WO2020147718A1 - 电梯故障诊断方法、装置、设备及计算机存储介质 - Google Patents

电梯故障诊断方法、装置、设备及计算机存储介质 Download PDF

Info

Publication number
WO2020147718A1
WO2020147718A1 PCT/CN2020/071997 CN2020071997W WO2020147718A1 WO 2020147718 A1 WO2020147718 A1 WO 2020147718A1 CN 2020071997 W CN2020071997 W CN 2020071997W WO 2020147718 A1 WO2020147718 A1 WO 2020147718A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
circuit
voltage
door lock
fault diagnosis
Prior art date
Application number
PCT/CN2020/071997
Other languages
English (en)
French (fr)
Inventor
赵阳
李红星
Original Assignee
西人马帝言(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西人马帝言(北京)科技有限公司 filed Critical 西人马帝言(北京)科技有限公司
Publication of WO2020147718A1 publication Critical patent/WO2020147718A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators

Definitions

  • This application belongs to the technical field of equipment fault monitoring, and in particular relates to an elevator fault diagnosis method, device, equipment and computer storage medium.
  • the embodiments of the present application provide a method, device, equipment, and computer storage medium for diagnosing elevator faults, which can determine whether an elevator circuit fails, and then determine whether an elevator fault related to an abnormal elevator circuit occurs, so as to prevent elevator safety accidents. Before it happens.
  • an embodiment of the present application provides an elevator fault diagnosis method.
  • the method includes:
  • an elevator fault diagnosis device which includes:
  • the data acquisition module is used to acquire the detection value related to the voltage signal in the elevator circuit
  • the first judgment module is configured to judge whether the elevator circuit has a fault based on the comparison result of the detection value and a preset threshold;
  • an embodiment of the present application provides an elevator fault diagnosis device, the device includes: a processor and a memory storing computer program instructions;
  • the elevator fault diagnosis method as described in the first aspect is implemented.
  • an embodiment of the present application provides a computer storage medium having computer program instructions stored thereon, and the computer program instructions are executed by a processor to implement the elevator fault diagnosis method described in the first aspect .
  • the elevator fault diagnosis method, device, equipment, and computer storage medium of the embodiments of the present application determine whether the elevator loop has a fault by obtaining the detection value related to the voltage signal in the elevator loop, and based on the comparison result of the detection value and the preset threshold value. Therefore, the embodiments of the present application can accurately determine whether an elevator circuit fails, and then determine whether an elevator failure related to an abnormal elevator circuit occurs, so as to prevent elevator safety accidents before they occur.
  • FIG. 1 is a schematic flowchart of an elevator fault diagnosis method provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of an elevator door opening and closing signal provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of an elevator door opening and closing signal provided by another embodiment of the present application.
  • Figure 4 is a schematic diagram of an abnormal door opening and closing signal of an elevator provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of an abnormal door opening and closing signal of an elevator provided by another embodiment of the present application.
  • Fig. 6 is a schematic diagram of a voltage signal of a door lock circuit provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a safety circuit voltage signal provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an elevator fault diagnosis device provided by another embodiment of the present application.
  • Figure 9 is a schematic structural diagram of an elevator fault diagnosis device provided by another embodiment of the present application.
  • the embodiments of the present application provide an elevator fault diagnosis method, device, equipment and computer storage medium. The following first introduces the elevator fault diagnosis method provided by the embodiments of the present application.
  • a safety circuit means that each safety component of the elevator is equipped with a safety switch, and all safety switches are connected in series to control a safety relay. Only when all the safety switches are turned on and the safety relay is closed, the elevator can run with electricity.
  • General safety circuits include phase sequence protection relays, speed limiters, safety gears, emergency stop buttons, emergency exit switches, pit switches, limit switches and other devices such as contacts and relays. If the relay of any one of the devices loses power, the elevator will not be able to run, and even the running elevator will stop running.
  • the door lock circuit is equipped with a door electrical interlock switch on each hall door and car door. All the door electrical interlock switches are connected in series to control a door lock relay to ensure that the elevator must be closed at all doors. Before it can run. Only when the door lock circuit must be connected, that is, when all the door electric interlock switches are all connected, the door lock relay of the door lock circuit can be closed and the elevator can run.
  • the door electrical interlock switch is a safety component with a large amount of use and a high safety factor in elevators. Only the landing door of the floor where the car is located can be opened, and the other landing doors are not allowed to be opened.
  • the elevator safety circuit When the elevator safety circuit is short-circuited, that is, when the safety circuit is short-circuited, if the elevator is still in the fast running state, the elevator will be in danger.
  • the safety circuit fails, the maintenance personnel sometimes short-circuit the safety circuit due to work needs during the maintenance process.
  • the short-circuit wire of the door lock When the maintenance is over, the short-circuit wire of the door lock must be removed before the elevator can be restored to the express state. If during maintenance, the safety circuit is short-circuited without opening the inspection switch in advance; or after the maintenance is completed, the safety short-circuit wire is forgotten to be removed, or the safety circuit is short-circuited by others, which will cause the elevator to short-circuit the safety circuit Under the circumstances, it is still running at a fast speed, which is very dangerous.
  • the general inspection method is to ensure that in the inspection state, the control panel short-circuits the hall door lock and the car door lock separately to distinguish whether the hall door part or the car door part is faulty. Make sure that in the inspection state, short-circuit the hall door lock loop and run the elevator at the inspection speed. When the overhaul is over, you must first remove the door lock short wire to restore the elevator to the express state. If during maintenance, the door lock circuit is short-circuited without opening the inspection switch in advance; or the door lock short-circuit wire is forgotten to be removed after the inspection is completed; or there are other people who short-circuit the door lock circuit, the elevator will be short-circuited. When the door lock circuit is connected, it is still running at a fast speed, which is very dangerous.
  • Fig. 1 shows a schematic flowchart of an elevator fault diagnosis method provided by an embodiment of the present application.
  • the elevator fault diagnosis method of the embodiment of the present application includes the following steps:
  • the elevator circuit fault may be a short circuit of the elevator circuit, or the power supply of the elevator circuit is directly cut off. It may be that the voltage collecting device is connected in parallel with the elevator circuit to obtain the detection value of the elevator circuit related to the voltage signal. According to the embodiments of the present application, it is possible to accurately determine whether an elevator circuit fails, and then to determine whether an elevator failure related to an abnormal elevator circuit occurs, so as to prevent elevator safety accidents before they occur.
  • the detection signal related to the voltage signal in the elevator circuit includes the voltage signal of the door lock circuit.
  • the voltage signal of the door lock circuit can be understood as the real-time voltage value of the door lock circuit.
  • the voltage acquisition device may be connected in parallel with the elevator door lock circuit to obtain the voltage signal of the door lock circuit.
  • the voltage acquisition device may be an isolation transmitter, which can convert the actual voltage signal of the door lock loop into a voltage signal within a certain range, and the converted voltage signal has a linear relationship with the actual voltage signal.
  • the voltage signal of the door lock circuit after conversion is acquired, it can accurately reflect the characteristics of the door lock circuit, that is, the change of the voltage signal of the door lock circuit.
  • the voltage acquisition device and the door lock circuit are connected in parallel, which has no effect on the door lock circuit itself, and will not affect the door lock circuit due to the problem of the voltage acquisition device itself.
  • the resistance value of the door lock circuit is collected to determine the condition of the door lock circuit, the collected resistance value does not have a linear relationship with the actual resistance value of the door lock circuit, and the resistance collection device will affect the door lock circuit itself and cannot accurately respond. The characteristics of the door lock circuit.
