WO2020147775A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2020147775A1
WO2020147775A1 PCT/CN2020/072410 CN2020072410W WO2020147775A1 WO 2020147775 A1 WO2020147775 A1 WO 2020147775A1 CN 2020072410 W CN2020072410 W CN 2020072410W WO 2020147775 A1 WO2020147775 A1 WO 2020147775A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci format
size
monitored
uss
css
Prior art date
Application number
PCT/CN2020/072410
Other languages
English (en)
French (fr)
Inventor
罗超
刘仁茂
吉村友树
Original Assignee
夏普株式会社
鸿颖创新有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 鸿颖创新有限公司 filed Critical 夏普株式会社
Priority to US17/423,605 priority Critical patent/US20220116143A1/en
Publication of WO2020147775A1 publication Critical patent/WO2020147775A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0091Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location arrangements specific to receivers, e.g. format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the present invention relates to the field of wireless communication technology, and in particular to methods executed by user equipment and corresponding user equipment.
  • Non-Patent Document 2 a new research project on 5G technical standards (see Non-Patent Document 1) was approved.
  • the purpose of this research project is to develop a new radio (New Radio: NR) access technology to meet all 5G application scenarios, requirements and deployment environments.
  • NR has three main application scenarios: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC) and Ultra-Reliable and Low Latency Communications: URLLC) .
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-Reliable and Low Latency Communications
  • 5G uses DCI (Downlink Control Information, Downlink Control Information) to schedule downlink transmission on PDSCH (Physical Downlink Shared Channel) and uplink transmission on PUSCH (Physical Uplink Shared Channel).
  • DCI Downlink Control Information, Downlink Control Information
  • 5G supports multiple DCI formats, as shown in Table 1. After channel coding of each DCI format, its CRC can be scrambled with an RNTI (Radio-Network Temporary Identifier) to indicate a specific purpose and/or one or more target UEs. For example, the CRC used to indicate the DCI format of paging may be scrambled with P-RNTI.
  • RNTI Radio-Network Temporary Identifier
  • the 5G DCI is carried on the PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • a PDCCH is composed of one or more CCEs (control-channel elements, control channel elements), and a CCE is composed of multiple (for example, 6) REGs (resource-element groups), and REGs are Defined in CORESET (control-resource set).
  • a CORESET contains multiple resource blocks in the frequency domain (each resource block consists of 12 consecutive subcarriers in the frequency domain), and contains one or more (for example, 1, or 2, or 3) in the time domain ) OFDM symbol.
  • the UE monitors the PDCCH transmission of the base station on one or more search space sets (search space sets), where each search space set may correspond to a set of PDCCH candidates (PDCCH candidates).
  • search space sets search space sets
  • the UE performs blind detection (blind detection) at the time and frequency position of the PDCCH candidate to be monitored to determine whether there is a PDCCH sent to itself.
  • the search space collection can be divided into a CSS (Common Search Space) collection and a USS CUE-specific search space (UE-specific search space) collection, for example:
  • ⁇ Type 0-PDCCH CSS collection For example, it is configured through the pdcch-ConfigSIB1 parameter in MIB, or through the searchSpaceSIB1 parameter in PDCCH-ConfigCommon IE, or through the searchSpaceZero parameter in PDCCH-ConfigCommon IE.
  • the CRC of the corresponding DCI format can be scrambled with SI-RNTI.
  • ⁇ Type 0A-PDCCH CSS collection For example, it is configured through the searchSpaceOtherSystemInformation parameter in PDCCH-ConfigCommon IE.
  • the CRC of the corresponding DCI format can be scrambled with SI-RNTI.
  • ⁇ Type 1-PDCCH CSS collection For example, it is configured through the ra-SearchSpace parameter in PDCCH-ConfigCommon IE.
  • the CRC of the corresponding DCI format can be scrambled with RA-RNTI or TC-RNTI.
  • ⁇ Type 2-PDCCH CSS collection For example, it is configured through the pagingSearchSpace parameter in PDCCH-ConfigCommon IE.
  • the CRC of the corresponding DCI format can be scrambled with P-RNTI.
  • the result is one or more type 3-PDCCH CSS configured through the SearchSpace IE, and the searchSpaceType parameter of each of them is configured as common.
  • the CRC of the corresponding DCI format can use INT-RNTI, or SFI-RNTI, or TPC-PUSCH-RNTI, or TPC-PUCCH-RNTI, or TPC-SRS-RNTI, or C-RNTI, or MCS-C-RNTI, Or CS-RNTI scrambling.
  • the result is one or more USS configured through the SearchSpace IE, and the searchSpaceType parameter of each of them is configured as ue-Specific.
  • the CRC of the corresponding DCI format can be scrambled with C-RNTI, or MCS-C-RNTI, or SP-CSI-RNTI, or CS-RNTI.
  • the UE needs to assume a DCI size (DCI size) when blindly detecting PDCCH candidates. Due to the limitation of processing capacity, the UE can only monitor a certain number of DCI sizes in each time slot.
  • Table 2 summarizes the types of search space sets classified according to the DCI size, their corresponding DCI formats, and the RNTI used to scramble the DCI and CRC. among them,
  • All rows of the same "DCI size category" (for example, a combination of all search space set types, DCI formats, and RNTI corresponding to 1_0_css) correspond to the same DCI size.
  • the "DCI size" column is just an example of possible DCI sizes.
  • the actual DCI size depends on system configuration information and/or UE-specific configuration information.
  • the DCI format associated with a given USS set can only be 0_0 and 1_0, or 0_1 and 1_1.
  • the search space set type, DCI format, and RNTI (for some DCI formats) that the UE actually monitors depend on the system configuration information and/or UE-specific configuration information.
  • ⁇ FDRA Frequency Domain Resource Assignment
  • DCI formats 1_0 and 1_1 the size of FDRA and Relevant (for example, the size of FDRA can be Bits);
  • DCI formats 0_0 and 0_1 the size of FDRA and related. among them, with The value of depends on the DCI format and the type of the corresponding search space set, and may be adjusted to meet the limitation of the DCI size.
  • the search space set, DCI format and RNTI configured by the network for the UE must meet all the following conditions:
  • the existing 3GPP 5G standard defines a DCI size alignment process as follows:
  • Step 0 (determine 0_0_css and 1_0_css, and align the size of 0_0_css to the size of 1_0_css):
  • the size of the frequency domain resource allocation field in DCI format 0_0 and Related (for example, the size of the frequency domain resource allocation field is Bits), It is equal to the size of the initial uplink BWP (for example, configured through the parameter initialUplinkBWP).
  • the size of the frequency domain resource allocation field in DCI format 1_0 and Related (for example, the size of the frequency domain resource allocation field is Bits). If CORESET 0 has been configured in the cell, then Equal to the size of CORESET 0; if CORESET 0 is not configured in the cell, then It is equal to the size of the initial downlink BWP (for example, configured through the parameter initialDownlinkBWP).
  • the UE is configured to monitor the DCI format 0_0 in the CSS, and the number of information bits of the 0_0_css before filling is less than the load size of the 1_0_css used to schedule the same serving cell, then zero filling is performed on the 0_0_css until the The load size of 0_0_css is equal to the load size of 1_0_css.
  • the 0_0_css IF resource allocation field is truncated To reduce the bit width of the frequency domain resource allocation field, the first several most significant bits of, so that the size of 0_0_css is equal to the size of 1_0_css.
  • Step 1 (determine 0_0_uss and 1_0_uss, and align the smaller to the larger):
  • the size of the frequency domain resource allocation field in DCI format 0_0 and Related (for example, the size of the frequency domain resource allocation field is Bits), Equal to the size of the effective upstream BWP.
  • the size of the frequency domain resource allocation field in DCI format 1_0 and Related (for example, the size of the frequency domain resource allocation field is Bits). Equal to the size of the effective downlink BWP.
  • the UE If the UE is configured to monitor the DCI format 0_0 in the USS, and the number of information bits of the 0_0_uss before padding is less than the load size of the 1_0_uss used to schedule the same serving cell, perform zero padding on the 0_0_uss until the The load size of 0_0_uss is equal to the load size of 1_0_uss.
  • the UE If the UE is configured to monitor the DCI format 1_0 in the USS, and the number of information bits of the 1_0_uss before padding is less than the load size of the 0_0_uss used to schedule the same serving cell, then perform zero padding on the 1_0_uss until the The load size of 1_0_uss is equal to the load size of 0_0_uss.
  • Step 2 (If necessary, fill 0_1_uss and/or 1_1_uss with 0 so that the size of either of them is not equal to the size of 0_0_uss/1_0_uss):
  • Step 3 (if the DCI size limit is met, the process ends):
  • Step 4 (Otherwise, cancel step 2, re-determine 1_0_uss and 0_0_uss, and align the sizes of 1_0_uss and 0_0_uss to 1_0_css/0_0_css):
  • the size of the frequency domain resource allocation field in DCI format 1_0 and Related (for example, the size of the frequency domain resource allocation field is Bits). If CORESET 0 has been configured in the cell, then Equal to the size of CORESET 0; if CORESET 0 is not configured in the cell, then It is equal to the size of the initial downlink BWP (for example, configured by the parameter initialDownlinkBWP).
  • the size of the frequency domain resource allocation field in DCI format 0_0 is Related (for example, the size of the frequency domain resource allocation field is Bits), It is equal to the size of the initial uplink BWP (for example, configured by the parameter initialUplinkBWP).
  • the most significant bits at the beginning of the frequency domain resource allocation field in the 0_0_css are truncated to reduce
  • the bit width of the frequency domain resource allocation field is such that the size of 0_0_uss is equal to the size of 1_0_uss.
  • the mechanism related to DCI size alignment has at least the following problems:
  • ⁇ It is not considered that the size of 1_0_css/0_0_css after step 1 or step 2 may be equal to 1_1_uss or 0_1_uss. This makes it possible that the UE cannot distinguish between 1_0_css and 1_1_uss, or between 0_0_css and 0_1_uss.
  • Non-Patent Document 1 RP-160671, New SID Proposal: Study on New Radio Access Technology
  • Non-Patent Document 2 RP-170855, New WID on New Radio Access Technology
  • the present invention provides a method executed by a user equipment and a user equipment, which can avoid the DCI format ambiguity generated when the UE receives the DCI and improve the reliability of the downlink control signaling.
  • a method executed by a user equipment UE including: the first step is to determine the size of the downlink control information DCI format 0_0 monitored in the common search space, namely the CSS, and the DCI format 1_0 monitored in the CSS Size, and align the size of the DCI format 0_0 monitored in the CSS and the size of the DCI format 1_0 monitored in the CSS; the second step is to determine the size of the DCI format 0_0 monitored in the UE-specific search space, that is, the USS And the size of the DCI format 1_0 monitored in the USS, and align the size of the DCI format 0_0 monitored in the USS with the size of the DCI format 1_0 monitored in the USS; and the third step is to determine to monitor in the USS The size of the DCI format 0_1 and/or the size of the DCI format 1_1 monitored in the USS, and the determined size of the DCI format 0_1 monitored in the USS and/or the DCI format
  • the method further includes: a fourth step, judging whether the following condition 1 and condition 2 are met at the same time: Condition 1, the total number of sizes of different DCI formats configured for the UE in the cell No more than the first number; and condition 2, the total number of sizes of different DCI formats configured for the UE in the cell for the cell-radio network temporary identity, ie C-RNTI, does not exceed the second number.
  • condition 1 the total number of sizes of different DCI formats configured for the UE in the cell No more than the first number
  • condition 2 the total number of sizes of different DCI formats configured for the UE in the cell for the cell-radio network temporary identity, ie C-RNTI, does not exceed the second number.
  • the method further includes: a fifth step, canceling the DCI format 0_1 monitored in the USS in the third step The size and/or the adjustment of the size of the DCI format 1_1 monitored in the USS; and the sixth step is to re-determine and realign the size of the DCI format 0_0 monitored in the USS and the DCI format 1_0 monitored in the USS Size so that the realigned size of the DCI format 0_0 monitored in the USS or the size of the DCI format 1_0 monitored in the USS is equal to the aligned size of the DCI format 1_0 monitored in the first step The size of the DCI format 0_0 or the size of the DCI format 1_0 monitored in the CSS.
  • the DCI format 0_0 monitored in the CSS is Perform zero padding to align the size of the DCI format 0_0 monitored in the CSS with the size of the DCI format 1_0 monitored in the CSS; and if the size of the DCI format 0_0 monitored in the CSS is greater than the size of the DCI format 0_0 monitored in the CSS.
  • the size of the DCI format 1_0 monitored in the CSS is truncated at the beginning of one or more of the most significant bits of the frequency domain resource allocation field of the DCI format 0_0 monitored in the CSS, so as to align the The size of the DCI format 0_0 and the size of the DCI format 1_0 monitored in the CSS.
  • zero padding is performed on the smaller of the size of the DCI format 0_0 monitored in the USS and the size of the DCI format 1_0 monitored in the USS to align the The size of the DCI format 0_0 monitored in the USS and the size of the DCI format 1_0 monitored in the USS.
  • the determined DCI format 0_1 monitored in the USS and/or the DCI format 1_1 monitored in the USS is zero-filled to perform zero padding on the DCI format 0_1 monitored in the USS.
  • the size of the monitored DCI format 0_1 and/or the size of the DCI format 1_1 monitored in the USS are adjusted.
  • a method executed by a user equipment UE includes: obtaining configuration information of a first search space set and configuration information of a second search space set respectively; according to the obtained first search The configuration information of the space set and the configuration information of the second search space set, monitoring the first physical downlink control channel PDCCH candidates and all the PDCCH candidates associated with the first downlink control information DCI format configured in the first search space set The second PDCCH candidate associated with the second DCI format configured in the second search space set; and when the PDCCH priority condition is met, only the first PDCCH candidate or only the second PDCCH candidate is decoded .
  • the PDCCH priority condition includes at least one of the following conditions: conditions related to the control resource set CORESET, conditions related to the type of DCI format, conditions related to the size of the DCI format, and wireless network temporary identification RNTI Related conditions, conditions related to PDCCH scrambling, and conditions related to control channel element CCE.
  • a user equipment which includes: a processor; and a memory storing instructions, wherein the instructions execute the above-mentioned method when run by the processor.
  • the DCI format ambiguity generated when the UE receives the DCI is avoided, and the reliability of the downlink control signaling is improved.
  • Fig. 1 is a flowchart showing a method executed by a user equipment according to the first embodiment of the present invention.
  • Fig. 2 is a flowchart showing a method executed by a user equipment according to the second embodiment of the present invention.
  • Fig. 3 is a flowchart showing a method executed by a user equipment according to the third embodiment of the present invention.
  • Fig. 4 is a flowchart showing a method executed by a user equipment according to the fourth embodiment of the present invention.
  • Fig. 5 is a block diagram schematically showing a user equipment involved in the present invention.
  • the following uses the 5G mobile communication system and its subsequent evolved versions as an example application environment to specifically describe multiple embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but is applicable to more other wireless communication systems, such as communication systems after 5G and 4G mobile communication systems before 5G.
