WO2020151216A1 - 一种大蒜水肥一体化灌溉***及控制方法 - Google Patents

一种大蒜水肥一体化灌溉***及控制方法 Download PDF

Info

Publication number
WO2020151216A1
WO2020151216A1 PCT/CN2019/099155 CN2019099155W WO2020151216A1 WO 2020151216 A1 WO2020151216 A1 WO 2020151216A1 CN 2019099155 W CN2019099155 W CN 2019099155W WO 2020151216 A1 WO2020151216 A1 WO 2020151216A1
Authority
WO
WIPO (PCT)
Prior art keywords
garlic
period
fertilizer
water
irrigation
Prior art date
Application number
PCT/CN2019/099155
Other languages
English (en)
French (fr)
Inventor
齐振宇
周艳虹
任艳云
张龙平
蔡盼
邵淑君
边武英
周杰
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2020151216A1 publication Critical patent/WO2020151216A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/04Distributing under pressure; Distributing mud; Adaptation of watering systems for fertilising-liquids
    • A01C23/042Adding fertiliser to watering systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B77/00Machines for lifting and treating soil
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/167Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means

Definitions

  • the invention belongs to the field of irrigation, and particularly relates to a garlic water-fertilizer integrated irrigation system and a control method, which can realize water-fertilizer integration and automatic management in the garlic mass production process.
  • Garlic is a kind of overwintering crop. In the process of large-scale production, it is generally cultivated with transparent plastic film to increase soil temperature, maintain soil moisture, maintain soil structure, reduce pests invading crops and diseases caused by certain microorganisms, and promote the health of garlic Grow. If mulch film is not used, it is easy to cause production problems such as freezing death and drought. At present, this method of garlic production is conducive to the formation of garlic yield and quality, but it is not conducive to the integrated and accurate management of water and fertilizer in the large-scale garlic production process.
  • the traditional impervious mulch film causes the irrigation water to not evenly penetrate into the soil under the film, making the sprinkler irrigation method unable to be used in the traditional garlic mulching film production mode.
  • the use of a dropper under the film can ensure the penetration of irrigation water into the soil and maintain good irrigation uniformity.
  • the planting density of garlic is too high, generally the row spacing is 20cm, the plant spacing is 15cm, and the cultivation density reaches 22,000 to 27,000 plants/mu.
  • a large number of pipes are installed after garlic is planted, and the cost of pipes, the workload of installation and removal, and the subsequent production and maintenance are all unfavorable factors in the production process. As a result, the dropper under the film cannot be used in the large-scale production of garlic.
  • the present invention provides an irrigation system and control method suitable for garlic water and fertilizer integration.
  • a garlic water and fertilizer integrated irrigation system the system includes a water source, an electric flow regulating valve, a first electromagnetic flowmeter, a venturi tube, a water pump, a PH sensor, and an EC sensor , Circulating fertilizer distribution pipeline, second electromagnetic flowmeter, main water pipeline, biodegradable mulch, branch water pipeline, sprinkler irrigation standpipe, sprinkler head, soil temperature sensor, air temperature sensor, soil moisture sensor and controller;
  • the water inlet of the main water pipeline is connected to the water source, the water pump, the PH sensor, the EC sensor and the second electromagnetic flowmeter are connected to the main water pipeline in sequence, and the two ends of the circulating fertilizer pipeline are connected in parallel to the main water pipeline Above, the two ends of the circulating fertilizer pipeline span the water pump, the PH sensor and the EC sensor; the electric flow regulating valve, the first electromagnetic flowmeter and multiple venturi tubes are connected to the circulating fertilizer pipeline in turn, each venturi tube Connected with fertilizer solenoid valve and lead to the material tank;
  • the main water pipeline is also connected to several branch water pipelines.
  • the upstream of each branch water pipeline is connected with a rotary irrigation solenoid valve.
  • Each branch water pipeline is also connected with a number of sprinkler irrigation standpipes, which are installed on the sprinkler irrigation standpipe.
  • the biodegradable mulch film covers the garlic cultivation field, and the biodegradable film is equipped with a soil temperature sensor and a soil moisture sensor, and the biodegradable film is equipped with a temperature sensor;
  • the electric flow regulating valve, the first electromagnetic flowmeter, the water pump, the PH sensor, the EC sensor, the second electromagnetic flowmeter, all the fertilizer electromagnetic valves, the soil temperature sensor, the air temperature sensor and the soil moisture sensor are all connected with the controller.
  • the garlic cultivation area is divided into multiple partitions, and a branch water pipeline is arranged in each partition.
  • ridges are made on the branch water pipeline.
  • venturi pipes are five, and the first fertilizer distribution solenoid valve, the second fertilizer distribution solenoid valve, the third fertilizer distribution solenoid valve, the fourth fertilizer distribution solenoid valve, and the Fifth fertilizer solenoid valve; five venturi pipes respectively lead to the first fertilizer irrigation, second fertilizer irrigation, third fertilizer irrigation, acid storage tank, and alkali storage tank.
  • first fertilizer irrigation, the second fertilizer irrigation, and the third fertilizer irrigation respectively store N, P, and K water-soluble fertilizers
  • the acid storage tank stores standard concentration of nitric acid or hydrochloric acid solution
  • the alkali storage tank stores standard concentration of hydroxide Sodium or potassium hydroxide aqueous solution.
  • a mesh filter is installed at the water inlet end of the water pump, and a bottom check valve is installed at the water inlet of the main water pipeline.
  • the main water pipeline, branch water pipeline, and fertilizer distribution pipeline may be made of PPR material or PVC material, preferably PPR material.
  • the diameter of the branch pipes can be ⁇ 25 or ⁇ 32
  • the distance between the branch pipes is 8-20m
  • 360-degree rocker nozzles can be used
  • the nozzle spacing is 4-10m
  • the working pressure is 0.3-0.6MPa.
  • the biodegradable mulch is a biodegradable polymer material, which is blow-molded from one or more combinations of materials such as polylactic acid (PLA), polycaprolactone (PCL), and polypropylene carbonate resin (PPC).
  • PLA polylactic acid
  • PCL polycaprolactone
  • PPC polypropylene carbonate resin
  • the non-degradable period of the biodegradable mulch film corresponds to the germination period, seedling period, and overwintering period of the garlic growth period;
  • the degradation period of the biodegradable mulch film corresponds to the greening period, the maternal period, flower buds and scale buds of the garlic growth period Differentiation period, bolting period and bulb enlargement period correspond to the same.
  • the garlic growth period includes the germination period, the seedling period, the overwintering period, the greening period, the rotten mother period, the flower bud and scale bud differentiation period, the bolting period, and the bulb expansion period, and the average value of gas accumulation temperature and geothermal accumulation is adopted. Represents the different growth period indicators of garlic.
  • biodegradable mulch film adopts the average value of the accumulated air temperature and the geothermal temperature to represent the degradation cycle index of the biodegradable mulch film.
  • Another object of the present invention is to provide a method for controlling garlic water and fertilizer integrated irrigation system, which includes the following steps:
  • Step 1 According to the growth period of garlic growth, including the germination period, the seedling period, the overwintering period, the greening period, the rotten mother period, the flower bud and scale bud differentiation period, the bolting period, the bulb expansion period and the dormant period, and the use of mild gas accumulation
  • the average value B of accumulated temperature represents the index of different growth periods of garlic; the average value B of accumulated temperature after the wintering period and before the greening period is used as the threshold value of accumulated temperature B 0 for starting irrigation;
  • Step 2 According to the absorption law of garlic in different growth periods, establish the corresponding function relationship between the accumulated temperature of garlic and the absorption of each mineral nutrient element, and according to the established corresponding function relationship, design the fertilization formula and fertilization amount for each period of garlic ,
  • the calculation method is as follows:
  • N:P:K [D(i)-D(i-1)]:[L(i)-L(i-1)]:[J(i)-J(i-1)]
