WO2020147086A1 - 一种信号传输方法、相关设备及*** - Google Patents

一种信号传输方法、相关设备及*** Download PDF

Info

Publication number
WO2020147086A1
WO2020147086A1 PCT/CN2019/072237 CN2019072237W WO2020147086A1 WO 2020147086 A1 WO2020147086 A1 WO 2020147086A1 CN 2019072237 W CN2019072237 W CN 2019072237W WO 2020147086 A1 WO2020147086 A1 WO 2020147086A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
window
windows
transmission
time windows
Prior art date
Application number
PCT/CN2019/072237
Other languages
English (en)
French (fr)
Inventor
任占阳
贾树葱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/072237 priority Critical patent/WO2020147086A1/zh
Priority to CN201980088632.9A priority patent/CN113273098B/zh
Publication of WO2020147086A1 publication Critical patent/WO2020147086A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technology, in particular to a signal transmission method, related equipment and system.
  • the 3rd generation partnership project (3rd generation partnership project, 3GPP) Release13 proposed the LAA technology, that is, the 5GHz unlicensed frequency band and the licensed frequency band are jointly used by means of carrier aggregation.
  • LAA technology provides an enhanced network capacity, coverage and simplified unified network management beyond WiFi.
  • LTE-U technology deploys long term evolution (LTE) to unlicensed spectrum and uses standard LTE air interface protocols to complete communication.
  • MulteFire technology applies LTE technology to unlicensed spectrum to provide high-performance communication services similar to LTE and simple deployment similar to Wi-Fi.
  • Unlicensed spectrum 5G NR is a global standard for a new air interface design based on orthogonal frequency division multiplexing (OFDM), which improves spectrum utilization and will bring new 5G NR network deployment scenarios.
  • OFDM orthogonal frequency division multiplexing
  • MulteFire technology if the unlicensed spectrum is networked separately, the discovery signal (DRS) needs to be carried on the unlicensed spectrum, and the transmission of the DRS signal must follow the channel access mechanism.
  • the application of unlicensed spectrum wireless communication technology to higher frequency carrier spectrum is the development trend of unlicensed spectrum mobile communication technology.
  • beamforming technology can be used to place DRS signals in different Send the beam to transmit.
  • MulteFire technology proposes DRS signal transmission based on the discovery signal measurement timing configuration (discovery measurement timing configuration, DMTC).
  • DMTC discovery measurement timing configuration
  • the terminal usually needs to perform DRS signal detection and reception within the entire DMTC window to perform channel quality measurement.
  • DMTC discovery measurement timing configuration
  • the embodiment of the present invention provides a signal transmission method, related equipment and system, which can reduce the signal detection overhead of the terminal in the unlicensed spectrum wireless communication based on the beamforming technology.
  • embodiments of the present invention provide a signal transmission method, which is applied to network equipment.
  • the method may include: the network device performs channel sensing in the first time period. If the network device detects that the channel is in an idle state, the network device sequentially sends signals of M transmission beams in M time periods after the first time period.
  • the total number of transmission beams configured by the network device is K, the s-th transmission beam among the K transmission beams corresponds to N s time windows, and the above K transmission beams correspond to P time windows.
  • the K transmission beams include the M transmission beams, the M transmission beams include the i-th transmission beam among the K transmission beams, and the second time period in the M time periods is corresponding to the i-th transmission beam Within the j-th time window.
  • the j-th time window is one of the N i time windows corresponding to the i-th transmit beam.
  • K is greater than or equal positive integer
  • P is greater than or equal a positive integer
  • N s is a positive integer less than P
  • N i is greater than or equal to 1 and less than the positive integer P is
  • the network device configuration transmission beams K, K transmission beams in the i-th transmission beam corresponding to the N i-th time window, said K transmission beam corresponding to the P total time windows.
  • the network device After the network device detects that the channel is in an idle state, it sends signals of M transmit beams in sequence during M time periods of the channel occupation time. Each of the foregoing M time periods corresponds to one of the foregoing P time windows.
  • the network device only transmits the signal of the i-th transmit beam in the N i time windows of the P time windows, and N i is less than P.
  • the terminal under the coverage of the i-th transmit beam only needs to transmit the signal in the above N i
  • the detection and reception of the signal of the i-th transmit beam are performed within the time window for channel quality measurement.
  • the present invention reduces the signal detection overhead of the terminal in the unlicensed spectrum wireless communication based on the beamforming technology.
  • the method before the network device sequentially sends the signals of the M transmit beams in M time periods after the first time period, the method further includes: if the channel is detected to be in an idle state, the network device obtains information from the above according to the configuration information.
  • the M transmission beams are determined among the K transmission beams, and the configuration information includes the correspondence between the K transmission beams and the P time windows.
  • the first time period and the second time period are adjacent.
  • the time interval between the first time period and the earliest time period among the foregoing M time periods is greater than zero and less than the duration of a time unit required for the network device to send a useful information.
  • the start time of the a-th time window in the P time windows is earlier than the start time of the a+1-th time window in the P time windows.
  • the cut-off time of the a-th time window is later than the start time of the a+1-th time window in the above P time windows, and the cut-off time of the a-th time window in the above P time windows is earlier than the above P The end time of the a+1th time window in the time window.
  • the start time of the b-th time window in the P time windows is earlier than the start time of the b+1-th time window in the P time windows, and in the P time windows
  • the expiration time of the b th time window of is equal to the expiration time of the b+1 th time window in the above P time windows.
  • the start time of the c-th time window in the above P time windows is equal to the start time of the c+1-th time window in the above P time windows, and the The cut-off time of the c-th time window is earlier than the cut-off time of the c+1-th time window among the above P time windows.
  • the network device is in the second time period
  • the signal of the i-th transmission beam is transmitted preferentially.
  • the end time of the e-th time window in the above P time windows is equal to the start time of the e+1-th time window in the above P time windows.
  • any continuous K time windows in the above P time windows correspond to the above K transmission beams one by one.
  • the P time windows are the time windows of the first window
  • the start time of the P time windows is the same as the start time of the first window
  • the end time of the P time windows is the same as that of the first window.
  • the cut-off time of the windows is the same
  • the first window is a window in the first window set
  • the time interval is the first cycle.
  • the correspondence between the time window in the g th window and the K transmission beams is a first correspondence
  • the time window in the g+1 window corresponds to the K transmission beams
  • the relationship is a second correspondence
  • the first correspondence is the same as the second correspondence.
  • the corresponding relationship between the time window in the g-th window and the K transmission beams is a first correspondence
  • the time window in the g+1-th window corresponds to the K transmission beams
  • the relationship is a second correspondence
  • the first correspondence is different from the second correspondence.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if z is a positive integer less than or equal to P g+1 –x, then the transmit beam corresponding to the z-th time window in the g-th window is the same as the z+x-th in the g+1-th window.
  • the transmit beams corresponding to the time windows are the same, P g+1 is the number of time windows in the g+1 th window, and x is a positive integer less than K; if z is greater than P g+1 –x and less than or equal to P g +1 is a positive integer, then the transmission beam corresponding to the z-th time window in the g-th window is the same as the transmission beam corresponding to the z+xP g+1- th time window in the g+1- th window.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if P g+1 +1-z is greater than zero, the transmission beam corresponding to the z-th time window in the g-th window is the same as the P g+1 +1-th in the g+1-th window. -The transmit beams corresponding to z time windows are the same; if P g+1 +1-z is less than or equal to zero, then the transmit beams corresponding to the z-th time window in the g-th window are the same as those in the g+1-th window The transmission beams corresponding to the P g+1 *(t+1)+1-z time window are the same.
  • t is the smallest positive integer that makes P g+1 *(t+1)+1-z greater than zero
  • z is a positive integer greater than or equal to 1 and less than P g
  • P g is the time in the g th window in the first window set The number of windows.
  • the signal of the i-th transmit beam sent by the network device includes a DRS signal.
  • the first window is a DMTC window.
  • embodiments of the present invention provide a signal transmission method, which is applied to terminal equipment.
  • the method may include: the terminal determines the position in the P time windows of the Ni time windows corresponding to the i -th transmission beam in the K transmission beams, and the s-th transmission beam in the K transmission beams configured by the network device corresponding to N s time windows, said K transmission beam corresponding to one of the P time windows, K is greater than or equal positive integer, P is greater than or equal a positive integer, N s is a positive integer less than P,, N i is greater than A positive integer equal to 1 and less than P.
  • the terminal detects and receives the signal of the i-th transmit beam within the N i time windows.
  • the terminal determines the position of the N i of the P-th time window in the time windows, and the measurement signal within said time windows N i. At times outside the N i time windows in the above P time windows, the terminal does not need to detect and receive the signal of the i-th transmit beam.
  • the present invention is used in unlicensed spectrum wireless communication based on beamforming technology , Which reduces the detection overhead of the terminal.
  • the terminal determines the position of the N i time windows corresponding to the i -th transmission beam in the K transmission beams in the P time windows, including: the terminal determines the i-th transmission in the K transmission beams and a plurality of beams or similar transmission beam corresponding to a in the above time window position P time window, said window comprising the above-described time a N i-th time window.
  • the terminal detecting and receiving the signal of the i-th transmission beam in the above N i time windows includes: the terminal detecting and receiving the i-th transmission beam and one of the signals in the above A time window Or multiple similar transmit beam signals.
  • the terminal determines the position of the N i time windows in the P time windows, and before detecting and receiving the signal in the N i time windows, it also includes: the terminal receives the network at the first moment The signal of the i-th transmit beam sent by the device, the signal includes configuration information, the first time is earlier than the start time of the P time windows, and the configuration information includes the correspondence between the P time windows and the K transmit beams .
  • the terminal determines the position of the N i time windows corresponding to the i -th transmission beam in the K transmission beams in the P time windows, including: the terminal determines the above-mentioned corresponding to the i-th transmission beam among the K transmission beams according to configuration information N i-th time window the position P in the above time window.
  • the start time of the a-th time window in the P time windows is earlier than the start time of the a+1-th time window in the P time windows.
  • the cut-off time of the a-th time window is later than the start time of the a+1-th time window in the above P time windows, and the cut-off time of the a-th time window in the above P time windows is earlier than the above P The end time of the a+1th time window in the time window.
  • the start time of the b-th time window in the P time windows is earlier than the start time of the b+1-th time window in the P time windows, and in the P time windows
  • the expiration time of the b th time window of is equal to the expiration time of the b+1 th time window in the above P time windows.
  • the start time of the c-th time window in the above P time windows is equal to the start time of the c+1-th time window in the above P time windows, and the The cut-off time of the c-th time window is earlier than the cut-off time of the c+1-th time window among the above P time windows.
  • the end time of the e-th time window in the above P time windows is equal to the start time of the e+1-th time window in the above P time windows.
  • any continuous K time windows in the above P time windows correspond to the above K transmission beams one by one.
  • the P time windows are the time windows of the first window
  • the start time of the P time windows is the same as the start time of the first window
  • the end time of the P time windows is the same as that of the first window.
  • the cut-off time of the windows is the same
  • the first window is a window in the first window set
  • the time interval is the first cycle.
  • the correspondence between the time window in the g th window and the K transmission beams is a first correspondence
  • the time window in the g+1 window corresponds to the K transmission beams
  • the relationship is a second correspondence
  • the first correspondence is the same as the second correspondence.
  • the correspondence between the time window in the g th window and the K transmission beams is a first correspondence
  • the time window in the g+1 window corresponds to the K transmission beams
  • the relationship is a second correspondence
  • the first correspondence is different from the second correspondence.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if z is a positive integer less than or equal to P g+1 –x, then the transmit beam corresponding to the z-th time window in the g-th window is the same as the z+x-th in the g+1-th window.
  • the transmit beams corresponding to the time windows are the same, P g+1 is the number of time windows in the g+1 th window, and x is a positive integer less than K; if z is greater than P g+1 –x and less than or equal to P g +1 is a positive integer, then the transmission beam corresponding to the z-th time window in the g-th window is the same as the transmission beam corresponding to the z+xP g+1- th time window in the g+1- th window.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if P g+1 +1-z is greater than zero, the transmission beam corresponding to the z-th time window in the g-th window is the same as the P g+1 +1-th in the g+1-th window. -The transmit beams corresponding to z time windows are the same; if P g+1 +1-z is less than or equal to zero, then the transmit beams corresponding to the z-th time window in the g-th window are the same as those in the g+1-th window The transmission beams corresponding to the P g+1 *(t+1)+1-z time window are the same.
  • t is the smallest positive integer that makes P g+1 *(t+1)+1-z greater than zero
  • z is a positive integer greater than or equal to 1 and less than P g
  • P g is the time in the g th window in the first window set The number of windows.
  • the signal of the i-th transmit beam sent by the network device includes a DRS signal.
  • the first window is a DMTC window.
  • an embodiment of the present invention provides a network device.
  • the network device may include multiple functional modules or units for correspondingly executing the signal transmission method provided in the first aspect.
  • the network device includes: a listening unit and a sending unit.
  • the listening unit is used for channel listening in the first time period.
  • the sending unit is configured to, if the listening unit detects that the channel is in an idle state, sequentially send the signals of the M transmission beams in M time periods after the first time period.
  • the total number of transmission beams configured by the network device is K, the s-th transmission beam among the K transmission beams corresponds to N s time windows, and the above K transmission beams correspond to P time windows.
  • the K transmission beams include the M transmission beams, the M transmission beams include the i-th transmission beam among the K transmission beams, and the second time period in the M time periods is corresponding to the i-th transmission beam Within the j-th time window.
  • the j-th time window is one of the N i time windows corresponding to the i-th transmit beam.
  • K is greater than or equal positive integer
  • P is greater than or equal a positive integer
  • N s is a positive integer less than P
  • N i is greater than or equal to 1 and less than the positive integer P is
  • M being greater than or equal to 1 and less than or equal to K, Positive integer.
  • the foregoing network device before the sending unit sequentially sends the signals of the M transmission beams in M time periods after the first time period, the foregoing network device further includes a first determining unit.
  • the first determining unit is configured to determine the M transmit beams from the K transmit beams according to configuration information if the channel is in an idle state, and the configuration information includes the correspondence between the K transmit beams and the P time windows relationship.
  • the first time period and the second time period are adjacent.
  • the time interval between the first time period and the earliest time period among the foregoing M time periods is greater than zero and less than the duration of the time unit required for the sending unit to send one useful information.
  • the start time of the a-th time window in the P time windows is earlier than the start time of the a+1-th time window in the P time windows.
  • the cut-off time of the a-th time window is later than the start time of the a+1-th time window in the above P time windows, and the cut-off time of the a-th time window in the above P time windows is earlier than the above P The end time of the a+1th time window in the time window.
  • the start time of the b-th time window in the P time windows is earlier than the start time of the b+1-th time window in the P time windows, and in the P time windows
  • the expiration time of the b th time window of is equal to the expiration time of the b+1 th time window in the above P time windows.
  • the start time of the c-th time window in the above P time windows is equal to the start time of the c+1-th time window in the above P time windows, and the The cut-off time of the c-th time window is earlier than the cut-off time of the c+1-th time window among the above P time windows.
  • the sending unit is in the second time period
  • the signal of the i-th transmission beam is transmitted preferentially.
  • the end time of the e-th time window in the above P time windows is equal to the start time of the e+1-th time window in the above P time windows.
  • any continuous K time windows in the above P time windows correspond to the above K transmission beams one by one.
  • the P time windows are the time windows of the first window
  • the start time of the P time windows is the same as the start time of the first window
  • the end time of the P time windows is the same as that of the first window.
  • the cut-off time of the windows is the same
  • the first window is a window in the first window set
  • the time interval is the first cycle.
  • the corresponding relationship between the time window in the g-th window and the K transmission beams is a first correspondence
  • the time window in the g+1-th window corresponds to the K transmission beams
  • the relationship is a second correspondence
  • the first correspondence is the same as the second correspondence.
  • the corresponding relationship between the time window in the g-th window and the K transmission beams is a first correspondence
  • the time window in the g+1-th window corresponds to the K transmission beams
  • the relationship is a second correspondence
  • the first correspondence is different from the second correspondence.
  • the end time of the e-th time window in the above P time windows is equal to the start time of the e+1-th time window in the above P time windows.
  • any continuous K time windows among the above P time windows correspond to the above K transmission beams one by one.
  • the P time windows are the time windows of the first window
  • the start time of the P time windows is the same as the start time of the first window
  • the end time of the P time windows is the same as that of the first window.
  • the cut-off time of the windows is the same
  • the first window is a window in the first window set
  • the time interval is the first cycle.
  • the corresponding relationship between the time window in the g-th window and the K transmission beams is a first correspondence
  • the time window in the g+1-th window corresponds to the K transmission beams
  • the relationship is a second correspondence
  • the first correspondence is the same as the second correspondence.
  • the corresponding relationship between the time window in the g-th window and the K transmission beams is a first correspondence
  • the time window in the g+1-th window corresponds to the K transmission beams
  • the relationship is a second correspondence
  • the first correspondence is different from the second correspondence.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if z is a positive integer less than or equal to P g+1 –x, then the transmit beam corresponding to the z-th time window in the g-th window is the same as the z+x-th in the g+1-th window.
  • the transmit beams corresponding to the time windows are the same, P g+1 is the number of time windows in the g+1 th window, and x is a positive integer less than K; if z is greater than P g+1 –x and less than or equal to P g +1 is a positive integer, then the transmission beam corresponding to the z-th time window in the g-th window is the same as the transmission beam corresponding to the z+xP g+1- th time window in the g+1- th window.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if P g+1 +1-z is greater than zero, the transmission beam corresponding to the z-th time window in the g-th window is the same as the P g+1 +1-th in the g+1-th window. -The transmit beams corresponding to z time windows are the same; if P g+1 +1-z is less than or equal to zero, then the transmit beams corresponding to the z-th time window in the g-th window are the same as those in the g+1-th window The transmission beams corresponding to the P g+1 *(t+1)+1-z time window are the same.
  • t is the smallest positive integer that makes P g+1 *(t+1)+1-z greater than zero
  • z is a positive integer greater than or equal to 1 and less than P g
  • P g is the time in the g th window in the first window set The number of windows.
  • the signal of the i-th transmission beam sent by the sending unit includes a DRS signal.
  • the first window is a DMTC window.
  • an embodiment of the present invention provides a terminal device.
  • the terminal device may include multiple functional modules or units for correspondingly executing the signal transmission method provided in the second aspect.
  • the terminal device includes: a second determining unit and a detecting unit.
  • the second determining unit is used to determine the position of the N i time windows corresponding to the i -th transmission beam in the K transmission beams in the P time windows, and the s-th transmission among the K transmission beams configured by the network device beam corresponds N s time windows, said K transmission beam corresponding to one of the P time windows, K is greater than or equal positive integer, P is greater than or equal a positive integer, N s is a positive integer less than P,, N i is A positive integer greater than or equal to 1 and less than P.
  • the detecting unit is configured to detect and receive the signal of the i-th transmit beam within the N i time windows.
  • the second determining unit determines the positions of the N i time windows corresponding to the i -th transmission beam among the K transmission beams in the P time windows, including: the second determining unit determines the K transmissions the i-th transmission beam, and a beam or a plurality of transmission beam corresponding to the close time window position a in the above-P time window, said window comprising the above-described time a N i-th time window.
  • the detection unit detects and receives the signal of the i-th transmission beam in the above N i time windows, including: the detection unit detects and receives the signal of the i-th transmission beam in the above A time window signal.
  • the second determining unit determines the position of the N i time windows corresponding to the i -th transmitting beam in the K transmitting beams before the position in the P time windows
  • the above-mentioned terminal device further includes a receiving unit.
  • the receiving unit is configured to receive the signal of the i-th transmit beam sent by the network device at the first moment.
  • the signal includes configuration information, the first time is earlier than the start time of the P time windows, and the configuration information includes the correspondence between the P time windows and the K transmission beams.
  • the second determining unit determines the position in the P time windows of the N i time windows corresponding to the i -th transmitting beam among the K transmitting beams, including: the second determining unit determines the i-th among the K transmitting beams according to configuration information The positions of the N i time windows corresponding to the two transmit beams in the P time windows.
  • the start time of the a-th time window in the P time windows is earlier than the start time of the a+1-th time window in the P time windows.
  • the cut-off time of the a-th time window is later than the start time of the a+1-th time window in the above P time windows, and the cut-off time of the a-th time window in the above P time windows is earlier than the above P The end time of the a+1th time window in the time window.
  • the start time of the b-th time window in the P time windows is earlier than the start time of the b+1-th time window in the P time windows, and in the P time windows
  • the expiration time of the b th time window of is equal to the expiration time of the b+1 th time window in the above P time windows.
  • the start time of the c-th time window in the above P time windows is equal to the start time of the c+1-th time window in the above P time windows, and the The cut-off time of the c-th time window is earlier than the cut-off time of the c+1-th time window among the above P time windows.
  • the end time of the e-th time window in the above P time windows is equal to the start time of the e+1-th time window in the above P time windows.
  • any continuous K time windows in the above P time windows correspond to the above K transmission beams one by one.
  • the P time windows are the time windows of the first window
  • the start time of the P time windows is the same as the start time of the first window
  • the end time of the P time windows is the same as that of the first window.
  • the cut-off time of the windows is the same
  • the first window is a window in the first window set
  • the time interval is the first cycle.
  • the corresponding relationship between the time window in the g-th window and the K transmission beams is a first correspondence
  • the time window in the g+1-th window corresponds to the K transmission beams
  • the relationship is a second correspondence
  • the first correspondence is the same as the second correspondence.
  • the corresponding relationship between the time window in the g-th window and the K transmission beams is a first correspondence
  • the time window in the g+1-th window corresponds to the K transmission beams
  • the relationship is a second correspondence
  • the first correspondence is different from the second correspondence.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if z is a positive integer less than or equal to P g+1 –x, then the transmit beam corresponding to the z-th time window in the g-th window is the same as the z+x-th in the g+1-th window.
  • the transmit beams corresponding to the time windows are the same, P g+1 is the number of time windows in the g+1 th window, and x is a positive integer less than K; if z is greater than P g+1 –x and less than or equal to P g +1 is a positive integer, then the transmission beam corresponding to the z-th time window in the g-th window is the same as the transmission beam corresponding to the z+xP g+1- th time window in the g+1- th window.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if P g+1 +1-z is greater than zero, the transmission beam corresponding to the z-th time window in the g-th window is the same as the P g+1 +1-th in the g+1-th window. -The transmit beams corresponding to z time windows are the same; if P g+1 +1-z is less than or equal to zero, then the transmit beams corresponding to the z-th time window in the g-th window are the same as those in the g+1-th window The transmission beams corresponding to the P g+1 *(t+1)+1-z time window are the same.
  • t is the smallest positive integer that makes P g+1 *(t+1)+1-z greater than zero
  • z is a positive integer greater than or equal to 1 and less than P g
  • P g is the time in the g th window in the first window set The number of windows.
  • the signal of the i-th transmit beam sent by the network device includes a DRS signal.
  • the first window is a DMTC window.
  • an embodiment of the present invention provides a network device for executing the signal transmission method provided in the first aspect.
  • the network device may include: a memory, a processor, a transmitter, and a receiver, where the transmitter and the receiver are used to communicate with other communication devices (such as a network device or a second communication device).
  • the memory is used to store the implementation code of the signal transmission method provided in the first aspect
  • the processor is used to execute the program code stored in the memory, that is, to execute the signal transmission method provided in the first aspect.
  • an embodiment of the present invention provides a terminal device for executing the signal transmission method provided in the second aspect.
  • the terminal device may include: a memory, a processor, a transmitter, and a receiver, where the transmitter and the receiver are used to communicate with other communication devices (such as a network device or a first communication device).
