WO2020147105A1 - 触控屏温度状态的检测方法、装置、触控芯片及电子设备 - Google Patents

触控屏温度状态的检测方法、装置、触控芯片及电子设备 Download PDF

Info

Publication number
WO2020147105A1
WO2020147105A1 PCT/CN2019/072306 CN2019072306W WO2020147105A1 WO 2020147105 A1 WO2020147105 A1 WO 2020147105A1 CN 2019072306 W CN2019072306 W CN 2019072306W WO 2020147105 A1 WO2020147105 A1 WO 2020147105A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling period
temperature monitoring
original
value
original feature
Prior art date
Application number
PCT/CN2019/072306
Other languages
English (en)
French (fr)
Inventor
周威
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980000107.7A priority Critical patent/CN111727420A/zh
Priority to EP19858675.2A priority patent/EP3705985A4/en
Priority to PCT/CN2019/072306 priority patent/WO2020147105A1/zh
Priority to US16/817,790 priority patent/US11543299B2/en
Publication of WO2020147105A1 publication Critical patent/WO2020147105A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/02Thermometers giving results other than momentary value of temperature giving means values; giving integrated values
    • G01K3/06Thermometers giving results other than momentary value of temperature giving means values; giving integrated values in respect of space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/34Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using capacitative elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2217/00Temperature measurement using electric or magnetic components already present in the system to be measured

