WO2020151663A1 - 车辆定位装置、***、方法以及车辆 - Google Patents

车辆定位装置、***、方法以及车辆 Download PDF

Info

Publication number
WO2020151663A1
WO2020151663A1 PCT/CN2020/073241 CN2020073241W WO2020151663A1 WO 2020151663 A1 WO2020151663 A1 WO 2020151663A1 CN 2020073241 W CN2020073241 W CN 2020073241W WO 2020151663 A1 WO2020151663 A1 WO 2020151663A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
heading angle
coordinates
positioning device
units
Prior art date
Application number
PCT/CN2020/073241
Other languages
English (en)
French (fr)
Inventor
高崇桂
安淑苗
张凯
张瀛
杜康
张召强
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP20744572.7A priority Critical patent/EP3913328B1/en
Publication of WO2020151663A1 publication Critical patent/WO2020151663A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0247Determining attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1656Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with passive imaging devices, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/026Services making use of location information using location based information parameters using orientation information, e.g. compass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location

Definitions

  • the present invention relates to the field of automatic control technology, in particular to a vehicle positioning device, system, method and vehicle.
  • the present invention aims to provide a vehicle positioning device to achieve accurate heading angle measurement.
  • a vehicle positioning device the vehicle positioning device operates based on a plurality of signal transmitting units
  • the vehicle positioning device includes: at least two communication units, which are provided on the vehicle and used to receive the signals of the multiple signal transmitting units Signal, wherein there is a distance between the at least two communication units; the processing unit is configured to: transmit according to each of the plurality of signal transmitting units received by each of the at least two communication units The time of the signal of the unit and the coordinates of each signal transmitting unit determine the coordinates of each communication unit; the heading angle of the vehicle is determined according to the coordinates of each communication unit.
  • the determination of the time when each of the at least two communication units receives the signal of each signal transmitting unit of the plurality of signal transmitting units and the coordinates of each signal transmitting unit include: determining the distance between each communication unit and each signal transmission unit according to the time when each communication unit receives the signal of each signal transmission unit; The coordinates of each signal transmission unit and the distance between each communication unit and each signal transmission unit determine the coordinates of each communication unit.
  • the vehicle positioning device further includes: a gyroscope for detecting the heading angle of the vehicle as a first heading angle; the processing unit is also used for: calculating the heading angle of the vehicle according to the driving curve of the vehicle The heading angle of the vehicle is used as the second heading angle; according to the first heading angle, the second heading angle, and the heading angle of the vehicle determined according to the coordinates of each communication device, the final vehicle heading angle is determined based on an autoregressive algorithm Heading.
  • a gyroscope for detecting the heading angle of the vehicle as a first heading angle
  • the processing unit is also used for: calculating the heading angle of the vehicle according to the driving curve of the vehicle
  • the heading angle of the vehicle is used as the second heading angle; according to the first heading angle, the second heading angle, and the heading angle of the vehicle determined according to the coordinates of each communication device, the final vehicle heading angle is determined based on an autoregressive algorithm Heading.
  • each communication unit includes a communication tag and an antenna.
  • processing unit is further configured to: calculate the coordinates of the vehicle according to the coordinates of any one of the at least two communication units and the installation position on the vehicle to obtain the position of the vehicle.
  • the signals emitted by the plurality of signal transmitting units cover at least among the areas around turning, areas around corners, areas around transparent glass, and feature points that are insufficient for the vehicle positioning device to correctly locate the vehicle.
  • the vehicle positioning device of the present invention has the following advantages:
  • the vehicle positioning device of the present invention operates based on multiple signal transmitting units, receives signals from the multiple signal transmitting units through at least two communication units, and determines each signal according to the time when each communication unit receives the signal of each signal transmitting unit.
  • the coordinates of each communication unit determine the heading angle of the vehicle according to the coordinates of each communication unit.
  • the vehicle positioning device of the present invention is only based on a plurality of signal transmitting units, so it can realize accurate heading angle measurement indoors or in areas where GPS signals cannot be obtained.
  • Another object of the present invention is to provide a vehicle positioning system to achieve accurate measurement of the heading angle throughout the course.
  • a vehicle positioning system comprising: the vehicle positioning device described above; an on-board positioning device for collecting information related to the position and/or heading angle of the vehicle; and a main control device
  • the vehicle positioning device In: when the at least two communication units receive signals from the multiple signal transmitting devices, use the vehicle positioning device to calculate the position and/or heading angle of the vehicle; in the at least two communication units When any one does not receive a signal from any one of the multiple signal transmitting devices, use the information related to the position and/or heading angle of the vehicle collected by the on-board positioning device to calculate the position of the vehicle And/or heading angle.
  • the vehicle-mounted positioning device is also used to collect current scene images; the main control device is also used to: determine the current scene before the at least two communication units receive signals from the multiple signal transmitting devices Whether the pixel gray value of the image is within the preset range; when the pixel gray value of the current scene image is not within the preset range, control the at least two communication units to receive the signals from the multiple signal emitting units to Use the vehicle positioning device to calculate the position and/or heading angle of the vehicle; when the pixel gray value of the current scene image is within the preset range, use the vehicle-mounted positioning device to collect the position and/or heading angle of the vehicle. For information related to the position and/or heading angle, calculate the position and/or heading angle of the vehicle.
  • the vehicle-mounted positioning device includes: at least one of a camera, a laser radar, a millimeter wave radar, an ultrasonic radar, a vehicle speed sensor, a wheel angular velocity sensor, and an inertial sensor.
  • the vehicle positioning system of the present invention has the following advantages:
  • the vehicle positioning system of the present invention includes the vehicle positioning device described above, and also includes a vehicle positioning device.
  • the vehicle positioning device can receive signals from multiple signal transmitters, the vehicle positioning device is used to calculate the position and /Or heading angle, when the vehicle positioning device cannot completely receive the signals of multiple signal transmitting devices, the vehicle-mounted positioning device is used to calculate the position and/or heading angle of the vehicle.
  • the vehicle positioning system of the present invention can ensure that the position and/or heading angle of the vehicle can be calculated even in areas where the vehicle positioning device fails or where multiple signal transmitting devices are not provided, and the vehicle positioning device cannot accurately determine the position and/or of the vehicle.
  • the vehicle positioning device is used instead of determining the position and/or heading angle of the vehicle, so as to realize the accurate measurement of the heading angle throughout the course.
  • Another object of the present invention is to provide a vehicle positioning method to achieve accurate measurement of the heading angle throughout the course.
  • a vehicle positioning method the vehicle positioning method is executed based on multiple signal transmitting units and at least two communication units, the vehicle positioning method includes: receiving signals from the multiple signal transmitting units through the at least two communication units , Wherein there is a distance between the at least two communication units; according to the time when each of the at least two communication units receives the signal of each of the plurality of signal transmission units and the The coordinates of each signal transmitting unit determine the coordinates of each communication unit; the heading angle of the vehicle is determined according to the coordinates of each communication unit.
  • the determination of the time when each of the at least two communication units receives the signal of each signal transmitting unit of the plurality of signal transmitting units and the coordinates of each signal transmitting unit include: determining the distance between each communication unit and each signal transmission unit according to the time when each communication unit receives the signal of each signal transmission unit; The coordinates of each signal transmission unit and the distance between each communication unit and each signal transmission unit determine the coordinates of each communication unit.
  • the vehicle positioning method is also executed based on a gyroscope, and the method includes: detecting the heading angle of the vehicle through the gyroscope as the first heading angle; and calculating the vehicle according to the driving curve of the vehicle The heading angle of is used as the second heading angle; according to the first heading angle, the second heading angle, and the heading angle of the vehicle determined according to the coordinates of each communication device, the final heading of the vehicle is determined based on the autoregressive algorithm angle.
  • the method further includes: calculating the coordinates of the vehicle according to the coordinates of any one of the at least two communication units and the installation position on the vehicle to obtain the position of the vehicle.
