単量体が挙げられる。これらの中で、アクリル酸、メタクリル酸又はイタコン酸が好ましく、アクリル酸又はメタクリル酸がより好ましい。単量体(B)は、1種を単独で用いてもよく、2種類以上を併用してもよい。 Examples of the monomer (B) include (meth)acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, maleic anhydride, maleic acid monomethyl ester, maleic acid monobutyl ester, and itaconic acid monomethyl. Examples include carboxy group-containing aliphatic monomers such as esters, monobutyl itaconic acid esters, and vinyl benzoic acid. Among these, acrylic acid, methacrylic acid or itaconic acid is preferable, and acrylic acid or methacrylic acid is more preferable. As the monomer (B), one type may be used alone, or two or more types may be used in combination.
 単量体(B)に由来する構造単位の含有量は、共重合体の総量に対して、1質量%以上である。耐水性をより向上させる観点から、単量体(B)に由来する構造単位の含有量は、共重合体の総量に対して、2質量%~25質量%であると好ましく、3質量%~20質量%であるとより好ましい。 The content of the structural unit derived from the monomer (B) is 1% by mass or more based on the total amount of the copolymer. From the viewpoint of further improving the water resistance, the content of the structural unit derived from the monomer (B) is preferably 2% by mass to 25% by mass with respect to the total amount of the copolymer, and 3% by mass to It is more preferably 20% by mass.
 なお、単量体(B)に由来する構成単位は、共重合体中でカルボキシ基を有する構成単位であればよい。すなわち、単量体(B)を用いて重合した構成単位であってもよく、エステル基等の他の置換基を有する単量体を重合した後に、エステル基等を加水分解等によりカルボキシ基に変換した構成単位であってもよい。 The constituent unit derived from the monomer (B) may be any constituent unit having a carboxy group in the copolymer. That is, it may be a constitutional unit polymerized using the monomer (B), and after polymerizing a monomer having another substituent such as an ester group, the ester group is converted to a carboxy group by hydrolysis or the like. It may be a converted structural unit.
 本実施形態の共重合体は、上記単量体(A)及び(B)のいずれでもない単量体(C)由来の構造単位を含んでいてもよい。単量体(C)としては、例えば、エチレン性不飽和基に炭素数4以上の有機基が結合した構造を有する単量体が挙げられる。そのような単量体としては、式(II)で表される(メタ)アクリル酸エステルが挙げられる。 The copolymer of the present embodiment may include a structural unit derived from the monomer (C) which is neither the monomer (A) nor the monomer (B). Examples of the monomer (C) include monomers having a structure in which an organic group having 4 or more carbon atoms is bonded to an ethylenically unsaturated group. Examples of such a monomer include a (meth)acrylic acid ester represented by the formula (II).
Figure JPOXMLDOC01-appb-C000003
(式(II)中、Rは、水素原子又はメチル基を表す。Rは、炭素が連続して4個以上結合した炭素鎖を有する有機基を表す。)
Figure JPOXMLDOC01-appb-C000003
(In the formula (II), R 5 represents a hydrogen atom or a methyl group. R 6 represents an organic group having a carbon chain in which four or more carbons are continuously bonded.)
 式(II)で表される(メタ)アクリル酸エステルとしては、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸s-アミル、(メタ)アクリル酸t-アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘキシルメチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸β-メチルグリシジル、(メタ)アクリル酸β-エチルグリシジル、(メタ)アクリル酸(3,4-エポキシシクロヘキシル)メチル、(メタ)アクリル酸N,N-ジメチルアミノエチルが挙げられる。 Examples of the (meth)acrylic acid ester represented by the formula (II) include n-butyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, and n-methacrylate. -Amyl, s-amyl (meth)acrylate, t-amyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, (meth)acrylic Tridecyl acid, cyclohexyl (meth)acrylate, cyclohexylmethyl (meth)acrylate, octyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, benzyl (meth)acrylate, (meth)acrylic Acid phenyl, isobornyl (meth)acrylate, adamantyl (meth)acrylate, tricyclodecanyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, (meth) 4-hydroxybutyl acrylate, 2-ethoxyethyl (meth)acrylate, phenoxyethyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, β-methylglycidyl (meth)acrylate, β (meth)acrylate -Ethylglycidyl, (3,4-epoxycyclohexyl)methyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate may be mentioned.
 上記エチレン性不飽和基に炭素数4以上の有機基が結合した構造を有する単量体のうち、式(II)で表される(メタ)アクリル酸エステル以外のものとしては、ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル、ジエチレングリコールビニルエーテル、トリエチレングリコールビニルエーテル等のビニルエーテル類、N-ビニルモルホリン、N-ビニルカルバゾール等のN-ビニル類(ラクタム環を有するものを除く)、N-フェニルマレイミド、N-ベンジルマレイミド、N-ナフチルマレイミド、N-シクロヘキシルマレイミド、N-ブチルマレイミド、N-イソプロプルマレイミド、N-エチルマレイミド等のN置換マレイミド類が挙げられる。 Among the monomers having a structure in which an organic group having 4 or more carbon atoms is bonded to the ethylenically unsaturated group, other than the (meth)acrylic acid ester represented by the formula (II), butyl vinyl ether, 2 -Vinyl ethers such as ethylhexyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether, diethylene glycol vinyl ether, triethylene glycol vinyl ether, N-vinyls such as N-vinylmorpholine and N-vinylcarbazole (excluding those having a lactam ring), N-phenyl Examples of N-substituted maleimides such as maleimide, N-benzylmaleimide, N-naphthylmaleimide, N-cyclohexylmaleimide, N-butylmaleimide, N-isopropmaleimide and N-ethylmaleimide.
 また、単量体(C)としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、及び(メタ)アクリル酸イソプロピルのいずれかの(メタ)アクリル酸アルキルエステル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;塩化ビニル、塩化ビニリデン等;エチレン、プロピレン、ブテン、イソプレン等のオレフィン類;N-ビニルホルムアミド、N-ビニルアセトアミド等のN-ビニル化合物;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;メチルマレイミド等を使用することもできる。 As the monomer (C), any of (meth)acrylic acid selected from methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and isopropyl (meth)acrylate. Alkyl esters; vinyl esters such as vinyl acetate and vinyl propionate; vinyl chloride, vinylidene chloride; etc.; olefins such as ethylene, propylene, butene, isoprene; N-vinyl compounds such as N-vinylformamide, N-vinylacetamide; It is also possible to use vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether and the like; methyl maleimide and the like.
 単量体(C)に由来する構造単位の含有量は、共重合体の総量に対して、25質量%以下であると好ましく、20質量%以下であるとより好ましく、10質量%以下であると更に好ましい。 The content of the structural unit derived from the monomer (C) is preferably 25% by mass or less, more preferably 20% by mass or less, and more preferably 10% by mass or less, based on the total amount of the copolymer. And more preferable.
 上記共重合体は、上述の単量体を適宜選択して重合反応を行うことにより製造することができる。重合反応の際の単量体の好ましい使用量は、上記共重合体おけるこれらの単量体由来の構造単位の好ましい含有量と同様である。 The above copolymer can be produced by appropriately selecting the above monomers and carrying out a polymerization reaction. The preferred amount of the monomer used in the polymerization reaction is the same as the preferred content of the structural unit derived from these monomers in the copolymer.
 上記重合反応は、重合開始剤の存在下で重合反応を行うことが好ましい。重合開始剤としては、例えば、過酸化水素;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ジメチル2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(イソブチロニトリル)等のアゾ系化合物;過酸化ベンゾイル、過酢酸、ジ-t-ブチルパーオキサイド等の有機過酸化物等が好適である。これらの重合開始剤は、単独で使用されてもよく、2種以上の混合物の形態で使用されてもよい。
 重合開始剤の使用量としては、重合反応に使用される単量体の使用量1モルに対して、0.01g以上10g以下であると好ましく、0.1g以上5g以下であるとより好ましい。
The polymerization reaction is preferably performed in the presence of a polymerization initiator. Examples of the polymerization initiator include hydrogen peroxide; persulfates such as sodium persulfate, potassium persulfate and ammonium persulfate; dimethyl 2,2′-azobis(2-methylpropionate), 2,2′-azobis. Azo compounds such as (isobutyronitrile); organic peroxides such as benzoyl peroxide, peracetic acid, and di-t-butyl peroxide are preferable. These polymerization initiators may be used alone or in the form of a mixture of two or more kinds.
The amount of the polymerization initiator used is preferably 0.01 g or more and 10 g or less, and more preferably 0.1 g or more and 5 g or less, based on 1 mol of the monomer used in the polymerization reaction.
 上記重合反応は、溶媒を使用せずに行ってもよいが、溶媒を使用することが好ましい。溶媒としては、水、アセトニトリル、テトラヒドロフラン、ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、イソプロピルアルコールなどが挙げられ、環境汚染防止の観点等から、水であると好ましい。これらの溶媒は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。溶媒の使用量としては、重合反応に使用される単量体100質量部に対して40~250質量部が好ましい。 The above polymerization reaction may be carried out without using a solvent, but it is preferable to use a solvent. Examples of the solvent include water, acetonitrile, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropyl alcohol and the like, and water is preferable from the viewpoint of preventing environmental pollution. These solvents may be used alone or in the form of a mixture of two or more kinds. The amount of the solvent used is preferably 40 to 250 parts by mass with respect to 100 parts by mass of the monomer used in the polymerization reaction.
 上記重合反応は、通常、0℃以上で行われることが好ましく、また、150℃以下で行われることが好ましい。より好ましくは、40℃以上であり、更に好ましくは、60℃以上であり、特に好ましくは、80℃以上である。また、より好ましくは、120℃以下であり、更に好ましくは、110℃以下である。上記重合温度は、重合反応において、常にほぼ一定に保持する必要はなく、一度または二度以上変動(加温または冷却)してもよい。重合反応は、常圧、加圧、減圧のいずれの条件下で行ってもよい。 The above-mentioned polymerization reaction is usually preferably carried out at 0°C or higher, and preferably at 150°C or lower. The temperature is more preferably 40° C. or higher, further preferably 60° C. or higher, and particularly preferably 80° C. or higher. Further, it is more preferably 120°C or lower, and further preferably 110°C or lower. The above-mentioned polymerization temperature does not always have to be kept substantially constant in the polymerization reaction and may be changed once or twice (heating or cooling). The polymerization reaction may be carried out under any conditions of normal pressure, increased pressure and reduced pressure.
