WO2020145301A1 - Magnetic support device - Google Patents

Magnetic support device Download PDF

Info

Publication number
WO2020145301A1
WO2020145301A1 PCT/JP2020/000304 JP2020000304W WO2020145301A1 WO 2020145301 A1 WO2020145301 A1 WO 2020145301A1 JP 2020000304 W JP2020000304 W JP 2020000304W WO 2020145301 A1 WO2020145301 A1 WO 2020145301A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet
magnetic
magnets
magnetic pole
Prior art date
Application number
PCT/JP2020/000304
Other languages
French (fr)
Japanese (ja)
Inventor
明平 森下
Original Assignee
学校法人工学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人工学院大学 filed Critical 学校法人工学院大学
Priority to JP2020565180A priority Critical patent/JP7412776B2/en
Publication of WO2020145301A1 publication Critical patent/WO2020145301A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings

Definitions

  • the present disclosure relates to a magnetic support device.
  • the levitation target is supported in a non-contact manner by utilizing the repulsive force or attractive force (adsorption force) generated between the permanent magnets arranged in pairs.
  • attractive force or repulsive force generated when the surfaces magnetized to the N pole or the S pole are opposed to each other, when one of the opposed surfaces is displaced, the attractive force or repulsive force is applied. Will decrease.
  • JP-A-48-9745 discloses a non-contact magnetic bearing in which a shaft is levitated with respect to a plane perpendicular to the axial direction.
  • the magnets attached to both ends of the shaft and the magnets attached to the fixed base are made to face each other so that the attraction force or the repulsive force cancels each other in the axial direction of the shaft, and at right angles to the axial direction.
  • the axis is settled in the valley of the force distribution of the suction force or the repulsive force.
  • JP-A-2005-188735 describes a magnetic bearing system that rotatably supports a spindle in a spindle hole.
  • a plurality of annular magnets are arranged on the outer periphery of the spindle and the inner periphery of the spindle hole, respectively, and the annular magnets are magnetized with different polarities on one side and the other side in the axial direction. ..
  • the annular magnets are stacked in the spindle and the spindle hole with the same poles facing each other, and the annular magnet of the spindle is arranged together with the spindle at the axial center of the annular magnet in the spindle hole.
  • the magnetic support an attractive force or a repulsive force generated between the magnetic poles of the permanent magnets facing each other is used, and when increasing the support load, a plurality of magnets are provided along a direction orthogonal to the support direction (load direction). It is necessary to arrange the permanent magnets in pairs, which increases the installation area of the device. Further, in the magnetic bearing, when a large supporting load (load in the radial direction of the shaft) is taken, it is necessary to arrange a plurality of permanent magnets in the axial direction, and the device becomes large in the axial direction of the rotary shaft. Therefore, there is room for improvement in the magnetic support device using the permanent magnet.
  • the present disclosure has been made in view of the above facts, and an object of the present disclosure is to provide a magnetic support device that can effectively support a supported object by using the magnetic force of a permanent magnet.
  • the magnetic support device of the present aspect for achieving the above object includes a first permanent magnet and a second permanent magnet whose magnetization directions are perpendicular to each other, and one magnetic pole of the first permanent magnet.
  • the magnetic pole surface of the second permanent magnet having a polarity different from that of the magnetic pole surface is arranged in the immediate vicinity of the surface, and the first permanent magnet and the second permanent magnet are magnetized in the magnetizing direction of the second permanent magnet.
  • one of the first permanent magnet and the second permanent magnet is fixed, and the other of the first permanent magnet and the second permanent magnet is covered.
  • a support is provided, and a fixed portion that supports the supported body by an attractive force and a repulsive force generated between the first permanent magnet and the second permanent magnet is provided.
  • the first permanent magnet and the second permanent magnet are each formed in an annular shape, and the central axes of the first permanent magnet and the second permanent magnet are arranged so as to overlap with each other.
  • a rotating body disposed as a body at the axial center of the first permanent magnet and the second permanent magnet is rotated integrally with the other of the first permanent magnet and the second permanent magnet. be able to.
  • the supported body can be supported by the resultant force of the attractive force and the repulsive force generated between the first permanent magnet and the second permanent magnet, the magnetic force of the permanent magnet is used. There is an effect that the supported body can be effectively supported.
  • the present embodiment includes the following aspects. ⁇ 1> A first permanent magnet and a second permanent magnet whose magnetization directions are perpendicular to each other are included, and one of the first permanent magnets has a polarity different from that of the magnetic pole surface in the immediate vicinity of the one magnetic pole surface. A magnetic support part in which the magnetic pole surface of the second permanent magnet is arranged, and the first permanent magnet and the second permanent magnet are relatively movable along the magnetization direction of the second permanent magnet.
  • a supported body is provided on the other of the first permanent magnet and the second permanent magnet, and the supported body is the first supported magnet.
  • a fixed portion which is supported by an attractive force and a repulsive force generated between the permanent magnet and the second permanent magnet, Magnetic support device.
  • one of the first permanent magnet and the second permanent magnet is provided in a pair, and the other of the first permanent magnet and the second permanent magnet is provided in the pair.
  • ⁇ 4> Attachment of the first permanent magnet of the other of the first permanent magnet and the second permanent magnet to one of the first permanent magnet and the second permanent magnet fixed to the fixing portion.
  • the magnetic support device according to any one of ⁇ 1> to ⁇ 3>, further including a limiting means for limiting relative movement along the magnetic direction.
  • ⁇ 5> The magnetic support device according to any one of ⁇ 1> to ⁇ 4>, wherein a cross section of at least one of the first permanent magnet and the second permanent magnet along a magnetization direction is square.
  • the first permanent magnet and the second permanent magnet are each formed in an annular shape, and the central axes of the first and second permanent magnets are overlapped with each other. Any one of ⁇ 1> to ⁇ 5> in which the rotating body disposed in the axial center portion of the permanent magnet and the second permanent magnet is integrally rotated with the other of the first permanent magnet and the second permanent magnet. 1 magnetic support device.
  • the magnetic support portion is arranged such that the plurality of first permanent magnets are along the magnetization direction of the second permanent magnet and the polarities of the magnetic pole surfaces of the second permanent magnet are alternately different.
  • the magnetic pole surface of the second permanent magnet having a polarity different from the polarity of the magnetic pole surface is arranged in the immediate vicinity of the magnetic pole surface on the second permanent magnet side of each of the first permanent magnets ⁇ 1>.
  • ⁇ 8> In the magnetic support portion, a plurality of the second permanent magnets are arranged along the magnetization direction of the second permanent magnet, and different magnetic pole surfaces are close to each other in the immediate vicinity of the magnetic pole surface of the first permanent magnet.
  • the fixed portion fixes the first permanent magnet of the magnetic support portion so that the supported body attached to the second permanent magnet is moved in the magnetization direction of the second permanent magnet.
  • the magnetic support portion includes a first permanent magnet and a second permanent magnet, and the first permanent magnet and the second permanent magnet are arranged so that their magnetization directions cross each other vertically. Further, in the immediate vicinity of the magnetic pole surface of the first permanent magnet, the magnetic pole surface of the second permanent magnet having a polarity different from that of the magnetic pole surface is arranged so as to vertically intersect, and the first permanent magnet.
  • a second permanent magnet is arranged so as to be relatively movable along the magnetic pole surface of the.
  • the magnetic force generated by the magnetizing current is more dominant than the magnetic force generated between the magnetic poles, and the attractive force and the repulsive force are generated. Therefore, the resultant force of the attractive force and the repulsive force due to the magnetizing current acts between the first permanent magnet and the second permanent magnet whose magnetic pole surfaces are arranged in the immediate vicinity.
  • the magnetic pole surface of the second permanent magnet is disposed between the first permanent magnet and the second permanent magnet.
  • the magnetic pole surface of the N pole of the second permanent magnet is disposed between the first permanent magnet and the second permanent magnet.
  • the fixing portion that fixes one of the first permanent magnet and the second permanent magnet causes the supported body supported by the other of the first permanent magnet and the second permanent magnet to move to the first permanent magnet. And it can be effectively supported by the resultant force generated between the second permanent magnet.
  • one of the first permanent magnet and the second permanent magnet is provided as a pair, and the other of the first permanent magnet and the second permanent magnet is provided as a pair. It is located in between. Therefore, the supported body can be more effectively supported by the resultant force of the attractive force and the repulsive force generated in each of the first permanent magnet and the second permanent magnet.
  • the permanent magnets (one of the first permanent magnet and the second permanent magnet) provided in a pair are the first of the other permanent magnets (the other of the first permanent magnet or the second permanent magnet). Since the movements of the permanent magnets in the magnetizing direction are suppressed, contact between the magnetic pole surface of the first permanent magnet and the second permanent magnet can be effectively suppressed, and the supported body can be kept in a non-contact state. Can support.
  • each of the first permanent magnet and the second permanent magnet is provided on both sides of the supported body. Accordingly, both sides of the supported body can be supported by the first permanent magnet and the second permanent magnet provided on both sides of the supported body.
  • the first permanent magnet and the second permanent magnet provided on both sides of the supported body sandwich the first permanent magnet and the second permanent magnet on both sides of the supported body. It is possible to effectively suppress the contact between and, and it is possible to support the supported body in a non-contact state.
  • the limiting means includes a magnetizing direction of the other one of the first permanent magnet and the second permanent magnet with respect to one of the first permanent magnet and the second permanent magnet. Limit relative movement along. Therefore, it is possible to more reliably suppress contact between the magnetic pole surface of the first permanent magnet and the second permanent magnet due to the attractive force and the repulsive force between the first permanent magnet and the second permanent magnet. Therefore, the supported body can be supported more effectively in a non-contact state.
  • the cross section along the magnetizing direction of at least one of the first permanent magnet and the second permanent magnet has a square shape in which the magnetic flux per unit volume increases. Accordingly, the resultant force of the attractive force and the repulsive force between the first permanent magnet and the second permanent magnet can be increased more effectively, so that the supported object can be supported more effectively in the non-contact state.
  • the rotating body is arranged as a supported body at the axial center of each of the first permanent magnet and the second permanent magnet, which are formed in an annular shape.
  • the other of the first permanent magnet and the second permanent magnet is rotated integrally with the rotating body.
  • the plurality of first permanent magnets are arranged in the magnetic support portion.
  • the plurality of first permanent magnets are arranged along the magnetization direction of the second permanent magnet, and the polarities of the magnetic pole surfaces on the second permanent magnet side are alternately different.
  • the magnetic pole surface of the second permanent magnet having a polarity different from the polarity of the magnetic pole surface is arranged in the immediate vicinity of the magnetic pole surface on the second permanent magnet side. Accordingly, the magnetic support portion can effectively increase the support force of the supported body.
  • a plurality of second permanent magnets are arranged in the magnetic support part.
  • the plurality of second permanent magnets are in contact with different magnetic pole surfaces along the magnetization direction of the second permanent magnet and in the immediate vicinity of the magnetic pole surface of the first permanent magnet. Accordingly, the magnetic support portion can effectively increase the support force of the supported body.
  • the magnetization direction corresponds to the direction from the S pole to the N pole inside the permanent magnet, and the direction of the magnetomotive force in the permanent magnet, that is, the magnetization vector that forms the magnetomotive force in the permanent magnet.