  • the memory is used to store the implementation code of the signal transmission method provided in the second aspect
  • the processor is used to execute the program code stored in the memory, that is, to execute the signal transmission method provided in the second aspect.
  • an embodiment of the present invention provides a communication system.
  • the communication system includes a network device and a terminal device. among them:
  • the network device may be the network device described in the third aspect, or the network device described in the fifth aspect.
  • the terminal device may be the terminal described in the fourth aspect, or the terminal device described in the sixth aspect.
  • the present invention provides a communication chip.
  • the communication chip may include a processor and one or more interfaces coupled to the processor.
  • the processor can be used to call the implementation program of the signal transmission method provided in the first aspect from the memory, and execute the instructions contained in the program.
  • the interface can be used to output the data processing result of the processor.
  • the present invention provides a communication chip.
  • the communication chip may include a processor and one or more interfaces coupled to the processor.
  • the processor may be used to call the implementation program of the signal transmission method provided by the second aspect from the memory, and execute the instructions contained in the program.
  • the interface can be used to output the data processing result of the processor.
  • an embodiment of the present invention provides a computer-readable storage medium with instructions stored on the readable storage medium, which when run on a processor, cause the processor to execute the signal transmission method described in the first aspect.
  • an embodiment of the present invention provides a computer-readable storage medium with instructions stored on the readable storage medium, which when run on a processor, cause the processor to execute the signal transmission method described in the second aspect above .
  • embodiments of the present invention provide a computer program product containing instructions, which when run on a processor, cause the processor to execute the signal transmission method described in the first aspect.
  • embodiments of the present invention provide a computer program product containing instructions, which when run on a processor, cause the processor to execute the signal transmission method described in the second aspect.
  • FIG. 1 is a schematic diagram of a communication system architecture related to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the hardware architecture of a network device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the hardware architecture of a terminal device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a signal transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a receiving beam and a sending beam according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of LBT in an energy detection mode related to an embodiment of the present invention.
  • FIG. 7A is a schematic diagram of a positional relationship between two adjacent time windows provided by an embodiment of the present invention.
  • FIG. 7B is a schematic diagram of a positional relationship of P time windows provided by an embodiment of the present invention.
  • 8A is another schematic diagram of the positional relationship between two adjacent time windows provided by an embodiment of the present invention.
  • FIG. 8B is a schematic diagram of another positional relationship of P time windows provided by an embodiment of the present invention.
  • 9A is another schematic diagram of the positional relationship between two adjacent time windows provided by an embodiment of the present invention.
  • 9B is a schematic diagram of another positional relationship of P time windows provided by an embodiment of the present invention.
  • 10A is another schematic diagram of the positional relationship between two adjacent time windows provided by an embodiment of the present invention.
  • 10B is a schematic diagram of another positional relationship of P time windows provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another positional relationship of P time windows provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another positional relationship of P time windows provided by an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another positional relationship of P time windows provided by an embodiment of the present invention.
  • 14A is a schematic diagram of signal transmission according to an embodiment of the present invention.
  • 14B is another schematic diagram of signal sending according to an embodiment of the present invention.
  • 14C is another schematic diagram of signal sending according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a first window set provided by an embodiment of the present invention.
  • 16A is a schematic diagram of the correspondence between a time window and a transmission beam according to an embodiment of the present invention.
  • 16B is a schematic diagram of the correspondence between a time window and a transmission beam according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of another corresponding relationship between a time window and a transmission beam according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of another corresponding relationship between a time window and a transmission beam according to an embodiment of the present invention.
  • Figure 19 is a functional block diagram of another network device provided by an embodiment of the present invention.
  • 20 is a functional block diagram of another terminal device provided by an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a communication chip provided by an embodiment of the present invention.
  • Fig. 1 shows a wireless communication system related to an embodiment of the present invention.
  • the wireless communication system can work in the high-frequency band, not limited to the LTE system, but also the 5th Generation (5G) system, New Radio (NR) system, machine-to-machine communication that will evolve in the future (Machine to Machine, M2M) system, etc.
  • the wireless communication system 100 may include: one or more network devices 101, one or more terminal devices 103, and a core network (not shown). among them:
  • the network device 101 may be a base station.
  • the base station may be used to communicate with one or more terminals, or it may be used to communicate with one or more base stations with partial terminal functions (such as macro base stations and micro base stations, such as access points, Communication between).
  • the base station can be the base transceiver station (BTS) in the time division synchronous code division multiple access (TD-SCDMA) system, or the evolutional Node B in the LTE system. , ENB), as well as base stations in 5G systems and New Air Interface (NR) systems.
  • the base station may also be an access point (AP), a transmission receive point (TRP), a central unit (CU), or other network entities, and may include some of the functions of the above network entities Or all functions.
  • AP access point
  • TRP transmission receive point
  • CU central unit
  • the terminal device 103 may be distributed in the entire wireless communication system 100, and may be stationary or mobile.
  • the terminal device 103 may be a mobile device, a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a terminal agent, a mobile client, and so on.
  • the wireless communication system 100 is a multi-beam communication system. among them:
  • the network device 101 can be configured with a large-scale antenna array, and use beamforming technology to control the antenna array to form beams with different directions. In order to cover the entire cell 107, the network device 101 needs to use multiple beams with different directions.
  • the network device 101 may sequentially use beams of different directions to transmit wireless signals (such as DRS signals, downlink reference signals (RS) and/or downlink synchronization signal blocks (SS block)).
  • the terminal device 103 detects and receives the wireless signal transmitted by the transmission beam of the network device 101, and can perform channel quality measurement (or estimation) based on the detected and received wireless signal. Based on the above-mentioned channel quality measurement (or estimation), the terminal device can Measure, update and predict the first channel quality index.
  • the first channel quality index includes carrier to interference and noise ratio (CINR), signal to interference and noise ratio (SINR) , Received signal strength indicator (RSSI), reference signal received power (reference signal received power, RSRP), reference signal received quality (reference signal received quality, RSRQ) the instantaneous average or time average of the signal quality measurement, The instantaneous variance or time variance of the signal quality metric of RSRQ and the instantaneous standard deviation or time standard deviation of the signal quality metric of RSRQ, etc.
  • CINR carrier to interference and noise ratio
  • SINR Received signal strength indicator
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the terminal device 103 may also be configured with an antenna array, and may also convert different beams to transmit and receive signals.
  • the embodiment of the present invention does not specifically limit this.
  • beams can be divided into a transmission beam and a reception beam of the network device 101, and one network device 101 can have multiple transmission beams and multiple reception beams.
  • the embodiment of the present invention does not specifically limit the beam used by the terminal device 103 for signal transmission and reception. It can be understood that the sending beam and the receiving beam appearing in the embodiments of the present invention all refer to the sending beam of the network device and the receiving beam of the network device.
  • FIG. 2 shows a network device 200 provided by an embodiment of the present invention.
  • the network device 200 may include: one or more network device processors 201, a memory 202, a communication interface 203, a transmitter 205, a receiver 206, a coupler 207, and an antenna 208. These components can be connected via a bus 204 or other types.
  • FIG. 2 uses a bus connection as an example. among them:
  • the communication interface 203 can be used for the network device 200 to communicate with other communication devices, such as terminal devices or other network devices.
  • the communication interface 203 may be a long-term evolution (LTE) (4G) communication interface, or may be a 5G or future new air interface communication interface.
  • LTE long-term evolution
  • the network device 200 may also be configured with a wired communication interface 203 to support wired communication.
  • the backhaul link between one network device 200 and another network device 200 may be a wired communication connection.
  • the transmitter 205 may be used to transmit and process the signal output by the network device processor 201, for example, to achieve directional transmission through beamforming.
  • the receiver 206 may be used to receive and process the mobile communication signal received by the antenna 208, for example, to achieve directional reception through beamforming.
  • the transmitter 205/receiver 206 may include a beamforming controller for controlling the directional transmission/reception of signals.
  • the transmitter 205 and the receiver 206 can be regarded as a wireless modem.
  • the number of the transmitter 205 and the receiver 206 may each be one or more.
  • the antenna 208 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in a free space, or convert electromagnetic waves in a free space into electromagnetic energy in a transmission line.
  • the coupler 207 can be used to divide the mobile communication signal into multiple channels and distribute them to multiple receivers 206.
  • the memory 202 is coupled with the network device processor 201, and is used to store various software programs and/or multiple sets of instructions.
  • the memory 202 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 202 can store an operating system (hereinafter referred to as the system), such as embedded operating systems such as uCOS, VxWorks, and RTLinux.
  • the memory 202 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the network device processor 201 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and provide cell switching control for terminal devices in the control area.
  • the network device processor 201 may include: management/communication module (administration module/communication module, AM/CM) (for voice channel exchange and information exchange center), basic module (basic module, BM) (for Complete call processing, signaling processing, wireless resource management, wireless link management and circuit maintenance functions), code conversion and submultiplexer (transcoder and submultiplexer, TCSM) (used to complete multiplexing, demultiplexing and code conversion functions) )and many more.
  • management/communication module administration module/communication module, AM/CM
  • basic module basic module
  • BM for Complete call processing, signaling processing, wireless resource management, wireless link management and circuit maintenance functions
  • code conversion and submultiplexer transcoder and submultiplexer, TCSM
  • TCSM code conversion and submultiplexer
  • the network device processor 201 may be used to read and execute computer-readable instructions. Specifically, the network device processor 201 may be used to call a program stored in the memory 202, such as a program for implementing the signal transmission method provided by one or more embodiments of the present invention on the network device 200 side, and execute the instructions contained in the program. .
  • the network device 200 may be the network device 101 in the wireless communication system 100 shown in FIG. 1, and may be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), and an extended service set (ESS). , NodeB, eNodeB, access point or TRP, etc.
  • the network device 200 shown in FIG. 2 is only an implementation manner of the embodiment of the present invention. In practical applications, the network device 200 may also include more or fewer components, which is not limited here.
  • FIG. 3 shows a terminal device 300 provided by an embodiment of the present invention.
  • the terminal device 300 may include: one or more terminal device processors 301, a memory 302, a communication interface 303, a receiver 305, a transmitter 306, a coupler 307, an antenna 308, and a terminal device interface 309. These components can be connected through the bus 304 or in other ways.
  • FIG. 3 uses the bus connection as an example. among them:
  • the communication interface 303 can be used for the terminal device 300 to communicate with other communication devices, such as network devices.
  • the network device may be the network device 200 shown in FIG. 2.
  • the communication interface 303 may be a long-term evolution (LTE) (4G) communication interface, and may also be a 5G or future new air interface communication interface.
  • LTE long-term evolution
  • the terminal device 300 may also be configured with a wired communication interface 303, such as a local access network (LAN) interface.
  • the transmitter 306 may be used to transmit and process the signal output by the terminal device processor 301.
  • the receiver 305 can be used to receive and process the mobile communication signal received by the antenna 308.
  • the transmitter 306 and the receiver 305 can be regarded as a wireless modem.
  • the number of the transmitter 306 and the receiver 305 may each be one or more.
  • the antenna 308 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in a free space, or convert electromagnetic waves in a free space into electromagnetic energy in a transmission line.
  • the coupler 307 is used to divide the mobile communication signal received by the antenna 308 into multiple channels and distribute them to multiple receivers 305.
  • the terminal device 300 may also include other communication components, such as a GPS module, a Bluetooth (bluetooth) module, a wireless fidelity (Wi-Fi) module, and so on. Not limited to wireless communication, the terminal device 300 may also be configured with a wired network interface (such as a LAN interface) to support wired communication.
  • the memory 302 is coupled with the terminal device processor 301, and is used to store various software programs and/or multiple sets of instructions.
  • the memory 302 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 302 can store an operating system (hereinafter referred to as system), such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • system such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 302 may also store a network communication program, which may be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the memory 302 may be used to store an implementation program on the terminal device 300 side of the signal transmission method provided by one or more embodiments of the present invention.
  • the implementation of the signal transmission method provided by one or more embodiments of the present invention please refer to the subsequent embodiments.
  • the terminal device processor 301 can be used to read and execute computer-readable instructions. Specifically, the terminal device processor 201 may be used to call a program stored in the memory 312, such as a program for implementing the signal transmission method provided by one or more embodiments of the present invention on the terminal device 300 side, and execute the instructions contained in the program. .
  • the terminal device 300 may be the terminal device 103 in the wireless communication system 100 shown in FIG. 1, and may be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, and a remote unit. Terminal equipment agents, mobile clients, etc.
  • terminal device 300 shown in FIG. 3 is only an implementation manner of the embodiment of the present invention. In practical applications, the terminal device 300 may also include more or fewer components, which is not limited here.
  • the transmitting beam of the network device 101 is pre-configured by the network device 101.
  • FIG. 4 is a schematic flowchart of a signal transmission method provided by an embodiment of the present invention. As shown in FIG. 4, the signal transmission method provided by the embodiment of the present invention includes but is not limited to steps S401 to S404. The possible implementation of this method embodiment will be further described below.
  • S401 The network device performs channel sensing in the first time period.
  • channel sensing may be a certain predefined channel sensing technology.
  • channel sensing can be listen before talk (LBT).
  • LBT means that a device that needs to transmit data needs to detect the wireless environment of a wireless carrier before sending data on a certain wireless carrier. Determine whether other devices are transmitting data on the wireless carrier.
  • Channel sensing can also be called clear channel assessment (CCA) or carrier sensing (CS), collectively called channel sensing.
  • CCA clear channel assessment
  • CS carrier sensing
  • the LBT may be an LBT in the energy detection mode.
  • the LBT in the energy detection mode means that when the energy on the wireless carrier is detected to be greater than the preset threshold, it is considered that other devices are working
  • the device fails LBT on the wireless carrier, and the device will try to send data after a period of time; when it detects that the energy on the wireless carrier is less than the preset threshold, the wireless carrier is considered to be idle Status, the device successfully LBT on the wireless carrier, and the device sends data on the wireless carrier.
  • the LBT may be the LBT in the signal detection mode, and the LBT in the signal detection mode refers to judging whether the channel is idle by detecting whether there is a pre-designed signal on the wireless carrier.
  • the LBT may also be other modes of LBT, for example, the LBT that uses factors such as signal power or signal-to-noise ratio as a standard.
  • the idle state of the channel described below may mean that the energy on the channel is detected to be less than the energy threshold, or it may mean that the pre-designed signal on the channel is not detected, which is not limited here.
  • the following description of the wireless carrier not being in an idle state may mean detecting that the energy on the channel is greater than or equal to the energy threshold, or detecting that a pre-designed signal is present on the channel, which is not limited here.
  • the 3rd generation partnership project (3GPP) has evaluated four types of LBT mechanisms, including:
  • Type 1 No LBT, that is, the device does not perform LBT before sending data.
  • Type 2 LBT without random backoff process, that is, LBT with a fixed length of time.
  • Channel monitoring is performed before data transmission. If the channel is in an idle state, data transmission is performed during the subsequent channel occupation time; otherwise, data cannot be transmitted during the entire frame period.
  • Category-2LBT LBT without random backoff process
  • Type 3 LBT with random backoff process, using a frame structure with an unfixed frame period, and a fixed length of the contention window. If the channel is in an idle state, data transmission can start immediately, otherwise, it enters a contention window (CW).
  • CW contention window
  • Type 4 LBT with random backoff process, adopts a frame structure with an unfixed frame period, and the length of the contention window is not fixed. Unlike the use of a fixed-length contention window, the sender device can change the length of the CW. For the convenience of description, hereinafter referred to as Category-4LBT.
  • Random backoff means that if the channel is still in the idle state within the waiting time after the device detects that the channel is in the idle state, the device can transmit data on the channel.
  • the waiting time needs to be selected between a specified minimum and maximum value.
  • the range specified by the minimum and maximum value is called CW.
  • the channel sensing can be Category-2LBT.
  • the channel listening can also be Category-4LBT.
  • the duration of signal transmission using the channel is limited by the maximum channel occupancy time (MCOT).
  • the MCOT of Category-2LBT is small, usually 1 millisecond (ms).
  • the MCOT of Category-4LBT is larger, and the higher the service priority of channel access, the smaller the MCOT of Category-4LBT.
  • the network device performs omnidirectional channel listening in the first time period.
  • Omnidirectional channel listening means that the network device does not distinguish the beam range of the receiving beam from which the signal arrives during the channel listening process, that is, channel listening is performed in all signal arrival directions.
  • the network device uses the omnidirectional receiving antenna to perform omnidirectional channel sensing in the first time period.
  • the network device performs directed channel listening in the first time period.
  • Directed channel listening means that the network device only listens to signals within a specific receiving beam range during the channel listening process, that is, the network device can listen to whether other devices occupy the channel within the specific receiving beam range.
  • the network device uses the directional receiving antenna to perform directional channel listening in the first time period.
  • the network device uses the receive beamforming technology to perform directed channel sensing in the first time period.
  • the network device performs directed channel sensing for the first receiving beam in the first time period, and if the network device detects that the channel is in an idle state, the network device continuously transmits in the MCOT after the first time period Signals of H transmit beams, the beam range of the first receive beam includes the beam ranges of the above H transmit beams, and H is a positive integer greater than or equal to 1.
  • the network device is configured with 16 transmission beams, and the network device needs to transmit signals of 3 transmission beams among the 16 transmission beams mentioned above.
  • the 3 transmission beams are the first transmission beam among the 16 transmission beams.
  • the network device performs directional channel sensing for the first receiving beam in the first time period.
  • the beam range of the first receiving beam includes the beam range of the first transmitting beam and the second beam.
  • the beam range of the receiving beam of the network device refers to the signal receiving direction range where the network device has a higher receiving antenna gain.
  • the due east direction is 0 degrees
  • the due north direction is 90 degrees
  • the due west direction is 180 degrees
  • the due south direction is 270 degrees.
  • the network device receives a signal arriving in the true east direction through a receiving beam
  • the receiving beam direction is called 0 degrees.
  • the receiving antenna gain of the first receiving beam of the network device is greater than the first preset gain value within the range of the receiving beam direction of 0 degrees to the receiving beam direction of 60 degrees, the beam range of the first receiving beam is called 0 degrees.
  • the beam range of the transmission beam of the network device refers to the signal transmission direction range where the network device has a higher transmit antenna gain. If the network device transmits a signal in the due east direction through the transmitting beam, the direction of the transmitting beam is called 0 degree. If the transmit antenna gain of the first transmit beam of the network device is greater than the second preset gain value within the range of the transmit beam direction of 10 degrees to the transmit beam direction of 50 degrees, the beam range of the first transmit beam is called 10 degrees. The transmit beam direction to 50 degrees of the transmit beam direction. In addition, the beam range of the first receiving beam includes the beam range of the first transmitting beam. For example, the first preset gain value is 10dBi, and the second preset gain value is 10dBi.
  • the network device may have multiple channel listening units, which are used to perform channel listening for multiple different receiving beams at the same time.
  • the network device may select a receiving beam from the above-mentioned one or more receiving beams, and perform signal transmission on one or more transmitting beams within the beam range of the receiving beam.
  • the beam range of the receiving beam includes the beam range of the one or more transmitting beams.
  • the beam ranges of any two receiving beams in the above multiple different receiving beams may have overlapping parts or no overlapping parts in the spatial direction, which is not specifically limited in the embodiment of the present invention.
  • the network device may have multiple channel listening units for performing channel listening for multiple different receiving beams at the same time, and the beam ranges of any two receiving beams of the multiple receiving beams may be in the spatial direction. There is an overlapping part or there is no overlapping part, and there is no limitation on this.
  • the network device may send signals on one or more sending beams.
  • the beam range of any one of the one or more transmission beams is included in the beam range of at least one reception beam of the one or more reception beams.
  • the network device If the network device detects that the channel is in an idle state, the network device sequentially sends signals of M transmission beams in M time periods after the first time period.
  • the total number of transmission beams configured by the network device is K
  • the s-th transmission beam among the K transmission beams corresponds to N s time windows
  • the above K transmission beams correspond to P time windows.
  • the second time period of the foregoing M time periods is located within the j-th time window corresponding to the i-th transmit beam
  • the j-th time window is one of the N i time windows corresponding to the i-th transmit beam window.
  • the network device sequentially sends signals of M transmission beams in M time periods after the first time period.
  • the total number of transmission beams configured by the network device is K, and the above K transmission beams correspond to P time windows.
  • the K transmission beams include the M transmission beams
  • the M transmission beams include the i-th transmission beam among the K transmission beams
  • the second time period in the M time periods is corresponding to the i-th transmission beam Within the j-th time window.
  • the j-th time window is one of the N i time windows corresponding to the i-th transmit beam.
  • K is greater than or equal positive integer
  • P is greater than or equal a positive integer
  • N s is a positive integer less than P
  • N i is greater than or equal to 1 and less than the positive integer P is
  • M being greater than or equal to 1 and less than or equal to K, Positive integer.
  • the s-th transmission beam in the K transmission beams corresponds to N s time windows, and N s may be equal to 0 or greater than 0, that is, one of the above K transmission beams corresponds to the above P time windows Zero, one or more time windows of.
  • One of the P time windows corresponds to one of the K transmission beams
  • the P time windows correspond to S of the K transmission beams in total, and S is less than or equal to K.
  • the i-th transmission beam in the K transmission beams corresponds to N i time windows
  • the second time period is within the j-th time window corresponding to the i-th transmission beam
  • the N i time windows include the j-th time window.
  • Time window, N i is greater than or equal to 1.
  • the j-th time window corresponding to the i-th transmission beam indicates that the j-th time window among the aforementioned P time windows is a time window for transmitting the signal of the i-th transmission beam.
  • the network device transmits the signal of the i-th transmission beam among the K transmission beams, and the signal may include a DRS signal, an RS signal, and/or an SS block.
  • the beam ranges of any two transmission beams of the above K transmission beams may have overlapping parts or no overlapping parts in the spatial direction, which is not specifically limited in the embodiment of the present invention.
  • any two adjacent time windows in the above P time windows satisfy the following relationship: the start time of the hth time window in the above P time windows is earlier than or equal to the h+1th time window in the above P time windows The start time of the time window, the end time of the h-th time window in the above P time windows is later than or equal to the start time of the h+1-th time window in the P time windows, and the above P time windows The expiration time of the hth time window in is earlier than or equal to the expiration time of the h+1th time window in the above P time windows.
  • Two adjacent time windows in the above P time windows may be overlapping or non-overlapping. The possible positional relationship between two adjacent time windows in the above P time windows will be further described below.
  • the positional relationship between two adjacent time windows in the P time windows includes but is not limited to the following four implementation modes:
  • the start time of the a-th time window in the P time windows is earlier than the start time of the a+1-th time window in the P time windows, and the P The cut-off time of the a-th time window in the time window is later than the start time of the a+1-th time window in the P time windows, and the cut-off time of the a-th time window in the P time windows is earlier than The expiration time of the a+1th time window in the above P time windows.
  • FIG. 7A A possible positional relationship of two adjacent time windows in the above P time windows is shown in FIG. 7A.
  • a possible positional relationship of the above P time windows is shown in Fig. 7B.
  • the start time of the b-th time window in the P time windows is earlier than the start time of the b+1-th time window in the P time windows, and the P The cut-off time of the b-th time window in the time window is equal to the cut-off time of the b+1-th time window in the above P time windows.
  • FIG. 8A A possible positional relationship between two adjacent time windows in the above P time windows is shown in FIG. 8A.
  • a possible positional relationship of the above P time windows is shown in Fig. 8B.
  • the starting time of the c-th time window in the above P time windows is equal to the starting time of the c+1-th time window in the above P time windows, and the above P time windows
  • the cut-off time of the c-th time window in the window is earlier than the cut-off time of the c+1-th time window in the above P time windows.