  • Figure 3 and Figure 6 are collected signal data of an elevator in Yongchun County under normal conditions, including the voltage signal of the door lock circuit and the photoelectric pair signal of this elevator And speed signal.
  • Line 1 represents the voltage signal change of the door lock circuit
  • 2 represents the photoelectric signal change
  • 3 represents the elevator speed signal change
  • the horizontal axis unit is milliseconds
  • the vertical axis unit is V.
  • a baffle is installed at each level of each floor of the building where the elevator is located, and a photoelectric sensor is installed at a preset position of the elevator car, where the preset position may be the top of the elevator car.
  • the barrier sheet blocks the photoelectric sensor.
  • the photoelectric signal value detected by the photoelectric sensor is 1V.
  • the baffle does not cover the photoelectric sensor, the value of the photoelectric signal detected by the photoelectric sensor is 0.
  • the elevator when the elevator is in a moving state, if the voltage value of the door lock circuit is less than the preset threshold, it is determined that the door lock circuit is short-circuited or the power supply of the door lock circuit is directly cut off.
  • the power supply of the door lock circuit It can be understood that the power supply of the entire elevator is cut off directly.
  • the preset threshold is the first voltage threshold.
  • the voltage signal of the door lock circuit can represent the door opening and closing signal of the elevator.
  • the elevator is in a moving state, that is, when the moving speed of the elevator is not 0, the elevator door is closed, and the voltage of the door lock circuit is a high voltage.
  • the so-called high voltage can be understood as a voltage not lower than the first voltage threshold.
  • the moving state of the elevator may be the horizontal moving state or the vertical moving state.
  • the voltage signal of the door lock circuit changes from high voltage to low voltage, and then from low voltage to high Voltage, when the voltage signal of the door lock circuit changes back to high voltage, the elevator changes from a stationary state to a moving state.
  • the so-called low voltage may be a voltage that is smaller than the first voltage threshold and very close to 0, for example, the first voltage threshold is 0.2V.
  • Figures 4 and 5 are collected signal data of an elevator in Quanzhou under abnormal conditions, including the voltage signal of the door lock circuit, the photoelectric pair signal and speed signal of this elevator.
  • Line 1 represents the voltage signal change of the door lock circuit
  • 2 represents the photoelectric signal change
  • 3 represents the elevator speed signal change
  • the horizontal axis unit is milliseconds
  • the vertical axis unit is V.
  • the condition of the door lock circuit is determined based on the elevator running state and the voltage signal of the elevator door lock circuit. For example, when the elevator running state is the moving state, that is, when the moving speed of the elevator is not 0, if the voltage signal of the door lock circuit is less than the first voltage threshold, the elevator door lock circuit is short-circuited.
  • the elevator is in a stationary state, that is, when the moving speed of the elevator is 0, if the voltage signal of the door lock circuit is less than the first voltage threshold, and the static time of the elevator in the stationary state is greater than the first preset time period, the elevator door lock circuit
  • the power supply of the short circuit or the door lock circuit is directly cut off.
  • the power of the door lock circuit is cut off directly, which can be understood as the power supply of the entire elevator is cut off.
  • the first preset duration is 10 seconds.
  • the direct cut off of the power supply of the door lock circuit can be understood as the power supply of the entire elevator is cut off. Whether there is an elevator failure related to the abnormal door lock circuit, so as to prevent the elevator safety accident before it happens.
  • the voltage signal of the door lock circuit can represent the door opening and closing signal of the elevator. If the voltage signal of the door lock circuit does not change, it means that the elevator door does not open and close. At this time, there may be a situation of opening the door and walking the elevator.
  • At least two cycles are to prevent misjudgment, because most elevators have the function of automatic homing, that is, when the elevator is not used by passengers after a certain period of time, it will automatically return from the current floor to the preset floor. At this time, the elevator The door does not need to open or close, that is, the voltage signal of the door lock circuit will not change.
  • the state of the elevator is switched from the moving state to the static state, and the static duration of the elevator in the static state is greater than the preset second duration, if the voltage value of the door lock circuit remains unchanged, it is determined whether there is passenger. If there are passengers in the elevator, it is determined that the elevator has an elevator fault related to the operation of the elevator. It can be understood here that when the elevator running state is from the moving state to the stationary state, and the stationary period is greater than the second preset period, if the voltage signal of the door lock circuit does not change, it means that the elevator door is always in the closed state. It is further judged whether there are passengers in the elevator.
  • the infrared sensor can be used to determine whether there are passengers in the elevator, or the image acquisition device can be used to acquire the collected images inside the elevator, and the acquired images can be used to determine whether there are passengers in the elevator. If there are passengers in the elevator, immediately call the police and notify the relevant staff for rescue and maintenance.
  • the detection signal related to the voltage signal includes the voltage value of the safety circuit. If the voltage value of the safety circuit is less than the preset threshold, it is determined that the safety circuit is short-circuited or the power of the safety circuit is directly cut off.
  • the power of the safety circuit is directly cut off can be understood as the power of the entire elevator is cut off.
  • the preset threshold is the second voltage threshold.
  • the voltage-related detection signal in the elevator circuit includes the voltage signal of the safety circuit.
  • the voltage signal of the safety circuit can be understood as the real-time voltage value of the safety circuit.
  • the voltage acquisition device may be connected in parallel with the elevator safety circuit to obtain the voltage signal of the safety circuit.
  • the voltage acquisition device may be an isolation transmitter, which can convert the actual voltage signal of the safety circuit into a voltage signal within a certain range, and the converted voltage signal has a linear relationship with the actual voltage signal.
  • the voltage signal of the safety circuit after conversion is acquired, which can accurately reflect the characteristics of the safety circuit, that is, the change of the voltage signal of the safety circuit.
  • the voltage acquisition device and the safety circuit are connected in parallel, which has no effect on the safety circuit itself, and will not affect the safety circuit due to the problems of the voltage acquisition device itself.
  • the resistance value of the safety circuit is collected to determine the status of the safety circuit, the collected resistance value does not have a linear relationship with the actual resistance value of the safety circuit, and the resistance collection device will affect the safety circuit itself and cannot accurately reflect the safety circuit. characteristic.
  • the voltage signal of the safety circuit should always be in a high voltage state.
  • the so-called high voltage can be understood as a voltage not lower than the second preset threshold. If the voltage signal of the safety circuit is less than the second voltage threshold, it is determined that the voltage circuit is short-circuited or the power supply of the safety circuit is directly cut off.
  • the power supply of the safety circuit is directly cut off can be understood as the power supply of the entire elevator is cut off.
  • the second voltage threshold is 0.2V.
  • the safety circuit it can be accurately determined whether the safety circuit is short-circuited or the power supply of the safety circuit is directly cut off.
  • the power supply of the safety circuit is directly cut off, which can be understood as the power supply of the entire elevator is cut off. Elevator failures related to abnormal safety circuits can prevent elevator safety accidents before they occur.
  • the elevator circuit of the embodiment of the present application includes a safety circuit and a door lock circuit, when it is detected that any one of the safety circuit and the door lock circuit is short-circuited or the power supply of the circuit is directly cut off, the power supply of the circuit is directly cut off. It can be understood that the power supply of the entire elevator is cut off, that is, it is determined that the elevator circuit is short-circuited or the power supply of the elevator circuit is directly cut off, so as to determine that the elevator fault related to the abnormal elevator circuit occurs.
  • the detection signal related to the voltage signal includes an output signal collected at a signal output point of the elevator loop, wherein the output signal is a signal with a preset frequency coupled from the signal input point of the elevator loop to the elevator loop The coupled signal spreads to the signal output point. If the voltage amplitude of the output signal is less than the preset threshold, it is determined that the elevator circuit is short-circuited or the power of the elevator circuit is directly cut off. Here, the power of the elevator circuit is directly cut off, which means that the power of the entire elevator is cut off.