  • the direction of. “Along the magnetizing direction” means the magnetizing direction and the direction opposite to the magnetizing direction.
  • the magnetic pole surface refers to a surface magnetized to one of the N pole and the S pole in the permanent magnet, the surface on the magnetizing direction side is the magnetic pole surface for the N pole, and the surface on the opposite side to the magnetizing direction is It becomes the magnetic pole surface of the S pole.
  • FIG. 1 shows a schematic configuration of a magnetic support device 10 according to the first embodiment.
  • a moving body 12 is applied as a floating body and a supported body.
  • the magnetic support device 10 constitutes a linear guide that allows the moving body 12 to move along the track 14, and the magnetic supporting device 10 supports the moving body 12 in a non-contact state (floating state) with respect to the track 14.
  • the movable body 12 can be moved along the track 14.
  • the track 14 is not limited to a straight line, but may be a curved line or may be inclined.
  • the magnetization direction is indicated by an arrow M.
  • the width direction of the track 14 is indicated by an arrow W, and the upper side is indicated by an arrow UP.
  • the track 14 is provided with a pair of track rails 16 as fixed parts, and each of the rail tracks 16 is provided with a rail 18 which constitutes a guide member and a limiting means.
  • each of the rail tracks 16 is provided with a rail 18 which constitutes a guide member and a limiting means.
  • the raceway 16L when distinguishing between the pair of raceways 16, one is designated as the raceway 16L and the other is designated as the raceway 16R.
  • the track rails 16 are each long and have a rectangular cross section, and the pair of track rails 16 are installed with the longitudinal direction being the track direction.
  • the track way 16 has a vertical direction in the width direction and a track width direction in the thickness direction, and the pair of track ways 16 are opposed to each other at a predetermined interval in the track width direction.
  • the rail 18 is made of iron (ferromagnetic material) in the form of a strip plate.
  • the longitudinal direction (direction perpendicular to the paper surface) is the longitudinal direction of the track base 16
  • the width direction is the vertical direction
  • the thickness direction is the track width direction.
  • the moving body 12 is in the shape of a rectangular block, and the moving body 12 is arranged so as to straddle between the pair of rails 16 and the pair of rails 18.
  • the dimension along the track width direction of the moving body 12 is the distance between the pair of rails 18 (the distance between the inner surfaces in the track width direction) and the distance between the pair of track stands 16 (the distance between the inner surfaces in the track width direction).
  • a predetermined gap can be formed between the moving body 12 and the rails 16 and the rails 18. 12 is capable of passing (falling) between a pair of rails 16 and a pair of rails 18.
  • the magnetic support device 10 is provided with a fixed magnet 20 as a first permanent magnet and a moving magnet 22 as a second permanent magnet that form a magnetic support portion.
  • the fixed magnet 20 and the moving magnet 22 are formed in a rectangular plate shape in a plan view, and the fixed magnet 20 and the moving magnet 22 are magnetized in the thickness direction.
  • the fixed magnet 20 and the moving magnet 22 each have one surface in the thickness direction as an N pole magnetic pole surface (20A, 22A) and the other surface in the thickness direction as an S pole magnetic pole surface. (20B, 22B).
  • the fixed magnet 20 is arranged on each of the pair of rails 16 (16L, 16R), and the fixed magnet 20 has the magnetizing direction as the rail width direction, and the rail 16R side (inner side) of the rail 16L. Is attached to the upper part of the surface on the side of the raceway 16L (inner side) of the raceway 16R. Further, the fixed magnet 20 on the side of the raceway 16L has the N pole magnetic pole surface 20A oriented toward the raceway 16R side, and the fixed magnet 20 on the sideway 16R side has the N pole magnetic pole surface 20A oriented toward the raceway 16L side. Has been.
  • the fixed magnets 20 are arranged in pairs on the pair of rails 16 with the magnetic pole surfaces 20A having the same poles facing each other.
  • Fixed magnets 20 are arranged on each of the track bases 16 over the entire track direction (the moving direction of the moving body 12).
  • the fixed magnet 20 is provided between the pair of rails 16 so that the magnetic pole surfaces having the same pole face each other.
  • the present invention is not limited to this, and the magnetic pole surfaces having different polarities face each other.
  • the fixed magnet 20 may be provided.
  • the moving magnets 22 are arranged on the lower surface of the moving body 12, and the moving magnets 22 correspond to the fixed magnets 20 on the track 16L side and the track 16R side respectively, and both ends of the moving body 12 in the track width direction. Is attached to the section. As a result, each of the moving magnets 22 is adjacent to (adjacent to) the fixed magnet 20 between the rails 16.
  • the magnetizing direction of the moving magnet 22 is the vertical direction, and the magnetizing direction is perpendicular to the magnetizing direction of the fixed magnet 20.
  • the moving magnet 22 is arranged such that the lower magnetic pole surface thereof is perpendicular to the magnetic pole surface of the fixed magnet 20, and each of the two moving magnets 22 has a magnetic pole surface adjacent to the fixed magnet 20. It is arranged so as to intersect perpendicularly to the magnetic pole surface.
  • each of the moving magnets 22 has a lower magnetic pole surface 22B.
  • the magnetic pole surface 22B of the S pole facing toward the side is adjacent to the magnetic pole surface 20A of the N pole of the fixed magnet 20 in the immediate vicinity.
  • the S magnetic pole surface 22B is adjacent to the N magnetic pole surface 20A
  • the moving magnet 22 may be arranged so that the magnetic pole surface 22A of the N pole is adjacent to the magnetic pole surface 20B of the S pole.
  • the magnetic pole surface 20A of the N pole of the fixed magnet 20 is provided between the fixed magnet 20 fixed to the track base 16 and the moving magnet 22 arranged adjacent to the fixed magnet 20 (at a position which is closest to the fixed magnet 20 in a non-contact manner).
  • a force for holding the magnetic pole surface 22B of the S pole of the moving magnet 22 at a predetermined position acts on the surface direction of.
  • the moving magnet 22 when the moving magnet 22 is pushed downward from the equilibrium position along the magnetic pole surface 20A of the fixed magnet 20 by the load received from the moving body 12, the moving magnet 22 is pushed up from the fixed magnet 20 toward the equilibrium position.
  • Receive (support) The moving magnet 22 is held at a position where the load and the supporting force are balanced with respect to the fixed magnet 20 (the equilibrium position according to the load of the moving body 12 ), and the moving body 12 moves between the pair of rails 16. It can be supported in a non-contact state.
  • the magnetic support device 10 is provided with electromagnets 24 that constitute guide means and limiting means, and the electromagnets 24 are installed as a pair on each surface of the moving body 12 on the rail 18 side.
  • the electromagnets 24 may be one pair, but it is more preferable that a plurality of pairs are provided in the moving direction (orbital direction) of the moving body 12.
  • Each of the electromagnets 24 is configured to include an iron core 26 and a coil 28.
  • the iron core 26 is attached to each surface of the moving body 12 on the rail 18 side, and the coil 28 is provided on the outer peripheral portion of the iron core 26. It is wound in the circumferential direction.
  • a voltage for example, a DC voltage
  • DC current DC current
  • the iron core 26 generates a magnetic force for attracting the rail 18 (a magnetic force serving as an attraction force).
  • the position of the moving body 12 in the track width direction is limited, and the rail 18 and the iron core 26 are separated on the rail 18 side. Separate.
  • the fixed magnets 20 and the moving magnets 22 are arranged on both sides in the track width direction to move the fixed magnets 20 in the track width direction along the magnetization direction. Although restrained, when a difference in magnetic force occurs, the moving body 12 is lost by one of the pair of rails 16.
  • the attraction force (magnetic force) generated between the iron core 26 and the rail 18 is adjusted in each of the pair of electromagnets 24, so that the rail 18 and the iron core 26 on the opposite side are separated from each other, and the fixed magnet 20 and the moving magnet. And 22 are separated from each other. Therefore, in the magnetic support device 10, the movement of the moving magnet 22 along the magnetization direction of the fixed magnet 20 (movement in the approaching direction of the fixed magnet 20 and the moving magnet 22) is limited. As a result, contact of the moving magnet 22 with the magnetic pole surface 20A of the fixed magnet 20 is suppressed, and the moving magnet 22 is arranged in the immediate vicinity of the magnetic pole surface 20A of the fixed magnet 20 (a state in which the moving magnet 22 approaches with a predetermined gap).
  • a fixed magnet 20 and a moving magnet 22 are used in the magnetic support device 10.
  • the magnetic support device 10 includes a pair of rails 16 with the moving body 12 levitated by the magnetic force of the fixed magnet 20 and the moving magnet 22. Support between.
  • the moving body 12 moves along the track 14 (the track 16 and the rail 18) by being applied with a driving force in the moving direction by a driving means (not shown) while being supported by the pair of track 16 To be done.
  • a driving means not shown
  • Various configurations for applying a driving force to the moving body 12 can be applied to this driving means. Further, since the moving body 12 is supported by the track 14 in a non-contact state, the frictional force (friction resistance) generated during the movement is suppressed. Therefore, for example, the track 14 is inclined and the moving body 12 is tilted. It may be configured to move (naturally drop) from the upper side to the lower side by.
  • FIG. 2 schematically shows an outline in which the moving magnet 22 is arranged in the vicinity of the fixed magnet 20 in the magnetic support device 10.
  • a fixed magnet 20 and a moving magnet 22 are arranged in pairs in the track width direction, and the fixed magnet 20 and the moving magnet 22 have a symmetry line with respect to the center line in the track width direction. Are arranged substantially symmetrically. From here, below, mainly the fixed magnet 20 and the moving magnet 22 on the side of the track 16L will be described as an example. 3 and 4 schematically show the force relationship due to the magnetic force generated between the pair of fixed magnets 20 and the moving magnets 22 arranged in the immediate vicinity of the fixed magnets 20, and FIG. The state in which the moving magnet 22 does not receive the load from the moving body 12 is shown, and FIG. 4 shows an example of the state in which the moving magnet 22 receives the load from the moving body 12.
  • a molecular current is generated inside a permanent magnet (magnetic material), and a permanent magnet is considered to have a configuration in which a plurality of minute electromagnets formed by the molecular current are arranged with the directions of the molecular current aligned. Be done.
  • the adjacent molecular currents cancel each other inside, and the component of the molecular current remains only on the surface portion. Further, at the surface central portion of the magnetic pole surface of the permanent magnet, the molecular current remaining in the surface central portion is canceled.
  • the magnetizing current Im (or the magnetizing current ⁇ Im in the opposite direction to the magnetizing current Im, which is generically referred to as the magnetizing current Im) is generated along the peripheral portion of the magnetic pole surface.
  • the magnetizing current Im changes according to the magnetic force, and the magnetizing current Im increases (increases) as the magnetic force of the permanent magnet increases. Accordingly, the permanent magnet can be regarded as an electromagnet in which the magnetizing current is replaced by the coil current.
  • the magnetic force of the magnetic pole is dominant to generate an attractive force and a repulsive force, but the magnetizing current Im is dominant between the two permanent magnets whose magnetic pole surfaces are arranged closest to each other. As a result, suction force and repulsion force are generated.
  • the upper side (the moving magnet 22 is attached to the upper side of the assumption that the magnetizing currents Im and ⁇ Im flow near the periphery of the magnetic pole surface 20A of the N pole adjacent to the moving magnet 22).
  • the magnetic direction side is the point A
  • the lower side (the side opposite to the magnetizing direction of the moving magnet 22) is the point B.
  • the fixed magnet 20 side is the point C
  • the fixed magnet 20 is opposite to the fixed magnet 20 among the points assuming that the magnetizing current Im flows near the periphery of the magnetic pole surface 22B of the S pole.
  • the side is D point.
  • the magnetizing current Im is directed in the same direction (Im or ⁇ Im), and at the point C of the moving magnet 22 and the point B of the fixed magnet 20, Turns in the opposite direction (-Im).
  • an attractive force is generated between two coils in which a coil current flows in the same direction, and a repulsive force is generated between two coils in which a coil current flows in the opposite direction.
  • the attractive force Fs acts between the points C and A, and the repulsion occurs between the points C and B.
  • the force Fi acts.
  • the attractive force Fs acts in a direction to bring the point C closer to the point A, and the repulsive force Fi acts in a direction to separate the point C from the point B.
  • the resultant force Fr of the attractive force Fs and the repulsive force Fi acts on the point C.
  • the magnetic support device 10 In the magnetic support device 10, even between the fixed magnet 20 and the moving magnet 22 on the side of the track 16R, the same force relationship as between the fixed magnet 20 and the moving magnet 22 on the side of the track 16L is generated (track width direction). The ingredients are in the opposite direction).
  • the position in the track width direction is adjusted by the pair of electromagnets 24. Therefore, the orbit width direction component Frh, which is the component in the magnetizing direction of the fixed magnet 20 at the point C, is canceled by the electromagnet 24 and the like, and the point C of the moving magnet 22 magnetizes the moving magnet 22 of the resultant force Fr.
  • a vertical component (vertical component) Frv which is a directional component, acts as an upward levitation force.
  • the resultant force Fr toward the magnetizing direction of the moving magnet 22 is applied to the moving magnet 22.
  • a levitation force is generated that moves the moving magnet 22 relative to the fixed magnet 20 in the magnetizing direction.
  • the N-pole magnetic pole surface 22A of the moving magnet 22 in the immediate vicinity of the S-pole magnetic pole surface 20B of the fixed magnet 20, the moving magnet 22 is moved in the direction opposite to the magnetization direction of the moving magnet 22.
  • the resultant resultant force Fr acts to generate a levitation force that moves the moving magnet 22 relative to the fixed magnet 20 in a direction opposite to the magnetizing direction.
  • the moving magnet 22 is held at the equilibrium position (vertical equilibrium position) that is a predetermined position with respect to the fixed magnet 20 in a state where the load Fl of the moving body 12 is not applied by the levitation force caused by these magnetic forces. It Since the moving magnet 22 is actually heavy, the equilibrium position of the moving magnet 22 is determined by the magnetic force of the fixed magnet 20, the magnetic force of the moving magnet 22, and the weight of the moving magnet 22.
  • the position of the moving magnet 22 where the vertical component Frv of the resultant force Fr at point C (and the vertical component of the resultant force at point D) at which the load Fl received by the moving magnet 22 can be offset is present.
  • the moving magnet 22 and the moving body 12 can be supported on the track 16 (16L) via the fixed magnet 20.
  • the magnetic support device 10 uses the attractive force and the repulsive force generated by the magnetizing current Im between the fixed magnet 20 and the moving magnet 22 arranged in the immediate vicinity of the fixed magnet 20. Therefore, in the magnetic support device 10, as compared with the case where only the attraction force between the fixed magnet 20 and the moving magnet 22 or only the repulsive force due to the magnetic force between the fixed magnet 20 and the moving magnet 22 is used, The magnetic force between 20 and the moving magnet 22 can be effectively used. Thereby, the magnetic support device 10 can suppress an increase in size of the device when magnetically supporting the moving body 12.
  • a fixed magnet 20 is arranged on each of the rails 16L and 16R, and a moving magnet 22 is arranged in the immediate vicinity of each fixed magnet 20.
  • the moving magnet 22 is suppressed from moving in the magnetizing direction of the fixed magnet 20 on each of the rails 16L and 16R.
  • the load of the moving body 12 received by the moving magnet 22 can be dispersed, and the load Fl received by one moving magnet 22 can be reduced.
  • the load of the moving body 12 can be further dispersed, and the load Fl received by one moving magnet 22 can be reduced. It can be made smaller.
  • the vertical component Frv of the resultant force Fr can be increased.
  • the magnetic support device 10 by arranging the fixed magnet 20 and the moving magnet 22 according to the load of the moving body 12, the moving body 12 can be supported on the track base 16 in a non-contact state. Further, when the load that can be supported is increased, the moving magnets 22 can be arranged in the track direction of the track 14, so the magnetic support device 10 can suppress the spread in the track width direction to increase the support load.
  • 5A to 5D, 6A and 6B show modified examples of the combination of the first permanent magnet and the second permanent magnet in this embodiment.
  • the fixed magnet 20 and the moving magnet 22 are arranged in pairs, but as shown in FIGS. 3 and 4, a configuration including at least one set of the first permanent magnet and the second permanent magnet.
  • the supported body can be supported by using the attractive force and the repulsive force between the first permanent magnet and the second permanent magnet.
  • the magnetic support portion 30A is shown in FIG. 5A.
  • a plurality of magnets 32 (corresponding to the fixed magnets 20) as the first permanent magnets are arranged in the magnetic support portion 30A (two magnets as an example in FIG. 5A).
  • the magnet 34 (corresponding to the moving magnet 22) as the second permanent magnet is arranged between the two magnets 32 (boundary portion), and the upper magnet 32 is attached to the lower magnet 32. It may be arranged so that the magnetic directions are opposite to each other.
  • the magnetic pole surfaces (second magnetic pole surfaces) having different polarities in the magnet 34 can be arranged in the immediate vicinity of the first magnetic pole surface (the magnetic pole surface on the magnet 34 side) of each of the two magnets 32.
  • the magnet 34 which receives a load from the supported body, is supported by the attraction force and the repulsive force generated between each of the two magnets 32, so that the support force can be effectively increased. Further, the magnets 32 are restrained from moving above the equilibrium position by the magnets 32. Further, in the magnetic support portion 30A, when the supporting force is increased, the installation area does not expand, so that the device can be downsized.
  • FIG. 5B shows the magnetic support portion 30B.
  • the magnet 32 (32A, 32B) as a first permanent magnet is provided in a pair in the magnetic support portion 30B, and the magnet 34 as a second permanent magnet is arranged between the two magnets 32A, 32B.
  • the magnets 32A and 32B are opposed to each other with magnetic pole surfaces of the same pole (for example, N pole), and the magnet 34 has a magnetic pole surface of different polarity (for example, an S pole magnetic pole surface) between the magnetic pole surfaces of the magnets 32A and 32B. ) Is placed.
  • the magnet 34 is supported by the attractive force and the repulsive force generated between the magnet 34 and each of the pair of magnets 32A and 32B, so that the magnetic support portion 30B can effectively increase the supporting force.
  • the magnetic support portion 30B can support the supported object in a small installation area, and the device can be downsized.
  • the magnetizing direction components of the magnets 34 in the attraction force between the magnet 32A and the magnet 34 and the attraction force between the magnet 32B and the magnet 34 cancel each other. The movement towards each can be mutually restricted.
  • FIG. 5C shows the magnetic support portion 30C.
  • each of the magnets 32 as the first permanent magnets is vertically arranged in pairs, and a plurality of magnets 34 as the second permanent magnets are arranged in the magnetizing direction of the magnets 34.
  • the magnets 32 are arranged so that the magnetizing directions are alternately opposite to each other, and the magnets 34 are positioned between the two magnets 32, the lower part of the lower magnet 32, and the upper magnet 32. Are arranged so that the magnetization directions are alternately opposite to each other.
  • each of the magnets 34 adjacent to the upper part of the upper magnet 32 and the lower part of the lower magnet 32 has its own attraction force and repulsion force between the two adjacent magnets 32. It is supported toward the side opposite to the magnetizing direction. Further, the magnet 34 at the intermediate position of the magnet 32 is supported in the magnetizing direction by the attractive force and the repulsive force between the magnets 34.
  • the magnets 32 arranged on both sides of the plurality of magnets 34 cause the magnets 34 to move relative to each other along the magnetizing direction of the magnets 34 (either of the magnets 32 on either side of the magnet 34). (Relative movement in a direction approaching one side) is suppressed. Further, the magnet 34 between the upper magnet 32 and the lower magnet 32 is suppressed from moving from the equilibrium position to the upper side or the lower side.
  • the magnetic support portion 30C a large supporting force is effectively generated on the three magnets 34 that integrally support the supported body, and even if a load is applied, the magnets 34 move in the magnetization direction. Can be suppressed and the supported object can be supported. Further, in the magnetic support portion 30C, when the supporting force is increased, the installation area does not expand, so that the size of the device can be further reduced.
  • the magnetic support 30D is shown in FIG. 5D.
  • the magnet 34 (34A, 34B) as a second permanent magnet is provided in a pair in the magnetic support portion 30D, and the magnet 32 as a first permanent magnet is arranged between the magnets 34A, 34B. Further, in the magnetic support portion 30D, the magnet 32 is fixed, and the supported body is supported across the magnets 34A and 34B.
  • the magnets 34A and 34B are magnetized in the vertical direction (load direction), and the magnet 32 is magnetized in the horizontal direction (direction perpendicular to the vertical direction). Further, magnets 34A and 34B having magnetic pole surfaces having polarities different from those of the magnetic pole surfaces are arranged in the immediate vicinity of the magnetic pole surfaces of the magnet 32.
  • each of the pair of magnets 34A and 34B is supported by the attraction force and the repulsive force generated between the pair of magnets 34A and 34B, so that the support force can be effectively increased.
  • the gap between the magnets 34A and 34B since it is possible to prevent the gap between the magnets 34A and 34B from increasing, it is possible to prevent the installation area of the device from increasing and it is possible to reduce the size of the device.
  • the magnets 34A and 34B are connected by the supported body, the magnetizing direction components of the magnet 32 in the attraction force between the magnet 34A and the magnet 32 and the attraction force between the magnet 34B and the magnet 32 cancel each other out. Therefore, the movement of the magnets 34A and 34B toward the magnet 32 side can be mutually suppressed.
  • the internal magnetic field is almost uniform.
  • the magnetomotive force can be increased by increasing the number of turns or increasing the length, but since the magnetic resistance also increases, the increase of the internal magnetic flux is suppressed and the magnetic force is suppressed.
  • This solenoid coil includes a Helmholtz coil whose coil radius is equal to the axial length of the coil, and the Helmholtz coil has the best magnetomotive force efficiency with respect to the number of turns.
  • the cross section in the magnetizing direction is square, there is a magnetizing current that has the same effect as a solenoid coil at any magnetizing current symmetrically located in the magnetizing direction.
  • the strength of the magnetic field is maximum.
  • the supporting force can be increased by increasing the magnetomotive force of at least one of them.
  • At least one of the first permanent magnet and the second permanent magnet has a square cross section in the magnetization direction, so that the strength of the magnetic field can be increased, and the first permanent magnet and the second permanent magnet can be made stronger.
  • the supporting force by the magnet can be increased.
  • FIG. 6A shows the magnetic support portion 40A.
  • a magnet 42 as a first permanent magnet and a magnet 44 as a second permanent magnet are used for the magnetic support portion 40A, and the magnets 42, 44 are arranged in directions in which the magnetization directions intersect each other vertically. ..
  • the magnets 42, 44 may have any shape as long as the cross section along the magnetizing direction of the magnet 42 and the magnetizing direction of the magnet 44 is substantially square.
  • the magnets 42, 44 have a square block outer shape. However, the shape may be a rectangular block.
  • the magnet 42 has a magnetizing direction horizontal
  • the magnet 44 has a magnetizing direction perpendicular to the magnetizing direction of the magnet 42, and has a magnetic pole surface (for example, an N-pole magnetic pole).
  • the magnet 44 is arranged in the immediate vicinity of the (surface). Further, in the magnet 44, the magnetic pole surface (for example, the lower surface) adjacent to the magnet 42 has a polarity different from the polarity of the magnetic pole surface of the magnet 42 (for example, S with respect to the N pole of the magnet 42). very).
  • the magnetic support portion 40A an attractive force and a repulsive force are generated between the magnet 42 and the magnet 44, and the magnet 42 is supported by the magnet 44 in a non-contact manner by the attractive force and the repulsive force. Further, in the magnetic support portion 40A, since the magnets 42 and 44 have substantially square cross sections in the magnetization direction, it is possible to obtain a supporting force more efficiently than the magnetic support portion 30A (see FIG. 5A). Thus, the device can be downsized.
  • FIG. 6B shows the magnetic support portion 40B.
  • a plurality of pairs of magnets (four pairs in FIG. 6B) as first permanent magnets intersect with a magnetization direction (horizontal direction in one example) of the magnets 42 (in one example in one example). Vertically).
  • the pair of magnets 42 have magnetic pole surfaces that face each other and have the same pole.
  • a plurality of magnets 44 as second permanent magnets are arranged between the magnets 42 arranged in pairs along the magnetizing direction of the magnets 44 (direction intersecting with the magnetizing direction of the magnets 42).
  • the magnets 44 are alternately magnetized in opposite directions.
  • the magnetic pole surface of the magnet 44 is arranged at an intermediate position between the magnets 42 that are vertically adjacent to each other (vertical direction). Further, in the magnetic support portion 40B, the polarity of the magnetic pole surface of the magnet 42 on the magnet 44 side is different from the polarity of the magnetic pole surface of the magnet 44 adjacent to this magnetic pole surface.
  • the magnets 44 adjacent to each other are arranged such that the magnetic pole surfaces of the same pole are in contact with each other, and a repulsive force is generated between the magnets 44 adjacent to each other. Therefore, in the magnetic support portion 40B, the magnets 44 adjacent to each other are adhered by an adhesive means such as an adhesive, and the magnets 44 adjacent to each other are restricted from being separated by the repulsive force.
  • the magnetic support portion 40B As a result, in the magnetic support portion 40B, the components of the magnetizing direction of the magnets 42 among the attractive forces (and repulsive forces) generated between the magnets 44 and the magnets 42 on both sides of the magnets 44 cancel each other out. Therefore, in the magnetic support portion 40B, it is possible to mutually suppress relative movement of the magnets 42 and 44 in a direction in which they approach each other (magnetization direction of the magnet 42). Further, in the magnetic support portion 40B, since each of the three magnets 44 is supported by the attraction force and the repulsive force between each of the four magnets 42, the three magnets 44 support the object to which a large load is applied. Can support.
  • a plurality of magnets 42 are arranged along the magnetizing direction of the magnets 44, and the polarities of the magnetic pole surfaces on the magnet 44 side are alternately different.
  • the plurality of magnets 44 are arranged along the magnetizing direction of the magnets 44, and the magnetic pole surfaces different from each other are arranged in close contact with each other in the immediate vicinity of the magnetic pole surface of the magnet 42. Supporting power can be increased more effectively. Further, in the magnetic support portion 40B, a plurality of pairs of magnets 42 are arranged with the magnet 44 interposed therebetween, so that the supporting force of the supported object can be further effectively increased.
  • each of the magnets 42 and 44 is a substantially square shape that can increase the magnetic flux per unit volume, a large supporting force can be effectively obtained. Therefore, in the magnetic support portion 40B, a high supporting force can be obtained while suppressing an increase in the size of the device. Further, each of the magnets 44 is restrained from moving from the equilibrium position to the upper side or the lower side by the magnetic pole surface of each of the facing magnets 42.
  • FIG. 7 shows a schematic configuration of a main part of the magnetic bearing 50 according to the second embodiment in a sectional view taken along the axial direction.
  • a rotary shaft 52 is applied to the magnetic bearing 50 as a floating body and a supported body, and the rotary shaft 52 is formed in a cylindrical outer shape.
  • the magnetic bearing 50 supports the rotating shaft 52 in a non-contact state (the rotating shaft 52 is floating with respect to the fixed side of the magnetic bearing 50), so that the rotating shaft 52 is rotatably supported.
  • the rotating shaft 52 may be cylindrical, and any rotating shaft such as a rotating shaft (output shaft) of an electric motor can be applied to the rotating shaft 52.
  • the magnetic bearing 50 is provided with bearing portions 50A and 50B that form a magnetic support portion.
  • the magnetic bearing 50 supports the rotary shaft 52 at each of the bearing portions 50A and 50B, thereby supporting the rotary shaft 52. Support at two points in the axial direction.
  • one of the bearing portions 50A and 50B functions as a limiting means that limits the movement of the other bearing portion in the axial direction.
  • the two bearings 50A and 50B have the same basic structure, and hereinafter, the bearing 50A will be mainly described as the magnetic bearing 50.
  • the magnetic bearing 50 (bearing portion 50A) is composed of a rotating portion 54 and a supporting portion 56 as a fixed portion.
  • a ring body 58 having an outer peripheral portion formed in a substantially cylindrical shape with a predetermined outer diameter is arranged in the rotating portion 54.
  • a disc-shaped flange portion 58A as a connecting portion is formed in the ring body 58.
  • the flange portion 58A has an axial center portion connected to the outer peripheral portion of the rotary shaft 52, and an outer end in the radial direction connected to an inner peripheral surface of an axially intermediate portion of the ring body 58.
  • the ring body 58 is attached to the rotating shaft 52, and the rotating shaft 52 is rotated and thereby rotated integrally with the rotating shaft 52.
  • the ring body 58 is not limited to the disk-shaped flange portion 58A, as long as the centrifugal force at the time of rotation does not vary, and for example, a plurality of spokes radially extended from the outer peripheral portion of the rotating shaft 52 and the like. It may be configured to be connected to the rotary shaft 52 by.
  • the rotating unit 54 is provided with a rotating magnet 60 as a second permanent magnet.
  • the rotary magnet 60 is formed in a cylindrical shape (circular tubular shape) whose axial length is the same as the axial length of the ring body 58 (the rotary magnet 60 may be slightly longer than the ring body 58).
  • the rotary magnet 60 has a rectangular radial cross section.
  • the rotating magnet 60 is magnetized in the radial direction.
  • the rotating magnet 60 has an inner peripheral surface serving as an S-pole magnetic pole surface 60B and an outer peripheral surface serving as an N-pole magnetic pole surface 60A.
  • the inner diameter of the rotating magnet 60 is the same as the outer diameter of the ring body 58, and the rotating magnet 60 is attached to the outer periphery of the ring body 58 with the ring body 58 fitted to the inner peripheral surface. As a result, the rotary magnet 60 is rotated integrally with the rotary shaft 52 and the ring body 58 by rotating the rotary shaft 52 and the ring body 58.
  • the support portion 56 is provided with a pair of support legs 62 (62A, 62B).
  • the support legs 62 are arranged in pairs along the axial direction of the rotary shaft 52 at a predetermined interval, and each of the support legs 62 is fixed to the installation position (not shown) of the magnetic bearing 50.
  • one side in the axial direction is a support leg 62A and the other side in the axial direction is a support leg 62B.
  • a circular through hole 64 is coaxially formed through the pair of support legs 62, and the inner diameter of the through hole 64 is larger than the outer diameter of the rotary shaft 52.
  • the rotating shaft 52 is inserted into the through hole 64 in the pair of support legs 62, and the rotating portion 54 (the ring body 58 and the rotating magnet 60) is disposed between the pair of support legs 62.
  • the support leg 62 of is rotatable relative to the rotary shaft 52.
  • a ring-shaped fixed magnet 66 serving as a first permanent magnet is arranged on each of the pair of support legs 62, and the fixed magnet 66 has a rectangular radial cross section.
  • the magnetization direction of the fixed magnet 66 is the axial direction, one surface in the axial direction is an N pole magnetic pole surface 66A, and the other surface in the axial direction is an S pole magnetic pole surface 66B.
  • the fixed magnet 66 is attached to the surface of the support leg 62 on the rotating portion 54 (rotating magnet 60) side so that the axis is coaxial with the axis of the rotating magnet 60.
  • Each of the inner diameter, the outer diameter, and the magnetic force of the fixed magnet 66 is formed in accordance with the inner diameter of the rotating magnet 60, the outer diameter of the rotating magnet 60, the magnetic force of the rotating magnet 60, and the magnetizing direction of the rotating magnet 60. ..
  • the inner and outer diameters of the fixed magnet 66 and the polarities of the magnetic pole faces directed to the rotating magnet 60 are such that the direction of the magnetizing current Im in the fixed magnet 66 in the immediate vicinity of the magnetic pole face facing the rotating magnet 60 is adjacent to the magnetic pole face.
  • the magnetizing current Im of the magnetic pole surface of the rotating magnet 60 is set to be in the same direction.
  • the fixed magnet 66 When the fixed magnet 66 is aligned with the magnetic pole surface 60B that is the inner peripheral surface of the rotating magnet 60, the fixed magnet 66 is attached to each of the supporting legs 62A and 62B with the magnetic pole surface 66A of the N pole facing the rotating magnet 60 side.
  • the fixed magnet 66 has an inner diameter smaller than the inner diameter of the rotating magnet 60 and an outer diameter smaller than the outer diameter of the rotating magnet 60. Further, the fixed magnet 66 may have an inner diameter, an outer diameter, and a magnetic force set so that the rotary magnet 60 is located at an equilibrium point when the shaft center is arranged coaxially with the shaft center of the rotary magnet 60. More preferable.
  • the fixed magnet 66 is attached to the support leg 62A with the magnetic pole surface 66B facing the rotating magnet 60 side. Further, the fixed magnet 66 may be formed so as to match the magnetic pole surface 60A on the outer peripheral side of the rotary magnet 60. In any case, the rotary magnet 60 may be arranged at a position where the radial position is the equilibrium point with the fixed magnet 66.
  • Ring-shaped recesses 68 are formed on the surfaces of the pair of support legs 62 facing each other, and the fixed magnets 66 are fitted into the recesses 68.
  • each of the fixed magnets 66 can be arranged at a position where a side surface of the rotating magnet 60 (a surface different from the magnetic pole surfaces 60A and 60B) forms a predetermined gap in the immediate vicinity of the magnetic pole surface 66A or the magnetic pole surface 66B. There is.
  • the pair of support legs 62 is provided with an electromagnet 70 as a limiting means on one side, and the electromagnet 70 is attached to the surface of the support legs 62 opposite to the rotating portion 54.
  • the electromagnet 70 is attached to the support leg 62B of the bearing portion 50A and the support leg 62A of the bearing portion 50B.