 上記重合反応において、単量体や重合開始剤等は、それぞれ反応器に一括で添加してもよく、逐次的又は連続的に添加してもよい。 In the above polymerization reaction, the monomers, the polymerization initiator, etc. may be added to the reactor all at once, or may be added sequentially or continuously.
 共重合体の製造方法は、上記重合反応工程以外の他の工程を含んでいてもよい。その他の工程としては、例えば、熟成工程、中和工程、重合開始剤や連鎖移動剤の失活工程、希釈工程、乾燥工程、濃縮工程、精製工程が挙げられる。 The method for producing the copolymer may include steps other than the above polymerization reaction step. Examples of other steps include an aging step, a neutralization step, a deactivation step of a polymerization initiator and a chain transfer agent, a dilution step, a drying step, a concentration step, and a purification step.
(架橋剤(A))
 本実施形態の架橋剤(A)は、オキサゾリン基、エポキシ基及びカルボジイミド基より選ばれるいずれかの官能基を有する架橋剤又はメラミン樹脂系架橋剤である。これらの架橋剤は、1種を単独で用いてもよく、2種類以上を併用してもよい。
(Crosslinking agent (A))
The cross-linking agent (A) of the present embodiment is a cross-linking agent or a melamine resin-based cross-linking agent having any functional group selected from an oxazoline group, an epoxy group and a carbodiimide group. These crosslinking agents may be used alone or in combination of two or more.
 オキサゾリン基を有する架橋剤は、オキサゾリン基を2以上有するオキサゾリン基含有化合物である。 The crosslinking agent having an oxazoline group is an oxazoline group-containing compound having two or more oxazoline groups.
 オキサゾリン基含有化合物としては、例えば、2,2’-ビス(2-オキサゾリン)、2,2’-メチレン-ビス(2-オキサゾリン)、2,2’-エチレン-ビス(2-オキサゾリン)、2,2’-トリメチレン-ビス(2-オキサゾリン)、2,2’-テトラメチレン-ビス(2-オキサゾリン)、2,2’-ヘキサメチレン-ビス(2-オキサゾリン)、2,2’-オクタメチレン-ビス(2-オキサゾリン)、2,2’-エチレン-ビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス(2-オキサゾリン)、2,2’-m-フェニレン-ビス(2-オキサゾリン)、2,2’-m-フェニレン-ビス(4,4’-ジメチル-2-オキサゾリン)、ビス(2-オキサゾリニルシクロヘキサン)スルフィド、ビス(2-オキサゾリニルノルボルナン)スルフィド、オキサゾリン環含有重合体が挙げられる。これらは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの中で、反応性を向上させる観点から、オキサゾリン環含有重合体が好ましく、水溶性を有するオキサゾリン環含有重合体がより好ましい。 Examples of the oxazoline group-containing compound include 2,2′-bis(2-oxazoline), 2,2′-methylene-bis(2-oxazoline), 2,2′-ethylene-bis(2-oxazoline), 2 ,2'-trimethylene-bis(2-oxazoline),2,2'-tetramethylene-bis(2-oxazoline),2,2'-hexamethylene-bis(2-oxazoline),2,2'-octamethylene -Bis(2-oxazoline), 2,2'-ethylene-bis(4,4'-dimethyl-2-oxazoline), 2,2'-p-phenylene-bis(2-oxazoline), 2,2'- m-phenylene-bis(2-oxazoline), 2,2'-m-phenylene-bis(4,4'-dimethyl-2-oxazoline), bis(2-oxazolinylcyclohexane)sulfide, bis(2-oxa) Examples include zolinyl norbornane) sulfide and oxazoline ring-containing polymers. These may be used alone or in combination of two or more. Among these, the oxazoline ring-containing polymer is preferable, and the water-soluble oxazoline ring-containing polymer is more preferable, from the viewpoint of improving reactivity.
 オキサゾリン環含有重合体は、例えば、株式会社日本触媒製、商品名:エポクロスWS-500、エポクロスWS-700、エポクロスK-2010、エポクロスK-2020、エポクロスK-2030等として商業的に容易に入手することができる。これらのなかでは、反応性を向上させる観点から、株式会社日本触媒製、商品名:エポクロスWS-500、エポクロスWS-700等の水溶性を有するオキサゾリン環含有重合体が好ましい。 The oxazoline ring-containing polymer is easily commercially available, for example, as trade name: Epocros WS-500, Epocros WS-700, Epocros K-2010, Epocros K-2020, Epocros K-2030 manufactured by Nippon Shokubai Co., Ltd. can do. Among these, water-soluble oxazoline ring-containing polymers such as Epocros WS-500 and Epocros WS-700 manufactured by Nippon Shokubai Co., Ltd. are preferable from the viewpoint of improving reactivity.
 エポキシ基を有する架橋剤は、エポキシ基を2以上有するエポキシ基含有化合物である。 A crosslinking agent having an epoxy group is an epoxy group-containing compound having two or more epoxy groups.
 エポキシ基含有化合物としては、例えば、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ビスフェノールA型ジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル等のエポキシ基を2つ有する化合物;3官能以上のポリエチレングリコールのグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のエポキシ基を3つ以上有する化合物が挙げられる。 Examples of the epoxy group-containing compound include diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, bisphenol A type diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerin diglycidyl ether, and other epoxy groups. Compounds having three or more functional groups: compounds having three or more epoxy groups such as trifunctional or higher functional polyethylene glycol glycidyl ether, trimethylolpropane polyglycidyl ether, sorbitol polyglycidyl ether, sorbitan polyglycidyl ether, and polyglycerol polyglycidyl ether.
 カルボジイミド基を有する架橋剤は、カルボジイミド基を2以上有するカルボジイミド基含有化合物である。その具体例としては、カルボジライトSV-02、カルボジライトE-01(商品名;日清紡ケミカル株式会社製)が挙げられる。 The cross-linking agent having a carbodiimide group is a carbodiimide group-containing compound having two or more carbodiimide groups. Specific examples thereof include Carbodilite SV-02 and Carbodilite E-01 (trade name; manufactured by Nisshinbo Chemical Inc.).
 メラミン樹脂系架橋剤としては、例えば、メラミンにホルマリンを作用させた化合物又はそのアルキル変性物が挙げられる。その具体例としては、サイテック・インダストリーズ社製の「サイメル」(登録商標)300、301、303、350、736、738、370、771、325、327、703、701、266、267、285、232、235、238、1141、272、254、202、1156、1158、三和ケミカル社の「ニカラック」(登録商標)E-2151、MW-100LM、MX-750LM、が挙げられる。 Examples of the melamine resin-based cross-linking agent include a compound obtained by reacting melamine with formalin or an alkyl-modified product thereof. Specific examples thereof include "Cymel" (registered trademark) 300, 301, 303, 350, 736, 738, 370, 771, 325, 327, 703, 701, 266, 267, 285, 232 manufactured by Cytec Industries. , 235, 238, 1141, 272, 254, 202, 1156, 1158, "Nikalac" (registered trademark) E-2151, MW-100LM, MX-750LM manufactured by Sanwa Chemical Co., Ltd. may be mentioned.
 上記架橋体において、架橋剤(A)の使用量は、共重合体100質量部に対して、0.5~30質量部であると好ましく、1~25質量部であるとより好ましく、3~20質量部であるとより好ましい。 In the crosslinked product, the amount of the crosslinking agent (A) used is preferably 0.5 to 30 parts by mass, more preferably 1 to 25 parts by mass, and 3 to 3 parts by mass based on 100 parts by mass of the copolymer. It is more preferably 20 parts by mass.
 架橋前の共重合体及び架橋剤(A)は、取り扱い性等の観点から、共重合体及び架橋剤(A)を含有する水性溶液とすることが好ましい。水性液体は、基材上に容易に塗布することが可能であり、得られる塗膜を架橋させることにより、基材上に架橋体を形成することができる。 The copolymer and the crosslinking agent (A) before crosslinking are preferably an aqueous solution containing the copolymer and the crosslinking agent (A) from the viewpoint of handleability and the like. The aqueous liquid can be easily applied to the base material, and a crosslinked product can be formed on the base material by crosslinking the resulting coating film.
 水性溶液とは、水又は含水率が50質量%以上である水と親水性有機溶媒との混合溶媒の溶液を意味する。親水性有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-プロピルアルコール、アリルアルコールなどの1価アルコール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、ジプロピレングリコールなどの多価アルコール、アセトン、メチルエチルケトン、メチルプロピルケトンなどのケトン、ギ酸メチル、ギ酸エチル、酢酸メチル、アセト酢酸メチルなどの脂肪族有機酸アルキルエステル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテルなどの多価アルコールのアルキルエーテルが挙げられる。これらの親水性有機溶媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。水性媒体としては、水が好ましい。 “Aqueous solution” means a solution of water or a mixed solvent of water having a water content of 50% by mass or more and a hydrophilic organic solvent. Examples of the hydrophilic organic solvent include monohydric alcohols such as methanol, ethanol, isopropyl alcohol, n-propyl alcohol, and allyl alcohol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, dipropylene glycol. Polyhydric alcohols such as acetone, ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl formate, ethyl formate, methyl acetate, aliphatic organic acid alkyl esters such as methyl acetoacetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, Examples thereof include alkyl ethers of polyhydric alcohols such as diethylene glycol diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and dipropylene glycol monomethyl ether. These hydrophilic organic solvents may be used alone or in combination of two or more. Water is preferred as the aqueous medium.
 水性溶液における共重合体及び架橋剤(A)の濃度は特に限定されないが、例えば、0.5~20質量%とすることができる。 The concentrations of the copolymer and the cross-linking agent (A) in the aqueous solution are not particularly limited, but can be, for example, 0.5 to 20% by mass.
 また、共重合体及び架橋剤(A)は、それぞれ別々に溶解させた水性溶液を調製した上で、基材上に架橋剤(A)の溶液、共重合体の溶液の順で塗布した後に架橋させてもよい。 In addition, after preparing an aqueous solution in which the copolymer and the crosslinking agent (A) are separately dissolved, after applying the solution of the crosslinking agent (A) and the solution of the copolymer on the base material in this order, It may be crosslinked.