  • 3GPP 3rd Generation Partnership Project
  • the third generation partnership project the third generation partnership project
  • BWP Bandwidth Part, Bandwidth Part
  • CA Carrier Aggregation, carrier aggregation
  • CCE control-channel element, control channel element
  • CORESET control-resource set, control resource set
  • CP Cyclic Prefix, cyclic prefix
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • DCI Downlink Control Information, downlink control information
  • DFT-s-OFDM Discrete Fourier Transformation Spread Orthogonal Frequency Division Multiplexing, Discrete Fourier Transform Spread Spectrum Orthogonal Frequency Division Multiplexing
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • DM-RS Demodulation reference signal, demodulation reference signal
  • eMBB Enhanced Mobile Broadband, enhanced mobile broadband communications
  • FDRA Frequency Domain Resource Assignment, frequency domain resource allocation
  • LCID Logical Channel ID, logical channel identifier
  • LTE-A Long Term Evolution-Advanced, an upgraded version of long-term evolution technology
  • MAC Medium Access Control, medium access control
  • MAC CE MAC Control Element, MAC control element
  • MCG Master Cell Group, primary cell group
  • MIB Master Information Block, master information block
  • mMTC Massive Machine Type Communication, large-scale machine type communication
  • NUL Normal Uplink, normal uplink
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • PBCH Physical Broadcast Channel, physical broadcast channel
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • PRB Physical Resource Block, physical resource block
  • PSS Primary Synchronization Signal, the primary synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, main straight line synchronization signal
  • PTAG Primary Timing Advance Group, the main timing advance group
  • PUSCH Physical uplink shared channel, physical uplink shared channel
  • PUCCH Physical uplink control channel, physical uplink control channel
  • RAR Random Access Response, Random Access Response
  • RB Resource Block, resource block
  • REG resource-element group, resource element group
  • Radio-Network Temporary Identifier Radio-Network Temporary Identifier, wireless network temporary identifier
  • RRC Radio Resource Control, radio resource control
  • SCG Secondary Cell Group, secondary cell group
  • SCS Subcarrier Spacing, subcarrier spacing
  • SFN System Frame Number, system frame number
  • SIB System Information Block, system information block
  • SpCell Special Cell, special cell
  • SRS Sounding Reference Signal, sounding reference signal
  • SSB SS/PBCH block, synchronization signal/physical broadcast channel block
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • Timing Advance Timing Advance
  • TAG Timing Advanced Group, timing advance group
  • TDD Time Division Duplexing, time division duplex
  • TPC Transmit power control, transmission power control
  • UE User Equipment, user equipment
  • ⁇ A DCI format (for example, DCI format 0_0 monitored in CSS, DCI format 1_0 monitored in CSS, DCI format 0_0 monitored in USS, DCI format 1_0 monitored in USS, and The size of the DCI format 0_1 monitored in the USS and the DCI format 1_1 monitored in the USS can also be said to be the load size of the DCI format.
  • Uplink carrier (uplink carrier, or UL carrier, or non-SUL carrier) can pass, for example, the parameter uplinkConfigCommon in ServingCellConfigCommon IE, and/or the parameter uplinkConfigCommon in ServingCellConfigCommonSIB IE, and/or the parameter uplinkConfig in ServingCellConfig IE, and/or Configure other parameters.
  • Supplementary uplink carrier (supplementary uplink carrier, or SUL carrier) can be configured by, for example, the parameter supplementaryUplinkConfig in ServingCellConfigCommon IE, and/or the parameter supplementaryUplink in ServingCellConfigCommonSIB IE, and/or the parameter supplementaryUplink in ServingCellConfig IE, and/or other parameters .
  • the downlink carrier (downlink carrier, or DL carrier) can be configured through, for example, the parameter downlinkConfigCommon in ServingCellConfigCommon IE, and/or the parameter downlinkConfigCommon in ServingCellConfigCommonSIB IE, and/or other parameters.
  • Fig. 1 is a flowchart showing a method executed by a user equipment UE according to the first embodiment of the present invention. Wherein, the method can be applied to any one of the following:
  • uplink carrier and downlink carrier as well as supplementary uplink carrier and downlink carrier.
  • a downlink carrier in a cell (for example, when no uplink carrier is configured in the cell, and no supplementary uplink carrier is configured. Another example, when the cell is not configured to monitor the DCI format for scheduling uplink data transmission, Such as DCI format 0_0, or DCI format 0_1).
  • An uplink carrier in a cell (for example, when no supplementary uplink carrier is configured in the cell, and the UE is not configured to monitor the DCI format for scheduling downlink data transmission, such as DCI format 1_0, or DCI format 1_1).
  • a supplementary uplink carrier in a cell (for example, when the cell is not configured with an uplink carrier, and the UE is not configured to monitor the DCI format for scheduling downlink data transmission, such as DCI format 1_0, or DCI format 1_1).
  • the steps performed by the user equipment UE include: a first step, a second step, a third step, a fourth step, and a fifth step.
  • the first step is performed, specifically, one or more of the following is performed:
  • the size of the frequency domain resource allocation field in the DCI format 0_0 and Related (for example, the size of the frequency domain resource allocation field may be Bits).
  • the size of the frequency domain resource allocation field in the DCI format 1_0 and Related may be Bits. among them, It may be related to CORESET 0 (ie CORESET with ID equal to 0) and/or initial downlink BWP (initial DL BWP, for example, configured through the parameter initialDownlinkBWP). For example, if CORESET 0 is configured in the cell, then It can be equal to the size of CORESET 0; if CORESET 0 is not configured in the cell, then It can be equal to the size of the initial downlink BWP.
  • CORESET 0 ie CORESET with ID equal to 0
  • initial downlink BWP initial downlink BWP
  • the UE is configured to monitor DCI format 0_0 in the CSS (or, optionally, if the UE is configured to monitor DCI format 0_0 and DCI format 1_0 in the CSS), and the number of information bits of the DCI format 0_0 before filling If it is less than the load size of the DCI format 1_0 monitored in the CSS for scheduling the same serving cell, zero padding is performed on the DCI format 0_0 until the load size of the DCI format 0_0 is equal to the load size of the DCI format 1_0.
  • the frequency domain resources are reduced by truncating the first several most significant bits of the frequency domain resource allocation field in the DCI format 0_0
  • the bit width of the field is allocated so that the size of the DCI format 0_0 is equal to the size of the DCI format 1_0.
  • the DCI format 0_0 monitored in the CSS and the DCI format 1_0 monitored in the CSS can also be determined in other ways, and/or align the DCI format 0_0 monitored in the CSS with the DCI format 0_0 monitored in the CSS.
  • the second step is performed, specifically, one or more of the following is performed:
  • the size of the frequency domain resource allocation field in the DCI format 0_0 and Related (for example, the size of the frequency domain resource allocation field may be Bits).
  • the size of the frequency domain resource allocation field in the DCI format 1_0 and Related (for example, the size of the frequency domain resource allocation field may be Bits). among them, It can be related to the active downlink BWP (active DL BWP), for example, It can be equal to the size of the effective downlink BWP.
  • the UE is configured to monitor the DCI format 0_0 in the USS (or, optionally, if the UE is configured to monitor the DCI format 0_0 and DCI format 1_0 in the USS), and the number of information bits of the DCI format 0_0 before filling If it is less than the load size of the DCI format 1_0 monitored in the USS for scheduling the same serving cell, zero padding is performed on the DCI format 0_0 until the load size of the DCI format 0_0 is equal to the load size of the DCI format 1_0.
  • the UE is configured to monitor DCI format 1_0 in the USS (or, optionally, if the UE is configured to monitor DCI format 0_0 and DCI format 1_0 in the USS), and the number of information bits of the DCI format 1_0 before filling If it is less than the load size of the DCI format 0_0 monitored in the USS for scheduling the same serving cell, zero padding is performed on the DCI format 1_0 until the load size of the DCI format 1_0 is equal to the load size of the DCI format 0_0.
  • the DCI format 0_0 monitored in the USS and the DCI format 1_0 monitored in the USS can also be determined in other ways, and/or aligned with the DCI format 0_0 monitored in the USS and the DCI format 0_0 monitored in the USS.
  • the third step is executed, specifically, one or more of the following is executed:
  • the size of the frequency domain resource allocation field in the DCI format 0_1 and Related (for example, the size of the frequency domain resource allocation field may be Bits).
  • the size of the frequency domain resource allocation field in the DCI format 1_1 and Related (for example, the size of the frequency domain resource allocation field may be Bits). among them, It can be equal to the size of the effective downlink BWP.
  • the UE is configured to monitor the DCI format 0_1 in the USS, adjust the size of the DCI format 0_1. For example, do any of the following:
  • a 1-bit zero padding is performed on the DCI format 0_1.
  • the UE If the UE is configured to monitor the DCI format 0_1 in the USS, it will perform 0 or 1 bit zero padding on the DCI format 0_1 until the size of the DCI format 0_1 is not equal to the DCI format 0_0/1_0 monitored in the CSS the size of.
  • the UE If the UE is configured to monitor the DCI format 0_1 in the USS, and the size of the DCI format 0_1 is equal to the size of the DCI format 0_0/1_0 monitored in the CSS, then perform 1-bit zero padding on the DCI format 0_1.
  • the size of the DCI format 0_1 is equal to the size of the DCI format 0_0/1_0 monitored in the CSS.
  • the UE If the UE is configured to monitor the DCI format 0_1 in the USS, it will perform 0 or 1 or 2 bit zero padding on the DCI format 0_1 until the size of the DCI format 0_1 is neither equal to the DCI monitored in the CSS The size of the format 0_0/1_0 is not equal to the size of the DCI format 0_0/1_0 monitored in the USS. E.g,
  • the UE is configured to monitor DCI format 0_1 in the USS, and the size of the DCI format 0_1 is equal to the size of the DCI format 0_0/1_0 monitored in the CSS or the size of the DCI format 0_0/1_0 monitored in the USS, then The DCI format 0_1 performs 1 or 2 bit zero padding until the size of the DCI format 0_1 is neither equal to the size of the DCI format 0_0/1_0 monitored in the CSS nor equal to the size of the DCI format 0_0/1_0 monitored in the USS The size of the DCI format 0_0/1_0. E.g,
  • the UE is configured to monitor the DCI format 1_1 in the USS, adjust the size of the DCI format 1_1. For example, do any of the following:
  • the UE If the UE is configured to monitor the DCI format 1_1 in the USS, it will perform 0 or 1 bit zero padding on the DCI format 1_1 until the size of the DCI format 1_1 is not equal to the DCI format 0_0/1_0 monitored in the USS the size of.
  • a 1-bit zero padding is performed on the DCI format 1_1.
  • the UE If the UE is configured to monitor the DCI format 1_1 in the USS, it will perform 0 or 1 bit zero padding on the DCI format 1_1 until the size of the DCI format 1_1 is not equal to the DCI format 0_0/1_0 monitored in the CSS the size of.
  • a 1-bit zero padding is performed on the DCI format 1_1.
  • the UE If the UE is configured to monitor the DCI format 1_1 in the USS, it will perform zero or 1 or 2 bit zero padding on the DCI format 1_1 until the size of the DCI format 1_1 is neither equal to the DCI monitored in the CSS The size of the format 0_0/1_0 is not equal to the size of the DCI format 0_0/1_0 monitored in the USS. E.g,
  • the UE is configured to monitor DCI format 1_1 in the USS, and the size of the DCI format 1_1 is equal to the size of the DCI format 0_0/1_0 monitored in the CSS or the size of the DCI format 0_0/1_0 monitored in the USS, then The DCI format 1_1 performs 1 or 2 bit zero padding until the size of the DCI format 1_1 is neither equal to the size of the DCI format 0_0/1_0 monitored in the CSS nor equal to the size of the DCI format 0_0/1_0 monitored in the USS DCI format
  • the size of the DCI format 0_0/1_0 monitored in the CSS refers to the common size of the DCI format 0_0 monitored in the CSS and the DCI format 1_0 monitored in the CSS.
  • the size of the DCI format 0_0/1_0 monitored in the USS refers to the common size of the DCI format 0_0 monitored in the USS and the DCI format 1_0 monitored in the USS.
  • the DCI format 0_1 monitored in the USS and the DCI format 0_0/1_0 monitored in the USS may be monitored in different USSs respectively (for example, the DCI format 0_1 monitored in the USS corresponds to For a USS configured through SearchSpace IE, the DCI format 0_0/1_0 monitored in the USS corresponds to another USS configured through SearchSpace IE).
  • the DCI format 1_1 monitored in the USS and the DCI format 0_0/1_0 monitored in the USS may be monitored in different USSs (for example, the DCI format 1_1 monitored in the USS corresponds to For a USS configured through SearchSpace IE, the DCI format 0_0/1_0 monitored in the USS corresponds to another USS configured through SearchSpace IE).
  • the DCI format 0_1 monitored in the USS may also be determined in other ways, and/or the size of the DCI format 0_1 may be adjusted, and/or the DCI format 1_1 monitored in the USS may be determined, and/ Or adjust the size of the DCI format 1_1.
  • the fourth step is executed, specifically, one or more of the following is executed:
  • the "used for C-RNTI" may refer to using C-RNTI to scramble the CRC of the DCI format.
  • the size of the frequency domain resource allocation field in the DCI format 1_0 and Related (for example, the size of the frequency domain resource allocation field may be Bits). among them, It can be related to CORESET 0 and/or the initial downlink BWP. For example, if CORESET 0 has been configured in the cell, then It can be equal to the size of CORESET 0; if CORESET 0 is not configured in the cell, then It can be equal to the size of the initial downlink BWP.
  • the size of the frequency domain resource allocation field in the DCI format 0_0 and Related (for example, the size of the frequency domain resource allocation field may be Bits).
  • this action is performed only when the UE is configured to monitor DCI format 0_0 in the USS.
  • this action is performed only when the UE is configured to monitor DCI format 0_0 and DCI format 1_0 in the USS.
  • the DCI format 0_0 IF is truncated The first several most significant bits of the domain resource allocation field are used to reduce the bit width of the frequency domain resource allocation field, so that the size of the DCI format 0_0 is equal to the size of the DCI format 1_0.
  • this action is performed only when the UE is configured to monitor DCI format 0_0 in the USS.
  • this action is performed only when the UE is configured to monitor DCI format 0_0 and DCI format 1_0 in the USS.
  • the padding bits introduced in S105 can also be processed in other ways, and/or the DCI format 0_0 monitored in the USS and/or the DCI format monitored in the USS can be re-determined 1_0, and/or adjust the size of the DCI format 0_0 and/or the DCI format 1_0.
  • the zero padding method can be any of the following (if applicable under):
  • the number of zero-padding bits can be a constant, such as 0, 1, or 2.
  • the zero padding does not correspond to any operation (for example, the operation of generating zero padding bits, or the operation of filling or adding or inserting zero padding bits).