  • FIG. 9A A possible positional relationship of two adjacent time windows among the above P time windows is shown in FIG. 9A.
  • a possible positional relationship of the above P time windows is shown in Fig. 9B.
  • the end time of the e-th time window in the above P time windows is equal to the start time of the e+1-th time window in the above P time windows.
  • a possible positional relationship of two adjacent time windows in the above P time windows is shown in FIG. 10A.
  • a possible positional relationship of the above P time windows is shown in Fig. 10B.
  • two adjacent time windows in the first position relationship, the second position relationship, and the third position relationship overlap, and two adjacent time windows in the fourth position relationship do not overlap.
  • the duration of the two adjacent time windows may be the same, or different.
  • the embodiment of the present invention does not specifically limit this.
  • the positional relationship of the P time windows may also include the first positional relationship, the second A combination of multiple positional relationships among the positional relationship, the third positional relationship, and the fourth positional relationship.
  • the positional relationship of the P time windows includes a first positional relationship and a fourth positional relationship.
  • the positional relationship of the P time windows may also include but not limited to the following two implementation manners:
  • the duration of each of the aforementioned P time windows is greater than or equal to the minimum duration of a time unit required for the network device to send a useful information.
  • the size of the time-frequency resource unit may be based on symbol length, time slot, subframe, etc. as basic units.
  • a symbol length of approximately 70 microseconds (us) can be selected as the basic unit of the time unit required for the network device to send a useful information, that is, the time unit required for the network device to send a useful information.
  • the minimum length is when the network device sends a signal carrying useful information at the beginning of the time it needs to be aligned with the start boundary of the symbol.
  • the end time of the channel listening of the network device may not be aligned with the start boundary of the next symbol. In this case, the time interval between the end of channel listening and the start boundary of the next symbol Less than the symbol length.
  • the above time interval cannot be used for a network device to send a signal that carries useful information.
  • the network device can transmit a signal that does not carry useful information within the above time interval.
  • the useful information signal refers to the signal that does not require the terminal to receive, and the signal is only used to occupy the channel to prevent other devices from detecting that the channel is idle.
  • the sending priorities of any two adjacent time windows in the above P time windows satisfy the following relationship: the sending priority of the h-th time window in the above P time windows is higher than the above P time windows The h+1th time window in the window.
  • the sending priority of the time window corresponding to the wth time period in the above M time periods is higher than the time window corresponding to the w+1th time period in the M time periods.
  • the network device sends an i-th transmission beam signals R i K times and in most transmission beams within said time window P, R i is a positive integer greater than or equal to 1.
  • the network device transmits the DRS signal of the i-th transmit beam at most once within the P time windows.
  • the network device sequentially sends the signals of M transmission beams in the M time periods after the first time period, and the signals of the M transmission beams are in the above P time windows. Has not been sent before the first time period within.
  • the network device if the network device detects that the channel is in an idle state through Category-2LBT in the first time period, the network device sequentially sends M transmission beam signals in M time periods after the first time period.
  • the second time period in the time period is located within the j-th time window corresponding to the i-th transmission beam in the above K transmission beams.
  • the foregoing M time periods are located within the MCOT of Category-2LBT after the first time period, and M is greater than or equal to 1 and less than or equal to K.
  • the time interval between the end time of the first time period and the start time of the second time period may be equal to zero or less than the first time interval, the first time interval plus the signal of the i-th transmission beam among the K transmission beams
  • the duration obtained is less than or equal to the MCOT of Category-2LBT. If the signal of the i-th transmission beam in the above K transmission beams is a DRS signal, the signal of the i-th transmission beam in the above K transmission beams has not been transmitted before the first time period in the above P time windows .
  • the beam range of the receiving beam used for Category-2LBT channel sensing includes the beam ranges of the foregoing M transmitting beams.
  • M is equal to 1
  • the signal duration of the i-th transmission beam among the above K transmission beams is equal to 0.9 ms
  • the first time interval is equal to 0.1 ms
  • the MCOT of Category-2LBT is equal to 1 ms.
  • the network device sequentially sends M transmission beam signals in M time periods after the first time period.
  • the second time period in the time period is located within the j-th time window corresponding to the i-th transmission beam in the above K transmission beams.
  • the foregoing M time periods are located within the MCOT of Category-4LBT after the first time period.
  • M is greater than or equal to 1 and less than or equal to K
  • the first time interval between the end time of the first time period and the start time of the second time period is greater than zero and less than the duration of a time unit required for the network device to send a useful information. If the signals of the M transmission beams are DRS signals, the signals of the M transmission beams have not been transmitted before the first time period in the P time windows.
  • the beam range of the receiving beam used for the Category-4LBT channel sensing in the first time period should include the beam ranges of the M transmitting beams.
  • M is equal to 4
  • the signal duration of the i-th transmit beam among the above K transmit beams is equal to 1ms
  • the signal duration of the M transmit beams in sequence in M time periods is 4ms
  • the first time interval is equal to 0.3ms
  • Category The MCOT of -4LBT is equal to 6ms.
  • the network device preferentially transmits the signal of the i-th transmission beam among the K transmission beams in the second time period.
  • the network device before the network device transmits the signal of the i-th transmit beam among the K transmit beams in the second time period, the network device performs channel sensing for the second receive beam in the first time period, and the second receive beam
  • the beam range includes the beam range of the i-th transmit beam.
  • the total number of transmission beams configured by the network device is 5, 5 transmission beams correspond to 8 time windows, and the signals transmitted by the network device in the 5 transmission beams are all DRS signals.
  • the network device detects that the channel is in an idle state through Category-2LBT in the first time period before the point where the DRS signal can be sent.
  • the channel occupancy time period after the first time period is located in the second time window and the third time window of the above 8 time windows, and the above second time window and the third time window respectively correspond to the 5 transmit beams
  • the second transmit beam and the third transmit beam are shown in FIG.
  • the network device transmits the DRS signal of the second transmission beam in the channel occupation time period.
  • the beam range of the receiving beam of the Category-2LBT channel listening performed by the network device in the first time period includes the beam range of the second transmitting beam described above.
  • the network device transmits the DRS signal of the third transmission beam in the channel occupation time period.
  • the beam range of the receiving beam of the Category-2LBT channel sensing performed by the network device in the first time period includes the beam range of the third transmitting beam described above. If the DRS signals of the second transmission beam and the third transmission beam are sent in the third time period, the network device does not send the DRS signal in the channel occupation time period.
  • the foregoing third time period represents a time period before the first time period within 8 time windows.
  • the total number of transmission beams configured by the network device is 5, 5 transmission beams correspond to 8 time windows, and the signals transmitted by the network device in the 5 transmission beams are all DRS signals.
  • the network device detects that the channel is in an idle state through Category-4LBT in the first time period.
  • the channel occupation time period after the first time period is located in the second time window, the third time window and the fourth time window among the above eight time windows.
  • the second time window, the third time window and the The fourth time window corresponds to the second transmission beam, the third transmission beam, and the fourth transmission beam among the above five transmission beams.
  • the network equipment's ⁇ t1, ⁇ t2 in the channel occupation time period The DRS signals of the second transmit beam, the third transmit beam, and the fourth transmit beam are respectively transmitted in the three time periods of ⁇ t3 and ⁇ t3.
  • the beam range of the receiving beam of the Category-4LBT channel listening performed by the network device in the first time period includes the beam ranges of the second transmitting beam, the third transmitting beam, and the fourth transmitting beam.
  • the network device only transmits the DRS signal of the third transmission beam and the fourth transmission beam in the two time periods ⁇ t1 and ⁇ t3. .
  • the beam range of the receiving beam of the Category-4LBT channel listening performed by the network device in the first time period includes the beam ranges of the third transmitting beam and the fourth transmitting beam. If the DRS signals of the second transmission beam and the third transmission beam are transmitted in the fourth time period, the network device only transmits the DRS signals of the fourth transmission beam in the ⁇ t3 time period.
  • the beam range of the receiving beam of the Category-4LBT channel listening performed by the network device in the first time period includes the beam range of the fourth transmitting beam.
  • the foregoing fourth time period represents the time period before the first time period in the eight time windows.
  • the total number of transmission beams configured by the network device is 5, and 5 transmission beams correspond to 8 time windows.
  • the signals sent by the network device in the 5 transmission beams are all DRS signals, and the duration of the DRS signal is 1 ms.
  • the duration of each of the eight time windows is equal to the duration of the DRS signal, and the starting point of each time window is the sendable point of the DRS signal.
  • the third time window of the above eight time windows Corresponds to the third transmission beam among the above five transmission beams.
  • the network device performs channel listening through Category-2LBT in the first time period before the third time window, and the MCOT of Category-2LBT is 1ms.
  • the network device detects that the channel is in an idle state and does not transmit the DRS signal of the third transmission beam in the fifth time period, then the third transmission is transmitted in the third time window.
  • the DRS signal of the beam If the network device detects that the channel is not in an idle state, it does not send the DRS signal in the third time window, and performs channel detection again in the first time period before the fourth time window among the eight time windows. listen.
  • the beam range of the receiving beam of the Category-2LBT channel listening performed by the network device in the first time period includes the beam range of the third transmitting beam described above.
  • the above-mentioned fifth time period represents the time period before the first time period in the eight time windows.
  • the P time windows are the time windows of the first window
  • the start time of the P time windows is the same as the start time of the first window
  • the end time of the P time windows is the same as the end time of the first window.
  • the time is the same
  • the first window is a window in the first window set.
  • the time interval between the start time of the g-th window in the first window set and the start time of the g+1-th window in the first window set is the first period.
  • the duration of two adjacent windows in the first window set may be the same or different.
  • the embodiment of the present invention does not specifically limit this.
  • the number of time windows in two adjacent windows in the first window set may be the same or different.
  • the embodiment of the present invention does not specifically limit this.
  • the first window is a DMTC window.
  • the duration of any two windows in the first window set may be the same or different.
  • the number of time windows in any two windows in the first window set may be the same or different.
  • the embodiments of the present invention do not specifically limit this.
  • the correspondence between the time window in the g th window in the first window set and the K transmission beams is a first correspondence
  • the time window in the g+1 th window in the first window set is the same as the above K
  • the correspondence between the two transmission beams is the second correspondence
  • the first correspondence and the second correspondence may be the same or different, which is not specifically limited in the embodiment of the present invention.
  • first correspondence and the second correspondence are different, and the first correspondence and the second correspondence satisfy a certain law.
  • first correspondence and the second correspondence satisfy a certain law.
  • the possible forms of this rule are described below.
  • the laws satisfied by the first correspondence and the second correspondence include but are not limited to the following two:
  • the first rule if z is a positive integer less than or equal to P g+1 –x, then the transmit beam corresponding to the z-th time window in the g-th window in the first window set is The transmission beams corresponding to the z+xth time window in the g+1th window are the same, P g+1 is the number of time windows in the g+1th window in the first window set, and x is a positive value smaller than K.
  • the second rule if P g+1 +1-z is greater than zero, the transmission beam corresponding to the z-th time window in the g-th window in the first window set is the same as the g-th time window in the first window set.
  • the transmission beams corresponding to the P g+1 +1-zth time windows in one window are the same. If P g+1 +1-z is less than or equal to zero, the transmission beam corresponding to the z-th time window in the g-th window in the first window set is the same as the P-th time window in the g+1-th window in the first window set.
  • the transmission beams corresponding to the g+1 *(t+1)+1-z time windows are the same.
  • t is the smallest positive integer that makes P g+1 *(t+1)+1-z greater than zero
  • z is a positive integer greater than or equal to 1 and less than P g
  • P g is the time in the g th window in the first window set The number of windows.
  • the total number of transmit beams configured by the network device is 3, as shown in Figure 16A, the number of time windows in the g th window in the first window set is 6, and the g+1 th window in the first window set The number of time windows is 5.
  • the first correspondence and the second correspondence satisfy the above-mentioned first law, and the value of x is 2.
  • FIG. 16A it is a possible schematic diagram of the first correspondence and the second correspondence.
  • the total number of transmit beams configured by the network device is 3, as shown in FIG. 16B, the number of time windows in the g th window in the first window set is 6, and the g+1 th window in the first window set The number of time windows is 5.
  • the first correspondence and the second correspondence satisfy the above-mentioned second law. As shown in FIG. 16B, it is a possible schematic diagram of the first correspondence and the second correspondence.
  • consecutive F windows in the first window set are a subset, and there is no overlap between the subsets of the first window set, and all time windows in each subset in the first window set correspond to I transmit beams , I is equal to K.
  • the rth and r+1th subsets in the first window set are adjacent subsets, and there is no window between the last window of the rth subset and the first window of the r+1th subset. .
  • the time window of each subset in the first window set has a corresponding relationship with the above K transmission beams, and the time windows of any two adjacent subsets in the first window set have the same corresponding relationship with the above K transmission beams.
  • the total number of transmit beams configured by the network device is 6, as shown in FIG. 17, two consecutive windows in the first window set are a subset, and the g th window and the g+1 th window in the first window set Windows form a first subset, the g-2th window and the g-1th window in the first window set form a second subset, and the first subset and the second subset are adjacent subsets.
  • Fig. 17 is a possible correspondence between the time windows in each subset in the first window set and the 6 transmit beams.
  • the method further includes: if the network device detects that the channel is in an idle state during the first time period, then the network device The configuration information determines the M transmission beams from the K transmission beams, and the configuration information includes the correspondence between the K transmission beams and the P time windows.
  • the configuration information may include information such as the period of the first window set, the start position of each window in the first window set, and the end position of each window in the first window set, and may also include the information of each window in the first window set.
  • the configuration information has update rules.
  • the configuration information includes an effective time notification information, that is, the configuration information is only valid during the effective time period, and the network device will update the configuration information in the transmission signal after the effective time period.
  • the network device learns the positional relationship of the P time windows and the correspondence between the P time windows and the K transmission beams according to the configuration information. If the network device detects that the channel is in an idle state in the first time period, the network device learns the Y time windows in which the yth time period of the above M time periods is located according to the configuration information, and the corresponding Y time windows Send beam. The network device confirms the transmission beam of the signal transmitted in the yth time period according to the transmission priority of the Y time windows.
  • the total number of transmit beams configured by the network device is 5, and 5 transmit beams correspond to 8 time windows.
  • the network device learns the positional relationship of the eight time windows and the corresponding relationship between the eight time windows and the five transmit beams according to the configuration information.
  • the network device sends a signal in a second time period after the first time period. As shown in Figure 18, the second time period is located in the overlapping time period of the first time window, the second time window and the third time window of the above eight time windows.
  • the time window and the third time window respectively correspond to the second transmission beam, the third transmission beam and the second transmission beam among the above-mentioned five transmission beams.
  • the sending priority of the first time window is higher than the second time window, and the sending priority of the second time window is higher than the third time window. Therefore, the terminal confirms, according to the configuration information and the transmission priority of each time window, that the transmission beam of the signal sent in the second time period is the second transmission beam corresponding to the first time window.
  • the signal of the i-th transmission beam among the above K transmission beams sent by the network device each time includes configuration information.
  • the signal of the i-th transmission beam among the K transmission beams sent by the network device periodically includes configuration information.
  • the configuration information is included once every three times.
  • the signal of the i-th transmission beam among the above K transmission beams sent by the network device is a DRS signal
  • the DRS signal includes configuration information.
  • the configuration information may be carried in the physical broadcast channel (physical broadcast channel, PBCH) part of the DRS signal.
  • the configuration information may also be carried in the physical downlink control channel (PDCCH) part of the DRS signal.
  • the configuration information may also be carried in the physical downlink sharing channel (PDSCH) part of the DRS signal.
  • the configuration information may also be carried in the PBCH, PDCCH and/or PDSCH in the DRS signal. The embodiment of the present invention does not specifically limit this.
  • the network device transmits the signal of the i-th transmission beam among the K transmission beams in the second time period, and the signal includes the transmission beam number identifier of the signal.
  • the transmission beam number identifier of the signal is used to characterize that the signal corresponds to the i-th transmission beam among the above K transmission beams. The following further describes the possible encoding methods of the signal transmission beam number identification.
  • the coding mode of the signal transmission beam number identifier includes but is not limited to the following two:
  • the network device expresses the transmission beam number identification of the signals of the above K transmission beams through n bit binary information, and n is the largest positive integer less than or equal to log 2 P.
  • the transmit beam index of the signal of each transmit beam in the above P time windows is fixed.
  • the second time period is within the overlapping time period of the V time windows in the P time windows, and the V time windows correspond to W transmission beams among the K transmission beams, and V It is greater than or equal to 1 and less than or equal to P, and W is greater than or equal to 1 and less than or equal to K. If V is equal to 1 or V is greater than 1 and W is equal to 1, that is, the second time period corresponds to only one transmit beam, that is, the i-th transmit beam among the K transmit beams, the network device does not need to indicate the transmit beam number of the signal Identification, the terminal can learn from the configuration information that the second time period corresponds to the i-th transmission beam among the K transmission beams.
  • V is greater than 1 and W is greater than 1, that is, the V time windows include the j-th time window among the P time windows, and the W transmission beams include the i-th transmission beam among the K transmission beams, then the network The device expresses the transmission beam number identifiers of the signals of the foregoing W transmission beams through m bit binary information, and m is the largest positive integer less than or equal to log 2 W.
  • the transmit beam index of the signal of each transmit beam in the above P time windows is variable.
  • the second encoding method is suitable for the following situation: the signal of the i-th transmit beam out of the K transmit beams sent by the network device all contains configuration information or periodically contains configuration information, and the receiving end device can learn the second time through the configuration information V time windows corresponding to a segment, and W transmit beams corresponding to V time windows.
  • V or W is equal to 1
  • the terminal can determine the signal transmission beam according to the configuration information.
  • V is greater than 1 and W is greater than 1
  • the terminal is configured according to the configuration
  • the information and the transmission beam number identification of the signal determine the transmission beam of the signal.
  • the transmission beam number identification of the signal adopts the first coding method.
  • the network device is configured with 8 transmission beams, the transmission beam number identifier of the signal of the first transmission beam among the 8 transmission beams is 000, and the transmission beam number identifier of the signal of the seventh transmission beam among the 8 transmission beams is 110.
  • the network device is configured with 8 transmission beams, and the 8 transmission beams correspond to 10 time windows.
  • the network device transmits the signal of the third transmission beam among the eight transmission beams in the second time period, and the signal contains the transmission beam number identification and configuration information of the signal, and the transmission beam number identification of the signal adopts the second encoding method. If the second time period is only within the sixth time window among the above 10 time windows, the network device does not need to indicate the transmission beam number identification of the signal. If the second time period is within the overlapping time period of 3 of the above 10 time windows, the above 3 time windows correspond to 2 of the 8 transmission beams, that is, the second of the 8 transmission beams Transmission beams and the fourth transmission beam among the 8 transmission beams.
  • the network device expresses the transmission beam number identification of the signal of the above two transmission beams through 1bit binary information, the transmission beam number identification of the signal of the second transmission beam is 0, and the transmission beam number identification of the signal of the fourth transmission beam is 1.
  • the receiving end device learns that the second time period is located within the overlapping time period of the 3 time windows among the 10 time windows, and the 2 transmit beams corresponding to the 3 time windows. If the receiving end receives the signal with the transmit beam number identifier of 1, the receiving end determines that the received signal is the signal of the fourth transmit beam according to the order of the two transmit beams.
  • the signal of the i-th transmission beam among the above K transmission beams sent by the network device includes configuration information, and the configuration information may carry the transmission beam number identifier of the signal.
  • the configuration information of the signal is preferentially carried on the PDSCH.
  • the transmission beam number identifier of the signal is preferentially carried on the PBCH.
  • the network device carries the signal transmission beam number identification on the PBCH, which can reduce the terminal's implementation of the above-mentioned receiving signal and obtaining the transmission beam number identification The complexity of the process.
  • the terminal determines the positions of the N i time windows corresponding to the i -th transmission beam among the K transmission beams in the above P time windows.
  • the terminal determines the position of the transmission beam of the K J A transmission beams corresponding to the time window of the P time window, the time window comprising A N i-th time window.
  • the J transmission beams include the i-th transmission beam and one or more similar transmission beams of the i-th transmission beam.
  • the method further includes: the terminal receives the K transmitted by the network device at the first moment.
  • the signal of the i-th transmit beam in the two transmit beams which contains the configuration information and the transmit beam number identification of the signal;
  • the terminal parses the signal to obtain the configuration information and the transmit beam number identification of the signal;
  • the transmission beam number of the signal identifies that the transmission beam of the signal is the i-th transmission beam among the above K transmission beams.
  • the first time is earlier than the start time of the P time windows, and the configuration information includes the correspondence between the P time windows and the K transmission beams.
  • the total number of transmit beams configured by the network device is 8, and the terminal receives the DRS signal of the sixth transmit beam among the eight transmit beams sent by the network device at the first moment, and the DRS signal contains configuration information and the signal The transmission beam number identifier of the signal; the terminal analyzes the PBCH, PDCCH and/or PDSCH in the DRS signal to obtain the configuration information and the transmission beam number identifier of the signal; the terminal learns the transmission beam number of the signal according to the signal transmission beam number identifier It is the sixth transmit beam among the eight transmit beams.
  • the signal received by the terminal at the first moment includes the transmission beam number identifier of the signal, and the terminal learns the transmission beam of the signal according to the transmission beam number identifier of the signal.
  • the terminal determines that the N i time windows within the P time windows correspond to the i -th transmission beam among the K transmission beams, and determines the K transmission beam according to the configuration information.
  • the terminal determines according to the configuration information that the A time windows correspond to the J transmission beams within the P time windows, and determines the A time windows corresponding to the J transmission beams according to the configuration information The position in the above P time windows.
  • the terminal before obtaining the configuration information, in order to receive the signal sent by the network device at the first moment, the terminal needs to switch among multiple carrier frequencies where the network device may provide communication services, and switch between the carrier frequencies after the switch. Continue to try to receive signals carrying configuration information. After receiving the signal carrying the configuration information at the first moment, the terminal obtains the configuration information and the transmission beam of the signal through signal analysis. Since the configuration information includes the positional relationship of each window in the first window set, the positional relationship of each time window in each window, and the corresponding relationship between each time window in each window and the K transmission beams, therefore, After the first moment, the terminal can determine the position of the time window corresponding to the transmission beam required by the terminal in each window according to the configuration information.
  • the terminal Within the aforementioned N i time windows, the terminal detects and receives the signal of the i-th transmission beam among the aforementioned K transmission beams sent by the network device.
  • the terminal detects and receives signals of J transmission beams among the K transmission beams sent by the network device, and the J transmission beams include the i-th transmission beam and the i-th transmission beam.
  • One or more similar transmit beams of a transmit beam are possible.
  • the terminal detects and receives signals of the i-th transmission beam among the aforementioned K transmission beams sent by the network device, and performs channel quality measurement.
  • the terminal detects and receives the signals of the foregoing J transmit beams sent by the network device, and performs channel quality measurement.
  • the terminal only needs to detect and receive the signal of the i-th transmission beam among the aforementioned K transmission beams sent by the network device at most once.
  • the terminal detects and receives the signal of the i-th transmit beam among the K transmit beams sent by the network device, it will be within the N i time windows After the second moment, the terminal stops detecting the signal of the i-th transmission beam sent by the network device.
  • the terminal only needs to detect and receive the signal of the transmission beam among the foregoing J transmission beams once.
  • the terminal only needs to detect and receive the signal of any one of the foregoing J transmit beams at most once.