Definitions

  • the embodiments of the present application relate to the field of touch technology, and in particular, to a method, device, touch chip, and electronic equipment for detecting the temperature state of a touch screen.
  • one of the technical problems solved by the embodiments of the present invention is to provide a method, device, touch chip and electronic device for detecting the temperature state of a touch screen, so as to overcome the above-mentioned defects in the prior art.
  • the embodiment of the application provides a method for detecting the temperature state of a touch screen, which includes:
  • each temperature monitoring node in each sampling period determines the original characteristic value of each temperature monitoring node in the corresponding sampling period, and the temperature monitoring node is selected from several capacitive nodes in the touch array ;
  • the original characteristic values of all temperature monitoring nodes in each sampling period calculate the original characteristic statistical values in each sampling period, and detect the temperature state of the touch screen based on the original characteristic statistical values in the corresponding sampling period.
  • calculating the original characteristic statistical values in each sampling period according to the original characteristic values of all temperature monitoring nodes in each sampling period includes: for all temperature monitoring nodes The original feature value in each sampling period is preprocessed, and the original feature statistical value in each sampling period is obtained according to the preprocessed original feature value.
  • the original feature values of all temperature monitoring nodes in each sampling period are preprocessed, and the original feature values of each sampling period are obtained according to the preprocessed original feature values.
  • Characteristic statistics including:
  • the original feature value changes of all temperature monitoring nodes in each sampling period, calculate the original feature statistical value in each sampling period, and detect the temperature of the touch screen based on the original feature statistical value in the corresponding sampling period status.
  • the original characteristic statistical value in each sampling period is calculated.
  • the original feature statistical value in each sampling period is calculated.
  • detecting the temperature state of the touch screen based on the original feature statistical value in the corresponding sampling period includes: if the original feature statistical value in the corresponding sampling period is greater than a set When the number of times of the first threshold is greater than the second threshold, and the maximum value in the original feature statistical value is greater than the set third threshold, the touch screen is in a heating state.
  • detecting the temperature state of the touch screen based on the original feature statistical value in the corresponding sampling period includes: if the original feature statistical value in the corresponding sampling period is less than a set When the number of times of the fourth threshold is less than the set fifth threshold, and the minimum value in the original feature statistical value is less than the set sixth threshold, the touch screen is in a cooling state.
  • the temperature monitoring node further includes: a capacitance node located at an intermediate position selected from a touch screen touch array.
  • the temperature monitoring nodes located in the upper left corner and the lower left corner correspond to the same drive channel; the temperature monitoring nodes located in the upper right corner and the lower right corner correspond to the same The temperature monitoring nodes located in the upper left corner and the upper right corner correspond to the same detection channel; the temperature monitoring nodes located in the lower left corner and the lower right corner correspond to the same detection channel.
  • the temperature monitoring node is selected from a capacitance node located in the driving channel direction or the detection channel direction in the touch screen touch array.
  • the embodiment of the present application provides a device for detecting the temperature state of a touch screen, which includes:
  • the characteristic value determining unit is used to determine the original characteristic value of each temperature monitoring node in the corresponding sampling period according to the multiple sampling characteristic values of each temperature monitoring node in each sampling period, and the temperature monitoring node is selected from Control several capacitor nodes in the array;
  • the temperature state detection unit is used to calculate the original feature statistical value in each sampling period based on the original feature value of all temperature monitoring nodes in each sampling period, and detect the original feature statistical value in the corresponding sampling period The temperature status of the touch screen.
  • the embodiment of the present application provides a touch control chip, which includes the detection device described in any embodiment of the present application.
  • An embodiment of the application provides an electronic device, which includes the touch chip described in any embodiment of the application.
  • the original characteristic value of each temperature monitoring node in the corresponding sampling period is determined according to the multiple sampling characteristic values of each temperature monitoring node in each sampling period, and the temperature monitoring node Selected from several capacitor nodes in the touch array; then calculate the original feature statistics in each sampling period based on the original feature values of all temperature monitoring nodes in each sampling period, and based on the original feature statistics in the corresponding sampling period Value to detect the temperature state of the touch screen, so as to avoid the occurrence of abnormal situations such as disappearing dots and falling dots according to the temperature state of the touch screen, and further avoiding normal touch control logic from being interfered.
  • FIG. 1 is a schematic diagram of the first configuration of a temperature monitoring node in an embodiment of the application
  • FIG. 2 is a schematic diagram of a second configuration of a temperature monitoring node in an embodiment of the application
  • FIG. 3 is a schematic diagram of a third configuration of a temperature monitoring node in an embodiment of the application.
  • FIG. 4 is a schematic diagram of a fourth configuration of a temperature monitoring node in an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a method for detecting a temperature state of a touch screen in an embodiment of the application
  • FIG. 6 is an exemplary flowchart of step S502 in FIG. 5;
  • FIG. 7 is a schematic diagram of a process of determining that the touch screen is in a temperature state maintaining stage in an embodiment of the application
  • FIG. 8 is a schematic structural diagram of a detection device for a temperature state of a touch screen in an embodiment of the application.
  • the original characteristic value of each temperature monitoring node in the corresponding sampling period is determined according to multiple sampling characteristic values of each temperature monitoring node in each sampling period, and the temperature monitoring node Selected from several capacitor nodes in the touch array; then calculate the original feature statistics in each sampling period based on the original feature values of all temperature monitoring nodes in each sampling period, and based on the original feature statistics in the corresponding sampling period Value to detect the temperature state of the touch screen, so as to avoid the occurrence of abnormal situations such as disappearing dots and falling dots according to the temperature state of the touch screen, and further avoiding normal touch control logic from being interfered.
  • some capacitive nodes are selected in advance in the touch screen touch array as temperature monitoring nodes or also called configuration temperature monitoring nodes (referred to as temperature control nodes) through Sampling the characteristic values of these file monitoring nodes, and then a series of subsequent analyses, so as to finally realize the detection of the temperature status.
  • the configuration of the temperature monitoring node is related to the application scenarios of the touch screen. Therefore, in the following embodiments of the present application, first, according to different application scenarios, four temperature monitoring node configuration embodiments are exemplarily provided with reference to FIGS. 1 to 4. However, it should be noted that FIGS. 1 to 4 are only exemplary descriptions provided to facilitate the explanation of the application, and are not specifically limited to the configuration of temperature monitoring nodes in only four situations.
  • FIG 1 is a schematic diagram of the first configuration of a temperature monitoring node in an embodiment of this application; as shown in Figure 1, in this embodiment, the touch screen touch array is located in the upper left corner, the lower left corner, the upper right corner, the lower right corner, and the middle
  • the capacitance nodes at the locations are respectively used as temperature monitoring nodes, a total of 5 temperature monitoring nodes (A, B, C, D, E), or also called the temperature monitoring nodes include: selected from the touch screen touch array located in Capacitor nodes in the upper left corner, lower left corner, upper right corner, lower right corner, and middle position.
  • the configuration of the temperature monitoring node in this embodiment is suitable for the upper left corner, lower left corner, upper right corner, and lower right corner of the touch screen and will not be touched or approached by the user during the operation, or will not be touched or approached by the user during normal operation. There are too many edge contacts, and the temperature monitoring node in the middle position can balance the uniformity of the full-screen temperature change of the touch screen, and ensure that the detection of the full-screen temperature state meets the global characteristics.
  • the temperature monitoring nodes A and C located in the upper left and lower left corners correspond to the same drive channel; located in the upper right and lower right corners
  • the temperature monitoring nodes B and D correspond to the same drive channel; the temperature monitoring nodes located in the upper left corner and the upper right corner correspond to the same detection channel; the temperature monitoring nodes located in the lower left corner and the lower right corner correspond to The same detection channel.
  • the temperature monitoring node in the middle position can also be omitted.
  • FIG. 2 is a schematic diagram of the second configuration of the temperature monitoring node in the embodiment of the application; as shown in Figure 2, a column of capacitive nodes in the left and right edges of the touch screen array of the touch screen is selected as the temperature monitoring node respectively; if the touch screen is driven
  • the channels are arranged along the vertical direction.
  • the two rows of temperature monitoring nodes (R1, R2) are along the driving channel direction. If the most marginal column of capacitor nodes is often touched, in specific applications, a row of capacitor nodes adjacent to the most marginal column of capacitor nodes can be used as temperature monitoring nodes.
  • the sampling of the characteristic value of the touch screen is based on the driving direction. Therefore, when the temperature monitoring node is set along the direction of the driving channel, the characteristic value collection speed is faster, which improves the calculation efficiency of the data as a whole, and is effectively applicable to the data Application scenarios with high computational timeliness.
  • part of the capacitor nodes can also be selected as temperature monitoring nodes from the two columns of capacitor nodes, thereby forming two columns of temperature monitoring nodes as a whole.
  • part of the capacitor nodes can also be selected as temperature monitoring nodes from the two rows of capacitor nodes, thereby forming two rows of temperature monitoring nodes as a whole.
  • FIG 4 is a schematic diagram of the fourth configuration of the temperature monitoring node in the embodiment of the application; as shown in Figure 4, in this embodiment, the capacitances located in the upper left corner, lower left corner, upper right corner, and lower right corner of the touch screen are touched in the array
  • the nodes are respectively used as temperature monitoring nodes, with a total of 4 temperature monitoring nodes (A, B, C, D).
  • the configuration of the temperature monitoring node in this embodiment is suitable for the upper left corner, lower left corner, upper right corner, and lower right corner of the touch screen and will not be touched or approached by the user during the operation, or will not be touched or approached by the user during normal operation. Excessive edge contact occurred.
  • the four temperature monitoring nodes are arranged in a misaligned setting, that is, they are located in different rows, in different columns, or also called different horizontal axes and different vertical axes, which are especially suitable for larger touch screens.
  • the edge capacitor node is often touched or close to the application scenario, so as to truly feedback the global change of temperature.
  • the temperature monitoring nodes A and C located in the upper left corner and the lower left corner correspond to different drive channels; located in the upper right corner and the lower right corner
  • the temperature monitoring nodes B and D correspond to different drive channels; the temperature monitoring nodes located in the upper left corner and the upper right corner correspond to different detection channels; the temperature monitoring nodes located in the lower left corner and the lower right corner correspond to Different detection channels.
  • FIG. 5 is a schematic flowchart of a method for detecting a temperature state of a touch screen in an embodiment of the application; as shown in FIG. 5, it includes:
  • the temperature monitoring node is selected from several capacitor nodes in the touch array. For details, please refer to the description of the above-mentioned FIG. 4.
  • the specific The multiple sampling characteristic values of the temperature monitoring node in each sampling period are added and processed to calculate the original characteristic value of each temperature monitoring node in the corresponding sampling period.
  • the sampling period and the number of sampling characteristic values can be flexibly set.
  • the magnitude of the original feature value reflects the magnitude of the change in the capacitance value of the capacitance node before and after the touch screen is touched or approached.
  • step S502 when calculating the original characteristic statistical values of all temperature monitoring nodes in each sampling period according to the original characteristic values of all temperature monitoring nodes in each sampling period, it is possible to calculate the statistical values of all temperature monitoring nodes in each sampling period.
  • the original feature value in the preprocessing is performed and the original feature statistical value in each sampling period is obtained according to the preprocessed original feature value.
  • Fig. 6 is an exemplary flow chart of step S502 in Fig. 5; as shown in Fig. 6, the original feature values of all temperature monitoring nodes in each sampling period are preprocessed and based on the preprocessed original feature values, each When the original feature statistical value within a sampling period, the preprocessing may specifically include the adjacent difference of the original feature value, the smoothing of the original feature value, the filtering of smoothing the change of the original feature value, etc. However, it should be noted that The preprocessing does not all include the adjacent difference of the original feature value, the smoothing of the original feature value, and the filtering to smooth the change of the original feature value, and only one of them may be selected according to the validity of the data. Of course, other preprocessing operations can also be included.
  • the preprocessing may specifically include the adjacent difference of the original feature value, the smoothing of the original feature value, and the filtering of smoothing the change of the original feature value as examples.
  • the details include the following steps:
  • multiple sampling feature values are obtained when performing feature value sampling in each sampling period.
  • the eigenvalues are added and processed to obtain the original eigenvalues in the corresponding sampling period; when corresponding to multiple sampling periods, multiple original eigenvalues will be obtained.