 上述の共重合体及び架橋剤(A)を架橋させる際の条件は、用いる架橋剤(A)の種類に合わせて調整することができるが、例えば、50~150℃で5~120分熱処理する条件で架橋させることができる。 The conditions for crosslinking the above-mentioned copolymer and the crosslinking agent (A) can be adjusted according to the type of the crosslinking agent (A) used, but for example, heat treatment is performed at 50 to 150° C. for 5 to 120 minutes. It can be crosslinked under the conditions.
 本実施形態の架橋体は、親水性や抗血栓性に優れるので、船底塗料、防汚塗料等の塗料、また、金属、繊維、布帛、ガラス、樹脂、中空糸、セラミックス、多孔質、膜など種々の基材の防汚処理、防曇処理、帯電防止、親水化処理、汚染防止処理、アンチファウリング処理等の表面処理に適しており、特に医療用具、医療用機器の表面処理に好適である。 Since the crosslinked product of the present embodiment is excellent in hydrophilicity and antithrombogenicity, paints such as ship bottom paints and antifouling paints, and also metals, fibers, cloths, glass, resins, hollow fibers, ceramics, porosity, membranes, etc. Suitable for surface treatment such as antifouling treatment, antifogging treatment, antistatic treatment, hydrophilization treatment, antifouling treatment, antifouling treatment, etc. of various base materials, and particularly suitable for surface treatment of medical devices and equipment. is there.
<第2の実施形態の架橋体>
 第2の実施形態の架橋体は、60質量%以上の2以上の水酸基を有する重合性二重結合含有単量体由来の構造単位を含む重合体を、エネルギー線照射により架橋してなる架橋体である。
<Crosslinked product of the second embodiment>
The crosslinked body of the second embodiment is a crosslinked body obtained by crosslinking a polymer containing 60% by mass or more of a structural unit derived from a polymerizable double bond-containing monomer having two or more hydroxyl groups by energy beam irradiation. Is.
 かかる架橋体は、親水性、抗血栓性及び耐水性に優れ、且つタックが小さい。本実施形態の架橋体によりこのような効果を奏する理由は必ずしも明らかでないが、本発明者等は以下のように考えている。
 すなわち、本実施形態の架橋体は、2以上の水酸基を有する単量体由来の構造単位を60質量%以上含むため、親水性及び抗血栓性に優れたものとなる。さらに、本実施形態の架橋体は、重合体がエネルギー線照射により架橋されているため、耐水性に優れ、且つタックが小さいものとなる。
Such a crosslinked product is excellent in hydrophilicity, antithrombogenicity and water resistance, and has low tack. The reason why such an effect is obtained by the crosslinked product of the present embodiment is not always clear, but the present inventors consider it as follows.
That is, since the crosslinked product of the present embodiment contains 60% by mass or more of the structural unit derived from the monomer having two or more hydroxyl groups, it is excellent in hydrophilicity and antithrombotic property. Furthermore, in the crosslinked product of the present embodiment, the polymer is crosslinked by irradiation with energy rays, so that the water resistance is excellent and the tack is small.
 以下、本実施形態の架橋体について詳述する。 Hereinafter, the crosslinked body of the present embodiment will be described in detail.
 2以上の水酸基を有する重合性二重結合含有単量体としては、上述の第1の実施形態における単量体(A)と同様のものを用いることができる。単量体(A)に由来する構造単位の含有量は、重合体の総量に対して、60質量%以上であり、75質量%以上であると好ましく、90質量%以上であるとより好ましく、100質量%であると更に好ましい。 As the polymerizable double bond-containing monomer having two or more hydroxyl groups, the same monomer (A) as in the above-described first embodiment can be used. The content of the structural unit derived from the monomer (A) is 60% by mass or more, preferably 75% by mass or more, and more preferably 90% by mass or more, based on the total amount of the polymer. More preferably, it is 100% by mass.
 本実施形態の重合体は、単量体(A)以外の単量体、例えば上述の第1の実施形態における単量体(B)及び/又は単量体(C)を含んでいてもよい。本実施形態の重合体が、単量体(A)以外の単量体を含む場合のその含有量は、40質量%以下であると好ましく、25質量%以下であるとより好ましく、10質量%以下であると更に好ましい。 The polymer of this embodiment may contain a monomer other than the monomer (A), for example, the monomer (B) and/or the monomer (C) in the above-described first embodiment. .. When the polymer of the present embodiment contains a monomer other than the monomer (A), its content is preferably 40% by mass or less, more preferably 25% by mass or less, and more preferably 10% by mass. The following is more preferable.
 本実施形態の重合体は、例えば、上述の第1の実施形態における共重合体と同様の重合反応の条件で製造することができる。 The polymer of this embodiment can be produced, for example, under the same polymerization reaction conditions as the copolymer in the above-described first embodiment.
 架橋の際に適用されるエネルギー線としては、電子線、γ線、放射線、紫外線等を用いることができ、好ましくは波長150~450nmの紫外線である。このような波長を発する光源としては、例えば、太陽光線、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライド灯、ガリウム灯、キセノン灯、フラッシュ型キセノン灯、カーボンアーク灯、LED型UV光源が挙げられる。紫外線照射の際の照度は、好ましくは0.1~100mW/cm、より好ましくは1~75mW/cm、更に好ましくは5~50mW/cmであり、照射時間は、好ましくは15~180分間、より好ましくは30~120分間、更に好ましくは45~90分間である。このような条件で紫外線照射を行うと、光ラジカル発生剤なしでも上記重合体を架橋させることができる。 As the energy rays applied at the time of crosslinking, electron rays, γ rays, radiation, ultraviolet rays and the like can be used, and ultraviolet rays having a wavelength of 150 to 450 nm are preferable. Examples of the light source that emits such a wavelength include sunlight, low-pressure mercury lamp, high-pressure mercury lamp, ultra-high-pressure mercury lamp, metal halide lamp, gallium lamp, xenon lamp, flash type xenon lamp, carbon arc lamp, and LED type UV light source. .. The illuminance at the time of ultraviolet irradiation is preferably 0.1 to 100 mW/cm 2 , more preferably 1 to 75 mW/cm 2 , and further preferably 5 to 50 mW/cm 2 , and the irradiation time is preferably 15 to 180. Minutes, more preferably 30 to 120 minutes, still more preferably 45 to 90 minutes. When UV irradiation is performed under such conditions, the above-mentioned polymer can be crosslinked even without a photoradical generator.
 本実施形態の架橋体は、親水性や抗血栓性に優れるので、船底塗料、防汚塗料等の塗料、また、金属、繊維、布帛、ガラス、樹脂、中空糸、セラミックス、多孔質、膜など種々の基材の防汚処理、防曇処理、帯電防止、親水化処理、汚染防止処理、アンチファウリング処理等の表面処理に適しており、特に医療用具、医療用機器の表面処理に好適である。 Since the crosslinked product of the present embodiment is excellent in hydrophilicity and antithrombogenicity, paints such as ship bottom paints and antifouling paints, and also metals, fibers, cloths, glass, resins, hollow fibers, ceramics, porosity, membranes, etc. Suitable for surface treatment such as antifouling treatment, antifogging treatment, antistatic treatment, hydrophilization treatment, antifouling treatment, antifouling treatment, etc. of various base materials, and particularly suitable for surface treatment of medical devices and equipment. is there.
<第3の実施形態の架橋体>
 第3の実施形態の架橋体は、60質量%以上の2以上の水酸基を有する重合性二重結合含有単量体、2以上の(メタ)アクリロイル基を有する架橋剤(以下、「架橋剤(B)」ともいう。)、及び光ラジカル発生剤を含有する光硬化性組成物を、紫外線照射により重合及び架橋してなる架橋体である。
<Crosslinked product of the third embodiment>
The crosslinked product of the third embodiment is a crosslinker having a polymerizable double bond-containing monomer having 60% by mass or more and 2 or more hydroxyl groups, and a crosslinker having 2 or more (meth)acryloyl groups (hereinafter, "crosslinking agent ( B)")), and a photocurable composition containing a photoradical generator are polymerized and crosslinked by ultraviolet irradiation.
 かかる架橋体は、親水性、抗血栓性及び耐水性に優れ、且つタックが小さい。本実施形態の架橋体によりこのような効果を奏する理由は必ずしも明らかでないが、本発明者等は以下のように考えている。
 すなわち、本実施形態の架橋体は、2以上の水酸基を有する単量体由来の構造単位を60質量%以上含むため、親水性及び抗血栓性に優れたものとなる。さらに、本実施形態の架橋体は、単量体が架橋剤(B)により架橋されているため、耐水性に優れ、且つタックが小さいものとなる。
Such a crosslinked product is excellent in hydrophilicity, antithrombogenicity and water resistance, and has low tack. The reason why such an effect is obtained by the crosslinked product of the present embodiment is not always clear, but the present inventors consider it as follows.
That is, since the crosslinked product of the present embodiment contains 60% by mass or more of the structural unit derived from the monomer having two or more hydroxyl groups, it is excellent in hydrophilicity and antithrombotic property. Further, in the crosslinked product of the present embodiment, the monomers are crosslinked by the crosslinking agent (B), so that the water resistance is excellent and the tack is small.
 以下、本実施形態の架橋体について詳述する。 Hereinafter, the crosslinked body of the present embodiment will be described in detail.
(光硬化性樹脂組成物)
 2以上の水酸基を有する重合性二重結合含有単量体としては、上述の第1の実施形態における単量体(A)と同様のものを用いることができる。光硬化性樹脂組成物における単量体(A)の含有量は、60質量%以上であり、65質量%以上であると好ましく、70質量%以上であるとより好ましい。
(Photocurable resin composition)
As the polymerizable double bond-containing monomer having two or more hydroxyl groups, the same monomer as the monomer (A) in the above first embodiment can be used. The content of the monomer (A) in the photocurable resin composition is 60% by mass or more, preferably 65% by mass or more, and more preferably 70% by mass or more.
 架橋剤(B)としては、例えば、エチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等のアルカンジオールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールジ(メタ)アクリレート;エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート等のビスフェノール変性ジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、イソシアヌル酸トリス[エチルオキシ(メタ)アクリレート]、グリセリントリ(メタ)アクリレート等の3官能以上の(メタ)アクリル酸エステル又はその部分エステルが挙げられる。 Examples of the cross-linking agent (B) include ethylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate. Alkane diol di(meth)acrylates such as; polyoxyalkylene glycol di(meth)acrylates such as diethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate; ethoxylated bisphenol A Bisphenol-modified di(meth)acrylates such as di(meth)acrylate and propoxylated ethoxylated bisphenol A diacrylate; trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, Examples thereof include trifunctional or higher functional (meth)acrylic acid esters such as dipentaerythritol hexa(meth)acrylate, isocyanuric acid tris[ethyloxy(meth)acrylate], and glycerin tri(meth)acrylate, or partial esters thereof.
 光硬化性樹脂組成物における架橋剤(B)の含有量は、特に限定されないが、例えば0.1~10質量%であると好ましく、0.5~8質量%であるとより好ましく、1~5質量%であると更に好ましい。 The content of the crosslinking agent (B) in the photocurable resin composition is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and more preferably 1 to More preferably, it is 5% by mass.
 光ラジカル発生剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル等のベンゾインおよびそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン等のアセトフェノン類;2-メチルアントラキノン、2-アミルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン等のベンゾフェノン類;1-ヒドロキシシクロヘキシルフェニルケトン(イルガキュア184)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オンや2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1;アシルホスフィンオキサイド類およびキサントン類が挙げられる。 Examples of the photo radical generator include benzoin, benzoin methyl ether, benzoin ethyl ether, and other benzoins and their alkyl ethers; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, and other acetophenones. Anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone and 1-chloroanthraquinone; thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone and 2-chlorothioxanthone; Ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone; 1-hydroxycyclohexyl phenyl ketone (Irgacure 184), 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propane- Examples thereof include 1-one and 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1; acylphosphine oxides and xanthones.
 光硬化性樹脂組成物における光ラジカル発生剤の含有量は、特に限定されないが、例えば0.1~10質量%であると好ましく、0.5~8質量%であるとより好ましく、1~5質量%であると更に好ましい。 The content of the photoradical generator in the photocurable resin composition is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and more preferably 1 to 5%. More preferably, it is mass %.
 本実施形態の光硬化性樹脂組成物は、上述の成分以外の成分を含んでいてもよい。その具体例としては、上述の第1の実施形態における単量体(B)又は(C)等が挙げられ、式(II)で表される(メタ)アクリル酸エステルが好ましい。 The photocurable resin composition of the present embodiment may contain components other than the above components. Specific examples thereof include the monomer (B) or (C) in the above-described first embodiment, and the (meth)acrylic acid ester represented by the formula (II) is preferable.
 本実施形態の光硬化性樹脂組成物が、上述の成分以外の成分を含む場合のその含有量は、35質量%以下であると好ましく、30質量%以下であるとより好ましく、25質量%以下であると更に好ましい。 When the photocurable resin composition of the present embodiment contains a component other than the above-mentioned components, its content is preferably 35% by mass or less, more preferably 30% by mass or less, and 25% by mass or less. Is more preferable.
 紫外線としては、波長150~450nmの紫外線を適用することができる。紫外線照射の条件は特に限定されないが、例えば、紫外線照射の照度0.1~100mW/cm、照射時間1~15分の条件とすることができる。 As the ultraviolet rays, ultraviolet rays having a wavelength of 150 to 450 nm can be applied. The conditions of the ultraviolet irradiation are not particularly limited, but for example, the conditions of the irradiation of the ultraviolet of 0.1 to 100 mW/cm 2 and the irradiation time of 1 to 15 minutes can be used.
 本実施形態の架橋体は、親水性や抗血栓性に優れるので、船底塗料、防汚塗料等の塗料、また、金属、繊維、布帛、ガラス、樹脂、中空糸、セラミックス、多孔質、膜など種々の基材の防汚処理、防曇処理、帯電防止、親水化処理、汚染防止処理、アンチファウリング処理等の表面処理に適しており、特に医療用具、医療用機器の表面処理に好適である。 Since the crosslinked product of the present embodiment is excellent in hydrophilicity and antithrombogenicity, paints such as ship bottom paints and antifouling paints, and also metals, fibers, cloths, glass, resins, hollow fibers, ceramics, porosity, membranes, etc. Suitable for surface treatment such as antifouling treatment, antifogging treatment, antistatic treatment, hydrophilization treatment, antifouling treatment, antifouling treatment, etc. of various base materials, and particularly suitable for surface treatment of medical devices and equipment. is there.
<塗膜>
 本実施形態の塗膜は、上述の第1、第2又は第3の実施形態の架橋体を含む。かかる塗膜は、例えば、上述の架橋体又はその前駆体の溶液を、医療用具又は適切な基材上に塗布し、適切な条件で乾燥後、必要に応じて架橋条件に付すことにより得られる。
<Coating film>
The coating film of the present embodiment includes the crosslinked body of the above-mentioned first, second or third embodiment. Such a coating film can be obtained, for example, by applying a solution of the above-mentioned crosslinked product or its precursor on a medical device or an appropriate substrate, drying it under appropriate conditions, and then subjecting it to crosslinking conditions if necessary. ..
 乾燥状態での塗膜の表面の赤外吸収強度をATR法で測定したとき、波長1720cm-1における吸光度に対する波長3350cm-1における吸光度の比(波長3350cm-1における吸光度/波長1720cm-1における吸光度)は、0.2以上1.0未満であると好ましく、0.25以上0.8以下であるとより好ましく、0.3以上0.6以下であると更に好ましい。なお、波長3350cm-1又は波長1720cm-1は、それぞれ架橋体中の水酸基又はカルボキシ基に対応する波長であり、上記吸光度の比は架橋体中の水酸基の量に対するカルボキシ基の量の比に相当する。 When an infrared absorption intensity at the surface of the coating film in a dry state was measured by ATR method, absorbance at the absorbance / wavelength 1720 cm -1 in absorbance ratio (wavelength 3350 cm -1 at the wavelength 3350 cm -1 to the absorbance at a wavelength of 1720 cm -1 ) Is preferably 0.2 or more and less than 1.0, more preferably 0.25 or more and 0.8 or less, and further preferably 0.3 or more and 0.6 or less. The wavelength of 3350 cm −1 or the wavelength of 1720 cm −1 is the wavelength corresponding to the hydroxyl group or the carboxy group in the crosslinked product, and the absorbance ratio corresponds to the ratio of the amount of the carboxy group to the amount of the hydroxyl group in the crosslinked product. To do.
 塗膜の厚さは、用途に合わせて適宜調整することができるが、例えば、0.01~5μmとすることができる。 The thickness of the coating film can be appropriately adjusted according to the application, but can be, for example, 0.01 to 5 μm.
<医療用具用材料及び医療用具>
 本実施形態の医療用具用材料は、上述の架橋体又は塗膜を含む。かかる医療用具用材料は、上述の架橋体又は塗膜を含むため、抗血栓性及び耐水性に優れ、且つタックが小さい。本実施形態の医療用具用材料は、このような性質を有することから、血液と接触しても血栓を生じにくい抗血栓性材料、医療用具において生体成分又は生体組織と接触する部分を構成する材料、細胞培養基材等として好適に適用することができる。
<Medical equipment materials and medical equipment>
The material for medical device of the present embodiment includes the above-mentioned crosslinked body or coating film. Since such a material for a medical device contains the above-mentioned crosslinked body or coating film, it has excellent antithrombogenicity and water resistance, and has low tack. Since the medical device material of the present embodiment has such properties, it is an antithrombotic material that hardly causes a thrombus even when it comes into contact with blood, and a material that constitutes a portion in contact with a biological component or a biological tissue in the medical device. It can be suitably applied as a cell culture substrate.
 本実施形態の医療用具は、上述の医療用具用材料により表面をコーティングされたものである。かかる医療用具は、上述の架橋体又は塗膜を含むため、抗血栓性及び耐水性に優れ、且つタックが小さい。 The medical device of the present embodiment has a surface coated with the above-mentioned medical device material. Since such a medical device contains the above-mentioned crosslinked product or coating film, it has excellent antithrombogenicity and water resistance, and has low tack.
 本実施形態の医療用具は、生体成分又は生体組織と接触する部分の少なくとも一部が上記医療用具用材料を用いて構成されていればよいが、生体成分又は生体組織と接触する部分の面積の50%以上が上記医療用具用材料で覆われていることが好ましく、80%以上覆われていることがより好ましく、生体成分又は生体組織と接触する部分の全てが上記医療用具用材料で覆われていることが更に好ましい。
 本実施形態の医療用具は、いずれの生体成分や生体組織と接触する用途にも用いることができるが、血液と接触する用途に用いられることは、好適な実施形態の1つである。
The medical device of the present embodiment, at least a portion of the portion in contact with a biological component or biological tissue may be configured using the material for a medical device, the area of the portion in contact with a biological component or biological tissue It is preferable that 50% or more is covered with the medical device material, more preferably 80% or more, and all the portions that come into contact with biological components or tissues are covered with the medical device material. More preferably.
The medical device according to the present embodiment can be used for the purpose of contacting any living body component or body tissue, but it is one of the preferred embodiments to be used for the purpose of contacting blood.
 各種医療用具の生体成分又は生体組織と接触する部分に上記医療用具用材料を保持させる方法としては、医療用具又はその部品の表面を医療用具用材料でコーティングする方法、放射線、電子線、紫外線等の活性エネルギー線によるグラフト重合を利用して医療用具の表面と医療用具用材料とを結合させる方法、医療用具の表面の官能基と医療用具用材料とを反応させて結合させる方法等、種々の方法を用いることができる。コーティング法を用いる場合、医療用具又はその部品の表面を医療用具用材料でコーティングする方法として、塗布法、スプレー法、ディップ法等のいずれの方法を用いてもよい。 As a method of holding the material for a medical device in a portion that comes into contact with a biological component or a biological tissue of various medical devices, a method of coating the surface of the medical device or a part thereof with the material for a medical device, radiation, electron beam, ultraviolet ray, etc. A method of bonding the surface of a medical device and a material for a medical device by using graft polymerization with an active energy ray, a method of reacting a functional group on the surface of the medical device with a material for a medical device to bond, Any method can be used. When the coating method is used, any method such as a coating method, a spray method, or a dipping method may be used as a method of coating the surface of the medical device or the component thereof with the material for a medical device.
