WO2020148828A1 - Seat belt and state identifying device - Google Patents

Seat belt and state identifying device Download PDF

Info

Publication number
WO2020148828A1
WO2020148828A1 PCT/JP2019/001100 JP2019001100W WO2020148828A1 WO 2020148828 A1 WO2020148828 A1 WO 2020148828A1 JP 2019001100 W JP2019001100 W JP 2019001100W WO 2020148828 A1 WO2020148828 A1 WO 2020148828A1
Authority
WO
WIPO (PCT)
Prior art keywords
seat belt
cloth
wiring
shaped structure
resistor
Prior art date
Application number
PCT/JP2019/001100
Other languages
French (fr)
Japanese (ja)
Inventor
吾 根武谷
Original Assignee
Posh Wellness Laboratory株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posh Wellness Laboratory株式会社 filed Critical Posh Wellness Laboratory株式会社
Priority to PCT/JP2019/001100 priority Critical patent/WO2020148828A1/en
Priority to JP2020566017A priority patent/JPWO2020148828A1/en
Publication of WO2020148828A1 publication Critical patent/WO2020148828A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/12Construction of belts or harnesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/48Control systems, alarms, or interlock systems, for the correct application of the belt or harness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a seat belt and a condition specifying device.
  • Patent Document 1 discloses a driver monitoring device that can monitor the condition of a driver of an automobile by applying a technique of electrical impedance tomography (EIT) to a seat belt.
  • EIT electrical impedance tomography
  • a module in which a plurality of sensors are arranged is attached to the seat belt.
  • the seat belt has a long shape, if the wiring or the like connecting to the plurality of sensors is arranged while maintaining the insulating property, the freedom of layout of the plurality of sensors and the wiring may be limited. ..
  • the present invention has been made in view of these points, and an object thereof is to improve the degree of freedom in layout of a plurality of sensors and wirings connected to each sensor.
  • a seat belt according to a first aspect of the present invention is a seat belt provided on a seat, wherein at least a part of the seat belt has a belt-like cloth, a sensor provided on the cloth, and the sensor. And a wiring portion including a conductive wiring connected to at least a part of the seat belt.
  • the sensor may include a resistor whose impedance changes according to the curvature of the cloth.
  • the resistor may have a strip shape.
  • the wiring part may have the wiring for measuring impedance in each of a plurality of regions divided in the longitudinal direction of the resistor.
  • a plurality of the resistors may be provided on the cloth.
  • the wiring part may include the wiring for measuring the impedance of each of the plurality of resistors.
  • a resistance material may be attached to the cloth.
  • the resistor may be woven into the cloth with fibers having a resistive material attached thereto.
  • the wiring portion may have a fiber to which a conductive material is attached and which is woven into the cloth.
  • the cloth, the sensor, and the wiring portion may be formed in an integral strip-shaped structure.
  • the band-shaped structure may be formed by weaving into the cloth, a capacitive fiber having conductive materials attached to a plurality of non-conductive fibers.
  • the strip-shaped structure may be formed by weaving fibers in which conductive fibers are wound around an insulating material and woven into the cloth.
  • the belt-shaped structure may further include a mounting portion for mounting on the seat belt.
  • the sensor may have a pair of electrodes whose electrical characteristics change according to the movement of the user wearing the seat belt.
  • the cloth may be provided with a plurality of types of sensors having different electrical characteristics.
  • a state identification device is based on the seatbelt according to the first aspect, a measurement unit that measures the electrical characteristics of the sensor, and the seatbelt based on the electrical characteristics measured by the measurement unit.
  • a state specifying device including a calculating unit that calculates the curvature of the seat belt and a specifying unit that specifies the state of the person wearing the seat belt based on the temporal change of the curvature of the seat belt.
  • specification apparatus 10 which concerns on this embodiment is shown.
  • the structural example of the seat belt 100 which concerns on this embodiment is shown.
  • belt-shaped structure 120 which concern on this embodiment is shown.
  • the structural example of the wiring 207 which concerns on this embodiment is shown.
  • the structural example of the capacitive element 212 which concerns on this embodiment is shown.
  • a modified example of the capacitive element 212 according to the present embodiment is shown.
  • the structural example of the inductance element 214 which concerns on this embodiment is shown.
  • a modified example of the strip-shaped structure 120 according to the present embodiment is shown.
  • Another example of the sensor E according to the present embodiment is shown.
  • FIG. 1 shows a configuration example of a state identifying device 10 according to this embodiment.
  • the state identifying device 10 identifies the state of the body of the user sitting on the seat 20.
  • the state identifying device 10 includes a seat belt 100, a measuring unit 200, a calculating unit 310, and an identifying unit 320.
  • the seat belt 100 is provided on the seat 20 and is fixed so as to come into contact with the body of the user sitting on the seat 20.
  • the seat belt 100 functions, for example, to restrain the user to the seat 20 when the user is suddenly accelerated or decelerated.
  • the seat belt 100 has a plurality of sensors for detecting the physical condition of the user. Each of the plurality of sensors is, for example, a sensor for measuring the strain of the object. In FIG. 1, a plurality of sensors are schematically shown as E1 to E8. Such a seat belt 100 will be described later.
  • the measurement unit 200 is connected to a plurality of sensors provided on the seat belt 100 and exchanges electric signals with the plurality of sensors.
  • the measurement unit 200 measures the electrical characteristics of each of the plurality of sensors, for example, based on the transmitted and received electrical signals.
  • the measuring unit 200 measures the resistance values of the resistors included in each of the plurality of sensors.
  • At least a part of the measurement unit 200 may be provided on the seat 20 and the seat belt 100. The measuring unit 200 will be described later.
  • the calculation unit 310 calculates the curvature of the seat belt 100 in contact with the user's body based on electrical characteristics such as impedance and resistance detected by the measurement unit 200.
  • the calculation unit 310 is preferably capable of sequentially calculating temporal changes in the seat belt 100, for example.
  • the specifying unit 320 specifies the state of the user wearing the seat belt 100 based on the temporal change in the curvature of the seat belt 100 calculated by the calculating unit 310. For example, the curvature of at least a part of the seat belt 100 in contact with the user changes due to the breathing and the heartbeat of the user. If the user's breathing and heartbeat are normal, the variation in the curvature of the seat belt 100 will change in a range of a substantially constant amplitude in a substantially constant cycle.
  • the specifying unit 320 analyzes the curvatures of the seat belt 100 at a plurality of positions based on a plurality of sensors, and specifies the states of the user's breathing and heart beat.
  • the specifying unit 320 specifies the state of the user by comparing with the change in the curvature of the seat belt 100 acquired in the past, for example.
  • the identifying unit 320 may identify one or more threshold values and the variation in the curvature of the seat belt 100 to identify the user's state.
  • the above-described state identification device 10 can identify the state of the body of the user who sits on the seat 20 and wears the seat belt 100. Thereby, the state identifying device 10 can identify the occurrence of abnormality such as breathing and heartbeat of the user.
  • a state identification device 10 is mounted in, for example, a vehicle, and can identify the state of the body of a user who is seated in the seat 20 of the vehicle. In this case, the state identification device 10 can be applied to a monitoring device or the like that controls the vehicle based on the identified state.
  • the state identification device 10 controls the control device and the like to stop the engine of the vehicle.
  • the state identifying device 10 sleeps in a person, such as a person who rides a vehicle such as a car, train, or airplane, a person who sits in a chair such as a movie theater, a theater, or a playground, a person who rides a wheelchair, a bed, or a bed. It is possible to identify the physical condition of the person who is injured and monitor the occurrence of abnormalities.
  • the seat belt 100 of such a state identifying device 10 will be described below.
  • FIG. 2 shows a configuration example of the seat belt 100 according to the present embodiment.
  • FIG. 2 is an example of a plan view of the seat belt 100.
  • the seat belt 100 includes a belt portion 110, a belt-shaped structure 120, and a mounting portion 130.
  • the belt portion 110 is formed in a belt shape and is attached so as to contact the user.
  • one end of the belt portion 110 is fixed to the seat 20 or a vehicle to which the seat 20 is fixed.
  • the other end of the belt portion 110 is detachably fitted to the seat 20 or a fixture or the like provided in the vehicle or the like to which the seat 20 is fixed.
  • the belt portion 110 has, for example, a cloth-like material obtained by processing fibers or the like.
  • the belt-shaped structure 120 is attached to the belt portion 110.
  • the band-shaped structure 120 is provided with a plurality of sensors for measuring the change in the curvature of the belt portion 110 according to the movement of the user's body.
  • FIG. 2 shows an example in which E1 to E8 are provided as a plurality of sensors. Although details will be described later, the plurality of sensors are provided on the cloth.
  • the plurality of sensors are configured by, for example, attaching a resistance material to a partial region of the strip-shaped structure 120.
  • the strip-shaped structure 120 is provided with wirings and electronic components that exchange electric signals with each of the plurality of sensors.
  • the strip-shaped structure 120 functions, for example, as a sheet-shaped module in which a plurality of sensors and electronic components are integrally formed. The strip structure 120 will be described later.
  • the mounting portion 130 is a portion for mounting the belt-shaped structure 120 on the seat belt 100 provided in the seat 20. That is, the belt-shaped structure 120 is provided so as to be separable from the seat belt 100.
  • the mounting portion 130 only needs to be capable of fixing the belt-shaped structure 120 to the belt portion 110, and is provided in such a belt-shaped structure 120, for example.
  • the mounting portion 130 may be provided separately on the belt portion 110 and the belt-shaped structure 120, or may be provided on the belt portion 110.
  • the mounting unit 130 fixes the belt-shaped structure 120 so that a plurality of sensors provided in the belt-shaped structure 120 can detect changes in the curvature of the belt unit 110 according to the movement of the user's body.
  • the mounting portion 130 includes a member such as a belt, a button or a fastener for fixing the belt-shaped structure 120. Further, the mounting portion 130 may have a belt shape that covers the periphery of the belt portion 110 in the lateral direction of the belt portion 110.
  • the seat belt 100 described above allows the belt-shaped structure 120 to directly or indirectly contact the user to detect the physical condition of the user.
  • the strip-shaped structure 120 contacts, for example, the chest of the user. It is desirable that such a strip-shaped structure 120 has a sensor in contact with a plurality of locations on the user's body. In this case, in each sensor, the wiring for receiving the power source and the like and the wiring for outputting the detection result to the outside are connected while being insulated from other wirings.
  • the seat belt 100 since the seat belt 100 has a long structure whose width is about the width of the belt portion 110, it may be difficult to lay out a plurality of sensors and wirings connected to each of the plurality of sensors. Further, since the seat belt 100 is formed of a material such as a fiber that can be bent freely, it may be difficult to mount and operate the belt-shaped structure 120 on which electronic components such as a sensor are mounted. For example, when a single electronic component, an integrated circuit, or the like is mounted on the belt-shaped structure 120 and is mounted on the seat belt 100, bending the seat belt 100 causes the mounted component to be broken, damaged, or electrically damaged. Poor connection and deterioration over time could occur.
  • the belt-shaped structure 120 according to the present embodiment can be attached to the seat belt 100 with a simple structure by directly providing the electronic component or the like on the cloth such as the fiber. Next, such a strip-shaped structure 120 will be described.
  • FIG. 3 shows a configuration example of the measurement unit 200 and the strip-shaped structure 120 according to this embodiment.
  • FIG. 3 shows an example in which a plurality of sensors of the strip-shaped structure 120 are a plurality of resistors 202.
  • the strip-shaped structure 120 includes a plurality of resistors 202, a cloth 204, and a wiring portion 206.
  • the resistor 202 is provided on the cloth 204, and the impedance changes according to the curvature of the cloth 204.
  • the resistance value of the resistor 202 changes according to the curvature of the cloth 204.
  • FIG. 3 shows an example in which a plurality of resistors 202 are provided on the cloth 204.
  • the plurality of resistors 202 function as strain gauges that can detect the strain of the strip-shaped structure 120, respectively.
  • the plurality of resistors 202 are, for example, resistance elements formed by attaching a resistance material to the cloth 204.
  • the resistance material may be any material as long as the resistance value changes according to the curvature of the cloth 204.
  • the plurality of resistors 202 may be provided on one surface of the cloth 204, or alternatively, may be provided on both surfaces of the cloth 204. Further, the at least one resistor 202 may be directly incorporated into the cloth 204 by weaving a thread or the like containing a resistance material, and weaving the same.
  • the cloth 204 has a strip shape.
  • the cloth 204 is formed by processing fibers or the like, for example. It is desirable that the cloth 204 be formed so that thread-like fibers can be woven therein.
  • the cloth 204 has, for example, the same material as the belt portion 110 of the seat belt 100.
  • the cloth 204 is made of a bendable material. At least the surface of the cloth 204 is preferably formed of an insulating material.
  • the cloth 204 is bent to have a curvature according to the shape of the user's body.
  • the cloth 204 is bent to have a curvature corresponding to the change. For example, the chest of the user is displaced by the breathing of the user and the beating of the heart, and the cloth 204 is bent so as to have a curvature corresponding to the displacement.
  • the plurality of resistors 202 provided on the cloth 204 are formed so that the resistance values change according to the curvature of the cloth 204.
  • the wiring section 206 is a section for electrically connecting the plurality of resistors 202 and the measuring section 200.
  • the wiring section 206 includes a wiring 207 and a connecting section 208.
  • the wiring 207 is a portion for measuring the resistance value of each of the plurality of resistors 202.
  • the wiring 207 is connected to at least a part of the resistor 202.
  • the wiring 207 has conductivity and electrically connects the resistor 202 and the connecting portion 208.
  • the wiring 207 connects, for example, both ends of one resistor 202 and the connecting portion 208.
  • the wiring 207 may connect each end of each of the plurality of resistors 202 and the connecting portion 208. Further, the wiring 207 may connect a plurality of resistors 202, and in this case, the resistors 202 at both ends of the connected resistors 202 and the connecting portion 208 may be further connected.
  • connection unit 208 electrically connects the plurality of wirings 207 and the measurement unit 200.
  • the connection unit 208 includes, for example, a connector or the like for electrically connecting to the measurement unit 200.
  • the plurality of resistors 202, the cloth 204, and the wiring portion 206 are formed as an integral strip-shaped structure 120, and the strip-shaped structure 120 and the measurement unit 200 are detachably connected by the connecting portion 208. It
  • the measurement unit 200 measures the resistance values of the plurality of resistors 202 provided in the strip-shaped structure 120.
  • FIG. 3 shows an example in which the measuring unit 200 detects the resistance values of the n resistors 202.
  • the measurement unit 200 includes a supply unit 220, an acquisition unit 230, a storage unit 240, a resistance calculation unit 250, and a control unit 260.
  • the supply unit 220 supplies an electric signal having a predetermined voltage value or current value to each of the plurality of resistors 202.
  • the supply unit 220 has, for example, a DC power supply and supplies a DC electric signal.
  • the supply unit 220 may supply an electric signal to the plurality of resistors 202 in parallel, or, alternatively, may switch the connection for each resistor 202 to supply the electric signal for each resistor 202. Good.
  • the acquisition unit 230 acquires the output signals output by the plurality of resistors 202 according to the electric signals.
  • the acquisition unit 230 has, for example, an AD converter, and acquires information on the voltage value or the current value of the output signal.
  • the storage unit 240 stores the signal acquired by the acquisition unit 230.
  • the storage unit 240 may also store information such as set values of the measurement unit 200.
  • the storage unit 240 may store intermediate data generated (or used) in the course of the operation of the measurement unit 200, a calculation result, a threshold, a parameter, and the like.