  • the number of sampling periods is equal to the number of original eigenvalues. Are equal.
  • a temperature monitoring node performing feature value sampling in a sampling period to obtain 10 sampling feature values (or also called a set of sampling feature values), and adding and processing the 10 sampling feature values to obtain the The original characteristic value in the sampling period; if 5 sampling periods are to be performed, 5 groups of 10 sampling characteristic values are obtained, since the 10 sampling characteristic values of each group are added and processed to obtain an original characteristic value, therefore, 5 sets of sampled eigenvalues, from which 5 original eigenvalues can be obtained.
  • there are n temperature monitoring nodes there are 5*n original feature values corresponding to the same sampling period, and the 5*n original feature values form a frame of original feature values.
  • the i-th temperature monitoring node since for the i-th temperature monitoring node, multiple corresponding original feature values are obtained after multiple sampling periods, in order to accurately detect the temperature state subsequently, by comparing the adjacent original feature values among the multiple original feature values The eigenvalue is differentially processed to obtain the variation of the original eigenvalue.
  • the variation of the original eigenvalue is recorded as RawDataDiff[i], which reflects the influence of temperature changes on the original eigenvalue.
  • multiple original eigenvalues are stored according to the sequence of the corresponding sampling period.
  • S522 Perform smoothing processing on the original feature value of each temperature monitoring node in the corresponding sampling period to obtain a smooth original feature value
  • IIR Intelligent Impulse Response
  • S532 Perform adjacent difference on the smoothed original feature value of each temperature monitoring node in the corresponding sampling period to obtain the smoothed original feature value change;
  • each temperature monitoring node there are multiple original feature values corresponding to multiple sampling periods, and then multiple smooth original feature values. If the multiple smooth original feature values are stored according to the corresponding sampling The cycles are stored sequentially.
  • the adjacent difference processing of the original feature value change is performed to obtain the smooth original feature value change, just use the subsequent original feature value change minus the previous original feature value change.
  • IIR_RawData_Diff[i] For the i-th temperature monitoring node, its corresponding smooth original characteristic value variable is denoted as IIR_RawData_Diff[i].
  • step S542 in order to implement the filtering process in step S542, three filtering parameters ⁇ , ⁇ , and ⁇ are configured in advance based on empirical values to perform collaborative filtering processing.
  • the magnitudes of ⁇ , ⁇ , and ⁇ are used to distinguish the touched
  • the amount of change caused by temperature change is filtered according to the following formula:
  • F_IIR_RawData_Diff[i] represents the original feature change corresponding to the i-th temperature monitoring node
  • RawDatadiff(i) represents the original feature change corresponding to the i-th temperature monitoring node
  • IIR_RawData_Diff[i] represents the i-th temperature monitoring node The corresponding smooth original feature change amount.
  • S552 Calculate the original feature statistical value in each sampling period according to the filtered original feature changes of all temperature monitoring nodes in each sampling period.
  • the filter original feature changes of all temperature monitoring nodes in each sampling period are added and processed, and the result of the addition processing is used as the original feature statistical value in the corresponding sampling period.
  • the temperature monitoring node is configured in the manner shown in Figure 4, within a sampling period, each temperature monitoring node corresponds to a filter original characteristic change, and the four temperature monitoring nodes correspond to four The original feature changes of the four filters are added and processed to obtain the original feature statistical values in the corresponding sampling period.
  • the original feature statistical value corresponding to the temperature monitoring node in the touch screen is proportional to the temperature change, that is, the higher the temperature, the greater the original feature statistical value. Conversely, the lower the temperature, the original feature statistical value The smaller.
  • the original feature statistics show different trends. For example, when the temperature of the touch screen is closer to the target temperature, the original feature statistics change more steadily, and when approaching the target from a low temperature state Before the temperature, the original characteristic statistical value changes drastically.
  • the touch screen is in a heating state.
  • the first threshold, the second threshold, and the third threshold are set according to the influence of the heating process on the original characteristic statistical value.
  • the first count parameter is set as upcount.
  • the value of upcount is increased by 1.
  • the original characteristic statistical value may gradually become larger due to the influence of the temperature on the capacitor node. Therefore, the original characteristic statistical value may be constantly changing after each sampling period.
  • the original characteristic statistical value The maximum value of may be constantly being refreshed.
  • the original feature statistical value corresponding to the temperature monitoring node in the touch screen is proportional to the temperature change, that is, the higher the temperature, the greater the original feature statistical value. Conversely, the lower the temperature, the original feature statistical value The smaller.
  • the original characteristic statistics show different trends. For example, when the temperature of the touch screen is closer to the target temperature, the original characteristic statistics change more steadily. Before the temperature, the original characteristic statistical value changes drastically.
  • the touch screen is in a cooling state.
  • the fourth threshold, the fifth threshold, and the sixth threshold are set according to the influence of the cooling process on the original feature statistical value.
  • the second count parameter is set as dncount.
  • the value of dncount is increased by 1.
  • the original characteristic statistical value may gradually become smaller due to the influence of the temperature on the capacitor node. Therefore, the original characteristic statistical value may be constantly changing after each sampling period.
  • the original characteristic statistical value The minimum value of may be constantly being refreshed.
  • step S563 If the situation in step S562A or S562B does not occur, it is determined that the touch screen is in the temperature state maintaining stage.
  • FIG. 7 is a schematic diagram of a process of determining that the touch screen is in a temperature state maintaining stage in an embodiment of the application
  • step S701 Determine whether the previous temperature state of the touch screen is a cooling state or a heating state; if it is, perform step SS702; otherwise, perform step S704B;
  • the number of original feature statistical values can be flexibly set according to application scenarios. For example, after the current sampling period in the embodiment of FIG. 5, multiple sampling periods are executed successively to obtain corresponding multiple original feature statistics. value.
  • a statistical parameter of integrity (denoted as Poscount) and a statistical parameter of negative value (Negcount) are respectively set, and each occurrence of the original feature statistical value with a positive value, then integrity
  • Poscount is incremented by 1
  • Negcount is incremented by 1
  • S703. Determine whether the original characteristic statistical value is positive for multiple consecutive times, and whether the number of times the original characteristic statistical value is positive exceeds a seventh threshold; or, determine whether the original characteristic statistical value is negative Whether the number of occurrences in a row and the original feature statistical value is negative exceeds the eighth threshold;
  • step S704A If one of them appears, go to step S704A; otherwise, go to step S704B;
  • step S704A If the original characteristic statistical value is positive for multiple consecutive times, and whether the number of times the original characteristic statistical value is positive exceeds the seventh threshold, and the last temperature state of the touch screen is a cooling state, or if If the original characteristic statistical value is a negative value continuously occurring multiple times, and the number of times the original characteristic statistical value is a negative value exceeds the eighth threshold, it is determined that the touch screen is in a constant temperature state maintaining stage close to the target temperature; Otherwise, step S704B is executed.
  • the seventh threshold and the eighth threshold can be set to 4 respectively, which is equivalent to assuming that during the cooling process, the original feature statistical values are more negative, and once The number of original feature statistical values that appear as positive values is close to the number of original feature statistical values that are negative values, indicating that the touch screen is about to complete the cooling process and approach the target temperature; and during the heating process, the original feature values are more Most of them are positive values, and once the number of negative original feature statistical values is close to the number of positive original feature statistical values, it indicates that the touch screen is about to complete the heating process and approach the target temperature.
  • the original feature statistical values continue to be more negative, and the number of original feature statistical values that do not appear as positive values is close to the number of original feature statistical values that are negative, it indicates that the touch screen is still in the cooling process. That is, the last temperature state of the touch screen is maintained; and during the heating process, the original characteristic value continues to be more positive, and the number of original characteristic statistical values that do not appear as negative values is close to the number of original characteristic statistical values that are positive. Number, it indicates that the touch screen is still in the process of heating up, that is, the previous temperature state of the touch screen is maintained;
  • FIG. 8 is a schematic structural diagram of a detection device for a temperature state of a touch screen in an embodiment of the application; as shown in FIG. 8, it includes:
  • the characteristic value determining unit 801 is configured to determine the original characteristic value of each temperature monitoring node in the corresponding sampling period according to multiple sampling characteristic values of each temperature monitoring node in each sampling period, and the temperature monitoring node is selected from Several capacitor nodes in the touch array;
  • the temperature status detection unit 802 is configured to calculate the original feature statistical value in each sampling period according to the original feature value of all temperature monitoring nodes in each sampling period, and detect the original feature statistical value in the corresponding sampling period. Describe the temperature status of the touch screen.
  • the embodiment of the present application provides a touch control chip, which includes the detection device described in any embodiment of the present application.
  • An embodiment of the application provides an electronic device, which includes the touch chip described in any embodiment of the application.
  • the electronic devices in the embodiments of this application exist in various forms, including but not limited to:
  • Mobile communication equipment This type of equipment is characterized by mobile communication functions, and its main goal is to provide voice and data communications.
  • Such terminals include: smart phones (such as iPhone), multimedia phones, functional phones, and low-end phones.
  • Ultra-mobile personal computer equipment This type of equipment belongs to the category of personal computers, has calculation and processing functions, and generally also has mobile Internet features.
  • Such terminals include: PDA, MID and UMPC devices, such as iPad.
  • Portable entertainment equipment This type of equipment can display and play multimedia content.
  • Such devices include: audio, video players (such as iPod), handheld game consoles, e-books, as well as smart toys and portable car navigation devices.
  • Server A device that provides computing services.
  • the structure of a server includes a processor 810, hard disk, memory, system bus, etc.
  • the server is similar to a general computer architecture, but because it needs to provide highly reliable services, it has High requirements in terms of performance, reliability, security, scalability, and manageability.
  • a programmable logic device Programmable Logic Device, PLD
  • FPGA Field Programmable Gate Array
  • HDL Hardware Description Language
  • the controller can be implemented in any suitable manner.
  • the controller can take the form of, for example, a microprocessor or a processor and a computer-readable medium storing computer-readable program codes (such as software or firmware) executable by the (micro)processor. , Logic gates, switches, application specific integrated circuits (ASICs), programmable logic controllers and embedded microcontrollers. Examples of controllers include but are not limited to the following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicon Labs C8051F320, the memory controller can also be implemented as part of the memory control logic.
  • the method can be logically programmed to enable the controller to use logic gates, switches, special integrated circuits, programmable logic controllers and embedded
  • the same function is realized in the form of a microcontroller or the like. Therefore, such a controller can be regarded as a hardware component, and the devices included in it for implementing various functions can also be regarded as a structure within the hardware component. Or even, the means for realizing various functions can be regarded as both a software module of the implementation method and a structure within a hardware component.
  • the system, device, module or unit explained in the above embodiments may be specifically implemented by a computer chip or entity, or by a product with a certain function.
  • a typical implementation device is a computer.
  • the computer can be, for example, a personal computer, a laptop computer, a cell phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Any combination of these devices.
  • each flow and/or block in the flowchart and/or block diagram and a combination of the flow and/or block in the flowchart and/or block diagram may be implemented by computer program instructions.
  • These computer program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing equipment to generate a machine, so that the instructions executed by the processor of the computer or other programmable data processing equipment are generated
  • a device that implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • the computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
  • processors CPU
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-permanent memory in a computer readable medium, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer-readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media including permanent and non-permanent, removable and non-removable media, can store information by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, read-only compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.
  • computer-readable media does not include temporary computer-readable media (transitory media), such as modulated data signals and carrier waves.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present application may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific transactions or implement specific abstract data types.
  • the present application can also be practiced in distributed computing environments. In these distributed computing environments, remote processing devices connected through a communication network execute transactions. In a distributed computing environment, program modules can be located in local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种触控屏温度状态的检测方法、装置、触控芯片及电子设备,其中,触控屏温度状态的检测方法包括:根据每个温度监控节点在每个采样周期内的多个采样特征值,确定每个温度监控节点在对应采样周期内的原始特征值,所述温度监控节点选自触控阵列中的若干电容节点(S501);根据所有温度监控节点在每个采样周期内的原始特征值,计算每个采样周期内的原始特征统计值,并基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态(S502)。触控屏温度状态的检测方法避免了消点、冒点等异常情形的出现,进一步避免正常的触控控制逻辑被干扰,提高了用户体验。

