WO2020152873A1 - Refrigerant liquefying element, refrigerant liquefier using same, heat exchanger, and refrigeration cycle - Google Patents

Refrigerant liquefying element, refrigerant liquefier using same, heat exchanger, and refrigeration cycle Download PDF

Info

Publication number
WO2020152873A1
WO2020152873A1 PCT/JP2019/003539 JP2019003539W WO2020152873A1 WO 2020152873 A1 WO2020152873 A1 WO 2020152873A1 JP 2019003539 W JP2019003539 W JP 2019003539W WO 2020152873 A1 WO2020152873 A1 WO 2020152873A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
tube
element body
hole
flow
Prior art date
Application number
PCT/JP2019/003539
Other languages
French (fr)
Japanese (ja)
Inventor
篠崎 隆
鈴木 隆
恭智 小川
Original Assignee
株式会社オガワクリーンシステム
篠崎 隆
鈴木 隆
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オガワクリーンシステム, 篠崎 隆, 鈴木 隆 filed Critical 株式会社オガワクリーンシステム
Priority to PCT/JP2019/003539 priority Critical patent/WO2020152873A1/en
Priority to CN201980030185.1A priority patent/CN112136011B/en
Priority to JP2020537795A priority patent/JP6907427B2/en
Publication of WO2020152873A1 publication Critical patent/WO2020152873A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Definitions