  • the terminal detects and receives a signal of one of the aforementioned J transmission beams sent by the network device, for example, the i+th of the aforementioned K transmission beams A signal of one transmit beam, and the J transmit beams include the i+1 th transmit beam, and the terminal stops detecting the i+1 th transmit beam signal sent by the network device after the third time in the A time window .
  • the terminal will continue to detect and receive signals of other transmission beams among the aforementioned J transmission beams sent by the network device, for example, signals of the i-th transmission beam among the aforementioned K transmission beams.
  • the terminal may detect and receive the signal of the i-th transmission beam among the aforementioned K transmission beams sent by the network device multiple times.
  • the terminal detects and receives the signal of the i-th transmission beam among the K transmission beams sent by the network device, the terminal is in the aforementioned N i time windows. Continue to detect and receive the signal of the i-th transmit beam after the second time in the internal.
  • the terminal may detect and receive the foregoing J transmit beam signals sent by the network device multiple times.
  • the terminal detects and receives a signal of one of the aforementioned J transmission beams sent by the network device, for example, the i+th of the aforementioned K transmission beams If there is a signal of one transmit beam, the terminal continues to detect and receive the i+1 th transmit beam signal sent by the network device after the third time in the A time window.
  • the terminal receives the signal sent by the network device in the second time period in the above N i time windows, the signal includes the transmission beam number identifier of the signal, and the coding mode of the transmission beam number identifier of the signal is the first In a coding manner, the terminal learns that the signal is the signal of the i-th transmission beam among the above K transmission beams according to the transmission beam number identifier of the signal.
  • the number of beam configuration network device 8 the transmission beam number received by the terminal identifier in said time window signal N i is 111
  • the transmission beam number encoding identification signal is the first Encoding mode
  • the terminal learns that the signal is the signal of the eighth transmit beam among the eight transmit beams according to the transmit beam number identifier of the signal.
  • the terminal receives the signal sent by the network device in the second time period in the above N i time windows, the signal includes the transmission beam number identification and configuration information of the signal, and the coding of the transmission beam number identification of the signal
  • the method is the second encoding method.
  • the terminal learns the V time windows corresponding to the second time period and the W transmission beams corresponding to the V time windows according to the configuration information. Then, the terminal learns the transmission beam of the signal according to the foregoing W transmission beams and the transmission beam number identifier of the signal.
  • the foregoing configuration information may be acquired by the terminal before the second time period, that is, the terminal receives the signal containing the configuration information sent by the network device before the second time period.
  • the foregoing configuration information may also be acquired by the terminal in the second time period, that is, the signal sent by the network device received by the terminal in the second time period includes the configuration information.
  • the number of transmission beams configured by the network device is 8, and the terminal learns that the second time period is within the overlapping time period of 3 time windows according to the configuration information, and also learns that the above 3 time windows correspond to 3 transmission beams, That is, the second transmission beam, the fourth transmission beam and the fifth transmission beam among the eight transmission beams.
  • the coding mode of the transmission beam number identifier of the signal is the second coding mode. If the transmission beam number identifier of the signal received by the terminal in the second time period in the aforementioned N i time windows is 00, then the signal is the signal of the aforementioned second transmission beam.
  • the signal is the signal of the aforementioned fourth transmission beam. If the transmission beam number identifier of the signal received by the terminal in the second time period in the aforementioned N i time windows is 10, the signal is the signal of the fifth transmission beam.
  • the above-mentioned N i-th time window located in the first window set in a window.
  • the terminal can detect and receive the signal of the i-th transmission beam among the above K transmission beams, and whether the terminal detects and receives the signal of the i-th transmission beam in one window is different. This will affect the terminal's detection and reception of the signal of the i-th transmit beam in another window.
  • the network device is configured with K transmission beams, the s-th transmission beam among the K transmission beams corresponds to N s time windows, and the K transmission beams correspond to P time windows, where N s is A positive integer less than P.
  • the network device detects that the channel is in an idle state, it sends signals of M transmit beams in sequence during M time periods of the channel occupation time. Each of the M time periods corresponds to one of the P time windows.
  • Network equipment transmits only the i-th beam signal transmission within a time window number N i of the P time window, N i is greater than or equal to 1 and less than P is a positive integer.
  • the terminal only needs to determine the position of the time window corresponding to the required transmission beam in the above P time windows, and only perform signal detection and reception within the time window corresponding to the required transmission beam of the terminal for channel quality measurement.
  • the signal detection overhead of the terminal is reduced.
  • FIG. 19 shows a schematic structural diagram of another network device provided by an embodiment of the present invention.
  • the network device 500 may include: a listening unit 501 and a sending unit 502. among them:
  • the listening unit 501 is configured to perform channel listening in the first time period.
  • the sending unit 502 is configured to, if the listening unit 501 detects that the channel is in an idle state, sequentially send signals of M transmit beams in M time periods after the first time period.
  • the total number of transmission beams configured by the network device is K, the s-th transmission beam among the K transmission beams corresponds to N s time windows, and the above K transmission beams correspond to P time windows.
  • the K transmission beams include the M transmission beams, the M transmission beams include the i-th transmission beam among the K transmission beams, and the second time period in the M time periods is corresponding to the i-th transmission beam Within the j-th time window.
  • the j-th time window is one of the N i time windows corresponding to the i-th transmit beam.
  • K is greater than or equal positive integer
  • P is greater than or equal a positive integer
  • N s is a positive integer less than P
  • N i is greater than or equal to 1 and less than P a positive integer
  • M being greater than or equal to 1 and less than or equal to K, Positive integer.
  • the foregoing network device further includes a first determining unit.
  • the first determining unit is configured to determine the M transmit beams from the K transmit beams according to configuration information if the channel is in an idle state, and the configuration information includes the correspondence between the K transmit beams and the P time windows relationship.
  • the first time period and the second time period are adjacent.
  • the time interval between the first time period and the earliest time period among the foregoing M time periods is greater than zero and less than the duration of a time unit required for the sending unit 502 to send one useful information.
  • the start time of the ath time window in the P time windows is earlier than the start time of the a+1th time window in the P time windows, and the ath time window in the P time windows
  • the cut-off time of each time window is later than the start time of the a+1-th time window in the above P time windows, and the cut-off time of the a-th time window in the above P time windows is earlier than the above P time windows
  • the end time of the a+1th time window is later than the start time of the a+1-th time window in the above P time windows.
  • the start time of the b-th time window in the P time windows is earlier than the start time of the b+1-th time window in the P time windows, and the b-th time window in the P time windows
  • the expiration time of each time window is equal to the expiration time of the b+1th time window among the above P time windows.
  • the start time of the c-th time window in the P time windows is equal to the start time of the c+1-th time window in the P time windows, and the c-th time window in the P time windows
  • the expiration time of the time window is earlier than the expiration time of the c+1th time window among the above P time windows.
  • the sending unit 502 will send priority in the second time period.
  • the end time of the e-th time window in the above P time windows is equal to the start time of the e+1-th time window in the above P time windows.
  • any consecutive K time windows in the P time windows correspond to the K transmission beams one by one.
  • the P time windows are the time windows of the first window
  • the start time of the P time windows is the same as the start time of the first window
  • the end time of the P time windows is the same as the end time of the first window.
  • the time is the same
  • the first window is a window in the first window set
  • the time interval between the start time of the g-th window in the first window set and the start time of the g+1-th window in the first window set For the first cycle.
  • the correspondence between the time window in the g th window and the K transmit beams is a first correspondence
  • the correspondence between the time window in the g+1 th window and the K transmit beams is the Two correspondences
  • the first correspondence is the same as the second correspondence.
  • the correspondence between the time window in the g th window and the K transmit beams is a first correspondence
  • the correspondence between the time window in the g+1 th window and the K transmit beams is the Two correspondences
  • the first correspondence is different from the second correspondence.
  • the end time of the e-th time window in the above P time windows is equal to the start time of the e+1-th time window in the above P time windows.
  • any consecutive K time windows among the above P time windows correspond to the above K transmission beams one by one.
  • the P time windows are the time windows of the first window
  • the start time of the P time windows is the same as the start time of the first window
  • the end time of the P time windows is the same as the end time of the first window.
  • the time is the same
  • the first window is a window in the first window set
  • the time interval between the start time of the g-th window in the first window set and the start time of the g+1-th window in the first window set For the first cycle.
  • the correspondence between the time window in the g th window and the K transmit beams is a first correspondence
  • the correspondence between the time window in the g+1 th window and the K transmit beams is the Two correspondences
  • the first correspondence is the same as the second correspondence.
  • the correspondence between the time window in the g th window and the K transmit beams is a first correspondence
  • the correspondence between the time window in the g+1 th window and the K transmit beams is the Two correspondences
  • the first correspondence is different from the second correspondence.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if z is a positive integer less than or equal to P g+1 –x, then the transmit beam corresponding to the z-th time window in the g-th window is the same as the z+x-th in the g+1-th window.
  • the transmit beams corresponding to the time windows are the same, P g+1 is the number of time windows in the g+1 th window, and x is a positive integer less than K; if z is greater than P g+1 –x and less than or equal to P g +1 is a positive integer, then the transmission beam corresponding to the z-th time window in the g-th window is the same as the transmission beam corresponding to the z+xP g+1- th time window in the g+1- th window.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if P g+1 +1-z is greater than zero, the transmission beam corresponding to the z-th time window in the g-th window is the same as the P g+1 +1-th in the g+1-th window. -The transmit beams corresponding to z time windows are the same; if P g+1 +1-z is less than or equal to zero, then the transmit beams corresponding to the z-th time window in the g-th window are the same as those in the g+1-th window The transmission beams corresponding to the P g+1 *(t+1)+1-z time window are the same.
  • t is the smallest positive integer that makes P g+1 *(t+1)+1-z greater than zero
  • z is a positive integer greater than or equal to 1 and less than P g
  • P g is the time in the g th window in the first window set The number of windows.
  • the signal of the i-th transmit beam sent by the sending unit 502 includes a DRS signal.
  • the first window is a DMTC window.
  • FIG. 19 shows a schematic structural diagram of another terminal device according to an embodiment of the present invention.
  • the terminal device 600 may include: a second determining unit 600 and a measuring unit 601. among them:
  • the second determining unit 601 is configured to determine the position of the N i time windows corresponding to the i -th transmit beam in the K transmit beams in the P time windows, and the s-th one of the K transmit beams configured by the network device transmission beam corresponding to the N s time windows, said K transmission beam corresponding to one of the P time windows, N s is a positive integer less than P is, K is greater than or equal positive integer, P is greater than or equal a positive integer, N i It is a positive integer greater than or equal to 1 and less than P.
  • Detecting means 602 for detecting and receiving said i-th transmission beam signals in said N i-th time window.
  • the second determining unit 601 determines the positions in the P time windows of the N i time windows corresponding to the i -th transmit beam among the K transmit beams, including: the second determining unit 601 determines the K transmit beams the i-th transmission beam and one or more similar transmission beam corresponding to a in the above time window position P time window, said window comprising the above-described time a N i-th time window.
  • the detecting unit 602 detects and receives the signal of the i-th transmission beam in the aforementioned N i time windows, including: the detecting unit 602 detects and receives the signal of the i-th transmission beam in the aforementioned A time window .
  • the second determining unit 601 determines the position of the N i time windows corresponding to the i -th transmission beam among the K transmission beams in the P time windows
  • the foregoing terminal device further includes a receiving unit.
  • the receiving unit is configured to receive the signal of the i-th transmit beam sent by the network device at the first moment.
  • the signal includes configuration information, the first time is earlier than the start time of the P time windows, and the configuration information includes the correspondence between the P time windows and the K transmission beams.
  • the second determining unit 601 determines the positions in the P time windows of the N i time windows corresponding to the i -th transmission beam among the K transmission beams, including: the second determining unit 601 determines the K transmission beams according to the configuration information the above-described time windows N i i-th transmission beam corresponding to the position P in the above time window.
  • the start time of the ath time window in the P time windows is earlier than the start time of the a+1th time window in the P time windows, and the ath time window in the P time windows
  • the cut-off time of each time window is later than the start time of the a+1-th time window in the above P time windows, and the cut-off time of the a-th time window in the above P time windows is earlier than the above P time windows
  • the end time of the a+1th time window is later than the start time of the a+1-th time window in the above P time windows.
  • the start time of the b-th time window in the P time windows is earlier than the start time of the b+1-th time window in the P time windows, and the b-th time window in the P time windows
  • the expiration time of each time window is equal to the expiration time of the b+1th time window among the above P time windows.
  • the start time of the c-th time window in the P time windows is equal to the start time of the c+1-th time window in the P time windows, and the c-th time window in the P time windows
  • the expiration time of the time window is earlier than the expiration time of the c+1th time window among the above P time windows.
  • the end time of the e-th time window in the above P time windows is equal to the start time of the e+1-th time window in the above P time windows.
  • any consecutive K time windows among the above P time windows correspond to the above K transmission beams one by one.
  • the P time windows are the time windows of the first window
  • the start time of the P time windows is the same as the start time of the first window
  • the end time of the P time windows is the same as the end time of the first window.
  • the time is the same
  • the first window is a window in the first window set
  • the time interval between the start time of the g-th window in the first window set and the start time of the g+1-th window in the first window set For the first cycle.
  • the correspondence between the time window in the g th window and the K transmit beams is a first correspondence
  • the correspondence between the time window in the g+1 th window and the K transmit beams is the Two correspondences
  • the first correspondence is the same as the second correspondence.
  • the correspondence between the time window in the g th window and the K transmit beams is a first correspondence
  • the correspondence between the time window in the g+1 th window and the K transmit beams is the Two correspondences
  • the first correspondence is different from the second correspondence.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if z is a positive integer less than or equal to P g+1 –x, then the transmit beam corresponding to the z-th time window in the g-th window is the same as the z+x-th in the g+1-th window.
  • the transmission beams corresponding to the time windows are the same, P g+1 is the number of time windows in the g+1 th window, and x is a positive integer less than K; if z is greater than P g+1 –x and less than or equal to P g +1 is a positive integer, then the transmission beam corresponding to the z-th time window in the g-th window is the same as the transmission beam corresponding to the z+xP g+1- th time window in the g+1- th window.
  • the first correspondence and the second correspondence satisfy the first law.
  • the first rule is that if P g+1 +1-z is greater than zero, the transmission beam corresponding to the z-th time window in the g-th window is the same as the P g+1 +1-th in the g+1-th window. -The transmit beams corresponding to z time windows are the same; if P g+1 +1-z is less than or equal to zero, then the transmit beams corresponding to the z-th time window in the g-th window are the same as those in the g+1-th window The transmission beams corresponding to the P g+1 *(t+1)+1-z time window are the same.
  • t is the smallest positive integer that makes P g+1 *(t+1)+1-z greater than zero
  • z is a positive integer greater than or equal to 1 and less than P g
  • P g is the time in the g th window in the first window set The number of windows.
  • the signal of the i-th transmit beam sent by the network device includes a DRS signal.
  • the first window is a DMTC window.
  • FIG. 21 shows a schematic structural diagram of a communication chip provided by the present invention.
  • the communication chip 700 may include a processor 701, and one or more interfaces 702 coupled to the processor 701. among them:
  • the processor 701 may be used to read and execute computer-readable instructions.
  • the processor 701 may mainly include a controller, an arithmetic unit, and a register.
  • the controller is mainly responsible for instruction decoding, and sends out control signals for the operation corresponding to the instruction.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations and logic operations, etc. It can also perform address operations and conversions.
  • the register is mainly responsible for storing the register operands and intermediate operation results temporarily stored during the execution of the instruction.
  • the hardware architecture of the processor 701 may be an application specific integrated circuit (ASIC) architecture, MIPS architecture, ARM architecture, or NP architecture, etc.
  • the processor 701 may be single-core or multi-core.
  • the interface 702 can be used to input data to be processed to the processor 701, and can output the processing result of the processor 701 externally.
  • the interface 702 can be a general purpose input output (GPIO) interface, which can be connected to multiple peripheral devices (such as a display (LCD), a camera (camara), a radio frequency (RF) module, etc.) connection.
  • GPIO general purpose input output
  • the interface 702 is connected to the processor 701 through the bus 703.
  • the processor 701 may be configured to call the implementation program on the communication device side of the signal transmission method provided by one or more embodiments of the present invention from the memory, and execute the instructions contained in the program.
  • the interface 702 can be used to output the execution result of the processor 701.
  • the interface 702 may be specifically used to output the resource allocation result of the processor 701.
  • processor 701 and the interface 702 may be implemented through hardware design, or through software design, or through a combination of software and hardware, which is not limited here.
  • the steps of the method or algorithm described in conjunction with the disclosure of the embodiments of the present invention may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (erasable programmable ROM, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the transceiver or relay device.
  • the processor and the storage medium may also exist as discrete components in the wireless access network device or terminal device.