Description

触控屏温度状态的检测方法、装置、触控芯片及电子设备 技术领域
本申请实施例涉及触控技术领域,尤其涉及一种触控屏温度状态的检测方法、装置、触控芯片及电子设备。
背景技术
随着人机界面技术的发展,触控技术因其操作的舒适性和方便性,得到了广泛的应用。而在具体应用时,在不同的应用场景下对触控性能也有不一样的要求,然而由于触控屏在不同的应用场景下,受不同程度的环境干扰影响,导致其触控性能受到了较大的影响。比如,由于环境温度的变化,导致触控屏的上电容节点受温度影响不一致,从而导致能检测到部分电容节点输出的特征值,并将依据这些特征值得到的坐标数据上报给主机。但是实际上,这些电容节点在触控屏上的位置实际上并未被手指接触或者其他引起电场变化的对象接触或者靠近。
由此可见,由于受到温度变化的影响出现上述误报点的情形(又称之为冒点现象),类似地再比如实际上有接触或者接近但并未上报坐标数据(又称之消点现象),从而导致正常的触控控制逻辑被扰乱,最终导致用户体验较差。
发明内容
有鉴于此,本发明实施例所解决的技术问题之一在于提供一种触控屏温度状态的检测方法、装置、触控芯片及电子设备,用以克服现有技术中的上述缺陷。
本申请实施例提供了一种触控屏温度状态的检测方法,其包括:
根据每个温度监控节点在每个采样周期内的多个采样特征值,确定每个温度监控节点在对应采样周期内的原始特征值,所述温度监控节点选自触控阵列中的若干电容节点;
根据所有温度监控节点在每个采样周期内的原始特征值,计算每个采样周期内的原始特征统计值,并基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态。
可选地,在本申请的任一实施例中,根据每个温度监控节点在每个采样周期内的多个采样特征值,计算每个温度监控节点在对应采样周期内的原始特征值,包括:对每个温度监控节点在每个采样周期内的多个采样特征值进行加和处理,以计算每个温度监控节点在对应采样周期内的原始特征值。
可选地,在本申请的任一实施例中,根据所有温度监控节点在每个采样周期内的原始特征值,计算在每个采样周期内的原始特征统计值,包括:对所有温度监控节点在每个采样周期内的原始特征值进行预处理并根据预处理后的原始特征值,得到每个采样周期内的原始特征统计值。
可选地,在本申请的任一实施例中,对所有温度监控节点在每个采样周期内的原始特征值进行预处理并根据预处理后的原始特征值,得到每个采样周期内的原始特征统计值,包括:
对每个温度监控节点在对应采样周期内的原始特征值进行相邻差分,得到原始特征值变化量;
根据所有温度监控节点在每个采样周期内的原始特征值变化量,计算每个采样周期内的原始特征统计值,并基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态。
可选地,在本申请的任一实施例中,对所有温度监控节点在每个采样周期内的原始特征值进行预处理并根据预处理后的原始特征值,得到每个采样周期内的原始特征统计值,包括:
对每个温度监控节点在对应采样周期内的原始特征值进行平滑处理得到平滑原始特征值;
对每个温度监控节点在对应采样周期内的平滑原始特征值进行相邻差分,得到平滑原始特征值变化量;
根据每个温度监控节点在对应采样周期内的所述原始特征值变化量以及所述平滑原始特征值变化量,计算每个采样周期内的原始特征统计值。
可选地,在本申请的任一实施例中,根据每个温度监控节点在对应采样周期内的所述原始特征值变化量以及所述平滑原始特征值变化量,计算每个采样周期内的原始特征统计值,包括:
根据每个温度监控节点在对应采样周期内的所述原始特征值变化量对所述平滑原始特征值变化量进行滤波处理,得到滤波原始特征变化量;
根据所有温度监控节点在每个采样周期内的滤波原始特征变化量,计算每个采样周期内的原始特征统计值。
可选地,在本申请的任一实施例中,基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态,包括:若对应采样周期内的原始特征统计值大于设定的第一阈值的次数大于第二阈值,且原始特征统计值中的最大值大于设定的第三阈值时,则所述触控屏处于升温状态。
可选地,在本申请的任一实施例中,基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态,包括:若对应采样周期内的原始特征统计值小于设定的第四阈值的次数小于设定的第五阈值,且原始特征统计值中的最小值小于设定的第六阈值时,则所述触控屏处于降温状态。
可选地,在本申请的任一实施例中,所述温度监控节点包括:选自触控屏触控阵列中位于左上角、左下角、右上角、右下角的电容节点。
可选地,在本申请的任一实施例中,位于所述左上角、左下角的所述温度监控节点对应不同的驱动通道上;位于所述右上角、右下角的所述温度监控节点对应不同的驱动通道;位于所述左上角、右上角的所述温度监控节点对应不同的检测通道;位于所述左下角、右下角的所述温度监控节点对应不同的检测通道。
可选地,在本申请的任一实施例中,所述温度监控节点还包括:选自触控屏触控阵列中位于中间位置电容节点。
可选地,在本申请的任一实施例中,位于所述左上角、左下角的所述温度监控节点对应相同的驱动通道;位于所述右上角、右下角的所述温度监控节点对应相同的驱动通道;位于所述左上角、右上角的所述温度监控节点对应相同的检测通道;位于所述左下角、右下角的所述温度监控节点对应相同检测通道。
可选地,在本申请的任一实施例中,所述温度监控节点选自触控屏触控阵列中位于驱动通道方向或者检测通道方向的电容节点。
本申请实施例提供了一种触控屏温度状态的检测装置,其包括:
特征值确定单元,用于根据每个温度监控节点在每个采样周期内的多个采样特征值,确定每个温度监控节点在对应采样周期内的原始特征值,所述温度监控节点选自触控阵列中的若干电容节点;
温度状态检测单元,用于根据所有温度监控节点在每个采样周期内的原始特征值,计算每个采样周期内的原始特征统计值,并基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态。
本申请实施例提供了一种触控芯片,其包括本申请任一实施例中所述的检测装置。
本申请实施例提供了一种电子设备,其包括本申请任一实施例中所述的触控芯片。
本申请实施例提供的技术方案中,根据每个温度监控节点在每个采样周期内的多个采样特征值,确定每个温度监控节点在对应采样周期内的原始特征值,所述温度监控节点选自触控阵列中的若干电容节点;再根据所有温度监控节点在每个采样周期内的原始特征值,计算每个采样周期内的原始特征统计值,并基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态,从而根据所述触控屏的温度状态,避免了消点、冒点等异常情形的出现,进一步避免正常的触控控制逻辑被干扰。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1为本申请实施例中温度监控节点的第一配置示意图;
图2为本申请实施例中温度监控节点的第二配置示意图;
图3为本申请实施例中温度监控节点的第三配置示意图;
图4为本申请实施例中温度监控节点的第四配置示意图;
图5为本申请实施例中触控屏温度状态的检测方法流程示意图;
图6为图5中步骤S502的示例性流程示意图;
图7为本申请实施例中确定所述触控屏处于温度状态保持阶段的流程示意图;
图8为本申请实施例中触控屏温度状态的检测装置的结构示意图。
具体实施方式
实施本发明实施例的任一技术方案必不一定需要同时达到以上的所有优点。
下面结合本发明实施例附图进一步说明本发明实施例具体实现。
本申请实施例提供的技术方案中,根据每个温度监控节点在每个采样周期内的多个采样特征值,确定每个温度监控节点在对应采样周期内的原始特征值, 所述温度监控节点选自触控阵列中的若干电容节点;再根据所有温度监控节点在每个采样周期内的原始特征值,计算每个采样周期内的原始特征统计值,并基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态,从而根据所述触控屏的温度状态,避免了消点、冒点等异常情形的出现,进一步避免正常的触控控制逻辑被干扰。
本申请实施例中,为了实现检测触控屏的温度状态,预先在触控屏触控阵列中选择部分电容节点作为温度监控节点或者又称之为配置温度监控节点(简称温控节点),通过对这些文件监控节点上的特征值采样,再进行后续的一系列分析,从而最终实现对温度状态的检测。而温度监控节点的配置,跟触控屏的应用场景相关联。因此,本申请下述实施例中,首先根据应用场景的不同,参照图1-图4示例性地提供四种温度监控节点的配置实施例。但是,需要说明的是,图1-图4只是为了便于对本申请进行解释提供的示例性说明,并非特别限定温度监控节点的配置只有四种情形。
图1为本申请实施例中温度监控节点的第一配置示意图;如图1所示,本实施例中,将触控屏触控阵列中位于左上角、左下角、右上角、右下角以及中间位置的电容节点分别作为温度监控节点,共计5个温度监控节点(A、B、C、D、E),或者又称之为所述温度监控节点包括:选自触控屏触控阵列中位于左上角、左下角、右上角、右下角以及中间位置的电容节点。本实施例中温度监控节点的配置适用于触控屏的左上角、左下角、右上角、右下角并不会被用户在操作的过程中接触或者靠近,或者在用户常规操作过程中并不会出现过多的边缘接触,而中间位置的温度监控节点可以均衡触控屏全屏温度变化的一致性,保证全屏温度状态的检测满足全局特征。