  • the preset threshold is the voltage amplitude of the coupled signal.
  • the voltage-related detection signal in the elevator loop includes the coupling signal output by the output point in the elevator loop.
  • the coupling signal includes coupling the initial voltage signal of the preset frequency to the elevator loop at the input point using a signal coupling device.
  • the signal diffused along the elevator loop to the output point and output by the receiver, where the initial voltage signal includes a programmable logic controller (Programmable Logic Controller, PLC) signal, where the initial voltage signal can be not only a PLC signal, but also Other signals with a preset frequency, for example, the preset frequency is 50 Hz.
  • the initial voltage signal is a small signal.
  • the so-called small signal can be understood as a signal smaller than a preset threshold, and the preset threshold is smaller than the voltage signal of the elevator circuit. For example, if the voltage value of the elevator circuit is 5V under normal circumstances, the value of the initial voltage signal can be 2V.
  • the specific positions of the input point and output point on the elevator loop are not limited.
  • the coupling signal is compared with a preset threshold, where the preset threshold is the initial voltage signal. If the amplitude of the coupling signal is less than the amplitude of the initial voltage signal, that is, the coupling signal has an amplitude attenuation, it is determined that the elevator The circuit is short-circuited or the power of the elevator circuit is directly cut off.
  • the power of the elevator circuit is directly cut off can be understood as the power of the entire elevator is cut off.
  • the coupling signal includes a signal that uses a signal coupling device to respectively couple an initial voltage signal of a preset frequency to the door lock circuit and the safety circuit at the input point, and spreads the signal along the door lock circuit and the safety circuit to the output point and is output through the receiver. That is, the coupling signals of the door lock circuit and the safety circuit are respectively detected. If any coupling signal of the door lock circuit and the safety circuit has an amplitude attenuation, it is determined that the elevator circuit is short-circuited or the power supply of the elevator circuit is directly cut off. The power directly cut off can be understood as the power of the entire elevator is cut off.
  • the signal coupling method is used to determine the condition of the elevator circuit, which will not cause any influence on the elevator circuit itself, and can accurately reflect the characteristics of the elevator circuit.
  • any one of the door lock circuit and the safety circuit is short-circuited or the power supply is cut off, or the elevator moves when the door is open, or the elevator is closed when the elevator is stationary, that is, the elevator door cannot be opened when the elevator door is stationary.
  • FIG. 8 shows a schematic structural diagram of an elevator fault diagnosis device provided by an embodiment of the present application.
  • the elevator fault diagnosis device of the embodiment of the present application includes the following modules:
  • the data acquisition module 801 is used to acquire detection values related to voltage signals in the elevator circuit
  • the first judgment module 802 is used for judging whether the elevator circuit is faulty based on the comparison result of the detection value and the preset threshold value;
  • the data acquisition module 801 is specifically configured to detect the value related to the voltage signal including the voltage value of the door lock loop.
  • the first judgment module 802 is specifically configured to
  • the preset threshold is the first voltage threshold.
  • the data acquisition module 801 is specifically configured to: the detection value related to the voltage signal includes the voltage value of the safety circuit.
  • the first judgment module 802 is specifically configured to: if the voltage value of the safety circuit is less than the preset threshold, determine that the safety circuit has a fault; wherein the preset threshold is the second voltage threshold.
  • the data acquisition module 801 is specifically configured to: the detection value related to the voltage signal includes the output signal collected at the signal output point of the elevator loop, where the output signal is coupled to the elevator loop from the signal input point of the elevator loop The coupled signal with a preset frequency in the diffused signal to the signal output point.
  • the first judgment module 802 is specifically configured to: if the voltage amplitude of the output signal is less than a preset threshold, determine that the elevator circuit is faulty, where the preset threshold is the voltage amplitude of the coupling signal.
  • the first judgment module 802 is specifically used to judge whether the elevator has an elevator fault related to the elevator operation according to the voltage value of the door lock circuit during the elevator operation and the state of the elevator.
  • the first judgment module 802 is specifically used to: during the operation of the elevator, when the state of the elevator is switched from the moving state to the static state at least twice, if the voltage value of the door lock circuit is always Keep it unchanged, it is determined that the elevator has an elevator failure related to the elevator operation.
  • the first judgment module 802 is specifically used to: when the state of the elevator is switched from the moving state to the stationary state, and the stationary period of the elevator in the stationary state is greater than the preset second period of time, if the door lock loop The voltage value always remains unchanged to determine whether there are passengers in the elevator;
  • Figure 9 shows a schematic diagram of the hardware structure of the elevator fault diagnosis equipment provided by the embodiment of the present application.
  • the elevator fault diagnosis equipment may include a processor 301 and a memory 302 storing computer program instructions.
  • the aforementioned processor 301 may include a central processing unit (CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits in the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 302 may include mass storage for data or instructions.
  • the storage 302 may include a hard disk drive (Hard Disk Drive, HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive, or two or more Multiple combinations of these.
  • the storage 302 may include removable or non-removable (or fixed) media.
  • the memory 302 may be inside or outside the integrated gateway disaster recovery device.
  • the memory 302 is a non-volatile solid state memory.
  • the memory 302 includes read-only memory (ROM).
  • the ROM can be mask-programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically rewritable ROM (EAROM) or flash memory or A combination of two or more of these.
  • the processor 301 reads and executes the computer program instructions stored in the memory 302 to implement any one of the elevator fault diagnosis methods in the foregoing embodiments.
  • the elevator fault diagnosis device may further include a communication interface 303 and a bus 310.
  • the processor 301, the memory 302, and the communication interface 303 are connected through the bus 310 and complete the communication with each other.
  • the communication interface 303 is mainly used to implement communication between various modules, devices, units and/or devices in the embodiments of the present application.
  • the bus 310 includes hardware, software, or both, and couples the components of the online data flow accounting device to each other.
  • the bus may include accelerated graphics port (AGP) or other graphics bus, enhanced industry standard architecture (EISA) bus, front side bus (FSB), hypertransport (HT) interconnection, industry standard architecture (ISA) Bus, unlimited bandwidth interconnection, low pin count (LPC) bus, memory bus, microchannel architecture (MCA) bus, peripheral component interconnect (PCI) bus, PCI-Express (PCI-X) bus, serial advanced technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these.
  • the bus 310 may include one or more buses.
  • the elevator fault diagnosis equipment can execute the elevator fault diagnosis method in the embodiment of the present application, thereby realizing the elevator fault diagnosis method and device described in conjunction with FIG. 1 and FIG. 8.
  • the embodiment of the present application may provide a computer storage medium for implementation.
  • the computer storage medium stores computer program instructions; when the computer program instructions are executed by the processor, any one of the elevator fault diagnosis methods in the foregoing embodiments is implemented.
  • the functional blocks shown in the above-mentioned structural block diagram may be implemented as hardware, software, firmware, or a combination thereof.
  • it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, etc.
  • ASIC application specific integrated circuit
  • the elements of this application are programs or code segments used to perform required tasks.
  • the program or code segment may be stored in a machine-readable medium, or transmitted on a transmission medium or communication link through a data signal carried in a carrier wave.
  • "Machine-readable medium” may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and so on.
  • the code segment can be downloaded via a computer network such as the Internet, an intranet, etc.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