  • the present invention relates to a refrigerant liquefaction element for liquefying a refrigerant, a refrigerant liquefier using the same, a heat exchanger and a refrigeration cycle.
  • a condenser in which a large number of fins are arranged in parallel and a meandering tube is made to penetrate between the fins (see, for example, Patent Document 1).
  • a condenser is used by being incorporated in a refrigeration cycle.
  • a condenser it has been proposed to incorporate a supercooler to improve the efficiency of the refrigeration cycle.
  • the conventional condenser has a problem that the efficiency of the refrigeration cycle is not sufficiently improved. Therefore, the present invention has been made in view of the above circumstances, and provides a refrigerant liquefaction element capable of improving the efficiency of the refrigeration cycle and downsizing, a refrigerant liquefier using the same, a heat exchanger, and a refrigeration cycle. The purpose is to do.
  • the present invention includes a main body, a spiral groove portion provided on an outer peripheral portion of the main body to swirl and flow the refrigerant, and a decompression expansion mechanism provided on an inner peripheral portion of the main body to decompress and expand the refrigerant to flow. Is characterized by.
  • the present invention includes a tube body and a refrigerant liquefaction element inserted in the tube body, the refrigerant liquefaction element is a main body, a spiral groove portion which is provided in an outer peripheral portion of the main body, and causes a refrigerant to swirl and flow, And a decompression expansion mechanism which is provided on an inner peripheral portion of the main body to decompress and expand the refrigerant to flow.
  • the present invention includes a fin, a plurality of tubes, and a refrigerant liquefaction element inserted into the tube on the outlet side, and the refrigerant liquefaction element swirls the refrigerant provided in the main body and the outer peripheral portion of the main body. And a depressurization expansion mechanism that is provided in an inner peripheral portion of the main body to decompress and expand the refrigerant to flow.
  • the refrigerant liquefaction element since the refrigerant liquefaction element has a spiral groove on the outer peripheral portion for swirling and flowing the refrigerant, the flow in the tube on the outlet side becomes a swirl flow, and the heat radiation amount of the fins through the inner wall surface of the tube increases.
  • the decompression/expansion mechanism that decompresses and expands the refrigerant is provided in the inner peripheral portion, the refrigerant is decompressed, the temperature is lowered, and the main body is cooled, and the degree of supercooling of the refrigerant is increased.
  • the refrigerant liquefaction element since the refrigerant liquefaction element has the spiral groove portion on the outer peripheral portion for swirling and flowing the refrigerant, the flow in the tube on the outlet side becomes a swirl flow, and the heat radiation amount of the fin through the tube inner wall surface increases.
  • the decompression/expansion mechanism that decompresses and expands the refrigerant is provided in the inner peripheral portion, the refrigerant is decompressed, the temperature is lowered, and the main body is cooled, and the degree of supercooling of the refrigerant is increased.
  • FIG. 1 is a diagram showing a refrigeration cycle according to one embodiment.
  • FIG. 2 is a diagram showing the structure of the refrigerant liquefier.
  • FIG. 3 is a diagram showing a refrigerant liquefier according to another embodiment.
  • FIG. 4 is a diagram showing a refrigeration cycle according to another embodiment.
  • FIG. 5 is a view showing the structure of the tube on the outlet side of the condenser.
  • FIG. 1 shows a refrigeration cycle.
  • Reference numeral 1 is a compressor, and a fin-and-tube type condenser 2 is connected to a discharge port of the compressor 1.
  • a pressure reducing device 3 is connected to the condenser 2, and a fin-and-tube type evaporator 4 is connected to the pressure reducing device 3.
  • the evaporator 4 is connected to the suction port of the compressor 1.
  • the condenser 2 includes a plurality of (five in the present embodiment) straight tubes 21 to 25 and a plurality of heat radiation fins 27, 27, 27....
  • the tubes 21 to 25 are meandering tubes, and the meandering tubes are composed of an inlet side tube 21, an outlet side tube 25, and central tubes 22 to 24.
  • the tube 21 on the inlet side is connected to the connecting pipe 28.
  • the outlet of the tube 21 is connected to the inlet of the tube 22 via a vent 51, and the outlet of the tube 22 is connected to the inlet of the tube 23 via a vent 52.
  • the outlet of the tube 23 is connected to the inlet of the tube 24 via a vent 53, and the outlet of the tube 24 is connected to the inlet of the tube 25 via a vent 54.
  • the outlet of the tube 25 is connected to the connecting pipe 29.
  • Reference numeral 81 is a condenser fan.
  • a refrigerant liquefier 100 is connected to the condenser 2 via a connecting pipe 29, and a decompression device 3 is connected to the refrigerant liquefying device 100 via a connecting pipe 30.
  • the refrigerant liquefier 100 is connected to the liquid line.
  • the evaporator 4 is connected to the decompression device 3 via a connection pipe 31.
  • the evaporator 4 is provided with a plurality of (five in the present embodiment) straight tubes 41 to 45 and a plurality of heat radiation fins 47, 47, 47.
  • the tubes 41 to 45 are meandering tubes, and the meandering tubes are composed of an inlet side tube 41, an outlet side tube 45, and a plurality of central tubes 42 to 44.
  • the tube 41 on the inlet side is connected to the connecting pipe 31.
  • the outlet of the tube 41 is connected to the inlet of the tube 42 via the vent 61, and the outlet of the tube 42 is connected to the inlet of the tube 43 via the vent 62.
  • the outlet of the tube 43 is connected to the inlet of the tube 44 via the vent 63, and the outlet of the tube 44 is connected to the inlet of the tube 45 via the vent 64.
  • the outlet of the tube 45 is connected to the compressor 1 via the connecting pipe 32.
  • Reference numeral 83 is an evaporator fan.
  • the refrigerant liquefier 100 includes a cylindrical tube body 110, and connecting members 101 and 102 are provided at both ends of the tube body 110.
  • the connector 101 is connected to the connecting pipe 29, and the connector 102 is connected to the connecting pipe 30.
  • a refrigerant liquefying element 105 is integrated with the inner circumference of the tube body 110.
  • the refrigerant liquefying element 105 has a hollow element body 172, and the spiral groove portion 173 for swirling and flowing the refrigerant is provided on the outer peripheral portion of the element body 172.
  • the spiral groove portions 173 are provided from the upstream side to the downstream side at a substantially equal pitch P over almost the entire area of the element body 172.
  • a through hole 179 is formed in the downstream portion of the element body 172 where the spiral groove 173 is not formed.
  • the refrigerant liquefying element 105 is arranged such that the land portion 174 of the element body 172 is in close contact with the inner peripheral surface of the tubular body 110.
  • a spiral groove 173 is formed between the land 174 and the land 174.
  • the spiral groove portion 173 has a rectangular cross section.
  • a decompression expansion mechanism 175 for decompressing and expanding the refrigerant to flow is provided on the inner peripheral portion of the element body 172.
  • the decompression expansion mechanism 175 is a hollow through hole provided in the element body 172.
  • the refrigerant flows in the direction of arrow R.
  • the hollow through hole includes a throttle hole 176 and an expansion hole 177 having an inner diameter larger than that of the throttle hole 176.
  • the hollow through hole has an inlet hole 178 having an inner diameter larger than that of the throttle hole 176.
  • the refrigerant flows in the direction indicated by the arrow R, and the high-temperature and high-pressure gas refrigerant flows into the fin-and-tube type condenser 2.
  • This gas refrigerant is condensed and liquefied by the condenser 2.
  • the liquid refrigerant flowing out from the condenser 2 flows into the refrigerant liquefier 100.
  • the refrigerant liquefaction element 171 is provided in the tube body 110. Since the refrigerant liquefying element 171 includes the spiral groove portion 173 for swirling and flowing the refrigerant in the outer peripheral portion of the element body 172, the flow contacting the inner wall surface of the tubular body 110 is a swirling flow. The swirling flow enters the inner peripheral portion of the element body 172 through the through hole 179, merges with the refrigerant decompressed through the decompression expansion mechanism 175, and flows out from the refrigerant liquefier 100. Since the swirl flow flows in contact with the inner wall surface of the tube body 110, the amount of heat released through the inner wall surface of the tube body 110 increases.
  • the flow of the refrigerant in the spiral groove portion 173 produces a spiral flow (primary flow) from the upstream side to the downstream side in the tubular body 110. Further, the flow of the refrigerant in the spiral groove portion 173 generates a pair of rotational flows (secondary flows) that rotate in opposite directions along the sides from the center within the rectangular cross section of the spiral groove portion 173. As a result, the amount of heat dissipated by the heat dissipating fins 27 through the inner wall surface of the tubular body 110 is increased, the temperature of the refrigerant is lowered, and the degree of supercooling of the refrigerant is increased.
  • a decompression expansion mechanism 175 for decompressing and expanding the refrigerant to flow is provided on the inner peripheral portion of the element body 172. Therefore, the refrigerant is decompressed, the temperature of the refrigerant is lowered, and the element body 172 is cooled and flows, so that the degree of supercooling of the refrigerant is increased.
  • the decompression expansion mechanism 175 is a hollow through hole provided in the element body 172 of the refrigerant liquefying element 171, and this hollow through hole is composed of a throttle hole 176 and an expansion hole 177 having an inner diameter larger than that of the throttle hole 176. Therefore, the refrigerant liquefaction element 171 can be configured with a simple structure.
  • the refrigerant is squeezed by the throttle hole 176 and then expanded by the expansion hole 177, so that the refrigerant is expanded under reduced pressure.
  • the hollow through hole of the decompression/expansion mechanism 175 has an inlet hole 178 having an inner diameter larger than that of the throttle hole 176 upstream.
  • the amount of the refrigerant flowing through the spiral groove portion 173 on the outer peripheral side of the element body 172 and the amount of the refrigerant flowing through the decompression/expansion mechanism 175 on the inner peripheral side of the element body 172 have a ratio of 2:1.
  • D1 is the inner diameter of the throttle hole 176
  • D2 is the inner diameter of the expansion hole 177
  • D3 is the inner diameter of the inlet hole 178.
  • the refrigerant that has passed through the refrigerant liquefier 100 is decompressed by the decompression device 3 and flows into the fin-and-tube type evaporator 4.
  • the liquid refrigerant flowing into the evaporator 4 is gasified by the evaporator 4, and this gas refrigerant is sucked into the suction port of the compressor 1.
  • a through hole 179 is formed in the element body 172.
  • the through hole 179 is a hole for joining the spiral flow refrigerant flowing in the outer peripheral portion of the element body 172 and the refrigerant decompressed by flowing in the decompression expansion mechanism 175.
  • the configuration is not limited to this.
  • the element body 172 may be formed to have a short length, and a merging portion 180 for merging the spiral flow refrigerant and the depressurized refrigerant may be provided on the downstream side of the element body 172.
  • FIG. 4 shows another embodiment.
  • the condenser 2 includes a plurality of (five in the present embodiment) straight tubes 21 to 25 and a plurality of heat radiation fins 27, 27, 27....
  • the tubes 21 to 25 are meandering tubes, and the meandering tubes are composed of an inlet side tube 21, an outlet side tube 25, and central tubes 22 to 24.
  • the tube 21 on the inlet side is connected to the connecting pipe 28.
  • the outlet of the tube 21 is connected to the inlet of the tube 22 via a vent 51, and the outlet of the tube 22 is connected to the inlet of the tube 23 via a vent 52.
  • the outlet of the tube 23 is connected to the inlet of the tube 24 via a vent 53, and the outlet of the tube 24 is connected to the inlet of the tube 25 via a vent 54.
  • the outlet of the tube 25 is connected to the connecting pipe 29.
  • the pressure reducing device 3 is connected to the connecting pipe 29, and the fin-and-tube type evaporator 4 is connected to the pressure reducing device 3.
  • a refrigerant liquefaction element (supercooler) 71 is arranged in the tube 25 on the outlet side of the condenser 2.
  • the refrigerant liquefaction element 71 is arranged on the inlet side of the linearly formed outlet side tube 25.
  • the length of the refrigerant liquefying element 71 is arbitrary, it is preferably half or less of the length of the tube 25 in consideration of the flow path resistance in the tube.
  • the refrigerant liquefying element 71 has a hollow element body 72, and a spiral groove portion 73 for swirling and flowing the refrigerant is provided on the outer peripheral portion of the element body 72.
  • the refrigerant liquefaction element 71 is arranged such that the land portion 74 of the element body 72 is in close contact with the inner peripheral surface of the tube 25.
  • a spiral groove portion 73 is formed between the land portion 74 of the element body 72 and the land portion 74.
  • the spiral groove portion 73 has a rectangular cross section. Is.
  • a decompression expansion mechanism 75 for decompressing and expanding the refrigerant to flow is provided on the inner peripheral portion of the element body 72.
  • the decompression expansion mechanism 75 is a hollow through hole provided in the element body 72 of the refrigerant liquefying element 71.
  • the refrigerant flows in the direction indicated by arrow R.
  • the hollow through hole includes a throttle hole 76 and an expansion hole 77 having an inner diameter larger than that of the throttle hole 76.
  • the hollow through hole has an inlet hole 78 having an inner diameter larger than that of the throttle hole 76.
  • the refrigerant flows in the direction indicated by the arrow R, and the high-temperature and high-pressure gas refrigerant flows into the fin-and-tube type condenser 2.
  • This gas refrigerant is condensed and liquefied by the condenser 2.
  • the liquid refrigerant flowing out of the condenser 2 flows into the pressure reducing device 3, is reduced in pressure by the pressure reducing device 3, and flows into the fin-and-tube type evaporator 4.
  • the liquid refrigerant flowing into the evaporator 4 is gasified by the evaporator 4, and this gas refrigerant is sucked into the suction port of the compressor 1.
  • the refrigerant liquefaction element 71 is provided in the tube 25 on the outlet side, and the refrigerant liquefaction element 71 has the spiral groove portion 73 for swirling and flowing the refrigerant around the outer periphery of the element body 72.
  • the flow inside the tube 25 becomes a swirl flow, and the heat radiation amount of the radiation fin 27 through the inner wall surface of the tube 25 increases.
  • the flow of the refrigerant in the tube 25 is the same as the spiral flow (primary flow) flowing from the upstream to the downstream in the tube 25, and along the sides from the center in the rectangular cross section of the spiral groove portion 73.
  • a pair of rotational flows (secondary flows) that rotate in opposite directions are generated, whereby the heat radiation amount of the heat radiation fins 27 through the inner wall surface of the tube 25 increases, the temperature of the refrigerant becomes low, and the degree of supercooling of the refrigerant advances.
  • a decompression expansion mechanism 75 for decompressing and expanding the refrigerant to flow is provided on the inner peripheral portion of the element body 72. Therefore, the refrigerant is decompressed by the decompression/expansion mechanism 75, the temperature is lowered, the element body 72 is cooled, and the degree of supercooling of the refrigerant is increased.
  • the hollow through hole of the decompression/expansion mechanism 75 has an inlet hole 78 having an inner diameter larger than that of the throttle hole 76 upstream.
  • the spiral groove portion 73 on the outer peripheral side of the element main body 72 is adjusted.
  • the amount of refrigerant flowing and the amount of refrigerant flowing through the decompression expansion mechanism 75 on the inner peripheral side of the element body 72 can be adjusted. By this adjustment, the degree of supercooling can be changed.
  • the amount of refrigerant flowing through the spiral groove 73 on the outer peripheral side of the element body 72 and the amount of refrigerant flowing through the decompression/expansion mechanism 75 on the inner peripheral side of the element body 72 are set to a ratio of 2:1. .. D1 is the inner diameter of the throttle hole 76, D2 is the inner diameter of the expansion hole 77, and D3 is the inner diameter of the inlet hole 78.
  • the present invention has been described above based on the embodiments, the present invention is not limited to these embodiments.
  • the element body 72 in the tube 25 is arranged with the inlet hole 78 facing upstream, but it may be arranged in a reverse assembly with the inlet hole 78 facing downstream.
  • the refrigerant flows in the direction opposite to the arrow R.
  • the refrigerant having entered the expansion hole 77 is decompressed by the throttle hole 76 and expanded by the inlet hole 78. Since the flow in the tube 25 becomes a swirl flow in the spiral groove portion 73, the amount of heat released through the inner wall surface of the tube 25 increases.
  • the refrigerant having entered the expansion hole 77 is decompressed by the throttle hole 76 and expanded and flows at the inlet hole 78, so that the refrigerant is decompressed, the temperature is lowered, and the element body 72 is cooled. Will proceed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The purpose of the present invention is to provide a refrigerant liquefying element, a heat exchanger, and a refrigeration cycle with which improvement in the efficiency of the refrigeration cycle and size reduction can be achieved. This refrigerant liquefying element 105 inserted into a pipe body 110 is provided with: an element body 172; a spiral groove part 173 which is provided on the outer peripheral section of the element body 172 and through which a refrigerant swirls and flows; and a depressurizing and expanding mechanism 175 that is provided on the inner peripheral section of the element body 172 and depressurizes and expands the refrigerant.