  • the electromagnet 70 is configured to include an iron core 72 and a coil 74.
  • the iron core 72 is formed in a ring shape having a predetermined thickness.
  • the iron core 72 has a ring-shaped recessed portion 72A formed on one surface in the axial direction, and the recessed portion 72A has a substantially U-shaped axial cross-section released toward the side opposite to the fixed magnet 66. ing.
  • the iron core 72 is arranged such that its axis is coaxial with the axis of the through hole 64 of the support leg 62, and the surface opposite to the recess 72A is attached to the support leg 62.
  • the coil 74 is formed by winding in the circumferential direction of the iron core 72 in the concave portion 72A of the iron core 72.
  • a disk 76 is attached to the rotating shaft 52 so as to face the electromagnet 70 and rotate integrally.
  • the disc 76 is formed by using a ferromagnetic material such as iron, and the disc 76 is integrally connected to the outer peripheral portion of the rotary shaft 52 that penetrates the shaft center portion.
  • the iron core 72 is magnetized by a predetermined current (DC current) flowing through the coil 74, and the attractive force of the disc 76 is generated.
  • the relative movement of the bearing portions 50A and 50B in the axial direction of the rotating shaft 52 is limited by adjusting the attraction force of the electromagnets 70 of the bearing portions 50A and 50B, so that the relative position is changed. Adjusted. That is, in the magnetic bearing 50, the position of the ring body 58 between the pair of support legs 62 is adjusted in each of the bearing portions 50A and 50B by the electromagnets 70 arranged in pairs. As a result, in the magnetic bearing 50, the axial position of the rotating portion 54 with respect to the support leg 62 is restricted so that a predetermined gap is formed between the rotating magnet 6 and the fixed magnet 66 in each of the bearing portions 50A and 50B. It
  • the fixed magnets 66 are arranged on both sides of the rotary magnet 60 in the axial direction, and the magnetic pole surfaces 60B of the rotary magnet 60 are arranged in the immediate vicinity of the magnetic pole surfaces 66A of the fixed magnet 66. There is. Therefore, the rotary magnet 60 is held at the radial equilibrium position by the fixed magnet 66, and the rotary shaft 52 is supported in the bearing portions 50A and 50B in a non-contact manner with the support portion 56.
  • an attractive force (an axial component of the combined force of the attractive force and the repulsive force) is generated between the stationary magnets 66 on both sides in the axial direction. This suppresses the movement in the axial direction.
  • an electromagnet 70 is provided in each of the bearing portions 50A and 50B, and the electromagnet 70 attracts the disc 76, respectively. At this time, the electromagnet 70 attracts the discs 76 in mutually opposite directions in the axial direction of the rotating shaft 52.
  • the movement of the rotary shaft 52 in the axial direction is restricted by the electromagnet 70, and the movement of the rotary magnet 60 toward the fixed magnet 66 is suppressed.
  • the rotating magnet 60 is rotatable without contacting the fixed magnet 66 and the rotating shaft 52 is rotated in a non-contact manner, so that the rotating shaft 52 can be prevented from receiving frictional resistance. It can rotate smoothly.
  • the magnetic bearing 50 by increasing the attractive force and the repulsive force generated between the rotating magnet 60 and the fixed magnet 66, it is possible to smoothly rotate and support the rotating shaft 52. Further, as shown in FIG. 5A and the like, in the magnetic bearing 50, by arranging the fixed magnet 66 or the rotating magnet 60 and the fixed magnet 66 in a plurality of load directions (magnetizing direction of the rotating magnet 60), a larger attractive force is obtained. And repulsive force can be obtained.
  • the magnetic bearing 50 it is possible to suppress an increase in the size of the device in the axial direction of the rotating shaft 52 in order to increase the supporting force of the rotating shaft 52, and it is possible to effectively increase the supporting force of the rotating shaft 52. ..
  • the support portion 56 is fixed, and the rotating portion 54 is rotated without contact with the support portion 56, so that the rotation shaft 52 is supported by the support portion 56 and rotates without contact.
  • the magnetic bearing 50 may have a structure in which the supporting unit 56 is attached to the dolly and the rotating unit 54 rotates on the rail or the road surface to move the dolly along the rail or the road surface.
  • the rotating portion 54 serving as a wheel is supported by the supporting portion 56 in a non-contact manner and can rotate.
  • the ring-shaped rotary magnet 60 and the fixed magnet 66 each having a rectangular radial cross section are used.
  • the rotary magnet 60 and the fixed magnet 66 are not limited to being integrally formed, but may be formed by arranging a plurality of permanent magnets in the circumferential direction.
  • the fixed magnets 66 are arranged in pairs with the rotary magnet 60 interposed therebetween.
  • two fixed magnets 66 that are closely contacted in the radial direction may be arranged in pairs, and in the bearing parts 50A and 50B, the plurality of rotary magnets 60 are arranged in the radial direction.
  • a plurality of pairs of fixed magnets 66 may be arranged with the plurality of rotating magnets 60 sandwiched therebetween.
  • the plurality of fixed magnets 66 are arranged along the magnetization direction of the rotating magnet 60 (the radial direction of the rotating shaft 52), and the polarities of the magnetic pole surfaces on the rotating magnet 60 side are alternately different.
  • the magnetic pole surface of the rotary magnet 60 having a polarity different from the polarity of the magnetic pole surface may be arranged in the immediate vicinity of the magnetic pole surface of the rotary magnet 60 on the side of 66.
  • the plurality of rotating magnets 60 may be arranged so that different magnetic pole surfaces are closely contacted along the magnetizing direction of the rotating magnet 60 (radial direction of the rotating shaft 52) and in the vicinity of the magnetic pole surface of the fixed magnet 66.
  • the magnetic bearing 50 (bearing portions 50A and 50B) can effectively increase the supporting force for the rotating shaft 52 without increasing the length along the axial direction of the rotating shaft 52, and is capable of operating at high speed. Even in this case, it is possible to effectively prevent the shaft 52 from being shaken.
  • the rotary magnet 60 and the fixed magnet 66 are not limited to have a rectangular cross section in the radial direction, and at least one may have a substantially square shape.
  • the magnetic flux per unit volume can be increased and a large supporting force can be obtained. It is possible to effectively suppress the occurrence of blurring and the like.
  • the magnetic support device 10 is described as an example, and in the second embodiment, the magnetic bearing 50 is described as an example.
  • the present disclosure is not limited to these, and can be applied to various configurations in which a supported body is supported in a non-contact manner using a permanent magnet.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

In this magnetic support device, a pair of fixed magnets are disposed such that magnetic pole surfaces of the same pole face each other, and a moving magnet is disposed between the pair of fixed magnets. The moving magnet has a magnetization direction perpendicularly intersecting the magnetization direction of the fixed magnets, and, in close proximity to the magnetic pole surfaces of the fixed magnets, a magnetic pole surface perpendicularly intersecting the magnetic pole surfaces and having a polarity different from that of the magnetic pole surfaces is disposed. Consequently, an attractive force and a repulsive force are generated between the fixed magnets and the moving magnet, and therefore a moving body is effectively supported in a non-contact state with the fixed magnets via the moving magnet.

Description

磁気支持装置Magnetic support device
  本開示は、磁気支持装置に関する。 The present disclosure relates to a magnetic support device.
 磁気浮上技術では、対で配置する永久磁石の間に生じる反発力又は吸引力(吸着力)を利用して、浮上対象を非接触で支持するようにしている。磁気浮上等においては、各々N極又はS極に着磁された面同士が対向されて生じる吸引力又は反発力を利用した場合、対向される面の一方にずれが生じると吸引力又は反発力が低下してしまう。 According to the magnetic levitation technology, the levitation target is supported in a non-contact manner by utilizing the repulsive force or attractive force (adsorption force) generated between the permanent magnets arranged in pairs. In magnetic levitation, etc., when the attractive force or repulsive force generated when the surfaces magnetized to the N pole or the S pole are opposed to each other, when one of the opposed surfaces is displaced, the attractive force or repulsive force is applied. Will decrease.
 ここで、特開昭48-9745号公報には、軸を軸方向と直角な面に対して浮上させた無接触の磁気軸受が記載されている。この磁気軸受では、軸の両端に取り付けられた磁石と固定台に取り付けられた磁石とを、吸引力又は反発力を軸の軸方向の力が互いに相殺するように対向させ、かつ軸方向と直角な面の軸の移動に対しては、吸引力又は反発力の力分布の谷間に軸が落ち着くようにしている。 Here, JP-A-48-9745 discloses a non-contact magnetic bearing in which a shaft is levitated with respect to a plane perpendicular to the axial direction. In this magnetic bearing, the magnets attached to both ends of the shaft and the magnets attached to the fixed base are made to face each other so that the attraction force or the repulsive force cancels each other in the axial direction of the shaft, and at right angles to the axial direction. With respect to the movement of the axis of the flat surface, the axis is settled in the valley of the force distribution of the suction force or the repulsive force.
 また、特開2005-188735号公報には、スピンドル孔内にスピンドルを回転自在に支持する磁気軸受システムが記載されている。磁気軸受システムでは、スピンドルの外周及びスピンドル孔の内周に各々複数の環状磁石が配置されており、環状磁石は、軸線方向の一方の面と他方の面とが異なる極性に着磁されている。また、スピンドル及びスピンドル孔内において環状磁石は、同極同士が対向されて重ねられており、スピンドル孔内の環状磁石の軸心部にスピンドルの環状磁石がスピンドルと共に配置されている。これにより、磁気軸受システムでは、スピンドル孔内の所定位置においてスピンドルを非接触かつ回転自在に支持できる。 Further, JP-A-2005-188735 describes a magnetic bearing system that rotatably supports a spindle in a spindle hole. In the magnetic bearing system, a plurality of annular magnets are arranged on the outer periphery of the spindle and the inner periphery of the spindle hole, respectively, and the annular magnets are magnetized with different polarities on one side and the other side in the axial direction. .. The annular magnets are stacked in the spindle and the spindle hole with the same poles facing each other, and the annular magnet of the spindle is arranged together with the spindle at the axial center of the annular magnet in the spindle hole. Thereby, in the magnetic bearing system, the spindle can be rotatably supported in a non-contact manner at a predetermined position in the spindle hole.
 ところで、磁気支持においては、互いに対向される永久磁石の磁極間に生じる吸引力又は反発力を用いており、支持荷重を大きくする際、支持方向(荷重方向)と直交する方向に沿って複数の永久磁石を対で配列する必要があり、装置の設置面積が大きくなる。また、磁気軸受においては、支持荷重(軸径方向の荷重)を大きくとる際は、軸方向に複数の永久磁石を配列する必要があり、装置が回転軸の軸方向に大型化する。このため、永久磁石を用いた磁気支持装置においては、改善の余地がある。 By the way, in the magnetic support, an attractive force or a repulsive force generated between the magnetic poles of the permanent magnets facing each other is used, and when increasing the support load, a plurality of magnets are provided along a direction orthogonal to the support direction (load direction). It is necessary to arrange the permanent magnets in pairs, which increases the installation area of the device. Further, in the magnetic bearing, when a large supporting load (load in the radial direction of the shaft) is taken, it is necessary to arrange a plurality of permanent magnets in the axial direction, and the device becomes large in the axial direction of the rotary shaft. Therefore, there is room for improvement in the magnetic support device using the permanent magnet.