一种电梯故障诊断方法、装置、设备及计算机存储介质。该方法包括:获取电梯回路中与电压信号相关的检测值,基于检测值与预设阈值的比较结果,判断电梯回路是否发生故障,若电梯回路发生故障,确定发生与电梯回路异常相关的故障。该方法能够准确确定电梯回路是否发生故障,进而确定是否发生与电梯回路异常相关的电梯故障,从而将电梯安全事故防患于未然。

Description

电梯故障诊断方法、装置、设备及计算机存储介质
相关申请的交叉引用
本申请要求享有于2019年01月18日提交的名称为“电梯故障诊断方法、装置、设备及计算机存储介质”的中国专利申请第201910106139.7号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于设备故障监测技术领域,尤其涉及一种电梯故障诊断方法、装置、设备及计算机存储介质。
背景技术
在城镇化的建设过程中,高层建筑是城市建设的重要组成部分。对于高层建筑而言,电梯的应用非常普遍。电梯是现代建筑不可或缺的一部分,不仅承担了运输功能,也是高层住户出行的重要方式。在实际生活中,电梯给人们带来便利的同时,电梯的故障问题也会严重影响人们的安全。
近年来,电梯故障现象,如电梯回路发生短路频繁出现,也造成了很大的人员伤亡,电梯安全问题成为了当前社会最关心的问题之一。因此,电梯故障的诊断成为一个急需解决的问题。
发明内容
本申请实施例提供一种在电梯故障诊断方法、装置、设备及计算机存储介质,能够确定电梯回路是否发生故障,进而确定是否发生与电梯回路异常相关的电梯故障,从而将电梯安全事故防患于未然。
第一方面,本申请实施例提供一种电梯故障诊断方法,方法包括:
获取电梯回路中与电压信号相关的检测值;
基于所述检测值与预设阈值的比较结果,判断所述电梯回路是否发生故障;
若所述电梯回路发生故障,确定发生与电梯回路异常相关的电梯故障。
第二方面,本申请实施例提供了一种电梯故障诊断装置,装置包括:
数据获取模块,用于获取电梯回路中与电压信号相关的检测值;
第一判断模块,用于基于所述检测值与预设阈值的比较结果,判断所述电梯回路是否发生故障;
若所述电梯回路发生故障,确定发生与电梯回路异常相关的电梯故障。
第三方面,本申请实施例提供了一种电梯故障诊断设备,设备包括:处理器以及存储有计算机程序指令的存储器;
所述处理器执行所述计算机程序指令时实现如第一方面所述的电梯故障诊断方法。
第四方面,本申请实施例提供了一种计算机存储介质,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如第一方面所述的电梯故障诊断方法。
本申请实施例的电梯故障诊断方法、装置、设备及计算机存储介质,通过获取电梯回路中与电压信号相关的检测值,基于检测值与预设阈值的比较结果,判断电梯回路是否发生故障。因此,本申请实施例能够准确确定电梯回路是否发生故障,进而确定是否发生与电梯回路异常相关的电梯故障,从而将电梯安全事故防患于未然。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的电梯故障诊断方法的流程示意图;
图2是本申请一个实施例提供的电梯正常开关门信号的示意图;
图3是本申请另一个实施例提供的电梯正常开关门信号的示意图;
图4是本申请一个实施例提供的电梯异常开关门信号的示意图;
图5是本申请另一个实施例提供的电梯异常开关门信号的示意图;
图6是本申请实施例提供的门锁回路电压信号的示意图;
图7是本申请实施例提供的安全回路电压信号的示意图;
图8是本申请另一个实施例提供的电梯故障诊断装置的结构示意图;
图9是本申请又一个实施例提供的电梯故障诊断设备的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
为了解决现有技术问题,本申请实施例提供了一种电梯故障诊断方法、装置、设备及计算机存储介质。下面首先对本申请实施例所提供的电梯故障诊断方法进行介绍。
为保证电梯能安全地运行,在电梯上装有许多***件。只有每个***件都正常的情况下,电梯才能运行,否则电梯立即停止运行。例如,安全回路,就是在电梯各***件都装有一个安全开关,把所有的安全开关串联,控制一个安全继电器。只有所有安全开关都在接通的情况下,安全继电器吸合,电梯才能得电运行。一般安全回路包括相序保护继电器、限速器、安全钳、紧急停车按钮、紧急出口开关、底坑开关、限位开关等 装置的触点和继电器。其中任意一个装置的继电器失电,电梯便无法行驶,即使是正在行驶的电梯也因此停止运行。又例如,门锁回路,就是在每扇厅门及轿门上都装有门电气联锁开关,把所有的门电气联锁开关串联,控制一个门锁继电器,以保证电梯必须在全部门关闭后才能运行。只有在门锁回路必须接通,即全部门电气联锁开关全部接通的情况下,门锁回路的门锁继电器方能吸合,电梯才能运行。门电气联锁开关是电梯中用量很大,安全系数很高的***件。只有轿厢所在楼层的层门可以被开启,其余层门不允许被开启。
当电梯安全回路被短接时,即安全回路短路时,如果电梯仍处于快车运行状态,电梯将发生危险。例如,当安全回路发生故障时,检修人员在维修过程中有时因工作需要而短接安全回路,当检修结束,一定要先取掉门锁短接线,方能将电梯恢复到快车状态。如果在维修时,没有事先打开检修开关就短接安全回路;或在检修结束后,忘记取掉安全短接线,或存在其他人为短接安全回路的情况下,则会导致电梯在短接安全回路的情况下,还以快车速度运行,这是非常危险的。或者,当门锁回路发生故障时,一般检修做法是确保在检修状态下,控制屏分开短接厅门锁和轿门锁,分出是厅门部分还是轿门部分的故障。确保检修状态下,短接厅门锁回路,以检修速度运行电梯。当检修结束,一定要先取掉门锁短接线,方能将电梯恢复到快车状态。如果在维修时,没有事先打开检修开关就短接门锁回路;或在检修结束后,忘记取掉门锁短接线;或存在其他人为短接门锁回路的情况下,则会导致电梯在短接门锁回路时,还以快车速度运行,这是非常危险的。
图1示出了本申请一个实施例提供的电梯故障诊断方法的流程示意图。如图1所示,本申请实施例的电梯故障诊断方法包括以下步骤:
S110,获取电梯回路中与电压信号相关的检测值;
S120,基于检测值与预设阈值的比较结果,判断电梯回路是否发生故障;
S130、若电梯回路发生故障,确定发生与电梯回路异常相关的电梯故障。
在本申请实施例中,基于电梯回路中与电压信号相关的检测值与预设阈值的比较,进而确定电梯回路是否发生故障。这里,电梯回路故障可以是电梯回路短路,或者电梯回路的电源直接被断掉。可以是将电压采集装置与电梯回路并联以获取电梯回路的与电压信号相关的检测值。根据本申请实施例,能够准确确定电梯回路是否发生故障,进而确定是否发生与电梯回路异常相关的电梯故障,从而将电梯安全事故防患于未然。
在一个实施方式中,电梯回路中与电压信号相关的检测信号包括门锁回路的电压信号。门锁回路的电压信号可以理解为门锁回路的实时电压值。获取门锁回路的电压信号,例如,可以是将电压采集装置与电梯门锁回路并联以获取门锁回路的电压信号。此时,电压采集装置可以是隔离变送器,隔离变送器能够将门锁回路的实际电压信号转换为在一定范围内的电压信号,转换后的电压信号与实际电压信号具有线性关系。
在本申请实施例中,由于获取的是转换后的门锁回路的电压信号,因此能够准确反应门锁回路的特性,即门锁回路的电压信号的变化情况。且电压采集装置与门锁回路是并联关系,对门锁回路本身没有任何影响,也不会因为电压采集装置自身的问题而影响门锁回路。
而若是采集门锁回路的电阻值进而判断门锁回路情况的话,采集的电阻值与门锁回路的实际电阻值不具备线性关系,且电阻采集装置会对门锁回路自身造成影响,不能够准确反应门锁回路的特性。
如图2、图3和图6所示,图2、图3和图6为采集的永春县某个电梯在正常情况下的信号数据,包括门锁回路的电压信号、此电梯的光电对信号和速度信号。线1表示门锁回路的电压信号变化情况,2表示光电对信号变化情况,3表示电梯速度信号变化情况,横轴单位为毫秒,竖轴单位为V。
在本申请实施例中,电梯所在建筑各楼层中的每一层平层处安装有挡片,在电梯轿厢的预设位置处安装光电传感器,这里预设位置可以是电梯轿厢顶部。当电梯通过楼层平层或者停在楼层平层时,挡片遮挡光电传感器,此时,光电传感器检测的光电信号值为1V。而挡片未遮挡光电传感器时,光电传感器检测的光电信号值为0。
在本申请实施例中,当电梯处于移动状态时,若门锁回路的电压值小于预设阈值,确定门锁回路发生短路或者门锁回路的电源直接被断掉,这里,门锁回路的电源直接被断掉可以理解为整个电梯的电源被断掉。当电梯处于静止状态时,若门锁回路的电压值小于预设阈值且电梯处于静止状态的静止时长大于预设第一时长时,确定门锁回路发生短路。其中,预设阈值为第一电压阈值。
这里,门锁回路的电压信号可以表征电梯的开关门信号。正常情况下,当电梯处于移动状态时,即电梯移动速度不为0时,电梯门处于关闭状态,门锁回路的电压为高电压,所谓高电压可以理解为不低于第一电压阈值的电压。这里,电梯处于移动状态可以是电梯处于水平移动状态或者垂直移动状态。当电梯处于静止状态时,即电梯的移动速度为0时,电梯门进行开关门的动作,此时门锁回路的电压信号发生变化,由高电压变为低电压,再由低电压变为高电压,当门锁回路的电压信号变回高电压后,电梯由静止状态变为移动状态。所谓低电压,可以是小于第一电压阈值且非常接近于0的电压,例如,第一电压阈值为0.2V。
如图4和图5所示,图4和图5为采集的泉州市某个电梯在异常情况下的信号数据,包括门锁回路的电压信号、此电梯的光电对信号和速度信号。线1表示门锁回路的电压信号变化情况,2表示光电对信号变化情况,3表示电梯速度信号变化情况,横轴单位为毫秒,竖轴单位为V。
在本申请实施例中,结合电梯运行状态及电梯门锁回路的电压信号判断门锁回路的情况。例如,当电梯运行状态为移动状态时,即电梯移动速度不为0时,若门锁回路的电压信号小于第一电压阈值,则电梯门锁回路短路。当电梯为静止状态时,即电梯的移动速度为0时,若门锁回路的电压信号小于第一电压阈值,且电梯处于静止状态的静止时长大于第一预设时长时,则电梯门锁回路短路或者门锁回路的电源直接被断掉,这里,门锁回路的电源直接被断掉可以理解为整个电梯的电源被断掉。例如,第一预设时长为10秒。
正常情况下,电梯为静止状态或者光电信号为1V时,门锁回路的电压信号会出现高-低-高的变化,即,电梯门被正常的开和关。如图4或图5 所示,电梯为移动状态或者光电信号为0V时,或者,电梯为静止状态的时长超过第一预设时长,而门锁回路的电压信号是小于第一电压阈值的,则说明门锁回路短路或者门锁回路的电源直接被断掉,这里,门锁回路的电源直接被断掉可以理解为整个电梯的电源被断掉,即电梯回路出现异常。
根据本申请实施例,能够准确确定门锁回路是否发生短路或者门锁回路的电源直接被断掉,这里,门锁回路的电源直接被断掉可以理解为整个电梯的电源被断掉,进而确定是否发生与门锁回路异常相关的电梯故障,从而将电梯安全事故防患于未然。
作为一个示例,可以根据电梯运行过程中门锁回路的电压值及电梯所处的状态,判断电梯是否发生与电梯运行相关的电梯故障。
例如,在电梯运行过程中,当电梯所处的状态至少连续发生两次由移动状态向静止状态的切换时,若门锁回路的电压值始终保持不变,确定电梯发生与电梯运行相关的电梯故障。这里可以理解为,当电梯运行状态为至少两次由移动状态至静止状态的循环时,若门锁回路的电压信号未出现变化,确定电梯不属于安全运行状态。如上文所述,门锁回路的电压信号可以表征电梯的开关门信号,若门锁回路的电压信号未出现变化,则表示电梯门没有开关门的动作,此时,可能存在开门走梯的情况,即电梯开着门移动,是非常不安全的运行状态。至少两次由移动状态至静止状态的循环可以理解为,电梯的运行状态为“移动-静止-移动-静止”或者“移动-静止-移动-静止-移动-静止”。
这里,至少两次循环是为了防止出现误判,因为大部分电梯都具备自动归位的功能,即电梯在一定时长后无乘客使用时,自动由当前楼层回归到预设楼层,此时,电梯门是不需要开关门动作的,即门锁回路的电压信号是不会出现变化的。
又例如,当电梯所处的状态由移动状态切换至静止状态,且电梯处于静止状态的静止时长大于预设第二时长时,若门锁回路的电压值始终保持不变,确定电梯内是否有乘客。若电梯内有乘客,确定电梯发生与电梯运行相关的电梯故障。这里可以理解为,当电梯运行状态为移动状态至静止状态,且静止时长大于第二预设时长时,若门锁回路的电压信号未出现变 化,则说明电梯门一直处于关闭状态。进一步判断电梯内是否有乘客,若电梯内有乘客,则说明存在电梯关人的情况,这是非常不安全的运行状态。这里,可以利用红外传感器判断电梯内是否有乘客,或者利用图像采集装置获取电梯内部的采集图像,根据获取的采集图像判断电梯内是否有乘客。若电梯内有乘客,立即进行报警,通知相关工作人员进行施救和维修。
在本申请实施例中,能够及时发现电梯是否存在开门走梯或者电梯关人的情况,将电梯的重大安全事故防患于未然。
在另一个实施方式中,与电压信号相关的检测信号包括安全回路的电压值。若安全回路的电压值小于预设阈值,确定安全回路发生短路或者安全回路的电源直接被断掉,这里,安全回路的电源直接被断掉可以理解为整个电梯的电源被断掉。其中,预设阈值为第二电压阈值。
这里可以理解为,电梯回路中与电压相关的检测信号包括安全回路的电压信号。安全回路的电压信号可以理解为安全回路的实时电压值。获取安全回路的电压信号,例如,可以是将电压采集装置与电梯安全回路并联以获取安全回路的电压信号。此时,电压采集装置可以是隔离变送器,隔离变送器能够将安全回路的实际电压信号转换为在一定范围内的电压信号,转换后的电压信号与实际电压信号具有线性关系。
在本申请实施例中,获取的是转换后的安全回路的电压信号,能够准确反应安全回路的特性,即安全回路的电压信号的变化情况。且电压采集装置与安全回路是并联关系,对安全回路本身没有任何影响,也不会因为电压采集装置自身的问题而影响安全回路。
而若是采集安全回路的电阻值进而判断安全回路情况的话,采集的电阻值与安全回路的实际电阻值不具备线性关系,且电阻采集装置会对安全回路自身造成影响,不能够准确反应安全回路的特性。
如图7所示,正常情况下,无论电梯是移动状态还是静止状态,安全回路的电压信号应该始终为高电压状态,所谓高电压可以理解为不低于第二预设阈值的电压。若安全回路的电压信号小于第二电压阈值,确定电压回路出现短路或者安全回路的电源直接被断掉,这里,安全回路的电源直接被断掉可以理解为整个电梯的电源被断掉。例如,第二电压阈值为0.2V。
根据本申请实施例,能够准确确定安全回路是否发生短路或者安全回路的电源直接被断掉,这里,安全回路的电源直接被断掉可以理解为整个电梯的电源被断掉,进而确定是否发生与安全回路异常相关的电梯故障,从而将电梯安全事故防患于未然。
由于本申请实施例的电梯回路包括安全回路和门锁回路,因此,当检测到安全回路和门锁回路中任一个发生短路或者回路的电源直接被断掉时,这里,回路的电源直接被断掉可以理解为整个电梯的电源被断掉,即确定电梯回路发生短路或者电梯回路的电源直接被断掉,从而确定发生与电梯回路异常相关的电梯故障。
在又一个实施方式中,与电压信号相关的检测信号包括在电梯回路的信号输出点采集的输出信号,其中,输出信号为由电梯回路的信号输入点耦合至电梯回路中的具有预设频率的耦合信号扩散至信号输出点的信号。若输出信号的电压幅值小于预设阈值,确定电梯回路发生短路或者电梯回路的电源直接被断掉,这里,电梯回路的电源直接被断掉可以理解为整个电梯的电源被断掉,其中,预设阈值为所述耦合信号的电压幅值。
这里可以理解为,电梯回路中与电压相关的检测信号包括电梯回路中的输出点输出的耦合信号,耦合信号包括利用信号耦合装置将预设频率的初始电压信号在输入点耦合至电梯回路中并沿着电梯回路扩散至输出点并经接收器输出的信号,其中,初始电压信号包括可编程逻辑控制器(Programmable Logic Controller,PLC)信号,这里初始电压信号不仅可以是PLC信号,也可以是具有预设频率的其他信号,例如,预设频率为50Hz。初始电压信号为小信号,所谓小信号可以理解为小于预设阈值的信号,且预设阈值小于电梯回路的电压信号。例如,正常情况下电梯回路的电压值为5V的话,初始电压信号的值可以为2V。另外,对输入点和输出点在电梯回路上的具***置不作限定。
在本申请实施例中,将耦合信号与预设阈值进行比较,这里预设阈值为初始电压信号,若耦合信号的幅值小于初始电压信号的幅值,即耦合信号出现幅值衰减,确定电梯回路短路或者电梯回路的电源直接被断掉,这里,电梯回路的电源直接被断掉可以理解为整个电梯的电源被断掉。
耦合信号包括利用信号耦合装置分别将预设频率的初始电压信号在输入点耦合至门锁回路和安全回路中,并沿着门锁回路和安全回路扩散至输出点并经接收器输出的信号。即,分别检测门锁回路和安全回路的耦合信号,若门锁回路和安全回路中任一耦合信号出现幅值衰减,确定电梯回路短路或者电梯回路的电源直接被断掉,这里,电梯回路的电源直接被断掉可以理解为整个电梯的电源被断掉。
在本申请实施例中,利用信号耦合法判断电梯回路情况,不会对电梯回路本身造成任何影响,能够准确反应电梯回路的特性。
进一步,若门锁回路和安全回路任意一项出现短路或者电源被断掉,或者电梯开着门的情况下移动,或者电梯静止状态下关人,即电梯门静止状态下打不开,都可以进行报警提示,及时将报警信息上传至云服务平台,以提醒相关人员进行维修或者施救被关闭在电梯内的乘客。
图8示出了本申请实施例提供的电梯故障诊断装置的结构示意图。如图8所示,本申请实施例的电梯故障诊断装置包括以下模块:
数据获取模块801,用于获取电梯回路中与电压信号相关的检测值;
第一判断模块802,用于基于检测值与预设阈值的比较结果,判断电梯回路是否发生故障;
若电梯回路发生故障,确定发生与电梯回路异常相关的电梯故障。。
根据本申请实施例,能够准确确定电梯回路是否发生故障,进而确定是否发生与电梯回路异常相关的电梯故障,从而将电梯安全事故防患于未然。
在一个实施方式中,数据获取模块801具体用于与电压信号相关的检测值包括门锁回路的电压值。
在一个实施方式中,第一判断模块802具体用于
当电梯处于移动状态时,若门锁回路的电压值小于预设阈值,确定门锁回路发生短路;
当电梯处于静止状态时,若门锁回路的电压值小于预设阈值且电梯处于静止状态的静止时长大于预设第一时长时,确定门锁回路发生短故障;
其中,预设阈值为第一电压阈值。
在一个实施方式中,数据获取模块801具体用于:与电压信号相关的检测值包括安全回路的电压值。
在一个实施方式中,第一判断模块802具体用于:若安全回路的电压值小于预设阈值,确定安全回路发生故障;其中,预设阈值为第二电压阈值。
在一个实施方式中,数据获取模块801具体用于:与电压信号相关的检测值包括在电梯回路的信号输出点采集的输出信号,其中,输出信号为由电梯回路的信号输入点耦合至电梯回路中的具有预设频率的耦合信号扩散至信号输出点的信号。
在一个实施方式中,第一判断模块802具体用于:若输出信号的电压幅值小于预设阈值,确定电梯回路发生故障,其中,预设阈值为耦合信号的电压幅值。
在一个实施方式中,第一判断模块802具体用于:根据电梯运行过程中门锁回路的电压值及电梯所处的状态,判断电梯是否发生与电梯运行相关的电梯故障。
在一个实施方式中,第一判断模块802具体用于:在电梯运行过程中,当电梯所处的状态至少连续发生两次由移动状态向静止状态的切换时,若门锁回路的电压值始终保持不变,确定电梯发生与电梯运行相关的电梯故障。
在一个实施方式中,第一判断模块802具体用于:当电梯所处的状态由移动状态切换至静止状态,且电梯处于静止状态的静止时长大于预设第二时长时,若门锁回路的电压值始终保持不变,确定电梯内是否有乘客;
若电梯内有乘客,确定电梯发生与电梯运行相关的电梯故障。
图9示出了本申请实施例提供的电梯故障诊断设备的硬件结构示意图。
在电梯故障诊断设备可以包括处理器301以及存储有计算机程序指令的存储器302。
具体地,上述处理器301可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器302可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器302可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器302可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器302可在综合网关容灾设备的内部或外部。在特定实施例中,存储器302是非易失性固态存储器。在特定实施例中,存储器302包括只读存储器(ROM)。在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
处理器301通过读取并执行存储器302中存储的计算机程序指令,以实现上述实施例中的任意一种电梯故障诊断方法。
在一个示例中,电梯故障诊断设备还可包括通信接口303和总线310。其中,如图3所示,处理器301、存储器302、通信接口303通过总线310连接并完成相互间的通信。
通信接口303,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线310包括硬件、软件或两者,将在线数据流量计费设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、***组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线310可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该电梯故障诊断设备可以执行本申请实施例中的电梯故障诊断方法, 从而实现结合图1和图8描述的电梯故障诊断方法和装置。
另外,结合上述实施例中的电梯故障诊断方法,本申请实施例可提供一种计算机存储介质来实现。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种电梯故障诊断方法。
本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或***。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修 改或替换都应涵盖在本申请的保护范围之内。

Claims (13)

  1. 一种电梯故障诊断方法,其中,包括:
    获取电梯回路中与电压相关的检测值;
    基于所述检测值与预设阈值的比较结果,判断所述电梯回路是否发生故障;
    若所述电梯回路发生故障,确定发生与电梯回路异常相关的电梯故障。
  2. 根据权利要求1所述的电梯故障诊断方法,其中,所述与电压相关的检测值包括门锁回路的电压值。
  3. 根据权利要求2所述的电梯故障诊断方法,其中,所述基于所述检测值与预设阈值的比较结果,判断所述电梯回路是否发生故障,包括:
    当电梯处于移动状态时,若所述门锁回路的电压值小于所述预设阈值,确定所述门锁回路发生故障;
    当所述电梯处于静止状态时,若所述门锁回路的电压值小于所述预设阈值且所述电梯处于静止状态的静止时长大于预设第一时长时,确定所述门锁回路发生故障;
    其中,所述预设阈值为第一电压阈值。
  4. 根据权利要求1所述的电梯故障诊断方法,其中,所述与电压信号相关的检测值包括安全回路的电压值。
  5. 根据权利要求4所述的电梯故障诊断方法,其中,所述基于所述检测值与预设阈值的比较结果,判断所述电梯回路是否发生故障,包括:
    若所述安全回路的电压值小于所述预设阈值,确定所述安全回路发生故障;其中,所述预设阈值为第二电压阈值。
  6. 根据权利要求1所述的电梯故障诊断方法,其中,所述与电压相关的检测值包括在所述电梯回路的信号输出点采集的输出信号的电压幅值,其中,所述输出信号为由所述电梯回路的信号输入点耦合至所述电梯回路中的具有预设频率的耦合信号扩散至所述信号输出点的信号。
  7. 根据权利要求6所述的电梯故障诊断方法,其中,所述基于所述检测值与预设阈值的比较结果,判断所述电梯回路是否发生故障,包括:
    若所述输出信号的电压幅值小于所述预设阈值,确定所述电梯回路发 生故障,其中,所述预设阈值为所述耦合信号的电压幅值。
  8. 根据权利要求2所述的电梯故障诊断方法,其中,所述方法还包括:
    根据电梯运行过程中所述门锁回路的电压值及电梯所处的状态,判断所述电梯是否发生与电梯运行相关的电梯故障。
  9. 根据权利要求8所述的电梯故障诊断方法,其中,所述根据电梯运行过程中所述门锁回路的电压值及电梯所处的状态,判断所述电梯是否发生与电梯运行相关的电梯故障,包括:
    在电梯运行过程中,当所述电梯所处的状态至少连续发生两次由移动状态向静止状态的切换时,若所述门锁回路的电压值始终保持不变,确定所述电梯发生与电梯运行相关的电梯故障。
  10. 根据权利要求8所述的电梯故障诊断方法,其中,所述根据电梯运行过程中所述门锁回路的电压值及电梯所处的状态,判断所述电梯是否发生与电梯运行相关的电梯故障,包括:
    当所述电梯所处的状态由移动状态切换至静止状态,且所述电梯处于静止状态的静止时长大于预设第二时长时,若所述门锁回路的电压值始终保持不变,确定所述电梯内是否有乘客;
    若所述电梯内有乘客,确定所述电梯发生与电梯运行相关的电梯故障。
  11. 一种电梯故障诊断装置,其中,所述装置包括:
    数据获取模块,用于获取电梯回路中与电压信号相关的检测值;
    第一判断模块,用于基于所述检测值与预设阈值的比较结果,判断所述电梯回路是否发生故障;
    若所述电梯回路发生故障,确定发生与电梯回路异常相关的电梯故障。
  12. 一种电梯故障诊断设备,其中,所述设备包括:处理器以及存储有计算机程序指令的存储器;
    所述处理器执行所述计算机程序指令时实现如权利要求1-10任意一项所述的电梯故障诊断方法。
  13. 一种计算机存储介质,其中,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1-10任意一项所述的电梯故障诊断方法。
PCT/CN2020/071997 2019-01-18 2020-01-14 电梯故障诊断方法、装置、设备及计算机存储介质 WO2020147718A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910106139.7A CN109896383B (zh) 2019-01-18 2019-01-18 电梯故障诊断方法、装置、设备及计算机存储介质
CN201910106139.7 2019-01-18