  • the signals emitted by the plurality of signal transmitting units cover at least among the areas around turning, areas around corners, areas around transparent glass, and feature points that are not sufficient for the vehicle positioning device to correctly locate the vehicle.
  • the vehicle positioning method has the same advantages as the aforementioned vehicle positioning device over the prior art, and will not be repeated here.
  • Another object of the present invention is to provide a vehicle to achieve accurate heading angle measurement.
  • a vehicle comprising the vehicle positioning device described above; or the vehicle positioning system described above.
  • the vehicle has the same advantages as the above-mentioned vehicle positioning device or vehicle positioning system over the prior art, which will not be repeated here.
  • Other features and advantages of the present invention will be described in detail in the following specific embodiments.
  • FIG. 1 is a schematic structural diagram of a vehicle positioning device provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a working flow of a vehicle positioning device provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the layout of a vehicle positioning device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a vehicle positioning system provided by an embodiment of the present invention.
  • 5A is a schematic structural diagram of a vehicle positioning device provided by an embodiment of the present invention.
  • 5B is a schematic diagram of the installation position of a vehicle-mounted camera provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a working flow of a vehicle positioning system provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a work flow of a vehicle positioning system provided by another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a work flow of a vehicle positioning system provided by another embodiment of the present invention.
  • Fig. 9 is a working block diagram of a vehicle positioning system provided by an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a vehicle positioning device provided by an embodiment of the present invention.
  • the vehicle positioning device operates based on multiple signal transmitting units, and the vehicle positioning device includes: at least two communication units 1 arranged on the vehicle for receiving the multiple signal transmitting units Signal, wherein the at least two communication units 1 have a gap between them; the processing unit 2 is configured to: according to each of the at least two communication units 1 the communication unit 1 receives the signals in the plurality of signal transmission units The time of the signal of each signal transmitting unit and the coordinates of each signal transmitting unit determine the coordinates of each communication unit 1; determine the heading angle of the vehicle according to the coordinates of each communication unit 1.
  • multiple signal transmitting units may be base stations.
  • four signal transmitting units are preferably provided, and the four signal transmitting units can form a square area.
  • At least two communication units 1 receive the signals sent by multiple signal transmission units, and the processing unit 2 can determine the distance between the two according to the time when each communication unit 1 receives the signal sent by each signal transmission unit, so that according to the multiple signals
  • the coordinates of the transmitting unit determine the coordinates of each communication unit 1. Since there is a distance between each communication unit 1 and the distance is known, and the installation position of each communication unit 1 is also known, it is easy to obtain the direction of the vehicle, and thus the heading angle of the vehicle.
  • the coordinates of the vehicle are generally based on the coordinates of the midpoint of the rear axle of the vehicle. Therefore, according to the installation position of any communication unit 1 on the vehicle, the distance between the communication unit 1 and the midpoint of the rear axle of the vehicle can be obtained. According to the coordinates of the communication unit 1, the coordinates of the midpoint of the rear axle of the vehicle are calculated to obtain the coordinates of the vehicle.
  • Fig. 2 is a schematic diagram of the working process of a vehicle positioning device provided by an embodiment of the present invention.
  • the signals of multiple signal transmitting units are first received, and then the distance between each communication unit 1 and each signal transmitting unit is determined according to the time when each communication unit 1 receives the signal of each signal transmitting unit.
  • determine the coordinates of each communication unit 1 according to the coordinates of each signal transmission unit and the distance between each communication unit 1 and each signal transmission unit and finally, determine the coordinates of the vehicle according to the coordinates of each communication unit 1. Heading.
  • the heading angle of the vehicle calculated by the above method may not be accurate enough because it is obtained by only one method. After a lot of actual operations and tests, it is found that the heading angle deviation is roughly between 1.53° and 3.82°.
  • the present invention can first set a very high refresh rate to calculate the heading angle of the vehicle using the above method, so that when the vehicle is in the same state (position and heading angle), the heading angles of multiple vehicles can be obtained, and then the average can be obtained more accurately. The heading angle.
  • the embodiment of the present invention also sets a gyroscope to detect the heading angle of the vehicle, and uses the heading angle of the vehicle detected by the gyroscope as the first heading angle.
  • the gyroscope can provide a relative heading angle of up to 0.1°, but it will produce cumulative errors.
  • the processing unit 2 fits the driving curve equation according to the driving curve of the vehicle, and obtains the heading angle of the vehicle by obtaining the partial derivative as the second heading angle.
  • an autoregressive algorithm such as Kalman filtering, determine the final The heading angle of the vehicle.
  • the final heading angle of the vehicle is more accurate and does not produce cumulative errors. Therefore, the problem of cumulative errors generated by the gyroscope can be calibrated.
  • the coordinates of the vehicle and the heading angle of the vehicle need to be output.
  • the embodiment of the present invention provides a message format for final output, for example: frame 1: 0000 0000, where the first 4 bytes are the x coordinate, and the last 4 bytes are the y coordinate (location result); frame 2: 0000 0000, where The first 4 bytes are the horizontal angle, and the last 4 bytes are the pitch angle (the heading angle result), but it is not limited to this.
  • Fig. 3 is a schematic diagram of the layout of a vehicle positioning device provided by an embodiment of the present invention.
  • UWB technology is taken as an example for the convenience of description.
  • Bluetooth or Wifi or other wireless technologies can also be used instead of UWB technology.
  • UWB is a non-carrier communication technology that uses non-sinusoidal narrow pulses ranging from nanoseconds to picoseconds to transmit data. By transmitting extremely low-power signals over a wide frequency spectrum, UWB can achieve data transmission rates of hundreds of Mbit/s to several Gbit/s within a range of about 10 meters. This technology can achieve a positioning accuracy of up to 10 cm.
  • UWB indoor positioning features 1.
  • the frequency band is 3.1-10.6GHz, and the bandwidth is greater than 500MHz; 2.
  • the time domain is expressed as an extremely short pulse ( ⁇ 2nS); 3. Good coexistence with other wireless devices; 4. Low power consumption , The launching duty cycle is low, 5 is not sensitive to Rayleigh fading; 6, the penetration is strong, and the positioning accuracy is high.
  • each communication unit 1 may include a communication tag and an antenna.
  • the vehicle positioning device can adopt the tag-side solution method. After the antenna receives the signals from multiple signal transmitting units, it is transmitted to the tag for synchronization algorithm to obtain time information. The time information is transmitted to the solution unit through the serial port or CAN (not shown) The coordinate value is calculated, and the coordinate value is sent to the processing unit 2 through CAN or serial port or other wired or wireless transmission methods, or the calculation unit can also be integrated with the processing unit 2 and the calculation is performed in the processing unit 2.
  • the antenna and the tag can be integrated together or arranged separately.
  • Antenna 1 and antenna 2 can be installed in one structure or separately, but the two antennas need to be separated from each other.
  • the heading angle of the vehicle can be calculated according to the relative coordinate position of the antennas. Further control the vehicle's wire control system, such as steering angle, etc.
  • Fig. 4 is a schematic structural diagram of a vehicle positioning system provided by an embodiment of the present invention.
  • the vehicle positioning system includes: the vehicle positioning device 4 described above; an on-board positioning device 5 for collecting information related to the position and/or heading angle of the vehicle; and a main control device 6.
  • the vehicle positioning device 4 Used for: when the at least two communication units 1 receive the signals from the multiple signal transmitting devices, use the vehicle positioning device 4 to calculate the position and/or heading angle of the vehicle; When any one of the two communication units 1 does not receive the signal from any one of the multiple signal transmitting devices, use the information related to the position and/or heading angle of the vehicle collected by the on-board positioning device 5 , Calculate the position and/or heading angle of the vehicle.
  • a vehicle-mounted positioning device 5 is newly added to perform visual positioning.
  • the vehicle positioning system of this embodiment is mainly based on the vehicle positioning device 4.
  • the vehicle positioning device 5 is used for obstacle identification, obstacle avoidance, and positioning and handling after problems with the vehicle positioning device 4.
  • Base stations are added to the field, and dual tags are added to the vehicle.
  • Solution: The use scenario of this solution is that the vehicles in the parking lot are tagged and communicate with the site base station, and they are transmitted back to the parking lot management system and other vehicles through the wireless network, that is, the environment is relatively simple.
  • the parking management system performs unified scheduling and path planning of vehicles, combined with UWB positioning and heading angle information, combined with vehicle control models, to achieve final parking, and at the same time, visual and radar solutions are used for obstacle avoidance and local path planning during the travel process.