 本開示は上記事実に鑑みてなされたものであり、永久磁石の磁力を用いて被支持体を効果的に支持可能とする磁気支持装置の提供を目的とする。 The present disclosure has been made in view of the above facts, and an object of the present disclosure is to provide a magnetic support device that can effectively support a supported object by using the magnetic force of a permanent magnet.
 上記目的を達成するための本態様の磁気支持装置は、互いの着磁方向が垂直に交差された第1の永久磁石及び第2の永久磁石を含み、前記第1の永久磁石の一方の磁極面の直近に該磁極面とは異なる極性の前記第2の永久磁石の磁極面が配置され、前記第1の永久磁石と前記第2の永久磁石とが前記第2の永久磁石の着磁方向に沿って相対移動可能とされた磁気支持部と、前記第1の永久磁石及び前記第2の永久磁石の一方が固定され、前記第1の永久磁石及び前記第2の永久磁石の他方に被支持体が設けられ、該被支持体を前記第1の永久磁石と前記第2の永久磁石との間に生じる吸引力及び反発力により支持する固定部と、を備えている。 The magnetic support device of the present aspect for achieving the above object includes a first permanent magnet and a second permanent magnet whose magnetization directions are perpendicular to each other, and one magnetic pole of the first permanent magnet. The magnetic pole surface of the second permanent magnet having a polarity different from that of the magnetic pole surface is arranged in the immediate vicinity of the surface, and the first permanent magnet and the second permanent magnet are magnetized in the magnetizing direction of the second permanent magnet. Along with the magnetic support portion, one of the first permanent magnet and the second permanent magnet is fixed, and the other of the first permanent magnet and the second permanent magnet is covered. A support is provided, and a fixed portion that supports the supported body by an attractive force and a repulsive force generated between the first permanent magnet and the second permanent magnet is provided.
 また、本態様の磁気支持装置に係る磁気支持部は、前記第1の永久磁石及び前記第2の永久磁石が各々円環状に形成されて互いの中心軸線が重ねられて配置され、前記被支持体として前記第1の永久磁石及び前記第2の永久磁石の軸心部に配置された回転体が前記第1の永久磁石及び前記第2の永久磁石の他方と一体に回転されることを含むことができる。 Further, in the magnetic support portion according to the magnetic support device of the present aspect, the first permanent magnet and the second permanent magnet are each formed in an annular shape, and the central axes of the first permanent magnet and the second permanent magnet are arranged so as to overlap with each other. A rotating body disposed as a body at the axial center of the first permanent magnet and the second permanent magnet is rotated integrally with the other of the first permanent magnet and the second permanent magnet. be able to.
 以上説明したように本開示によれば、第1の永久磁石と第2の永久磁石との間に生じる吸引力及び反発力の合力によって被支持体を支持できるので、永久磁石の磁力を用いて被支持体を効果的に支持できる、という効果がある。 As described above, according to the present disclosure, since the supported body can be supported by the resultant force of the attractive force and the repulsive force generated between the first permanent magnet and the second permanent magnet, the magnetic force of the permanent magnet is used. There is an effect that the supported body can be effectively supported.
第1実施形態に係る磁気支持装置の主要部を示す概略構成図である。It is a schematic block diagram which shows the principal part of the magnetic support apparatus which concerns on 1st Embodiment. 固定磁石と移動磁石の配列を示す概略図である。It is the schematic which shows the arrangement|positioning of a fixed magnet and a moving magnet. 固定磁石と移動磁石との間の吸引力及び反発力の概略を示す模式図である。It is a schematic diagram which shows the outline of the attraction|suction force and repulsive force between a fixed magnet and a moving magnet. 荷重が付与された状態の一例とする固定磁石と移動磁石との間の吸引力及び反発力の概略を示す模式図である。It is a schematic diagram which shows the outline of the attractive force and repulsive force between a fixed magnet and a moving magnet which are an example of the state where the load was given. 変形例としての磁石の配列の一例を示す概略図である。It is a schematic diagram showing an example of arrangement of a magnet as a modification. 変形例としての磁石の配列の他の一例を示す概略図である。It is the schematic which shows another example of arrangement|positioning of the magnet as a modification. 変形例としての磁石の配列の他の一例を示す概略図である。It is the schematic which shows another example of arrangement|positioning of the magnet as a modification. 変形例としての磁石の配列の他の一例を示す概略図である。It is the schematic which shows another example of arrangement|positioning of the magnet as a modification. 変形例としての断面が正方形状の磁石を用いた配列の一例を示す概略図である。It is a schematic diagram showing an example of an arrangement using a magnet with a square cross section as a modification. 変形例としての断面が正方形状の磁石を用いた配列の他の一例を示す概略図である。It is a schematic diagram showing another example of arrangement which uses a magnet with a square section as a modification. 第2実施形態に係る磁気軸受の主要部を示す軸方向に沿った概略断面図である。It is a schematic sectional drawing along the axial direction which shows the principal part of the magnetic bearing concerning a 2nd embodiment.
 本実施の形態は、以下の態様を含む。
<1> 互いの着磁方向が垂直に交差された第1の永久磁石及び第2の永久磁石を含み、前記第1の永久磁石の一方の磁極面の直近に該磁極面とは異なる極性の前記第2の永久磁石の磁極面が配置され、前記第1の永久磁石と前記第2の永久磁石とが前記第2の永久磁石の着磁方向に沿って相対移動可能とされた磁気支持部と、
 前記第1の永久磁石及び前記第2の永久磁石の一方が固定され、前記第1の永久磁石及び前記第2の永久磁石の他方に被支持体が設けられ、該被支持体を前記第1の永久磁石と前記第2の永久磁石との間に生じる吸引力及び反発力により支持する固定部と、
 を備えた磁気支持装置。
The present embodiment includes the following aspects.
<1> A first permanent magnet and a second permanent magnet whose magnetization directions are perpendicular to each other are included, and one of the first permanent magnets has a polarity different from that of the magnetic pole surface in the immediate vicinity of the one magnetic pole surface. A magnetic support part in which the magnetic pole surface of the second permanent magnet is arranged, and the first permanent magnet and the second permanent magnet are relatively movable along the magnetization direction of the second permanent magnet. When,
One of the first permanent magnet and the second permanent magnet is fixed, a supported body is provided on the other of the first permanent magnet and the second permanent magnet, and the supported body is the first supported magnet. A fixed portion which is supported by an attractive force and a repulsive force generated between the permanent magnet and the second permanent magnet,
Magnetic support device.
<2> 前記磁気支持部は、前記第1の永久磁石及び前記第2の永久磁石の一方が対で設けられ、前記第1の永久磁石及び前記第2の永久磁石の他方が前記対で設けられた前記一方の間に配置されている<1>の磁気支持装置。
<3> 前記磁気支持部は、前記被支持体を挟んだ両側に前記第1の永久磁石及び前記第2の永久磁石の各々が設けられた<1>又は<2>の磁気支持装置。
<2> In the magnetic support portion, one of the first permanent magnet and the second permanent magnet is provided in a pair, and the other of the first permanent magnet and the second permanent magnet is provided in the pair. The magnetic support device according to <1>, wherein the magnetic support device is disposed between the two.
<3> The magnetic support device according to <1> or <2>, wherein the magnetic support portion is provided with the first permanent magnet and the second permanent magnet on both sides of the supported body.
<4> 前記固定部に固定された前記第1の永久磁石及び前記第2の永久磁石の一方に対する前記第1の永久磁石及び前記第2の永久磁石の他方の前記第1の永久磁石の着磁方向に沿う相対移動を制限する制限手段をさらに含む<1>から<3>の何れか1の磁気支持装置。
<5> 前記第1の永久磁石及び前記第2の永久磁石の少なくとも一方の着磁方向に沿う断面が正方形状である<1>から<4>のいずれか1の磁気支持装置。
<4> Attachment of the first permanent magnet of the other of the first permanent magnet and the second permanent magnet to one of the first permanent magnet and the second permanent magnet fixed to the fixing portion. The magnetic support device according to any one of <1> to <3>, further including a limiting means for limiting relative movement along the magnetic direction.
<5> The magnetic support device according to any one of <1> to <4>, wherein a cross section of at least one of the first permanent magnet and the second permanent magnet along a magnetization direction is square.
<6> 前記磁気支持部は、前記第1の永久磁石及び前記第2の永久磁石が各々円環状に形成されて互いの中心軸線が重ねられて配置され、前記被支持体として前記第1の永久磁石及び前記第2の永久磁石の軸心部に配置された回転体が前記第1の永久磁石及び前記第2の永久磁石の他方と一体に回転される<1>から<5>のいずれか1の磁気支持装置。 <6> In the magnetic support portion, the first permanent magnet and the second permanent magnet are each formed in an annular shape, and the central axes of the first and second permanent magnets are overlapped with each other. Any one of <1> to <5> in which the rotating body disposed in the axial center portion of the permanent magnet and the second permanent magnet is integrally rotated with the other of the first permanent magnet and the second permanent magnet. 1 magnetic support device.
<7> 前記磁気支持部は、複数の前記第1の永久磁石が前記第2の永久磁石の着磁方向に沿い、かつ前記第2の永久磁石の磁極面の極性が交互に異なるように配置され、前記第1の永久磁石の各々の前記第2の永久磁石側の磁極面の直近に該磁極面の極性とは異なる極性の前記第2の永久磁石の磁極面が配置された<1>から<6>の何れか1の磁気支持装置。 <7> The magnetic support portion is arranged such that the plurality of first permanent magnets are along the magnetization direction of the second permanent magnet and the polarities of the magnetic pole surfaces of the second permanent magnet are alternately different. The magnetic pole surface of the second permanent magnet having a polarity different from the polarity of the magnetic pole surface is arranged in the immediate vicinity of the magnetic pole surface on the second permanent magnet side of each of the first permanent magnets <1>. <1> The magnetic support device of any one of <6>.
<8> 前記磁気支持部は、複数の前記第2の永久磁石が該第2の永久磁石の着磁方向に沿い、かつ前記第1の永久磁石の磁極面の直近において互いに異なる磁極面が密接されて配置された<7>の磁気支持装置。 <8> In the magnetic support portion, a plurality of the second permanent magnets are arranged along the magnetization direction of the second permanent magnet, and different magnetic pole surfaces are close to each other in the immediate vicinity of the magnetic pole surface of the first permanent magnet. The magnetic support device according to <7>.
 <1>の磁気支持装置では、固定部が磁気支持部の第1の永久磁石を固定することで、第2の永久磁石に取り付けられた被支持体を第2の永久磁石の着磁方向に沿って支持する。また、磁気支持部は、第1の永久磁石及び第2の永久磁石を含み、第1の永久磁石と第2の永久磁石とが互いの着磁方向を垂直に交差するように配置される。さらに、第1の永久磁石の磁極面の直近には、該磁極面の極性とはあ異なる極性の第2の永久磁石の磁極面が垂直に交差するように配置され、かつ第1の永久磁石の磁極面に沿って相対移動可能に第2の永久磁石が配置される。 In the magnetic support device according to <1>, the fixed portion fixes the first permanent magnet of the magnetic support portion so that the supported body attached to the second permanent magnet is moved in the magnetization direction of the second permanent magnet. Support along. The magnetic support portion includes a first permanent magnet and a second permanent magnet, and the first permanent magnet and the second permanent magnet are arranged so that their magnetization directions cross each other vertically. Further, in the immediate vicinity of the magnetic pole surface of the first permanent magnet, the magnetic pole surface of the second permanent magnet having a polarity different from that of the magnetic pole surface is arranged so as to vertically intersect, and the first permanent magnet. A second permanent magnet is arranged so as to be relatively movable along the magnetic pole surface of the.