如果驱动通道沿着竖直方向,而检测通道沿着水平方向,则位于所述左上角、左下角的所述温度监控节点A、C对应相同的驱动通道上;位于所述右上角、右下角的所述温度监控节点B、D对应相同的驱动通道;位于所述左上角、右上角的所述温度监控节点对应相同的检测通道;位于所述左下角、右下角的所述温度监控节点对应相同的检测通道。
需要说明的是,在具体应用时,如果忽略全屏温度状态的检测满足全局特征,也可以省去中间位置的温度监控节点。
另外,需要说明的是,在具体应用时,也可以在上述五个温度监控节点基础上,再增加若干个温度监控节点。位于左上角、左下角、右上角、右下角以及中间位置的多个温度监控节点可以分别组成特定的形状。
图2为本申请实施例中温度监控节点的第二配置示意图;如图2所示,选择触控屏触控阵列中左右边缘中的一列电容节点分别作为温度监控节点;如果触控屏的驱动通道沿着竖直方向配置,则本实施例中,两列温度监控节点(R1、R2)沿着驱动通道方向。如果最边缘的一列电容节点常常被触摸到,则在具体应用时,可以将最边缘一列电容节点相邻的一列电容节点作为温度监控节点。触控屏特征值的采样是按照驱动方向进行采样的,因此,当温度监控节点沿着驱动通道方向设置时,特征值的采集速度较快,从而整体上提高数据的计算效率,有效适用于数据计算时效性较高的应用场景。
需要说明的是,在具体应用时,也可以在上述两列温度监控节点的基础上再增加若干列温度监控节点。
另外,在具体应用时,也可以从两列电容节点中分别选择部分电容节点作为温度监控节点,从而整体上形成两列温度监控节点。
图3为本申请实施例中温度监控节点的第三配置示意图;如图3所示,选择触控屏触控阵列中上下边缘中的一行电容节点分别作为温度监控节点;如果触控屏的检测通道沿着水平方向设置,则本实施例中,两行温度监控节点(L1、L2)沿着检测通道方向配置,从而可以有效避免LCD的干扰。如果上下边缘的一行电容节点常常被触摸到且左右边缘的一列电容节点常常被触摸到,则在具体应用时,可以首先确定出与上下边缘的一行电容节点,并沿着列的方向内缩一列电容节点,从而最终形成两行温度监控节点,进一步有效避免LCD干扰以及边缘经常被接触或者靠近而导致的干扰。
需要说明的是,在具体应用时,也可以在上述两行温度监控节点的基础上再增加若干行温度监控节点。
另外,在具体应用时,也可以从两行电容节点中分别选择部分电容节点作为温度监控节点,从而整体上形成两行温度监控节点。
图4为本申请实施例中温度监控节点的第四配置示意图;如图4所示,本实施例中,将触控屏触控阵列中位于左上角、左下角、右上角、右下角的电容节点分别作为温度监控节点,共计4个温度监控节点(A、B、C、D)。本实施例中温度监控节点的配置适用于触控屏的左上角、左下角、右上角、右下角并不会被用户在操作的过程中接触或者靠近,或者在用户常规操作过程中并不会出现过多的边缘接触。
进一步地,参见图4所示,这4个温度监控节点错位设置,即位于不同行、位于不同列,或者又称之为横向不同轴、纵向不同轴,尤其适用于触控屏较大, 边缘的电容节点常常被接触或者靠近的应用场景,从而真实的反馈温度的全局变化。
如果驱动通道沿着竖直方向,而检测通道沿着水平方向,则位于所述左上角、左下角的所述温度监控节点A、C对应不同的驱动通道上;位于所述右上角、右下角的所述温度监控节点B、D对应不同的驱动通道;位于所述左上角、右上角的所述温度监控节点对应不同的检测通道;位于所述左下角、右下角的所述温度监控节点对应不同的检测通道。
在按照上述图1至图4中的任一种方式完成温度监控节点的配置后,进行温度状态的检测,其详细实施例如下所述。
图5为本申请实施例中触控屏温度状态的检测方法流程示意图;如图5所示,其包括:
S501、根据每个温度监控节点在每个采样周期内的多个采样特征值,确定每个温度监控节点在对应采样周期内的原始特征值;
本实施例中,所述温度监控节点选自触控阵列中的若干电容节点,详细可参见上述图-图4的记载。
本实施例中,具体步骤S501中根据每个温度监控节点在每个采样周期内的多个采样特征值,计算每个温度监控节点在对应采样周期内的原始特征值时,具体可以对每个温度监控节点在每个采样周期内的多个采样特征值进行加和处理,以计算每个温度监控节点在对应采样周期内的原始特征值。在具体应用时,采样周期以及采样特征值的数量可以灵活设置。
本实施例中,原始特征值的大小反应触控屏在被接触或者靠近前后电容节点的电容值的变化大小。
S502、根据所有温度监控节点在每个采样周期内的原始特征值,计算每个采样周期内的原始特征统计值,并基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态。
本实施例中,步骤S502中在根据所有温度监控节点在每个采样周期内的原始特征值,计算在每个采样周期内的原始特征统计值时,可以对所有温度监控节点在每个采样周期内的原始特征值进行预处理并根据预处理后的原始特征值,得到每个采样周期内的原始特征统计值。
图6为图5中步骤S502的示例性流程示意图;如图6所示,对所有温度监控节点在每个采样周期内的原始特征值进行预处理并根据预处理后的原始特征值,得到每个采样周期内的原始特征统计值时,所述预处理具体可以包括原 始特征值的相邻差分、原始特征值的平滑处理、平滑原始特征值变化量的滤波等等,但是,需要说明的是,所述预处理并非都要包括原始特征值的相邻差分、原始特征值的平滑处理、平滑原始特征值变化量的滤波,也可以根据数据的有效性,只选其中之一。当然,也可以包括其他预处理操作。
本实施例中,所述预处理具体可以包括原始特征值的相邻差分、原始特征值的平滑处理、平滑原始特征值变化量的滤波为例进行说,其详细包括如下步骤:
S512、对每个温度监控节点在对应采样周期内的原始特征值进行相邻差分,得到原始特征值变化量;
本实施例中,如前所述,为了保证温度状态检测准确性,对每个温度监控节点来说,在每个采样周期内进行特征值采样时得到了多个采样特征值,该多个采样特征值进行加和处理得到了在对应采样周期内的原始特征值;当对应多个采样周期情形时,就会得到多个原始特征值,采样周期的个数与原始特征值的个数在数量上相等。比如,对于一个温度监控节点来说,一个采样周期内进行特征值采样得到10个采样特征值(或者又称之为一组采样特征值),将该10个采样特征值进行加和处理得到在该一个采样周期内的原始特征值;如果要进行5个采样周期,由此得到5组10个采样特征值,由于每组的10个采样特征值进行加和处理得到一个原始特征值,因此,5组采样特征值,由此可得到5个原始特征值。当有n个温度监控节点时,在同一个采样周期内就对应有5*n个原始特征值,该5*n个原始特征值组成一帧原始特征值。
本实施例中,由于对第i个温度监控节点来说,经过多个采样周期后得到对应的多个原始特征值,为了后续准确检测温度状态,通过对多个原始特征值中相邻的原始特征值进行差分处理,从而得到原始特征值的变化量,原始特征值的变化量记为RawDataDiff[i],从而反映出温度变化对原始特征值的影响。此处,对第i个温度监控节点来说,多个原始特征值按照对应的采样周期的先后进行存储,在进行原始特征值的相邻差分处理以得到原始特征值变化量时,只要用在后原始特征值减去在前原始特征值即可。当然,在其他应用场景中,如果多个原始特征值并非按照对应的采样周期的先后进行存储,那在进行原始特征值的相邻差分时,只要用在后采样周期对应的原始特征值减去在前采样周期对应的原始特征值即可。
S522、对每个温度监控节点在对应采样周期内的原始特征值进行平滑处理得到平滑原始特征值;
本实施例中,步骤S522中对第i个温度监控节点的每一个原始特征值进行平滑处理时具体可以使用无限脉冲响应(Infinite Impulse Response,简称IIR)平滑处理得到平滑原始特征值,即为IIR_RawData[i]。
需要说明的是,在其他实施例中,也可以采用均值平滑或者其他平滑处理。
S532、对每个温度监控节点在对应采样周期内的平滑原始特征值进行相邻差分,得到平滑原始特征值变化量;
本实施例中,对于每个温度监控节点来说,对应多个采样周期存在多个原始特征值,进而存在多个平滑原始特征值,如果该多个平滑原始特征值进行存储是按照对应的采样周期的先后进行存储,在进行原始特征值变化量的相邻差分处理以得到平滑原始特征值变化量时,只要用在后原始特征值变化量减去在前原始特征值变化量即可,对于第i个温度监控节点来说,其对应平滑原始特征值变量记为IIR_RawData_Diff[i]。当然,在其他应用场景中,如果多个原始特征值变化量并非按照对应的采样周期的先后进行存储,那在进行原始特征值变化量的相邻差分时,只要用在后采样周期对应的平滑原始特征值减去在前采样周期对应的平滑原始特征值即可。
S542、根据每个温度监控节点在对应采样周期内的所述原始特征值变化量对所述平滑原始特征值变化量进行滤波处理,得到滤波原始特征变化量;
本实施例中,为了实现步骤S542中的滤波处理,预先根据经验值配置了三个滤波参数α、β、γ以进行协同滤波处理,α、β、γ的大小分别用于区分是被触控引起还是温度变化引起的变化量,具体根据如下公式进行滤波:
Figure PCTCN2019072306-appb-000001
其中,F_IIR_RawData_Diff[i]表示第i个温度监控节点对应的滤波原始特征变化量,RawDatadiff(i)表示第i个温度监控节点对应的原始特征变化量,IIR_RawData_Diff[i]表示第i个温度监控节点对应的平滑原始特征变化量。
S552、根据所有温度监控节点在每个采样周期内的滤波原始特征变化量,计算每个采样周期内的原始特征统计值。
本实施例中,本实施例中,所有温度监控节点在每个采样周期内的滤波原始特征变化量进行加和处理,加和处理的结果作为对应采样周期内的原始特征统计值。比如,如前所述,如果按照图4的方式配置温度监控节点,在一个采样周期周期内,对于每个温度监控节点分别对应有一个滤波原始特征变化量, 四个温度监控节点共计对应有四个滤波原始特征变化量,该四个滤波原始特征变化量做加和处理,从而得到对应采样周期内的原始特征统计值。
S562A:若对应采样周期内的原始特征统计值大于设定的第一阈值的次数大于第二阈值,且原始特征统计值中的最大值大于设定的第三阈值时,则所述触控屏处于升温状态。
本实施例中,假如考虑到触控屏中温度监控节点对应的原始特征统计值与温度的变化成正比,即温度越高,原始特征统计值越大,相反,温度越低,原始特征统计值越小。同时,再考虑到升温状态的不同阶段,原始特征统计值呈现不同变化趋势,比如,当触控屏的温度越接近目标温度时,原始特征统计值的变化较为平稳,而在从低温状态接近目标温度之前,原始特征统计值的变化较为剧烈。对应地,即原始特征统计值大于设定的第一阈值的次数越多,当大于第二阈值,且原始特征统计值中的最大值不断的被刷新且大于设定的第三阈值时,则所述触控屏处于升温状态。本实施例中,第一阈值、第二阈值、第三阈值根据升温过程对原始特征统计值影响情况设定。
进一步地,本实施例中,为了表征原始特征统计值大于设定的第一阈值的次数,设置了第一计数参数记为upcount,当出现一次原始特征统计值大于设定的第一阈值的情形,upcount的值加1。另外,在升温状态时,由于考虑到电容节点受到温度的影响,原始特征统计值可能会逐渐变大,因此,每经过一个采样周期的原始特征统计值可能在不断的变化,其中原始特征统计值的最大值可能在不断地被刷新。
S562B、若对应采样周期内的原始特征统计值小于设定的第四阈值的次数小于设定的第五阈值,且原始特征统计值中的最小值小于设定的第六阈值时,则所述触控屏处于降温状态;
本实施例中,假如考虑到触控屏中温度监控节点对应的原始特征统计值与温度的变化成正比,即温度越高,原始特征统计值越大,相反,温度越低,原始特征统计值越小。同时,再考虑到降温状态的不同阶段,原始特征统计值呈现不同变化趋势,比如,当触控屏的温度越接近目标温度时,原始特征统计值的变化较为平稳,而在从高温状态接近目标温度之前,原始特征统计值的变化较为剧烈。对应地,即原始特征统计值小于设定的第四阈值的次数越多,且当小于第五阈值,且原始特征统计值中的最小值不断的被刷新且小于设定的第六阈值时,则所述触控屏处于降温状态。本实施例中,第四阈值、第五阈值、第六阈值根据降温过程对原始特征统计值影响情况设定。
进一步地,本实施例中,为了表征原始特征统计值小于设定的第四阈值的次数,设置了第二计数参数记为dncount,当出现一次原始特征统计值小于设定的第四阈值的情形,dncount的值加1。另外,在降温状态时,由于考虑到电容节点受到温度的影响,原始特征统计值可能会逐渐变小,因此,每经过一个采样周期的原始特征统计值可能在不断的变化,其中原始特征统计值的最小值可能在不断地被刷新。
S563:若未出现步骤S562A或者S562B中的情形,则确定所述触控屏处于温度状态保持阶段。
图7为本申请实施例中确定所述触控屏处于温度状态保持阶段的流程示意图;
如图7所示,其包括:
S701、判断触摸屏的上一温度状态是否为降温状态或者升温状态;若是则执行步骤SS702;否则执行步骤S704B;
S702、确定多个所述原始特征统计值中的正负值个数;
本实施例中,原始特征统计值的个数可以根据应用场景灵活设置,比如在上述图5实施例中的当前采样周期之后连续再先后执行多个采样周期得到对应的多个所述原始特征统计值。
本实施例中,为了统计上述正负值个数,分别设置了正直统计参数(记为Poscount)、负值统计参数(Negcount),每出现一个为正值的所述原始特征统计值,则正直统计参数Poscount加1,每出现一个为负值的所述原始特征统计值,则负值统计参数Negcount加1。
S703、判断所述原始特征统计值为正值是否连续出现多次,且所述原始特征统计值为正值的次数是否超过了第七阈值;或者,判断所述原始特征统计值为负值是否连续出现多次,且所述原始特征统计值为负值的次数是否超过了第八阈值;
若出现其中之一,则执行步骤S704A;否则执行步骤S704B;
本实施例中,根据降温过程中原始特征统计值的变化经验设置第七阈值。根据升温过程中原始特征统计值的变化经验设置第八阈值。
S704A、若所述原始特征统计值为正值连续出现多次,且所述原始特征统计值为正值的次数是否超过了第七阈值,且触摸屏的上一温度状态为降温状态,或者,若所述原始特征统计值为负值连续出现多次,且所述原始特征统计值为 负值的次数超过了第八阈值,则确定所述触控屏处于已接近目标温度的恒温状态保持阶段;否则,执行步骤S704B。
S704B、保持触摸屏的上一温度状态。
比如,步骤S702中存在有10个原始特征统计值,则第七阈值和第八阈值可以分别设置为4个,即相当于假设降温过程中,原始特征统计值更多的为负值,而一旦出现为正值的原始特征统计值的个数接近为负值的原始特征统计值的个数,则表明触控屏即将完成降温过程并趋近与目标温度;而升温过程中,原始特征值更多的为正值,而一旦出现为负值的原始特征统计值的个数接近为正值的原始特征统计值的个数,则表明触控屏即将完成升温过程并趋近与目标温度。若原始特征统计值持续更多的为负值,并未出现为正值的原始特征统计值的个数接近为负值的原始特征统计值的个数,则表明触控屏仍然处于降温过程,即保持触摸屏的上一温度状态;而升温过程中,原始特征值持续更多的为正值,并未出现为负值的原始特征统计值的个数接近为正值的原始特征统计值的个数,则表明触控屏仍然处于升温过程,即保持触摸屏的上一温度状态;
图8为本申请实施例中触控屏温度状态的检测装置的结构示意图;如图8所示,其包括:
特征值确定单元801,用于根据每个温度监控节点在每个采样周期内的多个采样特征值,确定每个温度监控节点在对应采样周期内的原始特征值,所述温度监控节点选自触控阵列中的若干电容节点;
温度状态检测单元802,用于根据所有温度监控节点在每个采样周期内的原始特征值,计算每个采样周期内的原始特征统计值,并基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态。
本申请实施例提供了一种触控芯片,其包括本申请任一实施例中所述的检测装置。
本申请实施例提供了一种电子设备,其包括本申请任一实施例中所述的触控芯片。
本申请实施例的电子设备以多种形式存在,包括但不限于:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。
(4)服务器:提供计算服务的设备,服务器的构成包括处理器810、硬盘、内存、***总线等,服务器和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
(5)其他具有数据交互功能的电子装置。
至此,已经对本主题的特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作可以按照不同的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序,以实现期望的结果。在某些实施方式中,多任务处理和并行处理可以是有利的。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字***“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL (Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的***、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产 品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过 程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、***或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定事务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行事务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (16)