  • Step 3 According to the growth period of garlic and the average value B of the accumulated air temperature and the accumulated temperature representing the corresponding growth period, set the fertilizer concentration under different growth period conditions, and the controller adjusts the opening ratio of the electric flow control valve of the fertilizer pipeline The frequency of opening with the solenoid valve of the fertilizer is controlled each time the fertilization formula and fertilization amount;
  • Step 4 The soil moisture sensor transmits the measured soil moisture value H to the controller in real time.
  • the controller controls the water pump to start or stop irrigation according to the set threshold range H 0.
  • H the measured H>H 0
  • the system does not perform irrigation
  • H ⁇ H 0 the controller controls the electric flow control valve on the circulating fertilizer distribution pipeline to completely close, closes the fertilizer distribution solenoid valve, starts the water pump and starts irrigation.
  • the amount of each irrigation is based on the measured soil moisture value H and H 0 proportional adjustment; the y-th irrigation amount is calculated as follows:
  • step 1 to step 4 the controller controls the start or stop of the water pump in the system, the opening ratio of the electric flow regulating valve, the opening and closing of the fertilizer solenoid valve, the opening and closing of the solenoid valve for each partition, and the integration of water and fertilizer for garlic Chemical irrigation.
  • the beneficial effects of the present invention are: in the system design, the cyclic fertilizer distribution pipeline is set to reduce the fertilizer distribution power, and facilitate the spatial layout of the fertilizer distribution unit, so that the fertilizer buckets, acid-base buckets and other utensils that occupy a large space can be eliminated Layout directly beside the main water pipeline.
  • the system combines biodegradable mulching film with sprinkler irrigation, which can realize the integrated precise management and intelligent control of water and fertilizer in the large-scale garlic production process, and solve the contradiction between the mulching cultivation and the integration of water and fertilizer in the large-scale garlic production for many years.
  • the invention can reduce the amount of irrigation water and alleviate the problems of soil compaction and hypoxia and irrigation water waste.
  • the biodegradable film is used in the garlic cultivation and production process. On the one hand, it can play a better role in retaining water, heat and fertilizer in the early stage of degradation. On the other hand, during the bulb expansion period of garlic, degradation cracks will appear in the mulching film and increase the amount of under-film.
  • the ventilation of the soil makes the soil temperature environment and the loose soil environment more conducive to the expansion of garlic bulbs.
  • the biodegradable mulch can reduce the water content of the soil and reduce the occurrence of rotten garlic. When garlic is harvested, it can be harvested directly without removing the film, which improves the efficiency of garlic harvesting.
  • biodegradable mulch can reduce white pollution, protect soil structure, improve environmental quality, and maintain the entire farmland ecological environment.
  • the average value of the accumulated air temperature and the accumulated temperature of the garlic planting block represents the growth period of garlic, and the corresponding relationship between the accumulated temperature of garlic and the absorption of various mineral nutrients is established.
  • the establishment of the corresponding relationship, the dynamic design of the fertilization formula and the fertilization amount can carry out scientific and accurate fertilization management according to the actual needs of garlic in different growth periods and growth stages for different mineral nutrients.
  • Figure 1 is a schematic diagram of the present invention
  • a garlic water and fertilizer integrated irrigation system the system includes a water source 1, an electric flow regulating valve 3, a first electromagnetic flow meter 4, a venturi tube 7, a water pump 17, a PH sensor 18, an EC sensor 19, Circulating fertilizer pipe 20, second electromagnetic flowmeter 21, main water pipe 22, biodegradable mulch 23, branch water pipe 26, sprinkler standpipe 28, sprinkler head 29, soil temperature sensor 31, air temperature sensor 32, soil moisture Sensor 33 and controller;
  • the water inlet of the main water pipeline 22 leads to the water source 1, the water pump 17, the PH sensor 18, the EC sensor 19 and the second electromagnetic flowmeter 21 are connected to the main water pipeline 22 in sequence, and the two ends of the circulating fertilizer pipeline 20 Connected in parallel to the main water pipeline 22, the two ends of the circulating fertilizer distribution pipeline 20 span the water pump 17, the PH sensor 18 and the EC sensor 19; the electric flow regulating valve 3, the first electromagnetic flow meter 4 and multiple venturi tubes 7 Connected to the circulating fertilizer pipe 20 in turn, and each venturi pipe 7 is connected with a fertilizer electromagnetic valve and leads to a feed tank;
  • the main water delivery pipeline 22 is also connected to a number of branch water delivery pipelines 26, each of the branch water delivery pipelines 26 is connected to a rotary solenoid valve upstream, and each branch water delivery pipeline 26 is also connected to a number of sprinkler irrigation risers 28, Install sprinkler head 29 on sprinkler stand pipe 28,
  • the sensors 33 are all connected to the controller.
  • the controller can be a ZJU-AES-09 product of Zhejiang University, but is not limited to this.
  • the garlic cultivation area is divided into multiple partitions, and a branch water pipeline 26 is arranged on each partition.
  • a ridge 30 is formed on the branch water delivery pipeline 26. Between the different ridges 30 are garlic planting rotation irrigation zones. Garlic 25 is planted on the garlic planting area, and the biodegradable film 23 covers the garlic planting area. There are soil temperature sensors 31 and soil moisture sensors 33 under the biodegradable film 23, which are biodegradable A temperature sensor 32 is provided on the membrane;
  • venturi tubes 7 The number of venturi tubes 7 is five, and the five venturi tubes 7 are respectively installed with the first fertilizer distribution solenoid valve 6, the second fertilizer distribution solenoid valve 8, the third fertilizer distribution solenoid valve 10, and the fourth fertilizer distribution solenoid valve.
  • Valve 12, fifth solenoid valve 14 for fertilizer distribution; five venturi tubes 7 respectively lead to the first fertilizer irrigation 9, the second fertilizer irrigation 11, the third fertilizer irrigation 13, the acid storage tank 15, and the alkali storage tank 16.
  • the first fertilizer irrigation, the second fertilizer irrigation, and the third fertilizer irrigation respectively store N, P, K water-soluble fertilizers
  • the acid storage tank stores standard concentration of nitric acid or hydrochloric acid solution
  • the alkali storage tank stores standard concentration of sodium hydroxide or hydrogen Potassium oxide aqueous solution.
  • a mesh filter 5 is installed on the water inlet end of the water pump 17, and a bottom check valve 2 is installed on the water inlet of the main water pipe 22 to keep the pipe between the pipe and the water pump in a water-filled state.
  • the main water delivery pipeline 22, the branch water delivery pipeline 26, and the fertilizer distribution pipeline 20 can be made of PPR material or PVC material, preferably PPR material.
  • the diameter of the branch water pipeline 26 can be ⁇ 25 or ⁇ 32, and the distance between two adjacent branch water pipelines 26 is 8-20m.
  • 360-degree rocker nozzles can be used, the nozzle spacing is 4-10m, and the working pressure is 0.3 ⁇ 0.6MPa.
  • the biodegradable mulch film 23 is a biodegradable polymer material, which is blow molded from one or more combinations of materials such as polylactic acid (PLA), polycaprolactone (PCL), and polypropylene carbonate resin (PPC). According to the material composition ratio, the degradation cycle of the biodegradable mulch film (23) can be accurately designed, and the degradation cycle of the biodegradable mulch film (23) is taken as the degradation period of the biodegradable film by 25%.
  • PLA polylactic acid
  • PCL polycaprolactone
  • PPC polypropylene carbonate resin
  • the garlic growth period includes the germination period, the seedling period, the overwintering period, the greening period, the rot period, the flower bud and scale bud differentiation period, the bolting period, and the bulb expansion period.
  • the non-degradable period of the biodegradable mulch 23 and the germination period of the garlic growth period correspond to the same;
  • the degradation period of the biodegradable mulching film 23 corresponds to the greening period, the rotten mother period, the flower bud and scale bud differentiation period, the bolting period, and the bulb expansion period of the garlic growth period.
  • the average value of the accumulated air temperature and the accumulated temperature is used to represent the indicators of the different growth periods of garlic, and the greening period is regarded as the period when the garlic starts to need water and fertilizer for irrigation. At this time, the average of the accumulated air temperature and the accumulated temperature is used as the biodegradable mulch film. Degradation accumulated temperature threshold.