 上記医療用具用材料を保持させる医療用具の材質は特に制限されず、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ハロゲン化ポリオレフィン、ポリエチレンテレフタレート、ポリカーボネート、ポリアミド、アクリル樹脂、スチロール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリスルホン、ポリエーテルスルホン、セルロース、セルロースアセテート等のいずれの材質のものであってもよい。また、金属、セラミックス及びこれらの複合材料等も例示でき、複数の基体より基材が構成されていてもよい。金属としては、金、銀等の貴金属、銅、アルミニウム、タングステン、ニッケル、クロム、チタン等の卑金属、及びこれらの金属の合金並びにこれらの表面が金めっきされたものが例示できるがこれらに限定されるものではない。金属は単体で用いてもよく、機能性を付与するために他の金属との合金又は金属の酸化物として用いてもよい。価格や入手の容易さの観点から、ニッケル、銅及びこれらを主成分とする金属を用いることが好ましい。ここで、主成分とは、上記基体を形成する材料のうち50重量%以上を占める成分をいう。基材の形態も特に制限されず、成形体、繊維、不織布、多孔質体、粒子、フィルム、シート、チューブ、中空糸や粉末等のいずれの形態でもよい。 The material of the medical device for holding the material for the medical device is not particularly limited, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, halogenated polyolefin, polyethylene terephthalate, polycarbonate, polyamide, It may be made of any material such as acrylic resin, styrene resin, polyurethane resin, silicone resin, polysulfone, polyether sulfone, cellulose and cellulose acetate. In addition, metals, ceramics, and composite materials thereof can be exemplified, and the base material may be composed of a plurality of bases. Examples of the metal include noble metals such as gold and silver, base metals such as copper, aluminum, tungsten, nickel, chromium and titanium, and alloys of these metals and those whose surfaces are plated with gold, but are not limited thereto. Not something. The metal may be used alone, or may be used as an alloy with another metal or as an oxide of the metal in order to impart functionality. From the viewpoints of price and availability, it is preferable to use nickel, copper, and metals containing these as the main components. Here, the main component means a component that accounts for 50% by weight or more of the material forming the base. The form of the base material is not particularly limited, and may be any form such as a molded body, fiber, non-woven fabric, porous body, particles, film, sheet, tube, hollow fiber or powder.
 本実施形態の医療用具用材料を細胞培養基材として使用する場合、医療用具用材料をそのまま用いてもよく、所定の基材上にコーティングして用いてもよい。
 基材の材質は特に制限されず、木綿、麻等の天然高分子、ポリエステル、ナイロン、オレフィン、ポリアミド、ポリウレタン、ポリアクリロニトリル、ポリ(メタ)アクリレート、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ハロゲン化ポリオレフィン、ポリカーボネート、スチロール樹脂、シリコン樹脂等の合成高分子等を用いることができる。また、金属、セラミックス及びこれらの複合材料等も例示でき、複数の基体より基材が構成されていてもよい。金属としては、金、銀等の貴金属、銅、アルミニウム、タングステン、ニッケル、クロム、チタン等の卑金属、及びこれらの金属の合金並びにこれらの表面が金めっきされたものが例示できるがこれらに限定されるものではない。金属は単体で用いてもよく、機能性を付与するために他の金属との合金又は金属の酸化物として用いてもよい。価格や入手の容易さの観点から、ニッケル、銅及びこれらを主成分とする金属を用いることが好ましい。ここで、主成分とは、上記基体を形成する材料のうち50重量%以上を占める成分をいう。
 基材の形態も特に制限されず、成形体、繊維、不織布、多孔質体、粒子、フィルム、シート、チューブ、中空糸や粉末等のいずれの形態でもよい。
When the material for medical device of the present embodiment is used as a cell culture substrate, the material for medical device may be used as it is or may be used by coating it on a predetermined substrate.
The material of the base material is not particularly limited, and natural polymers such as cotton and hemp, polyester, nylon, olefin, polyamide, polyurethane, polyacrylonitrile, poly(meth)acrylate, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, Synthetic polymers such as polyvinylidene fluoride, polytetrafluoroethylene, halogenated polyolefin, polycarbonate, styrene resin, and silicone resin can be used. In addition, metals, ceramics, and composite materials thereof can be exemplified, and the base material may be composed of a plurality of bases. Examples of the metal include noble metals such as gold and silver, base metals such as copper, aluminum, tungsten, nickel, chromium and titanium, and alloys of these metals and those whose surfaces are plated with gold, but are not limited thereto. Not something. The metal may be used alone, or may be used as an alloy with another metal or as an oxide of the metal in order to impart functionality. From the viewpoints of price and availability, it is preferable to use nickel, copper, and metals containing these as the main components. Here, the main component means a component that accounts for 50% by weight or more of the material forming the base.
The form of the base material is not particularly limited, and may be any form such as a molded body, fiber, non-woven fabric, porous body, particles, film, sheet, tube, hollow fiber or powder.
 本実施形態の医療用具用材料は、人工血管や人工臓器等の人工生体組織用や、血液フィルター、各種カテーテル、若しくは各種ステント等;生体組織と接触する用具用の部材として、また、細胞培養基材、血液透析装置用の部材、血液若しくは組織検査用器具の部材等;生体由来成分(細胞や血液等)と接触する用具用の部材として適用することができる。すなわち、本実施形態における医療用具には、生体組織と接触する用具、生体由来成分(細胞や血液等)と接触する用具等が含まれる。 The medical device material of the present embodiment is used for artificial biological tissues such as artificial blood vessels and artificial organs, blood filters, various catheters, various stents, etc.; members for devices that come into contact with biological tissues, and cell culture substrates. It can be applied as a material, a member for a hemodialysis device, a member for a blood or tissue testing instrument, and the like; a member for a tool that comes into contact with a living body-derived component (cell, blood, etc.). That is, the medical device in the present embodiment includes a device that comes into contact with a living tissue, a device that comes into contact with a living body-derived component (such as cells and blood), and the like.
 以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<合成例>
[GLMA(グリセロールモノアクリレート)]
 撹拌子を入れた反応容器にガス導入管、温度計、冷却管、及び、留出液受器に繋げたトの字管を付し、アクリル酸メチル230g、2,2-ジメチル-1,3-ジオキソラン-4-メタノール(DOM)70gを仕込み、ガス導入管を通して酸素/窒素混合ガス(酸素濃度7vol%)を吹き込みながら反応溶液を攪拌し、オイルバス(バス温110℃)で加熱を開始した。留出液に水が出てこなくなってから、チタンテトライソプロポキシド4.5gを反応容器に添加し、エステル交換反応を開始させた。生成してくるメタノールをアクリル酸メチルで共沸留去しながら、ガスクロマトグラフィ(GC)分析によりiPGLMA(イソプロピリデングリセリルアクリレート)/DOMの面積比を追跡した。反応開始から7時間後のGC分析で、iPGLMA/DOMの面積比が9/1を超えたのを確認し、反応を終了し、室温まで冷却した。反応液に精製水150gと抽出溶媒として酢酸エチル300gを加え10分撹拌した。チタンテトライソプロポキシドの加水分解により生じた酸化チタンの沈殿を、吸引濾過で除いた濾液を分液漏斗に移し、有機層と水層を分離した。有機層を精製水で2回洗浄したのち、ロータリーエバポレーターに移し、残存アクリル酸メチル及び軽沸成分を留去し、iPGLMA96gを得た。
 撹拌子を入れたナスフラスコにガス導入管を設け、精製水160mlとiPGLMA80gを加えて溶解させた後に、予め水に浸漬後に風乾した固体酸触媒アンバーリスト15Jwet(オルガノ社製)を35g加えた。ガス導入管を通して酸素/窒素混合ガス(酸素濃度7vol%)を吹き込みながら反応溶液を攪拌し、室温下で脱保護反応を開始させた。GC分析によりGLMA/iPGLMAの面積比を追跡し、面積比が99/1を超えたのを確認し、4時間で反応を終了した。固体酸触媒を濾別して得られた濾液をn-ヘキサンで洗浄し、未反応iPGLMAを除いた。水層を減圧濃縮し、目的とするGLMA53gを得た。
<Synthesis example>
[GLMA (glycerol monoacrylate)]
A reaction vessel containing a stirrer was equipped with a gas inlet tube, a thermometer, a cooling tube, and a V-shaped tube connected to a distillate receiver, and 230 g of methyl acrylate, 2,2-dimethyl-1,3 -70 g of dioxolane-4-methanol (DOM) was charged, the reaction solution was stirred while blowing an oxygen/nitrogen mixed gas (oxygen concentration 7 vol%) through a gas introduction tube, and heating was started in an oil bath (bath temperature 110°C). .. After water did not come out to the distillate, 4.5 g of titanium tetraisopropoxide was added to the reaction vessel to start the transesterification reaction. The area ratio of iPGLMA (isopropylidene glyceryl acrylate)/DOM was traced by gas chromatography (GC) analysis while azeotropically distilling off the produced methanol with methyl acrylate. After 7 hours from the start of the reaction, it was confirmed by GC analysis that the area ratio of iPGLMA/DOM exceeded 9/1, the reaction was terminated, and the temperature was cooled to room temperature. Purified water (150 g) and ethyl acetate (300 g) as an extraction solvent were added to the reaction solution, and the mixture was stirred for 10 minutes. The titanium oxide precipitate generated by the hydrolysis of titanium tetraisopropoxide was removed by suction filtration, and the filtrate was transferred to a separatory funnel to separate an organic layer and an aqueous layer. The organic layer was washed twice with purified water and then transferred to a rotary evaporator to distill off residual methyl acrylate and light-boiling components to obtain 96 g of iPGLMA.
A gas introduction tube was provided in a round-bottomed flask containing a stirrer, 160 ml of purified water and 80 g of iPGLMA were added and dissolved therein, and then 35 g of solid acid catalyst Amberlyst 15Jwet (manufactured by Organo) which had been previously air-dried in water was added. The reaction solution was stirred while blowing an oxygen/nitrogen mixed gas (oxygen concentration 7 vol%) through the gas introduction tube, and the deprotection reaction was started at room temperature. The area ratio of GLMA/iPGLMA was traced by GC analysis, and it was confirmed that the area ratio exceeded 99/1, and the reaction was completed in 4 hours. The filtrate obtained by filtering off the solid acid catalyst was washed with n-hexane to remove unreacted iPGLMA. The aqueous layer was concentrated under reduced pressure to obtain 53 g of the target GLMA.