 ここで、互いの磁極面が直近に配置された2つの永久磁石の間では、磁極の間に生じる磁力よりも磁化電流により生じる磁力が支配的となって吸引力及び反発力が生じる。このため、互いの磁極面が直近に配置された第1の永久磁石と第2の永久磁石との間には、磁化電流に起因する吸引力及び反発力の合力が作用する。 ▽Here, between two permanent magnets whose magnetic pole surfaces are arranged closest to each other, the magnetic force generated by the magnetizing current is more dominant than the magnetic force generated between the magnetic poles, and the attractive force and the repulsive force are generated. Therefore, the resultant force of the attractive force and the repulsive force due to the magnetizing current acts between the first permanent magnet and the second permanent magnet whose magnetic pole surfaces are arranged in the immediate vicinity.
 例えば、第1の永久磁石のN極の磁極面の直近に第2の永久磁石のS極の磁極面が配置されることで、第1の永久磁石と第2の永久磁石との間には、第1の永久磁石に対して第2の永久磁石を第2の永久磁石の着磁方向に向けて相対移動させる合力が生じる。また、第1の永久磁石のS極の磁極面の直近に第2の永久磁石のN極の磁極面が配置されることで、第1の永久磁石と第2の永久磁石との間には、第1の永久磁石に対して第2の永久磁石を第2の永久磁石の着磁方向とは反対方向に向けて相対移動させる合力が生じる。 For example, by disposing the magnetic pole surface of the S pole of the second permanent magnet in the immediate vicinity of the magnetic pole surface of the N pole of the first permanent magnet, the magnetic pole surface of the second permanent magnet is disposed between the first permanent magnet and the second permanent magnet. , A resultant force that relatively moves the second permanent magnet in the magnetization direction of the second permanent magnet with respect to the first permanent magnet. Further, by disposing the magnetic pole surface of the N pole of the second permanent magnet in the immediate vicinity of the magnetic pole surface of the S pole of the first permanent magnet, the magnetic pole surface of the second permanent magnet is disposed between the first permanent magnet and the second permanent magnet. , A resultant force that relatively moves the second permanent magnet in the direction opposite to the magnetization direction of the second permanent magnet with respect to the first permanent magnet.
 これにより、第1の永久磁石及び第2の永久磁石の一方を固定する固定部は、第1の永久磁石及び第2の永久磁石の他方に支持された被支持体を、第1の永久磁石及び第2の永久磁石の間に生じる合力により効果的に支持できる。 Accordingly, the fixing portion that fixes one of the first permanent magnet and the second permanent magnet causes the supported body supported by the other of the first permanent magnet and the second permanent magnet to move to the first permanent magnet. And it can be effectively supported by the resultant force generated between the second permanent magnet.
 <2>の磁気支持装置では、第1の永久磁石及び第2の永久磁石の一方が対で設けられ、第1の永久磁石及び第2の永久磁石の他方が、対で設けられた一方の間に配置されている。このため、第1の永久磁石及び第2の永久磁石の各々に生じる吸引力及び反発力の合力によって被支持体をより効果的に支持できる。 In the magnetic support device according to <2>, one of the first permanent magnet and the second permanent magnet is provided as a pair, and the other of the first permanent magnet and the second permanent magnet is provided as a pair. It is located in between. Therefore, the supported body can be more effectively supported by the resultant force of the attractive force and the repulsive force generated in each of the first permanent magnet and the second permanent magnet.
 また、対で設けられた永久磁石(第1の永久磁石及び第2の永久磁石の一方)が、互いに他方の永久磁石(第1の永久磁石又は第2の永久磁石の他方)の第1の永久磁石の着磁方向に沿う移動を抑制し合うので、第1の永久磁石の磁極面と第2の永久磁石とが接触するのを効果的に抑制できて、被支持体を非接触状態で支持できる。 Further, the permanent magnets (one of the first permanent magnet and the second permanent magnet) provided in a pair are the first of the other permanent magnets (the other of the first permanent magnet or the second permanent magnet). Since the movements of the permanent magnets in the magnetizing direction are suppressed, contact between the magnetic pole surface of the first permanent magnet and the second permanent magnet can be effectively suppressed, and the supported body can be kept in a non-contact state. Can support.
 <3>の磁気支持装置では、被支持体を挟んだ両側に第1の永久磁石及び第2の永久磁石の各々を設けている。これにより、被支持体を挟んだ両側の各々に設けている第1の永久磁石及び第2の永久磁石により、被支持体の両側を支持できる。また、被支持体を挟んだ両側の各々に設けている第1の永久磁石及び第2の永久磁石により、被支持体の両側の各々において第1の永久磁石の磁極面と第2の永久磁石とが接触するのを効果的に抑制できて、被支持体を非接触状態で支持できる。 In the magnetic support device of <3>, each of the first permanent magnet and the second permanent magnet is provided on both sides of the supported body. Accordingly, both sides of the supported body can be supported by the first permanent magnet and the second permanent magnet provided on both sides of the supported body. The first permanent magnet and the second permanent magnet provided on both sides of the supported body sandwich the first permanent magnet and the second permanent magnet on both sides of the supported body. It is possible to effectively suppress the contact between and, and it is possible to support the supported body in a non-contact state.
 <4>の磁気支持装置では、制限手段が、第1の永久磁石及び第2の永久磁石の一方に対する第1の永久磁石及び第2の永久磁石の他方の第1の永久磁石の着磁方向に沿う相対移動を制限する。このため、第1の永久磁石と第2の永久磁石との間の吸引力及び反発力によって第1の永久磁石の磁極面と第2の永久磁石とが接触するのを一層確実に抑制できて、より一層効果的に被支持体を非接触状態で支持できる。 In the magnetic support device according to the item <4>, the limiting means includes a magnetizing direction of the other one of the first permanent magnet and the second permanent magnet with respect to one of the first permanent magnet and the second permanent magnet. Limit relative movement along. Therefore, it is possible to more reliably suppress contact between the magnetic pole surface of the first permanent magnet and the second permanent magnet due to the attractive force and the repulsive force between the first permanent magnet and the second permanent magnet. Therefore, the supported body can be supported more effectively in a non-contact state.
 <5>の磁気支持装置では、第1の永久磁石及び第2の永久磁石の少なくとも一方の着磁方向に沿う断面を、単位体積当たりの磁束が多くなる正方形状としている。これにより、第1の永久磁石と第2の永久磁石との間の吸引力及び反発力の合力をより効果的に大きくできるので、より効果的に被支持体を非接触状態で支持できる。 In the magnetic support device of <5>, the cross section along the magnetizing direction of at least one of the first permanent magnet and the second permanent magnet has a square shape in which the magnetic flux per unit volume increases. Accordingly, the resultant force of the attractive force and the repulsive force between the first permanent magnet and the second permanent magnet can be increased more effectively, so that the supported object can be supported more effectively in the non-contact state.
 <6>の磁気支持装置では、各々が円環状に形成された第1の永久磁石及び第2の永久磁石の軸心部に被支持体として回転体を配置している。また、第1の永久磁石及び第2の永久磁石の他方は、回転体と一体に回転される。これにより、回転体を非接触状態で支持できて、回転体の円滑な回転が可能になる。 In the magnetic support device of <6>, the rotating body is arranged as a supported body at the axial center of each of the first permanent magnet and the second permanent magnet, which are formed in an annular shape. The other of the first permanent magnet and the second permanent magnet is rotated integrally with the rotating body. Thereby, the rotating body can be supported in a non-contact state, and the rotating body can be smoothly rotated.
 <7>の磁気支持装置では、磁気支持部に複数の第1の永久磁石が配置されている。複数の第1の永久磁石は、第2の永久磁石の着磁方向に沿い、かつ第2の永久磁石側の磁極面の極性が交互に異なるように配置されている。また、第1の永久磁石の各々には、第2の永久磁石側の磁極面の直近に該磁極面の極性とは異なる極性の前記第2の永久磁石の磁極面が配置されている。これにより、磁気支持部は、被支持体の支持力を効果的に大きくできる。 In the magnetic support device of <7>, the plurality of first permanent magnets are arranged in the magnetic support portion. The plurality of first permanent magnets are arranged along the magnetization direction of the second permanent magnet, and the polarities of the magnetic pole surfaces on the second permanent magnet side are alternately different. Further, in each of the first permanent magnets, the magnetic pole surface of the second permanent magnet having a polarity different from the polarity of the magnetic pole surface is arranged in the immediate vicinity of the magnetic pole surface on the second permanent magnet side. Accordingly, the magnetic support portion can effectively increase the support force of the supported body.
 <8>の磁気支持装置では、磁気支持部に複数の第2の永久磁石が配置されている。複数の第2の永久磁石は、該第2の永久磁石の着磁方向に沿い、かつ第1の永久磁石の磁極面の直近において互いに異なる磁極面が密接されている。これにより、磁気支持部は、被支持体の支持力をより効果的に大きくできる。 In the magnetic support device of <8>, a plurality of second permanent magnets are arranged in the magnetic support part. The plurality of second permanent magnets are in contact with different magnetic pole surfaces along the magnetization direction of the second permanent magnet and in the immediate vicinity of the magnetic pole surface of the first permanent magnet. Accordingly, the magnetic support portion can effectively increase the support force of the supported body.
 次に、図面を参照しながら本開示の実施形態を説明する。
 以下の説明において、着磁方向とは、永久磁石の内部においてS極からN極に向かう方向に対応し、永久磁石内における起磁力の方向、すなわち、永久磁石内において起磁力を形成する磁化ベクトルの方向に対応する。着磁方向に沿うとは、着磁方向及び着磁方向とは反対方向の各々の方向を指す。また、磁極面とは、永久磁石においてN極及びS極の一方に着磁された面を指し、着磁方向側の面がN極の磁極面となり、着磁方向とは反対側の面がS極の磁極面となる。
Next, embodiments of the present disclosure will be described with reference to the drawings.
In the following description, the magnetization direction corresponds to the direction from the S pole to the N pole inside the permanent magnet, and the direction of the magnetomotive force in the permanent magnet, that is, the magnetization vector that forms the magnetomotive force in the permanent magnet. Corresponding to the direction of. “Along the magnetizing direction” means the magnetizing direction and the direction opposite to the magnetizing direction. Further, the magnetic pole surface refers to a surface magnetized to one of the N pole and the S pole in the permanent magnet, the surface on the magnetizing direction side is the magnetic pole surface for the N pole, and the surface on the opposite side to the magnetizing direction is It becomes the magnetic pole surface of the S pole.
〔第1実施形態〕
 図1には、第1実施形態に係る磁気支持装置10の概略構成が示されている。
 図1に示すように、第1実施形態には、浮上体及び被支持体として移動体12が適用されている。磁気支持装置10は、移動体12を軌道14に沿って移動可能とするリニアガイドを構成し、磁気支持装置10は、軌道14に対して移動体12を非接触状態(浮上状態)で支持し、移動体12を軌道14に沿って移動可能とする。なお、軌道14は、直線状に限らず曲線状であってもよく傾斜されていてもよい。図面では、着磁方向が矢印Mにて示されている。また、図面では、軌道14の幅方向が矢印Wにて示され、上方が矢印UPにて示されている。
[First Embodiment]
FIG. 1 shows a schematic configuration of a magnetic support device 10 according to the first embodiment.