  • Computer-readable media includes computer storage media and communication media, where communication media includes any medium that facilitates transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本发明实施例公开了一种信号传输方法、相关设备及***,其中,该方法包括:网络设备在第一时间段进行信道侦听。若网络设备侦听到信道为空闲状态,则网络设备在第一时间段之后的M个时间段依次发送M个发送波束的信号。网络设备配置的波束总数为K,K个发送波束中的第s个发送波束对应N s个时间窗,K个发送波束对应P个时间窗。上述K个发送波束包括上述M个发送波束,上述M个发送波束包括上述K个发送波束中的第i个发送波束,上述M个时间段中的第二时间段位于上述第i个发送波束对应的第j个时间窗内。本发明实施例在基于波束赋形技术的非授权频谱无线通信中,能够降低终端的信号检测开销。

Description

一种信号传输方法、相关设备及*** 技术领域
本发明涉及通信技术领域,尤其涉及一种信号传输方法、相关设备及***。
背景技术
随着无线通信技术的发展,当前的频谱资源已经难以满足用户对容量需求的***式增长。频谱资源是不可再生的自然资源,为了提升网络容量,不仅要研发多输入多输出技术、超密集组网、全双工技术等新技术,同时也要不断挖掘新的可用资源。近年来,为缓解数据流量的拥堵问题,非授权频谱受到广泛关注。从2013年到2018年,非授权频谱移动通信技术的研究历程包括非授权频谱上的长期演进(long term evolution in unlicensed spectrum,LTE-U)、许可协助接入(lisenced assisted access,LAA)、MulteFire和非授权频谱第五代移动通信新空口(the fifth generation mobile communication new radio,5G NR)。为使用非授权频段,第三代合作伙伴计划(3rd generation partnership project,3GPP)Relese13提出LAA技术,即采用载波聚合方式将5GHZ的非授权频段与授权频段进行联合使用。LAA技术提供了超越WiFi的增强版的网络容量、覆盖范围和简化的统一网络管理。LTE-U技术将长期演进(long term evolution,LTE)部署到非授权频谱,并采用标准LTE空口协议完成通信。MulteFire技术将LTE技术应用于非授权频谱,提供类似LTE的高性能通信服务以及类似Wi-Fi的简单部署。非授权频谱5G NR是基于正交频分复用(orthogonal frequency division multiplexing,OFDM)的全新空口设计的全球性标准,提高了频谱利用率,并将带来5G NR新的网络部署场景。
在MulteFire技术中,如果非授权频谱单独组网,发现信号(discovery signal,DRS)需要承载在非授权频谱上,DRS信号的发送要遵循信道接入机制。将非授权频谱无线通信技术应用于更高频的载波频谱是非授权频谱移动通信技术的发展趋势,为减少高频载波下DRS信号传输的路径损耗,可以采用波束赋形技术将DRS信号在不同的发送波束进行发送。为了增加DRS的发送机会,MulteFire技术中提出了基于发现信号测量定时配置(discovery measurement timing configuration,DMTC)的DRS信号发送。现有技术中,终端通常需要在整个DMTC窗口内进行DRS信号检测和接收,用以进行信道质量测量。在基于波束赋形技术的非授权频谱无线通信中,如何进行信号传输以降低终端的检测开销,还是有待解决的问题。
发明内容
本发明实施例提供了一种信号传输方法、相关设备及***,在基于波束赋形技术的非授权频谱无线通信中,能够降低终端的信号检测开销。
第一方面,本发明实施例提供了一种信号传输方法,应用于网络设备。该方法可包括:网络设备在第一时间段进行信道侦听。若网络设备侦听到信道为空闲状态,则网络设备在第一时间段之后的M个时间段依次发送M个发送波束的信号。网络设备配置的发送波束总数为K,K个发送波束中的第s个发送波束对应N s个时间窗,上述K个发送波束对应P 个时间窗。上述K个发送波束包括上述M个发送波束,上述M个发送波束包括上述K个发送波束中的第i个发送波束,上述M个时间段中的第二时间段位于上述第i个发送波束对应的第j个时间窗内。上述第j个时间窗为上述第i个发送波束对应的N i个时间窗中的一个时间窗。K为大于等于1的正整数,P为大于等于1的正整数,N s为小于P的正整数,N i为大于等于1且小于P的正整数,M为大于等于1且小于等于K的正整数。
实施第一方面所描述的方法,网络设备配置了K个发送波束,K个发送波束中的第i个发送波束对应了N i个时间窗,上述K个发送波束共对应了P个时间窗。网络设备侦听到信道为空闲状态后,在信道占用时间内的M个时间段依次发送M个发送波束的信号。上述M个时间段中的每个时间段对应了上述P个时间窗中的一个时间窗。网络设备仅在上述P个时间窗中的N i个时间窗内发送上述第i个发送波束的信号,N i小于P,因此第i个发送波束覆盖范围下的终端仅需要在上述N i个时间窗内进行上述第i个发送波束的信号的检测和接收,用以进行信道质量测量,采用本发明,在基于波束赋形技术的非授权频谱无线通信中,降低了终端的信号检测开销。
在一个可能的设计中,网络设备在第一时间段之后的M个时间段依次发送M个发送波束的信号之前,还包括:若侦听到信道为空闲状态,则网络设备根据配置信息从上述K个发送波束中确定上述M个发送波束,配置信息包括上述K个发送波束和上述P个时间窗的对应关系。
在一个可能的设计中,第一时间段和第二时间段相邻。
在一个可能的设计中,第一时间段与上述M个时间段中最早的时间段的时间间隔大于零且小于网络设备发送一个承载有用信息所需时间单元的时长。
在一个可能的设计中,上述P个时间窗中的第a个时间窗的起始时刻早于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻晚于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻早于上述P个时间窗中的第a+1个时间窗的截止时刻。
在一个可能的设计中,上述P个时间窗中的第b个时间窗的起始时刻早于上述P个时间窗中的第b+1个时间窗的起始时刻,上述P个时间窗中的第b个时间窗的截止时刻等于上述P个时间窗中的第b+1个时间窗的截止时刻。
在一个可能的设计中,上述P个时间窗中的第c个时间窗的起始时刻等于上述P个时间窗中的第c+1个时间窗的起始时刻,上述P个时间窗中的第c个时间窗的截止时刻早于上述P个时间窗中的第c+1个时间窗的截止时刻。
在一个可能的设计中,若第二时间段位于上述第j个时间窗内且第二时间段位于还位于上述P个时间窗中的第f个时间窗内,上述第j个时间窗的起始时刻早于或等于上述第f个时间窗的起始时刻,上述第j个时间窗的起截止时刻早于或等于上述第f个时间窗的截止时刻,则网络设备在第二时间段内优先发送上述第i个发送波束的信号。
在一个可能的设计中,上述P个时间窗中的第e个时间窗的截止时刻等于上述P个时间窗中的第e+1个时间窗的起始时刻。
在一个可能的设计中,P大于等于K时,上述P个时间窗中任意连续的K个时间窗一一对应上述K个发送波束。
在一个可能的设计中,上述P个时间窗为第一窗口的时间窗,上述P个时间窗的起始时刻与第一窗口的起始时刻相同,上述P个时间窗的截止时刻与第一窗口的截止时刻相同,第一窗口为第一窗口集合中的一个窗口,第一窗口集合中的第g个窗口的起始时刻与第一窗口集合中的第g+1个窗口的起始时刻的时间间隔为第一周期。
在一个可能的设计中,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系相同。
在一个可能的设计中,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系不同。
在一个可能的设计中,第一对应关系和第二对应关系满足第一规律。第一规律为若z为小于等于P g+1–x的正整数,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x个时间窗对应的发送波束相同,P g+1为上述第g+1个窗口中的时间窗个数,x为小于K的正整数;若z为大于P g+1–x且小于等于P g+1的正整数,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x-P g+1个时间窗对应的发送波束相同。
在一个可能的设计中,第一对应关系和第二对应关系满足第一规律。第一规律为若P g+1+1-z大于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1+1-z个时间窗对应的发送波束相同;若P g+1+1-z小于或等于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1*(t+1)+1-z个时间窗对应的发送波束相同。t为使P g+1*(t+1)+1-z大于零的最小正整数,z为大于等于1小于P g的正整数,P g为第一窗口集合中第g个窗口中时间窗个数。
在一个可能的设计中,网络设备发送的上述第i个发送波束的信号包括DRS信号。
在一个可能的设计中,第一窗口为DMTC窗口。
第二方面,本发明实施例提供了一种信号传输方法,应用于终端设备。该方法可包括:终端确定上述K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,网络设备配置的上述K个发送波束中的第s个发送波束对应N s个时间窗,上述K个发送波束对应上述P个时间窗,K为大于等于1的正整数,P为大于等于1的正整数,N s为小于P的正整数,N i为大于等于1且小于P的正整数。终端在上述N i个时间窗内检测和接收上述第i个发送波束的信号。
实施第二方面所描述的方法,终端确定上述N i个时间窗在上述P个时间窗中的位置,并在上述N i个时间窗内测量信号。在上述P个时间窗中上述N i个时间窗以外的时间,终端无需进行上述第i个发送波束的信号的检测和接收,采用本发明,在基于波束赋形技术的非授权频谱无线通信中,降低了终端的检测开销。
在一个可能的设计中,终端确定上述K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,包括:终端确定上述K个发送波束中第i个发送波束及其一或多个相近的发送波束对应的A个时间窗在上述P个时间窗中的位置,上述A个时间窗包括上述N i个时间窗。
在一个可能的设计中,终端在上述N i个时间窗内检测和接收上述第i个发送波束的信号,包括:终端在上述A个时间窗内检测和接收上述第i个发送波束及其一或多个相近的发送波束的信号。
在一个可能的设计中,终端确定上述N i个时间窗在上述P个时间窗中的位置,并在上述N i个时间窗内检测和接收信号之前,还包括:终端在第一时刻接收网络设备发送的上述第i个发送波束的信号,上述信号包括配置信息,第一时刻早于上述P个时间窗的起始时刻,配置信息包括上述P个时间窗和上述K个发送波束的对应关系。终端确定K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,包括:终端根据配置信息,确定上述K个发送波束中第i个发送波束对应的上述N i个时间窗在上述P个时间窗中的位置。
在一个可能的设计中,上述P个时间窗中的第a个时间窗的起始时刻早于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻晚于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻早于上述P个时间窗中的第a+1个时间窗的截止时刻。
在一个可能的设计中,上述P个时间窗中的第b个时间窗的起始时刻早于上述P个时间窗中的第b+1个时间窗的起始时刻,上述P个时间窗中的第b个时间窗的截止时刻等于上述P个时间窗中的第b+1个时间窗的截止时刻。
在一个可能的设计中,上述P个时间窗中的第c个时间窗的起始时刻等于上述P个时间窗中的第c+1个时间窗的起始时刻,上述P个时间窗中的第c个时间窗的截止时刻早于上述P个时间窗中的第c+1个时间窗的截止时刻。
在一个可能的设计中,上述P个时间窗中的第e个时间窗的截止时刻等于上述P个时间窗中的第e+1个时间窗的起始时刻。
在一个可能的设计中,P大于等于K时,上述P个时间窗中任意连续的K个时间窗一一对应上述K个发送波束。
在一个可能的设计中,上述P个时间窗为第一窗口的时间窗,上述P个时间窗的起始时刻与第一窗口的起始时刻相同,上述P个时间窗的截止时刻与第一窗口的截止时刻相同,第一窗口为第一窗口集合中的一个窗口,第一窗口集合中的第g个窗口的起始时刻与第一窗口集合中的第g+1个窗口的起始时刻的时间间隔为第一周期。
在一个可能的设计中,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系相同。
在一个可能的设计中,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系不同。
在一个可能的设计中,第一对应关系和第二对应关系满足第一规律。第一规律为若z为小于等于P g+1–x的正整数,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x个时间窗对应的发送波束相同,P g+1为上述第g+1个窗口中的时间窗个数,x为小于K的正整数;若z为大于P g+1–x且小于等于P g+1的正整数,则上述第g 个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x-P g+1个时间窗对应的发送波束相同。
在一个可能的设计中,第一对应关系和第二对应关系满足第一规律。第一规律为若P g+1+1-z大于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1+1-z个时间窗对应的发送波束相同;若P g+1+1-z小于或等于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1*(t+1)+1-z个时间窗对应的发送波束相同。t为使P g+1*(t+1)+1-z大于零的最小正整数,z为大于等于1小于P g的正整数,P g为第一窗口集合中第g个窗口中时间窗个数。
在一个可能的设计中,网络设备发送的上述第i个发送波束的信号包括DRS信号。
在一个可能的设计中,第一窗口为DMTC窗口。
第三方面,本发明实施例提供了一种网络设备,该网络设备可包括多个功能模块或单元,用于相应的执行第一方面所提供的信号传输方法。
例如,网络设备包括:侦听单元和发送单元。
侦听单元,用于在第一时间段进行信道侦听。
发送单元,用于若侦听单元侦听到信道为空闲状态,则在第一时间段之后的M个时间段依次发送M个发送波束的信号。网络设备配置的发送波束总数为K,K个发送波束中的第s个发送波束对应N s个时间窗,上述K个发送波束对应P个时间窗。上述K个发送波束包括上述M个发送波束,上述M个发送波束包括上述K个发送波束中的第i个发送波束,上述M个时间段中的第二时间段位于上述第i个发送波束对应的第j个时间窗内。上述第j个时间窗为上述第i个发送波束对应的N i个时间窗中的一个时间窗。K为大于等于1的正整数,P为大于等于1的正整数,N s为小于P的正整数,N i为大于等于1且小于P的正整数,M为大于等于1且小于等于K的正整数。
在一个可能的设计中,发送单元在第一时间段之后的M个时间段依次发送M个发送波束的信号之前,上述网络设备还包括第一确定单元。第一确定单元,用于若侦听到信道为空闲状态,则根据配置信息从上述K个发送波束中确定上述M个发送波束,配置信息包括上述K个发送波束和上述P个时间窗的对应关系。
在一个可能的设计中,第一时间段和第二时间段相邻。
在一个可能的设计中,第一时间段与上述M个时间段中最早的时间段的时间间隔大于零且小于发送单元发送一个承载有用信息所需时间单元的时长。
在一个可能的设计中,上述P个时间窗中的第a个时间窗的起始时刻早于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻晚于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻早于上述P个时间窗中的第a+1个时间窗的截止时刻。
在一个可能的设计中,上述P个时间窗中的第b个时间窗的起始时刻早于上述P个时间窗中的第b+1个时间窗的起始时刻,上述P个时间窗中的第b个时间窗的截止时刻等于上述P个时间窗中的第b+1个时间窗的截止时刻。
在一个可能的设计中,上述P个时间窗中的第c个时间窗的起始时刻等于上述P个时间窗中的第c+1个时间窗的起始时刻,上述P个时间窗中的第c个时间窗的截止时刻早于 上述P个时间窗中的第c+1个时间窗的截止时刻。
在一个可能的设计中,若第二时间段位于上述第j个时间窗内且第二时间段位于还位于上述P个时间窗中的第f个时间窗内,上述第j个时间窗的起始时刻早于或等于上述第f个时间窗的起始时刻,上述第j个时间窗的起截止时刻早于或等于上述第f个时间窗的截止时刻,则发送单元在第二时间段内优先发送上述第i个发送波束的信号。
在一个可能的设计中,上述P个时间窗中的第e个时间窗的截止时刻等于上述P个时间窗中的第e+1个时间窗的起始时刻。
在一个可能的设计中,P大于等于K时,上述P个时间窗中任意连续的K个时间窗一一对应上述K个发送波束。
在一个可能的设计中,上述P个时间窗为第一窗口的时间窗,上述P个时间窗的起始时刻与第一窗口的起始时刻相同,上述P个时间窗的截止时刻与第一窗口的截止时刻相同,第一窗口为第一窗口集合中的一个窗口,第一窗口集合中的第g个窗口的起始时刻与第一窗口集合中的第g+1个窗口的起始时刻的时间间隔为第一周期。
在一个可能的设计中,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系相同。
在一个可能的设计中,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系不同。
在一个可能的设计中,上述P个时间窗中的第e个时间窗的截止时刻等于上述P个时间窗中的第e+1个时间窗的起始时刻。
在一个可能的设计中,上述P个时间窗中任意连续的K个时间窗一一对应上述K个发送波束。
在一个可能的设计中,上述P个时间窗为第一窗口的时间窗,上述P个时间窗的起始时刻与第一窗口的起始时刻相同,上述P个时间窗的截止时刻与第一窗口的截止时刻相同,第一窗口为第一窗口集合中的一个窗口,第一窗口集合中的第g个窗口的起始时刻与第一窗口集合中的第g+1个窗口的起始时刻的时间间隔为第一周期。
在一个可能的设计中,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系相同。
在一个可能的设计中,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系不同。
在一个可能的设计中,第一对应关系和第二对应关系满足第一规律。第一规律为若z为小于等于P g+1–x的正整数,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x个时间窗对应的发送波束相同,P g+1为上述第g+1个窗口中的时间窗个数,x为小于K的正整数;若z为大于P g+1–x且小于等于P g+1的正整数,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x-P g+1个时间窗对应 的发送波束相同。
在一个可能的设计中,第一对应关系和第二对应关系满足第一规律。第一规律为若P g+1+1-z大于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1+1-z个时间窗对应的发送波束相同;若P g+1+1-z小于或等于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1*(t+1)+1-z个时间窗对应的发送波束相同。t为使P g+1*(t+1)+1-z大于零的最小正整数,z为大于等于1小于P g的正整数,P g为第一窗口集合中第g个窗口中时间窗个数。
在一个可能的设计中,发送单元发送的上述第i个发送波束的信号包括DRS信号。
在一个可能的设计中,第一窗口为DMTC窗口。
第四方面,本发明实施例提供了一种终端设备,该终端设备可包括多个功能模块或单元,用于相应的执行第二方面所提供的信号传输方法。
例如,终端设备包括:第二确定单元和检测单元。
第二确定单元,用于确定上述K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,网络设备配置的上述K个发送波束中的第s个发送波束对应N s个时间窗,上述K个发送波束对应上述P个时间窗,K为大于等于1的正整数,P为大于等于1的正整数,N s为小于P的正整数,N i为大于等于1且小于P的正整数。
检测单元,用于在上述N i个时间窗内检测和接收上述第i个发送波束的信号。
在一个可能的设计中,第二确定单元确定上述K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,包括:第二确定单元确定上述K个发送波束中第i个发送波束及其一或多个相近的发送波束对应的A个时间窗在上述P个时间窗中的位置,上述A个时间窗包括上述N i个时间窗。
在一个可能的设计中,检测单元在上述N i个时间窗内检测和接收上述第i个发送波束的信号,包括:检测单元在上述A个时间窗内检测和接收上述第i个发送波束的信号。
在一个可能的设计中,第二确定单元确定K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置之前,上述终端设备还包括接收单元。接收单元用于在第一时刻接收网络设备发送的上述第i个发送波束的信号。上述信号包括配置信息,第一时刻早于上述P个时间窗的起始时刻,配置信息包括上述P个时间窗和上述K个发送波束的对应关系。第二确定单元确定K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,包括:第二确定单元根据配置信息,确定上述K个发送波束中第i个发送波束对应的上述N i个时间窗在上述P个时间窗中的位置。
在一个可能的设计中,上述P个时间窗中的第a个时间窗的起始时刻早于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻晚于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻早于上述P个时间窗中的第a+1个时间窗的截止时刻。
在一个可能的设计中,上述P个时间窗中的第b个时间窗的起始时刻早于上述P个时间窗中的第b+1个时间窗的起始时刻,上述P个时间窗中的第b个时间窗的截止时刻等于上述P个时间窗中的第b+1个时间窗的截止时刻。
在一个可能的设计中,上述P个时间窗中的第c个时间窗的起始时刻等于上述P个时 间窗中的第c+1个时间窗的起始时刻,上述P个时间窗中的第c个时间窗的截止时刻早于上述P个时间窗中的第c+1个时间窗的截止时刻。
在一个可能的设计中,上述P个时间窗中的第e个时间窗的截止时刻等于上述P个时间窗中的第e+1个时间窗的起始时刻。
在一个可能的设计中,P大于等于K时,上述P个时间窗中任意连续的K个时间窗一一对应上述K个发送波束。
在一个可能的设计中,上述P个时间窗为第一窗口的时间窗,上述P个时间窗的起始时刻与第一窗口的起始时刻相同,上述P个时间窗的截止时刻与第一窗口的截止时刻相同,第一窗口为第一窗口集合中的一个窗口,第一窗口集合中的第g个窗口的起始时刻与第一窗口集合中的第g+1个窗口的起始时刻的时间间隔为第一周期。
在一个可能的设计中,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系相同。
在一个可能的设计中,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系不同。
在一个可能的设计中,第一对应关系和第二对应关系满足第一规律。第一规律为若z为小于等于P g+1–x的正整数,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x个时间窗对应的发送波束相同,P g+1为上述第g+1个窗口中的时间窗个数,x为小于K的正整数;若z为大于P g+1–x且小于等于P g+1的正整数,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x-P g+1个时间窗对应的发送波束相同。
在一个可能的设计中,第一对应关系和第二对应关系满足第一规律。第一规律为若P g+1+1-z大于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1+1-z个时间窗对应的发送波束相同;若P g+1+1-z小于或等于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1*(t+1)+1-z个时间窗对应的发送波束相同。t为使P g+1*(t+1)+1-z大于零的最小正整数,z为大于等于1小于P g的正整数,P g为第一窗口集合中第g个窗口中时间窗个数。
在一个可能的设计中,网络设备发送的上述第i个发送波束的信号包括DRS信号。
在一个可能的设计中,第一窗口为DMTC窗口。
第五方面,本发明实施例提供了一种网络设备,用于执行第一方面所提供的信号传输方法。网络设备可包括:存储器、处理器、发射器、接收器,其中:发射器和接收器用于与其他通信设备(如网络设备或第二通信设备)通信。存储器用于存储第一方面所提供的信号传输方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第一方面所提供的信号传输方法。
第六方面,本发明实施例提供了一种终端设备,用于执行第二方面所提供的信号传输方法。终端设备可包括:存储器、处理器、发射器、接收器,其中:发射器和接收器用于与其他通信设备(如网络设备或第一通信设备)通信。存储器用于存储第二方面所提供的 信号传输方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第二方面所提供的信号传输方法。
第七方面,本发明实施例提供了一种通信***,通信***包括:网络设备和终端设备。其中:
网络设备可以是上述第三方面描述的网络设备,也可以是上述第五方面描述的网络设备。
终端设备可以是上述第四方面描述的终端,也可以是上述第六方面描述的终端设备。
第八方面,本发明提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用第一方面所提供的信号传输方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的数据处理结果。
第九方面,本发明提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用第二方面所提供的信号传输方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的数据处理结果。
第十方面,本发明实施例提供了一种计算机可读存储介质,可读存储介质上存储有指令,当其在处理器上运行时,使得处理器执行上述第一方面描述的信号传输方法。
第十一方面,本发明实施例提供了一种计算机可读存储介质,可读存储介质上存储有指令,当其在处理器上运行时,使得处理器执行上述第二方面描述的信号传输方法。
第十二方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在处理器上运行时,使得处理器执行上述第一方面描述的信号传输方法。
第十三方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在处理器上运行时,使得处理器执行上述第二方面描述的信号传输方法。
附图说明
图1为本发明实施例涉及的通信***架构示意图;
图2是本发明实施例提供的一种网络设备的硬件架构示意图;
图3是本发明实施例提供的一种终端设备的硬件架构示意图;
图4是本发明实施例提供的一种信号传输方法的流程示意图;
图5是本发明实施例提供的一种接收波束和发送波束的示意图;
图6是本发明实施例涉及的能量检测模式的LBT示意图;
图7A是本发明实施例提供的两个相邻的时间窗的一种位置关系示意图;
图7B是本发明实施例提供的P个时间窗的一种位置关系示意图;
图8A是本发明实施例提供的两个相邻的时间窗的另一种位置关系示意图;
图8B是本发明实施例提供的P个时间窗的另一种位置关系示意图;
图9A是本发明实施例提供的两个相邻的时间窗的另一种位置关系示意图;
图9B是本发明实施例提供的P个时间窗的另一种位置关系示意图;