  • FIG. 5A is a schematic structural diagram of a vehicle positioning device provided by an embodiment of the present invention.
  • the vehicle-mounted positioning device 5 mainly includes at least one of a camera 31, a laser radar 32, a millimeter wave radar 33, an ultrasonic radar 34, a vehicle speed sensor 35, a wheel angular velocity sensor 36 and an inertial sensor 37.
  • the millimeter wave radar 33 is mainly used for obstacle avoidance, and the ultrasonic radar 34 is mainly realized by the cooperation of parking and visual positioning solutions.
  • the vehicle speed sensor 35, the wheel angular velocity sensor 36, and the inertial sensor 37 can obtain various states of the vehicle, such as vehicle speed, wheel speed, acceleration, tilt, shock, vibration, rotation, and multi-degree-of-freedom motion.
  • FIG. 5B is a schematic diagram of an installation position of a vehicle-mounted camera provided by an embodiment of the present invention.
  • the vehicle-mounted camera 31 may mainly include a surround view camera 311 and a front view camera 312, etc., to comprehensively capture images around the vehicle.
  • the main control unit 2 applies high-precision maps and/or semantic maps collected by vehicle sensors.
  • Camera 311, front-view camera 312, the visual positioning solution uses vision-based synchronous positioning and map construction (VSLAM) to generate semantic maps and high-precision maps.
  • VSLAM vision-based synchronous positioning and map construction
  • the vehicle-mounted camera 31 recognizes the collected VSLAM feature points for matching, and combines inertial sensors 37 (IMU) information to realize vehicle positioning and obtain vehicle-end positioning information.
  • IMU inertial sensors 37
  • SLAM simultaneous localization and mapping
  • VSLAM Vision SLAM
  • multiple signal emitting units can be set in special areas only, so that the signals emitted by the multiple signal emitting units cover: areas around turning, areas around corners, areas around transparent glass, or features The point is not enough for the vehicle-mounted positioning device 5 to correctly locate the area of the vehicle.
  • Fig. 6 is a schematic diagram of a working process of a vehicle positioning system provided by an embodiment of the present invention.
  • the workflow of the vehicle positioning system according to the embodiment of the present invention is as follows: first collect current scene images; determine the current scene Whether the pixel gray value of the image is within a preset range; when the pixel gray value of the current scene image is not in the preset range, controlling the at least two communication units 1 to receive signals from the multiple signal emitting units, The vehicle positioning device 4 is used to calculate the position and/or the heading angle of the vehicle; when the pixel gray value of the current scene image is within the preset range, the vehicle positioning device 5 is used to collect data from the According to the information related to the position and/or heading angle of the vehicle, the position and/or heading angle of the vehicle are calculated.
  • FIG. 7 is a schematic diagram of the work flow of a vehicle positioning system provided by another embodiment of the present invention.
  • the workflow of the vehicle positioning system according to the embodiment of the present invention is as follows: first collect the current scene image, and then determine the drivable area based on the current scene image; Whether the size of the drivable area is alternately changed; when the size of the drivable area is alternately changed, the at least two communication units 1 are controlled to receive signals from the multiple signal transmitting units to use the vehicle positioning device 4 Calculate the position and/or heading angle of the vehicle; when the drivable area does not change in size, use the information related to the position and/or heading angle of the vehicle collected by the on-board positioning device 5, Calculate the position and/or heading angle of the vehicle.
  • Fig. 8 is a schematic diagram of a working process of a vehicle positioning system provided by another embodiment of the present invention.
  • the workflow of the vehicle positioning system according to the embodiment of the present invention is as follows: First, the vehicle positioning device 5 generates and outputs Vehicle-end positioning information; then perform one of the following steps:
  • the at least two communication units 1 are controlled to receive signals from the multiple signal transmitting units .
  • the vehicle positioning device 4 to calculate the position and/or heading angle of the vehicle; when the deviation between the vehicle positioning information and the expected positioning information is less than a preset value, it indicates that the vehicle has not entered the area lacking feature points
  • the information related to the position and/or heading angle of the vehicle collected by the on-board positioning device 5 may be used to calculate the position and/or heading angle of the vehicle.
  • the at least two communication units 1 are controlled to receive signals from the multiple signal transmitting units, so as to use the vehicle positioning device 4 to calculate the position and/or heading of the vehicle Angle; when the update frequency of the vehicle positioning information is greater than the preset value within a predetermined time, it means that the vehicle has not entered the area lacking feature points. At this time, the vehicle's position and/ Or heading angle-related information to calculate the position and/or heading angle of the vehicle.
  • Fig. 9 is a working block diagram of a vehicle positioning system provided by an embodiment of the present invention.
  • the antenna receives the time of the signal from the base station, and then transmits it to the tag for synchronization algorithm to obtain time information.
  • the time information is transmitted to the solving unit through the serial port or CAN, and the position coordinates are calculated through the serial port, CAN or network cable or The optical fiber, etc. are passed to the main control unit.
  • Car-side positioning (VSLAM+high-precision map+lidar) combined with field-side high-precision UWB positioning method to achieve precise positioning (positioning error 10cm, yaw angle error 0.2°), dual positioning combined with Kalman filtering, and outputting the final vehicle in a way of judging confidence Coordinates and heading angle, UWB positioning method is less affected by the environment, visual positioning is easily interfered by light, visual positioning is mainly used in scenes with better light, and UWB positioning is mainly used in areas with poor light.
  • the visual positioning solution adopts high-precision map, ultrasonic radar, surround-view fisheye camera, front-view camera, millimeter wave radar combined with the vehicle's own sensors (vehicle speed, wheel angular velocity, etc.), IMU and multiple low-cost sensor fusion methods to achieve, and the vision is generated by VSLAM Semantic map and high-precision map combination scheme.
  • the embodiment of the present invention uses a low-cost vehicle terminal combined with a low-cost field-side solution, which overcomes the shortcomings of the visual solution being easily affected by light and ensures reliability; at the same time, the embodiment of the present invention applies a dual positioning solution for the field-side and the vehicle-side to ensure that After one fails, there is a redundant backup to improve the safety of the entire system.
  • An embodiment of the present invention also provides a vehicle positioning method, which is executed based on multiple signal transmitting units and at least two communication units, and the vehicle positioning method includes: receiving the multiple signal transmission units through the at least two communication units. Signals of a plurality of signal transmission units, wherein the at least two communication units have a distance between each of the plurality of signal transmission units according to the reception of each of the at least two communication units The time of the signal and the coordinates of each signal transmitting unit determine the coordinates of each communication unit; the heading angle of the vehicle is determined according to the coordinates of each communication unit.
  • the determination of the time when each of the at least two communication units receives the signal of each signal transmitting unit of the plurality of signal transmitting units and the coordinates of each signal transmitting unit include: determining the distance between each communication unit and each signal transmission unit according to the time when each communication unit receives the signal of each signal transmission unit; The coordinates of each signal transmission unit and the distance between each communication unit and each signal transmission unit determine the coordinates of each communication unit.
  • the vehicle positioning method is also executed based on a gyroscope, and the method includes: detecting the heading angle of the vehicle through the gyroscope as the first heading angle; and calculating the vehicle according to the driving curve of the vehicle The heading angle of is used as the second heading angle; according to the first heading angle, the second heading angle, and the heading angle of the vehicle determined according to the coordinates of each communication device, the final heading of the vehicle is determined based on the autoregressive algorithm angle.
  • each communication unit includes a communication tag and an antenna.
  • the method further includes: calculating the coordinates of the vehicle according to the coordinates of any one of the at least two communication units and the installation position on the vehicle to obtain the position of the vehicle.
  • the signals emitted by the plurality of signal transmitting units cover at least among the areas around turning, areas around corners, areas around transparent glass, and feature points that are not sufficient for the vehicle positioning device to correctly locate the vehicle.
  • the embodiment of the present invention also provides a machine-readable storage medium having instructions stored on the machine-readable storage medium for causing a machine to execute the vehicle positioning method described above.
  • the embodiment of the present invention also provides a processor for running a program, where the program is used to execute the vehicle positioning method as described above when the program is running.
  • An embodiment of the present invention also provides a vehicle, which includes the vehicle positioning device described above; or the vehicle positioning system described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及自动控制技术领域,提供一种车辆定位装置、***、方法以及车辆。本发明所述的车辆定位装置基于多个信号发射单元运行,所述车辆定位装置包括:至少两个通信单元,设置于所述车辆上,用于接收所述多个信号发射单元的信号,其中所述至少两个通信单元之间具有间距;处理单元,用于:根据所述至少两个通信单元中的每个通信单元接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元的坐标;根据所述每个通信单元的坐标确定所述车辆的航向角。本发明可以实现航向角的精确测量。