[共重合体1]
 攪拌子を入れた反応容器にガス導入管、温度計、冷却管を付し、単量体としてGLMA13.3g、アクリル酸(AA)0.7g、溶媒としてイオン交換水125.0gを仕込み、窒素ガスを流しながら98℃まで昇温した。アゾ系ラジカル重合開始剤0.007g(和光純薬株式会社製、商品名:VA086)をイオン交換水1.0gに溶解した溶液を投入し、重合反応を開始した。温度を99℃以上に保ちながら、反応を7時間継続し、その間、反応開始から1時間後、3時間後、5時間後にそれぞれ、0.0035gのVA086をイオン交換水0.5gに溶解した溶液を投入した。
 得られた重合体は、GPCにより測定した重量平均分子量(標準ポリスチレン換算)が、369,000であった。また、E型粘度計により測定した反応液の溶液粘度は25℃において19.1mPa・sであった。
[Copolymer 1]
A reaction vessel containing a stirrer was equipped with a gas introduction tube, a thermometer, and a cooling tube, and GLMA (13.3 g) as a monomer, acrylic acid (AA) 0.7 g, and ion-exchanged water (125.0 g) as a solvent were charged, and nitrogen was added. The temperature was raised to 98° C. while flowing gas. A solution prepared by dissolving 0.007 g of an azo radical polymerization initiator (manufactured by Wako Pure Chemical Industries, Ltd., trade name: VA086) in 1.0 g of ion-exchanged water was added to initiate a polymerization reaction. While maintaining the temperature at 99° C. or higher, the reaction was continued for 7 hours, during which 1 hour, 3 hours, and 5 hours after the start of the reaction, 0.0035 g of VA086 was dissolved in 0.5 g of ion-exchanged water. Was thrown in.
The obtained polymer had a weight average molecular weight measured by GPC (converted to standard polystyrene) of 369,000. The solution viscosity of the reaction solution measured by an E-type viscometer was 19.1 mPa·s at 25°C.
[共重合体2]
 攪拌子を入れた反応容器にガス導入管、温度計、冷却管を付し、単量体としてGLMA40.0g、アクリル酸(AA)5.0g、ブチルアクリレート(BA)45.0g、溶媒としてイオン交換水25.0gとエタノール75.0gを仕込み、窒素ガスを流しながら88℃まで昇温した。アゾ系ラジカル重合開始剤0.01g(和光純薬株式会社製、商品名:V-601)をイオン交換水0.25g、エタノール0.75gに溶解した溶液を投入し、重合反応を開始した。温度を89℃以上に保ちながら、反応を7時間継続し、その間、反応開始から1時間後、3時間後、5時間後にそれぞれ、0.01gのV-601をイオン交換水0.25g、エタノール0.75gに溶解した溶液を投入した。
 得られた重合体は、GPCにより測定した重量平均分子量(標準ポリスチレン換算)が、378,000であった。また、E型粘度計により測定した反応液の溶液粘度は25℃において7010mPa・sであった。
[Copolymer 2]
A reaction vessel containing a stirrer was equipped with a gas introduction tube, a thermometer, and a cooling tube, and GLMA 40.0 g as a monomer, acrylic acid (AA) 5.0 g, butyl acrylate (BA) 45.0 g, and an ion as a solvent 25.0 g of exchanged water and 75.0 g of ethanol were charged, and the temperature was raised to 88° C. while flowing nitrogen gas. A solution prepared by dissolving 0.01 g of an azo radical polymerization initiator (manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601) in 0.25 g of ion-exchanged water and 0.75 g of ethanol was added to initiate a polymerization reaction. While maintaining the temperature at 89°C or higher, the reaction was continued for 7 hours, during which time, 1 hour, 3 hours, and 5 hours after the start of the reaction, 0.01 g of V-601 was added to 0.25 g of ion-exchanged water and ethanol. A solution dissolved in 0.75 g was added.
The obtained polymer had a weight average molecular weight (converted to standard polystyrene) of 378,000 as measured by GPC. The solution viscosity of the reaction solution measured with an E-type viscometer was 7010 mPa·s at 25°C.
[共重合体3]
 攪拌子を入れた反応容器にガス導入管、温度計、冷却管を付し、単量体としてGLMA24.0g、ブチルアクリレート(BA)6.0g、溶媒としてエタノール20.0gを仕込み、窒素ガスを流しながら88℃まで昇温した。アゾ系ラジカル重合開始剤0.015g(和光純薬株式会社製、商品名:V-601)をエタノール0.5gに溶解した溶液を投入し、重合反応を開始した。温度を89℃以上に保ちながら、反応を5時間継続し、その間、反応開始から2時間後、3時間後にそれぞれ、0.015gのV-601を、エタノール0.5gに溶解した溶液を投入した。
 得られた重合体は、GPCにより測定した重量平均分子量(標準ポリスチレン換算)が、36,000であった。また、E型粘度計により測定した反応液の溶液粘度は25℃において2410mPa・sであった。
[Copolymer 3]
A reaction vessel containing a stirrer was equipped with a gas inlet tube, a thermometer, and a cooling tube, and 24.0 g of GLMA as a monomer, 6.0 g of butyl acrylate (BA), and 20.0 g of ethanol as a solvent were charged, and nitrogen gas was supplied. The temperature was raised to 88°C while flowing. A solution in which 0.015 g of an azo radical polymerization initiator (manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601) was dissolved in 0.5 g of ethanol was charged to start the polymerization reaction. While maintaining the temperature at 89° C. or higher, the reaction was continued for 5 hours, during which time, a solution prepared by dissolving 0.015 g of V-601 in 0.5 g of ethanol was added 2 hours and 3 hours after the reaction started. ..
The obtained polymer had a weight average molecular weight (converted to standard polystyrene) of 36,000 as measured by GPC. The solution viscosity of the reaction solution measured by an E-type viscometer was 2410 mPa·s at 25°C.
[GLMAホモポリマー]
 攪拌子を入れた反応容器にガス導入管、温度計、冷却管を付し、単量体としてGLMA14.0g、溶媒としてイオン交換水125.0gを仕込み、窒素ガスを流しながら98℃まで昇温した。アゾ系ラジカル重合開始剤0.007g(和光純薬株式会社製、商品名:VA086)をイオン交換水1.0gに溶解した溶液を投入し、重合反応を開始した。温度を99℃以上に保ちながら、反応を7時間継続し、その間、反応開始から1時間後、3時間後、5時間後にそれぞれ、0.0035gのVA086をイオン交換水0.5gに溶解した溶液を投入した。
 得られた重合体は、GPCにより測定した重量平均分子量(標準ポリスチレン換算)が、292,000であった。また、E型粘度計により測定した反応液の溶液粘度は25℃において19.1mPa・sであった。
[GLMA homopolymer]
A reaction vessel equipped with a stirrer was equipped with a gas inlet tube, thermometer, and cooling tube, and 14.0 g of GLMA as a monomer and 125.0 g of ion-exchanged water as a solvent were charged, and the temperature was raised to 98°C while flowing nitrogen gas. did. A solution prepared by dissolving 0.007 g of an azo radical polymerization initiator (manufactured by Wako Pure Chemical Industries, Ltd., trade name: VA086) in 1.0 g of ion-exchanged water was added to initiate a polymerization reaction. While maintaining the temperature at 99° C. or higher, the reaction was continued for 7 hours, during which 1 hour, 3 hours, and 5 hours after the start of the reaction, 0.0035 g of VA086 was dissolved in 0.5 g of ion-exchanged water. Was thrown in.
The obtained polymer had a weight average molecular weight (converted to standard polystyrene) of 292,000 as measured by GPC. The solution viscosity of the reaction solution measured by an E-type viscometer was 19.1 mPa·s at 25°C.
<評価方法>
 後述する実施例1~8及び比較例1~5で得られた試料フィルムを、以下の方法で評価した。その結果を表1~3に示す。
<Evaluation method>
The sample films obtained in Examples 1 to 8 and Comparative Examples 1 to 5 described later were evaluated by the following methods. The results are shown in Tables 1 to 3.
[接触角]
 試料フィルム裏面に両面テープを張り付け、試料台に固定し、接触角計を用いて、水中で1.5μlの空気泡をフィルム表面に接触させ、接触角を測定した。
[Contact angle]
A double-sided tape was attached to the back surface of the sample film, fixed to a sample stand, and 1.5 μl of air bubbles were brought into contact with the film surface in water using a contact angle meter to measure the contact angle.
[防曇性]
 <呼気テスト>
 試料フィルムの塗布面に口を大きく開けた状態で呼気を吹きかけ、表面の曇り状態を目視で判定した。
[Anti-fog property]
<Breath test>
Exhaled air was blown to the coated surface of the sample film with the mouth wide open, and the cloudiness of the surface was visually determined.
[水浸漬試験]
 試料フィルムを水道水に室温で24時間浸漬し、浸漬前後の塗布面の状態を目視で比較した。
[Water immersion test]
The sample film was immersed in tap water at room temperature for 24 hours, and the states of the coated surface before and after immersion were visually compared.
[流水試験]
 試料フィルムの塗布面を水道水2.5L/minの流水に3分間晒し、前後の状態を目視で比較した。
[Running water test]
The coated surface of the sample film was exposed to running water of 2.5 L/min of tap water for 3 minutes, and the front and rear states were visually compared.
[塗膜厚み]
 マイクロメーターにより測定した。
[Coating thickness]
It was measured by a micrometer.
[表面状態]
 <タック(指触法)>
 ポリエチレン製の保護手袋(株式会社精宏社製、サクラメン手袋、スタンダードタイプ)を着用し、指で試料フィルムの表面を5回、押す離すを繰り返した際にベタツキを感じるかどうかで表面のタックの有無を判定した。
[Surface condition]
<Tack (finger touch method)>
Wear protective gloves made of polyethylene (Sakuramen gloves, standard type, manufactured by Seiko Co., Ltd.), and touch the surface of the sample film 5 times with your finger. The presence or absence was judged.
[吸光度比]
 サーモフィッシャーサイエンティフィック株式会社製Nicolet NEXUS 670 FT-IRを用いて、1回反射ダイヤモンド水平ATR法により、積算回数32回で吸光度を測定した。波数1720cm-1における吸光度に対する波数3350cm-1における吸光度の比を計算し、吸光度比とした。吸光度比を測定する前に、120℃*30分間、乾燥機により試料フィルムを充分乾燥し、デシケータ―中で放冷し、測定直前にデシケータ―から取り出して測定した。
[Absorbance ratio]
Using Nicolet NEXUS 670 FT-IR manufactured by Thermo Fisher Scientific Co., the absorbance was measured 32 times by the single reflection diamond horizontal ATR method. The ratio of the absorbance at a wave number 3350 cm -1 was calculated for the absorbance at the wave number 1720 cm -1, and the absorbance ratio. Before measuring the absorbance ratio, the sample film was thoroughly dried with a dryer at 120° C. for 30 minutes, allowed to cool in a desiccator, and taken out from the desiccator immediately before the measurement.