  • the number of zero-padding bits may also be an indeterminate number.
  • the zero-padding operation corresponds to zero or one or more zero-padding bits until a condition related to the zero-padding operation is satisfied. For example, if the size of DCI format A is 39 bits, the size of DCI format B is 39 bits, and the size of DCI format C is 40 bits, then "zero padding is performed on DCI format A until the size of DCI format A is neither equal to DCI format The size of B is also not equal to the size of DCI format C" means that 2-bit zero padding is performed on DCI format A.
  • the zero padding operation can also be performed in other ways.
  • the uplink carrier in the first embodiment of the present invention, can be either mandatory or optional; the supplementary uplink carrier can be mandatory or optional.
  • Optional configuration in the first embodiment of the present invention, in the cell, the uplink carrier can be either mandatory or optional; the supplementary uplink carrier can be mandatory or optional.
  • the The reference bandwidth value (denoted as BW ref ) corresponding to each reference bandwidth condition may be respectively taken when one or more reference bandwidth conditions are satisfied.
  • Each of the reference bandwidth conditions can be one or more of the following (any combination of "and” or “or” when applicable):
  • ⁇ No conditions that is, the reference bandwidth condition can always be met. For example, at this time, "if an uplink carrier has been configured in the cell and a supplementary uplink carrier has been configured and the reference bandwidth condition is met" is equivalent to "if an uplink carrier has been configured in the cell and a supplementary uplink carrier has been configured ".
  • ⁇ No uplink carrier is configured in the cell.
  • the uplink carrier has been configured in the cell.
  • No supplementary uplink carrier is configured in the cell.
  • the supplementary uplink carrier has been configured in the cell.
  • ⁇ No PUCCH carrier is configured in the cell.
  • the PUCCH carrier has been configured in the cell.
  • the parameter pusch-Config is not configured on the supplementary uplink carrier.
  • the parameter pucch-Config is not configured on the uplink carrier.
  • the parameter pucch-Config is not configured on the supplementary uplink carrier.
  • the parameter pucch-Config has been configured on the supplementary uplink carrier.
  • the uplink carrier is not configured to transmit PUSCH.
  • the supplementary uplink carrier is not configured to transmit PUSCH.
  • the uplink carrier has been configured to transmit PUSCH.
  • the supplementary uplink carrier has been configured to transmit PUSCH.
  • the uplink carrier is not configured to transmit PUCCH.
  • the supplementary uplink carrier is not configured to transmit PUCCH.
  • the uplink carrier has been configured to transmit PUCCH.
  • the supplementary uplink carrier has been configured to transmit PUCCH.
  • the PUCCH carrier is not configured to transmit PUSCH.
  • the PUCCH carrier has been configured to transmit PUSCH.
  • the PUCCH carrier is the uplink carrier.
  • the PUCCH carrier is the supplementary uplink carrier.
  • Each reference bandwidth condition becomes another reference bandwidth condition after taking "not” (or "inverse”).
  • the uplink carrier has been configured to transmit PUSCH
  • the supplementary uplink carrier has been configured to transmit PUSCH
  • the result is "The uplink carrier is not configured to transmit PUSCH”
  • the supplementary uplink carrier is not configured to transmit PUSCH” is also a reference bandwidth condition.
  • the one or more reference bandwidth conditions and their respective reference bandwidth values can be defined for S101, S103, S105, and S109 respectively, or the same definition can be used for S101, S103, S105, and S109.
  • the reference bandwidth value can be defined in any of the following ways:
  • ⁇ BW ref the size of the initial uplink BWP on the PUCCH carrier (for example, an uplink carrier, or a supplementary uplink carrier).
  • ⁇ BW ref the size of the initial uplink BWP on a non-PUCCH carrier (for example, an uplink carrier, or a supplementary uplink carrier).
  • the size of the initial uplink BWP on the carrier related to the uplink direction of the configured parameter pusch-Config for example, the uplink carrier, or supplementary uplink carrier.
  • the size of the initial uplink BWP on the carrier related to the uplink direction (for example, the uplink carrier, or supplementary uplink carrier) with the parameter pusch-Config not configured.
  • the size of the initial uplink BWP on the carrier related to the uplink direction of the configured parameter pucch-Config for example, the uplink carrier, or supplementary uplink carrier.
  • the size of the initial uplink BWP on the carrier related to the uplink direction (for example, the uplink carrier, or supplementary uplink carrier) without configuring the parameter pucch-Config.
  • the size of the initial uplink BWP on the uplink-related carrier (for example, the uplink carrier, or supplementary uplink carrier) that has been configured to transmit PUSCH.
  • the size of the initial uplink BWP on a carrier related to the uplink direction that is not configured to transmit PUSCH for example, an uplink carrier, or a supplementary uplink carrier.
  • the size of the initial uplink BWP on the uplink-related carrier for example, uplink carrier, or supplemental uplink carrier that has been configured to transmit PUCCH.
  • the size of the initial uplink BWP on a carrier related to the uplink direction that is not configured to transmit PUCCH for example, an uplink carrier, or a supplementary uplink carrier.
  • the You can take a default value.
  • Is the size of the initial uplink BWP on the supplementary uplink carrier in the cell.
  • the You can take a default value.
  • ⁇ It can be a pre-defined constant, a pre-configured value, or a parameter value obtained from a base station (for example, through DCI or MAC CE or RRC signaling), or when the parameter is not configured When, use the default value.
  • the S101 and S109 can be defined separately, or the same definition can be used for S101 and S109.
  • the reference bandwidth value can be defined in any of the following ways:
  • ⁇ BW ref the size of the effective uplink BWP on the PUCCH carrier (for example, an uplink carrier, or a supplementary uplink carrier).
  • ⁇ BW ref the size of the effective uplink BWP on a non-PUCCH carrier (for example, an uplink carrier, or a supplementary uplink carrier).
  • the size of the effective uplink BWP on the carrier related to the uplink direction of the configured parameter pusch-Config for example, the uplink carrier, or supplementary uplink carrier.
  • the size of the effective uplink BWP on the carrier related to the uplink direction (for example, the uplink carrier, or supplementary uplink carrier) without the parameter pusch-Config configured.
  • the size of the effective uplink BWP on the carrier related to the uplink direction of the configured parameter pucch-Config for example, the uplink carrier, or supplementary uplink carrier.
  • the size of the effective uplink BWP on the carrier related to the uplink direction for example, the uplink carrier, or supplementary uplink carrier) for which the parameter pucch-Config is not configured.
  • the size of the effective uplink BWP on the uplink-related carrier (for example, the uplink carrier, or supplementary uplink carrier) that has been configured to transmit PUSCH.
  • the size of the effective uplink BWP on a carrier related to the uplink direction that is not configured to transmit PUSCH for example, an uplink carrier, or a supplementary uplink carrier.
  • the size of the effective uplink BWP on the uplink-related carrier (for example, the uplink carrier, or supplementary uplink carrier) that has been configured to transmit PUCCH.
  • the size of the effective uplink BWP on a carrier related to the uplink direction that is not configured to transmit PUCCH for example, an uplink carrier, or a supplementary uplink carrier.
  • Is the size of the effective uplink BWP (active UL BWP) on the uplink carrier in the cell.
  • the You can take a default value.
  • Is the size of the effective uplink BWP on the supplementary uplink carrier in the cell.
  • the You can take a default value.
  • ⁇ It can be a pre-defined constant, a pre-configured value, or a parameter value obtained from a base station (for example, through DCI or MAC CE or RRC signaling), or when the parameter is not configured When, use the default value.
  • the S103 and S105 can be defined separately, or the same definition can be used for S103 and S105.
  • the DCI format (for example, DCI format 1_0 monitored in CSS, or DCI format 0_0 monitored in CSS, or DCI format 1_0 monitored in USS, or DCI format 1_0 monitored in USS is determined.
  • the DCI format 0_0 monitored in the DCI, or the DCI format 1_1 monitored in the USS, or the DCI format 0_1 monitored in the USS may be used according to the definition of each field in the DCI format and related fields Configuration information of the parameter (for example, whether the parameter exists, or the value of the parameter), and/or in the DCI size alignment procedure, such as one or more steps performed in the first embodiment of the present invention ), determine whether the field exists, and the size of the field (if any); in addition, determine the size of the DCI format according to the size of all fields in the DCI format size.
  • the configuration information may not exist, it may also be UE-specific configuration information, it may also be BWP-specific configuration information, or it may be cell-specific (cell-specific) configuration information. specific) configuration information.
  • the UE for some or some or all of the DCI formats, only when the UE is configured to monitor the DCI format, it is necessary to perform the "determine the DCI format" for the DCI format.
  • Action for example, only when the UE is configured to monitor the DCI format 0_1 in the USS, it needs to determine the DCI format 0_1 monitored in the USS.
  • CSS may also be replaced with a CSS collection.
  • the USS can also be replaced with a USS set.
  • cell and “serving cell” can be used interchangeably.
  • the first embodiment of the present invention considers the DCI format 0_0/1_0 monitored in the CSS and the DCI format 0_0/1_0 monitored in the CSS and the DCI format 0_0/1_0 monitored in the CSS and the DCI format 1_1 monitored in the USS simultaneously when performing zero padding.
  • the DCI format 0_0/1_0 avoids the DCI format ambiguity generated when the UE receives DCI and improves the reliability of downlink control signaling.
  • Fig. 2 is a flowchart showing a method executed by a user equipment UE according to the second embodiment of the present invention.
  • the steps performed by the user equipment UE include: step S201, step S203, and step S205.
  • step S201 configuration information of one or more parameters of the first search space set and configuration information of one or more parameters of the second search space set are respectively obtained. For example, obtaining the configuration information from predefined information or pre-configuration information, or obtaining the configuration information from a base station (for example, obtaining the configuration information through DCI or MAC CE or RRC signaling), or when the parameters are not configured When, use the default value.
  • the first search space set may be a type 3-PDCCH CSS set.
  • the type 3-PDCCH CSS set can be configured through SearchSpace IE, where the searchSpaceType parameter is configured as common.
  • the DCI format configured in the first search space set may include at least one of DCI format 0_0 and DCI format 1_0.
  • the CRC of the DCI format 0_0 and/or the DCI format 1_0 may be scrambled with C-RNTI, or MCS-C-RNTI, or CS-RNTI.
  • the CORESET associated with the first search space set is called the first CORESET.
  • the second search space set may be a USS set.
  • the USS set can be configured through SearchSpace IE, where the searchSpaceType parameter is configured as ue-Specific.
  • the DCI format configured in the second search space set may be one of the following:
  • the CRC of the DCI format may use C-RNTI or MCS-C- RNTI, or CS-RNTI scrambling.
  • the CORESET associated with the second search space is called the second CORESET.
  • step S203 according to the configuration information and/or other information, monitor the first data associated with the first DCI format configured in the first search space set on, for example, an active downlink BWP (active DL BWP).
  • active DL BWP active downlink BWP
  • step S205 one of the following actions is performed when the PDCCH priority condition is met:
  • the PDCCH priority condition can be one or more of the following (any combination of "and” or “or” when applicable):
  • the first CORESET refers to CORESET.
  • the second CORESET refers to CORESET.
  • the reference CORESET can be a predefined CORESET (for example, CORESET 0, which is a CORESET with ID equal to 0), or a pre-configured CORESET, or it can be indicated by DCI or MAC CE or RRC signaling CORESET can also be CORESET determined in other ways.
  • the first DCI format is DCI format 0_0.
  • the first DCI format is DCI format 1_0.
  • the second DCI format is DCI format 0_0.
  • the second DCI format is DCI format 1_0.
  • the second DCI format is DCI format 0_1.
  • the second DCI format is DCI format 1_1.
  • RNTI ⁇ Conditions related to RNTI. For example, one or more of the following (any combination of "and” or “or” when applicable):
  • the CRC of the first DCI format is scrambled using C-RNTI.
  • the CRC of the first DCI format is scrambled using CS-RNTI.
  • the CRC of the second DCI format is scrambled using CS-RNTI.
  • the first PDCCH candidate and the second PDCCH candidate use the same scrambling sequence (for example, by using the same initial scrambling value c init ).
  • the first PDCCH candidate and the second PDCCH candidate use the same set of CCEs (including one or more CCEs).
  • the DCI format ambiguity generated when the UE receives DCI is avoided, and the reliability of downlink control signaling is improved. Sex.
  • Fig. 3 is a flowchart showing a method executed by a user equipment UE according to the third embodiment of the present invention.
  • the steps performed by the user equipment UE include: step S301 and step S303.
  • step S301 configuration information of one or more parameters related to the SSB is obtained. For example, obtaining the configuration information from predefined information or pre-configuration information, or obtaining the configuration information from a base station (for example, obtaining the configuration information through DCI or MAC CE or RRC signaling), or when the parameters are not configured When, use the default value.
  • the configuration information of the one or more parameters may include:
  • SSB collection Collection with SSB Quasi-co-location. among them,
  • the SSB may be a SSB that may be sent (or candidate SSB, candidate SSB), or an SSB that is actually sent.
  • ⁇ with It is the index of the SSB (SSB index, or SSB block index), such as the index of the candidate SSB, or the index of the actually sent SSB.
  • ⁇ N 1 and N 2 are integers.
  • the quasi-colocation may refer to quasi-colocation in one or more of the following:
  • the Doppler frequency shift, Doppler spread, average delay and delay spread are quasi-co-located, it is called quasi-co-location on QCL-Type A; if the Doppler frequency shift and Quasi-colocation on Doppler spread is called quasi-colocation on QCL-type B; if quasi-colocation on Doppler frequency shift and average delay, it is called quasi-colocation on QCL-type C; If it is quasi-co-located on the spatial reception parameters, it is called quasi-co-located on QCL-type D.
  • the configuration information related to quasi-colocation may include multiple sets And the set The combination.
  • the configuration information related to quasi-colocation may indicate that the SSB with an index of ⁇ 0, 1 ⁇ and the SSB with an index of ⁇ 2, 3 ⁇ are quasi-co-location, and the SSB with an index of ⁇ 8 ⁇ and the index are ⁇ 10 , 11 ⁇ SSB quasi-co-location.
  • step S303 SSB and/or other physical channels/signals are received according to the configuration information and/or other information.
  • merge SSBs corresponding to different indexes For example, merge SSBs corresponding to different indexes.
  • the configuration information related to quasi-colocation indicates that the SSB with index 0 is quasi-co-located with the SSB with index 9, and the receiving beam 1 has been successfully used to receive the SSB with index 0, then the The receiving beam 1 receives the SSB whose index is 9.
  • the third embodiment of the present invention indicates the quasi-colocation information between SSBs of different indexes, which greatly improves the quasi-colocation configuration when the number of SSB indexes actually sent is small (for example, when 5G is deployed in the low frequency band). It also allows the UE to use accurate quasi-colocation information to improve the performance of the receiver in this case.
  • Fig. 4 is a flowchart showing a method executed by a user equipment according to a fourth embodiment of the present disclosure.
  • the steps performed by the user equipment UE include: step S401, step S403, and step S405.
  • step S401 the downlink control information DCI is received.
  • the DCI can be used to schedule PUSCH transmission.
  • the format of the DCI may be the DCI format 0_1 monitored in the user search space (USS).
  • USS can be configured through SearchSpace IE, where the searchSpaceType parameter is configured as ue-Specific.
  • the CRC of the DCI can be scrambled with C-RNTI, MCS-C-RNTI, CS-RNTI, or other RNTI.
  • the DCI may include a UL/SUL indicator (UL/SUL indicator) field, and the size of the UL/SUL indicator field may be 0 bits (at this time, it can also be considered that the UL/SUL indicator field does not exist ), or 1 bit.
  • UL/SUL indicator UL/SUL indicator
  • the DCI may include a BWP indicator (Bandwidth part indicator) field, and the size of the BWP indicator field may be 0 bits (at this time, it can also be considered that the BWP indicator field does not exist), or 1 bit, or 2 bits.
  • BWP indicator Bitwidth part indicator
  • step S403 according to the DCI and/or other information, the allocated frequency domain resources, the reference carrier and the reference BWP related to the frequency domain resources are determined.
  • the reference carrier may be a carrier related to the uplink direction where the frequency domain resource is located (for example, an uplink carrier, or a supplementary uplink carrier).
  • the reference BWP may be the BWP on the reference carrier where the frequency domain resource is located.
  • the reference BWP may be the effective uplink BWP of the reference carrier, or may not be the effective uplink BWP of the reference carrier.
  • step S405 the effective uplink BWP is switched. For example, perform one or more of the following:
  • the other carrier related to the uplink direction is determined as the effective uplink BWP of the other carrier related to the uplink direction.
  • the fourth embodiment of the present invention by simultaneously switching the uplink carrier and supplementing the effective uplink BWP of the uplink carrier, the dependence on the effective uplink BWP in the DCI size alignment process is greatly simplified, and the execution efficiency of the DCI size alignment process is improved.
  • FIG. 5 is used to illustrate a user equipment that can execute the method executed by the user equipment described in detail above in the present invention as a modified example.
  • Fig. 5 is a block diagram showing a user equipment UE related to the present invention.
  • the user equipment UE50 includes a processor 501 and a memory 502.
  • the processor 501 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 502 may include, for example, a volatile memory (such as random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as flash memory), or other memories.
  • the memory 502 stores program instructions. When the instruction is executed by the processor 501, it can execute the foregoing method executed by the user equipment described in detail in the present invention.
  • the method and related equipment of the present invention have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other without any contradiction.
  • the method of the present invention is not limited to the steps and sequence shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary rather than restrictive, and the present invention is not limited to specific information elements as examples of these identifiers. Those skilled in the art can make many changes and modifications based on the teaching of the illustrated embodiment.
  • the foregoing embodiments of the present invention can be implemented by software, hardware, or a combination of both software and hardware.
  • the various components inside the base station and user equipment in the above embodiments can be implemented by a variety of devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Device, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment may refer to a user's mobile terminal, for example, including mobile phones, notebooks, and other terminal devices that can communicate with base stations or micro base stations wirelessly.
  • the embodiments of the present invention disclosed herein can be implemented on a computer program product.
  • the computer program product is a product that has a computer-readable medium on which computer program logic is encoded, and when executed on a computing device, the computer program logic provides related operations to implement The above technical scheme of the present invention.
  • the computer program logic When executed on at least one processor of the computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • This arrangement of the present invention is typically provided as software, code and/or other data structures arranged or encoded on a computer-readable medium such as an optical medium (e.g., CD-ROM), floppy disk or hard disk, or such as one or more Firmware or microcode on a ROM or RAM or PROM chip, or downloadable software images, shared databases, etc. in one or more modules.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station equipment and terminal equipment used in each of the foregoing embodiments may be implemented or executed by a circuit, and the circuit is usually one or more integrated circuits.
  • Circuits designed to perform the functions described in this specification can include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC) or general-purpose integrated circuits, field programmable gate arrays (FPGA), or other Programming logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the aforementioned general-purpose processor or each circuit may be configured by a digital circuit, or may be configured by a logic circuit.
  • the present invention can also use integrated circuits obtained by using this advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种由用户设备UE执行的方法,包括:第一步骤,确定并对齐在公共搜索空间即CSS中监听的下行控制信息DCI格式0_0的大小和在CSS中监听的DCI格式1_0的大小;第二步骤,确定并对齐在UE特定搜索空间即USS中监听的DCI格式0_0的大小和在USS中监听的DCI格式1_0的大小;以及第三步骤,确定在USS中监听的DCI格式0_1的大小和/或在USS中监听的DCI格式1_1的大小,并对所确定的所述在USS中监听的DCI格式0_1的大小和/或所述在USS中监听的DCI格式1_1的大小进行调整,使得其既不等于对齐后的所述在CSS中监听的DCI格式0_0的大小或所述在CSS中监听的DCI格式1_0的大小,也不等于对齐后的所述在USS中监听的DCI格式0_0的大小或所述在USS中监听的DCI格式1_0的大小。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
2016年3月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#71次全会上,一个关于5G技术标准的新的研究项目(参见非专利文献1)获得批准。该研究项目的目的是开发一个新的无线(New Radio:NR)接入技术以满足5G的所有应用场景、需求和部署环境。NR主要有三个应用场景:增强的移动宽带通信(Enhanced Mobile Broadband:eMBB)、大规模机器类通信(massive Machine Type Communication:mMTC)和超可靠低延迟通信(Ultra-Reliable and Low Latency Communications:URLLC)。2017年6月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#75次全会上,相应的5G NR的工作项目(参见非专利文献2)获得批准。
5G通过DCI(Downlink Control Information,下行控制信息)调度PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上的下行传输以及PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上的上行传输。
5G支持多种DCI格式,如表1所示。每种DCI格式在进行信道编码后,其CRC可以用一个RNTI(Radio-Network Temporary Identifier,无线网络临时标识符)加扰,以指示一个特定的用途和/或一个或多个目的UE。例如,用于指示寻呼(paging)的DCI格式的CRC可以用P-RNTI加扰。
表1 5G支持的DCI格式
Figure PCTCN2020072410-appb-000001
5G的DCI承载在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上。一个PDCCH由一个或者多个CCE(control-channel element,控制信道元素)组成,而一个CCE又由多个(例如,6个)REG(resource-element group,资源元素组)组成,而REG则在CORESET(control-resource set,控制资源集)内定义。一个CORESET在频域包含多个资源块(每个资源块由频域上12个连续的子载波组成),在时域上包含一个或者多个(例如,1个,或者2个,或者3个)OFDM符号。
UE在一个或者多个搜索空间集合(search space set)上监听基站的PDCCH传输,其中,每个搜索空间集合可以对应一组PDCCH候选(PDCCH candidate)。UE通过在所要监听的PDCCH候选的时间和频率位置进行盲检(blind detection)以确定是否存在发给自己的PDCCH。
搜索空间集合可以分为CSS(Common Search Space,公共搜索空间)集合和USS CUE-specific search space,UE特定搜索空间)集合,例如:
●类型0-PDCCH CSS集合。例如通过MIB中的pdcch-ConfigSIB1参数进行配置,或者通过PDCCH-ConfigCommon IE中的searchSpaceSIB1参数进行配置,或者通过PDCCH-ConfigCommon IE中的searchSpaceZero参数进行配置。相应的DCI格式的CRC可以用SI-RNTI加扰。
●类型0A-PDCCH CSS集合。例如通过PDCCH-ConfigCommon IE 中的searchSpaceOtherSystemInformation参数进行配置。相应的DCI格式的CRC可以用SI-RNTI加扰。
●类型1-PDCCH CSS集合。例如通过PDCCH-ConfigCommon IE中的ra-SearchSpace参数进行配置。相应的DCI格式的CRC可以用RA-RNTI或者TC-RNTI加扰。
●类型2-PDCCH CSS集合。例如通过PDCCH-ConfigCommon IE中的pagingSearchSpace参数进行配置。相应的DCI格式的CRC可以用P-RNTI加扰。
●类型3-PDCCH CSS集合。例如通过PDCCH-Config IE中的searchSpacesToAddModList和searchSpacesToReleaseList参数进行配置,其结果是一个或者多个通过SearchSpace IE配置的类型3-PDCCH CSS,其中每一个的searchSpaceType参数都配置为common。相应的DCI格式的CRC可以用INT-RNTI,或者SFI-RNTI,或者TPC-PUSCH-RNTI,或者TPC-PUCCH-RNTI,或者TPC-SRS-RNTI,或者C-RNTI,或者MCS-C-RNTI,或者CS-RNTI加扰。
●USS集合。例如通过PDCCH-Config IE中的searchSpacesToAddModList和searchSpacesToReleaseList参数进行配置,其结果是一个或者多个通过SearchSpace IE配置的USS,其中每一个的searchSpaceType参数都配置为ue-Specific。相应的DCI格式的CRC可以用C-RNTI,或者MCS-C-RNTI,或者SP-CSI-RNTI,或者CS-RNTI加扰。
UE在盲检PDCCH候选时需要假定一个DCI大小(DCI size)。由于处理能力的限制,UE在每个时隙只能监听一定数量的DCI大小。表2总结了根据DCI大小进行分类后的搜索空间集合的类型及其对应的DCI格式以及用于加扰DCI CRC的RNTI。其中,
●同一个“DCI大小类别”的所有行(例如对应1_0_css的所有搜索空间集合类型、DCI格式以及RNTI的组合)对应同样的DCI大小。
●“DCI大小”一列只是列出了可能的DCI大小的例子。对有些 DCI格式来说,实际的DCI大小取决于***配置信息和/或UE特定的配置信息。
●一个给定的USS集合所关联的DCI格式只能是0_0和1_0,或者0_1和1_1。
●UE实际监听的搜索空间集合类型、DCI格式以及RNTI(对于某些DCI格式)取决于***配置信息和/或UE特定的配置信息。
●FDRA(Frequency Domain Resource Assignment,频域资源分配)是部分DCI格式中定义的一个字段,其大小取决于与频域资源分配有关的配置信息。例如,在DCI格式1_0和1_1中,FDRA的大小和
Figure PCTCN2020072410-appb-000002
有关(例如,FDRA的大小可以是
Figure PCTCN2020072410-appb-000003
比特);在DCI格式0_0和0_1中,FDRA的大小和
Figure PCTCN2020072410-appb-000004
有关。其中,
Figure PCTCN2020072410-appb-000005
Figure PCTCN2020072410-appb-000006
的取值取决于DCI格式及其所对应的搜索空间集合的类型,并且可能会为满足DCI大小的限制而做调整。
●网络给UE配置的搜索空间集合、DCI格式以及RNTI必须满足下面中所有的条件:
◆小区中给UE配置的不同DCI大小的个数不能超过4个。
◆小区中给UE配置的用于C-RNTI的不同DCI大小的个数不能超过3个。
◆0_0_uss的大小不能等于0_1_uss的大小。
◆1_0_uss的大小不能等于1_1_uss的大小。
表2 搜索空间集合类型、DCI格式和大小以及RNTI的对应关系
Figure PCTCN2020072410-appb-000007
为满足DCI大小的限制,现有3GPP关于5G的标准规范中定义了一个DCI大小对齐(DCI size alignment)流程如下:
步骤0(确定0_0_css和1_0_css,并将0_0_css的大小向1_0_css的大小对齐):
●确定0_0_css。其中,
◆DCI格式0_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000008
有关(例 如,所述频域资源分配字段的大小是
Figure PCTCN2020072410-appb-000009
比特),
Figure PCTCN2020072410-appb-000010
等于初始上行BWP(例如通过参数initialUplinkBWP进行配置)的大小。
◆所述0_0_css的大小不包括填充比特。
●确定1_0_css。其中,
◆DCI格式1_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000011
有关(例如,所述频域资源分配字段的大小是
Figure PCTCN2020072410-appb-000012
比特)。若小区中已配置CORESET 0,则
Figure PCTCN2020072410-appb-000013
等于CORESET 0的大小;若小区中未配置CORESET 0,则
Figure PCTCN2020072410-appb-000014
等于初始下行BWP(例如通过参数initialDownlinkBWP进行配置)的大小。
●若UE配置为在CSS中监听DCI格式0_0,且所述0_0_css在填充前的信息比特的数量小于用于调度同一个服务小区的1_0_css的负荷大小,则对所述0_0_css执行零填充直至所述0_0_css的负荷大小等于所述1_0_css的负荷大小。
●若UE配置为在CSS中监听DCI格式0_0,且所述0_0_css在截断前的信息比特的数量大于用于调度同一个服务小区的1_0_css的负荷大小,则通过截断所述0_0_css中频域资源分配字段的开始的若干个最高有效位以减小所述频域资源分配字段的位宽,以使得0_0_css的大小等于1_0_css的大小。
步骤1(确定0_0_uss和1_0_uss,并将两者中小的向大的对齐):
●确定0_0_uss。其中,
◆DCI格式0_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000015
有关(例如,所述频域资源分配字段的大小是
Figure PCTCN2020072410-appb-000016
比特),
Figure PCTCN2020072410-appb-000017
等于有效上行BWP的大小。
◆所述0_0_uss的大小不包括填充比特(padding bits)。
●确定1_0_uss。其中,
◆DCI格式1_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000018
有关(例如,所述频域资源分配字段的大小是
Figure PCTCN2020072410-appb-000019
比特)。
Figure PCTCN2020072410-appb-000020
等于有效下行BWP的大小。
●若UE配置为在USS中监听DCI格式0_0,且所述0_0_uss在填充前的信息比特的数量小于用于调度同一个服务小区的1_0_uss的负荷大小,则对所述0_0_uss执行零填充直至所述0_0_uss的负荷大小等于所述1_0_uss的负荷大小。
●若UE配置为在USS中监听DCI格式1_0,且所述1_0_uss在填充前的信息比特的数量小于用于调度同一个服务小区的0_0_uss的负荷大小,则对所述1_0_uss执行零填充直至所述1_0_uss的负荷大小等于所述0_0_uss的负荷大小。
步骤2(若有必要,为0_1_uss和/或1_1_uss填充0以使得这两者中任何一个的大小都不等于0_0_uss/1_0_uss的大小):
●若0_1_uss的大小等于0_0_uss/1_0_uss(经过步骤1后0_0_uss和1_0_uss的大小相等),则在所述0_1_uss的最后一个字段的后面添加(append)1个零填充比特。
●若1_1_uss的大小等于0_0_uss/1_0_uss,则在所述1_1_uss的最后一个字段的后面添加1个零填充比特。
步骤3(若满足DCI大小的限制则流程结束):
●若以下两个条件都满足,则DCI大小对齐流程结束:
◆小区中给UE配置的不同DCI大小的总数不超过4个。
◆小区中给UE配置的用于C-RNTI的不同DCI大小的总数不超过3个。
步骤4(否则撤销步骤2,重新确定1_0_uss和0_0_uss,并将1_0_uss和0_0_uss的大小对齐到1_0_css/0_0_css):
●否则,
◆移除步骤2中引入的填充比特(如果有的话)。
◆确定1_0_uss。其中,
○DCI格式1_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000021
有关(例如,所述频域资源分配字段的大小是
Figure PCTCN2020072410-appb-000022
比特)。若小区中已配 置CORESET 0,则
Figure PCTCN2020072410-appb-000023
等于CORESET 0的大小;若小区中未配置CORESET 0,则
Figure PCTCN2020072410-appb-000024
等于初始下行BWP(例如通过参数initialDownlinkBWP配置)的大小。
◆确定0_0_uss。其中,
○DCI格式0_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000025
有关(例如,所述频域资源分配字段的大小是
Figure PCTCN2020072410-appb-000026
比特),
Figure PCTCN2020072410-appb-000027
等于初始上行BWP(例如通过参数initialUplinkBWP配置)的大小。
○所述0_0_uss的大小不包括填充比特。
◆若所述0_0_uss在填充前的信息比特的数量小于用于调度同一个服务小区的1_0_uss的负荷大小,则对所述0_0_uss执行零填充直至所述0_0_uss的负荷大小等于所述1_0_uss的负荷大小。
◆若所述0_0_uss在截断前的信息比特的数量大于用于调度同一个服务小区的1_0_uss的负荷大小,则通过截断所述0_0_css中频域资源分配字段的开始的若干个最高有效位以减小所述频域资源分配字段的位宽,以使得0_0_uss的大小等于1_0_uss的大小。
在现有的3GPP关于5G的标准规范中,和DCI大小对齐有关的机制至少存在如下问题:
●没有考虑到在步骤1或者步骤2之后1_0_css/0_0_css的大小有可能等于1_1_uss或者0_1_uss。这使得UE可能无法区分1_0_css和1_1_uss,或者无法区分0_0_css和0_1_uss。
另外,在现有的3GPP关于5G的标准规范中,UE在接收SSB和/或执行与SSB有关的波束指示/波束管理/波束故障恢复步骤时,可以假定在相同的频域位置不同SSB周期传输的SSB中,索引相同的SSB是准共置的(quasi co-located),而索引不同的SSB则不能有准共置的假设。这对于在高频(例如FR2,frequency range 2)部署的5G***没有问题,但 是当5G部署在低频(例如FR1,frequency range 1)时,却限制了SSB配置的灵活性,例如当基站不启用波束成型(beamforming)时,基站实际传输的所有SSB可能都是准共置的,而此时UE却没有办法利用这一点。
现有技术文献
非专利文献
非专利文献1:RP-160671,New SID Proposal:Study on New Radio Access Technology
非专利文献2:RP-170855,New WID on New Radio Access Technology
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备,能够避免UE在接收DCI时产生的DCI格式歧义,提升了下行控制信令的可靠性。
根据本发明,提出了一种由用户设备UE执行的方法,包括:第一步骤,确定在公共搜索空间即CSS中监听的下行控制信息DCI格式0_0的大小和在CSS中监听的DCI格式1_0的大小,并对齐所述在CSS中监听的DCI格式0_0的大小和所述在CSS中监听的DCI格式1_0的大小;第二步骤,确定在UE特定搜索空间即USS中监听的DCI格式0_0的大小和在USS中监听的DCI格式1_0的大小,并对齐所述在USS中监听的DCI格式0_0的大小和所述在USS中监听的DCI格式1_0的大小;以及第三步骤,确定在USS中监听的DCI格式0_1的大小和/或在USS中监听的DCI格式1_1的大小,并对所确定的所述在USS中监听的DCI格式0_1的大小和/或所述在USS中监听的DCI格式1_1的大小进行调整,使得其既不等于对齐后的所述在CSS中监听的DCI格式0_0的大小或所述在CSS中监听的DCI格式1_0的大小,也不等于对齐后的所述在USS中监听的DCI格式0_0的大小或所述在USS中监听的DCI格式1_0的大小。
优选地,在所述第三步骤之后,所述方法还包括:第四步骤,判断是否同时满足以下条件1和条件2:条件1,小区中给所述UE配置的不同 DCI格式的大小的总数不超过第一数目;以及条件2,小区中给所述UE配置的用于小区-无线网络临时标识即C-RNTI的不同DCI格式的大小的总数不超过第二数目。
优选地,在无法同时满足所述条件1和所述条件2的情况下,所述方法还包括:第五步骤,取消在所述第三步骤中针对所述在USS中监听的DCI格式0_1的大小和/或所述在USS中监听的DCI格式1_1的大小进行的调整;以及第六步骤,重新确定和重新对齐在USS中监听的DCI格式0_0的大小和在USS中监听的DCI格式1_0的大小,使得重新对齐后的所述在USS中监听的DCI格式0_0的大小或所述在USS中监听的DCI格式1_0的大小等于所述第一步骤中的对齐后的所述在CSS中监听的DCI格式0_0的大小或所述在CSS中监听的DCI格式1_0的大小。
优选地,在所述第一步骤中,若所述在CSS中监听的DCI格式0_0的大小小于所述在CSS中监听的DCI格式1_0的大小,则对所述在CSS中监听的DCI格式0_0执行零填充,来对齐所述在CSS中监听的DCI格式0_0的大小和所述在CSS中监听的DCI格式1_0的大小;以及若所述在CSS中监听的DCI格式0_0的大小大于所述在CSS中监听的DCI格式1_0的大小,则对所述在CSS中监听的DCI格式0_0的频域资源分配字段的开始的一个或多个最高有效位进行截断,来对齐所述在CSS中监听的DCI格式0_0的大小和所述在CSS中监听的DCI格式1_0的大小。
优选地,在所述第二步骤中,通过对所述在USS中监听的DCI格式0_0的大小和所述在USS中监听的DCI格式1_0的大小较小的一方执行零填充,来对齐所述在USS中监听的DCI格式0_0的大小和所述在USS中监听的DCI格式1_0的大小。
优选地,在所述第三步骤中,通过对所确定的所述在USS中监听的DCI格式0_1和/或所述在USS中监听的DCI格式1_1进行零填充,来对所述在USS中监听的DCI格式0_1的大小和/或所述在USS中监听的DCI格式1_1的大小进行调整。
另外,根据本发明,还提出了一种由用户设备UE执行的方法,包括:分别获取第一搜索空间集合的配置信息和第二搜索空间集合的配置信息;根据所获取的所述第一搜索空间集合的配置信息和所述第二搜索空间集 合的配置信息,监听所述第一搜索空间集合中所配置的第一下行控制信息DCI格式所关联的第一物理下行控制信道PDCCH候选和所述第二搜索空间集合中所配置的第二DCI格式所关联的第二PDCCH候选;以及在满足PDCCH优先级条件的情况下,只解码所述第一PDCCH候选或者只解码所述第二PDCCH候选。
优选地,所述PDCCH优先级条件包括以下条件中的至少一个:与控制资源集CORESET有关的条件、与DCI格式的类型有关的条件、与DCI格式的大小有关的条件、与无线网络临时标识RNTI有关的条件、与PDCCH加扰有关的条件、以及与控制信道元素CCE有关的条件。
此外,根据本发明,还提出了一种用户设备,包括:处理器;以及存储器,存储有指令,其中,所述指令在由所述处理器运行时执行以上所述的方法。
发明效果
根据本发明,避免了UE在接收DCI时产生的DCI格式歧义,提升了下行控制信令的可靠性。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了根据本发明的实施例一的由用户设备执行的方法的流程图。
图2是示出了根据本发明的实施例二的由用户设备执行的方法的流程图。
图3是示出了根据本发明的实施例三的由用户设备执行的方法的流程图。
图4是示出了根据本发明的实施例四的由用户设备执行的方法的流程图。
图5是示意性示出本发明所涉及的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以5G移动通信***及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信***,例如5G之后的通信***以及5G之前的4G移动通信***等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信***中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的***中时,可以替换为相应***中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
BWP:Bandwidth Part,带宽片段
CA:Carrier Aggregation,载波聚合
CCE:control-channel element,控制信道元素
CORESET:control-resource set,控制资源集
CP:Cyclic Prefix,循环前缀
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,循环前缀正交频分复用
CRC:Cyclic Redundancy Check,循环冗余校验
CSS:Common Search Space,公共搜索空间
DC:Dual Connectivity,双连接
DCI:Downlink Control Information,下行控制信息
DFT-s-OFDM:Discrete Fourier Transformation Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频正交频分复用
DL:Downlink,下行
DL-SCH:Downlink Shared Channel,下行共享信道
DM-RS:Demodulation reference signal,解调参考信号
eMBB:Enhanced Mobile Broadband,增强的移动宽带通信
FDRA:Frequency Domain Resource Assignment,频域资源分配
IE:Information Element,信息元素
LCID:Logical Channel ID,逻辑信道标识符
LTE-A:Long Term Evolution-Advanced,长期演进技术升级版
MAC:Medium Access Control,介质访问控制
MAC CE:MAC Control Element,MAC控制元素
MCG:Master Cell Group,主小区组
MIB:Master Information Block,主信息块
mMTC:massive Machine Type Communication,大规模机器类通信
NR:New Radio,新无线电
NUL:Normal Uplink,正常上行
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
PBCH:Physical Broadcast Channel,物理广播信道
PDCCH:Physical Downlink Control Channel,物理下行控制信道
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
PRB:Physical Resource Block,物理资源块
PSS:Primary Synchronization Signal,主同步信号
PSSS:Primary Sidelink Synchronization Signal,主直行同步信号
PTAG:Primary Timing Advance Group,主定时提前组
PUSCH:Physical uplink shared channel,物理上行共享信道
PUCCH:Physical uplink control channel,物理上行控制信道
QCL:Quasi co-location,准共置
RAR:Random Access Response,随机接入响应
RB:Resource Block,资源块
RE:Resource Element,资源元素
REG:resource-element group,资源元素组
RNTI:Radio-Network Temporary Identifier,无线网络临时标识符
RRC:Radio Resource Control,无线资源控制
SCG:Secondary Cell Group,次小区组
SCS:Subcarrier Spacing,子载波间隔
SFN:System Frame Number,***帧号
SIB:System Information Block,***信息块
SpCell:Special Cell,特殊小区
SRS:Sounding Reference Signal,探测参考信号
SSB:SS/PBCH block,同步信号/物理广播信道块
SSS:Secondary Synchronization Signal,辅同步信号
STAG:Secondary Timing Advance Group,辅定时提前组
SUL:Supplementary Uplink,补充上行
TA:Timing Advance,定时提前
TAG:Timing Advanced Group,定时提前组
TDD:Time Division Duplexing,时分双工
TPC:Transmit power control,传输功率控制
UE:User Equipment,用户设备
UL:Uplink,上行
URLLC:Ultra-Reliable and Low Laency Communication,超可靠低延迟通信
USS:UE-specific Search Space,UE特定搜索空间
如未特别说明,在本发明所有实施例和实施方式中:
●一个DCI格式(例如在CSS中监听的DCI格式0_0,又如在CSS中监听的DCI格式1_0,又如在USS中监听的DCI格式0_0,又如在USS中监听的DCI格式1_0,又如在USS中监听的DCI格式0_1,又如在USS中监听的DCI格式1_1)的大小也可以说是所述DCI格式的负荷大小。
●上行载波(uplink carrier,或者UL carrier,或者non-SUL carrier)可以通过例如ServingCellConfigCommon IE中的参数uplinkConfigCommon,和/或ServingCellConfigCommonSIB IE中 的参数uplinkConfigCommon,和/或ServingCellConfig IE中的参数uplinkConfig,和/或其他参数进行配置。
●补充上行载波(supplementary uplink carrier,或者SUL carrier)可以通过例如ServingCellConfigCommon IE中的参数supplementaryUplinkConfig,和/或ServingCellConfigCommonSIB IE中的参数supplementaryUplink,和/或ServingCellConfig IE中的参数supplementaryUplink,和/或其他参数进行配置。
●下行载波(downlink carrier,或者DL carrier)可以通过例如ServingCellConfigCommon IE中的参数downlinkConfigCommon,和/或ServingCellConfigCommonSIB IE中的参数downlinkConfigCommon,和/或其他参数进行配置。
[实施例一]
下面结合图1来说明本发明的实施例一的由用户设备UE执行的方法。
图1是示出了根据本发明的实施例一的由用户设备UE执行的方法的流程图。其中,所述方法可以应用于下面中的任意一项:
●一个小区。
●一个小区中的一对上下行载波。例如上行载波和下行载波,又如补充上行载波和下行载波。
●一个小区中的下行载波(例如,当所述小区中没有配置上行载波,也没有配置补充上行载波时。又如,当所述小区中没有配置UE监听用于调度上行数据传输的DCI格式,如DCI格式0_0,或者DCI格式0_1时)。
●一个小区中的上行载波(例如,当所述小区中没有配置补充上行载波,也没有配置UE监听用于调度下行数据传输的DCI格式,如DCI格式1_0,或者DCI格式1_1时)。
●一个小区中的补充上行载波(例如,当所述小区中没有配置上行载波,也没有配置UE监听用于调度下行数据传输的DCI格式,如DCI格式1_0,或者DCI格式1_1时)。
如图1所示,在本发明的实施例一中,用户设备UE执行的步骤包括: 第一步骤、第二步骤、第三步骤、第四步骤和第五步骤。
具体地,在S101,执行第一步骤,具体地,执行下面中的一项或多项:
●确定在CSS中监听的DCI格式0_0。其中,
◆所述DCI格式0_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000028
有关(例如,所述频域资源分配字段的大小可以是
Figure PCTCN2020072410-appb-000029
比特)。
●确定在CSS中监听的DCI格式1_0。其中,
◆所述DCI格式1_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000030
有关(例如,所述频域资源分配字段的大小可以是
Figure PCTCN2020072410-appb-000031
比特)。其中,
Figure PCTCN2020072410-appb-000032
可以与CORESET 0(即ID等于0的CORESET)和/或初始下行BWP(initial DL BWP,例如通过参数initialDownlinkBWP进行配置)有关,例如,若所述小区中已配置CORESET 0,则
Figure PCTCN2020072410-appb-000033
可以等于CORESET 0的大小;若所述小区中未配置CORESET 0,则
Figure PCTCN2020072410-appb-000034
可以等于初始下行BWP的大小。
●若UE配置为在CSS中监听DCI格式0_0(或者,可选地,若UE配置为在CSS中监听DCI格式0_0和DCI格式1_0),且所述DCI格式0_0在填充前的信息比特的数量小于用于调度同一个服务小区的在CSS中监听的DCI格式1_0的负荷大小,则对所述DCI格式0_0执行零填充直至所述DCI格式0_0的负荷大小等于所述DCI格式1_0的负荷大小。
●若UE配置为在CSS中监听DCI格式0_0(或者,可选地,若UE配置为在CSS中监听DCI格式0_0和DCI格式1_0),且所述DCI格式0_0在截断前的信息比特的数量大于用于调度同一个服务小区的在CSS中监听的DCI格式1_0的负荷大小,则通过截断所述DCI格式0_0中频域资源分配字段的开始的若干个最高有效位以减小所述频域资源分配字段的位宽,以使得所述DCI格式0_0的大小等于所述DCI格式1_0的大小。
可选地,在S101中,也可以通过其他方式确定在CSS中监听的DCI 格式0_0和在CSS中监听的DCI格式1_0,和/或对齐在CSS中监听的DCI格式0_0和在CSS中监听的DCI格式1_0的大小。
此外,在S103,执行第二步骤,具体地,执行下面中的一项或多项:
●确定在USS中监听的DCI格式0_0。其中,
◆所述DCI格式0_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000035
有关(例如,所述频域资源分配字段的大小可以是
Figure PCTCN2020072410-appb-000036
比特)。
●确定在USS中监听的DCI格式1_0。其中,
◆所述DCI格式1_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000037
有关(例如,所述频域资源分配字段的大小可以是
Figure PCTCN2020072410-appb-000038
比特)。其中,
Figure PCTCN2020072410-appb-000039
可以与有效下行BWP(active DL BWP)有关,例如,
Figure PCTCN2020072410-appb-000040
可以等于有效下行BWP的大小。
●若UE配置为在USS中监听DCI格式0_0(或者,可选地,若UE配置为在USS中监听DCI格式0_0和DCI格式1_0),且所述DCI格式0_0在填充前的信息比特的数量小于用于调度同一个服务小区的在USS中监听的DCI格式1_0的负荷大小,则对所述DCI格式0_0执行零填充直至所述DCI格式0_0的负荷大小等于所述DCI格式1_0的负荷大小。
●若UE配置为在USS中监听DCI格式1_0(或者,可选地,若UE配置为在USS中监听DCI格式0_0和DCI格式1_0),且所述DCI格式1_0在填充前的信息比特的数量小于用于调度同一个服务小区的在USS中监听的DCI格式0_0的负荷大小,则对所述DCI格式1_0执行零填充直至所述DCI格式1_0的负荷大小等于所述DCI格式0_0的负荷大小。
可选地,在S103中,也可以通过其他方式确定在USS中监听的DCI格式0_0和在USS中监听的DCI格式1_0,和/或对齐在USS中监听的DCI格式0_0和在USS中监听的DCI格式1_0的大小。
此外,在S105,执行第三步骤,具体地,执行下面中的一项或多项:
●确定在USS中监听的DCI格式0_1。其中,
◆所述DCI格式0_1中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000041
有关(例如,所述频域资源分配字段的大小可以是
Figure PCTCN2020072410-appb-000042
比特)。
●确定在USS中监听的DCI格式1_1。其中,
◆所述DCI格式1_1中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000043
有关(例如,所述频域资源分配字段的大小可以是
Figure PCTCN2020072410-appb-000044
比特)。其中,
Figure PCTCN2020072410-appb-000045
可以等于有效下行BWP的大小。
●若UE配置为在USS中监听DCI格式0_1,则调整所述DCI格式0_1的大小。例如,执行下面中的任意一项:
◆若UE配置为在USS中监听DCI格式0_1,则对所述DCI格式0_1执行0个或者1个比特的零填充直至所述DCI格式0_1的大小不等于在USS中监听的DCI格式0_0/1_0的大小。
例如,
Figure PCTCN2020072410-appb-000046
◆若UE配置为在USS中监听DCI格式0_1,且所述DCI格式0_1的大小等于在USS中监听的DCI格式0_0/1_0的大小,则对所述DCI格式0_1执行1个比特的零填充。例如,
Figure PCTCN2020072410-appb-000047
◆若UE配置为在USS中监听DCI格式0_1,则对所述DCI 格式0_1执行0个或者1个比特的零填充直至所述DCI格式0_1的大小不等于在CSS中监听的DCI格式0_0/1_0的大小。
例如,
Figure PCTCN2020072410-appb-000048
◆若UE配置为在USS中监听DCI格式0_1,且所述DCI格式0_1的大小等于在CSS中监听的DCI格式0_0/1_0的大小,则对所述DCI格式0_1执行1个比特的零填充。例如,
Figure PCTCN2020072410-appb-000049
◆若UE配置为在USS中监听DCI格式0_1,则对所述DCI格式0_1执行0个或者1个或者2个比特的零填充直至所述DCI格式0_1的大小既不等于在CSS中监听的DCI格式0_0/1_0的大小也不等于在USS中监听的DCI格式0_0/1_0的大小。例如,
Figure PCTCN2020072410-appb-000050
Figure PCTCN2020072410-appb-000051
◆若UE配置为在USS中监听DCI格式0_1,且所述DCI格式0_1的大小等于在CSS中监听的DCI格式0_0/1_0的大小或者在USS中监听的DCI格式0_0/1_0的大小,则对所述DCI格式0_1执行1个或者2个比特的零填充直至所述DCI格式0_1的大小既不等于所述在CSS中监听的DCI格式0_0/1_0的大小也不等于所述在USS中监听的DCI格式0_0/1_0的大小。例如,
Figure PCTCN2020072410-appb-000052
●若UE配置为在USS中监听DCI格式1_1,则调整所述DCI格式1_1的大小。例如,执行下面中的任意一项:
◆若UE配置为在USS中监听DCI格式1_1,则对所述DCI格式1_1执行0个或者1个比特的零填充直至所述DCI格式1_1的大小不等于在USS中监听的DCI格式0_0/1_0的大小。
例如,
Figure PCTCN2020072410-appb-000053
◆若UE配置为在USS中监听DCI格式1_1,且所述DCI格式1_1的大小等于在USS中监听的DCI格式0_0/1_0的大小,则对所述DCI格式1_1执行1个比特的零填充。例如,
Figure PCTCN2020072410-appb-000054
◆若UE配置为在USS中监听DCI格式1_1,则对所述DCI格式1_1执行0个或者1个比特的零填充直至所述DCI格式1_1的大小不等于在CSS中监听的DCI格式0_0/1_0的大小。
例如,
Figure PCTCN2020072410-appb-000055
◆若UE配置为在USS中监听DCI格式1_1,且所述DCI格式1_1的大小等于在CSS中监听的DCI格式0_0/1_0的大小,则对所述DCI格式1_1执行1个比特的零填充。例如,
Figure PCTCN2020072410-appb-000056
◆若UE配置为在USS中监听DCI格式1_1,则对所述DCI格式1_1执行0个或者1个或者2个比特的零填充直至所述DCI格式1_1的大小既不等于在CSS中监听的DCI格式0_0/1_0的大小也不等于在USS中监听的DCI格式0_0/1_0的大小。例如,
Figure PCTCN2020072410-appb-000057
◆若UE配置为在USS中监听DCI格式1_1,且所述DCI格式1_1的大小等于在CSS中监听的DCI格式0_0/1_0的大小或者在USS中监听的DCI格式0_0/1_0的大小,则对所述DCI格式1_1执行1个或者2个比特的零填充直至所述DCI格式1_1的大小既不等于所述在CSS中监听的DCI格式0_0/1_0的大小也不等于所述在USS中监听的DCI格式
0_0/1_0的大小。例如,
Figure PCTCN2020072410-appb-000058
其中,
●所述在CSS中监听的DCI格式0_0/1_0的大小是指在CSS中监听的DCI格式0_0和在CSS中监听的DCI格式1_0的共同大小。
●所述在USS中监听的DCI格式0_0/1_0的大小是指在USS中监听的DCI格式0_0和在USS中监听的DCI格式1_0的共同大小。
●可选地,所述在USS中监听的DCI格式0_1和所述在USS中监听的DCI格式0_0/1_0可以分别在不同的USS中监听(例如,所述在USS中监听的DCI格式0_1对应通过SearchSpace IE配置的一个USS,所述在USS中监听的DCI格式0_0/1_0对应通过SearchSpace IE配置的另一个USS)。
●可选地,所述在USS中监听的DCI格式1_1和所述在USS中监听的DCI格式0_0/1_0可以分别在不同的USS中监听(例如,所述在USS中监听的DCI格式1_1对应通过SearchSpace IE配置的一个USS,所述在USS中监听的DCI格式0_0/1_0对应通过SearchSpace IE配置的另一个USS)。
可选地,在S105中,也可以通过其他方式确定在USS中监听的DCI格式0_1,和/或调整所述DCI格式0_1的大小,和/或确定在USS中监听的DCI格式1_1,和/或调整所述DCI格式1_1的大小。
此外,在S107,执行第四步骤,具体地,执行下面中的一项或多项:
●若以下两个条件都满足,则本发明的实施例一的由用户设备执行的方法结束:
◆小区中给UE配置的不同DCI格式的大小的总数不超过S 1个。
◆小区中给UE配置的用于C-RNTI的不同DCI格式的大小的总数不超过S 2个。
其中,
◆所述“用于C-RNTI”可以指用C-RNTI对所述DCI格式的CRC加扰。
◆所述S 1可以是一个预定义的常数(例如S 1=4),也可以是一个预配置的值,也可以是一个从例如基站获取(例如通过DCI或者MAC CE或者RRC信令获取)的参数的值,或者当所述参数未配置时,使用缺省的值。
◆所述S 2可以是一个预定义的常数(例如S 2=3),也可以是一个预配置的值,也可以是一个从例如基站获取(例如通过DCI或者MAC CE或者RRC信令获取)的参数的值,或者当所述参数未配置时,使用缺省的值。
可选地,在S107中,也可以通过其他条件或者条件组合确定是否可以结束本发明的实施例一的由用户设备执行的方法。
此外,在S109,执行第五步骤,具体地,执行下面中的一项或多项:
●否则,
◆移除S105中引入的填充比特(如果有的话)。
◆确定在USS中监听的DCI格式1_0。其中,
○所述DCI格式1_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000059
有关(例如,所述频域资源分配字段的大小可以是
Figure PCTCN2020072410-appb-000060
比特)。其中,
Figure PCTCN2020072410-appb-000061
可以与CORESET 0和/或初始下行BWP有关,例如,若所述小区中已配置CORESET 0,则
Figure PCTCN2020072410-appb-000062
可以等于CORESET 0的大小;若所述小区中未配置 CORESET 0,则
Figure PCTCN2020072410-appb-000063
可以等于初始下行BWP的大小。
◆确定在USS中监听的DCI格式0_0。其中,
○所述DCI格式0_0中频域资源分配字段的大小与
Figure PCTCN2020072410-appb-000064
有关(例如,所述频域资源分配字段的大小可以是
Figure PCTCN2020072410-appb-000065
比特)。
◆若所述在USS中监听的DCI格式0_0在填充前的信息比特的数量小于用于调度同一个服务小区的在USS中监听的DCI格式1_0的负荷大小,则对所述DCI格式0_0执行零填充直至所述DCI格式0_0的负荷大小等于所述DCI格式1_0的负荷大小。
○可选地,仅当UE配置为在USS中监听DCI格式0_0时才执行这一动作。
○可选地,仅当UE配置为在USS中监听DCI格式0_0和DCI格式1_0时才执行这一动作。
◆若所述在USS中监听的DCI格式0_0在截断前的信息比特的数量大于用于调度同一个服务小区的在USS中监听的DCI格式1_0的负荷大小,则通过截断所述DCI格式0_0中频域资源分配字段的开始的若干个最高有效位以减小所述频域资源分配字段的位宽,以使得所述DCI格式0_0的大小等于所述DCI格式1_0的大小。
○可选地,仅当UE配置为在USS中监听DCI格式0_0时才执行这一动作。
○可选地,仅当UE配置为在USS中监听DCI格式0_0和DCI格式1_0时才执行这一动作。
可选地,在S109中,也可以通过其他方式处理S105中引入的填充比特(如果有的话),和/或重新确定在USS中监听的DCI格式0_0和/或在USS中监听的DCI格式1_0,和/或调整所述DCI格式0_0和/或所述DCI格式1_0的大小。
可选地,在本发明的实施例一中,对于一个给定的DCI格式(例如 在CSS中监听的DCI格式0_0、在CSS中监听的DCI格式1_0、在USS中监听的DCI格式0_0、在USS中监听的DCI格式1_0、在USS中监听的DCI格式0_1和在USS中监听的DCI格式1_1中的任意一个),所述零填充的方式可以是下面中的任意一种(在适用的情况下):
●产生若干个零填充比特(zero padding bits),并将所述零填充比特填入所述DCI格式中用于放置零填充比特的字段,例如DCI格式0_0中的“填充比特”(padding bits)字段。
●在所述DCI格式最后一个字段的后面添加(append)若干个零填充比特。
●在所述DCI格式第一个字段的前面***(insert)若干个零填充比特。
其中,
●每一个所述零填充比特的取值都是0。
●所述零填充比特的个数可以是一个常数,例如0,或者1,或者2。
●若所述零填充比特的个数是0,则所述零填充不对应任何操作(例如产生零填充比特的操作,又如填入或添加或***零填充比特的操作)。
●所述零填充比特的个数也可以是一个不确定的数量,此时所述零填充操作对应零个或一个或多个零填充比特直到一个与所述零填充操作有关的条件满足。例如,若DCI格式A的大小是39比特,DCI格式B的大小是39比特,DCI格式C的大小是40比特,则“对DCI格式A执行零填充直至DCI格式A的大小既不等于DCI格式B的大小也不等于DCI格式C的大小”意味着对DCI格式A执行2个比特的零填充。又如,若DCI格式A的大小是38比特,DCI格式B的大小是39比特,DCI格式C的大小是40比特,则“对DCI格式A执行零填充直至DCI格式A的大小既不等于DCI格式B的大小也不等于DCI格式C的大小”意味着不执行任何操作,或者说对所述DCI格式A执行0个比特的零填充。
可选地,在本发明的实施例一中,也可以通过其他方式执行零填充操作。
可选地,在本发明的实施例一中,在所述小区中,上行载波可以是必选配置的,也可以是可选配置的;补充上行载波可以是必选配置的,也可以是可选配置的。
可选地,在本发明的实施例一的S101(例如在确定在CSS中监听的DCI格式0_0时)、S103(例如在确定在USS中监听的DCI格式0_0时)、S105(例如在确定在USS中监听的DCI格式0_1时)和S109(例如在确定在USS中监听的DCI格式0_0时)的任意一个中,所述
Figure PCTCN2020072410-appb-000066
可以在满足一个或多个参考带宽条件的情况下分别取每一个所述参考带宽条件所对应的参考带宽值(记为BW ref)。
其中,
●每一个所述参考带宽条件都可以是下面中的一项或多项(在适用的情况下按“与”或者“或”的方式任意组合):
◆无任何条件(即所述参考带宽条件总是可以满足)。例如,此时,“若所述小区中已配置上行载波,且已配置补充上行载波,且满足所述参考带宽条件”等同于“若所述小区中已配置上行载波,且已配置补充上行载波”。
◆所述小区中未配置上行载波。
◆所述小区中已配置上行载波。
◆所述小区中未配置补充上行载波。
◆所述小区中已配置补充上行载波。
◆所述小区中未配置PUCCH载波。
◆所述小区中已配置PUCCH载波。
◆所述上行载波上未配置参数pusch-Config。
◆所述补充上行载波上未配置参数pusch-Config。
◆所述上行载波上已配置参数pusch-Config。
◆所述补充上行载波上已配置参数pusch-Config。
◆所述上行载波上未配置参数pucch-Config。
◆所述补充上行载波上未配置参数pucch-Config。
◆所述上行载波上已配置参数pucch-Config。
◆所述补充上行载波上已配置参数pucch-Config。
◆所述上行载波未配置为传输PUSCH。
◆所述补充上行载波未配置为传输PUSCH。
◆所述上行载波已配置为传输PUSCH。
◆所述补充上行载波已配置为传输PUSCH。
◆所述上行载波未配置为传输PUCCH。
◆所述补充上行载波未配置为传输PUCCH。
◆所述上行载波已配置为传输PUCCH。
◆所述补充上行载波已配置为传输PUCCH。
◆所述PUCCH载波未配置为传输PUSCH。
◆所述PUCCH载波已配置为传输PUSCH。
◆所述PUCCH载波是所述上行载波。
◆所述PUCCH载波是所述补充上行载波。
●每一个参考带宽条件取“非”(或者说取“反”)后变成另一个参考带宽条件。例如,“所述上行载波已配置为传输PUSCH,且所述补充上行载波已配置为传输PUSCH”是一个参考带宽条件,将其取“非”后得到的“所述上行载波未配置为传输PUSCH,或所述补充上行载波未配置为传输PUSCH”也是一个参考带宽条件。
●所述一个或多个参考带宽条件及其所分别对应的参考带宽值可以对S101、S103、S105和S109分别定义,也可以对S101、S103、S105和S109使用同样的定义。
另外,在本发明的实施例一的S101和S109的任意一个中,所述参考带宽值可以按照下面中的任意一种方式定义:
Figure PCTCN2020072410-appb-000067
Figure PCTCN2020072410-appb-000068
Figure PCTCN2020072410-appb-000069
Figure PCTCN2020072410-appb-000070
Figure PCTCN2020072410-appb-000071
Figure PCTCN2020072410-appb-000072
Figure PCTCN2020072410-appb-000073
Figure PCTCN2020072410-appb-000074
Figure PCTCN2020072410-appb-000075
Figure PCTCN2020072410-appb-000076
Figure PCTCN2020072410-appb-000077
●BW ref=PUCCH载波(例如上行载波,又如补充上行载波)上的初始上行BWP的大小。
●BW ref=非PUCCH载波(例如上行载波,又如补充上行载波)上的初始上行BWP的大小。
●已配置参数pusch-Config的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的初始上行BWP的大小。
●未配置参数pusch-Config的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的初始上行BWP的大小。
●已配置参数pucch-Config的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的初始上行BWP的大小。
●未配置参数pucch-Config的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的初始上行BWP的大小。
●已配置为传输PUSCH的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的初始上行BWP的大小。
●未配置为传输PUSCH的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的初始上行BWP的大小。
●已配置为传输PUCCH的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的初始上行BWP的大小。
●未配置为传输PUCCH的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的初始上行BWP的大小。
其中,
Figure PCTCN2020072410-appb-000078
是所述小区中的上行载波上的初始上行BWP(initial UL BWP,例如通过参数initialUplinkBWP进行配置)的大小。可选地,若所述小区中未配置上行载波,则所述
Figure PCTCN2020072410-appb-000079
可以取一个缺省的值。
Figure PCTCN2020072410-appb-000080
是所述小区中的补充上行载波上的初始上行BWP的大小。可选地,若所述小区中未配置补充上行载波,则所述
Figure PCTCN2020072410-appb-000081
可以取一个缺省的值。
Figure PCTCN2020072410-appb-000082
可以是一个预定义的常数,也可以是一个预配置的值,也可以是一个从例如基站获取(例如通过DCI或者MAC CE或者RRC信令获取)的参数的值,或者当所述参数未配置时,使用缺省的值。可选地,所述
Figure PCTCN2020072410-appb-000083
可以对S101和S109分别定义,也可以对S101和S109使用同样的定义。
另外,在本发明的实施例一的S103和S105的任意一个中,所述参考带宽值可以按照下面中的任意一种方式定义:
Figure PCTCN2020072410-appb-000084
Figure PCTCN2020072410-appb-000085
Figure PCTCN2020072410-appb-000086
Figure PCTCN2020072410-appb-000087
Figure PCTCN2020072410-appb-000088
Figure PCTCN2020072410-appb-000089
Figure PCTCN2020072410-appb-000090
Figure PCTCN2020072410-appb-000091
Figure PCTCN2020072410-appb-000092
Figure PCTCN2020072410-appb-000093
Figure PCTCN2020072410-appb-000094
●BW ref=PUCCH载波(例如上行载波,又如补充上行载波)上的有效上行BWP的大小。
●BW ref=非PUCCH载波(例如上行载波,又如补充上行载波)上的有效上行BWP的大小。
●已配置参数pusch-Config的与上行方向有关的载波(例如上行载 波,又如补充上行载波)上的有效上行BWP的大小。
●未配置参数pusch-Config的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的有效上行BWP的大小。
●已配置参数pucch-Config的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的有效上行BWP的大小。
●未配置参数pucch-Config的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的有效上行BWP的大小。
●已配置为传输PUSCH的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的有效上行BWP的大小。
●未配置为传输PUSCH的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的有效上行BWP的大小。
●已配置为传输PUCCH的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的有效上行BWP的大小。
●未配置为传输PUCCH的与上行方向有关的载波(例如上行载波,又如补充上行载波)上的有效上行BWP的大小。
其中,
Figure PCTCN2020072410-appb-000095
是所述小区中的上行载波上的有效上行BWP(active UL BWP)的大小。可选地,若所述小区中未配置上行载波,则所述
Figure PCTCN2020072410-appb-000096
可以取一个缺省的值。
Figure PCTCN2020072410-appb-000097
是所述小区中的补充上行载波上的有效上行BWP的大小。可选地,若所述小区中未配置补充上行载波,则所述
Figure PCTCN2020072410-appb-000098
可以取一个缺省的值。
Figure PCTCN2020072410-appb-000099
可以是一个预定义的常数,也可以是一个预配置的值,也可以是一个从例如基站获取(例如通过DCI或者MAC CE或者RRC信令获取)的参数的值,或者当所述参数未配置时,使用缺省的值。可选地,所述
Figure PCTCN2020072410-appb-000100
可以对S103和S105分别定义,也可以对S103和S105使用同样的定义。
可选地,在本发明的实施例一中,确定DCI格式(例如在CSS中监听的DCI格式1_0,或者在CSS中监听的DCI格式0_0,或者在USS中 监听的DCI格式1_0,或者在USS中监听的DCI格式0_0,或者在USS中监听的DCI格式1_1,或者在USS中监听的DCI格式0_1)的方法可以是,根据所述DCI格式中每个字段的定义以及与所述字段有关的参数的配置信息(例如所述参数是否存在,或者所述参数的值),和/或在DCI大小对齐流程(DCI size alignment procedure,例如本发明的实施例一中所执行的一个或多个步骤)中确定的与所述字段有关的信息,确定所述字段是否存在,以及所述字段的大小(如果存在的话);另外,根据所述DCI格式中所有字段的大小,确定所述DCI格式的大小。其中,对于一个给定的字段,所述配置信息可以不存在,也可以是UE特定(UE specific)的配置信息,也可以是BWP特定(BWP specific)的配置信息,也可以是小区特定(cell specific)的配置信息。
可选地,在本发明的实施例一中,对于某个或某些或全部DCI格式,仅当UE配置为监听所述DCI格式时,才需要为所述DCI格式执行“确定DCI格式”的动作,例如,仅当UE配置为在USS中监听DCI格式0_1时,才需要确定在USS中监听的DCI格式0_1。
可选地,在本发明的实施例一中,CSS也可以替换为CSS集合。
可选地,在本发明的实施例一中,USS也可以替换为USS集合。
可选地,在本发明的实施例一中,“小区”和“服务小区”可以互换使用。
这样,本发明的实施例一通过在对在USS中监听的DCI格式0_1和在USS中监听的DCI格式1_1执行零填充时分别同时考虑在CSS中监听的DCI格式0_0/1_0和在USS中监听的DCI格式0_0/1_0,避免了UE在接收DCI时产生的DCI格式歧义(DCI format ambiguity),提升了下行控制信令的可靠性。
[实施例二]
下面结合图2来说明本发明的实施例二的由用户设备UE执行的方法。
图2是示出了根据本发明的实施例二的由用户设备UE执行的方法的流程图。
如图2所示,在本发明的实施例二中,用户设备UE执行的步骤包括:步骤S201、步骤S203和步骤S205。
具体地,在步骤S201,分别获取第一搜索空间集合的一个或多个参数的配置信息和第二搜索空间集合的一个或多个参数的配置信息。例如,从预定义信息或预配置信息中获取所述配置信息,或者从基站获取所述配置信息(例如通过DCI或者MAC CE或者RRC信令获取所述配置信息),或者当所述参数未配置时,使用缺省的值。
其中,
●所述第一搜索空间集合可以是一个类型3-PDCCH CSS集合。例如,所述类型3-PDCCH CSS集合可以通过SearchSpace IE配置,其中searchSpaceType参数配置为common。
●所述第一搜索空间集合中所配置的DCI格式可以包括DCI格式0_0和DCI格式1_0中的至少一个。可选地,所述DCI格式0_0和/或所述DCI格式1_0的CRC可以用C-RNTI,或者MCS-C-RNTI,或者CS-RNTI加扰。
●所述第一搜索空间集合所关联的CORESET称为第一CORESET。
●所述第二搜索空间集合可以是一个USS集合。例如,所述USS集合可以通过SearchSpace IE配置,其中searchSpaceType参数配置为ue-Specific。
●所述第二搜索空间集合中所配置的DCI格式可以是下面中的一种:
◆DCI格式0_1和DCI格式1_1中的至少一个。
◆DCI格式0_0和DCI格式1_0中的至少一个。
可选地,所述DCI格式(如所述DCI格式0_1,或所述DCI格式1_1,或所述DCI格式0_0,或所述DCI格式1_0)的CRC可 以用C-RNTI,或者MCS-C-RNTI,或者CS-RNTI加扰。
●所述第二搜索空间所关联的CORESET称为第二CORESET。
此外,在步骤S203,根据所述配置信息,和/或其他信息,在例如有效下行BWP(active DL BWP)上监听所述第一搜索空间集合中所配置的第一DCI格式所关联的第一PDCCH候选和所述第二搜索空间集合中所配置的第二DCI格式所关联的第二PDCCH候选。
最后,在步骤S205,在满足PDCCH优先级条件的情况下执行如下动作中的一个:
●只解码所述第一PDCCH候选。
●只解码所述第二PDCCH候选。
其中,所述PDCCH优先级条件可以是下面中的一个或多个(在适用的情况下按“与”或者“或”的方式任意组合):
●与CORESET有关的条件。例如,下面中的一个或多个(在适用的情况下按“与”或者“或”的方式任意组合):
◆所述第一CORESET是参考CORESET。
◆所述第二CORESET是参考CORESET。
其中,所述参考CORESET可以是一个预定义的CORESET(例如CORESET 0,即ID等于0的CORESET),也可以是一个预配置的CORESET,也可以是通过DCI或者MAC CE或者RRC信令所指示的CORESET,也可以是按其他方式确定的CORESET。
●与DCI格式的类型有关的条件。例如,下面中的一个或多个(在适用的情况下按“与”或者“或”的方式任意组合):
◆所述第一DCI格式是DCI格式0_0。
◆所述第一DCI格式是DCI格式1_0。
◆所述第二DCI格式是DCI格式0_0。
◆所述第二DCI格式是DCI格式1_0。
◆所述第二DCI格式是DCI格式0_1。
◆所述第二DCI格式是DCI格式1_1。
●与DCI格式的大小有关的条件。例如,所述第一DCI格式的大 小和所述第二DCI格式的大小相等。
●与RNTI有关的条件。例如,下面中的一个或多个(在适用的情况下按“与”或者“或”的方式任意组合):
◆所述第一DCI格式的CRC使用C-RNTI加扰。
◆所述第一DCI格式的CRC使用MCS-C-RNTI加扰。
◆所述第一DCI格式的CRC使用CS-RNTI加扰。
◆所述第二DCI格式的CRC使用C-RNTI加扰。
◆所述第二DCI格式的CRC使用MCS-C-RNTI加扰。
◆所述第二DCI格式的CRC使用CS-RNTI加扰。
●与PDCCH加扰有关的条件。例如,所述第一PDCCH候选和所述第二PDCCH候选使用相同的加扰序列(例如通过使用相同的加扰初值c init)。
●与CCE有关的条件。例如,所述第一PDCCH候选和所述第二PDCCH候选使用一组同样的CCE(其中包含一个或多个CCE)。
这样,本发明的实施例二通过设置不同搜索空间集合中的PDCCH候选之间的优先级,避免了UE在接收DCI时产生的DCI格式歧义(DCI format ambiguity),提升了下行控制信令的可靠性。
[实施例三]
下面结合图3来说明本发明的实施例三的由用户设备UE执行的方法。
图3是示出了根据本发明的实施例三的由用户设备UE执行的方法的流程图。
如图3所示,在本发明的实施例三中,用户设备UE执行的步骤包括:步骤S301和步骤S303。
具体地,在步骤S301,获取与SSB有关的一个或多个参数的配置信息。例如,从预定义信息或预配置信息中获取所述配置信息,或者从基站获取所述配置信息(例如通过DCI或者MAC CE或者RRC信令获取所述配置信息),或者当所述参数未配置时,使用缺省的值。
其中,所述一个或多个参数的配置信息可以包括:
●与准共置(quasi co-location)有关的配置信息。例如,SSB集合
Figure PCTCN2020072410-appb-000101
与SSB集合
Figure PCTCN2020072410-appb-000102
准共置。其中,
◆所述SSB可以是可能发送的SSB(或者说候选SSB,candidate SSB),也可以是实际发送的SSB。
Figure PCTCN2020072410-appb-000103
Figure PCTCN2020072410-appb-000104
是所述SSB的索引(SSB index,或者SSB block index),例如候选SSB的索引,或者实际发送的SSB的索引。
◆N 1和N 2是整数。
◆所述准共置可以指在下面中的一个或多个方面准共置:
○多普勒扩展(Doppler spread)。
○多普勒频移(Doppler shift)。
○平均增益(average gain)。
○平均延迟(average delay)。
○延迟扩展(delay spread)。
○空间接收参数(Spatial Rx parameter)。
其中,可选地,若在多普勒频移、多普勒扩展、平均延迟和延迟扩展上准共置,则称为在QCL-类型A上准共置;若在多普勒频移和多普勒扩展上准共置,则称为在QCL-类型B上准共置;若在多普勒频移和平均延迟上准共置,则称为在QCL-类型C上准共置;若在空间接收参数上准共置,则称为在QCL-类型D上准共置。
◆所述与准共置有关的配置信息中可以包含多个所述集合
Figure PCTCN2020072410-appb-000105
和所述集合
Figure PCTCN2020072410-appb-000106
的组合。例如,所述与准共置有关的配置信息可以指示索引为{0,1}的SSB与索引为{2,3}的SSB准共置,以及索引为{8}的SSB与索引为{10,11}的SSB准共置。
此外,在步骤S303,根据所述配置信息,和/或其他信息,接收SSB和/或其他物理信道/信号。
例如,合并对应不同索引的SSB。
又如,若所述与准共置有关的配置信息指示索引为0的SSB与索引为9的SSB准共置,且已成功利用接收波束1接收所述索引为0的SSB,则利用所述接收波束1接收所述索引为9的SSB。
这样,本发明的实施例三通过指示不同索引的SSB之间的准共置信息,极大提高了在实际发送的SSB索引数量较少时(例如在低频频段部署5G时)的准共置配置的灵活性,并且使得UE可以在这种情况下利用准确的准共置信息提高接收机的性能。
[实施例四]
下面结合图4来说明本公开的实施例四的由用户设备执行的方法。
图4是示出了根据本公开的实施例四的由用户设备执行的方法的流程图。
如图4所示,在本公开的实施例四中,用户设备UE执行的步骤包括:步骤S401、步骤S403和步骤S405。
具体地,在步骤S401,接收下行控制信息DCI。
其中,
●所述DCI可以用于调度PUSCH的传输。
●所述DCI的格式可以是在用户搜索空间(USS)中监听的DCI格式0_1。例如,所述USS可以通过SearchSpace IE配置,其中searchSpaceType参数配置为ue-Specific。
●所述DCI的CRC可以用C-RNTI加扰,也可以用MCS-C-RNTI加扰,也可以用CS-RNTI加扰,也可以用其他RNTI加扰。
●所述DCI可以包含一个UL/SUL指示器(UL/SUL indicator)字段,所述UL/SUL指示器字段的大小可以是0比特(此时也可以认为所述UL/SUL指示器字段不存在),或者1比特。
●所述DCI可以包含一个BWP指示器(Bandwidth part indicator)字段,所述BWP指示器字段的大小可以是0比特(此时也可以 认为所述BWP指示器字段不存在),或者1比特,或者2比特。
此外,在步骤S403,根据所述DCI,和/或其他信息,确定所分配的频域资源,以及与所述频域资源有关的参考载波以及参考BWP。
其中,
●所述参考载波可以是所述频域资源所在的与上行方向有关的载波(例如上行载波,又如补充上行载波)。
●所述参考BWP可以是所述频域资源所在的所述参考载波上的BWP。
●所述参考BWP可以是所述参考载波的有效上行BWP,也可以不是所述参考载波的有效上行BWP。
此外,在步骤S405,切换有效上行BWP。例如,执行下面中的一项或者多项:
●若所述参考BWP不是所述参考载波的有效上行BWP,则将所述参考BWP确定为所述参考载波的有效上行BWP。
●若所述参考载波所在的小区中配置了除所述参考载波外的另一个与上行方向有关的载波(例如上行载波,又如补充上行载波),则将所述另一个与上行方向有关的载波上配置的且ID等于所述参考BWP的ID的BWP确定为所述另一个与上行方向有关的载波的有效上行BWP。
这样,本发明的实施例四通过同时切换上行载波和补充上行载波的有效上行BWP,极大简化了DCI大小对齐流程中对有效上行BWP的依赖,提高了DCI大小对齐流程的执行效率。
[变形例]
下面,利用图5来说明作为一种变形例的可执行本发明上面所详细描述的用户设备执行的方法的用户设备。
图5是表示本发明所涉及的用户设备UE的框图。
如图5所示,该用户设备UE50包括处理器501和存储器502。处理 器501例如可以包括微处理器、微控制器、嵌入式处理器等。存储器502例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器502上存储有程序指令。该指令在由处理器501运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算***的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在 例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (10)

  1. 一种由用户设备UE执行的方法,包括:
    第一步骤,确定在公共搜索空间即CSS中监听的下行控制信息DCI格式0_0的大小和在CSS中监听的DCI格式1_0的大小,并对齐所述在CSS中监听的DCI格式0_0的大小和所述在CSS中监听的DCI格式1_0的大小;
    第二步骤,确定在UE特定搜索空间即USS中监听的DCI格式0_0的大小和在USS中监听的DCI格式1_0的大小,并对齐所述在USS中监听的DCI格式0_0的大小和所述在USS中监听的DCI格式1_0的大小;以及
    第三步骤,确定在USS中监听的DCI格式0_1的大小和/或在USS中监听的DCI格式1_1的大小,并对所确定的所述在USS中监听的DCI格式0_1的大小和/或所述在USS中监听的DCI格式1_1的大小进行调整,使得其既不等于对齐后的所述在CSS中监听的DCI格式0_0的大小或所述在CSS中监听的DCI格式1_0的大小,也不等于对齐后的所述在USS中监听的DCI格式0_0的大小或所述在USS中监听的DCI格式1_0的大小。
  2. 根据权利要求1所述的方法,其特征在于,
    在所述第三步骤之后,所述方法还包括:
    第四步骤,判断是否同时满足以下条件1和条件2:
    条件1,小区中给所述UE配置的不同DCI格式的大小的总数不超过第一数目;以及
    条件2,小区中给所述UE配置的用于小区-无线网络临时标识即C-RNTI的不同DCI格式的大小的总数不超过第二数目。
  3. 根据权利要求2所述的方法,其特征在于,
    在无法同时满足所述条件1和所述条件2的情况下,所述方法还包括:
    第五步骤,取消在所述第三步骤中针对所述在USS中监听的DCI格式0_1的大小和/或所述在USS中监听的DCI格式1_1的大小进行的调整;以及重新确定和重新对齐在USS中监听的DCI格式0_0的大小和在USS 中监听的DCI格式1_0的大小,使得重新对齐后的所述在USS中监听的DCI格式0_0的大小或所述在USS中监听的DCI格式1_0的大小等于所述第一步骤中的对齐后的所述在CSS中监听的DCI格式0_0的大小或所述在CSS中监听的DCI格式1_0的大小。
  4. 根据权利要求1所述的方法,其特征在于,
    在所述第一步骤中,若所述在CSS中监听的DCI格式0_0的大小小于所述在CSS中监听的DCI格式1_0的大小,则对所述在CSS中监听的DCI格式0_0执行零填充,来对齐所述在CSS中监听的DCI格式0_0的大小和所述在CSS中监听的DCI格式1_0的大小;以及
    若所述在CSS中监听的DCI格式0_0的大小大于所述在CSS中监听的DCI格式1_0的大小,则对所述在CSS中监听的DCI格式0_0的频域资源分配字段的开始的一个或多个最高有效位进行截断,来对齐所述在CSS中监听的DCI格式0_0的大小和所述在CSS中监听的DCI格式1_0的大小。
  5. 根据权利要求1所述的方法,其特征在于,
    在所述第二步骤中,通过对所述在USS中监听的DCI格式0_0的大小和所述在USS中监听的DCI格式1_0的大小较小的一方执行零填充,来对齐所述在USS中监听的DCI格式0_0的大小和所述在USS中监听的DCI格式1_0的大小。
  6. 根据权利要求1所述的方法,其特征在于,
    在所述第三步骤中,通过对所确定的所述在USS中监听的DCI格式0_1和/或所述在USS中监听的DCI格式1_1进行零填充,来对所述在USS中监听的DCI格式0_1的大小和/或所述在USS中监听的DCI格式1_1的大小进行调整。
  7. 一种由用户设备UE执行的方法,包括:
    分别获取第一搜索空间集合的配置信息和第二搜索空间集合的配置信息;
    根据所获取的所述第一搜索空间集合的配置信息和所述第二搜索空间集合的配置信息,监听所述第一搜索空间集合中所配置的第一下行控制信息DCI格式所关联的第一物理下行控制信道PDCCH候选和所述第二 搜索空间集合中所配置的第二DCI格式所关联的第二PDCCH候选;以及
    在满足PDCCH优先级条件的情况下,只解码所述第一PDCCH候选或者只解码所述第二PDCCH候选。
  8. 根据权利要求7所述的方法,其特征在于,
    所述PDCCH优先级条件包括以下条件中的至少一个:与控制资源集CORESET有关的条件、与DCI格式的类型有关的条件、与DCI格式的大小有关的条件、与无线网络临时标识RNTI有关的条件、与PDCCH加扰有关的条件、以及与控制信道元素CCE有关的条件。
  9. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    其中,所述指令在由所述处理器运行时执行根据权利要求1-6中的任一项所述的方法。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    其中,所述指令在由所述处理器运行时执行根据权利要求7或8所述的方法。
PCT/CN2020/072410 2019-01-17 2020-01-16 由用户设备执行的方法以及用户设备 WO2020147775A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/423,605 US20220116143A1 (en) 2019-01-17 2020-01-16 Method executed by user equipment, and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910047349.3A CN111447043A (zh) 2019-01-17 2019-01-17 由用户设备执行的方法以及用户设备
CN201910047349.3 2019-01-17

Publications (1)

Publication Number Publication Date
WO2020147775A1 true WO2020147775A1 (zh) 2020-07-23

Family

ID=71613513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072410 WO2020147775A1 (zh) 2019-01-17 2020-01-16 由用户设备执行的方法以及用户设备

Country Status (3)

Country Link
US (1) US20220116143A1 (zh)
CN (1) CN111447043A (zh)
WO (1) WO2020147775A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220039103A1 (en) * 2020-07-30 2022-02-03 Qualcomm Incorporated Multicast downlink control information configuration

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6861891B2 (ja) * 2017-09-11 2021-04-21 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるダウンリンク制御情報を送信する方法及び装置
WO2021224283A1 (en) * 2020-05-04 2021-11-11 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Methods and apparatuses for enhancing the reliability and performance of the physical downlink control channel in a wireless communications network
US20230232339A1 (en) * 2020-08-04 2023-07-20 Qualcomm Incorporated Sounding reference signal triggering techniques
WO2022027323A1 (zh) * 2020-08-05 2022-02-10 北京小米移动软件有限公司 用于寻呼信息处理的方法、装置及存储介质
WO2022032651A1 (en) * 2020-08-14 2022-02-17 Qualcomm Incorporated Physical uplink shared channel with switched antenna and frequency hopping
AU2021420219A1 (en) * 2021-01-15 2023-06-29 Lenovo (Beijing) Limited Method and apparatus for downlink control information size alignment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043955A1 (ko) * 2010-09-30 2012-04-05 엘지전자 주식회사 반송파 집성을 지원하는 무선 접속 시스템에서 제어 신호 송수신 방법
CN103796315A (zh) * 2012-11-02 2014-05-14 中兴通讯股份有限公司 用户设备专用搜索空间的物理资源块配置方法和装置
CN105553622A (zh) * 2010-06-08 2016-05-04 韩国电子通信研究院 多载波无线通信***中的收发方法及装置
CN109089316A (zh) * 2017-06-14 2018-12-25 华为技术有限公司 调度方法及相关装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10841911B2 (en) * 2015-10-02 2020-11-17 Lg Electronics Inc. Method for transmitting downlink control information in wireless communication system
US10512072B2 (en) * 2017-09-11 2019-12-17 Lg Electronics Inc. Method and apparatus for transmitting downlink control information in wireless communication system
JP7387642B2 (ja) * 2018-05-11 2023-11-28 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ダウンリンク制御情報(dci)のサイズ調整用のシステムおよび方法
CN113783671B (zh) * 2018-05-11 2022-12-27 华为技术有限公司 通信方法、终端设备和网络设备
EP3858056A1 (en) * 2018-09-26 2021-08-04 Telefonaktiebolaget LM Ericsson (publ) Downlink control information in uss
ES2957687T3 (es) * 2018-10-26 2024-01-24 Ericsson Telefon Ab L M Coincidencia de tamaño de información de control de enlace descendente (DCI)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553622A (zh) * 2010-06-08 2016-05-04 韩国电子通信研究院 多载波无线通信***中的收发方法及装置
WO2012043955A1 (ko) * 2010-09-30 2012-04-05 엘지전자 주식회사 반송파 집성을 지원하는 무선 접속 시스템에서 제어 신호 송수신 방법
CN103796315A (zh) * 2012-11-02 2014-05-14 中兴通讯股份有限公司 用户设备专用搜索空间的物理资源块配置方法和装置
CN109089316A (zh) * 2017-06-14 2018-12-25 华为技术有限公司 调度方法及相关装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220039103A1 (en) * 2020-07-30 2022-02-03 Qualcomm Incorporated Multicast downlink control information configuration

Also Published As

Publication number Publication date
CN111447043A (zh) 2020-07-24
US20220116143A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2020147775A1 (zh) 由用户设备执行的方法以及用户设备
WO2020164452A1 (zh) 由用户设备执行的方法以及用户设备
US11910417B2 (en) Base station device, terminal device, and communication method
US20210168858A1 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
EP3826408A1 (en) Base station device, terminal device, and communication method
WO2021008587A1 (zh) 由用户设备执行的方法以及用户设备
EP3729898B1 (en) Managing pdcch blind searches in new radio unlicensed band scenario
WO2020094019A1 (zh) 信息传输方法及装置
WO2020221241A1 (zh) 由用户设备执行的方法以及用户设备
WO2020135417A1 (zh) 由用户设备执行的方法以及用户设备
CN111699721A (zh) 用于非许可无线电频带场景的临时浮动下行链路定时方法
BRPI1009318B1 (pt) dispositivo de terminal de comunicação sem fio, dispositivo de estação base de comunicação sem fio e método de ajuste de região de recurso
WO2018166421A1 (zh) 传输控制信息的方法、设备和***
BRPI1008961B1 (pt) Terminal, estação base, método para receber um canal de controle em um terminal, método para formar um canal de controle em uma estação base e circuito integrado
EP3836711B1 (en) Method executed by user equipment and user equipment
WO2020143558A1 (zh) 信道测量方法和装置
WO2022127732A1 (zh) 由用户设备执行的方法以及用户设备
WO2022068685A1 (zh) 由用户设备执行的方法以及用户设备
US20230057016A1 (en) Master Information Block (MIB) Type Determination
WO2020063478A1 (zh) 由用户设备执行的方法以及用户设备
WO2021160032A1 (zh) 由用户设备执行的方法以及用户设备
WO2021228136A1 (zh) 由用户设备执行的方法以及用户设备
WO2021212447A1 (en) Methods, devices and computer storage media for communication
WO2021063337A1 (zh) 由用户设备执行的方法以及用户设备
WO2021088486A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741578

Country of ref document: EP

Kind code of ref document: A1