Description

车辆定位装置、***、方法以及车辆 技术领域
本发明涉及自动控制技术领域,特别涉及一种车辆定位装置、***、方法以及车辆。
背景技术
如今,在室外的无人驾驶定位可以通过实时动态差分法(RTK)和全球导航定位***(GNSS)等方式实现,但在室内停车场,GPS信号丢失无法按照室外方式实现精确定位。当今室内定位方案仅能实现定位坐标,并没有实现测量航向角,但是航向角对自动驾驶的定位和控制来说也很重要。
发明内容
有鉴于此,本发明旨在提出一种车辆定位装置,以实现航向角的精确测量。
为达到上述目的,本发明的技术方案是这样实现的:
一种车辆定位装置,所述车辆定位装置基于多个信号发射单元运行,所述车辆定位装置包括:至少两个通信单元,设置于所述车辆上,用于接收所述多个信号发射单元的信号,其中所述至少两个通信单元之间具有间距;处理单元,用于:根据所述至少两个通信单元中的每个通信单元接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元的坐标;根据所述每个通信单元的坐标确定所述车辆的航向角。
进一步的,根据所述至少两个通信单元中的每个通信单元接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元的坐标包括:根据所述每个通信单元接收到所述每个信号发射单元的信号的时间确定所述每个通信单元与所述每个信号发射单元的距离;根据所述每个信号发射单元的坐标和所述每个通信单元与所述每个信号发射单元的距离确定所述每个通信单元的坐标。
进一步的,所述车辆定位装置还包括:陀螺仪,用于检测所述车辆的航向角,以作为第一航向角;所述处理单元还用于:根据所述车辆的行驶曲线,计算所述车辆的航向角作为第二航向角;根据所述第一航向角、所述第二航向角以及根据所述每个通信装 置的坐标确定的车辆的航向角,基于自回归算法确定最终的车辆的航向角。
进一步的,所述每个通信单元包括通信标签和天线。
进一步的,所述处理单元还用于:根据所述至少两个通信单元中任一通信单元的坐标和在所述车辆上的安装位置计算所述车辆的坐标以得到所述车辆的位置。
进一步的,所述多个信号发射单元发出的信号覆盖于:转弯周围区域、角落周围区域、透明玻璃周围区域以及特征点不足以供所述车载定位装置正确进行所述车辆定位的区域中的至少一者。
相对于现有技术,本发明所述的车辆定位装置具有以下优势:
本发明所述的车辆定位装置,基于多个信号发射单元运行,通过至少两个通信单元接收多个信号发射单元的信号,根据每个通信单元接收到每个信号发射单元的信号的时间确定每个通信单元的坐标,根据每个通信单元的坐标确定车辆的航向角。本发明车辆定位装置只基于多个信号发射单元,因此可以在室内或无法获取GPS信号的区域实现航向角的精确测量。
本发明的另一目的在于提出一种车辆定位***,以实现航向角的全程的精确测量。
为达到上述目的,本发明的技术方案是这样实现的:
一种车辆定位***,所述车辆定位***包括:上文所述的车辆定位装置;车载定位装置,用于采集与所述车辆的位置和/或航向角相关的信息;以及主控装置,用于:在所述至少两个通信单元接收到所述多个信号发射装置的信号时,使用所述车辆定位装置计算所述车辆的位置和/或航向角;在所述至少两个通信单元中任一者未接收到所述多个信号发射装置中任一者的信号时,使用所述车载定位装置采集的与所述车辆的位置和/或航向角相关的信息,计算所述车辆的位置和/或航向角。
进一步的,所述车载定位装置还用于采集当前场景图像;所述主控装置还用于:在所述至少两个通信单元接收所述多个信号发射装置的信号之前,判断所述当前场景图像的像素灰度值是否在预设范围内;在所述当前场景图像的像素灰度值不在预设范围时,控制所述至少两个通信单元接收所述多个信号发射单元的信号,以使用所述车辆定位装置计算所述车辆的位置和/或航向角;在所述当前场景图像的像素灰度值处于所述预设范围时,使用所述车载定位装置采集的与所述车辆的位置和/或航向角相关的信息,计算所述车辆的位置和/或航向角。
进一步的,所述车载定位装置包括:摄像头、激光雷达、毫米波雷达、超声波雷达、车速传感器、轮转角速度传感器和惯性传感器中的至少一者。
相对于现有技术,本发明所述的车辆定位***具有以下优势:
本发明所述的车辆定位***,包括上文所述的车辆定位装置,还包括车载定位装置,在车辆定位装置能接收到多个信号发射装置的信号时,使用车辆定位装置计算车辆的位置和/或航向角,在车辆定位装置不能完整接收到多个信号发射装置的信号时,使用车载定位装置计算车辆的位置和/或航向角。本发明的车辆定位***,可以保证在车辆定位装置发生故障或者未设置多个信号发射装置的区域也能计算车辆的位置和/或航向角,并在车载定位装置无法精确确定车辆的位置和/或航向角时,使用车辆定位装置代替确定车辆的位置和/或航向角,以实现航向角的全程的精确测量。
本发明的另一目的在于提出一种车辆定位方法,以实现航向角的全程的精确测量。
为达到上述目的,本发明的技术方案是这样实现的:
一种车辆定位方法,所述车辆定位方法基于多个信号发射单元和至少两个通信单元执行,所述车辆定位方法包括:通过所述至少两个通信单元接收所述多个信号发射单元的信号,其中所述至少两个通信单元之间具有间距;根据所述至少两个通信单元中的每个通信单元接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元的坐标;根据所述每个通信单元的坐标确定所述车辆的航向角。
进一步的,根据所述至少两个通信单元中的每个通信单元接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元的坐标包括:根据所述每个通信单元接收到所述每个信号发射单元的信号的时间确定所述每个通信单元与所述每个信号发射单元的距离;根据所述每个信号发射单元的坐标和所述每个通信单元与所述每个信号发射单元的距离确定所述每个通信单元的坐标。
进一步的,所述车辆定位方法还基于陀螺仪执行,该方法包括:通过所述陀螺仪检测所述车辆的航向角,以作为第一航向角;根据所述车辆的行驶曲线,计算所述车辆的航向角作为第二航向角;根据所述第一航向角、所述第二航向角以及根据所述每个通信装置的坐标确定的车辆的航向角,基于自回归算法确定最终的车辆的航向角。
进一步的,该方法还包括:根据所述至少两个通信单元中任一通信单元的坐标和在所述车辆上的安装位置计算所述车辆的坐标以得到所述车辆的位置。
进一步的,所述多个信号发射单元发出的信号覆盖于:转弯周围区域、角落周围区域、透明玻璃周围区域以及特征点不足以供所述车载定位装置正确进行所述车辆定位 的区域中的至少一者。
所述车辆定位方法与上述车辆定位装置相对于现有技术所具有的优势相同,在此不再赘述。
本发明的另一目的在于提出一种车辆,以实现航向角的精确测量。
为达到上述目的,本发明的技术方案是这样实现的:
一种车辆,所述车辆包括上文所述的车辆定位装置;或上文所述的车辆定位***。
所述车辆与上述车辆定位装置或车辆定位***相对于现有技术所具有的优势相同,在此不再赘述。本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施方式及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明一实施例提供的车辆定位装置的结构示意图;