图10A是本发明实施例提供的两个相邻的时间窗的另一种位置关系示意图;
图10B是本发明实施例提供的P个时间窗的另一种位置关系示意图;
图11是本发明实施例提供的P个时间窗的另一种位置关系示意图;
图12是本发明实施例提供的P个时间窗的另一种位置关系示意图;
图13是本发明实施例提供的P个时间窗的另一种位置关系示意图;
图14A是本发明实施例提供的一种信号发送示意图;
图14B是本发明实施例提供的另一种信号发送示意图;
图14C是本发明实施例提供的另一种信号发送示意图;
图15是本发明实施例提供的一种第一窗口集合的示意图;
图16A是本发明实施例提供的一种时间窗与发送波束的对应关系示意图;
图16B是本发明实施例提供的一种时间窗与发送波束的对应关系示意图;
图17是本发明实施例提供的另一种时间窗与发送波束的对应关系示意图;
图18是本发明实施例提供的另一种时间窗与发送波束的对应关系示意图;
图19是本发明实施例提供的另一种网络设备的功能框图;
图20是本发明实施例提供的另一种终端设备的功能框图;
图21是本发明实施例提供的一种通信芯片的结构示意图。
具体实施方式
本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。
图1示出了本发明实施例涉及的无线通信***。无线通信***可以工作在高频频段上,不限于LTE***,还可以是未来演进的第五代移动通信(the 5th Generation,5G)***、新空口(New Radio,NR)***,机器与机器通信(Machine to Machine,M2M)***等。如图1所示,无线通信***100可包括:一个或多个网络设备101,一个或多个终端设备103,以及核心网(未示出)。其中:
网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是时分同步码分多址(time division synchronous code division multiple access,TD-SCDMA)***中的基站收发台(base transceiver station,BTS),也可以是LTE***中的演进型基站(evolutional Node B,eNB),以及5G***、新空口(NR)***中的基站。另外,基站也可以为接入点(access point,AP)、收发点(transmission receive point,TRP)、中心单元(central unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
终端设备103可以分布在整个无线通信***100中,可以是静止的,也可以是移动的。在本发明的一些实施例中,终端设备103可以是移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、终端代理、移动客户端等等。
本发明实施例中,无线通信***100是多波束通信***。其中:
网络设备101可以被配置有大规模的天线阵列,并利用波束赋形技术控制天线阵列形成不同指向的波束。为了覆盖整个小区107,网络设备101需要使用多个不同指向的波束。
例如,在下行过程中,网络设备101可以依次使用不同指向的波束发射无线信号(如DRS信号、下行参考信号(reference signal,RS)和/或下行同步信号块(synchronization signal block,SS block)。终端设备103对网络设备101的发送波束发射的无线信号进行检测和接收,并可以根据检测和接收的无线信号进行信道质量测量(或估计)。基于上述信道质量测量(或估计),终端设备可以测量、更新以及预测第一信道质量指标,第一信道质量指标包括载波与干扰和噪声比(carrier to interference and noise ratio,CINR)、信号与干扰和噪声比(signal to interference and noise ratio,SINR)、接收信号强度指示(receive signal strength indicator,RSSI)、参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)的信号质量度量的瞬时平均或时间平均、RSRQ的信号质量度量的瞬时方差或时间方差以及RSRQ的信号质量度量的瞬时标准偏差或时间标准偏差等。
在通信***中,终端设备103也可以被配置有天线阵列,也可以变换不同的波束进行信号的收发。本发明实施例对此不作具体限定。
本发明的各实施例中,波束可以分为网络设备101的发送波束和接收波束,一个网络设备101可以具有多个发送波束和多个接收波束。
本发明实施例对终端设备103的信号收发所采用的波束不作具体限定。可以理解,本发明各实施例中出现的发送波束和接收波束均指网络设备的发送波束和网络设备的接收波束。
参考图2,图2示出了本发明实施例提供的网络设备200。如图2所示,网络设备200可包括:一个或多个网络设备处理器201、存储器202、通信接口203、发射器205、接收器206、耦合器207和天线208。这些部件可通过总线204或者其他式连接,图2以通过总线连接为例。其中:
通信接口203可用于网络设备200与其他通信设备,例如终端设备或其他网络设备,进行通信。具体的,通信接口203通信接口203可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,网络设备200还可以配置有有线的通信接口203来支持有线通信,例如一个网络设备200与其他网络设备200之间的回程链接可以是有线通信连接。
发射器205可用于对网络设备处理器201输出的信号进行发射处理,例如通过波束赋形实现定向发送。接收器206可用于对天线208接收的移动通信信号进行接收处理,例如通过波束赋形实现定向接收。在本发明的一些实施例中,发射器205/接收器206可以包括波束赋形控制器,用于控制信号的定向发射/接收。
在本发明的一些实施例中,发射器205和接收器206可看作一个无线调制解调器。在网络设备200中,发射器205和接收器206的数量均可以是一个或者多个。天线208可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器207可用于将移动通信号分成多路,分配给多个的接收器206。
存储器202与网络设备处理器201耦合,用于存储各种软件程序和/或多组指令。具体的,存储器202可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器202可以存储操作 ***(下述简称***),例如uCOS、VxWorks、RTLinux等嵌入式操作***。存储器202还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
网络设备处理器201可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内的终端设备提供小区切换控制等。具体的,网络设备处理器201可包括:管理/通信模块(administration module/communication module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(basic module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(transcoder and submultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本发明实施例中,网络设备处理器201可用于读取和执行计算机可读指令。具体的,网络设备处理器201可用于调用存储于存储器202中的程序,例如本发明的一个或多个实施例提供的信号传输方法在网络设备200侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备200可以是图1示出的无线通信***100中的网络设备101,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB,接入点或TRP等等。
需要说明的,图2所示的网络设备200仅仅是本发明实施例的一种实现方式,实际应用中,网络设备200还可以包括更多或更少的部件,这里不作限制。
参考图3,图3示出了本发明实施例提供的终端设备300。如图3所示,终端设备300可包括:一个或多个终端设备处理器301、存储器302、通信接口303、接收器305、发射器306、耦合器307、天线308、终端设备接口309。这些部件可通过总线304或者其他方式连接,图3以通过总线连接为例。其中:
通信接口303可用于终端设备300与其他通信设备,例如网络设备,进行通信。具体的,网络设备可以是图2所示的网络设备200。具体的,通信接口303可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,终端设备300还可以配置有有线的通信接口303,例如局域接入网(local access network,LAN)接口。发射器306可用于对终端设备处理器301输出的信号进行发射处理。接收器305可用于对天线308接收的移动通信信号进行接收处理。
在本发明的一些实施例中,发射器306和接收器305可看作一个无线调制解调器。在终端设备300中,发射器306和接收器305的数量均可以是一个或者多个。天线308可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器307用于将天线308接收到的移动通信信号分成多路,分配给多个的接收器305。
除了图3所示的发射器306和接收器305,终端设备300还可包括其他通信部件,例如GPS模块、蓝牙(bluetooth)模块、无线高保真(wireless fidelity,Wi-Fi)模块等。不限于无线通信,终端设备300还可以配置有有线网络接口(如LAN接口)来支持有线通信。
存储器302与终端设备处理器301耦合,用于存储各种软件程序和/或多组指令。具体的,存储器302可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器302可以存储操作 ***(下述简称***),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作***。存储器302还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
在本发明的一些实施例中,存储器302可用于存储本发明的一个或多个实施例提供的信号传输方法在终端设备300侧的实现程序。关于本发明的一个或多个实施例提供的信号传输方法的实现,请参考后续实施例。
终端设备处理器301可用于读取和执行计算机可读指令。具体的,终端设备处理器201可用于调用存储于存储器312中的程序,例如本发明的一个或多个实施例提供的信号传输方法在终端设备300侧的实现程序,并执行该程序包含的指令。
可以理解的,终端设备300可以是图1示出的无线通信***100中的终端设备103,可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,终端设备代理,移动客户端等等。
需要说明的,图3所示的终端设备300仅仅是本发明实施例的一种实现方式,实际应用中,终端设备300还可以包括更多或更少的部件,这里不作限制。
本发明实施例中,网络设备101的发送波束为网络设备101预先配置的。
在上述运行环境下,本发明实施例提出了一种信号传输方法。该方法适用于MulteFire或其他使用非授权频谱的无线通信***中。图4是本发明实施例提供的信号传输方法的示意性流程图。如图4所示,本发明实施例提供的信号传输方法包括但不限于步骤S401至S404。下面对该方法实施例的可能实现方式做进一步的描述。
S401:网络设备在第一时间段进行信道侦听。
本发明实施例中信道侦听可以是预定义的某种信道侦听技术。
可选的,信道侦听可以为先听后说(listen before talk,LBT),LBT是指需要传输数据的装置在某一无线载波上发送数据之前需要对该无线载波的无线环境进行检测,以确定是否有其它装置正在该无线载波上传输数据。信道侦听也可以称为空闲信道评估(clear channel assessment,CCA)或载波侦听(carrier sensing,CS),统一称为信道侦听。
本发明实施例中,LBT可以为能量检测模式的LBT,如图5所示,能量检测模式的LBT是指当检测到该无线载波上的能量大于预设门限时,则认为有其它装置正在该无线载波上传输数据,该装置在该无线载波上LBT失败,该装置将避让一段时间后再尝试发送数据;当检测到该无线载波上的能量小于预设门限时,则认为该无线载波处于空闲状态,该装置在该无线载波上LBT成功,该装置在该无线载波上发送数据。本发明实施例中,LBT可以为信号检测模式的LBT,信号检测模式的LBT是指通过检测无线载波上是否有预先设计的信号来判断信道是否空闲。此外,本发明实施例中,LBT还可以为其它模式的LBT,例如,以信号功率或信噪比等因素为衡量标准的LBT。下文描述的信道处于空闲状态可以指检测到该信道上的能量小于能量门限,也可以指未检测到该信道上有预先设计的信号,在此不做限制。下文描述的无线载波不处于空闲状态可以指检测到该信道上的能量大于或等于能量门限,也可以指检测到该信道上有预先设计的信号,在此不做限制。
第三代合伙伙伴项目(3rd generation partnership project,3GPP)在LAA的研究中,评估了四种类型的LBT机制,包括:
类型1:无LBT,即设备发送数据之前不进行LBT。
类型2:不带随机退避过程的LBT,即固定时间长度的LBT。采用固定时长的帧,包括信道占用时间和空闲时间。在进行数据传输之前进行信道侦听,若信道处于空闲状态,则在随后的信道占用时间进行数据传输,否则在整个帧周期内都无法传输数据。为方便描述,下面简称Category-2LBT。
类型3:带随机退避过程的LBT,采用不固定帧周期的帧结构,并且竞争窗口长度固定。若信道处于空闲状态,数据传输可以立即开始,否则进入竞争窗口(contention Window,CW)。
类型4:带随机退避过程的LBT,采用不固定帧周期的帧结构,并且竞争窗口长度不固定。与采用固定长度竞争窗口不同的是,发送端设备可以改变CW的长度。为方便描述,下面简称Category-4LBT。
随机退避是指,若在设备检测到信道处于空闲状态后的等待时间内,该信道依然处于空闲状态,该设备才能在该信道上传输数据。该等待时间时需要在一个指定的最小值和最大值之间进行选择,最小值和最大值指定的范围就称作CW。
可选的,信道侦听可以为Category-2LBT。信道侦听也可以为Category-4LBT。
非授权频谱信道接入后,使用该信道进行信号传输的时长受最大信道占用时间(maximum channel occupancy time,MCOT)限制。Category-2LBT的MCOT较小,通常取值为1毫秒(ms)。Category-4LBT的MCOT较大,且信道接入的业务优先级越高,Category-4LBT的MCOT相对越小。
可选的,网络设备在第一时间段进行全向的信道侦听。全向的信道侦听是指网络设备在信道侦听过程中,不区分信号是从网络设备哪个接收波束的波束范围到达的,即信道侦听在全部信号到达方向上进行。
可选的,网络设备在第一时间段利用全向接收天线进行全向的信道侦听。
可选的,网络设备在第一时间段进行有向的信道侦听。有向的信道侦听是指网络设备在信道侦听过程中,仅侦听特定的接收波束范围内的信号,即网络设备可以侦听在特定的接收波束范围内是否有其他设备占用信道。
可选的,网络设备在第一时间段利用有向接收天线进行有向的信道侦听。或者,网络设备在第一时间段利用利用接收波束赋形技术进行有向的信道侦听。
可选的,网络设备在第一时间段内针对第一接收波束进行有向的信道侦听,若网络设备侦听到信道为空闲状态,则网络设备在第一时间段后的MCOT内连续发送H个发送波束的信号,第一接收波束的波束范围包含了上述H个发送波束的波束范围,H大于等于1的正整数。
举例来说,网络设备配置了16个发送波束,网络设备需要发送上述16个发送波束中的3个发送波束的信号,上述3个发送波束分别为上述16个发送波束中的第1个发送波束、第2个发送波束以及第3个发送波束。网络设备在第一时间段内针对第一接收波束进行有向的信道侦听,如图6所示,第一接收波束的波束范围包含了上述第1个发送波束的波束范围、上述第2个发送波束的波束范围以及上述第3个发送波束的波束范围。若网络设备侦听到第一接收波束的波束范围内信道为空闲状态,则网络设备在第一时间段后的MCOT 内连续发送上述第1个发送波束的信号、上述第2个发送波束的信号以及上述第3个发送波束的信号。
需要说明的是,网络设备接收波束的波束范围是指网络设备具有较高接收天线增益的信号接收方向范围。如图6所示,以水平方向的波束方向为例,假设正东方向为0度,正北方向为90度,正西方向为180度,正南方向为270度。若网络设备通过一个接收波束接收正东方向到达的信号,在称该接收波束方向为0度。若在0度的接收波束方向至60度的接收波束方向范围内,网络设备的第一接收波束的接收天线增益均大于第一预设增益值,则称第一接收波束的波束范围为0度接收波束方向至60度接收波束方向。同理可知,网络设备发送波束的波束范围是指网络设备具有较高发射天线增益的信号发送方向范围。若网络设备通过发送波束向正东方向发射信号,则称该发送波束方向为0度。若在10度的发送波束方向至50度的发送波束方向范围内,网络设备的第一发送波束的发射天线增益均大于第二预设增益值,则称第一发送波束的波束范围为10度的发送波束方向至50度的发送波束方向。此外,第一接收波束的波束范围包含第一发送波束的波束范围。例如,第一预设增益值为10dBi,第二预设增益值为10dBi。
可选的,网络设备可以具有多个信道侦听单元,用于同时针对多个不同的接收波束进行信道侦听,当侦听到上述多个不同的接收波束中的一或多个接收波束的信道为空闲状态时,网络设备可以从上述一或多个接收波束中选择一个接收波束,并且在该接收波束的波束范围内的一或多个发送波束上进行信号的发送。该接收波束的波束范围包含上述一或多个发送波束的波束范围。
可选的,上述多个不同的接收波束中的任意两个接收波束的波束范围在空间方向上可以有重叠的部分,也可以没有重叠的部分,本发明实施例对此不作具体限定。
可选的,网络设备可以具有多个信道侦听单元,用于同时针对多个不同的接收波束进行信道侦听,上述多个接收波束的中任意两个接收波束的波束范围在空间方向上可以有重叠的部分,也可以没有重叠的部分,对此不做限定。当多个接收波束中一或多个接收波束的信道侦听结果为信道空闲状态时,网络设备可以在一或多个发送波束上进行信号的发送。上述一或多个发送波束中任一发送波束的波束范围包含在上述一或多个接收波束的至少一个接收波束的波束范围中。
S402:若网络设备侦听到信道为空闲状态,则网络设备在第一时间段之后的M个时间段依次发送M个发送波束的信号。网络设备配置的发送波束总数为K,K个发送波束中的第s个发送波束对应N s个时间窗,上述K个发送波束对应P个时间窗。上述M个时间段中的第二时间段位于第i个发送波束对应的第j个时间窗内,上述第j个时间窗为上述第i个发送波束对应的N i个时间窗中的一个时间窗。
具体的,若网络设备侦听到信道为空闲状态,则网络设备在第一时间段之后的M个时间段依次发送M个发送波束的信号。网络设备配置的发送波束总数为K,上述K个发送波束对应P个时间窗。上述K个发送波束包括上述M个发送波束,上述M个发送波束包括上述K个发送波束中的第i个发送波束,上述M个时间段中的第二时间段位于上述第i个发送波束对应的第j个时间窗内。上述第j个时间窗为上述第i个发送波束对应的N i个时间窗中的一个时间窗。K为大于等于1的正整数,P为大于等于1的正整数,N s为小于P的 正整数,N i为大于等于1且小于P的正整数,M为大于等于1且小于等于K的正整数。
可以理解,K个发送波束中的第s个发送波束对应N s个时间窗,N s可以等于0,也可以大于0,即上述K个发送波束中的一个发送波束对应上述P个时间窗中的零个、一个或多个时间窗。上述P个时间窗中的一个时间窗对应上述K个发送波束中的一个发送波束,上述P个时间窗总共对应K个发送波束中的S个发送波束,S小于等于K。上述K个发送波束中的第i个发送波束对应N i个时间窗,第二时间段位于上述第i个发送波束对应的第j个时间窗内,上述N i个时间窗包括上述第j个时间窗,N i大于等于1。第i个发送波束对应的第j个时间窗表示上述P个时间窗中的第j个时间窗为用于发送第i个发送波束的信号的时间窗。
可选的,网络设备发送上述K个发送波束中的第i个发送波束的信号,该信号可以包括DRS信号、RS信号和/或SS block等。
可选的,上述K个发送波束的中任意两个发送波束的波束范围在空间方向上可以有重叠的部分,也可以没有重叠的部分,本发明实施例对此不作具体限定。
上述P个时间窗中任意两个相邻的时间窗满足以下关系:上述P个时间窗中的第h个时间窗的起始时刻早于或等于上述P个时间窗中的第h+1个时间窗的起始时刻,上述P个时间窗中的第h个时间窗的截止时刻晚于或等于上述P个时间窗中的第h+1个时间窗的起始时刻,上述P个时间窗中的第h个时间窗的截止时刻早于或等于上述P个时间窗中的第h+1个时间窗的截止时刻。上述P个时间窗中两个相邻的时间窗可以是重叠的,也可以是非重叠的。下面对上述P个时间窗中两个相邻的时间窗的可能的位置关系做进一步的描述。
本发明实施例中,上述P个时间窗中两个相邻的时间窗的位置关系包括但不限于如下四种实现方式:
(1)第一种位置关系中,上述P个时间窗中的第a个时间窗的起始时刻早于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻晚于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻早于上述P个时间窗中的第a+1个时间窗的截止时刻。上述P个时间窗中两个相邻的时间窗的一种可能的位置关系如图7A所示。上述P个时间窗的一种可能的位置关系如图7B所示。
(2)第二种位置关系中,上述P个时间窗中的第b个时间窗的起始时刻早于上述P个时间窗中的第b+1个时间窗的起始时刻,上述P个时间窗中的第b个时间窗的截止时刻等于上述P个时间窗中的第b+1个时间窗的截止时刻。上述P个时间窗中两个相邻的时间窗的一种可能的位置关系如图8A所示。上述P个时间窗的一种可能的位置关系如图8B所示。
(3)第三种位置关系中,上述P个时间窗中的第c个时间窗的起始时刻等于上述P个时间窗中的第c+1个时间窗的起始时刻,上述P个时间窗中的第c个时间窗的截止时刻早于上述P个时间窗中的第c+1个时间窗的截止时刻。上述P个时间窗中两个相邻的时间窗的一种可能的位置关系如图9A所示。上述P个时间窗的一种可能的位置关系如图9B所示。
(4)第四种位置关系中,上述P个时间窗中的第e个时间窗的截止时刻等于上述P个时间窗中的第e+1个时间窗的起始时刻。上述P个时间窗中两个相邻的时间窗的一种可能的位置关系如图10A所示。上述P个时间窗的一种可能的位置关系如图10B所示。
其中,第一位置关系、第二位置关系和第三位置关系中两个相邻的时间窗有重叠,第四位置关系中两个相邻的时间窗无重叠。
本发明实施例中,若上述P个时间窗中两个相邻的时间窗的位置关系为第一位置关系或第四位置关系,则上述两个相邻的时间窗的时长可以相同,也可以不同。本发明实施例对此不作具体限定。
本发明实施例中,除了如图7B、图8B、图9B或图10B所示的上述P个时间窗的位置关系,上述P个时间窗的位置关系还可以包括上述第一位置关系、第二位置关系、第三位置关系和第四位置关系中的多种位置关系的组合。例如,如图11所示,上述P个时间窗的位置关系包括第一位置关系和第四位置关系。
除了如图7B、图8B、图9B、图10B或图11所示的上述P个时间窗的位置关系,上述P个时间窗的位置关系还可以包括但不限于如下两种实现方式:
(1)第五种位置关系中,上述P个时间窗中的第a个至第a+U个连续的时间窗完全重叠。并且第a个时间窗的起始时刻早于上述P个时间窗中的第a+U+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻晚于上述P个时间窗中的第a+U+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻早于上述P个时间窗中的第a+U+1个时间窗的截止时刻。上述P个时间窗的一种可能的位置关系如图12所示。其中U为大于等于1的正整数。
(2)第六种位置关系中,上述P个时间窗中的第a个至第a+U个连续的时间窗完全重叠。并且第a个时间窗的截止时刻等于上述P个时间窗中的第a+U+1个时间窗的起始时刻。上述P个时间窗的一种可能的位置关系如图13所示。
本发明实施例中,上述P个时间窗中的每个时间窗的时长大于等于网络设备发送一个承载有用信息所需时间单元的最小时长。
可以理解,网络设备通常需要在一定大小的时频资源单元上进行信号发送。以LTE***为例,时域上,时频资源单元的大小可以以符号长度、时隙、子帧等为基本单位。例如,在LTE***中,可以选择时长约等于70微秒(us)的符号长度作为网络设备发送一个承载有用信息所需时间单元的基本单位,即网络设备发送一个承载有用信息所需时间单元的最小时长,网络设备发送一个承载有用信息的信号的起始时刻需要对齐符号的起始边界。
需要说明的是,网络设备信道侦听的结束时刻可能与下一个符号的起始边界并不对齐,这种情况下,信道侦听的结束时刻到下一个符号的起始边界之间的时间间隔小于符号长度。上述时间间隔不能用于网络设备发送一个承载有用信息的信号,为了保障该信道不被其它进行信道侦听的设备抢占,网络设备可以在上述时间间隔内传输不承载有用信息的信号,上述不承载有用信息的信号是指不需要终端进行接收的信号,且该信号仅用于占据信道,以防其他设备侦听到该信道为空闲状态。
本发明实施例中,上述P个时间窗中任意两个相邻的时间窗的发送优先级满足如下关系:上述P个时间窗中的第h个时间窗的发送优先级高于上述P个时间窗中的第h+1个时间窗。上述M个时间段中的第w个时间段对应的时间窗的发送优先级高于M个时间段中的第w+1个时间段对应的时间窗。
可选的,网络设备在上述P个时间窗内最多发送R i次上述K个发送波束中的第i个发 送波束的信号,R i为大于等于1的正整数。
可选的,若上述K个发送波束中的第i个发送波束的信号为DRS信号,则网络设备在上述P个时间窗内最多发送1次上述第i个发送波束的DRS信号。
可选的,若网络设备侦听到信道为空闲状态,网络设备在第一时间段之后的M个时间段依次发送M个发送波束的信号,上述M个发送波束的信号在上述P个时间窗内第一时间段之前均未被发送。
可选的,若网络设备在第一时间段通过Category-2LBT侦听到信道为空闲状态,则网络设备在第一时间段之后的M个时间段依次发送M个发送波束的信号,上述M个时间段中的第二时间段位于上述K个发送波束中的第i个发送波束对应的第j个时间窗内。上述M个时间段位于第一时间段之后的Category-2LBT的MCOT内,M大于等于1且小于等于K。第一时间段的截止时刻与第二时间段的的起始时刻的时间间隔可以等于零,也可以小于第一时间间隔,第一时间间隔加上述K个发送波束中的第i个发送波束的信号时长所得时长小于或等于Category-2LBT的MCOT。若上述K个发送波束中的第i个发送波束的信号为DRS信号,则在上述K个发送波束中的第i个发送波束的信号在上述P个时间窗内第一时间段之前未被发送。
可以理解,在上述第一时间段,Category-2LBT信道侦听所采用的接收波束的波束范围包含上述M个发送波束的波束范围。
例如,M等于1,上述K个发送波束中的第i个发送波束的信号时长等于0.9ms,第一时间间隔等于0.1ms,Category-2LBT的MCOT等于1ms。
可选的,若网络设备在第一时间段通过Category-4LBT侦听到信道为空闲状态,则网络设备在第一时间段之后的M个时间段依次发送M个发送波束的信号,上述M个时间段中的第二时间段位于上述K个发送波束中的第i个发送波束对应的第j个时间窗内。上述M个时间段位于第一时间段之后的Category-4LBT的MCOT内。M大于等于1且小于等于K,第一时间段的截止时刻与第二时间段的起始时刻的第一时间间隔大于零且小于网络设备发送一个承载有用信息所需时间单元的时长。若上述M个发送波束的信号为DRS信号,则上述M个发送波束的信号在上述P个时间窗内第一时间段之前均未被发送。
可以理解的,上述第一时间段Category-4LBT信道侦听所采用的接收波束的波束范围应包含上述M个发送波束的波束范围。
例如,M等于4,上述K个发送波束中的第i个发送波束的信号时长等于1ms,M个时间段依次发送M个发送波束的信号的时长为4ms,第一时间间隔等于0.3ms,Category-4LBT的MCOT等于6ms。