  • the storage unit 240 may supply the stored data to the request source in response to a request from each unit in the measurement unit 200.
  • the resistance calculator 250 calculates the resistance value of each of the resistors 202 based on the output signal.
  • the resistance calculator 250 calculates the resistance value of the resistor 202 according to the voltage value supplied to one resistor 202 and the current value flowing in the resistor 202, for example. Further, the resistance calculation unit 250 may calculate the resistance value of the resistor 202 according to the current value supplied to one resistor 202 and the voltage drop generated in the resistor 202.
  • the control unit 260 controls the operations of the supply unit 220, the acquisition unit 230, the storage unit 240, and the resistance calculation unit 250.
  • the control unit 260 may be configured, for example, such that the supply unit 220 supplies the electrical signals to the plurality of resistors 202, the acquisition unit 230 acquires the output signals from the plurality of resistors 202, and the resistance calculation unit 250 sets the resistance value. And the timing for calculating
  • the control unit 260 is, for example, a CPU (Central Processing Unit).
  • the measurement unit 200 is connected to the strip-shaped structure 120 and supplies a voltage or current to the plurality of resistors 202 provided in the strip-shaped structure 120 to detect the resistance value.
  • belt-shaped structure 120 demonstrated the example connected by wire in FIG. 3, it is not restricted to this.
  • the measurement unit 200 and the strip-shaped structure 120 may be wirelessly connected.
  • connection unit 208 functions as an interface for wirelessly connecting to the measurement unit 200.
  • the connection unit 208 has, for example, a power supply, supplies a substantially constant current (or voltage) to each of the plurality of resistors 202 via the plurality of wirings 207, and causes a voltage drop (or voltage drop) in the plurality of resistors 202 (or It is desirable that the value of (current) can be transmitted to the measurement unit 200. That is, at least a part of the supply unit 220 and the acquisition unit 230 may be provided on the connection unit 208 side.
  • the strip-shaped structure 120 has the resistor 202 in which the resistance material is directly attached to the cloth 204.
  • Such a resistor 202 can be easily formed at a predetermined position on the cloth 204. Further, even if the strip-shaped structure 120 is bent, it is possible to prevent the resistor 202 from being broken, damaged, poorly connected electrically, or deteriorated over time.
  • the wiring 207 electrically connected to the resistor 202 will be described below.
  • FIG. 4 shows a configuration example of the wiring 207 according to this embodiment.
  • FIG. 4 shows an example in which the wiring 207 is a conductive fiber.
  • the wiring 207 includes a non-conductive fiber 332 and a conductive material 334.
  • the non-conductive fiber 332 is, for example, a polymer or the like.
  • the non-conductive fiber 332 may be an elastic body such as rubber.
  • the conductive material 334 is a conductive film or the like.
  • the conductive material 334 may be formed by adhering a conductive ink or the like containing a conductive material.
  • the wiring 207 is formed as a fiber to which the conductive material 334 is attached, it can be easily arranged at a predetermined position on the cloth 204. Since the wiring 207 can be formed as a thread-like fiber, it can be mounted on the cloth 204 as a fine circuit wiring. Further, such wiring 207 can be woven into the cloth 204, for example. Accordingly, the wiring 207 can be easily formed on the cloth 204 so as to be connected to the plurality of resistors 202 formed on the cloth 204, respectively. Further, the wiring 207 can be prevented from being broken or the like even if it is bent.
  • the belt-shaped structure 120 can be easily configured. That is, according to the strip-shaped structure 120 of the present embodiment, the degree of freedom in layout of the plurality of resistors 202 and the wiring 207 connected to each resistor 202 can be improved.
  • the present invention is not limited to this.
  • at least a part of the plurality of resistors 202 may be formed by, for example, attaching a resistance material to fibers.
  • the resistor 202 may be formed by attaching a resistance material to the non-conductive fiber 332, similarly to the wiring 207 shown in FIG. Further, the resistor 202 thus formed may be woven into the cloth 204 together with other fibers constituting the cloth 204.
  • the fibrous resistor 202 and the wiring 207 are provided on the cloth 204
  • the present invention is not limited to this.
  • the strip-shaped structure 120 has a noise removal filter
  • electronic components other than resistors may be formed on the strip-shaped structure 120.
  • the electronic component other than the resistor may be formed to include fibers or the like.
  • an example of a capacitance element and an inductance element will be described as electronic components other than resistors.
  • FIG. 5 shows a configuration example of the capacitive element 212 according to this embodiment.
  • the capacitor 212 includes a non-conductive fiber 332 and a conductive material 334.
  • the capacitive element 212 is formed as a capacitive fiber in which a conductive material 334 is attached to a plurality of locations on the non-conductive fiber 332.
  • the capacitor 212 may be formed by being woven into the cloth 204. Note that the capacitor 212 may be formed by combining one or a plurality of non-conductive fibers 332 and one or a plurality of conductive fibers.
  • the conductive material 334 may be inserted in the cross-sectional direction of the non-conductive fiber 332. Thereby, for example, a capacitive element having two circular electrodes can be configured.
  • the non-conductive fiber 332 may include a high dielectric constant material.
  • FIG. 6 shows a modification of the capacitive element 212 according to this embodiment.
  • the capacitance element 212 of the modified example includes a plurality of non-conductive fibers 332 and a plurality of conductive fibers 336.
  • the conductive fibers 336 include non-conductive fibers 332 and conductive material 334.
  • the conductive fiber 336 may have the same structure as the wiring 207.
  • the capacitive element 212 may be configured by one or a plurality of fibers depending on the capacitance constant and the like. Further, the capacitor 212 may have a length according to a capacitance constant or the like.
  • FIG. 7 shows a configuration example of the inductance element 214 according to this embodiment.
  • the inductance element 214 includes a non-conductive fiber 332 and a conductive fiber 336.
  • the inductance element 214 is formed by winding a conductive fiber 336 around a non-conductive fiber 332 that is an insulating material.
  • the inductance element 214 may be formed by being woven into the cloth 204.
  • the constant of the inductance element 214 can be determined according to the number of turns, the diameter, the length, etc. of the conductive fiber 336.
  • the non-conductive fiber 332 may include a material having high magnetic permeability.
  • the example in which the belt-shaped structure 120 is attached to the belt portion 110 has been described.
  • the measurement unit 200 detects the state of the user sitting on the seat 20. It can be possible.
  • the strip-shaped structure 120 is not limited to such a configuration as long as it can detect a change in the body of the user.
  • the belt-shaped structure 120 may be included in the seat belt 100 provided on the seat 20.
  • the belt-shaped structure 120 may be formed as a part of the belt unit 110, for example.
  • the strip-shaped structure 120 may be fixed to the belt portion 110.
  • the members forming the belt-shaped structure 120 may be fixed to the belt portion 110.
  • the plurality of resistors 202, the wiring 207, and the like may be provided on the belt unit 110.
  • at least a part of the seat belt 100 includes the resistor 202, the cloth 204, and the wiring portion 206.
  • the cloth 204 is a part of the belt unit 110.
  • the plurality of resistors 202 and the wiring section 206 may be directly provided on the belt section 110.
  • the plurality of resistors 202 and the wiring portion 206 may be formed by being woven into the belt portion 110, for example.
  • the plurality of resistors 202 can be easily arranged at the position where the fluctuation of the user's body can be detected.
  • each of the plurality of resistors 202 is a separate and independent member has been described, but the present invention is not limited to this.
  • Each of the resistors 202 may be part of one or more collective resistors.
  • the plurality of resistors 202 may be included in the plurality of regions of the belt-shaped resistors formed in the belt shape.
  • FIG. 8 shows a modified example of the strip-shaped structure 120 according to this embodiment.
  • the substantially same operations as those of the strip-shaped structure 120 shown in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • the resistor 202 has a strip-like shape.
  • the plurality of resistors 202 form one strip resistor 210.
  • the wiring 207 is connected to each of the positions where the resistors 202 are divided in the longitudinal direction of the strip resistor 210. That is, the wiring portion 206 has the wiring 207 for measuring the resistance value in each of the regions divided into a plurality in the longitudinal direction of the strip resistor 210.
  • the resistance calculation unit 250 can calculate the resistance value for each of the regions obtained by dividing the strip-shaped resistor 210 into a plurality of regions. That is, since the plurality of resistors 202 can be formed as, for example, one strip resistor 210 without forming corresponding separate and independent elements, the strip structure 120 can have a simpler configuration. Further, the belt-shaped resistor 210 and the wiring 207 may be directly provided on the belt portion 110.
  • the strip-shaped structure 120 By forming the strip-shaped structure 120 according to the present embodiment as a separate and independent module and connecting the strip-shaped structure 120 to the supply unit 220 and the acquisition unit 230 by wire, the strip-shaped structure 120 can be used as a power source. It can be a simple module that does not include a circuit. In addition, by directly providing the plurality of resistors 202 and the wiring 207 on the belt portion 110, it is possible to provide a simple seat belt 100 that does not include a power supply circuit.
  • the calculation unit 250, the control unit 260, and the like may be provided at positions different from the seat belt 100. It is desirable that at least a part of the measuring unit 200 as described above is integrally housed in, for example, the lower portion of the seat 20. Further, in the case of configuring the state identifying device 10 described in FIG. 1, at least a part of the supply unit 220, the acquisition unit 230, the storage unit 240, the resistance calculation unit 250, and the control unit 260 is the calculation unit 310 and the identification unit. It may be formed integrally with at least a part of 320.
  • the present invention is not limited to this.
  • the sensor can be provided on the cloth, and any sensor whose electric characteristics change depending on the curvature of the cloth may be used. Further, the sensor may be a sensor whose electrical characteristics change according to the breathing and/or heartbeat of the user wearing the seat belt 100.
  • FIG. 9 shows another example of the sensor E according to this embodiment.
  • the sensor E shown in FIG. 9 has two electrodes, and shows an example of an electrode pair in which the electrical characteristics between the electrodes change according to the user's movements such as respiration and heartbeat.
  • the sensor E has a positive electrode 32, a negative electrode 34, and a wiring 36 provided on the strip-shaped structure 120.
  • FIG. 9 shows a plan view of the strip-shaped structure 120.
  • the positive electrode 32 and the negative electrode 34 are formed by weaving or weaving a conductive fiber or a fiber having a resistor or the like in the strip-shaped structure 120.
  • the positive electrode 32 and the negative electrode 34 may be formed by applying conductive ink or the like to the strip-shaped structure 120.
  • the positive electrode 32 and the negative electrode 34 may be directly formed on the seat belt 100.
  • the driver wears the seat belt 100 provided with such a sensor E
  • the driver's chest is displaced by the driver's breathing and heartbeat.
  • the magnitude of the current flowing through the body changes in synchronization with the impedance change of the blood flow due to the heartbeat or the impedance change of the lung due to the respiration.
  • the electric field generated between the positive electrode 32 and the negative electrode 34 changes according to the breathing of the driver and the beating of the heart.
  • the potential difference between the positive electrode 32 and the negative electrode 34 changes.
  • the measuring unit 200 measures the change in the potential difference between the positive electrode 32 and the negative electrode 34. Then, the calculation unit 310 calculates the curvature of the seat belt 100 based on the change in the potential difference, and the specifying unit 320 specifies the driver's state. In this case, the calculation of the curvature of the seat belt 100 by the calculation unit 310 may be omitted, and the specification unit 320 may specify the breathing state of the driver and the beating state of the heart based on the change in the potential difference. Since the positive electrode 32 and the negative electrode 34 as described above are sensors for detecting a change in the potential difference between the electrodes, they do not have to be in contact with the body of the user sitting on the seat 20.
  • the positive electrode 32 surrounds the negative electrode 34 in a region other than the position where the negative electrode 34 and the wiring 36 are provided.
  • the positive electrode 32 is not provided at the position where the wiring 36 is provided, and the wiring 36 does not overlap the positive electrode 32.
  • an electric field is generated in a region where the wiring 36 and the positive electrode 32 overlap each other, which causes energy loss. Since the positive electrode 32 and the negative electrode 34 are configured as shown in FIG. 9, energy loss can be suppressed, so that the measurement accuracy of the potential difference between the positive electrode 32 and the negative electrode 34 can be improved. ..
  • the shapes of the positive electrode 32 and the negative electrode 34 of the sensor E shown in FIG. 9 are examples, and the shapes are not limited thereto.
  • the positive electrode 32 and the negative electrode 34 need only be capable of applying to the user wearing the seat belt 100 an electrolytic strength that is sufficient to detect changes in the electric field according to the breathing and the heartbeat of the user.
  • the positive electrode 32 and the negative electrode 34 may have the same shape, for example.
  • the positive electrode 32 and the negative electrode 34 may have a shape such as an n-gon (n is 3 or more), a trapezoid, a circle, an ellipse, or the like.
  • the positive electrode 32 and the negative electrode 34 may be arranged in the longitudinal direction and/or the lateral direction of the belt-shaped structure 120 or the seat belt 100.
  • the state identification device 10 has described that the state of the person wearing the seat belt is identified based on the change in the electrical characteristics of the sensor provided on the cloth.
  • the sensor provided on the cloth may include a plurality of types of sensors.
  • a plurality of types of electrical characteristics can be acquired for one operation of the user, and by analyzing these, it is possible to improve sensitivity, dynamic range, accuracy, and the like.
  • the senor may include a plurality of resistors 202 having different resistance values. Further, the sensor may include the sensor E described in FIG. 9 having electrodes having different shapes. Further, the sensor may include a resistor 202 having the same or different electric characteristics and a sensor E having the same or different electric characteristics. In this case, for example, the resistor 202 detects a physical displacement such as the posture of the user, and the sensor E detects changes in the electric field in the body such as the breathing and the heartbeat of the user to detect different motions of the user. be able to. ..
  • At least a part of the state identification device 10 according to the present embodiment described above is, for example, a computer or the like.
  • the computer functions as at least a part of the acquisition unit 230, the resistance calculation unit 250, the control unit 260, the calculation unit 310, and the identification unit 320 according to the present embodiment, for example, by executing a program or the like.
  • the computer includes a processor such as a CPU, and executes a program stored in the storage unit 240 to serve as at least a part of the acquisition unit 230, the resistance calculation unit 250, the control unit 260, the calculation unit 310, and the specification unit 320. Function.
  • the computer may further include a GPU (Graphics Processing Unit) and the like.
  • the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments, and various modifications and changes are possible within the scope of the gist thereof. is there.
  • the specific embodiment of device distribution/integration is not limited to the above embodiment, and all or part of the device may be functionally or physically distributed/integrated in arbitrary units.
  • You can Further, a new embodiment that occurs due to an arbitrary combination of a plurality of embodiments is also included in the embodiment of the present invention. The effect of the new embodiment produced by the combination also has the effect of the original embodiment.
  • the present invention can be applied to the strip-shaped structure 120 in any form that can be worn on the human body. Further, the present invention can be applied to a module or the like in which an electronic component is mounted and operated on a bendable portion of cloth or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Textile Engineering (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Automotive Seat Belt Assembly (AREA)