图2是本发明一实施例提供的车辆定位装置的工作流程示意图;
图3是本发明一实施例提供的车辆定位装置的布置示意图;
图4是本发明一实施例提供的车辆定位***的结构示意图;
图5A是本发明一实施例提供的车载定位装置的结构示意图;
图5B是本发明一实施例提供的车载的摄像头的安装位置示意图;
图6是本发明一实施例提供的车辆定位***的工作流程示意图;
图7是本发明另一实施例提供的车辆定位***的工作流程示意图;
图8是本发明另一实施例提供的车辆定位***的工作流程示意图;
图9是本发明一实施例提供的车辆定位***的工作框图。
附图标记说明
1    通信单元              2   处理单元
31   摄像头                32  激光雷达
33   毫米波雷达            34  超声波雷达
35   车速传感器            36  轮转角速度传感器
37   惯性传感器            311 环视摄像头
312  前视摄像头            4   车辆定位装置
5    车载定位装置         6   主控装置
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。
下面将参考附图并结合实施方式来详细说明本发明。
图1是本发明一实施例提供的车辆定位装置的结构示意图。如图1所示,所述车辆定位装置基于多个信号发射单元运行,所述车辆定位装置包括:至少两个通信单元1,设置于所述车辆上,用于接收所述多个信号发射单元的信号,其中所述至少两个通信单元1之间具有间距;处理单元2,用于:根据所述至少两个通信单元1中的每个通信单元1接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元1的坐标;根据所述每个通信单元1的坐标确定所述车辆的航向角。
在本发明实施例中,多个信号发射单元(未绘示)可以是基站。为了最精确确定车辆的位置和/或航向角,信号发射单元优选设置4个,该4个信号发射单元可以组成方形区域。至少两个通信单元1接收多个信号发射单元发出的信号,处理单元2可以根据每个通信单元1接收到每个信号发射单元发出的信号的时间,确定二者的距离,从而根据多个信号发射单元的坐标,确定每个通信单元1的坐标。由于每个通信单元1之间具有间距,而间距是已知的,并且每个通信单元1的安装位置也是已知的,因此很容易得到车辆的朝向,从而得到车辆的航向角。
对于车辆的位置,一般车辆的坐标以车辆后轴中点的坐标为准,因此根据任一通信单元1在车辆上的安装位置,可以得到该通信单元1与车辆后轴中点的距离,从而根据该通信单元1的坐标计算出车辆后轴中点的坐标,以得到车辆的坐标。
图2是本发明一实施例提供的车辆定位装置的工作流程示意图。如图2所示,首先接收多个信号发射单元的信号,接着,根据每个通信单元1接收到每个信号发射单元的信号的时间确定每个通信单元1与每个信号发射单元的距离,接着,根据每个信号发射单元的坐标和每个通信单元1与每个信号发射单元的距离确定每个通信单元1的坐标,最后,根据所述每个通信单元1的坐标确定所述车辆的航向角。
通过上述方式计算出的车辆的航向角由于仅由一种方式得到,因此可能不够精确,经过大量实际操作和试验,发现航向角偏差大致在1.53°至3.82°之间。对此,本发明首 先可以设置极高的刷新频率来利用上述方式计算车辆的航向角,使车辆处于同一状态(位置和航向角)时,得到多个车辆的航向角,从而进行平均得到较为精确的航向角。
另外,本发明实施例还设置了陀螺仪来检测车辆的航向角,并将陀螺仪检测的车辆的航向角作为第一航向角。陀螺仪能提供高达0.1°的相对航向角,但会产生累计误差。然后,处理单元2根据车辆的行驶曲线,拟合行驶曲线方程,并求偏导得到车辆的航向角,作为第二航向角。最后,根据第一航向角、第二航向角以及根据每个通信装置的坐标确定的车辆的航向角(或者上述进行平均后的航向角),基于自回归算法,例如卡尔曼滤波,确定最终的车辆的航向角。该最终的车辆航向角较为准确,也不会产生累计误差,因此可以校准陀螺仪产生的累计误差的问题。
另外,在计算出车辆的坐标和车辆的航向角后,需要输出车辆的坐标和车辆的航向角。本发明实施例提供一种最终输出的报文格式,例如:帧1:0000 0000,其中前4字节为x坐标,后4字节为y坐标(定位结果);帧2:0000 0000,其中前4字节为水平角,后4字节为俯仰角(航向角结果),但不限于此。
图3是本发明一实施例提供的车辆定位装置的布置示意图。本发明实施例中,以UWB技术为例以便于进行说明,事实上也可以使用蓝牙或Wifi或其它无线技术代替UWB技术。UWB是一种无载波通信技术,利用纳秒至微微秒级的非正弦波窄脉冲传输数据。通过在较宽的频谱上传送极低功率的信号,UWB能在10米左右的范围内实现数百Mbit/s至数Gbit/s的数据传输速率,应用此技术可以实现高达10cm的定位精度。UWB室内定位特点:1、频带为3.1-10.6GHz,带宽大于500MHz;2、时域上表现为时间极短(<2nS)的脉冲;3、与其它无线设备共存性好;4、功耗低,发射占空比低5、对瑞利衰落不敏感;6、穿透性强,定位精度高。
如图3所示,每个通信单元1可以包括通信标签和天线。车辆定位装置可以采用标签端解算方式,在天线接收多个信号发射单元的信号后,传输到标签进行同步算法得出时间信息,时间信息通过串口或CAN传到解算单元(未绘示)解算出坐标值,并通过CAN或串口或其它有线或无线传输方式将坐标值发送给处理单元2,或者解算单元也可以与处理单元2集成,在处理单元2中进行解算。天线和标签可以集成在一起也可以分开布置,天线1和天线2可以安装在一个结构中也可以分开安装,但两个天线需要有一定间距,根据天线相对坐标位置计算出车辆的航向角,从而进一步控制车辆的线控***,如转向角度等。
本发明实施例还提供一种车辆定位***。图4是本发明一实施例提供的车辆定位 ***的结构示意图。如图4所示,所述车辆定位***包括:上文所述的车辆定位装置4;车载定位装置5,用于采集与所述车辆的位置和/或航向角相关的信息;以及主控装置6,用于:在所述至少两个通信单元1接收到所述多个信号发射装置的信号时,使用所述车辆定位装置4计算所述车辆的位置和/或航向角;在所述至少两个通信单元1中任一者未接收到所述多个信号发射装置中任一者的信号时,使用所述车载定位装置5采集的与所述车辆的位置和/或航向角相关的信息,计算所述车辆的位置和/或航向角。
在本发明实施例中,新增了车载定位装置5,进行视觉定位。本实施例的车辆定位***以车辆定位装置4为主,车载定位装置5用于障碍物识别、避障及车辆定位装置4出现问题之后的定位及处理,场端增加基站,车端加入双标签方案,这种方案使用场景为停车场内车辆都带标签且都与场端基站进行通讯,且通过无线网络回传给停车场管理***及其它车辆,即环境相对单纯。由停车场管理***对车辆进行统一调度及路径规划,结合UWB定位及航向角信息,结合车辆控制模型,实现最终泊车,同时在行进过程中由视觉结合雷达方案进行避障及局部路径规划。
图5A是本发明一实施例提供的车载定位装置的结构示意图。如图5A所示,所述车载定位装置5主要包括:摄像头31、激光雷达32、毫米波雷达33、超声波雷达34、车速传感器35、轮转角速度传感器36和惯性传感器37中的至少一者。毫米波雷达33主要用于避障,超声波雷达34主要用泊车与视觉定位方案配合实现。车速传感器35、轮转角速度传感器36和惯性传感器37可以得到车辆的各种状态,例如车速、轮速、加速度、倾斜、冲击、振动、旋转和多自由度运动等。
图5B是本发明一实施例提供的车载的摄像头的安装位置示意图。如图5B所示,车载的摄像头31主要可以包括环视摄像头311和前视摄像头312等,以全面拍摄车辆周边的图像,主控单元2应用高精度地图和/或由车辆传感器采集语义地图、环视摄像头311、前视摄像头312,视觉定位方案采用基于视觉的同步定位与地图构建(VSLAM)生成语义地图与高精度地图结合,通过车载的摄像头31识别采集的VSLAM特征点进行匹配,结合惯性传感器37(IMU)的信息,实现车辆的定位,得到车端定位信息。其中,SLAM(simultaneous localization and mapping,SLAM)是指根据传感器的信息,一边计算自身位置,一边构建环境地图的过程,解决在未知环境下运动时的定位与地图构建问题。VSLAM即视觉SLAM(Vision SLAM),更为高级,是基于视觉的定位与建图,更加精准和迅速。
另外,本发明实施例中,为了节省费用,可以只在特殊区域设置多个信号发射单 元,使多个信号发射单元发出的信号覆盖于:转弯周围区域、角落周围区域、透明玻璃周围区域或特征点不足以供所述车载定位装置5正确进行所述车辆定位的区域。
图6是本发明一实施例提供的车辆定位***的工作流程示意图。如图6所示,对于角落周围区域和透明玻璃周围区域这样的光线较亮或较暗的区域,本发明实施例的车辆定位***的工作流程如下:首先采集当前场景图像;判断所述当前场景图像的像素灰度值是否在预设范围内;在所述当前场景图像的像素灰度值不在预设范围时,控制所述至少两个通信单元1接收所述多个信号发射单元的信号,以使用所述车辆定位装置4计算所述车辆的位置和/或航向角;在所述当前场景图像的像素灰度值处于所述预设范围时,使用所述车载定位装置5采集的与所述车辆的位置和/或航向角相关的信息,计算所述车辆的位置和/或航向角。
图7是本发明另一实施例提供的车辆定位***的工作流程示意图。如图7所示,对于转弯周围区域,本发明实施例的车辆定位***的工作流程如下:首先采集当前场景图像,接着根据所述当前的场景图像确定可行驶区域;在车辆行驶过程中,判断所述可行驶区域是否进行大小交替变化;在所述可行驶区域进行大小交替变化时,控制所述至少两个通信单元1接收所述多个信号发射单元的信号,以使用所述车辆定位装置4计算所述车辆的位置和/或航向角;在所述可行驶区域未进行大小交替变化时,使用所述车载定位装置5采集的与所述车辆的位置和/或航向角相关的信息,计算所述车辆的位置和/或航向角。
图8是本发明另一实施例提供的车辆定位***的工作流程示意图。如图8所示,对于特征点不足以供所述车载定位装置5正确进行所述车辆定位的区域,本发明实施例的车辆定位***的工作流程如下:首先,由车载定位装置5生成并输出车端定位信息;然后执行以下步骤中的一者:
1)根据车辆的方向、车速以及初始定位信息得到预期定位信息;在所述车辆行驶过程中,判断所述车端定位信息与所述预期定位信息的偏差是否大于等于预设值,在所述车端定位信息与所述预期定位信息的偏差大于等于预设值时,说明车辆进入了特征点缺少的区域,此时控制所述至少两个通信单元1接收所述多个信号发射单元的信号,以使用所述车辆定位装置4计算所述车辆的位置和/或航向角;在所述车辆定位信息与所述预期定位信息的偏差小于预设值时,说明车辆未进入特征点缺少的区域,此时可以使用所述车载定位装置5采集的与所述车辆的位置和/或航向角相关的信息,计算所述车辆的位置和/或航向角。
2)在所述车辆行驶过程中,判断预定时间内所述车端定位信息的更新频率是否小于等于预设频率,在预定时间内所述车端定位信息的更新频率小于等于预设频率时,说明车辆进入了特征点缺少的区域,此时控制所述至少两个通信单元1接收所述多个信号发射单元的信号,以使用所述车辆定位装置4计算所述车辆的位置和/或航向角;在预定时间内所述车辆定位信息的更新频率大于预设值时,说明车辆未进入特征点缺少的区域,此时可以使用所述车载定位装置5采集的与所述车辆的位置和/或航向角相关的信息,计算所述车辆的位置和/或航向角。
图9是本发明一实施例提供的车辆定位***的工作框图。如图9所示,天线接收基站发出信号的时间,然后传输到标签进行同步算法得出时间信息,时间信息通过串口或CAN传到解算单元,解算出位置坐标后通过串口、CAN或者网线或光纤等传给主控单元。
车端定位(VSLAM+高精度地图+激光雷达)结合场端高精度UWB定位方式实现精准定位(定位误差10cm,偏航角误差0.2°),双重定位结合卡尔曼滤波,评判置信度方式输出最终车辆坐标及航向角,UWB定位方式受环境影响小,视觉定位容易受到光线干扰,在光线较好的场景应用视觉定位为主,在光线不好区域以UWB定位为主。视觉定位方案采用高精度地图、超声波雷达、环视鱼眼相机、前视相机、毫米波雷达结合车辆本身传感器(车速、轮转角速度等)、IMU以及多个低成本传感器融合方式实现,视觉采用VSLAM生成语义地图与高精度地图结合方案。
本发明实施例应用低成本车端结合低成本场端方案,克服了视觉方案容易受光线影响的缺点,保障了可靠性;同时,本发明实施例应用场端和车端双重定位方案,确保其中一个失效后有冗余备份,提升整个***的安全性。
本发明实施例还提供一种车辆定位方法,所述车辆定位方法基于多个信号发射单元和至少两个通信单元执行,所述车辆定位方法包括:通过所述至少两个通信单元接收所述多个信号发射单元的信号,其中所述至少两个通信单元之间具有间距;根据所述至少两个通信单元中的每个通信单元接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元的坐标;根据所述每个通信单元的坐标确定所述车辆的航向角。
进一步的,根据所述至少两个通信单元中的每个通信单元接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元的坐标包括:根据所述每个通信单元接收到所述每个信号发射单元的信 号的时间确定所述每个通信单元与所述每个信号发射单元的距离;根据所述每个信号发射单元的坐标和所述每个通信单元与所述每个信号发射单元的距离确定所述每个通信单元的坐标。
进一步的,所述车辆定位方法还基于陀螺仪执行,该方法包括:通过所述陀螺仪检测所述车辆的航向角,以作为第一航向角;根据所述车辆的行驶曲线,计算所述车辆的航向角作为第二航向角;根据所述第一航向角、所述第二航向角以及根据所述每个通信装置的坐标确定的车辆的航向角,基于自回归算法确定最终的车辆的航向角。
进一步的,所述每个通信单元包括通信标签和天线。
进一步的,该方法还包括:根据所述至少两个通信单元中任一通信单元的坐标和在所述车辆上的安装位置计算所述车辆的坐标以得到所述车辆的位置。
进一步的,所述多个信号发射单元发出的信号覆盖于:转弯周围区域、角落周围区域、透明玻璃周围区域以及特征点不足以供所述车载定位装置正确进行所述车辆定位的区域中的至少一者。
本发明实施例还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上文所述的车辆定位方法。
本发明实施例还提供一种处理器,用于运行程序,其中,所述程序被运行时用于执行:如上文所述的车辆定位方法。
本发明实施例还提供一种车辆,所述车辆包括上文所述的车辆定位装置;或上文所述的车辆定位***。
上文所述的车辆定位方法、机器可读存储介质、处理器以及车辆的实施例与上文所述的车辆定位装置和***的实施例类似,在此不再赘述。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种车辆定位装置,其特征在于,所述车辆定位装置基于多个信号发射单元运行,所述车辆定位装置包括:
    至少两个通信单元,设置于所述车辆上,用于接收所述多个信号发射单元的信号,其中所述至少两个通信单元之间具有间距;
    处理单元,用于:
    根据所述至少两个通信单元中的每个通信单元接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元的坐标;
    根据所述每个通信单元的坐标确定所述车辆的航向角。
  2. 根据权利要求1所述的车辆定位装置,其特征在于,根据所述至少两个通信单元中的每个通信单元接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元的坐标包括:
    根据所述每个通信单元接收到所述每个信号发射单元的信号的时间确定所述每个通信单元与所述每个信号发射单元的距离;
    根据所述每个信号发射单元的坐标和所述每个通信单元与所述每个信号发射单元的距离确定所述每个通信单元的坐标。
  3. 根据权利要求1所述的车辆定位装置,其特征在于,所述车辆定位装置还包括:
    陀螺仪,用于检测所述车辆的航向角,以作为第一航向角;
    所述处理单元还用于:
    根据所述车辆的行驶曲线,计算所述车辆的航向角作为第二航向角;
    根据所述第一航向角、所述第二航向角以及根据所述每个通信装置的坐标确定的车辆的航向角,基于自回归算法确定最终的车辆的航向角。
  4. 根据权利要求1所述的车辆定位装置,其特征在于,所述每个通信单元包括通信标签和天线。
  5. 根据权利要求1所述的车辆定位装置,其特征在于,所述处理单元还用于:
    根据所述至少两个通信单元中任一通信单元的坐标和在所述车辆上的安装位置计算所述车辆的坐标以得到所述车辆的位置。
  6. 根据权利要求1所述的车辆定位装置,其特征在于,所述多个信号发射单元发出的信号覆盖于:
    转弯周围区域、角落周围区域、透明玻璃周围区域以及特征点不足以供所述车载定位装置正确进行所述车辆定位的区域中的至少一者。
  7. 一种车辆定位***,其特征在于,所述车辆定位***包括:
    权利要求1-6中任意一项权利要求所述的车辆定位装置;
    车载定位装置,用于采集与所述车辆的位置和/或航向角相关的信息;以及
    主控装置,用于:
    在所述至少两个通信单元接收到所述多个信号发射装置的信号时,使用所述车辆定位装置计算所述车辆的位置和/或航向角;
    在所述至少两个通信单元中任一者未接收到所述多个信号发射装置中任一者的信号时,使用所述车载定位装置采集的与所述车辆的位置和/或航向角相关的信息,计算所述车辆的位置和/或航向角。
  8. 根据权利要求7所述的车辆定位***,其特征在于,
    所述车载定位装置还用于采集当前场景图像;
    所述主控装置还用于:
    在所述至少两个通信单元接收所述多个信号发射装置的信号之前,判断所述当前场景图像的像素灰度值是否在预设范围内;
    在所述当前场景图像的像素灰度值不在预设范围时,控制所述至少两个通信单元接收所述多个信号发射单元的信号,以使用所述车辆定位装置计算所述车辆的位置和/或航向角;
    在所述当前场景图像的像素灰度值处于所述预设范围时,使用所述车载定位装置采集的与所述车辆的位置和/或航向角相关的信息,计算所述车辆的位置和/或航向角。
  9. 根据权利要求7所述的车辆定位***,其特征在于,所述车载定位装置包括:
    摄像头、激光雷达、毫米波雷达、超声波雷达、车速传感器、轮转角速度传感器和惯性传感器中的至少一者。
  10. 一种车辆定位方法,其特征在于,所述车辆定位方法基于多个信号发射单元和至少两个通信单元执行,所述车辆定位方法包括:
    通过所述至少两个通信单元接收所述多个信号发射单元的信号,其中所述至少两个通信单元之间具有间距;
    根据所述至少两个通信单元中的每个通信单元接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元的坐标;
    根据所述每个通信单元的坐标确定所述车辆的航向角。
  11. 根据权利要求10所述的车辆定位方法,其特征在于,根据所述至少两个通信单元中的每个通信单元接收到所述多个信号发射单元中的每个信号发射单元的信号的时间以及所述每个信号发射单元的坐标确定所述每个通信单元的坐标包括:
    根据所述每个通信单元接收到所述每个信号发射单元的信号的时间确定所述每个通信单元与所述每个信号发射单元的距离;
    根据所述每个信号发射单元的坐标和所述每个通信单元与所述每个信号发射单元的距离确定所述每个通信单元的坐标。
  12. 根据权利要求10所述的车辆定位方法,其特征在于,所述车辆定位方法还基于陀螺仪执行,该方法包括:
    通过所述陀螺仪检测所述车辆的航向角,以作为第一航向角;
    根据所述车辆的行驶曲线,计算所述车辆的航向角作为第二航向角;
    根据所述第一航向角、所述第二航向角以及根据所述每个通信装置的坐标确定的车辆的航向角,基于自回归算法确定最终的车辆的航向角。
  13. 根据权利要求10所述的车辆定位方法,其特征在于,该方法还包括:
    根据所述至少两个通信单元中任一通信单元的坐标和在所述车辆上的安装位置计算所述车辆的坐标以得到所述车辆的位置。
  14. 根据权利要求10所述的车辆定位方法,其特征在于,所述多个信号发射单元发出的信号覆盖于:
    转弯周围区域、角落周围区域、透明玻璃周围区域以及特征点不足以供所述车载定位装置正确进行所述车辆定位的区域中的至少一者。
  15. 一种车辆,其特征在于,该车辆包括上文权利要求1-6中任意一项权利要求所述的车辆定位装置;或权利要求7-9中任意一项权利要求所述的车辆定位***。
PCT/CN2020/073241 2019-01-25 2020-01-20 车辆定位装置、***、方法以及车辆 WO2020151663A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20744572.7A EP3913328B1 (en) 2019-01-25 2020-01-20 Vehicle positioning system and method, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910073979.8 2019-01-25
CN201910073979.8A CN110798792B (zh) 2019-01-25 2019-01-25 车辆定位装置、车辆定位***以及车辆