可选的,若第二时间段不仅位于上述K个发送波束中的第i个发送波束对应的第j个时间窗内,还位于上述K个发送波束中的第e个发送波束对应的第f个时间窗内,且上述第j个时间窗的起始时刻早于或等于上述第f个时间窗的起始时刻,上述第j个时间窗的起截止时刻早于或等于上述第f个时间窗的截止时刻,则网络设备在第二时间段内优先发送上述K个发送波束中的第i个发送波束的信号。
可以理解,网络设备在第二时间段内发送上述K个发送波束中的第i个发送波束的信号之前,网络设备在第一时间段针对第二接收波束进行信道侦听,第二接收波束的波束范 围包含上述第i个发送波束的波束范围。
举例来说,网络设备配置的发送波束总数为5,5个发送波束对应8个时间窗,网络设备在5个发送波束发送的信号均为DRS信号。如图14A所示,网络设备在DRS信号可发送点之前的第一时间段通过Category-2LBT侦听到信道为空闲状态。第一时间段后的信道占用时间段位于上述8个时间窗中的第2个时间窗和第3个时间窗内,上述第2个时间窗和第3个时间窗分别对应5个发送波束中的第2个发送波束和第3个发送波束。如图14A所示,若在第三时间段内未发送上述第2个发送波束的DRS信号,则网络设备在信道占用时间段内发送上述第2个发送波束的DRS信号。可以理解的,这种情况下网络设备在第一时间段进行的Category-2LBT信道侦听的接收波束的波束范围包含上述第2个发送波束的波束范围。若在第三时间段内发送了上述第2个发送波束的DRS信号,则网络设备在信道占用时间段内发送上述第3个发送波束的DRS信号。可以理解,这种情况下网络设备在第一时间段进行的Category-2LBT信道侦听的接收波束的波束范围包含上述第3个发送波束的波束范围。若在第三时间段内发送了上述第2个发送波束和上述第3个发送波束的DRS信号,则网络设备在信道占用时间段内不发送DRS信号。上述第三时间段表示8个时间窗内第一时间段之前的时间段。
举例来说,网络设备配置的发送波束总数为5,5个发送波束对应8个时间窗,网络设备在5个发送波束发送的信号均为DRS信号。如图14B所示,网络设备在第一时间段通过Category-4LBT侦听到信道为空闲状态。第一时间段后的信道占用时间段位于上述8个时间窗中的第2个时间窗、第3个时间窗和第4个时间窗内,上述第2个时间窗、第3个时间窗和第4个时间窗分别对应上述5个发送波束中的第2个发送波束、第3个发送波束和第4个发送波束。如图14B所示,若在第四时间段内未发送上述第2个发送波束、第3个发送波束和第4个发送波束的DRS信号,则网络设备在信道占用时间段内的Δt1、Δt2和Δt3这三个时间段内分别发送上述第2个发送波束、第3个发送波束和第4个发送波束的DRS信号。可以理解,这种情况下网络设备在第一时间段进行的Category-4LBT信道侦听的接收波束的波束范围包含上述第2个发送波束、第3个发送波束和第4个发送波束的波束范围。若在第四时间段内发送了上述第2个发送波束的DRS信号,则网络设备仅在Δt1和Δt3这两个时间段内分别发送上述第3个发送波束和第4个发送波束的DRS信号。可以理解,这种情况下网络设备在第一时间段进行的Category-4LBT信道侦听的接收波束的波束范围包含上述第3个发送波束和第4个发送波束的波束范围。若在第四时间段内发送了上述第2个发送波束和第3个发送波束的DRS信号,则网络设备仅在Δt3时间段内发送上述第4个发送波束的DRS信号。可以理解,这种情况下网络设备在第一时间段进行的Category-4LBT信道侦听的接收波束的波束范围包含上述第4个发送波束的波束范围。上述第四时间段表示8个时间窗内第一时间段之前的时间段。
举例来说,网络设备配置的发送波束总数为5,5个发送波束对应8个时间窗,网络设备在5个发送波束发送的信号均为DRS信号,DRS信号的时长为1ms。如图14C所示,8个时间窗中的每个时间窗的时长等于DRS信号时长,每个时间窗的起始点为DRS信号的可发送点,上述8个时间窗中的第3个时间窗对应上述5个发送波束中的第3个发送波束。网络设备在上述第3个时间窗之前的第一时间段通过Category-2LBT进行信道侦听, Category-2LBT的MCOT为1ms。如图14C所示,若网络设备侦听到信道为空闲状态,且第五时间段内未发送上述第3个发送波束的DRS信号,则在上述第3个时间窗内发送上述第3个发送波束的DRS信号。若网络设备侦听到信道不是空闲状态,则在上述第3个时间窗内不发送DRS信号,并在上述8个时间窗中的第4个时间窗之前的第一时间段内再次进行信道侦听。可以理解,网络设备在第一时间段进行的Category-2LBT信道侦听的接收波束的波束范围包含上述第3个发送波束的波束范围。上述第五时间段表示8个时间窗内第一时间段之前的时间段。
可选的,上述P个时间窗为第一窗口的时间窗,上述P个时间窗的起始时刻与第一窗口的起始时刻相同,上述P个时间窗的截止时刻与第一窗口的截止时刻相同,第一窗口为第一窗口集合中的一个窗口。如图15所示,第一窗口集合中的第g个窗口的起始时刻与第一窗口集合中的第g+1个窗口的起始时刻的时间间隔为第一周期。
可选的,第一窗口集合中的两个相邻的窗口的时长可以相同,也可以不同。本发明实施例对此不作具体限定。
可选的,第一窗口集合中的两个相邻的窗口内的时间窗个数可以相同,也可以不同。本发明实施例对此不作具体限定。
可选的,第一窗口为DMTC窗口。
第一窗口集合中的任意两个窗口的时长可以相同,也可以不同。第一窗口集合中的任意两个窗口中的时间窗的个数可以相同,也可以不同。本发明实施例对此均不作具体限定。
可选的,第一窗口集合中第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,第一窗口集合中第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系可以相同,也可以不同,本发明实施例对此不作具体限定。
可选的,第一对应关系和第二对应关系不同,且第一对应关系和第二对应关系满足一定规律。下面对该规律可能的形式做进一步的描述。
本发明实施例中,第一对应关系和第二对应关系所满足的规律包括但不限于如下两种:
(1)第一种规律,若z为小于等于P g+1–x的正整数,则第一窗口集合中第g个窗口中的第z个时间窗对应的发送波束与第一窗口集合中第g+1个窗口中的第z+x个时间窗对应的发送波束相同,P g+1为第一窗口集合中第g+1个窗口中的时间窗个数,x为小于K的正整数;若z为大于P g+1-x且小于等于P g+1的正整数,则第一窗口集合中第g个窗口中的第z个时间窗对应的发送波束与第一窗口集合中第g+1个窗口中的第z+x-P g+1个时间窗对应的发送波束相同。
(2)第二种规律,若P g+1+1-z大于零,则第一窗口集合中第g个窗口中的第z个时间窗对应的发送波束与第一窗口集合中第g+1个窗口中的第P g+1+1-z个时间窗对应的发送波束相同。若P g+1+1-z小于或等于零,则第一窗口集合中第g个窗口中的第z个时间窗对应的发送波束与第一窗口集合中第g+1个窗口中的第P g+1*(t+1)+1-z个时间窗对应的发送波束相同。t为使P g+1*(t+1)+1-z大于零的最小正整数,z为大于等于1小于P g的正整数,P g为第一窗口集合中第g个窗口中时间窗个数。
举例来说,网络设备配置的发送波束总数为3,如图16A所示,第一窗口集合中第g 个窗口中的时间窗个数为6,第一窗口集合中第g+1个窗口中的时间窗个数为5。第一对应关系和第二对应关系满足上述第一种规律,x取值为2。如图16A所示,是第一对应关系和第二对应关系的一种可能的示意图。
举例来说,网络设备配置的发送波束总数为3,如图16B所示,第一窗口集合中第g个窗口中的时间窗个数为6,第一窗口集合中第g+1个窗口中的时间窗个数为5。第一对应关系和第二对应关系满足上述第二种规律。如图16B所示,是第一对应关系和第二对应关系的一种可能的示意图。
可选的,第一窗口集合中以连续的F个窗口为一个子集,第一窗口集合的子集间没有重叠,第一窗口集合中的每个子集中的所有时间窗对应了I个发送波束,I等于K。第一窗口集合中的第r个子集和第r+1个子集为相邻子集,上述第r个子集的最后一个窗口与上述第r+1个子集的第一个窗口之间没有窗口存在。第一窗口集合中每个子集的时间窗和上述K个发送波束具有对应关系,并且第一窗口集合中任意相邻两个子集的时间窗和上述K个发送波束的对应关系相同。
举例来说,网络设备配置的发送波束总数为6,如图17所示,第一窗口集合中以连续的2个窗口为一个子集,第一窗口集合中第g个窗口和第g+1个窗口组成第一子集,第一窗口集合中第g-2个窗口和第g-1个窗口组成第二子集,第一子集和第二子集为相邻子集。图17是第一窗口集合中每个子集中的时间窗和6个发送波束的一种可能的对应关系。
可选的,网络设备在第一时间段之后的M个时间段依次发送M个发送波束的信号之前,还包括:若网络设备在第一时间段侦听到信道为空闲状态,则网络设备根据配置信息从上述K个发送波束中确定上述M个发送波束,配置信息包括上述K个发送波束和上述P个时间窗的对应关系。
可以理解,配置信息可以包含第一窗口集合的周期、第一窗口集合中各窗口的起始位置和第一窗口集合中各窗口的结束位置等信息,还可以包含第一窗口集合中各窗口的时间窗的个数、各窗口中每个时间窗的起始位置、各窗口中每个时间窗的结束位置以及各窗口中每个时间窗和上述K个发送波束的对应关系。
可选的,配置信息具有更新规则。例如,配置信息中包括一个有效时间通知信息,即该配置信息只在有效时间段内有效,有效时间段之后网络设备会更新发送信号中的配置信息。
可以理解,网络设备根据配置信息获知上述P个时间窗的位置关系,以及上述P个时间窗与上述K个发送波束的对应关系。若网络设备在第一时间段侦听到信道为空闲状态,则网络设备根据配置信息获知上述M个时间段中的第y个时间段所在的Y个时间窗,以及上述Y个时间窗对应的发送波束。网络设备根据这Y个时间窗的发送优先级,从而确认上述第y个时间段发送的信号的发送波束。
举例来说,网络设备配置的发送波束总数为5,5个发送波束对应8个时间窗。网络设备根据配置信息获知上述8个时间窗的位置关系,以及上述8个时间窗与上述5个发送波束的对应关系。网络设备在第一时间段之后的第二时间段发送信号。如图18所示,第二时间段位于上述8个时间窗的第1个时间窗、第2个时间窗和第3个时间窗的重叠时间段内,上述第1个时间窗、第2个时间窗和第3个时间窗分别对应上述5个发送波束中的第2个 发送波束、第3个发送波束和第2个发送波束。上述第1个时间窗的发送优先级高于上述第2个时间窗,上述第2个时间窗的发送优先级高于上述第3个时间窗。因此,终端根据配置信息和各时间窗的发送优先级,确认在第二时间段内发送的信号的发送波束为上述第1个时间窗对应的上述第2个发送波束。
可选的,网络设备每次发送的上述K个发送波束中的第i个发送波束的信号均包含配置信息。
可选的,网络设备发送的上述K个发送波束中的第i个发送波束的信号周期性的包含配置信息。例如,网络设备发送的上述第i个发送波束的信号中,每三次中有一次包含配置信息。
可选的,网络设备发送的上述K个发送波束中的第i个发送波束的信号为DRS信号,该DRS信号包含配置信息。该配置信息可以承载在该DRS信号中的物理广播信道(physical broadcast channel,PBCH)部分。该配置信息也可以承载在该DRS信号中的物理下行控制信道(physical downlink control channel,PDCCH)部分。该配置信息也可以承载在该DRS信号中的物理下行共享信道(physical downlink sharing channel,PDSCH)部分。该配置信息还可以承载在该DRS信号中的PBCH、PDCCH和/或PDSCH中。本发明实施例对此不作具体限定。
可选的,网络设备在第二时间段内发送上述K个发送波束中的第i个发送波束的信号,该信号包含该信号的发送波束编号标识。该信号的发送波束编号标识用于表征该信号对应于上述K个发送波束中的第i个发送波束。下面对信号的发送波束编号标识可能的编码方式做进一步的描述。
本发明实施例中,信号的发送波束编号标识的编码方式包括但不限于如下两种:
(1)第一种编码方式,网络设备通过n bit二进制信息表示上述K个发送波束的信号的发送波束编号标识,n为小于等于log  2P的最大正整数。第一种编码方式下,在上述P个时间窗内每个发送波束的信号的发送波束编号标是固定不变的。
(2)第二种编码方式,第二时间段位于上述P个时间窗中的V个时间窗的重叠时间段内,上述V个时间窗对应上述K个发送波束中的W个发送波束,V大于等于1且小于等于P,W大于等于1且小于等于K。若V等于1或V大于1且W等于1,即第二时间段仅对应一个发送波束,即上述K个发送波束中的第i个发送波束,则网络设备不需要指示该信号的发送波束编号标识,终端可以根据配置信息获知第二时间段对应上述K个发送波束中的第i个发送波束。若V大于1且W大于1,即上述V个时间窗包括上述P个时间窗中的第j个时间窗,上述W个发送波束包括上述K个发送波束中的第i个发送波束,则网络设备通过m bit二进制信息表示上述W个发送波束的信号的发送波束编号标识,m为小于等于log 2W的最大正整数。第二种编码方式下,在上述P个时间窗内每个发送波束的信号的发送波束编号标是可变的。第二种编码方式适用于如下情况:网络设备发送上述K个发送波束中的第i个发送波束的信号均包含配置信息或者周期性的包含配置信息,接收端设备可以通过配置信息获知第二时间段对应的V个时间窗,以及V个时间窗对应的W个发送波束,当V或W等于1时,终端可以根据配置信息确定信号的发送波束,V大于1且W大于1时终端根据配置信息以及信号的发送波束编号标识确定信号的发送波束。
举例来说,信号的发送波束编号标识采用第一种编码方式。网络设备配置了8个发送波束,8个发送波束中第1个发送波束的信号的发送波束编号标识为000,8个发送波束中中第7个发送波束的信号的发送波束编号标识为110。
举例来说,网络设备配置了8个发送波束,8个发送波束对应10个时间窗。网络设备在第二时间段内发送8个发送波束中的第3个发送波束的信号,该信号包含该信号的发送波束编号标识和配置信息,信号的发送波束编号标识采用第二种编码方式。若第二时间段仅位于上述10个时间窗中的第6个时间窗内,网络设备不需要指示信号的发送波束编号标识。若第二时间段位于上述10个时间窗中的3个时间窗的重叠时间段内,上述3个时间窗对应于8个发送波束中的2个发送波束,即8个发送波束中的第2个发送波束和8个发送波束中的第4个发送波束。网络设备通过1bit二进制信息表示上述2个发送波束的信号的发送波束编号标识,上述第2个发送波束的信号的发送波束编号标识为0,上述第4个发送波束的信号的发送波束编号标识为1。接收端设备根据配置信息,获知第二时间段位于上述10个时间窗中的3个时间窗的重叠时间段内,以及上述3个时间窗对应的2个发送波束。若接收端接收到发送波束编号标识为1的信号,则接收端根据上述2个发送波束的顺序,判断接收到的信号为上述第4个发送波束的信号。
可选的,网络设备发送的上述K个发送波束中的第i个发送波束的信号包含配置信息,该配置信息可以携带该信号的发送波束编号标识。
可选的,信号的配置信息优先承载在PDSCH上。
可以理解,这是由于配置信息的信息量较大,需要更多的传输资源来传输配置信息,而相比于PBCH和PDCCH,PDSCH中的传输资源更多。
可选的,信号的发送波束编号标识优先承载在PBCH上。
可以理解,这是由于信号的发送波束编号标识的信息量较小,而相比于PDSCH和PDCCH,PBCH中的传输资源相对较少,且PBCH的接收复杂性相对较小。因此,若终端需要接收网络设备发送的该信号,并获取该信号的发送波束编号标识,网络设备将信号的发送波束编号标识承载在PBCH上,可以减少终端实施上述接收信号和获取发送波束编号标识的过程的复杂度。
S403:终端确定K个发送波束中第i个发送波束对应的N i个时间窗在上述P个时间窗中的位置。
可选的,终端确定上述K个发送波束中的J个发送波束对应的A个时间窗在上述P个时间窗中的位置,A个时间窗包括N i个时间窗。上述J个发送波束包括上述第i个发送波束及上述第i个发送波束的一或多个相近的发送波束。
可选的,终端确定上述K个发送波束中第i个发送波束对应的N i个时间窗在上述P个时间窗中的位置之前,还包括:终端在第一时刻接收网络设备发送的上述K个发送波束中的第i个发送波束的信号,该信号中包含配置信息和该信号的发送波束编号标识;终端对该信号进行解析,获取配置信息和该信号的发送波束编号标识;终端根据该信号的发送波束编号标识获知该信号的发送波束为上述K个发送波束中的第i个发送波束。第一时刻早于上述P个时间窗的起始时刻,配置信息包括上述P个时间窗和上述K个发送波束的对应关系。
举例来说,网络设备配置的发送波束的总数为8,终端在第一时刻接收网络设备发送的8个发送波束中的第6个发送波束的DRS信号,该DRS信号中包含配置信息和该信号的发送波束编号标识;终端对该DRS信号中的PBCH、PDCCH和/或PDSCH进行解析,获取配置信息和该信号的发送波束编号标识;终端根据该信号的发送波束编号标识获知该信号的发送波束为8个发送波束中的第6个发送波束。
可选的,终端在第一时刻接收的信号包含该信号的发送波束编号标识,终端根据该信号的发送波束编号标识获知该信号的发送波束。
可选的,第一时刻后终端根据配置信息,确定在上述P个时间窗内存在上述N i个时间窗对应于上述K个发送波束中的第i个发送波束,并根据配置信息确定上述K个发送波束中的第i个发送波束对应的N i个时间窗在上述P个时间窗中的位置。
可选的,第一时刻后终端根据配置信息确定在上述P个时间窗内存在上述A个时间窗对应于上述J个发送波束,并根据配置信息确定上述J个发送波束对应的A个时间窗在上述P个时间窗中的位置。
可以理解,在获取配置信息之前,为了在第一时刻接收到网络设备发送的信号,终端需要在可能存在网络设备提供通信服务的多个载波频点中进行切换,并在切换后的载波频点持续尝试接收携带配置信息的信号。终端在第一时刻接收到携带配置信息的信号后,通过信号解析获取配置信息和该信号的发送波束。由于该配置信息中包含了第一窗口集合中各窗口的位置关系、上述各窗口中的各时间窗的位置关系以及上述各窗口中的各时间窗与上述K个发送波束的对应关系,因此,在第一时刻后终端可以根据该配置信息确定该终端所需的发送波束对应的时间窗在每个窗口中的位置。
S404:在上述N i个时间窗内,终端检测并接收网络设备发送的上述K个发送波束中的第i个发送波束的信号。
可选的,在上述A个时间窗内,终端检测并接收网络设备发送的上述K个发送波束中的J个发送波束的信号,上述J个发送波束包括上述第i个发送波束及上述第i个发送波束的一或多个相近的发送波束。
可选的,在上述N i个时间窗内,终端检测并接收网络设备发送的上述K个发送波束中的第i个发送波束的信号,以及进行信道质量测量。
可选的,在上述A个时间窗内,终端检测并接收网络设备发送的上述J个发送波束的信号,以及进行信道质量测量。
可选的,在上述P个时间窗内,终端最多仅需检测并接收到一次网络设备发送的上述K个发送波束中第i个发送波束的信号。
可以理解,在上述N i个时间窗内的第二时刻,若终端检测并接收到网络设备发送的上述K个发送波束中的第i个发送波束的信号,则在上述N i个时间窗内第二时刻后终端停止检测网络设备发送的上述第i个发送波束的信号。
可选的,在上述P个时间窗内,终端仅需检测并接收到一次上述J个发送波束中的发送波束的信号。
可以理解,在上述N i个时间窗内的第二时刻,若终端检测并接收到网络设备发送的上J个发送波束中的发送波束的信号,则在上述N i个时间窗内第二时刻后终端停止检测网络 设备发送的上述J个发送波束的信号。
可选的,在上述P个时间窗内,针对上述J个发送波束中的任意一个发送波束的信号,终端最多仅需检测并接收到一次。
可以理解,在上述A个时间窗内的第三时刻,若终端检测并接收到网络设备发送的上述J个发送波束中的一个发送波束的信号,例如,上述K个发送波束中的第i+1个发送波束的信号,上述J个发送波束包括上述第i+1个发送波束,则终端在上述A个时间窗内第三时刻后停止检测网络设备发送的上述第i+1个发送波束信号。但是终端将继续检测并接收网络设备发送的上述J个发送波束中其他发送波束的信号,例如,上述K个发送波束中的第i个发送波束的信号。
可选的,在上述P个时间窗内,终端可以多次检测并接收到网络设备发送的上述K个发送波束中的第i个发送波束的信号。
可以理解,在上述N i个时间窗内的第二时刻,若终端检测并接收到网络设备发送的上述K个发送波束中的第i个发送波束的信号,则终端在上述N i个时间窗内第二时刻后继续检测并接收上述第i个发送波束的信号。
可选的,在上述P个时间窗内,终端可以多次检测并接收到网络设备发送的上述J个发送波束的信号。
可以理解,在上述A个时间窗内的第三时刻,若终端检测并接收到网络设备发送的上述J个发送波束中的一个发送波束的信号,例如,上述K个发送波束中的第i+1个发送波束的信号,则终端在上述A个时间窗内第三时刻后继续检测并接收网络设备发送的上述第i+1个发送波束信号。
可选的,终端在上述N i个时间窗中的第二时间段接收到网络设备发送的信号,该信号包括该信号的发送波束编号标识,该信号的发送波束编号标识的编码方式为第一种编码方式,终端根据该信号的发送波束编号标识获知该信号为上述K个发送波束中的第i个发送波束的信号。
举例来说,网络设备配置的波束的个数为8,终端在上述N i个时间窗内接收到的信号的发送波束编号标识为111,该信号的发送波束编号标识的编码方式为第一种编码方式,则终端根据该信号的发送波束编号标识获知该信号为8个发送波束中的第8个发送波束的信号。
可选的,终端在上述N i个时间窗中的第二时间段内接收到网络设备发送的信号,该信号包括该信号的发送波束编号标识和配置信息,该信号的发送波束编号标识的编码方式为第二种编码方式。终端根据配置信息获知第二时间段对应的V个时间窗,以及V个时间窗对应的W个发送波束。然后,终端根据上述W个发送波束和该信号的发送波束编号标识获知该信号的发送波束。
可以理解,上述配置信息可以是终端在第二时间段之前获取的,即终端在第二时间段之前接收到网络设备发送的包含该配置信息的信号。上述配置信息也可以是终端在第二时间段内获取的,即终端在第二时间段内接收到的网络设备发送的信号包含该配置信息。
举例来说,网络设备配置的发送波束的个数为8,终端根据配置信息获知第二时间段位于3个时间窗的重叠时间段内,并且还获知上述3个时间窗对应3个发送波束,即8个 发送波束中的第2个发送波束、第4个发送波束和第5个发送波束。该信号的发送波束编号标识的编码方式为第二种编码方式。若终端在上述N i个时间窗中的第二时间段内接收到的信号的发送波束编号标识为00,则该信号为上述第2个发送波束的信号。若终端在上述N i个时间窗中的第二时间段内接收到的信号的发送波束编号标识为01,则该信号为上述第4个发送波束的信号。若终端在上述N i个时间窗中的第二时间段内接收到的信号的发送波束编号标识为10,则该信号为上述第5个发送波束的信号。
可以理解,上述N i个时间窗位于第一窗口集合中的一个窗口中。在第一窗口集合的不同窗口中,终端均可以检测并接收上述K个发送波束中的第i个发送波束的信号,并且终端在一个窗口中是否检测并接收上述第i个发送波束的信号不会影响终端在另一个窗口中对上述第i个发送波束的信号的检测和接收。
实施本发明实施例所提供的方法,网络设备配置了K个发送波束,K个发送波束中的第s个发送波束对应N s个时间窗,K个发送波束对应P个时间窗,N s为小于P的正整数。网络设备侦听到信道为空闲状态后,在信道占用时间内的M个时间段依次发送M个发送波束的信号。M个时间段中的每个时间段对应了P个时间窗中的一个时间窗。网络设备仅在上述P个时间窗中的N i个时间窗内发送第i个发送波束的信号,N i为大于等于1且小于P的正整数。因此,终端仅需要确定其所需发送波束对应的时间窗在上述P个时间窗中的位置,并仅在终端所需发送波束对应的时间窗内进行信号检测和接收,用于信道质量测量,采用本发明,在基于波束赋形技术的非授权频谱无线通信中,降低了终端的信号检测开销。
参见图19,图19示出了本发明实施例提供另一种网络设备的结构示意图。如图18所示,网络设备500可包括:侦听单元501和发送单元502。其中:
侦听单元501,用于在第一时间段进行信道侦听。
发送单元502,用于若侦听单元501侦听到信道为空闲状态,则在第一时间段之后的M个时间段依次发送M个发送波束的信号。网络设备配置的发送波束总数为K,K个发送波束中的第s个发送波束对应N s个时间窗,上述K个发送波束对应P个时间窗。上述K个发送波束包括上述M个发送波束,上述M个发送波束包括上述K个发送波束中的第i个发送波束,上述M个时间段中的第二时间段位于上述第i个发送波束对应的第j个时间窗内。上述第j个时间窗为上述第i个发送波束对应的N i个时间窗中的一个时间窗。K为大于等于1的正整数,P为大于等于1的正整数,N s为小于P的正整数,N i为大于等于1的且小于P正整数,M为大于等于1且小于等于K的正整数。
可选的,发送单元502在第一时间段之后的M个时间段依次发送M个发送波束的信号之前,上述网络设备还包括第一确定单元。第一确定单元,用于若侦听到信道为空闲状态,则根据配置信息从上述K个发送波束中确定上述M个发送波束,配置信息包括上述K个发送波束和上述P个时间窗的对应关系。
可选的,第一时间段和第二时间段相邻。
可选的,第一时间段与上述M个时间段中最早的时间段的时间间隔大于零且小于发送单元502发送一个承载有用信息所需时间单元的时长。
可选的,上述P个时间窗中的第a个时间窗的起始时刻早于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻晚于上述P个时间窗 中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻早于上述P个时间窗中的第a+1个时间窗的截止时刻。
可选的,上述P个时间窗中的第b个时间窗的起始时刻早于上述P个时间窗中的第b+1个时间窗的起始时刻,上述P个时间窗中的第b个时间窗的截止时刻等于上述P个时间窗中的第b+1个时间窗的截止时刻。
可选的,上述P个时间窗中的第c个时间窗的起始时刻等于上述P个时间窗中的第c+1个时间窗的起始时刻,上述P个时间窗中的第c个时间窗的截止时刻早于上述P个时间窗中的第c+1个时间窗的截止时刻。
可选的,若第二时间段位于上述第j个时间窗内且第二时间段位于还位于上述P个时间窗中的第f个时间窗内,上述第j个时间窗的起始时刻早于或等于上述第f个时间窗的起始时刻,上述第j个时间窗的起截止时刻早于或等于上述第f个时间窗的截止时刻,则发送单元502在第二时间段内优先发送上述第i个发送波束的信号。
可选的,上述P个时间窗中的第e个时间窗的截止时刻等于上述P个时间窗中的第e+1个时间窗的起始时刻。
可选的,上述P个时间窗中任意连续的K个时间窗一一对应上述K个发送波束。
可选的,上述P个时间窗为第一窗口的时间窗,上述P个时间窗的起始时刻与第一窗口的起始时刻相同,上述P个时间窗的截止时刻与第一窗口的截止时刻相同,第一窗口为第一窗口集合中的一个窗口,第一窗口集合中的第g个窗口的起始时刻与第一窗口集合中的第g+1个窗口的起始时刻的时间间隔为第一周期。
可选的,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系相同。
可选的,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系不同。
可选的,上述P个时间窗中的第e个时间窗的截止时刻等于上述P个时间窗中的第e+1个时间窗的起始时刻。
可选的,P大于等于K时,上述P个时间窗中任意连续的K个时间窗一一对应上述K个发送波束。
可选的,上述P个时间窗为第一窗口的时间窗,上述P个时间窗的起始时刻与第一窗口的起始时刻相同,上述P个时间窗的截止时刻与第一窗口的截止时刻相同,第一窗口为第一窗口集合中的一个窗口,第一窗口集合中的第g个窗口的起始时刻与第一窗口集合中的第g+1个窗口的起始时刻的时间间隔为第一周期。
可选的,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系相同。
可选的,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应 关系和第二对应关系不同。
可选的,第一对应关系和第二对应关系满足第一规律。第一规律为若z为小于等于P g+1–x的正整数,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x个时间窗对应的发送波束相同,P g+1为上述第g+1个窗口中的时间窗个数,x为小于K的正整数;若z为大于P g+1–x且小于等于P g+1的正整数,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x-P g+1个时间窗对应的发送波束相同。
可选的,第一对应关系和第二对应关系满足第一规律。第一规律为若P g+1+1-z大于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1+1-z个时间窗对应的发送波束相同;若P g+1+1-z小于或等于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1*(t+1)+1-z个时间窗对应的发送波束相同。t为使P g+1*(t+1)+1-z大于零的最小正整数,z为大于等于1小于P g的正整数,P g为第一窗口集合中第g个窗口中时间窗个数。