<実施例1>
 共重合体としての上記共重合体1を固形分換算で100重量部、及び架橋剤としてのエポクロスWS-700(オキサゾリン系架橋剤;株式会社日本触媒製)を固形分換算で10重量部配合し、エタノール/イオン交換水=75/25(wt/wt)の混合溶媒で希釈して濃度10%に調整した。得られた溶液を、基材としてのペットフィルム(東レ ルミラー)上に、バーコーターを用いて塗布し、室温で乾燥後、熱風乾燥機により120℃で30分間、熱処理し試料フィルムとした。
<Example 1>
100 parts by weight of the above-mentioned copolymer 1 as a copolymer in terms of solid content and 10 parts by weight of Epocros WS-700 (oxazoline-based crosslinking agent; manufactured by Nippon Shokubai Co., Ltd.) in terms of solid content in terms of solid content were compounded. , Ethanol/ion-exchanged water=75/25 (wt/wt) mixed solvent to adjust the concentration to 10%. The obtained solution was applied on a PET film (Toray mirror) as a substrate using a bar coater, dried at room temperature, and then heat-treated at 120° C. for 30 minutes by a hot air dryer to obtain a sample film.
<実施例2~5、比較例1、2>
 共重合体及び架橋剤の種類及び配合比、並びに基材を表1に示すとおりに変更した他は、実施例1と同様にして、試料フィルムを得た。表1中の商品名又は略語の詳細を以下に示す。
(架橋剤)
WS700:エポクロスWS-700(オキサゾリン基含有架橋剤;株式会社日本触媒製)
DEGDGE:ジエチレングリコールジグリシジルエーテル(エポキシ基含有架橋剤;和光純薬株式会社製)
MX035:ニカラックMX035(メラミン樹脂架橋剤;日本カーバイド工業株式会社製)
V-02 :カルボジライト V-02(カルボジイミド基含有架橋剤;日清紡ケミカル株式会社製)
(基材)
PET  :ポリエチレンテレフタラート
OPP  :2軸延伸ポリプロピレン
<Examples 2 to 5, Comparative Examples 1 and 2>
A sample film was obtained in the same manner as in Example 1 except that the types and blending ratios of the copolymer and the crosslinking agent, and the base material were changed as shown in Table 1. Details of the trade names or abbreviations in Table 1 are shown below.
(Crosslinking agent)
WS700: Epocros WS-700 (oxazoline group-containing crosslinking agent; manufactured by Nippon Shokubai Co., Ltd.)
DEGDGE: diethylene glycol diglycidyl ether (epoxy group-containing crosslinking agent; manufactured by Wako Pure Chemical Industries, Ltd.)
MX035: Nikalac MX035 (melamine resin crosslinking agent; manufactured by Nippon Carbide Industry Co., Ltd.)
V-02: Carbodilite V-02 (carbodiimide group-containing crosslinking agent; manufactured by Nisshinbo Chemical Inc.)
(Base material)
PET: Polyethylene terephthalate OPP: Biaxially oriented polypropylene
<実施例6>
 上記共重合体1と、エポクロスWS-700(オキサゾリン系架橋剤;株式会社日本触媒製)を、それぞれエタノール/イオン交換水=75/25(wt/wt)の混合溶媒で希釈して濃度10%の溶液を調製した。まず、エポクロスWS-700の溶液をペットフィルム(東レ ルミラー)上にバーコーターを用いて塗布し、室温で乾燥後、その上から、共重合体1の溶液をバーコーター用いて塗布した。室温で乾燥した後、熱風乾燥機により、120℃で30分間、熱処理し、試料フィルムとした。
<Example 6>
The copolymer 1 and Epocros WS-700 (oxazoline-based crosslinking agent; manufactured by Nippon Shokubai Co., Ltd.) were diluted with a mixed solvent of ethanol/ion-exchanged water=75/25 (wt/wt) to obtain a concentration of 10%. Was prepared. First, a solution of Epocros WS-700 was applied on a PET film (Toray mirror) using a bar coater, dried at room temperature, and then a solution of copolymer 1 was applied thereon using a bar coater. After drying at room temperature, it was heat-treated at 120° C. for 30 minutes with a hot air dryer to obtain a sample film.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例7>
 上記GLMAホモポリマーの反応溶液をエタノールで10倍に希釈した溶液を、バーコーターを用いてポリプロピレン標準板(日本テストパネル社)上に塗布し、室温で乾燥した後、卓上型UV硬化装置HCT400B-28HB(セン特殊光源社製)を用いて365nmでの照度20mW/cmで1時間、UV照射し、試料フィルムとした。
<Example 7>
A solution prepared by diluting the reaction solution of the GLMA homopolymer 10 times with ethanol was applied on a polypropylene standard plate (Japan Test Panel Co., Ltd.) using a bar coater and dried at room temperature, and then a desktop UV curing device HCT400B- Using 28HB (manufactured by Sen Special Light Source Co., Ltd.), UV irradiation was performed for 1 hour at an illuminance of 20 mW/cm 2 at 365 nm to obtain a sample film.
<比較例3>
 UV照射しなかったこと以外は実施例3と同様にして、試料フィルムを作製した。
<Comparative example 3>
A sample film was prepared in the same manner as in Example 3 except that UV irradiation was not performed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<実施例8、比較例4、5>
 表3に記載の配合で単量体、架橋剤及び光ラジカル発生剤を混合し、ペットフィルム(東レ ルミラー)上に、バーコーターを用いて塗布し、卓上型UV硬化装置HCT400B-28HB(セン特殊光源社製)を用いて365nmでの照度20mW/cmで3分間、UV照射し、試料フィルムとした。表3中の商品名又は略語の詳細を以下に示す。
(単量体)
GLMA  :上記グリセロールモノアクリレート
BA    :ブチルアクリレート
(架橋剤)
NPGDA :ネオペンチルグリコールジアクリレート
(光ラジカル発生剤)
IQ-184:イルガキュア184
<Example 8, Comparative Examples 4 and 5>
A monomer, a cross-linking agent and a photo-radical generating agent are mixed in the composition shown in Table 3 and coated on a PET film (Toray mirror) using a bar coater, and a desktop UV curing device HCT400B-28HB (sen special (Manufactured by Light Source Co., Ltd.), and UV irradiation was performed for 3 minutes at an illuminance of 20 mW/cm 2 at 365 nm to obtain a sample film. Details of trade names or abbreviations in Table 3 are shown below.
(Monomer)
GLMA: the above glycerol monoacrylate BA: butyl acrylate (crosslinking agent)
NPGDA: Neopentyl glycol diacrylate (photo radical generator)
IQ-184: Irgacure 184
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 後述する実施例9~16及び比較例6~8の試料フィルムを作製し、以下の方法で血小板粘着試験を行った。なお、比較例9は、コントロール評価として、ペットフィルムについて血小板粘着試験を行った。血小板粘着試験の結果、及び試料フィルムの塗膜厚みの測定結果を表4に示す。 Sample films of Examples 9 to 16 and Comparative Examples 6 to 8 to be described later were prepared and a platelet adhesion test was conducted by the following method. In Comparative Example 9, as a control evaluation, a platelet adhesion test was performed on a pet film. Table 4 shows the results of the platelet adhesion test and the measurement results of the coating film thickness of the sample film.
<血小板粘着試験>
 試料上にクエン酸ナトリウムで抗凝固したヒト新鮮多血小板血漿0.2mLをピペットで滴下し、37℃で60分間静置した。続いてリン酸緩衝溶液でリンスし、試料フィルム表面に粘着した血小板をグルタルアルデヒドで固定した後、室温で十分に乾燥し、走査型電子顕微鏡で観察し、評価した。
<Platelet adhesion test>
0.2 mL of human fresh platelet-rich plasma anticoagulated with sodium citrate was dropped on the sample with a pipette and left standing at 37° C. for 60 minutes. Subsequently, the sample was rinsed with a phosphate buffer solution, the platelets adhered to the surface of the sample film were fixed with glutaraldehyde, then sufficiently dried at room temperature, and observed and evaluated by a scanning electron microscope.
<実施例9~13、比較例6>
 実施例1~5及び比較例1で用いた溶液をエタノールで希釈して濃度1%に調整した。得られた希釈溶液を、スピンコーターにより、ペットフィルム(東レ ルミラー)上に塗布し、室温で乾燥後、熱風乾燥機により120℃で30分間、熱処理し、試料フィルムとした。
<Examples 9 to 13, Comparative Example 6>
The solutions used in Examples 1 to 5 and Comparative Example 1 were diluted with ethanol to adjust the concentration to 1%. The obtained diluted solution was applied on a PET film (Toray mirror) by a spin coater, dried at room temperature, and then heat-treated at 120° C. for 30 minutes by a hot air dryer to obtain a sample film.
<実施例14>
 実施例6で用いたエポクロスWS-700の溶液及び共重合体1の溶液を、それぞれエタノールで希釈して濃度1%に調整した。まず、エポクロスWS-700の希釈溶液をペットフィルム(東レ ルミラー)上にスピンコーターにより塗布し、室温で乾燥後、その上から、共重合体1の溶液をスピンコーターにより塗布した。室温で乾燥した後、熱風乾燥機により、120℃で30分間、熱処理し、試料フィルムとした。
<Example 14>
The solution of Epocros WS-700 and the solution of copolymer 1 used in Example 6 were diluted with ethanol to adjust the concentration to 1%. First, a diluted solution of Epocros WS-700 was applied on a PET film (Toray mirror) by a spin coater, dried at room temperature, and then a solution of copolymer 1 was applied by a spin coater. After drying at room temperature, it was heat-treated at 120° C. for 30 minutes with a hot air dryer to obtain a sample film.