Abstract

The purpose of this invention is to improve the degree of freedom of layout of a plurality of sensors and wiring connecting the sensors. Provided is a seat belt provided to a seat, at least part of the seat belt comprising: a ribbon-shaped fabric; a sensor provided to the fabric; and a wiring portion containing conductive wiring which is connected to at least part of the sensor. The sensor may have a resistor, the impedance of which varies according to the curvature of the fabric. The resistor may have a ribbon shape. The wiring portion may have wiring for measuring impedance for each region divided in the longitudinal direction of the resistor.

Description

シートベルトおよび状態特定装置Seat belt and condition identification device
 本発明は、シートベルトおよび状態特定装置に関する。 The present invention relates to a seat belt and a condition specifying device.
 従来、体表面の変位を複数のセンサで検出し、人の呼吸、心拍等の状態を検出する技術が知られている。特許文献1には、電気インピーダンストモグラフィ(EIT:Electrical Impedance Tomography)の技術をシートベルトに適用することにより、自動車の運転手の状態を監視することができる運転手監視装置が開示されている。 Conventionally, a technique is known in which the displacement of the body surface is detected by a plurality of sensors to detect the state of human respiration, heartbeat, etc. Patent Document 1 discloses a driver monitoring device that can monitor the condition of a driver of an automobile by applying a technique of electrical impedance tomography (EIT) to a seat belt.
特開2017-136304号公報JP, 2017-136304, A
 従来の技術においては、複数のセンサを配列したモジュール等をシートベルトに装着していた。しかしながら、シートベルトは長尺形状をしているので、絶縁性を保ちつつ複数のセンサと接続する配線等を配置すると、複数のセンサおよび配線のレイアウトの自由度が限定されてしまうことがあった。 In the conventional technology, a module in which a plurality of sensors are arranged is attached to the seat belt. However, since the seat belt has a long shape, if the wiring or the like connecting to the plurality of sensors is arranged while maintaining the insulating property, the freedom of layout of the plurality of sensors and the wiring may be limited. ..
 そこで、本発明はこれらの点に鑑みてなされたものであり、複数のセンサおよび各センサに接続される配線のレイアウトの自由度を向上させることができることを目的とする。 Therefore, the present invention has been made in view of these points, and an object thereof is to improve the degree of freedom in layout of a plurality of sensors and wirings connected to each sensor.
 本発明の第1の態様のシートベルトは、座席に設けられているシートベルトであって、前記シートベルトの少なくとも一部が、帯状の布と、前記布に設けられているセンサと、前記センサの少なくとも一部に接続された導電性の配線を含む配線部とを備えるシートベルトを提供する。前記センサは、前記布の曲率に応じてインピーダンスが変化する抵抗体を有してもよい。 A seat belt according to a first aspect of the present invention is a seat belt provided on a seat, wherein at least a part of the seat belt has a belt-like cloth, a sensor provided on the cloth, and the sensor. And a wiring portion including a conductive wiring connected to at least a part of the seat belt. The sensor may include a resistor whose impedance changes according to the curvature of the cloth.
 前記抵抗体は、帯状の形状を有してよい。前記配線部は、前記抵抗体の長手方向において複数に分割された領域毎にインピーダンスを測定するための前記配線を有してもよい。前記抵抗体は、前記布に複数設けられてよい。前記配線部は、複数の前記抵抗体のインピーダンスをそれぞれ測定するための前記配線を有してもよい。 The resistor may have a strip shape. The wiring part may have the wiring for measuring impedance in each of a plurality of regions divided in the longitudinal direction of the resistor. A plurality of the resistors may be provided on the cloth. The wiring part may include the wiring for measuring the impedance of each of the plurality of resistors.
 前記抵抗体は、抵抗材料が前記布に付着されてもよい。前記抵抗体は、抵抗材料が付着された繊維が前記布に織り込まれてもよい。前記配線部は、導電性材料が付着され、前記布に織り込まれている繊維を有してもよい。前記布、前記センサ、および前記配線部は、一体の帯状構造体に形成されてもよい。 In the resistor, a resistance material may be attached to the cloth. The resistor may be woven into the cloth with fibers having a resistive material attached thereto. The wiring portion may have a fiber to which a conductive material is attached and which is woven into the cloth. The cloth, the sensor, and the wiring portion may be formed in an integral strip-shaped structure.
 前記帯状構造体は、非導電性繊維における複数個所に導電性材料が付着された、容量性を有する繊維が、前記布に織り込まれて形成されてもよい。前記帯状構造体は、導電性繊維が絶縁性材料に巻き付けられた繊維が前記布に織り込まれて形成されてもよい。前記帯状構造体は、前記シートベルトに装着するための装着部を更に備えてもよい。 The band-shaped structure may be formed by weaving into the cloth, a capacitive fiber having conductive materials attached to a plurality of non-conductive fibers. The strip-shaped structure may be formed by weaving fibers in which conductive fibers are wound around an insulating material and woven into the cloth. The belt-shaped structure may further include a mounting portion for mounting on the seat belt.
 前記センサは、前記シートベルトを装着するユーザの動きに応じて電気的特性が変化する電極対を有してもよい。前記布は、電気的特性が異なる複数種類の前記センサが設けられていてもよい。 The sensor may have a pair of electrodes whose electrical characteristics change according to the movement of the user wearing the seat belt. The cloth may be provided with a plurality of types of sensors having different electrical characteristics.
 本発明の第2の態様の状態特定装置は、第1の態様のシートベルトと、前記センサの電気的特性を測定する測定部と、前記測定部が測定した電気的特性に基づき、前記シートベルトの曲率を算出する算出部と、前記シートベルトの曲率の時間変化に基づき、前記シートベルトを装着した人の状態を特定する特定部とを備える、状態特定装置を提供する。 A state identification device according to a second aspect of the present invention is based on the seatbelt according to the first aspect, a measurement unit that measures the electrical characteristics of the sensor, and the seatbelt based on the electrical characteristics measured by the measurement unit. There is provided a state specifying device including a calculating unit that calculates the curvature of the seat belt and a specifying unit that specifies the state of the person wearing the seat belt based on the temporal change of the curvature of the seat belt.
 本発明によれば、複数のセンサおよび各センサに接続される配線のレイアウトの自由度を向上させることができるという効果を奏する。 According to the present invention, it is possible to improve the flexibility of layout of a plurality of sensors and wirings connected to each sensor.
本実施形態に係る状態特定装置10の構成例を示す。The structural example of the state specific|specification apparatus 10 which concerns on this embodiment is shown. 本実施形態に係るシートベルト100の構成例を示す。The structural example of the seat belt 100 which concerns on this embodiment is shown. 本実施形態に係る測定部200および帯状構造体120の構成例を示す。The structural example of the measurement part 200 and the strip|belt-shaped structure 120 which concern on this embodiment is shown. 本実施形態に係る配線207の構成例を示す。The structural example of the wiring 207 which concerns on this embodiment is shown. 本実施形態に係る容量素子212の構成例を示す。The structural example of the capacitive element 212 which concerns on this embodiment is shown. 本実施形態に係る容量素子212の変形例を示す。A modified example of the capacitive element 212 according to the present embodiment is shown. 本実施形態に係るインダクタンス素子214の構成例を示す。The structural example of the inductance element 214 which concerns on this embodiment is shown. 本実施形態に係る帯状構造体120の変形例を示す。A modified example of the strip-shaped structure 120 according to the present embodiment is shown. 本実施形態に係るセンサEの他の一例を示す。Another example of the sensor E according to the present embodiment is shown.
<状態特定装置10の構成例>
 図1は、本実施形態に係る状態特定装置10の構成例を示す。状態特定装置10は、座席20に座るユーザの身体の状態を特定する。状態特定装置10は、シートベルト100と、測定部200と、算出部310と、特定部320とを備える。
<Example of Configuration of State Identification Device 10>
FIG. 1 shows a configuration example of a state identifying device 10 according to this embodiment. The state identifying device 10 identifies the state of the body of the user sitting on the seat 20. The state identifying device 10 includes a seat belt 100, a measuring unit 200, a calculating unit 310, and an identifying unit 320.
 シートベルト100は、座席20に設けられ、当該座席20に座るユーザの体に接するように固定される。シートベルト100は、例えば、ユーザに急激な加速または減速等が加わった場合に、当該ユーザを座席20に拘束するように機能する。シートベルト100は、ユーザの身体の状態を検出するための複数のセンサを有している。複数のセンサのそれぞれは、例えば、物体の歪を測定するためのセンサである。図1においては、複数のセンサを模式的にE1からE8として示す。このようなシートベルト100については、後に説明する。 The seat belt 100 is provided on the seat 20 and is fixed so as to come into contact with the body of the user sitting on the seat 20. The seat belt 100 functions, for example, to restrain the user to the seat 20 when the user is suddenly accelerated or decelerated. The seat belt 100 has a plurality of sensors for detecting the physical condition of the user. Each of the plurality of sensors is, for example, a sensor for measuring the strain of the object. In FIG. 1, a plurality of sensors are schematically shown as E1 to E8. Such a seat belt 100 will be described later.
 測定部200は、シートベルト100に設けられた複数のセンサに接続され、当該複数のセンサと電気信号を授受する。測定部200は、例えば、授受した電気信号に基づき、複数のセンサの電気的特性をそれぞれ測定する。本実施形態においては、測定部200が複数のセンサのそれぞれが有する抵抗体の抵抗値をそれぞれ測定する例を説明する。測定部200の少なくとも一部は、座席20およびシートベルト100に設けられてよい。測定部200については、後に説明する。 The measurement unit 200 is connected to a plurality of sensors provided on the seat belt 100 and exchanges electric signals with the plurality of sensors. The measurement unit 200 measures the electrical characteristics of each of the plurality of sensors, for example, based on the transmitted and received electrical signals. In the present embodiment, an example will be described in which the measuring unit 200 measures the resistance values of the resistors included in each of the plurality of sensors. At least a part of the measurement unit 200 may be provided on the seat 20 and the seat belt 100. The measuring unit 200 will be described later.
 算出部310は、測定部200が検出したインピーダンス、抵抗値等といった電気的特性に基づき、ユーザの体に接しているシートベルト100の曲率を算出する。算出部310は、例えば、シートベルト100の時間的な変化を順次算出できることが好ましい。 The calculation unit 310 calculates the curvature of the seat belt 100 in contact with the user's body based on electrical characteristics such as impedance and resistance detected by the measurement unit 200. The calculation unit 310 is preferably capable of sequentially calculating temporal changes in the seat belt 100, for example.
 特定部320は、算出部310が算出したシートベルト100の曲率の時間変化に基づき、シートベルト100を装着したユーザの状態を特定する。例えば、ユーザの呼吸および心拍等により、当該ユーザに接するシートベルト100の少なくとも一部の曲率が変動する。ユーザの呼吸および心拍等が正常であれば、シートベルト100の曲率の変動は、略一定の周期で略一定の振幅の範囲で変化することになる。 The specifying unit 320 specifies the state of the user wearing the seat belt 100 based on the temporal change in the curvature of the seat belt 100 calculated by the calculating unit 310. For example, the curvature of at least a part of the seat belt 100 in contact with the user changes due to the breathing and the heartbeat of the user. If the user's breathing and heartbeat are normal, the variation in the curvature of the seat belt 100 will change in a range of a substantially constant amplitude in a substantially constant cycle.
 そこで、特定部320は、複数のセンサに基づくシートベルト100の複数の位置の曲率を解析して、ユーザの呼吸および心臓の鼓動の状態を特定する。特定部320は、例えば、過去に取得したシートベルト100の曲率の変動と比較して、ユーザの状態を特定する。また、特定部320は、1つのまたは複数の閾値とシートベルト100の曲率の変動とを比較して、ユーザの状態を特定してもよい。 Therefore, the specifying unit 320 analyzes the curvatures of the seat belt 100 at a plurality of positions based on a plurality of sensors, and specifies the states of the user's breathing and heart beat. The specifying unit 320 specifies the state of the user by comparing with the change in the curvature of the seat belt 100 acquired in the past, for example. In addition, the identifying unit 320 may identify one or more threshold values and the variation in the curvature of the seat belt 100 to identify the user's state.
 以上の状態特定装置10は、座席20に座り、シートベルト100を装着したユーザの身体の状態を特定することができる。これにより、状態特定装置10は、ユーザの呼吸および心拍等の異常の発生等を特定できる。このような状態特定装置10は、例えば、車両等に搭載され、車両の座席20に座ったユーザの身体の状態を特定できる。この場合、状態特定装置10は、特定した状態に基づいて車両を制御する監視装置等に適用できる。状態特定装置10は、例えば、ユーザの心拍が停止したことを特定すると、車両のエンジンを停止させるように制御装置等を制御する。 The above-described state identification device 10 can identify the state of the body of the user who sits on the seat 20 and wears the seat belt 100. Thereby, the state identifying device 10 can identify the occurrence of abnormality such as breathing and heartbeat of the user. Such a state identification device 10 is mounted in, for example, a vehicle, and can identify the state of the body of a user who is seated in the seat 20 of the vehicle. In this case, the state identification device 10 can be applied to a monitoring device or the like that controls the vehicle based on the identified state. When the state identification device 10 identifies that the user's heartbeat has stopped, for example, the state identification device 10 controls the control device and the like to stop the engine of the vehicle.
 以上のように、状態特定装置10は、例えば、車、電車、飛行機等の乗り物に乗る人、映画館、劇場、遊戯場等の椅子に座る人、車椅子に乗る人、ベッド、寝台等で寝ている人等の身体の状態を特定し、異常の発生の有無等を監視できる。このような状態特定装置10のシートベルト100について次に説明する。 As described above, the state identifying device 10 sleeps in a person, such as a person who rides a vehicle such as a car, train, or airplane, a person who sits in a chair such as a movie theater, a theater, or a playground, a person who rides a wheelchair, a bed, or a bed. It is possible to identify the physical condition of the person who is injured and monitor the occurrence of abnormalities. The seat belt 100 of such a state identifying device 10 will be described below.
<シートベルト100の構成例>
 図2は、本実施形態に係るシートベルト100の構成例を示す。図2は、シートベルト100の平面図の一例である。シートベルト100は、ベルト部110と、帯状構造体120と、装着部130とを有する。
<Structure example of seat belt 100>
FIG. 2 shows a configuration example of the seat belt 100 according to the present embodiment. FIG. 2 is an example of a plan view of the seat belt 100. The seat belt 100 includes a belt portion 110, a belt-shaped structure 120, and a mounting portion 130.
 ベルト部110は、帯状に形成され、ユーザに接するように装着される。ベルト部110の一端は、一例として、座席20または座席20が固定される車両等に固定されている。この場合、ベルト部110の他端は、座席20または座席20が固定される車両等に設けられている固定具等と脱着可能に嵌合する。ベルト部110は、例えば、繊維等を加工した布状の材料を有する。 The belt portion 110 is formed in a belt shape and is attached so as to contact the user. As an example, one end of the belt portion 110 is fixed to the seat 20 or a vehicle to which the seat 20 is fixed. In this case, the other end of the belt portion 110 is detachably fitted to the seat 20 or a fixture or the like provided in the vehicle or the like to which the seat 20 is fixed. The belt portion 110 has, for example, a cloth-like material obtained by processing fibers or the like.
 帯状構造体120は、ベルト部110に取り付けられている。帯状構造体120には、ユーザの身体の動きに応じたベルト部110の曲率の変化を測定するための複数のセンサが設けられている。図2は、複数のセンサとしてE1からE8が設けられている例を示す。詳細については後述するが、複数のセンサは、布に設けられている。複数のセンサは、例えば、帯状構造体120の一部の領域に抵抗材料を付着させることにより構成されている。また、帯状構造体120には、複数のセンサのそれぞれと電気信号を授受する配線および電子部品等が設けられている。帯状構造体120は、例えば、複数のセンサと電子部品等が一体に形成されたシート状のモジュールとして機能する。帯状構造体120については、後に説明する。 The belt-shaped structure 120 is attached to the belt portion 110. The band-shaped structure 120 is provided with a plurality of sensors for measuring the change in the curvature of the belt portion 110 according to the movement of the user's body. FIG. 2 shows an example in which E1 to E8 are provided as a plurality of sensors. Although details will be described later, the plurality of sensors are provided on the cloth. The plurality of sensors are configured by, for example, attaching a resistance material to a partial region of the strip-shaped structure 120. In addition, the strip-shaped structure 120 is provided with wirings and electronic components that exchange electric signals with each of the plurality of sensors. The strip-shaped structure 120 functions, for example, as a sheet-shaped module in which a plurality of sensors and electronic components are integrally formed. The strip structure 120 will be described later.
 装着部130は、座席20に設けられているシートベルト100に帯状構造体120を装着するための部位である。即ち、帯状構造体120は、シートベルト100とは分離可能に設けられている。装着部130は、帯状構造体120を当該ベルト部110に固定できればよく、例えば、このような帯状構造体120に設けられている。これに代えて、装着部130は、ベルト部110および帯状構造体120に分離して設けられてもよく、また、ベルト部110に設けられてもよい。 The mounting portion 130 is a portion for mounting the belt-shaped structure 120 on the seat belt 100 provided in the seat 20. That is, the belt-shaped structure 120 is provided so as to be separable from the seat belt 100. The mounting portion 130 only needs to be capable of fixing the belt-shaped structure 120 to the belt portion 110, and is provided in such a belt-shaped structure 120, for example. Alternatively, the mounting portion 130 may be provided separately on the belt portion 110 and the belt-shaped structure 120, or may be provided on the belt portion 110.
 装着部130は、ユーザの身体の動きに応じたベルト部110の曲率の変化を、帯状構造体120に設けられた複数のセンサが検出できるように、当該帯状構造体120を固定する。装着部130は、ベルト、ボタン、ファスナー等の帯状構造体120を固定するための部材を含む。また、装着部130は、ベルト部110の短手方向に当該ベルト部110の周囲を覆うようなベルト状の形状を有してもよい。 The mounting unit 130 fixes the belt-shaped structure 120 so that a plurality of sensors provided in the belt-shaped structure 120 can detect changes in the curvature of the belt unit 110 according to the movement of the user's body. The mounting portion 130 includes a member such as a belt, a button or a fastener for fixing the belt-shaped structure 120. Further, the mounting portion 130 may have a belt shape that covers the periphery of the belt portion 110 in the lateral direction of the belt portion 110.
 以上のシートベルト100は、帯状構造体120をユーザに直接的または間接的に接触させて、当該ユーザの身体の状態を検出可能とする。帯状構造体120は、例えば、ユーザの胸に接触する。このような帯状構造体120は、ユーザの身体の異なる複数の個所にセンサを接触させることが望ましい。この場合、それぞれのセンサは、電源等を受け取るための配線と、検出結果を外部に出力するための配線とが、他の配線と絶縁を保ちつつ接続されることになる。 The seat belt 100 described above allows the belt-shaped structure 120 to directly or indirectly contact the user to detect the physical condition of the user. The strip-shaped structure 120 contacts, for example, the chest of the user. It is desirable that such a strip-shaped structure 120 has a sensor in contact with a plurality of locations on the user's body. In this case, in each sensor, the wiring for receiving the power source and the like and the wiring for outputting the detection result to the outside are connected while being insulated from other wirings.
 しかしながら、シートベルト100は、幅がベルト部110の幅程度の長尺構造なので、複数のセンサと、複数のセンサのそれぞれに接続する配線とをレイアウトすることが困難になることがあった。また、シートベルト100は、折り曲げが自由な繊維等の素材で形成されているので、センサ等の電子部品を実装した帯状構造体120を装着して動作させることが困難になることがあった。例えば、このような帯状構造体120に単体の電子部品および集積回路等を実装してシートベルト100に装着した場合、当該シートベルト100を折り曲げると、実装した部品等の破壊、破損、電気的な接続不良、継時的な劣化等を発生させてしまうことがあった。 However, since the seat belt 100 has a long structure whose width is about the width of the belt portion 110, it may be difficult to lay out a plurality of sensors and wirings connected to each of the plurality of sensors. Further, since the seat belt 100 is formed of a material such as a fiber that can be bent freely, it may be difficult to mount and operate the belt-shaped structure 120 on which electronic components such as a sensor are mounted. For example, when a single electronic component, an integrated circuit, or the like is mounted on the belt-shaped structure 120 and is mounted on the seat belt 100, bending the seat belt 100 causes the mounted component to be broken, damaged, or electrically damaged. Poor connection and deterioration over time could occur.
 そこで、本実施形態に係る帯状構造体120は、繊維等の布に電子部品等を直接設けられることにより、簡易な構成でシートベルト100に装着可能とする。このような帯状構造体120について次に説明する。 Therefore, the belt-shaped structure 120 according to the present embodiment can be attached to the seat belt 100 with a simple structure by directly providing the electronic component or the like on the cloth such as the fiber. Next, such a strip-shaped structure 120 will be described.
<帯状構造体120の構成例>
 図3は、本実施形態に係る測定部200および帯状構造体120の構成例を示す。図3は、帯状構造体120の複数のセンサを、複数の抵抗体202とした例を示す。帯状構造体120は、複数の抵抗体202と、布204と、配線部206とを有する。
<Structural example of the band-shaped structure 120>
FIG. 3 shows a configuration example of the measurement unit 200 and the strip-shaped structure 120 according to this embodiment. FIG. 3 shows an example in which a plurality of sensors of the strip-shaped structure 120 are a plurality of resistors 202. The strip-shaped structure 120 includes a plurality of resistors 202, a cloth 204, and a wiring portion 206.
 抵抗体202は、布204に設けられており、布204の曲率に応じてインピーダンスが変化する。なお、本実施形態においては、抵抗体202は、布204の曲率に応じて抵抗値が変化する例を説明する。図3は、抵抗体202が布204に複数設けられている例を示す。複数の抵抗体202は、帯状構造体120の歪をそれぞれ検出できる歪ゲージとして機能する。複数の抵抗体202は、例えば、抵抗材料を布204に付着させることにより形成された抵抗素子である。ここで、抵抗材料は、布204の曲率に応じて抵抗値が変化する材料であれば任意の材料でよい。複数の抵抗体202は、布204の一方の面に設けられてもよく、これに代えて、布204の両方の面に設けられていてもよい。また、少なくとも1つの抵抗体202は、抵抗材料を含んだ糸等が編み込み、織り込み等によって布204に直接組み込まれていてもよい。 The resistor 202 is provided on the cloth 204, and the impedance changes according to the curvature of the cloth 204. In the present embodiment, the resistance value of the resistor 202 changes according to the curvature of the cloth 204. FIG. 3 shows an example in which a plurality of resistors 202 are provided on the cloth 204. The plurality of resistors 202 function as strain gauges that can detect the strain of the strip-shaped structure 120, respectively. The plurality of resistors 202 are, for example, resistance elements formed by attaching a resistance material to the cloth 204. Here, the resistance material may be any material as long as the resistance value changes according to the curvature of the cloth 204. The plurality of resistors 202 may be provided on one surface of the cloth 204, or alternatively, may be provided on both surfaces of the cloth 204. Further, the at least one resistor 202 may be directly incorporated into the cloth 204 by weaving a thread or the like containing a resistance material, and weaving the same.
 布204は、帯状の形状である。布204は、例えば、繊維等を加工して形成されている。布204は、糸状の繊維等を織り込むことが可能に形成されていることが望ましい。また、布204は、一例として、シートベルト100のベルト部110と同様の素材を有する。 The cloth 204 has a strip shape. The cloth 204 is formed by processing fibers or the like, for example. It is desirable that the cloth 204 be formed so that thread-like fibers can be woven therein. The cloth 204 has, for example, the same material as the belt portion 110 of the seat belt 100.
 布204は、ベルト部110と同様に、折り曲げ可能な材質で形成されている。布204の少なくとも表面は、絶縁性の材質で形成されていることが望ましい。このような布204は、帯状構造体120がユーザに接触すると、ユーザの身体の形状に応じた曲率に曲げられる。また、布204は、ユーザの呼吸等で身体の表面が変動すると、当該変動に応じた曲率になるように曲げられる。例えば、ユーザの呼吸および心臓の鼓動によって当該ユーザの胸が変位し、布204は、当該変位に応じた曲率になるように曲げられる。そして、布204に設けられた複数の抵抗体202は、このような布204の曲率に応じて抵抗値がそれぞれ変化するように形成されている。 Like the belt portion 110, the cloth 204 is made of a bendable material. At least the surface of the cloth 204 is preferably formed of an insulating material. When the strip-shaped structure 120 contacts the user, the cloth 204 is bent to have a curvature according to the shape of the user's body. Further, when the surface of the body changes due to the user's breathing or the like, the cloth 204 is bent to have a curvature corresponding to the change. For example, the chest of the user is displaced by the breathing of the user and the beating of the heart, and the cloth 204 is bent so as to have a curvature corresponding to the displacement. The plurality of resistors 202 provided on the cloth 204 are formed so that the resistance values change according to the curvature of the cloth 204.
 配線部206は、複数の抵抗体202と測定部200とを電気的に接続させるための部位である。配線部206は、配線207と、接続部208とを含む。配線207は、複数の抵抗体202の抵抗値をそれぞれ測定するための部位である。配線207は、抵抗体202の少なくとも一部に接続されている。配線207は、導電性を有し、抵抗体202と接続部208とを電気的に接続している。 The wiring section 206 is a section for electrically connecting the plurality of resistors 202 and the measuring section 200. The wiring section 206 includes a wiring 207 and a connecting section 208. The wiring 207 is a portion for measuring the resistance value of each of the plurality of resistors 202. The wiring 207 is connected to at least a part of the resistor 202. The wiring 207 has conductivity and electrically connects the resistor 202 and the connecting portion 208.
 配線207は、例えば、1つの抵抗体202の両端と接続部208とをそれぞれ接続している。配線207は、複数の抵抗体202のそれぞれの両端と接続部208とをそれぞれ接続していてもよい。また、配線207は、複数の抵抗体202を接続してもよく、この場合、接続した複数の抵抗体202の両端の抵抗体202と接続部208とを更に接続してよい。 The wiring 207 connects, for example, both ends of one resistor 202 and the connecting portion 208. The wiring 207 may connect each end of each of the plurality of resistors 202 and the connecting portion 208. Further, the wiring 207 may connect a plurality of resistors 202, and in this case, the resistors 202 at both ends of the connected resistors 202 and the connecting portion 208 may be further connected.
 接続部208は、複数の配線207と測定部200とを電気的に接続している。接続部208は、例えば、測定部200と電気的に接続するためのコネクタ等を含む。以上のように、複数の抵抗体202、布204、および配線部206は、一体の帯状構造体120として形成され、当該帯状構造体120および測定部200は、接続部208により脱着可能に接続される。 The connection unit 208 electrically connects the plurality of wirings 207 and the measurement unit 200. The connection unit 208 includes, for example, a connector or the like for electrically connecting to the measurement unit 200. As described above, the plurality of resistors 202, the cloth 204, and the wiring portion 206 are formed as an integral strip-shaped structure 120, and the strip-shaped structure 120 and the measurement unit 200 are detachably connected by the connecting portion 208. It
 測定部200は、帯状構造体120に設けられている複数の抵抗体202の抵抗値をそれぞれ測定する。図3は、測定部200がn個の抵抗体202の抵抗値をそれぞれ検出する例を示す。測定部200は、供給部220と、取得部230と、記憶部240と、抵抗算出部250と、制御部260とを備える。 The measurement unit 200 measures the resistance values of the plurality of resistors 202 provided in the strip-shaped structure 120. FIG. 3 shows an example in which the measuring unit 200 detects the resistance values of the n resistors 202. The measurement unit 200 includes a supply unit 220, an acquisition unit 230, a storage unit 240, a resistance calculation unit 250, and a control unit 260.
 供給部220は、複数の抵抗体202のそれぞれに予め定められた電圧値または電流値を有する電気信号を供給する。供給部220は、例えば、直流電源を有し、直流の電気信号を供給する。供給部220は、複数の抵抗体202に対して、電気信号を並列に供給してよく、これに代えて、抵抗体202毎の接続を切り替えて抵抗体202毎に電気信号を供給してもよい。 The supply unit 220 supplies an electric signal having a predetermined voltage value or current value to each of the plurality of resistors 202. The supply unit 220 has, for example, a DC power supply and supplies a DC electric signal. The supply unit 220 may supply an electric signal to the plurality of resistors 202 in parallel, or, alternatively, may switch the connection for each resistor 202 to supply the electric signal for each resistor 202. Good.
 取得部230は、複数の抵抗体202が電気信号に応じて出力する出力信号をそれぞれ取得する。取得部230は、一例として、AD変換器を有し、出力信号の電圧値または電流値の情報を取得する。 The acquisition unit 230 acquires the output signals output by the plurality of resistors 202 according to the electric signals. The acquisition unit 230 has, for example, an AD converter, and acquires information on the voltage value or the current value of the output signal.
 記憶部240は、取得部230が取得した信号を記憶する。また、記憶部240は、測定部200の設定値等の情報を格納してもよい。また、記憶部240は、測定部200の動作の過程で生成する(または利用する)中間データ、算出結果、閾値、およびパラメータ等をそれぞれ格納してもよい。また、記憶部240は、測定部200内の各部の要求に応じて、格納したデータを要求元に供給してもよい。 The storage unit 240 stores the signal acquired by the acquisition unit 230. The storage unit 240 may also store information such as set values of the measurement unit 200. In addition, the storage unit 240 may store intermediate data generated (or used) in the course of the operation of the measurement unit 200, a calculation result, a threshold, a parameter, and the like. In addition, the storage unit 240 may supply the stored data to the request source in response to a request from each unit in the measurement unit 200.
 抵抗算出部250は、出力信号に基づき、複数の抵抗体202のそれぞれの抵抗値を算出する。抵抗算出部250は、例えば、1つの抵抗体202に供給した電圧値と、当該抵抗体202に流れた電流値に応じて、当該抵抗体202の抵抗値を算出する。また、抵抗算出部250は、1つの抵抗体202に供給した電流値と、当該抵抗体202で生じた電圧降下に応じて、当該抵抗体202の抵抗値を算出してもよい。 The resistance calculator 250 calculates the resistance value of each of the resistors 202 based on the output signal. The resistance calculator 250 calculates the resistance value of the resistor 202 according to the voltage value supplied to one resistor 202 and the current value flowing in the resistor 202, for example. Further, the resistance calculation unit 250 may calculate the resistance value of the resistor 202 according to the current value supplied to one resistor 202 and the voltage drop generated in the resistor 202.
 制御部260は、供給部220、取得部230、記憶部240、および抵抗算出部250の動作を制御する。制御部260は、例えば、供給部220が電気信号を複数の抵抗体202にそれぞれ供給するタイミング、取得部230が複数の抵抗体202から出力信号をそれぞれ取得するタイミング、抵抗算出部250が抵抗値を算出するタイミング等を制御する。制御部260は、一例として、CPU(Central Processing Unit)である。 The control unit 260 controls the operations of the supply unit 220, the acquisition unit 230, the storage unit 240, and the resistance calculation unit 250. The control unit 260 may be configured, for example, such that the supply unit 220 supplies the electrical signals to the plurality of resistors 202, the acquisition unit 230 acquires the output signals from the plurality of resistors 202, and the resistance calculation unit 250 sets the resistance value. And the timing for calculating The control unit 260 is, for example, a CPU (Central Processing Unit).
 以上のように、本実施形態に係る測定部200は、帯状構造体120に接続され、帯状構造体120に設けられた複数の抵抗体202に電圧または電流を供給して抵抗値を検出するように機能する。なお、図3において、測定部200および帯状構造体120は、有線で接続される例を説明したが、これに限定されることはない。測定部200および帯状構造体120は、無線で接続されてもよい。 As described above, the measurement unit 200 according to the present embodiment is connected to the strip-shaped structure 120 and supplies a voltage or current to the plurality of resistors 202 provided in the strip-shaped structure 120 to detect the resistance value. To function. In addition, although the measurement part 200 and the strip|belt-shaped structure 120 demonstrated the example connected by wire in FIG. 3, it is not restricted to this. The measurement unit 200 and the strip-shaped structure 120 may be wirelessly connected.
 この場合、接続部208は、測定部200と無線で接続するインターフェースとして機能する。接続部208は、例えば、電源等を有し、複数の配線207を介して複数の抵抗体202に略一定の電流(または電圧)をそれぞれ供給し、当該複数の抵抗体202における電圧降下(または電流)の値を測定部200に送信可能に構成されていることが望ましい。即ち、接続部208側に供給部220および取得部230の少なくとも一部が設けられてよい。 In this case, the connection unit 208 functions as an interface for wirelessly connecting to the measurement unit 200. The connection unit 208 has, for example, a power supply, supplies a substantially constant current (or voltage) to each of the plurality of resistors 202 via the plurality of wirings 207, and causes a voltage drop (or voltage drop) in the plurality of resistors 202 (or It is desirable that the value of (current) can be transmitted to the measurement unit 200. That is, at least a part of the supply unit 220 and the acquisition unit 230 may be provided on the connection unit 208 side.
 以上のように、本実施形態に係る帯状構造体120は、布204に抵抗材料が直接付着された抵抗体202を有する。このような抵抗体202は、布204の予め定められた位置に容易に形成することができる。また、帯状構造体120が折り曲げられても、抵抗体202に破壊、破損、電気的な接続不良、継時的な劣化等が発生することを防止することができる。このような抵抗体202と電気的に接続される配線207について次に説明する。 As described above, the strip-shaped structure 120 according to the present embodiment has the resistor 202 in which the resistance material is directly attached to the cloth 204. Such a resistor 202 can be easily formed at a predetermined position on the cloth 204. Further, even if the strip-shaped structure 120 is bent, it is possible to prevent the resistor 202 from being broken, damaged, poorly connected electrically, or deteriorated over time. The wiring 207 electrically connected to the resistor 202 will be described below.
<配線207の構成例>
 図4は、本実施形態に係る配線207の構成例を示す。図4は、配線207が導電性を有する繊維である例を示す。配線207は、非導電性繊維332と、導電性材料334とを含む。非導電性繊維332は、例えば、ポリマー等である。これに代えて、非導電性繊維332は、ゴム等の弾性体でもよい。また、導電性材料334は、導電フィルム等である。これに代えて、導電性材料334は、導電性の材料を含む導電インク等が付着されて形成されていてもよい。
<Example of configuration of wiring 207>
FIG. 4 shows a configuration example of the wiring 207 according to this embodiment. FIG. 4 shows an example in which the wiring 207 is a conductive fiber. The wiring 207 includes a non-conductive fiber 332 and a conductive material 334. The non-conductive fiber 332 is, for example, a polymer or the like. Alternatively, the non-conductive fiber 332 may be an elastic body such as rubber. The conductive material 334 is a conductive film or the like. Alternatively, the conductive material 334 may be formed by adhering a conductive ink or the like containing a conductive material.
 以上のように、配線207は、導電性材料334が付着された繊維として形成されているので、布204の予め定められた位置に容易に配置することができる。配線207は、糸状の繊維として形成できるので、布204において、微細な回路配線として実装することができる。また、このような配線207は、例えば、布204に織り込むことができる。これにより、配線207は、布204に形成された複数の抵抗体202にそれぞれ接続するように、布204に容易に形成することができる。また、配線207は、折り曲げられても、破壊等が発生することを防止できる。 As described above, since the wiring 207 is formed as a fiber to which the conductive material 334 is attached, it can be easily arranged at a predetermined position on the cloth 204. Since the wiring 207 can be formed as a thread-like fiber, it can be mounted on the cloth 204 as a fine circuit wiring. Further, such wiring 207 can be woven into the cloth 204, for example. Accordingly, the wiring 207 can be easily formed on the cloth 204 so as to be connected to the plurality of resistors 202 formed on the cloth 204, respectively. Further, the wiring 207 can be prevented from being broken or the like even if it is bent.
 以上のように、複数の抵抗体202が布204に直接設けられ、配線207が布204に織り込まれていることにより、帯状構造体120を簡易に構成することができる。即ち、本実施形態の帯状構造体120によれば、複数の抵抗体202および各抵抗体202に接続される配線207のレイアウトの自由度を向上できる。 As described above, since the plurality of resistors 202 are directly provided on the cloth 204 and the wiring 207 is woven into the cloth 204, the belt-shaped structure 120 can be easily configured. That is, according to the strip-shaped structure 120 of the present embodiment, the degree of freedom in layout of the plurality of resistors 202 and the wiring 207 connected to each resistor 202 can be improved.
<他の電子部品の構成例>
 以上の本実施形態の帯状構造体120において、複数の抵抗体202は、布204に抵抗材料が付着されて形成される例を説明したが、これに限定されることはない。これに代えて、複数の抵抗体202の少なくとも一部は、例えば、抵抗材料が繊維に付着されて形成されていてもよい。この場合、抵抗体202は、図4に示す配線207と同様に、非導電性繊維332に抵抗材料が付着されて形成されていてもよい。また、このように形成された抵抗体202は、布204を構成する他の繊維とともに布204に織り込まれていてもよい。
<Structural example of other electronic components>
In the above-described strip-shaped structure 120 of the present embodiment, the example in which the plurality of resistors 202 are formed by attaching the resistance material to the cloth 204 has been described, but the present invention is not limited to this. Alternatively, at least a part of the plurality of resistors 202 may be formed by, for example, attaching a resistance material to fibers. In this case, the resistor 202 may be formed by attaching a resistance material to the non-conductive fiber 332, similarly to the wiring 207 shown in FIG. Further, the resistor 202 thus formed may be woven into the cloth 204 together with other fibers constituting the cloth 204.
 以上の本実施形態の帯状構造体120において、繊維状の抵抗体202および配線207が布204に設けられる例を説明したが、これに限定されることはない。例えば、帯状構造体120が雑音除去フィルタを有する場合、測定部200と無線通信する場合等、抵抗以外の電子部品が当該帯状構造体120に形成されることがある。この場合においても、抵抗以外の電子部品が繊維等を含んで形成されてよい。ここでは、抵抗以外の電子部品として、容量素子およびインダクタンス素子の例を説明する。 In the above-described strip-shaped structure 120 of the present embodiment, an example in which the fibrous resistor 202 and the wiring 207 are provided on the cloth 204 has been described, but the present invention is not limited to this. For example, when the strip-shaped structure 120 has a noise removal filter, when performing wireless communication with the measurement unit 200, electronic components other than resistors may be formed on the strip-shaped structure 120. Also in this case, the electronic component other than the resistor may be formed to include fibers or the like. Here, an example of a capacitance element and an inductance element will be described as electronic components other than resistors.
 図5は、本実施形態に係る容量素子212の構成例を示す。容量素子212は、非導電性繊維332と、導電性材料334とを含む。容量素子212は、非導電性繊維332における複数個所に導電性材料334が付着された、容量性を有する繊維として形成されている。容量素子212は、布204に織り込まれて形成されてもよい。なお、容量素子212は、1または複数の非導電性繊維332と、1または複数の導電性の繊維とを組み合わせて形成されていてもよい。これに代えて、導電性材料334は、非導電性繊維332の断面方向に挿入されていてもよい。これにより、例えば、2つの円形電極を有する容量素子を構成できる。また、非導電性繊維332は、高誘電率素材を含んでもよい。 FIG. 5 shows a configuration example of the capacitive element 212 according to this embodiment. The capacitor 212 includes a non-conductive fiber 332 and a conductive material 334. The capacitive element 212 is formed as a capacitive fiber in which a conductive material 334 is attached to a plurality of locations on the non-conductive fiber 332. The capacitor 212 may be formed by being woven into the cloth 204. Note that the capacitor 212 may be formed by combining one or a plurality of non-conductive fibers 332 and one or a plurality of conductive fibers. Alternatively, the conductive material 334 may be inserted in the cross-sectional direction of the non-conductive fiber 332. Thereby, for example, a capacitive element having two circular electrodes can be configured. In addition, the non-conductive fiber 332 may include a high dielectric constant material.
 図6は、本実施形態に係る容量素子212の変形例を示す。変形例の容量素子212は、複数の非導電性繊維332と、複数の導電性繊維336とを有する。導電性繊維336は、非導電性繊維332および導電性材料334を含む。導電性繊維336は、配線207と同様の構成を有してもよい。このように、容量素子212は、容量の定数等に応じて、1または複数の繊維によって構成されてもよい。また、容量素子212は、容量の定数等に応じた長さを有してもよい。 FIG. 6 shows a modification of the capacitive element 212 according to this embodiment. The capacitance element 212 of the modified example includes a plurality of non-conductive fibers 332 and a plurality of conductive fibers 336. The conductive fibers 336 include non-conductive fibers 332 and conductive material 334. The conductive fiber 336 may have the same structure as the wiring 207. As described above, the capacitive element 212 may be configured by one or a plurality of fibers depending on the capacitance constant and the like. Further, the capacitor 212 may have a length according to a capacitance constant or the like.
 図7は、本実施形態に係るインダクタンス素子214の構成例を示す。インダクタンス素子214は、非導電性繊維332と、導電性繊維336とを含む。インダクタンス素子214は、導電性繊維336が絶縁性材料である非導電性繊維332に巻き付けられて形成されている。インダクタンス素子214は、布204に織り込まれて形成されてもよい。インダクタンス素子214の定数は、導電性繊維336の巻き数、直径、長さ等に応じて定めることができる。非導電性繊維332は、高透磁率の材料を含んでもよい。 FIG. 7 shows a configuration example of the inductance element 214 according to this embodiment. The inductance element 214 includes a non-conductive fiber 332 and a conductive fiber 336. The inductance element 214 is formed by winding a conductive fiber 336 around a non-conductive fiber 332 that is an insulating material. The inductance element 214 may be formed by being woven into the cloth 204. The constant of the inductance element 214 can be determined according to the number of turns, the diameter, the length, etc. of the conductive fiber 336. The non-conductive fiber 332 may include a material having high magnetic permeability.
 以上の本実施形態に係るシートベルト100において、帯状構造体120がベルト部110に取り付けられる例を説明した。このように、測定部200と接続する機能を有さない従来の座席20のシートベルト100に、当該帯状構造体120を装着することにより、当該座席20に座るユーザの状態を測定部200が検出可能とすることができる。なお、帯状構造体120がユーザの身体の変動を検出できれば、このような構成に限定されることはない。帯状構造体120は、座席20に設けられているシートベルト100に含まれていてもよい。 In the seat belt 100 according to the present embodiment described above, the example in which the belt-shaped structure 120 is attached to the belt portion 110 has been described. As described above, by mounting the belt-shaped structure 120 on the seat belt 100 of the conventional seat 20 that does not have a function of connecting to the measurement unit 200, the measurement unit 200 detects the state of the user sitting on the seat 20. It can be possible. Note that the strip-shaped structure 120 is not limited to such a configuration as long as it can detect a change in the body of the user. The belt-shaped structure 120 may be included in the seat belt 100 provided on the seat 20.
 帯状構造体120は、例えば、ベルト部110の一部として形成されてもよい。この場合、帯状構造体120は、ベルト部110に固定されてもよい。これに代えて、帯状構造体120を構成する部材がベルト部110に固定されてもよい。また、複数の抵抗体202および配線207等が、ベルト部110に設けられてもよい。この場合、シートベルト100の少なくとも一部が、抵抗体202と、布204と、配線部206とを備える。 The belt-shaped structure 120 may be formed as a part of the belt unit 110, for example. In this case, the strip-shaped structure 120 may be fixed to the belt portion 110. Instead of this, the members forming the belt-shaped structure 120 may be fixed to the belt portion 110. Further, the plurality of resistors 202, the wiring 207, and the like may be provided on the belt unit 110. In this case, at least a part of the seat belt 100 includes the resistor 202, the cloth 204, and the wiring portion 206.
 例えば、布204は、ベルト部110の一部である。この場合、複数の抵抗体202および配線部206は、ベルト部110に直接設けられてもよい。複数の抵抗体202および配線部206は、例えば、ベルト部110に織り込まれて形成されてもよい。このように、センサとして機能する複数の抵抗体202がベルト部110に実装されることで、ユーザの身体の変動を検出できる位置に、当該複数の抵抗体202を容易に配置できる。 For example, the cloth 204 is a part of the belt unit 110. In this case, the plurality of resistors 202 and the wiring section 206 may be directly provided on the belt section 110. The plurality of resistors 202 and the wiring portion 206 may be formed by being woven into the belt portion 110, for example. As described above, by mounting the plurality of resistors 202 functioning as sensors on the belt portion 110, the plurality of resistors 202 can be easily arranged at the position where the fluctuation of the user's body can be detected.
 また、以上の本実施形態に係るシートベルト100において、複数の抵抗体202のそれぞれが別個独立の部材である例を説明したが、これに限定されることはない。抵抗体202のそれぞれは、1つまたは複数の集合抵抗体の一部であってもよい。例えば、複数の抵抗体202は、帯状に形成された帯状抵抗体が有する複数の領域に含まれてもよい。 Further, in the seat belt 100 according to the present embodiment described above, an example in which each of the plurality of resistors 202 is a separate and independent member has been described, but the present invention is not limited to this. Each of the resistors 202 may be part of one or more collective resistors. For example, the plurality of resistors 202 may be included in the plurality of regions of the belt-shaped resistors formed in the belt shape.
<帯状抵抗体210の構成例>
 図8は、本実施形態に係る帯状構造体120の変形例を示す。図8に示す変形例の帯状構造体120において、図3に示された帯状構造体120の動作と略同一のものには同一の符号を付け、説明を省略する。変形例の帯状構造体120は、抵抗体202が帯状の形状を有する。例えば、複数の抵抗体202は、1つの帯状抵抗体210を形成する。
<Structural Example of Strip Resistor 210>
FIG. 8 shows a modified example of the strip-shaped structure 120 according to this embodiment. In the strip-shaped structure 120 of the modified example shown in FIG. 8, the substantially same operations as those of the strip-shaped structure 120 shown in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted. In the strip-shaped structure 120 of the modified example, the resistor 202 has a strip-like shape. For example, the plurality of resistors 202 form one strip resistor 210.
 帯状抵抗体210は、例えば、当該帯状抵抗体210の長手方向において、それぞれの抵抗体202を分割する位置に配線207がそれぞれ接続される。即ち、配線部206は、帯状抵抗体210の長手方向において複数に分割された領域毎に抵抗値を測定するための配線207を有する。 In the strip resistor 210, for example, the wiring 207 is connected to each of the positions where the resistors 202 are divided in the longitudinal direction of the strip resistor 210. That is, the wiring portion 206 has the wiring 207 for measuring the resistance value in each of the regions divided into a plurality in the longitudinal direction of the strip resistor 210.
 これにより、抵抗算出部250は、帯状抵抗体210を複数に分割した領域毎に、抵抗値を算出することができる。即ち、複数の抵抗体202を対応する別個独立の素子とすることなく、例えば、1つの帯状抵抗体210として形成できるので、帯状構造体120をより簡便な構成にすることができる。また、このような帯状抵抗体210および配線207を、ベルト部110に直接設けてもよい。 With this, the resistance calculation unit 250 can calculate the resistance value for each of the regions obtained by dividing the strip-shaped resistor 210 into a plurality of regions. That is, since the plurality of resistors 202 can be formed as, for example, one strip resistor 210 without forming corresponding separate and independent elements, the strip structure 120 can have a simpler configuration. Further, the belt-shaped resistor 210 and the wiring 207 may be directly provided on the belt portion 110.
 以上の本実施形態に係る帯状構造体120を別個独立のモジュールとして形成し、当該帯状構造体120と供給部220および取得部230とを有線で接続することにより、当該帯状構造体120は、電源回路を含まない簡便なモジュールとすることができる。また、複数の抵抗体202および配線207を、ベルト部110に直接設けることにより、電源回路を含まない簡便なシートベルト100とすることができる。 By forming the strip-shaped structure 120 according to the present embodiment as a separate and independent module and connecting the strip-shaped structure 120 to the supply unit 220 and the acquisition unit 230 by wire, the strip-shaped structure 120 can be used as a power source. It can be a simple module that does not include a circuit. In addition, by directly providing the plurality of resistors 202 and the wiring 207 on the belt portion 110, it is possible to provide a simple seat belt 100 that does not include a power supply circuit.
 このように、帯状構造体120を別個独立のモジュールとした場合、また、複数の抵抗体202および配線207をベルト部110に直接設けた場合、供給部220、取得部230、記憶部240、抵抗算出部250、および制御部260等は、シートベルト100とは異なる位置に設けられてよい。このような測定部200の少なくとも一部は、例えば、座席20の下部等に一体となって収容されていることが望ましい。また、図1で説明した状態特定装置10を構成する場合、供給部220、取得部230、記憶部240、抵抗算出部250、および制御部260のうち少なくとも一部は、算出部310および特定部320のうち少なくとも一部と一体に形成されてもよい。 Thus, when the strip-shaped structure 120 is a separate and independent module, or when the plurality of resistors 202 and the wiring 207 are directly provided on the belt unit 110, the supply unit 220, the acquisition unit 230, the storage unit 240, the resistance The calculation unit 250, the control unit 260, and the like may be provided at positions different from the seat belt 100. It is desirable that at least a part of the measuring unit 200 as described above is integrally housed in, for example, the lower portion of the seat 20. Further, in the case of configuring the state identifying device 10 described in FIG. 1, at least a part of the supply unit 220, the acquisition unit 230, the storage unit 240, the resistance calculation unit 250, and the control unit 260 is the calculation unit 310 and the identification unit. It may be formed integrally with at least a part of 320.
 以上の本実施形態に係る状態特定装置10において、センサが、布の曲率に応じて抵抗値が変化する抵抗体202である例について説明したが、これに限定されることはない。センサは、布に設けることができ、当該布の曲率に応じて電気的特性が変化するものであればよい。また、センサは、シートベルト100を装着するユーザの呼吸および/または心拍に応じて電気的特性が変化するセンサであってもよい。 In the above-described state specifying device 10 according to the present embodiment, the example in which the sensor is the resistor 202 whose resistance value changes according to the curvature of the cloth has been described, but the present invention is not limited to this. The sensor can be provided on the cloth, and any sensor whose electric characteristics change depending on the curvature of the cloth may be used. Further, the sensor may be a sensor whose electrical characteristics change according to the breathing and/or heartbeat of the user wearing the seat belt 100.
 図9は、本実施形態に係るセンサEの他の一例を示す。図9に示すセンサEは、2つの電極を有し、ユーザの呼吸および心拍といった動きに応じて電極間の電気的特性が変化する電極対の例を示す。センサEは、帯状構造体120に設けられている正電極32、負電極34、および配線36を有する。図9は帯状構造体120の平面図を示す。正電極32および負電極34は、帯状構造体120に導電性繊維または抵抗体等を有する繊維が編み込み、または織り込みによって形成されている。これに代えて、正電極32および負電極34は、帯状構造体120に導電性インク等が塗布されて形成されていてもよい。また、正電極32および負電極34は、シートベルト100に直接形成されていてもよい。 FIG. 9 shows another example of the sensor E according to this embodiment. The sensor E shown in FIG. 9 has two electrodes, and shows an example of an electrode pair in which the electrical characteristics between the electrodes change according to the user's movements such as respiration and heartbeat. The sensor E has a positive electrode 32, a negative electrode 34, and a wiring 36 provided on the strip-shaped structure 120. FIG. 9 shows a plan view of the strip-shaped structure 120. The positive electrode 32 and the negative electrode 34 are formed by weaving or weaving a conductive fiber or a fiber having a resistor or the like in the strip-shaped structure 120. Alternatively, the positive electrode 32 and the negative electrode 34 may be formed by applying conductive ink or the like to the strip-shaped structure 120. Further, the positive electrode 32 and the negative electrode 34 may be directly formed on the seat belt 100.
 例えば、運転手がこのようなセンサEが設けられたシートベルト100を装着した場合、当該運転手の呼吸および心臓の鼓動によって、運転手の胸が変位する。また、心拍による血流のインピーダンス変化、または呼吸による肺のインピーダンス変化に同期して、身体内を流れる電流の大きさが変化する。その結果、運転手の呼吸および心臓の鼓動に応じて、正電極32と負電極34との間に生じた電界が変化する。電界が変化すると、正電極32と負電極34との間の電位差が変化する。 For example, when the driver wears the seat belt 100 provided with such a sensor E, the driver's chest is displaced by the driver's breathing and heartbeat. Further, the magnitude of the current flowing through the body changes in synchronization with the impedance change of the blood flow due to the heartbeat or the impedance change of the lung due to the respiration. As a result, the electric field generated between the positive electrode 32 and the negative electrode 34 changes according to the breathing of the driver and the beating of the heart. When the electric field changes, the potential difference between the positive electrode 32 and the negative electrode 34 changes.
 そこで、測定部200は、正電極32と負電極34との間の電位差の変化を測定する。そして算出部310は、当該電位差の変化に基づいて、シートベルト100の曲率を算出し、特定部320が運転手の状態を特定する。なお、この場合、算出部310によるシートベルト100の曲率の算出を省略し、特定部320が、当該電位差の変化に基づいて、運転手の呼吸および心臓の鼓動の状態を特定してもよい。このような正電極32および負電極34は、電極間の電位差の変化を検出するためのセンサなので、当該座席20に座るユーザの体に接しなくてもよい。 Therefore, the measuring unit 200 measures the change in the potential difference between the positive electrode 32 and the negative electrode 34. Then, the calculation unit 310 calculates the curvature of the seat belt 100 based on the change in the potential difference, and the specifying unit 320 specifies the driver's state. In this case, the calculation of the curvature of the seat belt 100 by the calculation unit 310 may be omitted, and the specification unit 320 may specify the breathing state of the driver and the beating state of the heart based on the change in the potential difference. Since the positive electrode 32 and the negative electrode 34 as described above are sensors for detecting a change in the potential difference between the electrodes, they do not have to be in contact with the body of the user sitting on the seat 20.
 ここで、正電極32は、負電極34と配線36が設けられている位置を除く領域において負電極34を包囲している。配線36が設けられている位置には正電極32が設けられておらず、配線36が正電極32と重ならない。配線36と正電極32とが重なっていると、配線36と正電極32とが重なっている領域で電界が生じることでエネルギーの損失が発生する。正電極32および負電極34が図9に示すように構成されていることで、エネルギーの損失を抑制できるので、正電極32および負電極34との間の電位差の測定精度を向上させることができる。 Here, the positive electrode 32 surrounds the negative electrode 34 in a region other than the position where the negative electrode 34 and the wiring 36 are provided. The positive electrode 32 is not provided at the position where the wiring 36 is provided, and the wiring 36 does not overlap the positive electrode 32. When the wiring 36 and the positive electrode 32 overlap each other, an electric field is generated in a region where the wiring 36 and the positive electrode 32 overlap each other, which causes energy loss. Since the positive electrode 32 and the negative electrode 34 are configured as shown in FIG. 9, energy loss can be suppressed, so that the measurement accuracy of the potential difference between the positive electrode 32 and the negative electrode 34 can be improved. ..
 なお、図9に示すセンサEの正電極32および負電極34の形状は一例であり、これに限定されることはない。正電極32および負電極34は、シートベルト100を装着したユーザの呼吸および心臓の鼓動に応じた電界の変化が検出できる程度の電解強度を、当該ユーザに対して印加できればよい。正電極32および負電極34は、例えば、同一の形状でもよい。正電極32および負電極34は、n角形(nは3以上)、台形、円形、楕円形等の形状を有してよい。また、正電極32および負電極34は、帯状構造体120またはシートベルト100の長手方向および/または短手方向に配列されてよい。 The shapes of the positive electrode 32 and the negative electrode 34 of the sensor E shown in FIG. 9 are examples, and the shapes are not limited thereto. The positive electrode 32 and the negative electrode 34 need only be capable of applying to the user wearing the seat belt 100 an electrolytic strength that is sufficient to detect changes in the electric field according to the breathing and the heartbeat of the user. The positive electrode 32 and the negative electrode 34 may have the same shape, for example. The positive electrode 32 and the negative electrode 34 may have a shape such as an n-gon (n is 3 or more), a trapezoid, a circle, an ellipse, or the like. Further, the positive electrode 32 and the negative electrode 34 may be arranged in the longitudinal direction and/or the lateral direction of the belt-shaped structure 120 or the seat belt 100.
 以上のように、本実施形態に係る状態特定装置10は、布に設けられているセンサの電気的特性の変化に基づき、シートベルトを装着した人の状態を特定することを説明した。ここで、布に設けられているセンサは、複数種類のセンサを含んでよい。この場合、布は、電気的特性が異なる複数種類のセンサが設けられていることが望ましい。これにより、ユーザの1つの動作に対して、複数種類の電気的な特性を取得することができ、これらを解析することにより、感度、ダイナミックレンジ、および精度等を向上させることができる。 As described above, the state identification device 10 according to the present embodiment has described that the state of the person wearing the seat belt is identified based on the change in the electrical characteristics of the sensor provided on the cloth. Here, the sensor provided on the cloth may include a plurality of types of sensors. In this case, it is desirable that the cloth be provided with a plurality of types of sensors having different electrical characteristics. Thereby, a plurality of types of electrical characteristics can be acquired for one operation of the user, and by analyzing these, it is possible to improve sensitivity, dynamic range, accuracy, and the like.
 例えば、センサは、抵抗値の異なる複数の抵抗体202を含んでよい。また、センサは、異なる形状の電極を有する図9で説明したセンサEを含んでもよい。また、センサは、同一または異なる電気的な特性の抵抗体202と、同一または異なる電気的な特性のセンサEを含んでもよい。この場合、例えば、ユーザの姿勢等の物理的な変位を抵抗体202が検出し、ユーザの呼吸、心拍等の体内の電界の変化をセンサEが検出して、ユーザの異なる動作をそれぞれ検出することができる。  For example, the sensor may include a plurality of resistors 202 having different resistance values. Further, the sensor may include the sensor E described in FIG. 9 having electrodes having different shapes. Further, the sensor may include a resistor 202 having the same or different electric characteristics and a sensor E having the same or different electric characteristics. In this case, for example, the resistor 202 detects a physical displacement such as the posture of the user, and the sensor E detects changes in the electric field in the body such as the breathing and the heartbeat of the user to detect different motions of the user. be able to. ‥
 以上の本実施形態に係る状態特定装置10の少なくとも一部は、一例として、コンピュータ等である。コンピュータは、例えば、プログラム等を実行することにより、本実施形態に係る取得部230、抵抗算出部250、制御部260、算出部310、および特定部320のうちの少なくとも一部として機能する。 At least a part of the state identification device 10 according to the present embodiment described above is, for example, a computer or the like. The computer functions as at least a part of the acquisition unit 230, the resistance calculation unit 250, the control unit 260, the calculation unit 310, and the identification unit 320 according to the present embodiment, for example, by executing a program or the like.
 コンピュータは、CPU等のプロセッサを備え、記憶部240に記憶されたプログラムを実行することによって、取得部230、抵抗算出部250、制御部260、算出部310、および特定部320の少なくとも一部として機能する。コンピュータは、GPU(Graphics Processing Unit)等を更に備えてもよい。 The computer includes a processor such as a CPU, and executes a program stored in the storage unit 240 to serve as at least a part of the acquisition unit 230, the resistance calculation unit 250, the control unit 260, the calculation unit 310, and the specification unit 320. Function. The computer may further include a GPU (Graphics Processing Unit) and the like.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形および変更が可能である。例えば、装置の分散・統合の具体的な実施の形態は、以上の実施の形態に限られず、その全部又は一部について、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を合わせ持つ。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments, and various modifications and changes are possible within the scope of the gist thereof. is there. For example, the specific embodiment of device distribution/integration is not limited to the above embodiment, and all or part of the device may be functionally or physically distributed/integrated in arbitrary units. You can Further, a new embodiment that occurs due to an arbitrary combination of a plurality of embodiments is also included in the embodiment of the present invention. The effect of the new embodiment produced by the combination also has the effect of the original embodiment.
 例えば、以上の説明においては、シートベルト100に帯状構造体120を設けてユーザの身体の状態を特定する場合を例示したが、帯状構造体120の構成および用途はこれに限らない。本発明は、人体に装着可能な任意の態様の帯状構造体120に適用することができる。また、本発明は、布等の折り曲げ可能な部位に電子部品を実装して動作させるモジュール等に適用することもできる。 For example, in the above description, the case where the belt-shaped structure 120 is provided on the seat belt 100 to specify the physical condition of the user is illustrated, but the configuration and use of the belt-shaped structure 120 are not limited to this. INDUSTRIAL APPLICABILITY The present invention can be applied to the strip-shaped structure 120 in any form that can be worn on the human body. Further, the present invention can be applied to a module or the like in which an electronic component is mounted and operated on a bendable portion of cloth or the like.
10 状態特定装置
20 座席
32 正電極
34 負電極
36 配線
100 シートベルト
110 ベルト部
120 帯状構造体
130 装着部
200 測定部
202 抵抗体
204 布
206 配線部
207 配線
208 接続部
210 帯状抵抗体
212 容量素子
214 インダクタンス素子
220 供給部
230 取得部
240 記憶部
250 抵抗算出部
260 制御部
310 算出部
320 特定部
332 非導電性繊維
334 導電性材料
336 導電性繊維
10 State Identification Device 20 Seat 32 Positive Electrode 34 Negative Electrode 36 Wiring 100 Seat Belt 110 Belt 120 Belt-shaped Structure 130 Mounting Part 200 Measuring Part 202 Resistor 204 Cloth 206 Wiring 207 Wiring 208 Connection 210 Band-shaped Resistor 212 Capacitive Element 214 inductance element 220 supply section 230 acquisition section 240 storage section 250 resistance calculation section 260 control section 310 calculation section 320 identification section 332 non-conductive fiber 334 conductive material 336 conductive fiber

Claims (16)

  1.  座席に設けられているシートベルトであって、
     前記シートベルトの少なくとも一部が、
     帯状の布と、
     前記布に設けられているセンサと、
     前記センサの少なくとも一部に接続された導電性の配線を含む配線部と
     を備える
     シートベルト。
    A seat belt provided on the seat,
    At least a part of the seat belt,
    A strip of cloth,
    A sensor provided on the cloth,
    A wiring portion including a conductive wiring connected to at least a part of the sensor.
  2.  前記センサは、前記布の曲率に応じてインピーダンスが変化する抵抗体を有する、請求項1に記載のシートベルト。 The seat belt according to claim 1, wherein the sensor has a resistor whose impedance changes according to the curvature of the cloth.
  3.  前記抵抗体は、帯状の形状を有する、請求項2に記載のシートベルト。 The seat belt according to claim 2, wherein the resistor has a strip shape.
  4.  前記配線部は、前記抵抗体の長手方向において複数に分割された領域毎にインピーダンスを測定するための前記配線を有する、請求項3に記載のシートベルト。 The seat belt according to claim 3, wherein the wiring portion has the wiring for measuring impedance in each of a plurality of regions divided in the longitudinal direction of the resistor.
  5.  前記抵抗体は、前記布に複数設けられている、請求項2に記載のシートベルト。 The seat belt according to claim 2, wherein a plurality of the resistors are provided on the cloth.
  6.  前記配線部は、複数の前記抵抗体のインピーダンスをそれぞれ測定するための前記配線を有する、請求項5に記載のシートベルト。 The seat belt according to claim 5, wherein the wiring portion has the wiring for measuring impedance of each of the plurality of resistors.
  7.  前記抵抗体は、抵抗材料が前記布に付着されている、請求項2ら6のいずれか一項に記載のシートベルト。 The seat belt according to any one of claims 2 to 6, wherein the resistor has a resistance material attached to the cloth.
  8.  前記抵抗体は、抵抗材料が付着された繊維が前記布に織り込まれている、請求項2から6のいずれか一項に記載のシートベルト。 The seat belt according to any one of claims 2 to 6, wherein the resistor has fibers to which a resistance material is attached woven into the cloth.
  9.  前記配線部は、導電性材料が付着され、前記布に織り込まれている繊維を有する、請求項1から8のいずれか一項に記載のシートベルト。 The seat belt according to any one of claims 1 to 8, wherein the wiring portion has fibers to which a conductive material is attached and which is woven into the cloth.
  10.  前記布、前記センサ、および前記配線部は、一体の帯状構造体に形成されている、請求項1から9のいずれか一項に記載のシートベルト。 The seat belt according to any one of claims 1 to 9, wherein the cloth, the sensor, and the wiring portion are formed into an integral band-shaped structure.
  11.  前記帯状構造体は、非導電性繊維における複数個所に導電性材料が付着された、容量性を有する繊維が、前記布に織り込まれて形成されている、
     請求項10に記載のシートベルト。
    The strip-shaped structure is formed by weaving a capacitive fiber, in which a conductive material is attached to a plurality of non-conductive fibers, and having a capacitive property.
    The seat belt according to claim 10.
  12.  前記帯状構造体は、導電性繊維が絶縁性材料に巻き付けられた繊維が前記布に織り込まれて形成されている、
     請求項10または11に記載のシートベルト。
    The band-shaped structure is formed by weaving fibers in which conductive fibers are wound around an insulating material and woven into the cloth.
    The seat belt according to claim 10.
  13.  前記帯状構造体は、前記シートベルトに装着するための装着部を更に備える、請求項10から12のいずれか一項に記載のシートベルト。 The seat belt according to any one of claims 10 to 12, wherein the belt-shaped structure further includes a mounting portion for mounting on the seat belt.
  14.  前記センサは、前記シートベルトを装着するユーザの動きに応じて電気的特性が変化する電極対を有する、請求項1から12のいずれか一項に記載のシートベルト。 The seat belt according to any one of claims 1 to 12, wherein the sensor has an electrode pair whose electrical characteristics change according to a movement of a user wearing the seat belt.
  15.  前記布は、電気的特性が異なる複数種類の前記センサが設けられている、請求項1から14のいずれか一項に記載のシートベルト。 The seat belt according to any one of claims 1 to 14, wherein the cloth is provided with a plurality of types of sensors having different electrical characteristics.
  16.  請求項1から15のいずれか一項に記載のシートベルトと、
     前記センサの電気的特性を測定する測定部と、
     前記測定部が測定した電気的特性に基づき、前記シートベルトの曲率を算出する算出部と、
     前記シートベルトの曲率の時間変化に基づき、前記シートベルトを装着した人の状態を特定する特定部と
     を備える、状態特定装置。
    A seat belt according to any one of claims 1 to 15,
    A measuring unit for measuring the electrical characteristics of the sensor,
    Based on the electrical characteristics measured by the measuring unit, a calculating unit that calculates the curvature of the seat belt,
    A state identifying device that identifies the state of the person wearing the seat belt based on the change over time of the curvature of the seat belt.
PCT/JP2019/001100 2019-01-16 2019-01-16 Seat belt and state identifying device WO2020148828A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/001100 WO2020148828A1 (en) 2019-01-16 2019-01-16 Seat belt and state identifying device
JP2020566017A JPWO2020148828A1 (en) 2019-01-16 2019-01-16 Seat belts and condition identification devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/001100 WO2020148828A1 (en) 2019-01-16 2019-01-16 Seat belt and state identifying device

Publications (1)

Publication Number Publication Date
WO2020148828A1 true WO2020148828A1 (en) 2020-07-23

Family

ID=71614348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001100 WO2020148828A1 (en) 2019-01-16 2019-01-16 Seat belt and state identifying device

Country Status (2)

Country Link
JP (1) JPWO2020148828A1 (en)
WO (1) WO2020148828A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020148827A1 (en) * 2019-01-16 2021-12-02 Posh Wellness Laboratory株式会社 Detection device, state identification device, and measurement method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095408A (en) * 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd Biological condition judgement apparatus and supporting system
US20050231207A1 (en) * 2004-03-10 2005-10-20 Dan Goldwater Electronic elongation-sensing rope
JP2008132010A (en) * 2006-11-27 2008-06-12 Fujitsu Ltd Sensing unit and heartbeat detector
JP2011084200A (en) * 2009-10-16 2011-04-28 Takata Corp Buckle device for air belt, and air belt device
JP2017019342A (en) * 2015-07-08 2017-01-26 株式会社豊田中央研究所 Seat belt, sensor unit, and occupant protection device
JP2017136304A (en) * 2016-02-05 2017-08-10 学校法人北里研究所 Driver monitoring device, monitoring device, monitoring method, program, and seat belt
US20180162319A1 (en) * 2016-12-14 2018-06-14 Paragon Ag Electrostatic sensor system
JP2018173305A (en) * 2017-03-31 2018-11-08 ロボセンサー技研株式会社 Tactile sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037855A1 (en) * 2016-08-25 2018-03-01 グンゼ株式会社 Wearable device for detection of human body motion and human body motion monitoring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095408A (en) * 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd Biological condition judgement apparatus and supporting system
US20050231207A1 (en) * 2004-03-10 2005-10-20 Dan Goldwater Electronic elongation-sensing rope
JP2008132010A (en) * 2006-11-27 2008-06-12 Fujitsu Ltd Sensing unit and heartbeat detector
JP2011084200A (en) * 2009-10-16 2011-04-28 Takata Corp Buckle device for air belt, and air belt device
JP2017019342A (en) * 2015-07-08 2017-01-26 株式会社豊田中央研究所 Seat belt, sensor unit, and occupant protection device
JP2017136304A (en) * 2016-02-05 2017-08-10 学校法人北里研究所 Driver monitoring device, monitoring device, monitoring method, program, and seat belt
US20180162319A1 (en) * 2016-12-14 2018-06-14 Paragon Ag Electrostatic sensor system
JP2018173305A (en) * 2017-03-31 2018-11-08 ロボセンサー技研株式会社 Tactile sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020148827A1 (en) * 2019-01-16 2021-12-02 Posh Wellness Laboratory株式会社 Detection device, state identification device, and measurement method
JP7334986B2 (en) 2019-01-16 2023-08-29 Posh Wellness Laboratory株式会社 Detector and Condition Determining Device

Also Published As

Publication number Publication date
JPWO2020148828A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
EP2180091B1 (en) Pressure-sensitive conductive yarn and biological information-measuring garment
KR100895297B1 (en) A multi channel electrode sensor apparatus for measuring a plurality of physiological signals
JP6222546B2 (en) Electrical impedance tomography measuring device
US20100286546A1 (en) Garment for detecting respiratory movement
AU2016231255B2 (en) Device in the form of a garment for monitoring a physiological parameter of a user
CN111343901A (en) Sensor strip for multi-mode sensing of biometric data
US20110313260A1 (en) Diaper-type vital sign measuring apparatus
EP3549515A1 (en) Electrode belt device for measuring bio-signal
US11453362B2 (en) Detection apparatus, seat belt, and monitoring system
US11647951B2 (en) Input device, fiber sheet, clothing, and biological information detection device
US20220000424A1 (en) Garment, measurement apparatus and monitoring system
WO2020148828A1 (en) Seat belt and state identifying device
TWM463109U (en) Physiology detecting textile
US11478192B2 (en) Apparatus for sensing comprising a flexible substrate
JP7334986B2 (en) Detector and Condition Determining Device
US20170188948A1 (en) Wearing method and apparatus thereof
KR20180056197A (en) Method and apparatus for newborn baby measuring sleep apnea, and newborn baby sleep apnea measuring system
JP7405961B2 (en) Articles worn and their use
WO2006066773A1 (en) Elastic conductor, particularly for providing variable-distance electrical connections
KR102041983B1 (en) Fabric electrode belt for vital signal
US20220015702A1 (en) Brainwave analysis device comprising a fabric support element
JP2018134397A (en) Biological information measurement belt and biological information measurement device
IT202100021743A1 (en) Hooking system for electrically connecting an electronic device with a textile sensor
KR20170135380A (en) Sensing appratus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910195

Country of ref document: EP

Kind code of ref document: A1