Publications (1)

Publication Number Publication Date
WO2020151663A1 true WO2020151663A1 (zh) 2020-07-30

Family

ID=69426807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073241 WO2020151663A1 (zh) 2019-01-25 2020-01-20 车辆定位装置、***、方法以及车辆

Country Status (3)

Country Link
EP (1) EP3913328B1 (zh)
CN (1) CN110798792B (zh)
WO (1) WO2020151663A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112040446A (zh) * 2020-09-16 2020-12-04 上海振华重工(集团)股份有限公司 一种定位方法及定位***
CN113099529A (zh) * 2021-03-29 2021-07-09 千寻位置网络(浙江)有限公司 室内车辆导航方法、车载终端、场端服务器及***
CN113900061A (zh) * 2021-05-31 2022-01-07 深圳市易艾得尔智慧科技有限公司 基于uwb无线定位与imu融合的导航定位***及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111572551B (zh) * 2020-05-19 2021-07-20 安徽江淮汽车集团股份有限公司 泊车工况下的航向角计算方法、装置、设备及存储介质
CN111988737B (zh) * 2020-07-28 2022-08-09 中国铁道科学研究院集团有限公司电子计算技术研究所 铁路作业人员的绝对位置确定方法、装置和电子设备
CN112034858B (zh) * 2020-09-14 2022-04-29 哈尔滨工程大学 一种融合弱观测高阶输出数据的无模型自适应艏向控制方法
CN113720343B (zh) * 2021-08-16 2024-07-02 中国科学院上海微***与信息技术研究所 基于动态数据实时适应的航向预测方法
CN114684198A (zh) * 2022-04-02 2022-07-01 合众新能源汽车有限公司 一种航向角确定方法及装置、控制器、车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613982A (zh) * 2015-01-28 2015-05-13 齐鲁工业大学 一种室内组合导航仿真验证***
CN105953798A (zh) * 2016-04-19 2016-09-21 深圳市神州云海智能科技有限公司 移动机器人的位姿确定方法和设备
CN108613671A (zh) * 2018-04-25 2018-10-02 东南大学 一种基于uwb定位和航迹定位的智能割草机定位装置及方法
CN109000660A (zh) * 2018-06-26 2018-12-14 苏州路特工智能科技有限公司 基于超宽带定位的全自动压路机施工路径规划方法
CN109115211A (zh) * 2018-08-01 2019-01-01 南京科远自动化集团股份有限公司 一种厂区高精度人员定位方法及定位***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594879B2 (en) * 2003-03-20 2013-11-26 Agjunction Llc GNSS guidance and machine control
KR100941271B1 (ko) * 2007-03-30 2010-02-11 현대자동차주식회사 자동차용 차선이탈 방지 방법
KR102350199B1 (ko) * 2016-01-05 2022-01-14 삼성전자주식회사 단말에서 위치 추정 방법 및 장치
CN108036784A (zh) * 2017-11-10 2018-05-15 云保(佛山)智控科技有限公司 一种室内定位方法、导航方法及***
CN107976195B (zh) * 2017-11-30 2019-02-15 达闼科技(北京)有限公司 机器人的定位导航***及方法、存储介质、机器人
CN109143305A (zh) * 2018-09-30 2019-01-04 百度在线网络技术(北京)有限公司 车辆导航方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613982A (zh) * 2015-01-28 2015-05-13 齐鲁工业大学 一种室内组合导航仿真验证***
CN105953798A (zh) * 2016-04-19 2016-09-21 深圳市神州云海智能科技有限公司 移动机器人的位姿确定方法和设备
CN108613671A (zh) * 2018-04-25 2018-10-02 东南大学 一种基于uwb定位和航迹定位的智能割草机定位装置及方法
CN109000660A (zh) * 2018-06-26 2018-12-14 苏州路特工智能科技有限公司 基于超宽带定位的全自动压路机施工路径规划方法
CN109115211A (zh) * 2018-08-01 2019-01-01 南京科远自动化集团股份有限公司 一种厂区高精度人员定位方法及定位***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913328A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112040446A (zh) * 2020-09-16 2020-12-04 上海振华重工(集团)股份有限公司 一种定位方法及定位***
CN112040446B (zh) * 2020-09-16 2023-08-22 上海振华重工(集团)股份有限公司 一种定位方法及定位***
CN113099529A (zh) * 2021-03-29 2021-07-09 千寻位置网络(浙江)有限公司 室内车辆导航方法、车载终端、场端服务器及***
CN113900061A (zh) * 2021-05-31 2022-01-07 深圳市易艾得尔智慧科技有限公司 基于uwb无线定位与imu融合的导航定位***及方法

Also Published As

Publication number Publication date
CN110798792B (zh) 2021-04-13
EP3913328A4 (en) 2022-03-16
EP3913328B1 (en) 2023-12-20
EP3913328A1 (en) 2021-11-24
CN110798792A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2020151663A1 (zh) 车辆定位装置、***、方法以及车辆
US11940539B2 (en) Camera-to-LiDAR calibration and validation
JP7160040B2 (ja) 信号処理装置、および信号処理方法、プログラム、移動体、並びに、信号処理システム
JP7073315B2 (ja) 乗物、乗物測位システム、及び乗物測位方法
US11333762B2 (en) Merging data from multiple LiDAR devices
EP3540464B1 (en) Ranging method based on laser radar system, device and readable storage medium
CN105270399B (zh) 利用车辆通信控制车辆的设备及其方法
DK180555B1 (en) Systems and methods for validating and calibrating sensors
US11940804B2 (en) Automated object annotation using fused camera/LiDAR data points
US11861784B2 (en) Determination of an optimal spatiotemporal sensor configuration for navigation of a vehicle using simulation of virtual sensors
GB2545098A (en) Vehicle navigation system having location assistance from neighboring vehicles
US11814044B2 (en) Resolving range rate ambiguity in sensor returns
US11885893B2 (en) Localization based on predefined features of the environment
US11999372B2 (en) Operation of an autonomous vehicle based on availability of navigational information
CN110962744A (zh) 车辆盲区检测方法和车辆盲区检测***
CN113758482B (zh) 车辆导航定位方法、装置、基站、***及可读存储介质
CN111638487B (zh) 一种自动泊车测试设备及方法
WO2020230410A1 (ja) 移動体
US20230085010A1 (en) Automated moving platform
KR102596954B1 (ko) 주행체에 장착되는 태그 및 이를 포함하는 주행체 좌표 측정 시스템
Steinbaeck et al. ACTIVE-Autonomous Car to Infrastructure Communication Mastering Adverse Environments
WO2020151664A1 (zh) 车载控制装置、场端定位装置及车辆
US20230296780A1 (en) Methods and systems for sensor operation
US20220309693A1 (en) Adversarial Approach to Usage of Lidar Supervision to Image Depth Estimation
CN114964280A (zh) 基于多元异构传感器的车内手机定位导航技术

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020744572

Country of ref document: EP

Effective date: 20210818