Publications (1)

Publication Number Publication Date
WO2020147718A1 true WO2020147718A1 (zh) 2020-07-23

Family

ID=66944710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071997 WO2020147718A1 (zh) 2019-01-18 2020-01-14 电梯故障诊断方法、装置、设备及计算机存储介质

Country Status (2)

Country Link
CN (1) CN109896383B (zh)
WO (1) WO2020147718A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109896383B (zh) * 2019-01-18 2020-07-07 西人马帝言(北京)科技有限公司 电梯故障诊断方法、装置、设备及计算机存储介质
CN112499416B (zh) * 2019-09-16 2023-03-21 湖南中联重科建筑起重机械有限责任公司 基于信息反馈的升降机控制***、设备及存储介质
CN113233273B (zh) * 2020-05-21 2023-08-25 山东中兴合智通信新技术有限公司 电梯故障监测方法、装置、存储介质、电子设备及电梯
CN116348406B (zh) * 2020-10-30 2024-03-08 三菱电机楼宇解决方案株式会社 电梯的故障诊断装置
CN112693986A (zh) * 2020-12-14 2021-04-23 西人马联合测控(泉州)科技有限公司 电梯困人自动报警方法、装置、设备及计算机存储介质
CN113086802B (zh) * 2021-03-30 2022-07-22 日立电梯(中国)有限公司 一种电梯安全回路电压诊断***及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145687A (ja) * 2003-11-18 2005-06-09 Mitsubishi Electric Corp エレベータ制御装置
CN102602769A (zh) * 2012-03-17 2012-07-25 苏州莱茵电梯制造有限公司 一种智能电梯控制***
CN202704742U (zh) * 2012-07-23 2013-01-30 山东博源瑞通智能科技有限公司 电梯疑难故障采集分析***
CN105800413A (zh) * 2016-04-11 2016-07-27 西人马(厦门)科技有限公司 电梯故障诊断装置及方法
CN106586755A (zh) * 2017-02-06 2017-04-26 上海峰景移动科技有限公司 电梯安全回路中电梯门锁触点的检测装置及方法
WO2018092322A1 (en) * 2016-11-16 2018-05-24 Mitsubishi Electric Corporation Diagnosis device for electromagnetic brake
CN109733968A (zh) * 2019-01-16 2019-05-10 西人马(厦门)科技有限公司 电梯运行状态监测方法、装置及设备
CN109896383A (zh) * 2019-01-18 2019-06-18 西人马(西安)测控科技有限公司 电梯故障诊断方法、装置、设备及计算机存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148652B2 (en) * 2004-04-30 2006-12-12 Ace-Tronics Company, Inc. Method and apparatus for determining and handling brake failures in open loop variable frequency drive motors
JP2012180137A (ja) * 2011-02-28 2012-09-20 Toshiba Elevator Co Ltd エレベータシステムの制御方法及びエレベータシステム
JP2018203506A (ja) * 2017-06-08 2018-12-27 株式会社日立製作所 エレベーター制御システム及びエレベーター制御方法
JP2019001597A (ja) * 2017-06-15 2019-01-10 株式会社日立ビルシステム エレベータ装置、および、待機型ブレーキ電源装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145687A (ja) * 2003-11-18 2005-06-09 Mitsubishi Electric Corp エレベータ制御装置
CN102602769A (zh) * 2012-03-17 2012-07-25 苏州莱茵电梯制造有限公司 一种智能电梯控制***
CN202704742U (zh) * 2012-07-23 2013-01-30 山东博源瑞通智能科技有限公司 电梯疑难故障采集分析***
CN105800413A (zh) * 2016-04-11 2016-07-27 西人马(厦门)科技有限公司 电梯故障诊断装置及方法
WO2018092322A1 (en) * 2016-11-16 2018-05-24 Mitsubishi Electric Corporation Diagnosis device for electromagnetic brake
CN106586755A (zh) * 2017-02-06 2017-04-26 上海峰景移动科技有限公司 电梯安全回路中电梯门锁触点的检测装置及方法
CN109733968A (zh) * 2019-01-16 2019-05-10 西人马(厦门)科技有限公司 电梯运行状态监测方法、装置及设备
CN109896383A (zh) * 2019-01-18 2019-06-18 西人马(西安)测控科技有限公司 电梯故障诊断方法、装置、设备及计算机存储介质

Also Published As

Publication number Publication date
CN109896383B (zh) 2020-07-07
CN109896383A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2020147718A1 (zh) 电梯故障诊断方法、装置、设备及计算机存储介质
CN108394775B (zh) 电梯安全***及安全控制方法
CN105712144A (zh) 一种电梯厅轿门锁检测装置
CN105668374B (zh) 一种电梯故障安全逃生***
CN107879216A (zh) 一种电梯故障关人逻辑判断并自动求救***及方法
CN110884972B (zh) 基于电梯安全回路的门锁检测方法
CN106315373A (zh) 一种电梯层门门锁触点状态检测装置及方法
KR101614861B1 (ko) 승강장 안전발판과 전동열차 및 승강장 안전문과의 연동제어시스템
CN105236251A (zh) 一种电梯门联锁电路/安全电路故障检测装置及方法
CN104310147A (zh) 一种电梯电气门锁再次保护方法及电路
CN104444643B (zh) 电梯控制***及方法
CN100383029C (zh) 电梯的控制装置和控制方法
CN210714273U (zh) 一种地铁屏蔽门监测装置
CN1128092C (zh) 电梯故障在线检测自动救援方法
CN104418188B (zh) 电梯自救控制***
CN205555768U (zh) 一种电梯厅轿门锁检测装置
CN110234590B (zh) 电梯控制***和方法
CN110526064B (zh) 电梯轿厢意外移动保护***功能测试装置
CN105460725A (zh) 电梯门状态监测器及其故障判断方法
CN110697535A (zh) 一种电梯层轿门旁路检测***及方法
CN205187603U (zh) 一种电梯门联锁电路/安全电路故障检测装置
CN104555640A (zh) 一种限速器安全钳联动自动测试方法
CN207844785U (zh) 一种电梯故障关人逻辑判断并自动求救***
CN103588072A (zh) 监测电梯层门开关状态的方法及***
CN107128765B (zh) 一种在困人状态下电梯故障容错控制方法及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 20741494

Country of ref document: EP

Kind code of ref document: A1