  • the biodegradable mulch film 23 adopts the average value of the accumulated air temperature and the geothermal temperature to represent the degradation cycle index of the biodegradable mulch film 23.
  • the control principle of the garlic water and fertilizer integrated irrigation system provided by the present invention is as follows:
  • the average value of gas accumulation temperature and geoaccumulation temperature is used to represent garlic Different growth periods are indicators, and the turning green period is regarded as the period when garlic begins to require a large amount of water and fertilizer for irrigation.
  • the average value of the accumulated temperature of the gas and the accumulated temperature is used as the degradation threshold of the biodegradable film.
  • the average value of the accumulated air temperature and the accumulated temperature is used to represent the degradation cycle of the biodegradable mulch film.
  • the average value of the accumulated air temperature and the accumulated temperature is used to reach the degradation accumulated temperature threshold of the biodegradable mulching film, and the biodegradable mulching film is degraded by 25%, and the degradation cycle and synthetic formula of the biodegradable mulching film are designed.
  • the formula can be made of one or more combinations of materials such as polylactic acid (PLA), polycaprolactone (PCL), and polypropylene carbonate resin (PPC).
  • the controller receives the air temperature, soil temperature, and soil moisture detected by the soil temperature sensor 31 and the air temperature sensor 32 to judge the different growth periods of garlic, and generates the fertilizer formula and the amount of fertilizer according to the demand for fertilizer in different growth periods, starts the water pump 17, and turns on
  • the wheel tank solenoid valve 24 in zone 1 starts water and fertilizer irrigation.
  • the controller adjusts the electric flow according to the flow value measured by the first electromagnetic flowmeter 4 Regarding the opening ratio of valve 3, part of the irrigation water enters the circulating fertilizer pipe 20.
  • the controller changes the first fertilizer solenoid valve 6, the second fertilizer solenoid valve 8 and the fertilizer concentration during the growth period according to the generated fertilizer formula and the set fertilizer concentration.
  • the opening frequency of the third fertilizer solenoid valve 10 respectively controls the amount of N, P, K fertilizer injected into the irrigation system through the venturi tube of the first fertilizer irrigation 9, the second fertilizer irrigation 11 and the third fertilizer irrigation 13.
  • the controller passes the EC
  • the sensor 19 measures the EC value and monitors that the EC value of the irrigation water is within a set range.
  • the PH value of the mixed water and fertilizer is measured by the PH sensor 18, the opening frequency of the fourth solenoid valve 12 and the fifth solenoid valve 14 is controlled, and the acid storage tank 15 and the alkali storage tank 16 are controlled to inject acid into the irrigation system through the venturi. Or the amount of alkali, adjust the PH value of the mixed water and fertilizer.
  • the mixed water and fertilizer enters the main water pipeline 22, mixes with the irrigation water, passes through the mesh filter 5, the water pump 17, the PH sensor 18, the EC sensor 19, the second electromagnetic flowmeter 21, and passes through the sixth electromagnetic valve 24 of the zone wheel tank. , Branch water pipeline 26, sprinkler standpipe 28 and sprinkler head 29 for sprinkler irrigation.
  • the controller controls the fertilization amount of the districts through the generated fertilization formula, the set fertilization concentration and the flow value of the second electromagnetic flowmeter 21.
  • the sixth solenoid valve 24 is closed, and the seventh solenoid valve 27 is opened to perform the irrigation and fertilization of the second partition, and perform the round-tank fertilization of each partition accordingly, until the complete irrigation and fertilization stop.
  • the controller transmits the measured soil moisture value to the controller in real time according to the soil moisture sensor 33, and the controller controls the water pump to start irrigation according to the set threshold range, and proportionally controls the irrigation water volume according to the measured soil moisture value.
  • the electric flow regulating valve is adjusted to be completely closed, and the fertilizer electromagnetic valve is closed.
  • the controller monitors the EC value of the irrigation water through the EC value measured by the EC sensor 19 to be within the set range.
  • the PH value of the irrigation water is measured by the PH sensor 18, the opening ratio of the electric flow regulating valve is adjusted, the opening frequency of the fourth solenoid valve 12 and the fifth solenoid valve 14 are controlled, and the acid storage tank 15 and the alkali storage tank are controlled.
  • 16 Inject acid or alkali into the irrigation system through the venturi tube to adjust the pH value of the irrigation water.
  • Step 1 According to the growth period of garlic growth, including the germination period, the seedling period, the overwintering period, the greening period, the rotten mother period, the flower bud and scale bud differentiation period, the bolting period, the bulb expansion period and the dormant period, and the use of mild gas accumulation
  • the average value B of accumulated temperature represents the index of different growth periods of garlic.
  • the average value B of the accumulated air temperature and the accumulated earth temperature after the wintering period and before the greening period is used as the threshold value B 0 of the accumulated temperature for starting irrigation.
  • T x is the average value of the temperature in the x-th day of the garlic cultivation field from the beginning of sowing;
  • E x is the average value of the soil temperature in the x-th day after the garlic cultivation field is covered with biofilm;
  • x is the garlic cultivation field, From the beginning of sowing, the number of days to grow;
  • z is the total number of days from sowing to greening of garlic;
  • B 0 is the threshold of accumulated temperature when garlic starts to irrigate.
  • Step 2 According to the absorption law of garlic in different growth periods, establish the corresponding function relationship between the accumulated temperature of garlic and the absorption of each mineral nutrient element, and according to the established corresponding function relationship, design the fertilization formula and fertilization amount for each period of garlic ,
  • the calculation method is as follows:
  • the average value B of the accumulated air temperature and the accumulated temperature of the garlic during the growth period of every Z days (here Z is preferably 5 days), and take samples to detect the content and changes of the nutrient elements such as N, P, K, etc. in each growth period of the garlic, establish the garlic accumulated temperature
  • the fertilization amount and fertilization formula for the i time are calculated as follows:
  • N:P:K [D(i)-D(i-1)]:[L(i)-L(i-1)]:[J(i)-J(i-1)]
  • Step 3 According to the growth period of garlic and the average value B of the accumulated air temperature and the accumulated temperature representing the corresponding growth period, set the fertilizer concentration under different growth period conditions, and the controller adjusts the opening ratio of the electric flow control valve of the fertilizer pipeline
  • the opening frequency of the solenoid valve with fertilizer control controls the formula and amount of fertilizer applied each time.
  • Step 4 The soil moisture sensor transmits the measured soil moisture value H to the controller in real time every 1h.
  • the controller controls the water pump to start or stop irrigation according to the set threshold range H 0.
  • H the measured H>H 0
  • the controller opens the opening ratio of the electric flow regulating valve on the fertilizer distribution pipeline, closes the fertilizer distribution solenoid valve, and starts the water pump to start irrigation.
  • the amount of irrigation each time is based on the measured soil moisture value H and H 0 scale adjustment.
  • the y-th irrigation volume is calculated as follows:
  • W 0 is the standard set by the amount of irrigation; H y is the y value of soil moisture measured times; H 0 is the start threshold value for soil moisture for irrigation; k 0 scale factor of soil moisture for irrigation water.
  • the controller judges the different growth periods and different growth periods of the garlic's fertilizer and water requirements according to the detected air temperature, soil temperature, soil moisture, and PH/EC value, and controls the start or stop of the water pump in the system , The opening ratio of the electric flow regulating valve, the opening and closing of the fertilizer electromagnetic valve, the opening and closing of the rotating irrigation battery, and the integrated water and fertilizer irrigation of garlic.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fertilizing (AREA)
  • Fertilizers (AREA)