可选的,发送单元502发送的上述第i个发送波束的信号包括DRS信号。
可选的,第一窗口为DMTC窗口。
参见图19,图19示出了本发明实施例提供的另一种终端设备的结构示意图。如图19所示,终端设备600可包括:第二确定单元600和测量单元601。其中:
第二确定单元601,用于确定上述K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,网络设备配置的上述K个发送波束中的第s个发送波束对应N s个时间窗,上述K个发送波束对应上述P个时间窗,N s为小于P的正整数,K为大于等于1的正整数,P为大于等于1的正整数,N i为大于等于1且小于P的正整数。
检测单元602,用于在上述N i个时间窗内检测和接收上述第i个发送波束的信号。
可选的,第二确定单元601确定上述K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,包括:第二确定单元601确定上述K个发送波束中第i个发送波束及其一或多个相近的发送波束对应的A个时间窗在上述P个时间窗中的位置,上述A个时间窗包括上述N i个时间窗。
可选的,检测单元602在上述N i个时间窗内检测和接收上述第i个发送波束的信号,包括:检测单元602在上述A个时间窗内检测和接收上述第i个发送波束的信号。
可选的,第二确定单元601确定K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置之前,上述终端设备还包括接收单元。接收单元用于在第一时刻接收网络设备发送的上述第i个发送波束的信号。上述信号包括配置信息,第一时刻早于上述P个时间窗的起始时刻,配置信息包括上述P个时间窗和上述K个发送波束的对应关系。第二确定单元601确定K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,包括:第二确定单元601根据配置信息,确定上述K个发送波束中第i个发送波束对应的上述N i个时间窗在上述P个时间窗中的位置。
可选的,上述P个时间窗中的第a个时间窗的起始时刻早于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻晚于上述P个时间窗中的第a+1个时间窗的起始时刻,上述P个时间窗中的第a个时间窗的截止时刻早于上述P个时间窗中的第a+1个时间窗的截止时刻。
可选的,上述P个时间窗中的第b个时间窗的起始时刻早于上述P个时间窗中的第b+1个时间窗的起始时刻,上述P个时间窗中的第b个时间窗的截止时刻等于上述P个时间窗中的第b+1个时间窗的截止时刻。
可选的,上述P个时间窗中的第c个时间窗的起始时刻等于上述P个时间窗中的第c+1个时间窗的起始时刻,上述P个时间窗中的第c个时间窗的截止时刻早于上述P个时间窗中的第c+1个时间窗的截止时刻。
可选的,上述P个时间窗中的第e个时间窗的截止时刻等于上述P个时间窗中的第e+1个时间窗的起始时刻。
可选的,P大于等于K时,上述P个时间窗中任意连续的K个时间窗一一对应上述K个发送波束。
可选的,上述P个时间窗为第一窗口的时间窗,上述P个时间窗的起始时刻与第一窗口的起始时刻相同,上述P个时间窗的截止时刻与第一窗口的截止时刻相同,第一窗口为第一窗口集合中的一个窗口,第一窗口集合中的第g个窗口的起始时刻与第一窗口集合中的第g+1个窗口的起始时刻的时间间隔为第一周期。
可选的,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系相同。
可选的,上述第g个窗口中的时间窗与上述K个发送波束的对应关系为第一对应关系,上述第g+1个窗口中的时间窗与上述K个发送波束的对应关系为第二对应关系,第一对应关系和第二对应关系不同。
可选的,第一对应关系和第二对应关系满足第一规律。第一规律为若z为小于等于P g+1–x的正整数,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x个时间窗对应的发送波束相同,P g+1为上述第g+1个窗口中的时间窗个数,x为小于K的正整数;若z为大于P g+1–x且小于等于P g+1的正整数,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中第z+x-P g+1个时间窗对应的发送波束相同。
可选的,第一对应关系和第二对应关系满足第一规律。第一规律为若P g+1+1-z大于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1+1-z个时间窗对应的发送波束相同;若P g+1+1-z小于或等于零,则上述第g个窗口中的第z个时间窗对应的发送波束与上述第g+1个窗口中的第P g+1*(t+1)+1-z个时间窗对应的发送波束相同。t为使P g+1*(t+1)+1-z大于零的最小正整数,z为大于等于1小于P g的正整数,P g为第一窗口集合中第g个窗口中时间窗个数。
可选的,网络设备发送的上述第i个发送波束的信号包括DRS信号。
可选的,第一窗口为DMTC窗口。
参见图21,图21示出了本发明提供的一种通信芯片的结构示意图。如图21所示,通信芯片700可包括:处理器701,以及耦合于处理器701的一个或多个接口702。其中:
处理器701可用于读取和执行计算机可读指令。具体实现中,处理器701可主要包括控制器、运算器和寄存器。其中,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可 以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器701的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、MIPS架构、ARM架构或者NP架构等等。处理器701可以是单核的,也可以是多核的。
接口702可用于输入待处理的数据至处理器701,并且可以向外输出处理器701的处理结果。具体实现中,接口702可以是通用输入输出(general purpose input output,GPIO)接口,可以和多个***设备(如显示器(LCD)、摄像头(camara)、射频(radio frequency,RF)模块等等)连接。接口702通过总线703与处理器701相连。
本发明中,处理器701可用于从存储器中调用本发明的一个或多个实施例提供的信号传输方法在通信设备侧的实现程序,并执行该程序包含的指令。接口702可用于输出处理器701的执行结果。本发明中,接口702可具体用于输出处理器701的资源分配结果。关于本发明的一个或多个实施例提供的信号传输方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器701、接口702各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
结合本发明实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable rom,EPROM)、电可擦可编程只读存储器(electrically eprom,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于收发机或中继设备中。当然,处理器和存储介质也可以作为分立组件存在于无线接入网设备或终端设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (30)

  1. 一种信号传输方法,其特征在于,包括:
    网络设备在第一时间段进行信道侦听;
    若所述网络设备侦听到所述信道为空闲状态,则所述网络设备在所述第一时间段之后的M个时间段依次发送M个发送波束的信号,所述网络设备配置的发送波束总数为K,所述K个发送波束中的第s个发送波束对应N s个时间窗,所述K个发送波束对应P个时间窗,所述K个发送波束包括所述M个发送波束,所述M个发送波束包括所述K个发送波束中的第i个发送波束,所述M个时间段中的第二时间段位于所述第i个发送波束对应的第j个时间窗内,所述第j个时间窗为所述第i个发送波束对应的N i个时间窗中的一个时间窗,K为大于等于1的正整数,P为大于等于1的正整数,N s为小于P的正整数,N i为大于等于1小于P的正整数,M为大于等于1且小于等于K的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备在所述第一时间段之后的M个时间段依次发送M个发送波束的信号之前,还包括:
    若侦听到所述信道为空闲状态,则所述网络设备根据配置信息从所述K个发送波束中确定所述M个发送波束,所述配置信息包括所述K个发送波束和所述P个时间窗的对应关系。
  3. 根据权利要求1或2任一项所述的方法,其特征在于,则所述第一时间段和所述第二时间段相邻。
  4. 根据权利要求1或2任一项所述的方法,其特征在于,则所述第一时间段与所述M个时间段中最早的时间段的时间间隔大于零且小于所述网络设备发送一个承载有用信息所需时间单元的时长。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述P个时间窗中的第a个时间窗的起始时刻早于所述P个时间窗中的第a+1个时间窗的起始时刻,所述P个时间窗中的第a个时间窗的截止时刻晚于所述P个时间窗中的第a+1个时间窗的起始时刻,所述P个时间窗中的第a个时间窗的截止时刻早于所述P个时间窗中的第a+1个时间窗的截止时刻。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述P个时间窗中的第b个时间窗的起始时刻早于所述P个时间窗中的第b+1个时间窗的起始时刻,所述P个时间窗中的第b个时间窗的截止时刻等于所述P个时间窗中的第b+1个时间窗的截止时刻。
  7. 根据权利要求1至4任一项所述的方法,其特征在于,所述P个时间窗中的第c个时间窗的起始时刻等于所述P个时间窗中的第c+1个时间窗的起始时刻,所述P个时间窗中的第c个时间窗的截止时刻早于所述P个时间窗中的第c+1个时间窗的截止时刻。
  8. 根据权利要求5至7任一项所述的方法,其特征在于,若所述第二时间段位于所述第j个时间窗内且所述第二时间段位于还位于所述P个时间窗中的第f个时间窗内,所述第j个时间窗的起始时刻早于或等于所述第f个时间窗的起始时刻,所述第j个时间窗的起截止时刻早于或等于所述第f个时间窗的截止时刻,则在第二时间段内所述网络设备发送的信号为所述第i个发送波束的信号。
  9. 根据权利要求1至4任一项所述的方法,其特征在于,所述P个时间窗中的第e个时间窗的截止时刻等于所述P个时间窗中的第e+1个时间窗的起始时刻。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述P个时间窗为第一窗口的时间窗,所述P个时间窗的起始时刻与所述第一窗口的起始时刻相同,所述P个时间窗的截止时刻与所述第一窗口的截止时刻相同,所述第一窗口为第一窗口集合中的一个窗口,所述第一窗口集合中的第g个窗口的起始时刻与所述第一窗口集合中的第g+1个窗口的起始时刻的时间间隔为第一周期。
  11. 根据权利要求10所述的方法,其特征在于,所述第g个窗口中的时间窗与所述K个发送波束的对应关系为第一对应关系,所述第g+1个窗口中的时间窗与所述K个发送波束的对应关系为第二对应关系,所述第一对应关系和所述第二对应关系相同。
  12. 根据权利要求10所述的方法,其特征在于,所述第g个窗口中的时间窗与所述K个发送波束的对应关系为第一对应关系,所述第g+1个窗口中的时间窗与所述K个发送波束的对应关系为第二对应关系,所述第一对应关系和所述第二对应关系不同。
  13. 根据权利要求12所述的方法,其特征在于,所述第一对应关系和所述第二对应关系满足第一规律;
    所述第一规律为若z为小于等于P g+1–x的正整数,则所述第g个窗口中的第z个时间窗对应的波束与所述第g+1个窗口中第z+x个时间窗对应的波束相同,P g+1为所述第g+1个窗口中的时间窗个数,x为小于K的正整数;若z为大于P g+1–x且小于等于P g+1的正整数,则所述第g个窗口中的第z个时间窗对应的波束与所述第g+1个窗口中第z+x-P g+1个时间窗对应的波束相同;
    或者,
    所述第一规律为若P g+1+1-z大于零,则所述第g个窗口中第z个时间窗对应的波束与所述第g+1个窗口中第P g+1+1-z个时间窗对应的波束相同,若P g+1+1-z小于或等于零,则所述第g个窗口中的第z个时间窗对应的波束与所述第g+1个窗口中的第P g+1*(t+1)+1-z个时间窗对应的波束相同,P g为所述第g个窗口中时间窗个数,t为使P g+1*(t+1)+1-z大于零的最小正整数,z为大于等于1且小于P g的正整数。
  14. 根据权利要求1至13任一项所述的方法,其特征在于,所述信号包括发现信号DRS。
  15. 一种信号传输方法,其特征在于,所述方法包括:
    终端确定K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,网络设备配置的所述K个发送波束中的第s个发送波束对应N s个时间窗,所述K个发送波束对应所述P个时间窗,K为大于等于1的正整数,P为大于等于1的正整数,N s为小于P的正整数,N i为大于等于1且小于P的正整数;
    所述终端在所述N i个时间窗内检测并接收所述网络设备发送的所述第i个发送波束的信号。
  16. 根据权利要求15所述的方法,其特征在于,终端确定K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,包括:
    所述终端确定所述K个发送波束中第i个发送波束及其一或多个相近的发送波束对应 的A个时间窗在所述P个时间窗中的位置,所述A个时间窗包括所述N i个时间窗。
  17. 根据权利要求16所述的方法,其特征在于,所述终端在所述N i个时间窗内测量信号,包括:
    所述终端在所述A个时间窗内检测并接收所述网络设备发送的所述第i个发送波束及其一或多个相近的发送波束的信号。
  18. 根据权利要求15至17任一项所述的方法,其特征在于,所述终端确定K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置之前,还包括:
    所述终端在第一时刻接收所述网络设备发送的所述第i个发送波束的信号,所述信号包括配置信息,所述第一时刻早于所述P个时间窗的起始时刻,所述配置信息包括所述P个时间窗和所述K个发送波束的对应关系;所述终端确定K个发送波束中第i个发送波束对应的N i个时间窗在P个时间窗中的位置,包括:所述终端根据所述配置信息,确定所述K个发送波束中第i个发送波束对应的N i个时间窗在所述P个时间窗中的位置。
  19. 根据权利要求15至18任一项所述的方法,其特征在于,所述P个时间窗中的第a个时间窗的起始时刻早于所述P个时间窗中的第a+1个时间窗的起始时刻,所述P个时间窗中的第a个时间窗的截止时刻晚于所述P个时间窗中的第a+1个时间窗的起始时刻,所述P个时间窗中的第a个时间窗的截止时刻早于所述P个时间窗中的第a+1个时间窗的截止时刻。
  20. 根据权利要求15至18任一项所述的方法,其特征在于,所述P个时间窗中的第b个时间窗的起始时刻早于所述P个时间窗中的第b+1个时间窗的起始时刻,所述P个时间窗中的第b个时间窗的截止时刻等于所述P个时间窗中的第b+1个时间窗的截止时刻。
  21. 根据权利要求15至18任一项所述的方法,其特征在于,所述P个时间窗中的第c个时间窗的起始时刻等于所述P个时间窗中的第c+1个时间窗的起始时刻,所述P个时间窗中的第c个时间窗的截止时刻早于所述P个时间窗中的第c+1个时间窗的截止时刻。
  22. 根据权利要求15至18任一项所述的方法,其特征在于,所述P个时间窗中的第e个时间窗的截止时刻等于所述P个时间窗中的第e+1个时间窗的起始时刻。
  23. 根据权利要求15至22任一项所述的方法,其特征在于,所述P个时间窗为第一窗口的时间窗,所述P个时间窗的起始时刻与所述第一窗口的起始时刻相同,所述P个时间窗的截止时刻与所述第一窗口的截止时刻相同,所述第一窗口为第一窗口集合中的一个窗口,所述第一窗口集合中的第g个窗口的起始时刻与所述第一窗口集合中的第g+1个窗口的起始时刻的时间间隔为第一周期。
  24. 根据权利要求23所述的方法,其特征在于,所述第g个窗口中的时间窗与所述K个发送波束的对应关系为第一对应关系,所述第g+1个窗口中的时间窗与所述K个发送波束的对应关系为第二对应关系,所述第一对应关系和所述第二对应关系相同。
  25. 根据权利要求23所述的方法,其特征在于,所述第g个窗口中的时间窗与所述K个发送波束的对应关系为第一对应关系,所述第g+1个窗口中的时间窗与所述K个发送波束的对应关系为第二对应关系,所述第一对应关系和所述第二对应关系不同。
  26. 根据权利要求25所述的方法,其特征在于,所述第一对应关系和所述第二对应关系满足第一规律;
    所述第一规律为若z为小于等于P g+1–x的正整数,则所述第g个窗口中的第z个时间窗对应的波束与所述第g+1个窗口中第z+x个时间窗对应的波束相同,P g+1为所述第g+1个窗口中的时间窗个数,x为小于K的正整数;若z为大于P g+1–x且小于等于P g+1的正整数,则所述第g个窗口中的第z个时间窗对应的波束与所述第g+1个窗口中第z+x-P g+1个时间窗对应的波束相同;
    或者,
    所述第一规律为若P g+1+1-z大于零,则所述第g个窗口中第z个时间窗对应的波束与所述第g+1个窗口中第P g+1+1-z个时间窗对应的波束相同,若P g+1+1-z小于或等于零,则所述第g个窗口中的第z个时间窗对应的波束与所述第g+1个窗口中的第P g+1*(t+1)+1-z个时间窗对应的波束相同,P g为所述第g个窗口中时间窗个数,t为使P g+1*(t+1)+1-z大于零的最小正整数,z为大于等于1且小于P g的正整数。
  27. 根据权利要求15至26任一项所述的方法,其特征在于,所述信号包括发现信号DRS。
  28. 一种网络设备,其特征在于,所述网络设备包括用于执行权利要求1-14中任一项所述的信号传输方法的单元。
  29. 一种终端设备,其特征在于,所述终端设备包括用于执行权利要求15-27中任一项所述的信号传输方法的单元。
  30. 一种通信***,其特征在于,包括终端设备和网络设备,所述网络设备为权利要求28所述的网络设备,所述终端设备为权利要求29所述的终端设备。
PCT/CN2019/072237 2019-01-17 2019-01-17 一种信号传输方法、相关设备及*** WO2020147086A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/072237 WO2020147086A1 (zh) 2019-01-17 2019-01-17 一种信号传输方法、相关设备及***
CN201980088632.9A CN113273098B (zh) 2019-01-17 2019-01-17 一种信号传输方法、相关设备及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072237 WO2020147086A1 (zh) 2019-01-17 2019-01-17 一种信号传输方法、相关设备及***

Publications (1)

Publication Number Publication Date
WO2020147086A1 true WO2020147086A1 (zh) 2020-07-23

Family

ID=71613249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072237 WO2020147086A1 (zh) 2019-01-17 2019-01-17 一种信号传输方法、相关设备及***

Country Status (2)

Country Link
CN (1) CN113273098B (zh)
WO (1) WO2020147086A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095132A (zh) * 2020-07-29 2022-02-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872254A (zh) * 2016-09-27 2018-04-03 上海朗帛通信技术有限公司 一种用于随机接入的ue、基站中的方法和装置
CN108632981A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 一种下行同步信号发送方法和接收方法及设备
WO2018190617A1 (en) * 2017-04-12 2018-10-18 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in wireless communication system
CN109104227A (zh) * 2017-06-20 2018-12-28 索尼公司 用于无线通信***的电子设备、方法和存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018013020A1 (en) * 2016-07-12 2018-01-18 Telefonaktiebolaget Lm Ericsson (Publ) Method and control node for supporting transmissions of reference signals in beams from a first network node
EP3496502A4 (en) * 2016-08-05 2020-05-06 LG Electronics Inc. -1- METHOD FOR SENDING AND RECEIVING A SIGNAL IN A WIRELESS COMMUNICATION SYSTEM WITH THE SUPPORT OF AN UNLICENSED BAND AND DEVICES FOR SUPPORTING THIS
CN107734602B (zh) * 2016-08-12 2023-02-10 华为技术有限公司 同步处理方法、装置和设备
US10257860B2 (en) * 2016-10-21 2019-04-09 Samsung Electronics Co., Ltd. Channel access framework for multi-beam operation on the unlicensed spectrum
US10368301B2 (en) * 2017-02-21 2019-07-30 Qualcomm Incorporated Multi-beam and single-beam discovery reference signals for shared spectrum
CN108668366B (zh) * 2017-03-31 2020-02-14 华为技术有限公司 信号传输方法、网络设备和终端
US11368950B2 (en) * 2017-06-16 2022-06-21 Asustek Computer Inc. Method and apparatus for beam management in unlicensed spectrum in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872254A (zh) * 2016-09-27 2018-04-03 上海朗帛通信技术有限公司 一种用于随机接入的ue、基站中的方法和装置
CN108632981A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 一种下行同步信号发送方法和接收方法及设备
WO2018190617A1 (en) * 2017-04-12 2018-10-18 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in wireless communication system
CN109104227A (zh) * 2017-06-20 2018-12-28 索尼公司 用于无线通信***的电子设备、方法和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC: "Discussion on Procedures for Initial Access and Mobility in NR-U", 3GPP DRAFT; R1-1813221, 16 November 2018 (2018-11-16), Spokane, USA;, pages 1 - 12, XP051479508 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095132A (zh) * 2020-07-29 2022-02-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114095132B (zh) * 2020-07-29 2024-04-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN113273098B (zh) 2023-02-03
CN113273098A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
US11626952B2 (en) Signal configuration method and related device
US11012963B2 (en) Wireless communications method and apparatus
WO2019136724A1 (zh) Srs传输方法及相关设备
CN111294891B (zh) 一种天线面板及波束的管理方法和设备
US20180132086A1 (en) Data transmission method and device
TW202019213A (zh) 傳輸訊號的方法、網路設備及終端設備
WO2021243578A1 (zh) 通信方法、装置、网络侧设备、终端和存储介质
US11856560B2 (en) System information transmission method, and related device and system
WO2019192410A1 (zh) 一种信号传输方法及通信设备
US20230308141A1 (en) Communication Method, Device, and System
WO2020147086A1 (zh) 一种信号传输方法、相关设备及***
CN113993142A (zh) 通信方法及装置
US20230276411A1 (en) Method and device for transmitting or receiving data by using dual connectivity of iab node in wireless communication system
WO2021248456A1 (zh) 无线通信的方法及设备
US20200022220A1 (en) Information transmission method, processing method, and apparatus
WO2022021293A1 (zh) 信道侦听的方法及设备
WO2019029464A1 (zh) 用于灵活双工***的数据传输方法及设备
WO2023115296A1 (zh) 无线通信方法、第一终端设备和第二终端设备
WO2023151391A1 (zh) 波束训练方法及通信装置
WO2023024704A1 (zh) 通信方法以及通信装置
WO2023123341A1 (zh) 信号接收方法和通信装置
WO2023240630A1 (zh) 无线通信方法、终端设备以及网络设备
WO2022077215A1 (zh) 无线通信方法、终端和网络设备
WO2024031472A1 (zh) 一种无线通信方法及装置、设备、存储介质
WO2023273935A1 (zh) 下行控制信息的接收方法、信息的发送方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909699

Country of ref document: EP

Kind code of ref document: A1