  1. 一种触控屏温度状态的检测方法,其特征在于,包括:
    根据每个温度监控节点在每个采样周期内的多个采样特征值,确定每个温度监控节点在对应采样周期内的原始特征值,所述温度监控节点选自触控阵列中的若干电容节点;
    根据所有温度监控节点在每个采样周期内的原始特征值,计算每个采样周期内的原始特征统计值,并基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态。
  2. 根据权利要求1所述的方法,其特征在于,根据每个温度监控节点在每个采样周期内的多个采样特征值,计算每个温度监控节点在对应采样周期内的原始特征值,包括:对每个温度监控节点在每个采样周期内的多个采样特征值进行加和处理,以计算每个温度监控节点在对应采样周期内的原始特征值。
  3. 根据权利要求1所述的方法,其特征在于,根据所有温度监控节点在每个采样周期内的原始特征值,计算在每个采样周期内的原始特征统计值,包括:对所有温度监控节点在每个采样周期内的原始特征值进行预处理并根据预处理后的原始特征值,得到每个采样周期内的原始特征统计值。
  4. 根据权利要求3所述的方法,其特征在于,对所有温度监控节点在每个采样周期内的原始特征值进行预处理并根据预处理后的原始特征值,得到每个采样周期内的原始特征统计值,包括:
    对每个温度监控节点在对应采样周期内的原始特征值进行相邻差分,得到原始特征值变化量;
    根据所有温度监控节点在每个采样周期内的原始特征值变化量,计算每个采样周期内的原始特征统计值。
  5. 根据权利要求3所述的方法,其特征在于,对所有温度监控节点在每个采样周期内的原始特征值进行预处理并根据预处理后的原始特征值,得到每个采样周期内的原始特征统计值,包括:
    对每个温度监控节点在对应采样周期内的原始特征值进行平滑处理得到平滑原始特征值;
    对每个温度监控节点在对应采样周期内的平滑原始特征值进行相邻差分,得到平滑原始特征值变化量;
    根据每个温度监控节点在对应采样周期内的所述原始特征值变化量以及所 述平滑原始特征值变化量,计算每个采样周期内的原始特征统计值。
  6. 根据权利要求5所述的方法,其特征在于,根据每个温度监控节点在对应采样周期内的所述原始特征值变化量以及所述平滑原始特征值变化量,计算每个采样周期内的原始特征统计值,包括:
    根据每个温度监控节点在对应采样周期内的所述原始特征值变化量对所述平滑原始特征值变化量进行滤波处理,得到滤波原始特征变化量;
    根据所有温度监控节点在每个采样周期内的滤波原始特征变化量,计算每个采样周期内的原始特征统计值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态,包括:若对应采样周期内的原始特征统计值大于设定的第一阈值的次数大于第二阈值,且原始特征统计值中的最大值大于设定的第三阈值时,则所述触控屏处于升温状态。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态,包括:若对应采样周期内的原始特征统计值小于设定的第四阈值的次数小于设定的第五阈值,且原始特征统计值中的最小值小于设定的第六阈值时,则所述触控屏处于降温状态。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述温度监控节点包括:选自触控屏触控阵列中位于左上角、左下角、右上角、右下角的电容节点。
  10. 根据权利要求9所述的方法,其特征在于,位于所述左上角、左下角的所述温度监控节点对应不同的驱动通道上;位于所述右上角、右下角的所述温度监控节点对应不同的驱动通道;位于所述左上角、右上角的所述温度监控节点对应不同的检测通道;位于所述左下角、右下角的所述温度监控节点对应不同的检测通道。
  11. 根据权利要求9所述的方法,其特征在于,所述温度监控节点还包括:选自触控屏触控阵列中位于中间位置电容节点。
  12. 根据权利要求11所述的方法,其特征在于,位于所述左上角、左下角的所述温度监控节点对应相同的驱动通道;位于所述右上角、右下角的所述温度监控节点对应相同的驱动通道;位于所述左上角、右上角的所述温度监控节点对应相同的检测通道;位于所述左下角、右下角的所述温度监控节点对应相同检测通道。
  13. 根据权利要求9所述的方法,其特征在于,所述温度监控节点选自触 控屏触控阵列中位于驱动通道方向或者检测通道方向的电容节点。
  14. 一种触控屏温度状态的检测装置,其特征在于,包括:
    特征值确定单元,用于根据每个温度监控节点在每个采样周期内的多个采样特征值,确定每个温度监控节点在对应采样周期内的原始特征值,所述温度监控节点选自触控阵列中的若干电容节点;
    温度状态检测单元,用于根据所有温度监控节点在每个采样周期内的原始特征值,计算每个采样周期内的原始特征统计值,并基于对应采样周期内的原始特征统计值,检测所述触控屏的温度状态。
  15. 一种触控芯片,其特征在于,包括权利要求14所述的检测装置。
  16. 一种电子设备,其特征在于,包括权利要求15所述的触控芯片。
PCT/CN2019/072306 2019-01-18 2019-01-18 触控屏温度状态的检测方法、装置、触控芯片及电子设备 WO2020147105A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980000107.7A CN111727420A (zh) 2019-01-18 2019-01-18 触控屏温度状态的检测方法、装置、触控芯片及电子设备
EP19858675.2A EP3705985A4 (en) 2019-01-18 2019-01-18 METHOD, DEVICE, TOUCH-SENSITIVE CHIP AND ELECTRONIC DEVICE FOR DETERMINING THE TEMPERATURE STATUS OF A TOUCH SCREEN
PCT/CN2019/072306 WO2020147105A1 (zh) 2019-01-18 2019-01-18 触控屏温度状态的检测方法、装置、触控芯片及电子设备
US16/817,790 US11543299B2 (en) 2019-01-18 2020-03-13 Method, apparatus, touch chip and electronic device for determining temperature status of touch screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072306 WO2020147105A1 (zh) 2019-01-18 2019-01-18 触控屏温度状态的检测方法、装置、触控芯片及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/817,790 Continuation US11543299B2 (en) 2019-01-18 2020-03-13 Method, apparatus, touch chip and electronic device for determining temperature status of touch screen