Description

冷媒液化素子、それを用いた冷媒液化器、熱交換器および冷凍サイクルRefrigerant liquefaction element, refrigerant liquefier using the same, heat exchanger and refrigeration cycle
 本発明は、冷媒を液化させる冷媒液化素子、それを用いた冷媒液化器、熱交換器および冷凍サイクルに関する。 The present invention relates to a refrigerant liquefaction element for liquefying a refrigerant, a refrigerant liquefier using the same, a heat exchanger and a refrigeration cycle.
 従来、多数枚のフィンを平行に並べて、これらフィン間に蛇行式のチューブを貫通させて構成した、いわゆるフィンアンドチューブ形の凝縮器が知られている(例えば、特許文献1参照)。
 一般に、凝縮器は、冷凍サイクルに組み込まれて使用される。
 例えば凝縮器にあっては、過冷却器を組み込んで、冷凍サイクルの効率を向上させたものが提案されている。
BACKGROUND ART Conventionally, there is known a so-called fin-and-tube type condenser in which a large number of fins are arranged in parallel and a meandering tube is made to penetrate between the fins (see, for example, Patent Document 1).
Generally, a condenser is used by being incorporated in a refrigeration cycle.
For example, as a condenser, it has been proposed to incorporate a supercooler to improve the efficiency of the refrigeration cycle.
特開2015−1317号公報JP, 2005-1317, A
 しかしながら、従来の凝縮器にあっては、冷凍サイクルの効率の向上が十分に図れていない、という課題があった。
 そこで、本発明は、上述した事情に鑑みてなされたものであり、冷凍サイクルの効率の向上と、小型化が図れる冷媒液化素子、それを用いた冷媒液化器、熱交換器および冷凍サイクルを提供することを目的とする。
However, the conventional condenser has a problem that the efficiency of the refrigeration cycle is not sufficiently improved.
Therefore, the present invention has been made in view of the above circumstances, and provides a refrigerant liquefaction element capable of improving the efficiency of the refrigeration cycle and downsizing, a refrigerant liquefier using the same, a heat exchanger, and a refrigeration cycle. The purpose is to do.
 本発明は、本体と、前記本体の外周部に設けられ冷媒を旋回させて流す螺旋溝部と、前記本体の内周部に設けられ冷媒を減圧膨張させて流す減圧膨張機構と、を備える、ことを特徴とする。 The present invention includes a main body, a spiral groove portion provided on an outer peripheral portion of the main body to swirl and flow the refrigerant, and a decompression expansion mechanism provided on an inner peripheral portion of the main body to decompress and expand the refrigerant to flow. Is characterized by.
 本発明は、管体と、管体に挿入された冷媒液化素子と、を備え、前記冷媒液化素子は、本体と、前記本体の外周部に設けられ冷媒を旋回させて流す螺旋溝部と、前記本体の内周部に設けられ冷媒を減圧膨張させて流す減圧膨張機構と、を備えることを特徴とする。
 また、本発明は、フィンと、複数のチューブと、出口側のチューブに挿入される冷媒液化素子と、を備え、この冷媒液化素子は、本体と、前記本体の外周部に設けられ冷媒を旋回させて流す螺旋溝部と、前記本体の内周部に設けられ冷媒を減圧膨張させて流す減圧膨張機構と、を備える、ことを特徴とする。
The present invention includes a tube body and a refrigerant liquefaction element inserted in the tube body, the refrigerant liquefaction element is a main body, a spiral groove portion which is provided in an outer peripheral portion of the main body, and causes a refrigerant to swirl and flow, And a decompression expansion mechanism which is provided on an inner peripheral portion of the main body to decompress and expand the refrigerant to flow.
Further, the present invention includes a fin, a plurality of tubes, and a refrigerant liquefaction element inserted into the tube on the outlet side, and the refrigerant liquefaction element swirls the refrigerant provided in the main body and the outer peripheral portion of the main body. And a depressurization expansion mechanism that is provided in an inner peripheral portion of the main body to decompress and expand the refrigerant to flow.
 これら本発明では、冷媒液化素子が外周部に冷媒を旋回させて流す螺旋溝部を備えるため、出口側のチューブ内の流れは旋回流となり、チューブ内壁面を通じた、フィンの放熱量が増す。また、内周部に冷媒を減圧膨張させて流す減圧膨張機構を備えたため、冷媒が減圧されて、低温化し本体が冷却され、冷媒の過冷却度が進む。 In these inventions, since the refrigerant liquefaction element has a spiral groove on the outer peripheral portion for swirling and flowing the refrigerant, the flow in the tube on the outlet side becomes a swirl flow, and the heat radiation amount of the fins through the inner wall surface of the tube increases. In addition, since the decompression/expansion mechanism that decompresses and expands the refrigerant is provided in the inner peripheral portion, the refrigerant is decompressed, the temperature is lowered, and the main body is cooled, and the degree of supercooling of the refrigerant is increased.
 本発明では、冷媒液化素子が外周部に冷媒を旋回させて流す螺旋溝部を備えるため、出口側のチューブ内の流れは旋回流となり、チューブ内壁面を通じた、フィンの放熱量が増す。また、内周部に冷媒を減圧膨張させて流す減圧膨張機構を備えたため、冷媒が減圧されて、低温化し本体が冷却され、冷媒の過冷却度が進む。 In the present invention, since the refrigerant liquefaction element has the spiral groove portion on the outer peripheral portion for swirling and flowing the refrigerant, the flow in the tube on the outlet side becomes a swirl flow, and the heat radiation amount of the fin through the tube inner wall surface increases. In addition, since the decompression/expansion mechanism that decompresses and expands the refrigerant is provided in the inner peripheral portion, the refrigerant is decompressed, the temperature is lowered, and the main body is cooled, and the degree of supercooling of the refrigerant is increased.
図1は一実施形態による冷凍サイクルを示す図である。FIG. 1 is a diagram showing a refrigeration cycle according to one embodiment. 図2は冷媒液化器の構造を示す図である。FIG. 2 is a diagram showing the structure of the refrigerant liquefier. 図3は別実施形態による冷媒液化器を示す図である。FIG. 3 is a diagram showing a refrigerant liquefier according to another embodiment. 図4は別実施形態による冷凍サイクルを示す図である。FIG. 4 is a diagram showing a refrigeration cycle according to another embodiment. 図5は凝縮器の出口側のチューブの構造を示す図である。FIG. 5 is a view showing the structure of the tube on the outlet side of the condenser.
 図1は、冷凍サイクルを示す。
 符号1は圧縮機であり、圧縮機1の吐出口にはフィンアンドチューブ形の凝縮器2が接続されている。この凝縮器2には減圧装置3が接続され、減圧装置3にはフィンアンドチューブ形の蒸発器4が接続されている。
 この蒸発器4は圧縮機1の吸込み口に接続されている。
FIG. 1 shows a refrigeration cycle.
Reference numeral 1 is a compressor, and a fin-and-tube type condenser 2 is connected to a discharge port of the compressor 1. A pressure reducing device 3 is connected to the condenser 2, and a fin-and-tube type evaporator 4 is connected to the pressure reducing device 3.
The evaporator 4 is connected to the suction port of the compressor 1.
 凝縮器2は、複数本(本実施形態では5本)の真直なチューブ21~25と、複数枚の放熱フィン27、27、27…とを備えている。チューブ21~25は、蛇行式のチューブであり、この蛇行式のチューブは入口側のチューブ21と出口側のチューブ25と中央部のチューブ22~24とで構成される。入口側のチューブ21は接続管28に連結されている。チューブ21の出口はベント51を介してチューブ22の入口に接続され、チューブ22の出口はベント52を介してチューブ23の入口に接続されている。チューブ23の出口はベント53を介してチューブ24の入口に接続され、チューブ24の出口はベント54を介してチューブ25の入口に接続されている。チューブ25の出口は接続管29に連結されている。
 符号81は、凝縮器用ファンである。
The condenser 2 includes a plurality of (five in the present embodiment) straight tubes 21 to 25 and a plurality of heat radiation fins 27, 27, 27.... The tubes 21 to 25 are meandering tubes, and the meandering tubes are composed of an inlet side tube 21, an outlet side tube 25, and central tubes 22 to 24. The tube 21 on the inlet side is connected to the connecting pipe 28. The outlet of the tube 21 is connected to the inlet of the tube 22 via a vent 51, and the outlet of the tube 22 is connected to the inlet of the tube 23 via a vent 52. The outlet of the tube 23 is connected to the inlet of the tube 24 via a vent 53, and the outlet of the tube 24 is connected to the inlet of the tube 25 via a vent 54. The outlet of the tube 25 is connected to the connecting pipe 29.
Reference numeral 81 is a condenser fan.
 凝縮器2には接続管29を介して冷媒液化器100が接続され、冷媒液化器100には接続管30を介して減圧装置3が接続されている。冷媒液化器100は液ラインに接続されている。減圧装置3には接続管31を介して蒸発器4が接続されている。
 蒸発器4は、複数本(本実施形態では5本)の真直なチューブ41~45と、複数枚の放熱フィン47、47、47…とを備えている。チューブ41~45は、蛇行式のチューブであり、この蛇行式のチューブは入口側のチューブ41と出口側のチューブ45と中央部の複数のチューブ42~44とで構成される。入口側のチューブ41は接続管31に連結されている。チューブ41の出口はベント61を介してチューブ42の入口に接続され、チューブ42の出口はベント62を介してチューブ43の入口に接続されている。チューブ43の出口はベント63を介してチューブ44の入口に接続され、チューブ44の出口はベント64を介してチューブ45の入口に接続されている。チューブ45の出口は接続管32を介して圧縮機1に連結されている。
 符号83は、蒸発器用ファンである。
A refrigerant liquefier 100 is connected to the condenser 2 via a connecting pipe 29, and a decompression device 3 is connected to the refrigerant liquefying device 100 via a connecting pipe 30. The refrigerant liquefier 100 is connected to the liquid line. The evaporator 4 is connected to the decompression device 3 via a connection pipe 31.
The evaporator 4 is provided with a plurality of (five in the present embodiment) straight tubes 41 to 45 and a plurality of heat radiation fins 47, 47, 47. The tubes 41 to 45 are meandering tubes, and the meandering tubes are composed of an inlet side tube 41, an outlet side tube 45, and a plurality of central tubes 42 to 44. The tube 41 on the inlet side is connected to the connecting pipe 31. The outlet of the tube 41 is connected to the inlet of the tube 42 via the vent 61, and the outlet of the tube 42 is connected to the inlet of the tube 43 via the vent 62. The outlet of the tube 43 is connected to the inlet of the tube 44 via the vent 63, and the outlet of the tube 44 is connected to the inlet of the tube 45 via the vent 64. The outlet of the tube 45 is connected to the compressor 1 via the connecting pipe 32.
Reference numeral 83 is an evaporator fan.
 図2A、図2Bは、冷媒液化器100を示す。
 冷媒液化器100は、円筒状の管体110を備え、管体110の両端には、連結具101、102が設けられている。連結具101は接続管29に連結され、連結具102は接続管30に連結されている。
 管体110の内周には冷媒液化素子105が篏合されている。
 冷媒液化素子105は中空状の素子本体172を備え、素子本体172の外周部には、冷媒を旋回させて流すための螺旋溝部173を備えている。螺旋溝部173は上流から下流に向けてほぼ等ピッチPで、素子本体172のほぼ全域に亘って設けられている。素子本体172の下流側部分の、螺旋溝部173が形成されない部分には、図2Bに示すように、貫通孔179が形成されている。
 冷媒液化素子105は、素子本体172のランド部174を管体110の内周面に密着して配置される。冷媒液化素子105が管体110の内周面に配置されると、ランド部174とランド部174との間に螺旋溝部173が形成される。この螺旋溝部173は断面が矩形状である。
2A and 2B show the refrigerant liquefier 100.
The refrigerant liquefier 100 includes a cylindrical tube body 110, and connecting members 101 and 102 are provided at both ends of the tube body 110. The connector 101 is connected to the connecting pipe 29, and the connector 102 is connected to the connecting pipe 30.
A refrigerant liquefying element 105 is integrated with the inner circumference of the tube body 110.
The refrigerant liquefying element 105 has a hollow element body 172, and the spiral groove portion 173 for swirling and flowing the refrigerant is provided on the outer peripheral portion of the element body 172. The spiral groove portions 173 are provided from the upstream side to the downstream side at a substantially equal pitch P over almost the entire area of the element body 172. As shown in FIG. 2B, a through hole 179 is formed in the downstream portion of the element body 172 where the spiral groove 173 is not formed.
The refrigerant liquefying element 105 is arranged such that the land portion 174 of the element body 172 is in close contact with the inner peripheral surface of the tubular body 110. When the refrigerant liquefying element 105 is arranged on the inner peripheral surface of the tubular body 110, a spiral groove 173 is formed between the land 174 and the land 174. The spiral groove portion 173 has a rectangular cross section.
 素子本体172の内周部には、冷媒を減圧膨張させて流すための減圧膨張機構175を備えている。減圧膨張機構175は、素子本体172に設けた中空貫通孔である。冷媒は矢印Rの方向に流れる。中空貫通孔は、絞り孔176と、絞り孔176よりも内径が大きい膨張孔177とを備えている。中空貫通孔は、絞り孔176よりも内径が大きい入口孔178を備えている。 A decompression expansion mechanism 175 for decompressing and expanding the refrigerant to flow is provided on the inner peripheral portion of the element body 172. The decompression expansion mechanism 175 is a hollow through hole provided in the element body 172. The refrigerant flows in the direction of arrow R. The hollow through hole includes a throttle hole 176 and an expansion hole 177 having an inner diameter larger than that of the throttle hole 176. The hollow through hole has an inlet hole 178 having an inner diameter larger than that of the throttle hole 176.
 つぎに、本実施形態の作用、効果を説明する。
 圧縮機1の駆動により、矢印Rで示す方向に冷媒が流れ、高温高圧のガス冷媒がフィンアンドチューブ形の凝縮器2に流入する。
 このガス冷媒は凝縮器2により凝縮されて液化される。この凝縮器2から流出した液冷媒は、冷媒液化器100に流れ込む。
Next, the operation and effect of this embodiment will be described.
By driving the compressor 1, the refrigerant flows in the direction indicated by the arrow R, and the high-temperature and high-pressure gas refrigerant flows into the fin-and-tube type condenser 2.
This gas refrigerant is condensed and liquefied by the condenser 2. The liquid refrigerant flowing out from the condenser 2 flows into the refrigerant liquefier 100.
 本実施形態によれば、管体110に冷媒液化素子171が設けられる。そして、冷媒液化素子171が、素子本体172の外周部に冷媒を旋回させて流すための螺旋溝部173を備えるため、管体110の内壁面に接触する流れは旋回流となる。旋回流は、貫通孔179を通して、素子本体172の内周部に入り、減圧膨張機構175を経て減圧された冷媒と合流し、冷媒液化器100から流出する。旋回流が、管体110の内壁面に接触して流れるため、管体110内壁面を通じた放熱量が増す。
 冷媒液化素子171において、螺旋溝部173の冷媒の流れは、管体110内を上流から下流に向かう螺旋状の流れ(一次流れ)を生じる。また、螺旋溝部173の冷媒の流れは、螺旋溝部173の矩形の断面内を中心から辺に沿って互いに反対方向に回転する、一対の回転流れ(二次流れ)を生じる。
 これにより管体110の内壁面を通じた、放熱フィン27の放熱量が増し、冷媒が低温化して、冷媒の過冷却度が進む。
According to this embodiment, the refrigerant liquefaction element 171 is provided in the tube body 110. Since the refrigerant liquefying element 171 includes the spiral groove portion 173 for swirling and flowing the refrigerant in the outer peripheral portion of the element body 172, the flow contacting the inner wall surface of the tubular body 110 is a swirling flow. The swirling flow enters the inner peripheral portion of the element body 172 through the through hole 179, merges with the refrigerant decompressed through the decompression expansion mechanism 175, and flows out from the refrigerant liquefier 100. Since the swirl flow flows in contact with the inner wall surface of the tube body 110, the amount of heat released through the inner wall surface of the tube body 110 increases.
In the refrigerant liquefying element 171, the flow of the refrigerant in the spiral groove portion 173 produces a spiral flow (primary flow) from the upstream side to the downstream side in the tubular body 110. Further, the flow of the refrigerant in the spiral groove portion 173 generates a pair of rotational flows (secondary flows) that rotate in opposite directions along the sides from the center within the rectangular cross section of the spiral groove portion 173.
As a result, the amount of heat dissipated by the heat dissipating fins 27 through the inner wall surface of the tubular body 110 is increased, the temperature of the refrigerant is lowered, and the degree of supercooling of the refrigerant is increased.
 素子本体172の内周部には、冷媒を減圧膨張させて流すための減圧膨張機構175を備えている。したがって、冷媒が減圧されて、低温化し素子本体172を冷却して流れるため、これによって、冷媒の過冷却度が進む。
 減圧膨張機構175が、冷媒液化素子171の素子本体172に設けた中空貫通孔であり、この中空貫通孔が、絞り孔176と、当該絞り孔176よりも内径が大きい膨張孔177とで構成されるため、簡単な構造により冷媒液化素子171を構成できる。
 冷媒は、絞り孔176で絞られた後に、膨張孔177で膨張することにより、減圧膨張される。減圧膨張機構175の中空貫通孔は、上流に絞り孔176よりも内径が大きい入口孔178を備えている。
 入口孔178の孔径の大きさを適宜に設定し、螺旋溝部173の溝幅の大きさに対する、入口孔178の大きさの比率を調整することにより、素子本体172の外周側の螺旋溝部173を流れる冷媒量と、素子本体172の内周側の減圧膨張機構175を流れる冷媒量とを調節でき、過冷却度を変更できる。
A decompression expansion mechanism 175 for decompressing and expanding the refrigerant to flow is provided on the inner peripheral portion of the element body 172. Therefore, the refrigerant is decompressed, the temperature of the refrigerant is lowered, and the element body 172 is cooled and flows, so that the degree of supercooling of the refrigerant is increased.
The decompression expansion mechanism 175 is a hollow through hole provided in the element body 172 of the refrigerant liquefying element 171, and this hollow through hole is composed of a throttle hole 176 and an expansion hole 177 having an inner diameter larger than that of the throttle hole 176. Therefore, the refrigerant liquefaction element 171 can be configured with a simple structure.
The refrigerant is squeezed by the throttle hole 176 and then expanded by the expansion hole 177, so that the refrigerant is expanded under reduced pressure. The hollow through hole of the decompression/expansion mechanism 175 has an inlet hole 178 having an inner diameter larger than that of the throttle hole 176 upstream.
By appropriately setting the size of the hole diameter of the inlet hole 178 and adjusting the ratio of the size of the inlet hole 178 to the size of the groove width of the spiral groove portion 173, the spiral groove portion 173 on the outer peripheral side of the element body 172 is adjusted. The amount of refrigerant flowing and the amount of refrigerant flowing through the decompression expansion mechanism 175 on the inner peripheral side of the element body 172 can be adjusted, and the degree of supercooling can be changed.
 本実施形態によれば、素子本体172の外周側の螺旋溝部173を流れる冷媒量と、素子本体172の内周側の減圧膨張機構175を流れる冷媒量とが、2対1の割合となるように設定されている。なお、D1は、絞り孔176の内径、D2は、膨張孔177の内径、D3は、入口孔178の内径である。
 冷媒液化器100を経た冷媒は、減圧装置3で減圧され、フィンアンドチューブ形の蒸発器4に流入する。蒸発器4に流入した液冷媒は蒸発器4によりガス化し、このガス冷媒が圧縮機1の吸込み口に吸い込まれる。
According to the present embodiment, the amount of the refrigerant flowing through the spiral groove portion 173 on the outer peripheral side of the element body 172 and the amount of the refrigerant flowing through the decompression/expansion mechanism 175 on the inner peripheral side of the element body 172 have a ratio of 2:1. Is set to. D1 is the inner diameter of the throttle hole 176, D2 is the inner diameter of the expansion hole 177, and D3 is the inner diameter of the inlet hole 178.
The refrigerant that has passed through the refrigerant liquefier 100 is decompressed by the decompression device 3 and flows into the fin-and-tube type evaporator 4. The liquid refrigerant flowing into the evaporator 4 is gasified by the evaporator 4, and this gas refrigerant is sucked into the suction port of the compressor 1.
 上記実施形態では、図2Bに示すように、素子本体172に貫通孔179が形成されている。貫通孔179は、素子本体172の外周部を流れる螺旋流れの冷媒と、減圧膨張機構175を流れて減圧した冷媒と、を合流させるための孔である。ただし、この構成に限定されるものではない。例えば、図3に示すように、素子本体172の長さを短く形成し、素子本体172の下流側に、螺旋流れの冷媒と、減圧した冷媒とを合流させる合流部180を設けてもよい。 In the above embodiment, as shown in FIG. 2B, a through hole 179 is formed in the element body 172. The through hole 179 is a hole for joining the spiral flow refrigerant flowing in the outer peripheral portion of the element body 172 and the refrigerant decompressed by flowing in the decompression expansion mechanism 175. However, the configuration is not limited to this. For example, as shown in FIG. 3, the element body 172 may be formed to have a short length, and a merging portion 180 for merging the spiral flow refrigerant and the depressurized refrigerant may be provided on the downstream side of the element body 172.
 図4は、別の実施形態を示す。なお、図4では、図1と同一部分には同一符号を付し、その説明は省略する。
 凝縮器2は、複数本(本実施形態では5本)の真直なチューブ21~25と、複数枚の放熱フィン27、27、27…とを備えている。チューブ21~25は、蛇行式のチューブであり、この蛇行式のチューブは入口側のチューブ21と出口側のチューブ25と中央部のチューブ22~24とで構成される。入口側のチューブ21は接続管28に連結されている。チューブ21の出口はベント51を介してチューブ22の入口に接続され、チューブ22の出口はベント52を介してチューブ23の入口に接続されている。チューブ23の出口はベント53を介してチューブ24の入口に接続され、チューブ24の出口はベント54を介してチューブ25の入口に接続されている。チューブ25の出口は接続管29に連結されている。
FIG. 4 shows another embodiment. In FIG. 4, the same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
The condenser 2 includes a plurality of (five in the present embodiment) straight tubes 21 to 25 and a plurality of heat radiation fins 27, 27, 27.... The tubes 21 to 25 are meandering tubes, and the meandering tubes are composed of an inlet side tube 21, an outlet side tube 25, and central tubes 22 to 24. The tube 21 on the inlet side is connected to the connecting pipe 28. The outlet of the tube 21 is connected to the inlet of the tube 22 via a vent 51, and the outlet of the tube 22 is connected to the inlet of the tube 23 via a vent 52. The outlet of the tube 23 is connected to the inlet of the tube 24 via a vent 53, and the outlet of the tube 24 is connected to the inlet of the tube 25 via a vent 54. The outlet of the tube 25 is connected to the connecting pipe 29.
 接続管29には減圧装置3が接続され、減圧装置3にはフィンアンドチューブ形の蒸発器4が接続されている。 The pressure reducing device 3 is connected to the connecting pipe 29, and the fin-and-tube type evaporator 4 is connected to the pressure reducing device 3.
 別の実施形態の凝縮器2の構造を説明する。
 図5に示すように、凝縮器2の出口側のチューブ25には冷媒液化素子(過冷却器)71が配置されている。冷媒液化素子71は、直線状に形成された出口側のチューブ25の入口側に、配置されている。冷媒液化素子71の長さは任意であるが、チューブ内の流路抵抗を考慮して、該チューブ25の長さの半分以下が望ましい。
The structure of the condenser 2 of another embodiment will be described.
As shown in FIG. 5, a refrigerant liquefaction element (supercooler) 71 is arranged in the tube 25 on the outlet side of the condenser 2. The refrigerant liquefaction element 71 is arranged on the inlet side of the linearly formed outlet side tube 25. Although the length of the refrigerant liquefying element 71 is arbitrary, it is preferably half or less of the length of the tube 25 in consideration of the flow path resistance in the tube.
 冷媒液化素子71は中空状の素子本体72を備え、素子本体72の外周部には、冷媒を旋回させて流すための螺旋溝部73を備えている。冷媒液化素子71は、素子本体72のランド部74をチューブ25の内周面に密着して配置される。冷媒液化素子71がチューブ25の内周面に配置されると、素子本体72のランド部74とランド部74との間に螺旋溝部73が形成されるが、この螺旋溝部73は断面が矩形状である。素子本体72の内周部には、冷媒を減圧膨張させて流すための減圧膨張機構75を備える。減圧膨張機構75は冷媒液化素子71の素子本体72に設けた中空貫通孔である。冷媒は矢印Rで示す方向に流れる。中空貫通孔は絞り孔76と絞り孔76よりも内径が大きい膨張孔77とを備える。中空貫通孔は絞り孔76よりも内径が大きい入口孔78を備える。 The refrigerant liquefying element 71 has a hollow element body 72, and a spiral groove portion 73 for swirling and flowing the refrigerant is provided on the outer peripheral portion of the element body 72. The refrigerant liquefaction element 71 is arranged such that the land portion 74 of the element body 72 is in close contact with the inner peripheral surface of the tube 25. When the refrigerant liquefying element 71 is arranged on the inner peripheral surface of the tube 25, a spiral groove portion 73 is formed between the land portion 74 of the element body 72 and the land portion 74. The spiral groove portion 73 has a rectangular cross section. Is. A decompression expansion mechanism 75 for decompressing and expanding the refrigerant to flow is provided on the inner peripheral portion of the element body 72. The decompression expansion mechanism 75 is a hollow through hole provided in the element body 72 of the refrigerant liquefying element 71. The refrigerant flows in the direction indicated by arrow R. The hollow through hole includes a throttle hole 76 and an expansion hole 77 having an inner diameter larger than that of the throttle hole 76. The hollow through hole has an inlet hole 78 having an inner diameter larger than that of the throttle hole 76.
 つぎに、本実施形態の作用、効果を説明する。
 圧縮機1の駆動により、矢印Rで示す方向に冷媒が流れ、高温高圧のガス冷媒がフィンアンドチューブ形の凝縮器2に流入する。
 このガス冷媒は凝縮器2により凝縮されて液化される。この凝縮器2から流出した液冷媒は、減圧装置3に流れ、減圧装置3で減圧されて、フィンアンドチューブ形の蒸発器4に流入する。この蒸発器4に流入した液冷媒は蒸発器4によりガス化し、このガス冷媒が圧縮機1の吸込み口に吸い込まれる。
Next, the operation and effect of this embodiment will be described.
By driving the compressor 1, the refrigerant flows in the direction indicated by the arrow R, and the high-temperature and high-pressure gas refrigerant flows into the fin-and-tube type condenser 2.
This gas refrigerant is condensed and liquefied by the condenser 2. The liquid refrigerant flowing out of the condenser 2 flows into the pressure reducing device 3, is reduced in pressure by the pressure reducing device 3, and flows into the fin-and-tube type evaporator 4. The liquid refrigerant flowing into the evaporator 4 is gasified by the evaporator 4, and this gas refrigerant is sucked into the suction port of the compressor 1.
 本実施形態では、出口側のチューブ25に冷媒液化素子71が設けられ、この冷媒液化素子71が、素子本体72の外周部に冷媒を旋回させて流すための螺旋溝部73を備えるため、出口側のチューブ25内の流れは旋回流となり、チューブ25内壁面を通じた、放熱フィン27の放熱量が増す。
 冷媒液化素子71において、チューブ25内の冷媒の流れは、チューブ25内を上流から下流に向かう螺旋状の流れ(一次流れ)とともに、螺旋溝部73の矩形の断面内を中心から辺に沿って互いに反対方向に回転する、一対の回転流れ(二次流れ)を生じ、これによりチューブ25内壁面を通じた、放熱フィン27の放熱量が増し、冷媒が低温化して、冷媒の過冷却度が進む。
 また、素子本体72の内周部には、冷媒を減圧膨張させて流すための減圧膨張機構75を備えている。したがって、減圧膨張機構75により冷媒が減圧され、低温化し素子本体72が冷却され、冷媒の過冷却度が進む。
In the present embodiment, the refrigerant liquefaction element 71 is provided in the tube 25 on the outlet side, and the refrigerant liquefaction element 71 has the spiral groove portion 73 for swirling and flowing the refrigerant around the outer periphery of the element body 72. The flow inside the tube 25 becomes a swirl flow, and the heat radiation amount of the radiation fin 27 through the inner wall surface of the tube 25 increases.
In the refrigerant liquefying element 71, the flow of the refrigerant in the tube 25 is the same as the spiral flow (primary flow) flowing from the upstream to the downstream in the tube 25, and along the sides from the center in the rectangular cross section of the spiral groove portion 73. A pair of rotational flows (secondary flows) that rotate in opposite directions are generated, whereby the heat radiation amount of the heat radiation fins 27 through the inner wall surface of the tube 25 increases, the temperature of the refrigerant becomes low, and the degree of supercooling of the refrigerant advances.
A decompression expansion mechanism 75 for decompressing and expanding the refrigerant to flow is provided on the inner peripheral portion of the element body 72. Therefore, the refrigerant is decompressed by the decompression/expansion mechanism 75, the temperature is lowered, the element body 72 is cooled, and the degree of supercooling of the refrigerant is increased.
 減圧膨張機構75の中空貫通孔は、上流に絞り孔76よりも内径が大きい入口孔78を備えている。入口孔78の孔径の大きさを適宜に設定し、螺旋溝部73の溝幅の大きさに対する、入口孔78の大きさの比率を調整することにより、素子本体72の外周側の螺旋溝部73を流れる冷媒量と、素子本体72の内周側の減圧膨張機構75を流れる冷媒量とを調節できる。この調節により、過冷却度を変更できる。本実施形態では、素子本体72の外周側の螺旋溝部73を流れる冷媒量と、素子本体72の内周側の減圧膨張機構75を流れる冷媒量とを、2対1の割合に設定されている。D1は、絞り孔76の内径、D2は、膨張孔77の内径、D3は、入口孔78の内径である。 The hollow through hole of the decompression/expansion mechanism 75 has an inlet hole 78 having an inner diameter larger than that of the throttle hole 76 upstream. By setting the size of the hole diameter of the inlet hole 78 appropriately and adjusting the ratio of the size of the inlet hole 78 to the size of the groove width of the spiral groove portion 73, the spiral groove portion 73 on the outer peripheral side of the element main body 72 is adjusted. The amount of refrigerant flowing and the amount of refrigerant flowing through the decompression expansion mechanism 75 on the inner peripheral side of the element body 72 can be adjusted. By this adjustment, the degree of supercooling can be changed. In the present embodiment, the amount of refrigerant flowing through the spiral groove 73 on the outer peripheral side of the element body 72 and the amount of refrigerant flowing through the decompression/expansion mechanism 75 on the inner peripheral side of the element body 72 are set to a ratio of 2:1. .. D1 is the inner diameter of the throttle hole 76, D2 is the inner diameter of the expansion hole 77, and D3 is the inner diameter of the inlet hole 78.
 以上、一実施形態に基づいて本発明を説明したが、本発明は、これら実施形態に限定されるものではない。
 上記実施形態では、図5において、チューブ25内の素子本体72は、入口孔78を上流に向けて配置したが、入口孔78を下流に向けて、逆組で配置してもよい。この場合には、矢印Rと逆の方向に冷媒が流れることとなる。膨張孔77に入った冷媒は、絞り孔76で減圧されて、入口孔78で膨張する。
 チューブ25内の流れは螺旋溝部73内で旋回流となるため、チューブ25内壁面を通じた放熱量が増す。また、膨張孔77に入った冷媒は、絞り孔76で減圧されて、入口孔78で膨張して流れるため、冷媒が減圧され、低温化し素子本体72が冷却されて、冷媒の過冷却度が進むこととなる。
Although the present invention has been described above based on the embodiments, the present invention is not limited to these embodiments.
In the above embodiment, in FIG. 5, the element body 72 in the tube 25 is arranged with the inlet hole 78 facing upstream, but it may be arranged in a reverse assembly with the inlet hole 78 facing downstream. In this case, the refrigerant flows in the direction opposite to the arrow R. The refrigerant having entered the expansion hole 77 is decompressed by the throttle hole 76 and expanded by the inlet hole 78.
Since the flow in the tube 25 becomes a swirl flow in the spiral groove portion 73, the amount of heat released through the inner wall surface of the tube 25 increases. Further, the refrigerant having entered the expansion hole 77 is decompressed by the throttle hole 76 and expanded and flows at the inlet hole 78, so that the refrigerant is decompressed, the temperature is lowered, and the element body 72 is cooled. Will proceed.
 1 圧縮機
 2 凝縮器
 3 減圧装置
 4 蒸発器
 21~25 凝縮器のチューブ
 41 蒸発器の入口側のチューブ
 42~44 中央部のチューブ
 45 出口側のチューブ
 71、105 冷媒液化素子
 72、172 素子本体
 73、173 螺旋溝部
 75、175 減圧膨張機構
 76、176 絞り孔
 77、177 膨張孔
 78、178 入口孔
 81 凝縮器用ファン
 83 蒸発器用ファン
 100 冷媒液化器
 110 管体
1 Compressor 2 Condenser 3 Decompressor 4 Evaporator 21-25 Condenser tube 41 Evaporator inlet side tube 42-44 Central tube 45 Outlet side tube 71, 105 Refrigerant liquefying element 72, 172 Element body 73, 173 spiral groove part 75, 175 decompression expansion mechanism 76, 176 throttle hole 77, 177 expansion hole 78, 178 inlet hole 81 condenser fan 83 evaporator fan 100 refrigerant liquefier 110 tube body