Abstract

一种大蒜(25)水肥一体化灌溉***及控制方法,灌溉***通过采用生物降解地膜(23),在大蒜(25)的生育前期,满足大蒜(25)返青期以前需要增温保湿的要求,生物降解地膜(23)降解后,通过喷灌,满足大蒜(25)生育中后期大量水肥供应的需要。在控制方面,用气积温与地积温的均值代表大蒜(25)的不同生育期,并根据大蒜(25)不同生育期对不同矿质营养的吸收规律动态设计施肥配方与施肥量。

Description

一种大蒜水肥一体化灌溉***及控制方法 技术领域
本发明属于灌溉领域,特别涉及了一种大蒜水肥一体化灌溉***及控制方法,可实现大蒜规模化生产过程中的水肥一体化、自动化管理。
背景技术
大蒜是一种越冬作物,在规模化生产的过程中,一般覆盖透明地膜栽培,以提高土壤温度,保持土壤水分,维持土壤结构,减少害虫侵袭作物和某些微生物引起的病害,促进大蒜的健康生长。如不使用地膜,容易造成冻死、干旱等生产问题。目前,大蒜的这种生产方式,有利于大蒜产量与品质的形成,但是,不利于大蒜规模化生产过程中的水肥一体化精确管理。在灌溉方法上,如采用喷灌,因覆盖传统的不透水的地膜,导致灌溉水不能均匀的渗透到膜下土壤,使得喷灌方式不能在传统大蒜覆地膜生产模式上使用。采用膜下滴管,能够保证灌溉水渗透到土壤,并保持较好的灌溉均匀性,但大蒜过高的种植密度,一般行距20cm,株距15cm,栽培密度达到2.2~2.7万株/亩,需要在大蒜播种后安装大量的管道,而管道的成本、安装与拆除工作量,以及后期的生产维护都是生产过程中的不利因素,导致膜下滴管也不能在大蒜的规模化生产上使用。
因此,目前大蒜的规模化生产过程中,在水分的管理上,只能通过水沟大水漫灌,这样往往造成灌水过多,土壤板结缺氧和灌溉水的浪费。肥料的管理上,只能基肥为主、追肥为辅,追肥的方法也只能以沟灌冲施为主,这样也导致在大蒜的种植过程中,造成施肥不足或一次性施肥过多,很难根据大蒜在不同生育期、生长阶段对不同矿质营养的实际需要,进行科学、精准的施肥管理。同时,也阻碍了大蒜规模化生产过程中,水分与肥料的自动化、智能化管理。
发明内容
为了克服现有大蒜水肥一体化灌溉上的不足,本发明提供了一种适用于大蒜水肥一体化的灌溉***与控制方法。
为了达到上述目的,本发明所采用的技术方案如下:一种大蒜水肥一体化灌溉***,该***包括水源、电动流量调节阀、第一电磁流量计、文丘里管、水泵、PH传感器、EC传感器、循环配肥管道、第二电磁流量计、主输水管道、生物降解地膜、分支输水管道、喷灌立管、喷灌头、土壤温度传感器、气温传感器、土壤墒情传感器和控制器;
所述主输水管道的进水口通入水源,水泵、PH传感器、EC传感器和第二电磁流量计依次 接在主输水管道上,循环配肥管道的两端并联接入到主输水管道上,循环配肥管道的两端跨越水泵、PH传感器和EC传感器;电动流量调节阀、第一电磁流量计和多个文丘里管依次接入到循环配肥管道上,每个文丘里管上接有配肥电磁阀且通入料罐;
主输水管道上还接入若干分支输水管道,每个分支输水管道的上游均接有轮灌电磁阀,每个分支输水管道上还接有若干喷灌立管,喷灌立管上安装喷灌头,
生物降解地膜覆盖在大蒜栽培地,生物降解膜下设有土壤温度传感器与土壤墒情传感器,生物降解膜上设有气温传感器;
所述电动流量调节阀、第一电磁流量计、水泵、PH传感器、EC传感器、第二电磁流量计、所有配肥电磁阀、土壤温度传感器、气温传感器和土壤墒情传感器均与控制器相连。
进一步的,将大蒜栽培地划分为多个分区,每个分区上对应布置一根分支输水管道。
进一步的,所述分支输水管道上做垄。
进一步的,所述文丘里管的数量为五个,五个文丘里管上分别安装第一配肥电磁阀、第二配肥电磁阀、第三配肥电磁阀、第四配肥电磁阀、第五配肥电磁阀;五个文丘里管分别通入第一肥料灌、第二肥料灌、第三肥料灌、储酸罐、储碱罐。
进一步的,所述第一肥料灌、第二肥料灌、第三肥料灌分别存放N、P、K水溶肥,储酸罐存放标准浓度的硝酸或盐酸溶液,储碱罐存放标准浓度的氢氧化钠或氢氧化钾水溶液。
进一步的,所述水泵的进水口端安装网式过滤器,所述主输水管道的进水口上安装水底止回阀。
进一步的,所述主输水管道、分支输水管道、配肥管道可采用PPR材质或PVC材质,优选PPR材质。其中,分支管道直径可选用Φ25或Φ32,分支管道之间的间距为8~20m,可采用360度摇臂喷头,喷头间距4~10m,工作压力0.3~0.6MPa。
进一步的,所述生物降解地膜为生物降解高分子材料,由聚乳酸(PLA)、聚己内酯(PCL)、聚碳酸亚丙酯树脂(PPC)等材料一种或多种组合吹塑而成,可根据材料成分配比,精确设计生物降解地膜的降解周期,并以生物地膜降解质量损失25%作为生物地膜的降解周期。需要说明的是,生物降解地膜的生产工艺目前已经非常成熟,只需要告诉厂家相关降解的周期,即可获得所需的生物降解地膜。
进一步的,所述生物降解地膜的非降解期与大蒜生育期的发芽期、幼苗期、越冬期对应一致;生物降解地膜的降解期与大蒜生育期的返青期、烂母期、花芽及鳞芽分化期、抽薹期、鳞茎膨大期对应一致。
进一步的,所述大蒜生育期包括发芽期、幼苗期、越冬期、返青期、烂母期、花芽及鳞芽分化期、抽薹期、鳞茎膨大期,并采用气积温和地积温的平均值,代表大蒜不同的生育期 指标。
进一步的,所述生物降解地膜采用气积温和地积温的平均值,来代表生物降解地膜降解周期指标。
本发明的另一目的是提供一种大蒜水肥一体化灌溉***的控制方法,该方法包括如下步骤:
步骤一、根据大蒜生长的生育期,包括发芽期、幼苗期、越冬期、返青期、烂母期、花芽及鳞芽分化期、抽薹期、鳞茎膨大期和休眠期,并采用气积温和地积温的平均值B,代表大蒜不同的生育时期的指标;根据越冬期后、返青期前积温平均值B作为开始灌溉的积温阈值B 0
Figure PCTCN2019099155-appb-000001
式中x为大蒜栽培地,从播种开始,生长的天数;T x为大蒜栽培地从播种开始,第x天气温的平均值;E x为大蒜栽培地从播种开始,覆盖生物地膜后,第x天土壤温度的平均值;z为大蒜从播种到返青期的总天数;B 0为大蒜开始灌溉时的积温阈值。
步骤二、根据大蒜不同生育期对矿质营养的吸收规律,建立起大蒜积温和与各矿质营养元素吸收量的对应函数关系,并根据建立的对应函数关系,设计大蒜各时期的施肥配方与施肥量,计算方法如下:
根据每Z天大蒜生长期间气积温和地积温的平均值B,并取样检测大蒜各个生育期N、P、K营养元素的含量与变化情况,建立起大蒜积温和与矿质营养吸收量的函数关系N(B)、P(B)、K(B),设定施肥间隔周期积温阈值B 1,即积温增加B 1,进行一次施肥,获得施肥次数与N、P、K总施肥量的函数关系D(i)、L(i)、J(i);第i次的施肥量与施肥配方计算如下:
R N=D(i)-D(i-1)
R P=L(i)-L(i-1)
R K=J(i)-J(i-1)
N:P:K=[D(i)-D(i-1)]:[L(i)-L(i-1)]:[J(i)-J(i-1)]
步骤三、根据大蒜生长的生育期和代表相应生育期的气积温和地积温的平均值B,设定不同生育期条件下的施肥浓度,控制器通过调节配肥管道电动流量调节阀的开启比例与配肥 电磁阀开启的频率,控制每次的施肥配方与施肥量;
步骤四、土壤墒情传感器将测得土壤墒情值H实时传输到控制器,控制器根据设定的阈值范围H 0控制水泵启动或停止灌溉,当测得H>H 0时,***不进行灌溉;当测得H≤H 0时,控制器控制循环配肥管道上的电动流量调节阀的完全关闭,关闭配肥电磁阀,启动水泵开始灌溉,每次的灌溉量根据测的土壤墒情值H与H 0比例调节;第y次的灌水量计算如下:
W(y)=k 0×(H y-H 0)+W 0
式中W 0为设定的标准灌溉量;H y为第y次测的土壤墒情值;H 0为启动灌溉的土壤墒情阈值;k 0为土壤墒情对灌溉水量的比例系数;
通过步骤一至步骤四,控制器控制***中水泵的启动或停止、电动流量调节阀的开启比例、配肥电磁阀的开启与关闭、各个分区轮灌电磁阀的开启与关闭,进行大蒜的水肥一体化灌溉。
本发明的有益效果是:***设计上,通过设置循环配肥管道,减少了配肥动力,并且便利了配肥单元的空间布局,使得占用空间很大的肥料桶、酸碱桶等器物可以不用直接布局在主输水管道旁。该***将生物降解地膜与喷灌结合,可以实现大蒜规模化生产过程中的水肥一体化精确管理与智能化控制,解决多年来大蒜规模化生产中覆膜栽培与水肥一体化的矛盾。与传统的水沟大水漫灌相比,本发明能够减少灌溉水量,缓解土壤板结缺氧和灌溉水浪费等问题。同时,在肥料的管理上,能够改变过去大蒜规模化栽培,只能基肥为主、追肥为辅的施肥方法,能够根据大蒜在不同生育期、生长阶段对不同矿质营养的实际需要,进行科学、精准的施肥管理。
大蒜栽培生产过程中采用生物降解膜,一方面可以在降解的前期起到较好的保水、保温与保肥作用,另一方面,在大蒜的鳞茎膨大期,地膜会出现降解裂口,增加膜下土壤的通风透气性,使得土壤温度环境与疏松的土壤环境更加有利于大蒜鳞茎的膨大。同时,在后期,生物降解地膜能降低土壤的含水量,降低烂蒜的发生,大蒜收获时,不用揭膜,可以直接进行机械收获,提高大蒜收获效率。此外,与普通塑料地膜相比,生物降解地膜可减少白色污染、保护土壤结构,提升环境质量,维护整个农田生态环境。
本发明控制方法上,通过将大蒜种植地块的气积温和地积温的平均值代表大蒜的生育期,建立起大蒜积温和与各矿质营养元素吸收量的对应关系,并根据大蒜不同生育期与建立的对应关系,动态设计施肥配方与施肥量,能够根据大蒜在不同生育期、生长阶段对不同矿质营养的实际需要,进行科学、精准的施肥管理,同时,也实现了大蒜栽培过程中,水分与肥料 管理的自动化、智能化,且该***符合大蒜的机械化播种、采收等生产过程,适合大蒜的规模化生产与推广使用。
附图说明
图1是本发明的原理图;
图中,水源1、水底止回阀2、电动流量调节阀3、第一电磁流量计4、网式过滤器5、第一配肥电磁阀6、文丘里管7、第二配肥电磁阀8、第一肥料灌9、第三配肥电磁阀10、第二肥料灌11、第四配肥电磁阀12、第三肥料灌13、第五配肥电磁阀14、储酸罐15、储碱罐16、水泵17、PH传感器18、EC传感器19、配肥管道20、第二电磁流量计21、主输水管道22、生物降解地膜23、第六电磁阀24、大蒜25、分支输水管道26、第七电磁阀27、喷灌立管28、喷灌头29、垄30、土壤温度传感器31、气温传感器32、土壤墒情传感器33。
具体实施方式
下面结合附图对本发明做进一步的说明。
如图1所示,一种大蒜水肥一体化灌溉***,该***包括水源1、电动流量调节阀3、第一电磁流量计4、文丘里管7、水泵17、PH传感器18、EC传感器19、循环配肥管道20、第二电磁流量计21、主输水管道22、生物降解地膜23、分支输水管道26、喷灌立管28、喷灌头29、土壤温度传感器31、气温传感器32、土壤墒情传感器33和控制器;
所述主输水管道22的进水口通入水源1,水泵17、PH传感器18、EC传感器19和第二电磁流量计21依次接在主输水管道22上,循环配肥管道20的两端并联接入到主输水管道22上,循环配肥管道20的两端跨越水泵17、PH传感器18和EC传感器19;电动流量调节阀3、第一电磁流量计4和多个文丘里管7依次接入到循环配肥管道20上,每个文丘里管7上接有配肥电磁阀且通入料罐;
主输水管道22上还接入若干分支输水管道26,每个分支输水管道26的上游均接有轮灌电磁阀,每个分支输水管道26上还接有若干喷灌立管28,喷灌立管28上安装喷灌头29,
所述电动流量调节阀3、第一电磁流量计4、水泵17、PH传感器18、EC传感器19、第二电磁流量计21、所有配肥电磁阀、土壤温度传感器31、气温传感器32和土壤墒情传感器33均与控制器相连。所述控制器可以采用浙江大学ZJU-AES-09型号的产品,但不限于此。
将大蒜栽培地划分为多个分区,每个分区上对应布置一根分支输水管道26。
所述分支输水管道26上做垄30。不同垄30之间为大蒜种植轮灌分区,大蒜种植区上种植大蒜25,生物降解地膜23覆盖在大蒜种植区上,生物降解膜23下设有土壤温度传感器31与土壤墒情传感器33,生物降解膜上设有气温传感器32;
所述文丘里管7的数量为五个,五个文丘里管7上分别安装第一配肥电磁阀6、第二配肥电 磁阀8、第三配肥电磁阀10、第四配肥电磁阀12、第五配肥电磁阀14;五个文丘里管7分别通入第一肥料灌9、第二肥料灌11、第三肥料灌13、储酸罐15、储碱罐16。
所述第一肥料灌、第二肥料灌、第三肥料灌分别存放N、P、K水溶肥,储酸罐存放标准浓度的硝酸或盐酸溶液,储碱罐存放标准浓度的氢氧化钠或氢氧化钾水溶液。
所述水泵17的进水口端安装网式过滤器5,所述主输水管道22的进水口上安装水底止回阀2,保持管道与水泵间的管道为充水状态。
所述主输水管道22、分支输水管道26、配肥管道20可采用PPR材质或PVC材质,优选PPR材质。其中,分支输水管道26直径可选用Φ25或Φ32,相邻两个分支输水管道26之间的间距为8~20m,可采用360度摇臂喷头,喷头间距4~10m,工作压力0.3~0.6MPa。
进一步的,所述生物降解地膜23为生物降解高分子材料,由聚乳酸(PLA)、聚己内酯(PCL)、聚碳酸亚丙酯树脂(PPC)等材料一种或多种组合吹塑而成,可根据材料成分配比,精确设计生物降解地膜(23)的降解周期,并以生物地膜降解质量损失25%作为生物地膜的降解周期。
大蒜生育期包括发芽期、幼苗期、越冬期、返青期、烂母期、花芽及鳞芽分化期、抽薹期、鳞茎膨大期,所述生物降解地膜23的非降解期与大蒜生育期的发芽期、幼苗期、越冬期对应一致;生物降解地膜23的降解期与大蒜生育期的返青期、烂母期、花芽及鳞芽分化期、抽薹期、鳞茎膨大期对应一致。并采用气积温和地积温的平均值,代表大蒜不同的生育时期的指标,并将返青期作为大蒜开始需要水肥灌溉供应的时期,此时的气积温和地积温的平均值作为生物降解地膜的降解积温阈值。
所述生物降解地膜23采用气积温和地积温的平均值,来代表生物降解地膜23降解周期指标。
需要说明的是,生物降解地膜23的生产工艺目前已经非常成熟,只需要告诉厂家相关降解的周期,即可获得所需的生物降解地膜。
本发明提供的一种大蒜水肥一体化灌溉***的控制原理如下:
首先,根据大蒜生育期,包括发芽期、幼苗期、越冬期、返青期、烂母期、花芽及鳞芽分化期、抽薹期、鳞茎膨大期,采用气积温和地积温的平均值,代表大蒜不同的生育时期的指标,并将返青期作为大蒜开始需要大量水肥灌溉供应的时期,此时的气积温和地积温的平均值作为生物降解地膜的降解积温阈值。然后,采用气积温和地积温的平均值,来代表生物降解地膜的降解周期。并以气积温和地积温的平均值达到生物降解地膜的降解积温阈值,生物降解地膜降解25%,设计生物降解地膜的降解周期与合成配方。配方可由聚乳酸(PLA)、聚己内酯(PCL)、聚碳酸亚丙酯树脂(PPC)等材料一种或多种组合而成。最后,根据大蒜不同生育期对矿质营养的吸收规律,建立起大蒜气积温和地积温的平均值与各矿质营养元素吸收量 的对应关系与函数模型。
控制器接受土壤温度传感器31、气温传感器32检测到的气温、土壤温度、土壤墒情判断大蒜的不同生育期,并根据不同生育期对肥料的需求,生成施肥配方与施肥量,启动水泵17、开启分区1中的轮罐电磁阀24,开始水肥灌溉。水源1中的灌溉水通过水底止回阀2,进入主输水管道22,并分别通过网式过滤器5与水泵后,控制器根据第一电磁流量计4测得的流量值,调节电动流量调节阀3的开启比例,一部分灌溉水进入循环配肥管道20,控制器根据生成的施肥配方与设置的生育期施肥浓度,通过改变第一配肥电磁阀6、第二配肥电磁阀8和第三配肥电磁阀10的开启频率,分别控制第一肥料灌9、第二肥料灌11和第三肥料灌13通过文丘里管注入灌溉***N、P、K肥的量,控制器通过EC传感器19测得EC值,监控灌溉水的EC值在设定的范围内。通过PH传感器18测得混合水肥的PH值,控制第四配肥电磁阀12和第五配肥电磁阀14的开启频率,控制储酸罐15和储碱罐16通过文丘里管注入灌溉***酸或碱量,调节混合水肥的PH值。混合水肥进入主输水管道22,与灌溉水混合,再次通过网式过滤器5、水泵17、PH传感器18、EC传感器19、第二电磁流量计21,并通过分区轮罐第六电磁阀24、分支输水管道26、喷灌立管28和喷灌头29进行喷灌。控制器通过生成的施肥配方与设定的施肥浓度和第二电磁流量计21的流量值,控制分区的施肥量。分区一完成后,第六电磁阀24关闭,第七电磁阀27开启,进行分区二的灌溉施肥,并依此进行各个分区的轮罐施肥,至全部完成一次灌溉施肥停止。
控制器根据土壤墒情传感器33将测得的土壤墒情值实时传输到控制器,控制器根据设定的阈值范围控制水泵启动灌溉,并根据测得的土壤墒情值,比例控制灌溉水量。启动灌溉时,调节电动流量调节阀完全关闭,关闭配肥电磁阀,控制器通过EC传感器19测得的EC值,监控灌溉水的EC值在设定的范围内。通过PH传感器18测得灌溉水的PH值,调节电动流量调节阀的开启比例,控制第四配肥电磁阀12和第五配肥电磁阀14的开启频率,控制储酸罐15和储碱罐16通过文丘里管注入灌溉***酸或碱量,调节灌溉水的PH值。
具体包括以下步骤:
步骤一、根据大蒜生长的生育期,包括发芽期、幼苗期、越冬期、返青期、烂母期、花芽及鳞芽分化期、抽薹期、鳞茎膨大期和休眠期,并采用气积温和地积温的平均值B,代表大蒜不同的生育时期的指标。根据越冬期后、返青期前气积温和地积温的平均值B作为开始灌溉的积温阈值B 0
Figure PCTCN2019099155-appb-000002
式中T x为大蒜栽培地从播种开始,第x天气温的平均值;E x为大蒜栽培地从播种开始,覆盖生物地膜后,第x天土壤温度的平均值;x为大蒜栽培地,从播种开始,生长的天数;z为大蒜从播种到返青期的总天数;B 0为大蒜开始灌溉时的积温阈值。
步骤二、根据大蒜不同生育期对矿质营养的吸收规律,建立起大蒜积温和与各矿质营养元素吸收量的对应函数关系,并根据建立的对应函数关系,设计大蒜各时期的施肥配方与施肥量,计算方法如下:
根据每Z天(这里Z优选5天)大蒜生长期间气积温和地积温的平均值B,并取样检测大蒜各个生育期N、P、K等营养元素的含量与变化情况,建立起大蒜积温和与矿质营养吸收量的函数关系N(B)、P(B)、K(B),设定施肥间隔周期积温阈值B 1,即积温增加B 1,进行一次施肥,获得施肥次数与N、P、K总施肥量的函数关系D(i)、L(i)、J(i)。第i次的施肥量与施肥配方计算如下:
R N=D(i)-D(i-1)
R P=L(i)-L(i-1)
R K=J(i)-J(i-1)
N:P:K=[D(i)-D(i-1)]:[L(i)-L(i-1)]:[J(i)-J(i-1)]
步骤三、根据大蒜生长的生育期和代表相应生育期的气积温和地积温的平均值B,设定不同生育期条件下的施肥浓度,控制器通过调节配肥管道电动流量调节阀的开启比例与配肥电磁阀开启的频率,控制每次的施肥配方与施肥量。
步骤四、土壤墒情传感器每隔1h将测得土壤墒情值H实时传输到控制器,控制器根据设定的阈值范围H 0控制水泵启动或停止灌溉,当测得H>H 0时,***不进行灌溉。当测得H≤H 0时,控制器开启配肥管道上的电动流量调节阀的开启比例,关闭配肥电磁阀,启动水泵开始灌溉,每次的灌溉量根据测的土壤墒情值H与H 0比例调节。第y次的灌水量计算如下:
W(y)=k 0×(H y-H 0)+W 0
式中W 0为设定的标准灌溉量;H y为第y次测的土壤墒情值;H 0为启动灌溉的土壤墒情阈值;k 0为土壤墒情对灌溉水量的比例系数。
通过步骤一至步骤四,控制器根据检测到的气温、土壤温度、土壤墒情、PH/EC值,判 断大蒜的不同生育期与不同生育期对肥料与水分的需求,控制***中水泵的启动或停止、电动流量调节阀的开启比例、配肥电磁阀的开启与关闭、轮灌电池的开启与关闭,进行大蒜的水肥一体化灌溉。

Claims (10)

  1. 一种大蒜水肥一体化灌溉***,其特征在于,该***包括水源(1)、电动流量调节阀(3)、第一电磁流量计(4)、文丘里管(7)、水泵(17)、PH传感器(18)、EC传感器(19)、循环配肥管道(20)、第二电磁流量计(21)、主输水管道(22)、生物降解地膜(23)、分支输水管道(26)、喷灌立管(28)、喷灌头(29)、土壤温度传感器(31)、气温传感器(32)、土壤墒情传感器(33)和控制器等;
    所述主输水管道(22)的进水口通入水源(1),水泵(17)、PH传感器(18)、EC传感器(19)和第二电磁流量计(21)依次接在主输水管道(22)上,循环配肥管道(20)的两端并联接入到主输水管道(22)上,循环配肥管道(20)的两端跨越水泵(17)、PH传感器(18)和EC传感器(19);电动流量调节阀(3)、第一电磁流量计(4)和多个文丘里管(7)依次接入到循环配肥管道(20)上,每个文丘里管(7)上接有配肥电磁阀且通入料罐;
    主输水管道(22)上还接入若干分支输水管道(26),每个分支输水管道(26)的上游均接有轮灌电磁阀,每个分支输水管道(26)上还接有若干喷灌立管(28),喷灌立管(28)上安装喷灌头(29),
    生物降解地膜(23)覆盖在大蒜栽培地,生物降解膜(23)下设有土壤温度传感器(31)与土壤墒情传感器(33),生物降解膜上设有气温传感器(32);
    所述电动流量调节阀(3)、第一电磁流量计(4)、水泵(17)、PH传感器(18)、EC传感器(19)、第二电磁流量计(21)、所有配肥电磁阀、土壤温度传感器(31)、气温传感器(32)和土壤墒情传感器(33)均与控制器相连。
  2. 根据权利要求1所述的一种大蒜水肥一体化灌溉***,其特征在于,将大蒜栽培地划分为多个分区,每个分区上对应布置一根分支输水管道(26)。
  3. 根据权利要求1所述的一种大蒜水肥一体化灌溉***,其特征在于,所述分支输水管道(26)上做垄(30)。
  4. 根据权利要求1或2所述的一种大蒜水肥一体化灌溉***,其特征在于,所述文丘里管(7)的数量为五个,五个文丘里管(7)上分别安装第一配肥电磁阀(6)、第二配肥电磁阀(8)、第三配肥电磁阀(10)、第四配肥电磁阀(12)、第五配肥电磁阀(14);五个文丘里管(7)分别通入第一肥料灌(9)、第二肥料灌(11)、第三肥料灌(13)、储酸罐(15)、储碱罐(16)。
  5. 根据权利要求4所述的一种大蒜水肥一体化灌溉***,其特征在于,所述第一肥料灌、第二肥料灌、第三肥料灌分别存放N、P、K水溶肥,储酸罐存放标准浓度的硝酸或盐酸溶 液,储碱罐存放标准浓度的氢氧化钠或氢氧化钾水溶液。
  6. 根据权利要求5所述的大蒜水肥一体化灌溉***,其特征在于,所述生物降解地膜(23)以生物地膜降解质量损失25%作为生物地膜的降解周期。
  7. 根据权利要求6所述的大蒜水肥一体化灌溉***,其特征在于,大蒜生育期包括发芽期、幼苗期、越冬期、返青期、烂母期、花芽及鳞芽分化期、抽薹期、鳞茎膨大期,所述生物降解地膜(23)的非降解期与大蒜生育期的发芽期、幼苗期、越冬期对应一致;生物降解地膜(23)的降解期与大蒜生育期的返青期、烂母期、花芽及鳞芽分化期、抽薹期、鳞茎膨大期对应一致。
  8. 根据权利要求9所述的大蒜水肥一体化灌溉***,其特征在于,所述生物降解地膜(23)采用气积温和地积温的平均值,来代表生物降解地膜(23)降解周期指标。
  9. 根据权利要求8所述的一种大蒜水肥一体化灌溉***,其特征在于,所述水泵(17)的进水口端安装网式过滤器(5),所述主输水管道(22)的进水口上安装水底止回阀(2)。
  10. 一种权利要求9所述的一种大蒜水肥一体化灌溉***的控制方法,其特征在于,该方法包括如下步骤:
    步骤一、根据大蒜生长的生育期,包括发芽期、幼苗期、越冬期、返青期、烂母期、花芽及鳞芽分化期、抽薹期、鳞茎膨大期和休眠期,并采用气积温和地积温的平均值B,代表大蒜不同的生育时期的指标;根据越冬期后、返青期前积温平均值B作为开始灌溉的积温阈值B 0
    Figure PCTCN2019099155-appb-100001
    式中x为大蒜栽培地,从播种开始,生长的天数;T x为大蒜栽培地从播种开始,第x天气温的平均值;E x为大蒜栽培地从播种开始,覆盖生物地膜后,第x天土壤温度的平均值;z为大蒜从播种到返青期的总天数;B 0为大蒜开始灌溉时的积温阈值。
    步骤二、根据大蒜不同生育期对矿质营养的吸收规律,建立起大蒜积温和与各矿质营养元素吸收量的对应函数关系,并根据建立的对应函数关系,设计大蒜各时期的施肥配方与施肥量,计算方法如下:
    根据每Z天大蒜生长期间气积温和地积温的平均值B,并取样检测大蒜各个生育期N、P、K营养元素的含量与变化情况,建立起大蒜积温和与矿质营养吸收量的函数关系N(B)、P(B)、K(B),设定施肥间隔周期积温阈值B 1,即积温增加B 1,进行一次施肥,获得施肥次 数与N、P、K总施肥量的函数关系D(i)、L(i)、J(i);第i次的施肥量与施肥配方计算如下:
    R N=D(i)-D(i-1)
    R P=L(i)-L(i-1)
    R K=J(i)-J(i-1)
    N:P:K=[D(i)-D(i-1)]:[L(i)-L(i-1)]:[J(i)-J(i-1)]
    步骤三、根据大蒜生长的生育期和代表相应生育期的气积温和地积温的平均值B,设定不同生育期条件下的施肥浓度,控制器通过调节配肥管道电动流量调节阀(3)的开启比例与配肥电磁阀开启的频率,控制每次的施肥配方与施肥量;
    步骤四、土壤墒情传感器(33)将测得土壤墒情值H实时传输到控制器,控制器根据设定的阈值范围H 0控制水泵启动或停止灌溉,当测得H>H 0时,***不进行灌溉;当测得H≤H 0时,控制器控制循环配肥管道(20)上的电动流量调节阀(3)的完全关闭,关闭配肥电磁阀,启动水泵开始灌溉,每次的灌溉量根据测的土壤墒情值H与H 0比例调节;第y次的灌水量计算如下:
    W(y)=k 0×(H y-H 0)+W 0
    式中W 0为设定的标准灌溉量;H y为第y次测的土壤墒情值;H 0为启动灌溉的土壤墒情阈值;k 0为土壤墒情对灌溉水量的比例系数;
    通过步骤一至步骤四,控制器控制***中水泵的启动或停止、电动流量调节阀的开启比例、配肥电磁阀的开启与关闭、各个分区轮灌电磁阀的开启与关闭,进行大蒜的水肥一体化灌溉。
PCT/CN2019/099155 2019-01-23 2019-08-03 一种大蒜水肥一体化灌溉***及控制方法 WO2020151216A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910063616.6A CN109644660B (zh) 2019-01-23 2019-01-23 一种大蒜水肥一体化灌溉***及控制方法
CN201910063616.6 2019-01-23

Publications (1)

Publication Number Publication Date
WO2020151216A1 true WO2020151216A1 (zh) 2020-07-30

Family

ID=66120382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099155 WO2020151216A1 (zh) 2019-01-23 2019-08-03 一种大蒜水肥一体化灌溉***及控制方法

Country Status (2)

Country Link
CN (1) CN109644660B (zh)
WO (1) WO2020151216A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342630A (zh) * 2022-01-21 2022-04-15 华中农业大学 筛选适合用于红美人的灌水器及肥液配比方案的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644660B (zh) * 2019-01-23 2024-06-18 浙江大学 一种大蒜水肥一体化灌溉***及控制方法
CN112230697B (zh) * 2020-10-19 2021-06-11 广州市企德友诚美信息技术开发有限公司 一种基于互联网的农业监控装置
CN115836639A (zh) * 2022-11-11 2023-03-24 四川省农业科学院园艺研究所 一种设施无土基质栽培番茄水肥供给方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202941140U (zh) * 2012-12-06 2013-05-22 上海华维节水灌溉有限公司 一种大剂量水肥一体化灌溉装置
CN105557463A (zh) * 2015-12-16 2016-05-11 重庆市农业科学院 设施栽培水肥一体化灌溉***和方法
JP2018046749A (ja) * 2016-09-19 2018-03-29 幸男 黒川 水わさびの栽培システム
CN107950330A (zh) * 2017-11-13 2018-04-24 中国农业大学 一种寒区马铃薯滴灌节水高效栽培方法
CN109644660A (zh) * 2019-01-23 2019-04-19 浙江大学 一种大蒜水肥一体化灌溉***及控制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131877A (ja) * 2006-11-28 2008-06-12 Sasaki Corporation ニンニク等の球根植え付け機
MX2007012241A (es) * 2007-10-02 2007-12-06 Flores Ian Jorge Garcia De Alb Sistema de riego rodado por canal con pelicula plastica.
CN101433174B (zh) * 2008-05-23 2010-11-03 贵州大学 一种灌溉方法及***
CN102726264B (zh) * 2012-07-16 2013-06-05 姚宏亮 一种有机水稻机械覆膜栽培方法
CN104429731A (zh) * 2014-10-23 2015-03-25 山东省农作物种质资源中心 一种大蒜全膜覆盖种植方法
CN104641888A (zh) * 2015-01-26 2015-05-27 黄汉森 一种大蒜地膜覆盖栽培方法
CN105027896A (zh) * 2015-06-30 2015-11-11 通海锦程蔬菜有限公司 坡地种植直叶蒜的方法
CN105830710B (zh) * 2016-04-06 2017-05-17 云南省农业科学院甘蔗研究所 一种糖料甘蔗绿色可持续高产种植方法
CN206284010U (zh) * 2016-12-12 2017-06-30 中国科学院沈阳应用生态研究所 一种玉米浅掩式地表滴灌装置
CN106962000A (zh) * 2017-05-08 2017-07-21 云南省农业科学院甘蔗研究所 降解地膜覆盖甘蔗的栽培方法
CN107135916A (zh) * 2017-05-12 2017-09-08 刘萍萍 一种远程精准灌溉施肥***
CN107418161B (zh) * 2017-07-13 2019-11-05 山东农业大学 一种可机械覆膜的超薄超强超透明全生物降解地膜及其制备方法
CN207653169U (zh) * 2017-11-23 2018-07-27 江西井冈山茶厂 一种新型茶树种植沟垄结构
CN208001518U (zh) * 2018-03-15 2018-10-26 中国科学院地理科学与资源研究所 一种多作物水肥同步定量管理的自动滴灌***
CN109161173B (zh) * 2018-08-29 2023-01-10 中国热带农业科学院湛江实验站 一种可控淀粉基生物降解农用地膜
CN209861587U (zh) * 2019-01-23 2019-12-31 浙江大学 一种大蒜水肥一体化灌溉***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202941140U (zh) * 2012-12-06 2013-05-22 上海华维节水灌溉有限公司 一种大剂量水肥一体化灌溉装置
CN105557463A (zh) * 2015-12-16 2016-05-11 重庆市农业科学院 设施栽培水肥一体化灌溉***和方法
JP2018046749A (ja) * 2016-09-19 2018-03-29 幸男 黒川 水わさびの栽培システム
CN107950330A (zh) * 2017-11-13 2018-04-24 中国农业大学 一种寒区马铃薯滴灌节水高效栽培方法
CN109644660A (zh) * 2019-01-23 2019-04-19 浙江大学 一种大蒜水肥一体化灌溉***及控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342630A (zh) * 2022-01-21 2022-04-15 华中农业大学 筛选适合用于红美人的灌水器及肥液配比方案的方法
CN114342630B (zh) * 2022-01-21 2023-02-03 华中农业大学 筛选适合用于红美人的灌水器及肥液配比方案的方法

Also Published As

Publication number Publication date
CN109644660A (zh) 2019-04-19
CN109644660B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
WO2020151216A1 (zh) 一种大蒜水肥一体化灌溉***及控制方法
CN204259549U (zh) 室内滴灌农作物灌溉装置
CN105900792B (zh) 一种基于冬小麦苗情和土壤墒情的节水灌溉方法
CN204466463U (zh) 滴箭灌溉自动控制***
CN104756716B (zh) 一种烟草育苗方法
CN102405757A (zh) 一种茶树智能快繁育苗方法
CN107667818A (zh) 一种盆栽植物肥水循环利用的封闭栽培方法
CN105123425A (zh) 葡萄的设施栽培方法
CN201426281Y (zh) 组合式自动控制人工造田***
CN103769317A (zh) 内镶贴片式滴灌带
CN106258142A (zh) 果树水肥一体化施肥方法
CN205830559U (zh) 一种西瓜秧苗培育床
CN108901697A (zh) 一种旱作直播水稻滴灌节水调质栽培方法
CN206879432U (zh) 一种火龙果水肥一体化***
CN204598762U (zh) 一种庭院栽培设施
CN206498683U (zh) 水肥一体化智能灌溉***
CN207589743U (zh) 一种盆栽植物肥水循环利用的封闭栽培装置
CN203578046U (zh) 贴片式滴灌带
CN104285616A (zh) 一种小麦高产种植方法
CN101637115A (zh) 一种屋顶绿化的方法
CN107182419A (zh) 利用鱼池废水定额灌溉红提葡萄的滴灌***
CN209861587U (zh) 一种大蒜水肥一体化灌溉***
CN203399567U (zh) 一种设施农业生产用标准化水肥一体化灌溉***
CN202112124U (zh) 流量可调式滴灌袋
CN104285703A (zh) 五叶地锦培养箱、绿化***及快速绿化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911217

Country of ref document: EP

Kind code of ref document: A1