<実施例15>
 実施例7で用いた溶液をエタノールで希釈して濃度1%に調整した。得られた希釈溶液を、スピンコーターにより、ペットフィルム(東レ ルミラー)上に塗布し、室温で乾燥後、卓上型UV硬化装置HCT400B-28HB(セン特殊光源社製)を用いて365nmでの照度20mW/cmで1時間、UV照射し、試料フィルムとした。
<Example 15>
The solution used in Example 7 was diluted with ethanol to adjust the concentration to 1%. The diluted solution obtained was applied onto a PET film (Toray mirror) with a spin coater, dried at room temperature, and then with a desktop UV curing device HCT400B-28HB (made by Sen Special Light Source Co., Ltd.), an illuminance of 20 mW at 365 nm. /Cm 2 was irradiated with UV for 1 hour to obtain a sample film.
<実施例16、比較例7、8>
 実施例8及び比較例4及び5で用いた溶液をエタノールで希釈して濃度1%に調整した。得られた希釈溶液を、スピンコーターにより、ペットフィルム(東レ ルミラー)上に塗布し、室温で乾燥後、卓上型UV硬化装置HCT400B-28HB(セン特殊光源社製)を用いて365nmでの照度20mW/cmで3分間、UV照射し、試料フィルムとした。
<Example 16, Comparative Examples 7 and 8>
The solutions used in Example 8 and Comparative Examples 4 and 5 were diluted with ethanol to adjust the concentration to 1%. The diluted solution obtained was applied onto a PET film (Toray mirror) with a spin coater, dried at room temperature, and then with a desktop UV curing device HCT400B-28HB (made by Sen Special Light Source Co., Ltd.), an illuminance of 20 mW at 365 nm. /Cm 2 and UV irradiation for 3 minutes to obtain a sample film.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (10)

  1.  70質量%以上の2以上の水酸基を有する重合性二重結合含有単量体由来の構造単位、及び、1質量%以上のカルボキシ基を有する重合性二重結合含有単量体由来の構造単位を含む共重合体。 A structural unit derived from a polymerizable double bond-containing monomer having 70% by mass or more of 2 or more hydroxyl groups, and a structural unit derived from a polymerizable double bond-containing monomer having 1% by mass or more of a carboxy group. A copolymer containing.
  2.  2以上の水酸基を有する重合性二重結合含有単量体由来の構造単位は、グリセロール(メタ)アクリレート由来の構造単位を含む、請求項1に記載の共重合体。 The copolymer according to claim 1, wherein the structural unit derived from the polymerizable double bond-containing monomer having two or more hydroxyl groups includes a structural unit derived from glycerol (meth)acrylate.
  3.  請求項1又は2に記載の共重合体、並びに、オキサゾリン基、エポキシ基及びカルボジイミド基より選ばれるいずれかの官能基を有する架橋剤又はメラミン樹脂系架橋剤を含有する水性溶液。 An aqueous solution containing the copolymer according to claim 1 or 2 and a crosslinking agent having a functional group selected from an oxazoline group, an epoxy group and a carbodiimide group or a melamine resin-based crosslinking agent.
  4.  請求項1又は2に記載の共重合体、並びに、オキサゾリン基、エポキシ基及びカルボジイミド基より選ばれるいずれかの官能基を有する架橋剤又はメラミン樹脂系架橋剤を含有する組成物を架橋してなる架橋体。 A composition comprising the copolymer according to claim 1 or 2, and a composition containing a crosslinking agent having a functional group selected from an oxazoline group, an epoxy group and a carbodiimide group or a melamine resin-based crosslinking agent. Crosslinked body.
  5.  60質量%以上の2以上の水酸基を有する重合性二重結合含有単量体由来の構造単位を含む重合体を、エネルギー線照射により架橋してなる架橋体。 A crosslinked product obtained by crosslinking a polymer containing a structural unit derived from a polymerizable double bond-containing monomer having 60% by mass or more of two or more hydroxyl groups by irradiation with energy rays.
  6.  60質量%以上の2以上の水酸基を有する重合性二重結合含有単量体、2以上の(メタ)アクリロイル基を有する架橋剤、及び光ラジカル発生剤を含有する光硬化性組成物。 A photocurable composition containing 60% by mass or more of a polymerizable double bond-containing monomer having 2 or more hydroxyl groups, a crosslinking agent having 2 or more (meth)acryloyl groups, and a photoradical generator.
  7.  請求項6に記載の光硬化性組成物を、紫外線照射により重合及び架橋してなる架橋体。 A crosslinked body obtained by polymerizing and crosslinking the photocurable composition according to claim 6 by irradiation with ultraviolet rays.
  8.  請求項4、5又は7に記載の架橋体を含む塗膜であって、
     当該塗膜の表面の赤外吸収強度をATR法で測定したとき、波長1720cm-1における吸光度に対する波長3350cm-1における吸光度の比が、0.2以上1.0未満である塗膜。
    A coating film comprising the crosslinked product according to claim 4, 5 or 7,
    The When the infrared absorption strength of the surface of the coating film was measured by ATR method, the ratio of the absorbance at a wavelength of 3350 cm -1 to the absorbance at a wavelength of 1720 cm -1 is a coating film is less than 0.2 to 1.0.
  9.  請求項4、5若しくは7に記載の架橋体又は請求項8に記載の塗膜を含む医療用具用材料。 A material for medical device, comprising the crosslinked body according to claim 4, 5 or 7 or the coating film according to claim 8.
  10.  請求項9に記載の医療用具用材料により表面をコーティングされた医療用具。 A medical device whose surface is coated with the medical device material according to claim 9.
PCT/JP2019/045860 2019-01-25 2019-11-22 Copolymer, aqueous solution, cross-linked product, photocurable composition, coating film, medical device material and medical device WO2020152969A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020567386A JP7194949B2 (en) 2019-01-25 2019-11-22 Copolymers, aqueous solutions, crosslinked products, photocurable compositions, coating films, materials for medical devices, and medical devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019011378 2019-01-25
JP2019-011378 2019-01-25

Publications (1)

Publication Number Publication Date
WO2020152969A1 true WO2020152969A1 (en) 2020-07-30

Family

ID=71736756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045860 WO2020152969A1 (en) 2019-01-25 2019-11-22 Copolymer, aqueous solution, cross-linked product, photocurable composition, coating film, medical device material and medical device

Country Status (2)

Country Link
JP (1) JP7194949B2 (en)
WO (1) WO2020152969A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058485A1 (en) * 2021-10-06 2023-04-13 株式会社日本触媒 Water treatment chemical and water treatment membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370106A (en) * 1991-06-17 1992-12-22 Seiko Epson Corp Contact lens having glare-proof performance
JP3947754B1 (en) * 2006-01-20 2007-07-25 株式会社セイコーアドバンス UV curable printing ink
JP2007206654A (en) * 2006-02-06 2007-08-16 Toyo Ink Mfg Co Ltd Photosensitive colored composition and color filter
JP2010539263A (en) * 2007-09-13 2010-12-16 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Improved colored polymer production process
JP2017101162A (en) * 2015-12-02 2017-06-08 国立大学法人山形大学 Monomer composition for polymer for medical supply, and polymer for medical supply
JP2018149070A (en) * 2017-03-13 2018-09-27 国立大学法人九州大学 Material for in vivo indwelling object

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153441A (en) 2017-03-17 2018-10-04 株式会社日本触媒 Artificial joint material
JP7158143B2 (en) 2017-04-13 2022-10-21 株式会社日本触媒 biocompatible medical materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370106A (en) * 1991-06-17 1992-12-22 Seiko Epson Corp Contact lens having glare-proof performance
JP3947754B1 (en) * 2006-01-20 2007-07-25 株式会社セイコーアドバンス UV curable printing ink
JP2007206654A (en) * 2006-02-06 2007-08-16 Toyo Ink Mfg Co Ltd Photosensitive colored composition and color filter
JP2010539263A (en) * 2007-09-13 2010-12-16 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Improved colored polymer production process
JP2017101162A (en) * 2015-12-02 2017-06-08 国立大学法人山形大学 Monomer composition for polymer for medical supply, and polymer for medical supply
JP2018149070A (en) * 2017-03-13 2018-09-27 国立大学法人九州大学 Material for in vivo indwelling object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058485A1 (en) * 2021-10-06 2023-04-13 株式会社日本触媒 Water treatment chemical and water treatment membrane

Also Published As

Publication number Publication date
JP7194949B2 (en) 2022-12-23
JPWO2020152969A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP7001602B2 (en) Hydrophilic copolymers and medical devices
JPH1180393A (en) Hydrophilization of surface of polymeric support, product comprising support thus treated and use thereof
EP2599799B1 (en) Single-layer film and hydrophilic material comprising same
US10391205B2 (en) Polymer for medical device, medical device material and medical device prepared from the material, and monomer composition for polymer for use in production of medical device
JP7194949B2 (en) Copolymers, aqueous solutions, crosslinked products, photocurable compositions, coating films, materials for medical devices, and medical devices
JP2921027B2 (en) Primer composition for fluororesin
JP2013070796A (en) Biocompatible member and method for forming the same
JP7335123B2 (en) Resin composition, curable composition, article with coating film, method for producing article with coating film, method for producing coating agent and substrate with laminated coating film
JP6868235B2 (en) Polymers for medical devices, materials for medical devices and medical devices using them
JP6948661B2 (en) Material for indwelling
JP4999137B2 (en) Hydrophilic hard coat composition, hard coat material, and method of forming hard coat film
JP3643455B2 (en) Method for producing hydrophilic resin
JP3700273B2 (en)   Article formed with anti-fogging film and method for producing the same
JPH02255854A (en) Composition for forming antifogging resin coating
JPH04211461A (en) Ultraviolet-curing antifogging agent composition and production of antifogging coating film
JP2015168765A (en) Energy ray-curable resin composition
WO2020066685A1 (en) Copolymer for suppressing protein adhesion, method for producing copolymer, resin modifier, molding material, copolymer-containing composition, coating film and article
JPS63273668A (en) Hydrophilic film-forming composition, hydrophilic film thereof and production of said hydrophilic film
JP7349312B2 (en) Fouling biofouling inhibitor, fouling biofouling inhibiting composition, antifouling coating film, and substrate with antifouling coating film
JP5419682B2 (en) Coating composition and method of use thereof
WO2019003558A1 (en) Protein adsorption preventing agent, protein adsorption preventing film, and medical tool using same
Brauer et al. Grafting of polymeric side chains to soft tissues
JPH0632997A (en) Ultraviolet-curable coating composition
JP2000212313A (en) Production of surface hydrophilic molded product
WO2023190383A1 (en) Polymer composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911955

Country of ref document: EP

Kind code of ref document: A1