Publications (1)

Publication Number Publication Date
WO2020147105A1 true WO2020147105A1 (zh) 2020-07-23

Family

ID=71608817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072306 WO2020147105A1 (zh) 2019-01-18 2019-01-18 触控屏温度状态的检测方法、装置、触控芯片及电子设备

Country Status (4)

Country Link
US (1) US11543299B2 (zh)
EP (1) EP3705985A4 (zh)
CN (1) CN111727420A (zh)
WO (1) WO2020147105A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115879610A (zh) * 2022-11-30 2023-03-31 中国南方电网有限责任公司超高压输电公司广州局 接触器使用期限预测方法、装置、设备和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112468708A (zh) * 2020-11-30 2021-03-09 广州市选择百货有限公司 一种基于智能制造的十字路口监控摄像设备
CN114777958B (zh) * 2022-06-20 2022-10-28 深圳比特微电子科技有限公司 芯片散热状况检测方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102968217A (zh) * 2012-12-07 2013-03-13 深圳市汇顶科技股份有限公司 触摸屏的基准更新方法、***及触控终端
CN104866140A (zh) * 2015-05-27 2015-08-26 小米科技有限责任公司 屏幕校准方法及装置
US20160054825A1 (en) * 2014-08-25 2016-02-25 Carestream Health, Inc. Touch panels and methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402316B (zh) * 2010-09-07 2015-04-15 群康科技(深圳)有限公司 触控面板的感测值辨识方法与驱动装置
KR101461036B1 (ko) * 2011-11-15 2014-11-14 엘지디스플레이 주식회사 터치 센서 구동 장치 및 방법
KR101885857B1 (ko) * 2012-01-04 2018-08-06 삼성전자주식회사 온도 관리 회로, 이를 포함하는 시스템 온 칩 및 온도 관리 방법
US9618945B2 (en) * 2013-09-22 2017-04-11 Microsoft Technology Licensing, Llc Monitoring surface temperature of devices
JP2015194948A (ja) * 2014-03-31 2015-11-05 ソニー株式会社 情報処理装置、入力装置、情報処理方法及びプログラム
US9811220B2 (en) * 2015-06-19 2017-11-07 NXA USA, Inc. Signal adaptive filtering for touch detection
US10101863B2 (en) * 2016-02-18 2018-10-16 Synaptics Incorporated Force calibration for temperature
CN106681627B (zh) * 2016-12-01 2019-10-15 维沃移动通信有限公司 一种触摸操作的方法及移动终端
US20180238742A1 (en) * 2017-02-17 2018-08-23 Baxter International Inc. Time and temperature tracker
EP3454190A4 (en) * 2017-07-04 2019-06-12 Shenzhen Goodix Technology Co., Ltd. ELECTRONIC DEVICE, TOUCH DETECTING CIRCUIT, AND METHOD FOR UPDATING THE REFERENCE VALUE OF A TOUCH SCREEN

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102968217A (zh) * 2012-12-07 2013-03-13 深圳市汇顶科技股份有限公司 触摸屏的基准更新方法、***及触控终端
US20160054825A1 (en) * 2014-08-25 2016-02-25 Carestream Health, Inc. Touch panels and methods
CN104866140A (zh) * 2015-05-27 2015-08-26 小米科技有限责任公司 屏幕校准方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705985A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115879610A (zh) * 2022-11-30 2023-03-31 中国南方电网有限责任公司超高压输电公司广州局 接触器使用期限预测方法、装置、设备和存储介质
CN115879610B (zh) * 2022-11-30 2024-03-29 中国南方电网有限责任公司超高压输电公司广州局 接触器使用期限预测方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN111727420A (zh) 2020-09-29
US11543299B2 (en) 2023-01-03
US20200232855A1 (en) 2020-07-23
EP3705985A4 (en) 2020-11-18
EP3705985A1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
TWI709931B (zh) 一種指標異常檢測方法、裝置以及電子設備
WO2020147105A1 (zh) 触控屏温度状态的检测方法、装置、触控芯片及电子设备
CN103488337B (zh) 一种在贴膜情况下调节触摸屏灵敏度的方法
WO2020210951A1 (zh) 触控显示面板的电容检测方法、触控显示面板的电容检测电路及触控显示面板
TWI736765B (zh) 圖像處理方法、裝置、設備及儲存媒體
JP6557213B2 (ja) ページ戻り
US9626090B2 (en) Systems and methods for scrolling through content displayed on an electronic device
WO2017067164A1 (zh) 多指并拢或打开手势的识别方法、装置及终端设备
CN104182068A (zh) 误触识别方法与装置
US10514802B2 (en) Method for controlling display of touchscreen, and mobile device
WO2024113932A1 (zh) 一种模型优化的方法、装置、设备及存储介质
US11093073B2 (en) Touch control chip, touch detection method, touch detection system and electronic device
CN106293432A (zh) 一种页面显示处理方法以及装置
US20120154298A1 (en) Method for Adjusting Touch Positions of Software Keyboard, Non-Transitory Computer Readable Storage Medium for Storing Thereof and Touch Screen Electrical Device Applying Thereof
CN109615171A (zh) 特征阈值确定方法及装置、问题对象确定方法及装置
TWI494830B (zh) 觸控裝置、辨識方法及其電腦程式產品
CN111190509A (zh) 一种触摸检测方法、装置及无线耳机和存储介质
CN110764652A (zh) 红外触摸屏及其触摸点预测方法
WO2018000382A1 (zh) 一种查看应用程序的图形用户界面、方法及终端
CN106462336B (zh) 一种移动屏幕界面的方法及终端
CN108604142B (zh) 一种触屏设备操作方法及触屏设备
US20110050615A1 (en) Processing circuit for determining touch points of touch event on touch panel and related method
CN110032495A (zh) 数据异常检测方法和装置
CN109325127A (zh) 一种风险识别方法和装置
CN117575886B (zh) 一种图像边缘检测器、检测方法、电子设备、介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019858675

Country of ref document: EP

Effective date: 20200318

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE