WO2020148491A1 - Autonomous module for recharging an electric vehicle, and operating method thereof - Google Patents

Autonomous module for recharging an electric vehicle, and operating method thereof Download PDF

Info

Publication number
WO2020148491A1
WO2020148491A1 PCT/FR2020/050010 FR2020050010W WO2020148491A1 WO 2020148491 A1 WO2020148491 A1 WO 2020148491A1 FR 2020050010 W FR2020050010 W FR 2020050010W WO 2020148491 A1 WO2020148491 A1 WO 2020148491A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
local management
central control
control unit
battery
Prior art date
Application number
PCT/FR2020/050010
Other languages
French (fr)
Inventor
Jacqueline COURREGES
Original Assignee
Courreges Jacqueline
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Courreges Jacqueline filed Critical Courreges Jacqueline
Publication of WO2020148491A1 publication Critical patent/WO2020148491A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/57Charging stations without connection to power networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • TITLE Autonomous module for recharging an electric vehicle and its operating method
  • the present invention relates to an autonomous module for recharging an electric vehicle and its operating method.
  • An electric vehicle whether hybrid or all-electric, has batteries that need to be recharged regularly.
  • the current technique provides modules for recharging electric vehicles, which are in fact power distribution modules forming interfaces between an electric power supply network and vehicles.
  • FIG. 1 shows a module 1 0 of this type which generally comprises a charger 1 2 connected to the electrical network 14 and configured to be connected to the electric vehicle 16.
  • Alternating current (AC) circulates in the electrical network 14 and the batteries of the vehicle 1 6 operate on direct current.
  • the charger 12 must therefore be associated with an alternating current to direct current (DC) converter or AC-DC converter 13.
  • the electrical network 14 is also connected to power generation modules.
  • Figure 1 shows a module 18 of this type which operates on solar energy.
  • the module 1 8 comprises photovoltaic panels 20 which are each configured to generate an output of electrical power as a function of light energy received.
  • the output current of the panels 20 is direct current (DC) which must therefore be converted into alternating current (AC) by a DC-AC converter 22, before being injected into the electrical network 14.
  • DC direct current
  • AC alternating current
  • the modules 1 0 of the current technique for recharging an electric vehicle 1 6 are therefore not autonomous insofar as the electrical power is supplied essentially by the electrical network 14.
  • This type of electrical architecture is that the charging time of an electric vehicle is generally too long.
  • This charging time is generally a function of the electrical power that a module 10 can provide in a given period of time, and more exactly that the electrical network 14 can provide in this period of time.
  • a solution to this problem may consist in providing a suitable infrastructure between the electrical network 14 and the charger 12 in order to deliver a large amount of power to the charger.
  • Another solution to the problem may consist in equipping the module 1 0 with an electric power storage battery 24 so as to increase the electric power available for recharging a vehicle ( Figure 2).
  • this does not improve the overall efficiency R1 of the architecture, the power loss between the panels 20 and the battery 24 being of the order of 35% and being mainly due to the AC-DC and DC- conversion steps.
  • This unit includes inputs connected to the outputs of panels, and is controlled so that the unit delivers an overall electrical power which is equal to a setpoint regardless of the light energy received by the panels.
  • MPPT an MPPT system
  • the conversion steps persist in this type of architecture, which does not make it possible to improve the overall efficiency of the architecture or the recharging speed of an electric vehicle.
  • the Applicant has set itself the objective of reducing the charging time of an electric vehicle as much as possible, so that, for example, this period is comparable to that of filling a fuel tank of a vehicle with a combustion engine at the same time. pump from a gas station.
  • the present invention relates to an autonomous module for recharging an electric vehicle, this module comprising:
  • each of these panels being configured to generate an electrical power output as a function of the light energy received
  • At least one local management unit comprising inputs connected to outputs of the panels
  • At least one central control unit configured to control the local management unit so that an overall electrical power at the output of the local management unit is substantially equal to a determined set value, regardless of the '' light energy received by the panels, this overall electrical power being a function of the powers electrical supplied by the panels,
  • At least one storage battery connected, directly or through the central control unit, to outputs of the local management unit and configured to store the overall electrical power
  • At least one charger connected to the storage battery and configured to be connected to an electric vehicle.
  • the charging module according to the invention is thus autonomous insofar as it integrates means for generating power, the panels, and also means for distributing power, the battery and the charger.
  • the module is advantageously simplified insofar as it may not include AC-DC and DC-AC converter (s) of the overall electric power.
  • the absence of converter (s) or of conversion steps (direct current to alternating current and vice versa) of the overall electrical power can significantly improve the energy efficiency of the module.
  • the module could include a DC / AC converter and be connected to an electrical network by this converter, so as to inject therein the surplus of overall electrical power generated by the panels and not stored in the battery.
  • the module according to the invention makes it possible to significantly reduce the charging time of an electric vehicle, the batteries of the latter being able for example to be recharged in a period of a few minutes (for example 5 minutes) to cover a greater distance. or equal to 200km.
  • the module according to the invention may include one or more of the following characteristics, taken in isolation from one another or in combination with one another:
  • the module comprises several local management units, the central control unit being configured to control the local management units so that the electrical power overall output from the local management units is substantially equal to the determined setpoint value,
  • the series of local management units comprises first and second terminals connected directly to said at least one battery
  • the central control unit is configured to calculate the setpoint according to a state of charge of said at least one battery
  • the module includes several batteries mounted in parallel,
  • the module includes several chargers
  • the central control unit is connected to the local management unit or to each local management unit by a wireless link
  • the module has no electrical connection to a power supply network
  • the module does not have a DC-AC and AC-DC converter for the overall electrical power.
  • the present invention also relates to a method of operating a module as described above, comprising the steps of:
  • steps a) to c) representing a cycle which is repeated several times.
  • the duration between two successive cycles is adjustable and is for example between 500ms and 5s.
  • the cycle comprises additional steps of:
  • the setpoint can be calculated by the central control unit depending on the state of charge of said at least one battery.
  • the method according to the invention can further comprise preliminary steps of:
  • FIG. 1 Figure 1 is a very schematic view of an architecture according to the prior art for recharging an electric vehicle
  • FIG. 2 is another very schematic view of an architecture according to the prior art for recharging an electric vehicle
  • FIG. 3 is a very schematic view of an architecture for recharging an electric vehicle, including a module according to the invention
  • FIG. 4 is a very schematic view of a module according to the invention.
  • FIG. 5 is another very schematic view of a module according to the invention.
  • FIG. 6 is another very schematic view of a module according to the invention.
  • Figure 7 is a very schematic view of a flowchart illustrating steps of a method according to the invention.
  • FIGs 3 to 6 illustrate an autonomous module 30 for recharging an electric vehicle 16.
  • This module 30 can be installed and used alone, insofar as it is autonomous, as illustrated in Figures 4 to 6, but it can also be connected to an electrical network 14 as shown in Figure 3.
  • the module 30 comprises in particular photovoltaic panels 20 which are each configured to generate an electrical power at output as a function of a light energy received, all the photovoltaic panels 20 being configured to generate an overall electrical power at output according to a received light energy.
  • the module 30 further comprises at least one storage battery 32 which is configured to operate in direct current DC and to store the electrical energy corresponding to the overall electrical power generated by the panels 20.
  • the overall electrical power generated at the output of the panels 20 is direct current so it is not necessary to provide a DC / AC and / or AC / DC converter between the panels 20 and the battery 32.
  • the module 30 or the battery 32 can be connected to the electrical network 14 by a DC / AC converter 22 (FIG. 1), so that for example a surplus of electrical power overall which would be generated by the panels and which could not be stored in the battery 32 is discharged in the electrical network 14.
  • a DC / AC converter 22 FIG. 1
  • the module 30 further comprises at least one charger 34 connected to the battery 32 and configured to be connected to the vehicle 16 to be charged.
  • the panels 20 are associated with at least one local management unit 36 comprising inputs 36a connected to outputs 20a of the panels 20.
  • the module 30 comprises several units 36 which are here mounted in series.
  • Each panel 20 could be associated with a unit 36 or more panels (eg two, three or four) could be associated with a unit 36.
  • a local management unit 36 acts like an MPPT system, that is to say a system capable of permanently obtaining the maximum power from the panel 20.
  • a panel 20 is a generator whose power output is strongly nonlinear. Consequently, for the same lighting, the power delivered will be different depending on the load.
  • the optimizer connects the battery and the panel in such a way that the maximum power is always supplied to the battery. Its purpose is to convert the direct current produced by the panels into direct current and is therefore a DC-DC converter. More exactly, it transforms twice the direct current into direct current, the voltage and intensity of which are perfectly suited to the battery.
  • the current therefore undergoes a double DC-DC conversion.
  • the module 30 further comprises at least one central control unit 38 configured to control the local management units 36 so that the overall electrical power output from the local management units 36 is substantially equal to a set value whatever or the light energy received by the panels 20 (and provided that this light energy is greater than a certain threshold).
  • this overall electric power is equal to the sum of the electric powers supplied by the panels 20.
  • several groups of panels in series could be associated in parallel.
  • units 36 can be viewed as a unit acting as a single charge controller for battery 32.
  • charger 34 could be replaced by several chargers to ensure redundancy or better availability, for example. Depending on the power required, the chargers could be associated or independent.
  • Figures 4 to 6 also show that the central control unit 38 can be connected to the local management units 36 by wired ( Figure 5) or wireless ( Figures 4 and 6) links.
  • FIG. 6 further shows that the unit 38 can be connected to auxiliary equipment 40 which includes, for example, a management system for the battery or batteries 32, microcontrollers, temperature probes, etc.
  • auxiliary equipment 40 includes, for example, a management system for the battery or batteries 32, microcontrollers, temperature probes, etc.
  • the battery management system is for example configured to provide the unit 38 with information on the state of charge of the battery 32, the maximum current admissible by the battery, the maximum admissible voltage by the battery, etc.
  • Figure 7 illustrates an exemplary embodiment of a method according to the invention of operation of the module 1 8.
  • This method comprises several steps, among which: a) Reception by the central control unit 38 of first parameters relating to the state of charge of the battery 32, b) Determination by the central control unit 38 of second parameters of control of the local management units 36, so that the local management units 36 deliver an overall electrical power equal to a set value which is a function of the state of charge of the battery, and
  • the method can further comprise steps d) of reception by the central control unit 38 of third parameters relating to the overall electrical power delivered by the local management units 36, and e) of comparison of these third parameters with the value set point.
  • the duration between two successive cycles is adjustable and is for example between 500ms and 5s.
  • the second parameters can be adjusted accordingly during the next cycle, in order to reduce this difference.
  • the first parameters include, for example, the percentage of battery charge in the form of available power as a function of the temperature at a given time.
  • the second parameters include for example the voltage and the unit current of each unit 36.
  • the third parameters include for example the instantaneous power (that is to say produced at a given instant), the current, the temperature, etc.
  • the method can comprise preliminary steps of:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Disclosed is an autonomous module (30) for recharging an electric vehicle, this module comprising: - photovoltaic panels (20), each of these panels being configured to generate, as output, electrical power depending on light energy received, - at least one local management unit (36) comprising inputs (36a) connected to outputs (20a) of the panels, - at least one central control unit (38) configured to control the local management unit, - at least one storage battery (32) connected to the outputs (36b, 36c) of the local management unit and configured to store the overall electrical power without prior DC/AC and/or AC/DC conversion of the overall electrical power, and - at least one charger (34) connected to the storage battery and configured to be connected to an electric vehicle.

Description

DESCRIPTION DESCRIPTION
TITRE : Module autonome pour recharger un véhicule électrique et son procédé de fonctionnement TITLE: Autonomous module for recharging an electric vehicle and its operating method
Domaine technique de l'invention Technical field of the invention
La présente invention concerne un module autonome pour recharger un véhicule électrique et son procédé de fonctionnement. The present invention relates to an autonomous module for recharging an electric vehicle and its operating method.
Arrière-plan technique Technical background
Un véhicule électrique, qu’il soit hybride ou tout électrique, comprend des batteries qui doivent être rechargées régulièrement. An electric vehicle, whether hybrid or all-electric, has batteries that need to be recharged regularly.
La technique actuelle propose des modules pour recharger des véhicules électriques, qui sont en fait des modules de distribution de puissance formant des interfaces entre un réseau d’alimentation électrique et les véhicules. The current technique provides modules for recharging electric vehicles, which are in fact power distribution modules forming interfaces between an electric power supply network and vehicles.
La figure 1 montre un module 1 0 de ce type qui comprend en général un chargeur 1 2 relié au réseau électrique 14 et configuré pour être raccordé au véhicule électrique 16. Du courant alternatif (AC) circule dans le réseau électrique 14 et les batteries du véhicule 1 6 fonctionnent en courant continu . Le chargeur 12 doit donc être associé à un convertisseur de courant alternatif en courant continu (DC) ou convertisseur AC-DC 13. Figure 1 shows a module 1 0 of this type which generally comprises a charger 1 2 connected to the electrical network 14 and configured to be connected to the electric vehicle 16. Alternating current (AC) circulates in the electrical network 14 and the batteries of the vehicle 1 6 operate on direct current. The charger 12 must therefore be associated with an alternating current to direct current (DC) converter or AC-DC converter 13.
Le réseau électrique 14 est en outre relié à des modules de génération de puissance. La figure 1 montre un module 1 8 de ce type qui fonctionne à l’énergie solaire. Le module 1 8 comprend des panneaux photovoltaïques 20 qui sont chacun configurés pour générer en sortie une puissance électrique en fonction d’une énergie lumineuse reçue. The electrical network 14 is also connected to power generation modules. Figure 1 shows a module 18 of this type which operates on solar energy. The module 1 8 comprises photovoltaic panels 20 which are each configured to generate an output of electrical power as a function of light energy received.
Le courant en sortie des panneaux 20 est du courant continu (DC) qui doit donc être converti en courant alternatif (AC) par un convertisseur DC-AC 22, avant d’être injecté dans le réseau électrique 14. The output current of the panels 20 is direct current (DC) which must therefore be converted into alternating current (AC) by a DC-AC converter 22, before being injected into the electrical network 14.
Les modules 1 0 de la technique actuelle pour recharger un véhicule électrique 1 6 ne sont donc pas autonomes dans la mesure où la puissance électrique est fournie essentiellement par le réseau électrique 14. The modules 1 0 of the current technique for recharging an electric vehicle 1 6 are therefore not autonomous insofar as the electrical power is supplied essentially by the electrical network 14.
L’inconvénient de ce type d’architecture électrique est lié au fait que la durée du chargement d’un véhicule électrique est en général trop longue. Cette durée de chargement est en général fonction de la puissance électrique que peut fournir un module 10 dans un laps de temps donné, et plus exactement que peut fournir le réseau électrique 14 dans ce laps de temps. The disadvantage of this type of electrical architecture is that the charging time of an electric vehicle is generally too long. This charging time is generally a function of the electrical power that a module 10 can provide in a given period of time, and more exactly that the electrical network 14 can provide in this period of time.
Une solution à ce problème peut consister à prévoir une infrastructure adaptée entre le réseau électrique 14 et le chargeur 12 pour acheminer une puissance importante jusqu’au chargeur. A solution to this problem may consist in providing a suitable infrastructure between the electrical network 14 and the charger 12 in order to deliver a large amount of power to the charger.
Ceci permettrait au module 10 de fournir une puissance électrique importante dans un laps de temps plus court, et donc de réduire la durée de chargement du véhicule. Cependant, le coût de ces infrastructures est très important. This would allow the module 10 to provide significant electrical power in a shorter period of time, and therefore to reduce the vehicle charging time. However, the cost of these infrastructures is very important.
Une autre solution au problème peut consister à équiper le module 1 0 d’une batterie 24 de stockage de puissance électrique de façon à augmenter la puissance électrique disponible pour recharger un véhicule (figure 2). Toutefois, cela n’améliore pas le rendement global R1 de l’architecture, la perte de puissance entre les panneaux 20 et la batterie 24 étant de l’ordre de 35% et étant principalement due aux étapes de conversion AC-DC et DC-AC de la puissance électrique globale fournie par le module (figure 1 ). Another solution to the problem may consist in equipping the module 1 0 with an electric power storage battery 24 so as to increase the electric power available for recharging a vehicle (Figure 2). However, this does not improve the overall efficiency R1 of the architecture, the power loss between the panels 20 and the battery 24 being of the order of 35% and being mainly due to the AC-DC and DC- conversion steps. AC of the overall electrical power supplied by the module (Figure 1).
Par ailleurs, le rendement global des panneaux photovoltaïques est connu comme étant faible et fortement lié aux contraintes d’implantation liées aux phénomènes d’ombrage, d’expositions multiples et de vieillissement inégal des panneaux. Furthermore, the overall efficiency of photovoltaic panels is known to be low and strongly linked to installation constraints linked to the phenomena of shading, multiple exposures and uneven aging of the panels.
Il est connu d’associer aux panneaux une unité de gestion locale. Cette unité comprend des entrées reliées aux sorties des panneaux, et est contrôlée de façon à ce que l’unité délivre une puissance électrique globale qui soit égale à une valeur de consigne quelle que soit l’énergie lumineuse reçue par les panneaux. Ceci permet de considérer le module de production de puissance comme un système MPPT (acronyme de l’anglais Maximum Power Point Tracking), c’est-à-dire un système apte à fournir en permanence le maximum de puissance à une charge. Toutefois, les étapes de conversion persistent dans ce type d’architecture, ce qui ne permet pas d’améliorer le rendement global de l’architecture ni la vitesse de rechargement d’un véhicule électrique. It is known practice to associate a local management unit with the panels. This unit includes inputs connected to the outputs of panels, and is controlled so that the unit delivers an overall electrical power which is equal to a setpoint regardless of the light energy received by the panels. This makes it possible to consider the power production module as an MPPT system (acronym for Maximum Power Point Tracking), that is to say a system capable of permanently supplying the maximum power to a load. However, the conversion steps persist in this type of architecture, which does not make it possible to improve the overall efficiency of the architecture or the recharging speed of an electric vehicle.
La Demanderesse s’est fixée comme objectif de réduire le plus possible la durée de chargement d’un véhicule électrique, pour que par exemple cette durée soit comparable à celle de remplissage d’un réservoir de carburant d’un véhicule à moteur thermique à la pompe d’une station-service. The Applicant has set itself the objective of reducing the charging time of an electric vehicle as much as possible, so that, for example, this period is comparable to that of filling a fuel tank of a vehicle with a combustion engine at the same time. pump from a gas station.
La présente invention propose une solution simple, efficace et économique pour atteindre cet objectif. Résumé de l'invention The present invention provides a simple, efficient and economical solution to achieve this objective. Summary of the invention
La présente invention concerne un module autonome pour recharger un véhicule électrique, ce module comprenant : The present invention relates to an autonomous module for recharging an electric vehicle, this module comprising:
- des panneaux photovoltaïques, chacun de ces panneaux étant configuré pour générer en sortie une puissance électrique en fonction d’une énergie lumineuse reçue, - photovoltaic panels, each of these panels being configured to generate an electrical power output as a function of the light energy received,
- au moins une unité de gestion locale comportant des entrées reliées à des sorties des panneaux, - at least one local management unit comprising inputs connected to outputs of the panels,
- au moins une unité de commande centrale configurée pour commander l’unité de gestion locale de façon à ce qu’une puissance électrique globale en sortie de l’unité de gestion locale soit sensiblement égale à une valeur de consigne déterminée, quelle que soit l’énergie lumineuse reçue par les panneaux, cette puissance électrique globale étant fonction des puissances électriques fournies par les panneaux, - at least one central control unit configured to control the local management unit so that an overall electrical power at the output of the local management unit is substantially equal to a determined set value, regardless of the '' light energy received by the panels, this overall electrical power being a function of the powers electrical supplied by the panels,
- au moins une batterie de stockage reliée, directement ou par l’intermédiaire de l’unité de commande centrale, à des sorties de l’unité de gestion locale et configurée pour stocker la puissance électrique globale, et - at least one storage battery connected, directly or through the central control unit, to outputs of the local management unit and configured to store the overall electrical power, and
- au moins un chargeur relié à la batterie de stockage et configuré pour être raccordé à un véhicule électrique. - at least one charger connected to the storage battery and configured to be connected to an electric vehicle.
Le module de chargement selon l’invention est ainsi autonome dans la mesure où il intègre des moyens de génération de puissance, les panneaux, et également des moyens de distribution de puissance, la batterie et le chargeur. Le module est avantageusement simplifié dans la mesure où il peut ne pas comprendre de convertisseur(s) AC-DC et DC-AC de la puissance électrique globale. L’absence de convertisseur(s) ou d’étapes de conversion (courant continu en courant alternatif et inversement) de la puissance électrique globale permet d’améliorer de manière significative le rendement énergétique du module. The charging module according to the invention is thus autonomous insofar as it integrates means for generating power, the panels, and also means for distributing power, the battery and the charger. The module is advantageously simplified insofar as it may not include AC-DC and DC-AC converter (s) of the overall electric power. The absence of converter (s) or of conversion steps (direct current to alternating current and vice versa) of the overall electrical power can significantly improve the energy efficiency of the module.
En variante, le module pourrait comprendre un convertisseur DC/AC et être relié à un réseau électrique par ce convertisseur, de façon à y injecter le surplus de puissance électrique globale généré par les panneaux et non stocké dans la batterie. As a variant, the module could include a DC / AC converter and be connected to an electrical network by this converter, so as to inject therein the surplus of overall electrical power generated by the panels and not stored in the battery.
Le module selon l’invention permet de réduire de manière significative la durée de chargement d’un véhicule électrique, les batteries de celui-ci pouvant par exemple être rechargées en une durée de quelques minutes (par exemple 5 minutes) pour parcourir une distance supérieure ou égale à 200km. The module according to the invention makes it possible to significantly reduce the charging time of an electric vehicle, the batteries of the latter being able for example to be recharged in a period of a few minutes (for example 5 minutes) to cover a greater distance. or equal to 200km.
Le module selon l’invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres : The module according to the invention may include one or more of the following characteristics, taken in isolation from one another or in combination with one another:
- le module comprend plusieurs unités de gestion locale, l’unité de commande centrale étant configurée pour commander les unités de gestion locale de façon à ce que la puissance électrique globale en sortie des unités de gestion locale soit sensiblement égale à la valeur de consigne déterminée, - the module comprises several local management units, the central control unit being configured to control the local management units so that the electrical power overall output from the local management units is substantially equal to the determined setpoint value,
- les unités de gestion locale sont montées en série, - the local management units are mounted in series,
- la série d’unités de gestion locale comprend des première et seconde bornes reliées directement à ladite au moins une batterie, - the series of local management units comprises first and second terminals connected directly to said at least one battery,
- l’unité de commande centrale est configurée pour calculer la valeur de consigne en fonction d’un état de charge de ladite au moins une batterie, - the central control unit is configured to calculate the setpoint according to a state of charge of said at least one battery,
- le module comprend plusieurs batteries montées en parallèle, - the module includes several batteries mounted in parallel,
- le module comprend plusieurs chargeurs, - the module includes several chargers,
- l’unité de commande centrale est reliée à l’unité de gestion locale ou à chaque unité de gestion locale par une liaison sans fil , - the central control unit is connected to the local management unit or to each local management unit by a wireless link,
- le module est dépourvu de liaison électrique à un réseau d’alimentation électrique, - the module has no electrical connection to a power supply network,
- le module est dépourvu de convertisseur DC-AC et AC-DC de la puissance électrique globale. - the module does not have a DC-AC and AC-DC converter for the overall electrical power.
La présente invention concerne également un procédé de fonctionnement d’un module tel que décrit ci-dessus, comportant des étapes de : The present invention also relates to a method of operating a module as described above, comprising the steps of:
a) Réception par l’unité de commande centrale de premiers paramètres relatifs à l’état de charge de ladite au moins une batterie, a) Reception by the central control unit of the first parameters relating to the state of charge of said at least one battery,
b) Détermination par l’unité de commande centrale de seconds paramètres de commande de ladite au moins une unité de gestion locale, de façon à ce que ladite au moins une unité de gestion locale délivre une puissance électrique globale égale à une valeur de consigne, et b) Determination by the central control unit of second control parameters of said at least one local management unit, so that said at least one local management unit delivers an overall electrical power equal to a set value, and
c) Transmission par l’unité de commande centrale des seconds paramètres de commande à ladite au moins une unité de gestion locale, les étapes a) à c) représentant un cycle qui est répété plusieurs fois. Avantageusement, la durée entre deux cycles successifs est ajustable et est par exemple comprise entre 500ms et 5s. De préférence, le cycle comprend des étapes complémentaires de : c) Transmission by the central control unit of the second control parameters to said at least one local management unit, steps a) to c) representing a cycle which is repeated several times. Advantageously, the duration between two successive cycles is adjustable and is for example between 500ms and 5s. Preferably, the cycle comprises additional steps of:
d) Réception par l’unité de commande centrale de troisièmes paramètres relatifs à la puissance électrique globale délivrée par ladite au moins une unité de gestion locale, et e) Comparaison de ces troisièmes paramètres à la valeur de consigne. d) Reception by the central control unit of third parameters relating to the overall electrical power delivered by said at least one local management unit, and e) Comparison of these third parameters to the setpoint.
La valeur de consigne peut être calculée par l’unité de commande centrale en fonction d’un état de charge de ladite au moins une batterie. The setpoint can be calculated by the central control unit depending on the state of charge of said at least one battery.
Le procédé selon l’invention peut en outre comprendre des étapes préliminaires de : The method according to the invention can further comprise preliminary steps of:
i) Configuration de l’unité de commande centrale en fonction de caractéristiques propres à ladite au moins une batterie, et i) Configuration of the central control unit according to characteristics specific to said at least one battery, and
ii) Configuration de l’unité de commande centrale en fonction de caractéristiques propres aux panneaux photovoltaïques. ii) Configuration of the central control unit according to characteristics specific to photovoltaic panels.
Brève description des figures Brief description of the figures
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la lecture de la description détaillée qui va suivre pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels : Other characteristics and advantages of the invention will become apparent on reading the detailed description which follows, for the understanding of which reference is made to the appended drawings in which:
[Fig. 1 ] La figure 1 est une vue très schématique d’une architecture selon la technique antérieure pour recharger un véhicule électrique, [Fig. 2] La figure 2 est une autre vue très schématique d’une architecture selon la technique antérieure pour recharger un véhicule électrique, [Fig. 1] Figure 1 is a very schematic view of an architecture according to the prior art for recharging an electric vehicle, [Fig. 2] FIG. 2 is another very schematic view of an architecture according to the prior art for recharging an electric vehicle,
[Fig. 3] La figure 3 est une vue très schématique d’une architecture pour recharger un véhicule électrique, incluant un module selon l’invention , [Fig. 3] Figure 3 is a very schematic view of an architecture for recharging an electric vehicle, including a module according to the invention,
[Fig. 4] La figure 4 est une vue très schématique d’un module selon l’invention , [Fig. 4] Figure 4 is a very schematic view of a module according to the invention,
[Fig. 5] La figure 5 est une autre vue très schématique d’un module selon l’invention , [Fig. 5] Figure 5 is another very schematic view of a module according to the invention,
[Fig. 6] La figure 6 est une autre vue très schématique d’un module selon l’invention , [Fig. 6] Figure 6 is another very schematic view of a module according to the invention,
[Fig. 7] La figure 7 est une vue très schématique d’un logigramme illustrant des étapes d’un procédé selon l’invention . [Fig. 7] Figure 7 is a very schematic view of a flowchart illustrating steps of a method according to the invention.
Description détaillée de l'invention Detailed description of the invention
Les figures 1 et 2 ont été décrites dans ce qui précède. Figures 1 and 2 have been described in the foregoing.
Les figures 3 à 6 illustrent un module autonome 30 pour recharger un véhicule électrique 16. Ce module 30 peut être installé et utilisé seul, dans la mesure où il est autonome, comme cela est illustré aux figures 4 à 6, mais il peut aussi être relié à un réseau électrique 14 comme cela apparaît à la figure 3. Figures 3 to 6 illustrate an autonomous module 30 for recharging an electric vehicle 16. This module 30 can be installed and used alone, insofar as it is autonomous, as illustrated in Figures 4 to 6, but it can also be connected to an electrical network 14 as shown in Figure 3.
Le module 30 selon l’invention comprend notamment des panneaux photovoltaïques 20 qui sont chacun configurés pour générer en sortie une puissance électrique en fonction d’une énergie lumineuse reçue, l’ensemble des panneaux photovoltaïques 20 étant configuré pour générer en sortie une puissance électrique globale en fonction d’une énergie lumineuse reçue. The module 30 according to the invention comprises in particular photovoltaic panels 20 which are each configured to generate an electrical power at output as a function of a light energy received, all the photovoltaic panels 20 being configured to generate an overall electrical power at output according to a received light energy.
Le module 30 comprend en outre au moins une batterie de stockage 32 qui est configurée pour fonctionner en courant continu DC et pour stocker l’énergie électrique correspondant à la puissance électrique globale générée par les panneaux 20. La puissance électrique globale générée en sortie des panneaux 20 est en courant continu donc il n’est pas nécessaire de prévoir de convertisseur DC/AC et/ou AC/DC entre les panneaux 20 et la batterie 32. The module 30 further comprises at least one storage battery 32 which is configured to operate in direct current DC and to store the electrical energy corresponding to the overall electrical power generated by the panels 20. The overall electrical power generated at the output of the panels 20 is direct current so it is not necessary to provide a DC / AC and / or AC / DC converter between the panels 20 and the battery 32.
Comme évoqué dans ce qui précède, de manière optionnelle, le module 30 ou la batterie 32 peut être relié au réseau électrique 14 par un convertisseur DC/AC 22 (figure 1 ), de façon par exemple à ce qu’un surplus de puissance électrique globale qui serait générée par les panneaux et qui ne pourrait pas être stocké dans la batterie 32 soit déchargé dans le réseau électrique 14. As mentioned in the foregoing, optionally, the module 30 or the battery 32 can be connected to the electrical network 14 by a DC / AC converter 22 (FIG. 1), so that for example a surplus of electrical power overall which would be generated by the panels and which could not be stored in the battery 32 is discharged in the electrical network 14.
Le module 30 comprend en outre au moins un chargeur 34 relié à la batterie 32 et configuré pour être raccordé au véhicule 16 à charger. The module 30 further comprises at least one charger 34 connected to the battery 32 and configured to be connected to the vehicle 16 to be charged.
L’absence de conversion DC/AC et AC/DC de la puissance électrique globale entre les panneaux 20 et la batterie 32 permet d’améliorer de manière significative le rendement énergétique R2 de l’architecture, qui peut être supérieur ou égal à 1 5% par exemple. The absence of DC / AC and AC / DC conversion of the overall electrical power between the panels 20 and the battery 32 makes it possible to significantly improve the energy efficiency R2 of the architecture, which can be greater than or equal to 1 5 % for example.
Selon une autre caractéristique de l’invention, les panneaux 20 sont associés à au moins une unité 36 de gestion locale comportant des entrées 36a reliées à des sorties 20a des panneaux 20. De manière préférée, et comme cela est illustré aux figures 4 à 6 par exemple, le module 30 comprend plusieurs unités 36 qui sont ici montées en série. According to another characteristic of the invention, the panels 20 are associated with at least one local management unit 36 comprising inputs 36a connected to outputs 20a of the panels 20. Preferably, and as illustrated in FIGS. 4 to 6 for example, the module 30 comprises several units 36 which are here mounted in series.
Chaque panneau 20 pourrait être associé à une unité 36 ou plusieurs panneaux (par exemple deux, trois ou quatre) pourraient être associés à une unité 36. Each panel 20 could be associated with a unit 36 or more panels (eg two, three or four) could be associated with a unit 36.
Une unité 36 de gestion locale, aussi appelé « optimiseur » , agit comme un système MPPT, c’est-à-dire un système apte à obtenir en permanence le maximum de puissance du panneau 20. Un panneau 20 est un générateur dont la puissance de sortie est fortement non linéaire. En conséquence, pour un même éclairement, la puissance délivrée sera différente selon la charge. L’optimiseur relie la batterie et le panneau de manière à fournir en permanence le maximum de puissance à la batterie. Il a pour but de convertir le courant continu produit par les panneaux en courant continu et est donc un convertisseur DC-DC. Plus exactement, il transforme deux fois le courant continu en courant continu dont la tension et l’intensité sont parfaitement adaptées à la batterie. A local management unit 36, also called an “optimizer”, acts like an MPPT system, that is to say a system capable of permanently obtaining the maximum power from the panel 20. A panel 20 is a generator whose power output is strongly nonlinear. Consequently, for the same lighting, the power delivered will be different depending on the load. The optimizer connects the battery and the panel in such a way that the maximum power is always supplied to the battery. Its purpose is to convert the direct current produced by the panels into direct current and is therefore a DC-DC converter. More exactly, it transforms twice the direct current into direct current, the voltage and intensity of which are perfectly suited to the battery.
Le courant subit donc une double conversion DC-DC. La puissance électrique générée chaque panneau , ainsi que la puissance électrique globale générée par l’ensemble des panneaux 20, ne subissent donc pas de conversion DC-AC. The current therefore undergoes a double DC-DC conversion. The electrical power generated by each panel, as well as the overall electrical power generated by all of the panels 20, therefore do not undergo DC-AC conversion.
Le module 30 comprend en outre au moins une unité 38 de commande centrale configurée pour commander les unités 36 de gestion locale de façon à ce que la puissance électrique globale en sortie des unités 36 de gestion locale soit sensiblement égale à une valeur de consigne quelle que soit l’énergie lumineuse reçue par les panneaux 20 (et à condition que cette énergie lumineuse soit supérieure à un certain seuil). Dans le cas où les unités 36 sont montées en série, comme évoqué plus haut, cette puissance électrique globale est égale à la somme des puissances électriques fournies par les panneaux 20. En variante, plusieurs groupes de panneaux en série pourraient être associés en parallèle. The module 30 further comprises at least one central control unit 38 configured to control the local management units 36 so that the overall electrical power output from the local management units 36 is substantially equal to a set value whatever or the light energy received by the panels 20 (and provided that this light energy is greater than a certain threshold). In the case where the units 36 are connected in series, as mentioned above, this overall electric power is equal to the sum of the electric powers supplied by the panels 20. As a variant, several groups of panels in series could be associated in parallel.
Du fait du montage en série des unités 36, leurs sorties 36b sont reliées les unes aux autres et elles forment une série d’unités 36 dont les bornes 36c sont reliées aux entrées de la batterie 32. Due to the series connection of the units 36, their outputs 36b are connected to each other and they form a series of units 36 whose terminals 36c are connected to the inputs of the battery 32.
Quel que soit le nombre d’unités 36, elles peuvent être considérées formant un ensemble agissant comme un contrôleur de charge unique de la batterie 32. Regardless of the number of units 36, they can be viewed as a unit acting as a single charge controller for battery 32.
Naturellement, en fonction des caractéristiques de la batterie 32, celle-ci pourrait être remplacée par plusieurs batteries en parallèle. De la même façon , le chargeur 34 pourrait être remplacé par plusieurs chargeurs pour assurer une redondance ou une meilleure disponibilité par exemple. En fonction de la puissance nécessaire, les chargeurs pourraient être associés ou indépendants. Naturally, depending on the characteristics of the battery 32, the latter could be replaced by several batteries in parallel. Likewise, charger 34 could be replaced by several chargers to ensure redundancy or better availability, for example. Depending on the power required, the chargers could be associated or independent.
Les figures 4 à 6 montrent également que l’unité 38 de commande centrale peut être reliée aux unités 36 de gestion locale par des liaisons filaires (figure 5) ou non filaires (figures 4 et 6). Figures 4 to 6 also show that the central control unit 38 can be connected to the local management units 36 by wired (Figure 5) or wireless (Figures 4 and 6) links.
La figure 6 montre en outre que l’unité 38 peut être reliée à des équipements auxiliaires 40 qui comprennent par exemple un système de gestion de la ou des batteries 32, des microcontrôleurs, des sondes de température, etc. FIG. 6 further shows that the unit 38 can be connected to auxiliary equipment 40 which includes, for example, a management system for the battery or batteries 32, microcontrollers, temperature probes, etc.
Le système de gestion de batterie(s) est par exemple configuré pour fournir à l’unité 38 des informations d’état de charge de la batterie 32, le courant maximal admissible par la batterie, la tension maximale admissible par la batterie, etc. The battery management system is for example configured to provide the unit 38 with information on the state of charge of the battery 32, the maximum current admissible by the battery, the maximum admissible voltage by the battery, etc.
La figure 7 illustre un exemple de réalisation d’un procédé selon l’invention de fonctionnement du module 1 8. Figure 7 illustrates an exemplary embodiment of a method according to the invention of operation of the module 1 8.
Ce procédé comprend plusieurs étapes, parmi lesquelles : a) Réception par l’unité 38 de commande centrale de premiers paramètres relatifs à l’état de charge de la batterie 32, b) Détermination par l’unité 38 de commande centrale de seconds paramètres de commande des unités 36 de gestion locale, de façon à ce que les unités 36 de gestion locale délivrent une puissance électrique globale égale à une valeur de consigne qui est fonction de l’état de charge de la batterie, et This method comprises several steps, among which: a) Reception by the central control unit 38 of first parameters relating to the state of charge of the battery 32, b) Determination by the central control unit 38 of second parameters of control of the local management units 36, so that the local management units 36 deliver an overall electrical power equal to a set value which is a function of the state of charge of the battery, and
c) Transmission par l’unité 38 de commande centrale des seconds paramètres de commande aux unités 36 de gestion locale. Le procédé peut en outre comprendre des étapes d) de réception par l’unité 38 de commande centrale de troisièmes paramètres relatifs à la puissance électrique globale délivrée par les unités 36 de gestion locale, et e) de comparaison de ces troisièmes paramètres à la valeur de consigne. c) Transmission by the central control unit 38 of the second control parameters to the local management units 36. The method can further comprise steps d) of reception by the central control unit 38 of third parameters relating to the overall electrical power delivered by the local management units 36, and e) of comparison of these third parameters with the value set point.
Les étapes a) à c) ou à a) à e) représentant un cycle qui est répété plusieurs fois. La durée entre deux cycles successifs est ajustable et est par exemple comprise entre 500ms et 5s. Steps a) to c) or to a) to e) representing a cycle which is repeated several times. The duration between two successive cycles is adjustable and is for example between 500ms and 5s.
Si , à l’issue de l’étape e) de comparaison , un écart est jugé trop important, les seconds paramètres peuvent être ajustés en conséquence lors du cycle suivant, afin de réduire cet écart. If, at the end of comparison step e), a difference is deemed too great, the second parameters can be adjusted accordingly during the next cycle, in order to reduce this difference.
Les premiers paramètres comprennent par exemple le pourcentage de charge de la batterie sous la forme d’une puissance disponible en fonction de la température à un instant donné. The first parameters include, for example, the percentage of battery charge in the form of available power as a function of the temperature at a given time.
Les seconds paramètres comprennent par exemple la tension et le courant unitaire de chaque unité 36. The second parameters include for example the voltage and the unit current of each unit 36.
Les troisièmes paramètres comprennent par exemple la puissance instantanée (c'est-à-dire produite à un instant donné), le courant, la température, etc. The third parameters include for example the instantaneous power (that is to say produced at a given instant), the current, the temperature, etc.
Comme cela est visible à la figure 7, le procédé peut comprendre des étapes préliminaires de : As can be seen in FIG. 7, the method can comprise preliminary steps of:
i) Configuration de l’unité 38 de commande centrale en fonction de caractéristiques (par exemple nombre de batteries 32, tension de fin de charge, courant maximal admissible, température maximale admissible, etc.) propres à la batterie 32, et i) Configuration of the central control unit 38 according to characteristics (for example number of batteries 32, end-of-charge voltage, maximum allowable current, maximum allowable temperature, etc.) specific to battery 32, and
ii) Configuration de l’unité 38 de commande centrale en fonction de caractéristiques (nombre de panneaux 20, tension maximale unitaire, puissance unitaire, etc.) propres aux panneaux 20. ii) Configuration of the central control unit 38 according to characteristics (number of panels 20, maximum unit voltage, unit power, etc.) specific to panels 20.

Claims

REVE N DICATIONS DREAM N DICATIONS
1 . Module (30) autonome pour recharger un véhicule électrique (16), ce module comprenant : 1. Autonomous module (30) for recharging an electric vehicle (16), this module comprising:
- des panneaux photovoltaïques (20), chacun de ces panneaux étant configuré pour générer en sortie une puissance électrique en fonction d’une énergie lumineuse reçue, - photovoltaic panels (20), each of these panels being configured to generate an electrical power output as a function of light energy received,
- au moins une unité (36) de gestion locale comportant des entrées (36a) reliées à des sorties (20a) des panneaux, - at least one local management unit (36) comprising inputs (36a) connected to outputs (20a) of the panels,
- au moins une unité (38) de commande centrale configurée pour commander l’unité de gestion locale de façon à ce qu’une puissance électrique globale en sortie de l’unité de gestion locale soit sensiblement égale à une valeur de consigne déterminée,- at least one central control unit (38) configured to control the local management unit so that an overall electrical power output from the local management unit is substantially equal to a determined set value,
- au moins une batterie de stockage (32) reliée, di rectement ou par l’intermédiaire de l’unité de commande centrale, à des sorties- at least one storage battery (32) connected, directly or through the central control unit, to outputs
(36b, 36c) de l’unité de gestion locale et configurée pour stocker la puissance électrique globale, et (36b, 36c) of the local management unit and configured to store the overall electrical power, and
- au moins un chargeur (34) relié à la batterie de stockage et configuré pour être raccordé à un véhicule électrique. - at least one charger (34) connected to the storage battery and configured to be connected to an electric vehicle.
2. Module (30) selon la revendication 1 , dans lequel il comprend plusieurs unités (36) de gestion locale, l’unité (38) de commande centrale étant configurée pour commander les unités de gestion locale de façon à ce que la puissance électrique globale en sortie des unités de gestion locale soit sensiblement égale à la valeur de consigne déterminée. 2. Module (30) according to claim 1, wherein it comprises several units (36) of local management, the central control unit (38) being configured to control the local management units so that the electric power overall output from the local management units is substantially equal to the determined setpoint value.
3. Module (30) selon la revendication 2, dans lequel les unités (36) de gestion locale sont montées en série. 3. Module (30) according to claim 2, wherein the local management units (36) are connected in series.
4. Module (30) selon la revendication 3, dans lequel la série d’unités (36) de gestion locale comprend des première et seconde bornes (36c) reliées directement à la batterie (32). 4. Module (30) according to claim 3, wherein the series of local management units (36) comprises first and second terminals (36c) connected directly to the battery (32).
5. Module (30) selon l’une des revendications précédentes, dans lequel l’unité (30) de commande centrale est configurée pour calculer la valeur de consigne en fonction d’un état de charge de ladite au moins une batterie (32). 5. Module (30) according to one of the preceding claims, wherein the central control unit (30) is configured for calculating the setpoint as a function of a state of charge of said at least one battery (32).
6. Module (30) selon l’une des revendications précédentes, dans lequel il comprend plusieurs batteries (32) montées en parallèle. 6. Module (30) according to one of the preceding claims, wherein it comprises several batteries (32) connected in parallel.
7. Module (30) selon l’une des revendications précédentes, dans lequel il comprend plusieurs chargeurs (34). 7. Module (30) according to one of the preceding claims, wherein it comprises several chargers (34).
8. Module (30) selon l’une des revendications précédentes, dans lequel l’unité (38) de commande centrale est reliée à l’unité (36) de gestion locale ou à chaque unité de gestion locale par une liaison sans fil . 8. Module (30) according to one of the preceding claims, wherein the central control unit (38) is connected to the local management unit (36) or to each local management unit by a wireless link.
9. Module (30) selon l’une des revendications précédentes, dans lequel il est dépourvu de liaison électrique à un réseau ( 14) d’alimentation électrique. 9. Module (30) according to one of the preceding claims, wherein it has no electrical connection to a network (14) of power supply.
10. Module (30) selon l’une des revendications précédentes, dans lequel il est dépourvu de convertisseur (22) DC-AC et AC- DC de la puissance électrique globale. 10. Module (30) according to one of the preceding claims, wherein it is devoid of converter (22) DC-AC and AC-DC of the overall electric power.
1 1 . Procédé de fonctionnement d’un module (30) selon l’une des revendications précédentes, comportant des étapes de : 1 1. Method of operating a module (30) according to one of the preceding claims, comprising the steps of:
a) Réception par l’unité (38) de commande centrale de premiers paramètres relatifs à l’état de charge de ladite au moins une batterie (32), a) Reception by the central control unit (38) of first parameters relating to the state of charge of said at least one battery (32),
b) Détermination par l’unité de commande centrale de seconds paramètres de commande de ladite au moins une unité (36) de gestion locale, de façon à ce que ladite au moins une unité de gestion locale délivre une puissance électrique globale égale à une valeur de consigne, et b) Determination by the central control unit of second control parameters of said at least one local management unit (36), so that said at least one local management unit delivers an overall electrical power equal to a value set point, and
c) Transmission par l’unité de commande centrale des seconds paramètres de commande à ladite au moins une unité de gestion locale, c) Transmission by the central control unit of the second control parameters to said at least one local management unit,
les étapes a) à c) représentant un cycle qui est répété plusieurs fois. steps a) to c) representing a cycle which is repeated several times.
12. Procédé selon la revendication 1 1 , dans lequel le cycle comprend des étapes complémentaires de : 12. The method of claim 11, wherein the cycle comprises additional steps of:
d) Réception par l’unité de commande centrale de troisièmes paramètres relatifs à la puissance électrique globale délivrée par ladite au moins une unité de gestion locale, et e) Comparaison de ces troisièmes paramètres à la valeur de consigne. d) Reception by the central control unit of third parameters relating to the overall electrical power delivered by said at least one local management unit, and e) Comparison of these third parameters to the setpoint.
1 3. Procédé selon la revendication 1 1 ou 1 2, dans lequel la valeur de consigne est calculée par l’unité (38) de commande centrale en fonction d’un état de charge de ladite au moins une batterie (32). 1 3. The method of claim 1 1 or 1 2, wherein the setpoint is calculated by the central control unit (38) according to a state of charge of said at least one battery (32).
14. Procédé selon l’une des revendications 1 1 à 1 3, dans lequel la durée entre deux cycles successifs est ajustable et est par exemple comprise entre 500ms et 5s. 14. Method according to one of claims 1 1 to 1 3, wherein the duration between two successive cycles is adjustable and is for example between 500ms and 5s.
15. Procédé selon l’une des revendications 1 1 à 14, dans lequel il comprend des étapes préliminaires de : 15. Method according to one of claims 1 1 to 14, wherein it comprises preliminary steps of:
i) Configuration de l’unité (38) de commande centrale en fonction de caractéristiques propres à ladite au moins une batterie (32), et i) Configuration of the central control unit (38) according to characteristics specific to said at least one battery (32), and
ii) Configuration de l’unité (38) de commande centrale en fonction de caractéristiques propres aux panneaux (20). ii) Configuration of the central control unit (38) according to the characteristics of the panels (20).
PCT/FR2020/050010 2019-01-14 2020-01-06 Autonomous module for recharging an electric vehicle, and operating method thereof WO2020148491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900308A FR3091676B1 (en) 2019-01-14 2019-01-14 Autonomous module for recharging an electric vehicle and its operating method
FR1900308 2019-01-14

Publications (1)

Publication Number Publication Date
WO2020148491A1 true WO2020148491A1 (en) 2020-07-23

Family

ID=67742495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/050010 WO2020148491A1 (en) 2019-01-14 2020-01-06 Autonomous module for recharging an electric vehicle, and operating method thereof

Country Status (2)

Country Link
FR (1) FR3091676B1 (en)
WO (1) WO2020148491A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135201A1 (en) * 2010-04-26 2011-11-03 Solairemed (Sarl) Photovoltaic installation and process enabling an electric power equal to a predetermined value to be delivered
US20120313568A1 (en) * 2011-06-08 2012-12-13 Princeton Satellite Systems Solar powered charging station for electric and plug-in hybrid vehicles
CN105751915A (en) * 2016-05-16 2016-07-13 蒋小春 Photovoltaic energy storage direct current quick charging pile
WO2018142398A1 (en) * 2017-01-31 2018-08-09 Solarwat Ltd. Solar modules having solar sub cells with matrix connections between the solar sub cells
US20180264955A1 (en) * 2017-03-04 2018-09-20 Ranjan Kumar Gupta System, apparatus and methods of electricity generation to end-use for fast charging of electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135201A1 (en) * 2010-04-26 2011-11-03 Solairemed (Sarl) Photovoltaic installation and process enabling an electric power equal to a predetermined value to be delivered
US20120313568A1 (en) * 2011-06-08 2012-12-13 Princeton Satellite Systems Solar powered charging station for electric and plug-in hybrid vehicles
CN105751915A (en) * 2016-05-16 2016-07-13 蒋小春 Photovoltaic energy storage direct current quick charging pile
WO2018142398A1 (en) * 2017-01-31 2018-08-09 Solarwat Ltd. Solar modules having solar sub cells with matrix connections between the solar sub cells
US20180264955A1 (en) * 2017-03-04 2018-09-20 Ranjan Kumar Gupta System, apparatus and methods of electricity generation to end-use for fast charging of electric vehicle

Also Published As

Publication number Publication date
FR3091676B1 (en) 2021-05-28
FR3091676A1 (en) 2020-07-17

Similar Documents

Publication Publication Date Title
EP3185386B1 (en) Method for controlling a micro-network for electricity distribution
EP3016817B1 (en) Electric vehicle and associated transport installation
CA2844356C (en) Electric battery charging installation and method
EP3071441B1 (en) Device and method for recharging electric or hybrid vehicles
WO2018154206A1 (en) Battery with groups of storage cells respectively associated with conversion modules, for supplying voltages of different types
WO2018193173A1 (en) Battery with cell group and conversion module assemblies, for supplying various voltages and carrying out various charging operations
EP3676541B1 (en) Heating apparatus comprising a battery and a power inverter for introducing energy from the battery to the electrical supply source
EP3672019B1 (en) Method and device for controlling the battery recharging and discharge of a set of said batteries with partial recharging of a battery
CA2913071A1 (en) Installation for returning energy to an item of equipment to be supplied with energy, in particular an electric vehicle
FR2952247A1 (en) MANAGING THE RECHARGE OF A BATTERY PARK
FR2970442A1 (en) VOLTAGE REGULATION IN A HYBRID RAIL VEHICLE
FR2944162A1 (en) POWER SUPPLY SYSTEM AND CHARGE CONTROL METHOD OF ELECTROCHEMICAL GENERATORS
FR2976138A1 (en) CAPACITIVE ENERGY STORAGE SYSTEM
WO2020148491A1 (en) Autonomous module for recharging an electric vehicle, and operating method thereof
WO1999025053A1 (en) Method and system for charging a battery with storage cell modules
FR3013526A1 (en) METHOD FOR REGULATING THE FREQUENCY OF AN ELECTRICAL NETWORK
EP2772983B1 (en) Energy storage device and related management method
Parmar et al. A review on renewable energy integration for electric vehicles
EP3731363A1 (en) System and method for supplying electric power
EP2533391B1 (en) Multi-source management system of electrical generators
FR2999029A1 (en) Device for regulating electrical supply of electrical supply network having variable consumption, has actuator for operating power generating unit, where device synchronizes generator frequency and voltage to provide missing power
EP3273565B1 (en) Method for recovering surplus energy in a plant for producing electric energy
FR3110036A1 (en) Method for controlling an energy storage system comprising at least two elementary energy storage devices, associated control device and energy storage system comprising such a control device
FR3121797A1 (en) DEVICE FOR CREATING A DC VOLTAGE BUS FOR A POLYPHASE ELECTRICAL SYSTEM, MOTOR VEHICLE AND RENEWABLE ENERGY GENERATOR COMPRISING SUCH A DEVICE
Merhy Modeling, control and optimization of energy flows: implementation on the charging of electric vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20705402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20705402

Country of ref document: EP

Kind code of ref document: A1