Claims (7)

  1.  素子本体と、
     前記素子本体の外周部に設けられ冷媒を旋回させて流す螺旋溝部と、
     前記素子本体の内周部に設けられ冷媒を減圧膨張させて流す減圧膨張機構と、を備えることを特徴とする冷媒液化素子。
    Element body,
    A spiral groove portion that is provided on the outer peripheral portion of the element body to swirl and flow the refrigerant,
    A refrigerant liquefaction element, comprising: a decompression expansion mechanism which is provided on an inner peripheral portion of the element body to decompress and expand the refrigerant to flow.
  2.  前記減圧膨張機構は前記素子本体に設けた中空貫通孔であり、
     前記中空貫通孔は絞り孔と当該絞り孔よりも内径が大きい膨張孔と、を備えることを特徴とする請求項1に記載の冷媒液化素子。
    The decompression expansion mechanism is a hollow through hole provided in the element body,
    The refrigerant liquefaction element according to claim 1, wherein the hollow through hole includes a throttle hole and an expansion hole having an inner diameter larger than that of the throttle hole.
  3.  前記中空貫通孔は前記絞り孔よりも内径が大きい入口孔を備えることを特徴とする請求項2に記載の冷媒液化素子。 The refrigerant liquefaction element according to claim 2, wherein the hollow through hole has an inlet hole having an inner diameter larger than that of the throttle hole.
  4.  管体と、管体に挿入された冷媒液化素子と、を備え、
     前記冷媒液化素子は、
     素子本体と、
     前記素子本体の外周部に設けられ冷媒を旋回させて流す螺旋溝部と、
     前記素子本体の内周部に設けられ冷媒を減圧膨張させて流す減圧膨張機構と、を備えることを特徴とする冷媒液化器。
    A tube body and a refrigerant liquefaction element inserted in the tube body,
    The refrigerant liquefaction element,
    Element body,
    A spiral groove portion that is provided on the outer peripheral portion of the element body to swirl and flow the refrigerant,
    A refrigerant liquefaction device, comprising: a decompression expansion mechanism, which is provided on an inner peripheral portion of the element body and decompresses and expands the refrigerant to flow.
  5.  フィンと、複数のチューブと、出口側のチューブに挿入される冷媒液化素子と、を備え、
     前記冷媒液化素子は、
     素子本体と、
     前記素子本体の外周部に設けられ冷媒を旋回させて流す螺旋溝部と、
     前記素子本体の内周部に設けられ冷媒を減圧膨張させて流す減圧膨張機構と、を備えることを特徴とする熱交換器。
    A fin, a plurality of tubes, and a refrigerant liquefaction element inserted into the tube on the outlet side,
    The refrigerant liquefaction element,
    Element body,
    A spiral groove portion that is provided on the outer peripheral portion of the element body to swirl and flow the refrigerant,
    A heat exchanger provided with an inner peripheral portion of the element body, and a decompression expansion mechanism that decompresses and expands the refrigerant to flow.
  6.  圧縮機、凝縮器、減圧装置、蒸発器を備えた冷凍サイクルにおいて、
     前記凝縮器は出口側のチューブに挿入された冷媒液化素子を備え、この冷媒液化素子は、素子本体と、前記素子本体の外周部に設けられ冷媒を旋回させて流す螺旋溝部と、前記素子本体の内周部に設けられ冷媒を減圧膨張させて流す減圧膨張機構と、を備える、
     ことを特徴とする冷凍サイクル。
    In a refrigeration cycle equipped with a compressor, a condenser, a decompression device, and an evaporator,
    The condenser includes a refrigerant liquefaction element inserted in a tube on the outlet side, and the refrigerant liquefaction element includes an element body, a spiral groove portion provided in an outer peripheral portion of the element body for swirling and flowing the refrigerant, and the element body. A decompression expansion mechanism which is provided on the inner peripheral part of the refrigerant to decompress and expand the refrigerant to flow.
    A refrigeration cycle characterized by that.
  7.  圧縮機、凝縮器、減圧装置、蒸発器を備えた冷凍サイクルにおいて、
     前記凝縮器と前記減圧装置の間に接続される管体と、この管体に挿入される冷媒液化素子と、を備え、この冷媒液化素子は、素子本体と、前記素子本体の外周部に設けられ冷媒を旋回させて流す螺旋溝部と、前記素子本体の内周部に設けられ冷媒を減圧膨張させて流す減圧膨張機構と、を備える、
     ことを特徴とする冷凍サイクル。
    In a refrigeration cycle equipped with a compressor, a condenser, a decompression device, and an evaporator,
    A tube body connected between the condenser and the decompression device and a refrigerant liquefaction element inserted into the tube body are provided, and the refrigerant liquefaction element is provided on an element body and an outer peripheral portion of the element body. A spiral groove portion that swirls and flows the refrigerant, and a decompression expansion mechanism that is provided in the inner peripheral portion of the element body to decompress and expand the refrigerant to flow.
    A refrigeration cycle characterized by that.
PCT/JP2019/003539 2019-01-25 2019-01-25 Refrigerant liquefying element, refrigerant liquefier using same, heat exchanger, and refrigeration cycle WO2020152873A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/003539 WO2020152873A1 (en) 2019-01-25 2019-01-25 Refrigerant liquefying element, refrigerant liquefier using same, heat exchanger, and refrigeration cycle
CN201980030185.1A CN112136011B (en) 2019-01-25 2019-01-25 Refrigerant liquefying element, refrigerant liquefier using same, heat exchanger and refrigeration cycle
JP2020537795A JP6907427B2 (en) 2019-01-25 2019-01-25 Heat exchanger and refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003539 WO2020152873A1 (en) 2019-01-25 2019-01-25 Refrigerant liquefying element, refrigerant liquefier using same, heat exchanger, and refrigeration cycle

Publications (1)

Publication Number Publication Date
WO2020152873A1 true WO2020152873A1 (en) 2020-07-30

Family

ID=71736302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003539 WO2020152873A1 (en) 2019-01-25 2019-01-25 Refrigerant liquefying element, refrigerant liquefier using same, heat exchanger, and refrigeration cycle

Country Status (3)

Country Link
JP (1) JP6907427B2 (en)
CN (1) CN112136011B (en)
WO (1) WO2020152873A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR959329A (en) * 1950-03-29
US4019337A (en) * 1974-10-23 1977-04-26 Zearfoss Jr Elmer W Refrigeration apparatus and method
JPS5828961A (en) * 1981-08-12 1983-02-21 三菱電機株式会社 Refrigerator
JPS58148367A (en) * 1982-02-25 1983-09-03 三菱電機株式会社 Heat pump type air conditioner
JPS60248971A (en) * 1984-05-23 1985-12-09 三菱電機株式会社 Heat pump type air conditioner
US20160102896A1 (en) * 2014-09-29 2016-04-14 Articmaster Inc. Efficiency enhancing apparatus and methods for a heat exchange system
WO2018073994A1 (en) * 2016-10-18 2018-04-26 株式会社エコラ・テック Radiator, condenser unit, and refrigeration cycle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058381B2 (en) * 1981-08-12 1985-12-19 三菱電機株式会社 flow control device
KR101128531B1 (en) * 2009-11-30 2012-03-27 기아자동차주식회사 Liquid supercooling system
CN103180675B (en) * 2010-10-22 2015-06-03 法雷奥日本株式会社 Refrigeration cycle and condenser with supercooling unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR959329A (en) * 1950-03-29
US4019337A (en) * 1974-10-23 1977-04-26 Zearfoss Jr Elmer W Refrigeration apparatus and method
JPS5828961A (en) * 1981-08-12 1983-02-21 三菱電機株式会社 Refrigerator
JPS58148367A (en) * 1982-02-25 1983-09-03 三菱電機株式会社 Heat pump type air conditioner
JPS60248971A (en) * 1984-05-23 1985-12-09 三菱電機株式会社 Heat pump type air conditioner
US20160102896A1 (en) * 2014-09-29 2016-04-14 Articmaster Inc. Efficiency enhancing apparatus and methods for a heat exchange system
WO2018073994A1 (en) * 2016-10-18 2018-04-26 株式会社エコラ・テック Radiator, condenser unit, and refrigeration cycle

Also Published As

Publication number Publication date
JP6907427B2 (en) 2021-07-21
CN112136011A (en) 2020-12-25
JPWO2020152873A1 (en) 2021-04-08
CN112136011B (en) 2022-11-01

Similar Documents

Publication Publication Date Title
US9109820B2 (en) Heat exchange device and communication tube used in the same
JP2001201275A (en) Double tube heat exchanger
JP5452367B2 (en) Gas-liquid separator and refrigeration cycle apparatus
CN108779945B (en) Radiator, condenser unit, refrigeration cycle
JP2007032979A (en) Refrigerating cycle device
JP6067094B2 (en) Heat exchanger and refrigeration cycle apparatus using the same
JP2007032980A (en) Expansion valve
WO2020152873A1 (en) Refrigerant liquefying element, refrigerant liquefier using same, heat exchanger, and refrigeration cycle
WO2014125997A1 (en) Heat exchange device and refrigeration cycle device equipped with same
US11852386B2 (en) Heat exchanger and refrigeration cycle apparatus
JP4699960B2 (en) Refrigeration cycle equipment
JP6651692B2 (en) Double tube internal heat exchanger
JP4161871B2 (en) Refrigeration cycle equipment
JP2005226866A (en) Refrigerating cycle device
KR101005419B1 (en) Liquid-to-Suction Heat Exchanger
JP7362558B2 (en) Check valves and refrigeration cycle systems
JP7211606B2 (en) Condensers, cooling systems, and fittings
JP2017223408A (en) Double pipe internal heat exchanger
WO2022162775A1 (en) Refrigeration cycle device
WO2020234931A1 (en) Heat exchanger and refrigeration cycle device
KR102082607B1 (en) refrigerant pressure transmitter of industrial condenser
JP2010261680A (en) Double-pipe heat exchanger
KR20110014353A (en) Header pipe and refrigerant pipe of coupling structure
JP2008057826A (en) Refrigerating cycle apparatus
WO2020240847A2 (en) Heating and cooling system using molecular rovibration device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020537795

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911786

Country of ref document: EP

Kind code of ref document: A1