As shown in FIG. 1, in the first embodiment, a moving body 12 is applied as a floating body and a supported body. The magnetic support device 10 constitutes a linear guide that allows the moving body 12 to move along the track 14, and the magnetic supporting device 10 supports the moving body 12 in a non-contact state (floating state) with respect to the track 14. , The movable body 12 can be moved along the track 14. The track 14 is not limited to a straight line, but may be a curved line or may be inclined. In the drawing, the magnetization direction is indicated by an arrow M. Further, in the drawings, the width direction of the track 14 is indicated by an arrow W, and the upper side is indicated by an arrow UP.
 軌道14には、固定部としての一対の軌道台16が配置されていると共に、軌道台16の各々には、案内部材及び制限手段を構成するレール18が配置されている。なお、以下では、一対の軌道台16を区別する場合、一方を軌道台16Lとし、他方を軌道台16Rとする。 The track 14 is provided with a pair of track rails 16 as fixed parts, and each of the rail tracks 16 is provided with a rail 18 which constitutes a guide member and a limiting means. In the following description, when distinguishing between the pair of raceways 16, one is designated as the raceway 16L and the other is designated as the raceway 16R.
 軌道台16は、各々長尺かつ断面矩形とされており、一対の軌道台16は、長手方向が軌道方向とされて設置されている。また、軌道台16は、幅方向が上下方向とされ、厚さ方向が軌道幅方向とされており、一対の軌道台16は、軌道幅方向に所定間隔で対向されている。 The track rails 16 are each long and have a rectangular cross section, and the pair of track rails 16 are installed with the longitudinal direction being the track direction. In addition, the track way 16 has a vertical direction in the width direction and a track width direction in the thickness direction, and the pair of track ways 16 are opposed to each other at a predetermined interval in the track width direction.
 レール18は、鉄製(強磁性材製)の帯板状とされている。レール18は、長手方向(紙面に垂直な方向)が軌道台16の長手方向とされ、幅方向が上下方向とされると共に厚さ方向が軌道幅方向とされて、軌道台16(16L、16R)の上面の各々に立設されている。 The rail 18 is made of iron (ferromagnetic material) in the form of a strip plate. In the rail 18, the longitudinal direction (direction perpendicular to the paper surface) is the longitudinal direction of the track base 16, the width direction is the vertical direction, and the thickness direction is the track width direction. ) Is erected on each of the upper surfaces.
 移動体12は、矩形ブロック状とされており、移動体12は、一対の軌道台16の間と一対のレール18の間とに跨って配置される。移動体12の軌道幅方向に沿う寸法は、一対のレール18の間隔寸法(軌道幅方向の内側面の間隔寸法)及び一対の軌道台16の間隔寸法(軌道幅方向の内側面の間隔寸法)の各々より小さくされている。これにより、移動体12は、一対の軌道台16及び一対のレール18の各々との間に配置された際、軌道台16及びレール18との間に所定のギャップが形成可能にされ、移動体12は、一対の軌道台16及び一対のレール18の間を通過(落下)可能とされている。 The moving body 12 is in the shape of a rectangular block, and the moving body 12 is arranged so as to straddle between the pair of rails 16 and the pair of rails 18. The dimension along the track width direction of the moving body 12 is the distance between the pair of rails 18 (the distance between the inner surfaces in the track width direction) and the distance between the pair of track stands 16 (the distance between the inner surfaces in the track width direction). Are smaller than each. Accordingly, when the moving body 12 is arranged between the pair of track rails 16 and the pair of rails 18, a predetermined gap can be formed between the moving body 12 and the rails 16 and the rails 18. 12 is capable of passing (falling) between a pair of rails 16 and a pair of rails 18.
 一方、磁気支持装置10には、磁気支持部を構成する第1の永久磁石としての固定磁石20、及び第2の永久磁石としての移動磁石22が設けられている。固定磁石20及び移動磁石22は、平面視矩形の板状に形成されており、固定磁石20及び移動磁石22は、厚さ方向が着磁方向とされている。これにより、固定磁石20及び移動磁石22は、厚さ方向の一方の面の各々がN極の磁極面(20A、22A)とされ、厚さ方向の他方の面の各々がS極の磁極面(20B、22B)とされている。 On the other hand, the magnetic support device 10 is provided with a fixed magnet 20 as a first permanent magnet and a moving magnet 22 as a second permanent magnet that form a magnetic support portion. The fixed magnet 20 and the moving magnet 22 are formed in a rectangular plate shape in a plan view, and the fixed magnet 20 and the moving magnet 22 are magnetized in the thickness direction. As a result, the fixed magnet 20 and the moving magnet 22 each have one surface in the thickness direction as an N pole magnetic pole surface (20A, 22A) and the other surface in the thickness direction as an S pole magnetic pole surface. (20B, 22B).
 固定磁石20は、一対の軌道台16(16L、16R)の各々に配置されており、固定磁石20は、着磁方向が軌道幅方向とされて、軌道台16Lの軌道台16R側(内側)の面の上部、及び軌道台16Rの軌道台16L側(内側)の面の上部に取り付けられている。また、軌道台16L側の固定磁石20は、N極の磁極面20Aが軌道台16R側に向けられ、軌道台16R側の固定磁石20は、N極の磁極面20Aが軌道台16L側に向けられている。 The fixed magnet 20 is arranged on each of the pair of rails 16 (16L, 16R), and the fixed magnet 20 has the magnetizing direction as the rail width direction, and the rail 16R side (inner side) of the rail 16L. Is attached to the upper part of the surface on the side of the raceway 16L (inner side) of the raceway 16R. Further, the fixed magnet 20 on the side of the raceway 16L has the N pole magnetic pole surface 20A oriented toward the raceway 16R side, and the fixed magnet 20 on the sideway 16R side has the N pole magnetic pole surface 20A oriented toward the raceway 16L side. Has been.
 これにより、一対の軌道台16には、同極の磁極面20Aが対向されて固定磁石20が対で配置されている。また、軌道台16の各々には、軌道方向(移動体12の移動方向)全域に渡って固定磁石20が配列されている。なお、第1実施形態では、一対の軌道台16の間において、同極の磁極面が対向するよう固定磁石20が設けられているが、これに限らず、異なる極性の磁極面が対向するよう固定磁石20が設けられてもよい。 As a result, the fixed magnets 20 are arranged in pairs on the pair of rails 16 with the magnetic pole surfaces 20A having the same poles facing each other. Fixed magnets 20 are arranged on each of the track bases 16 over the entire track direction (the moving direction of the moving body 12). In the first embodiment, the fixed magnet 20 is provided between the pair of rails 16 so that the magnetic pole surfaces having the same pole face each other. However, the present invention is not limited to this, and the magnetic pole surfaces having different polarities face each other. The fixed magnet 20 may be provided.
 移動磁石22は、移動体12の下面に配置されており、移動磁石22は、軌道台16L側及び軌道台16R側の各々の固定磁石20に対応されて、移動体12の軌道幅方向の両端部に取り付けられている。これにより、移動磁石22の各々は、軌道台16の間において固定磁石20に隣接(直近に配置)されている。 The moving magnets 22 are arranged on the lower surface of the moving body 12, and the moving magnets 22 correspond to the fixed magnets 20 on the track 16L side and the track 16R side respectively, and both ends of the moving body 12 in the track width direction. Is attached to the section. As a result, each of the moving magnets 22 is adjacent to (adjacent to) the fixed magnet 20 between the rails 16.
 移動磁石22は、着磁方向が上下方向とされ、かつ着磁方向が固定磁石20の着磁方向と垂直に交差する方向とされている。また、移動磁石22は、下側の磁極面が固定磁石20の磁極面に対して垂直となるように配置されており、2つの移動磁石22の各々は、磁極面が隣接する固定磁石20の磁極面に対して垂直に交差するように配置されている。 The magnetizing direction of the moving magnet 22 is the vertical direction, and the magnetizing direction is perpendicular to the magnetizing direction of the fixed magnet 20. The moving magnet 22 is arranged such that the lower magnetic pole surface thereof is perpendicular to the magnetic pole surface of the fixed magnet 20, and each of the two moving magnets 22 has a magnetic pole surface adjacent to the fixed magnet 20. It is arranged so as to intersect perpendicularly to the magnetic pole surface.
 また、移動磁石22の下側の磁極面の極性は、軌道台16において隣接する固定磁石20の磁極面の極性とは異なる極性とされており、移動磁石22の各々は、磁極面22Bが下側に向けられ、かつS極の磁極面22Bが固定磁石20のN極の磁極面20Aの直近に隣接されている。なお、一対の軌道台16の間において、異なる極性の磁極面が対向するよう固定磁石20が設けられている場合、N極の磁極面20Aに対してはS極の磁極面22Bが隣接され、S極の磁極面20Bに対しては、N極の磁極面22Aが隣接されるように移動磁石22を配置すればよい。 Further, the polarities of the magnetic pole surfaces below the moving magnets 22 are different from the polarities of the magnetic pole surfaces of the fixed magnets 20 adjacent to each other on the track 16, and each of the moving magnets 22 has a lower magnetic pole surface 22B. The magnetic pole surface 22B of the S pole facing toward the side is adjacent to the magnetic pole surface 20A of the N pole of the fixed magnet 20 in the immediate vicinity. When the fixed magnet 20 is provided between the pair of rails 16 so that the magnetic pole surfaces of different polarities face each other, the S magnetic pole surface 22B is adjacent to the N magnetic pole surface 20A, The moving magnet 22 may be arranged so that the magnetic pole surface 22A of the N pole is adjacent to the magnetic pole surface 20B of the S pole.
 ここで、軌道台16に固定された固定磁石20と固定磁石20に隣接配置される移動磁石22との間(非接触で直近となる位置)には、固定磁石20のN極の磁極面20Aの面方向に対して、移動磁石22のS極の磁極面22Bを所定の位置(以下、平衡位置という)に保持する力が作用する。 Here, the magnetic pole surface 20A of the N pole of the fixed magnet 20 is provided between the fixed magnet 20 fixed to the track base 16 and the moving magnet 22 arranged adjacent to the fixed magnet 20 (at a position which is closest to the fixed magnet 20 in a non-contact manner). A force for holding the magnetic pole surface 22B of the S pole of the moving magnet 22 at a predetermined position (hereinafter, referred to as an equilibrium position) acts on the surface direction of.
 これにより、移動体12から受ける荷重によって移動磁石22が平衡位置から固定磁石20の磁極面20Aに沿って下方に押下げられる場合、移動磁石22は固定磁石20から平衡位置に向けて押し上げられる力(支持力)を受ける。また、移動磁石22は、固定磁石20に対して荷重と支持力とがつりあった位置(移動体12の荷重に応じた平衡位置)に保持され、一対の軌道台16の間において移動体12が非接触状態で支持可能となる。 Accordingly, when the moving magnet 22 is pushed downward from the equilibrium position along the magnetic pole surface 20A of the fixed magnet 20 by the load received from the moving body 12, the moving magnet 22 is pushed up from the fixed magnet 20 toward the equilibrium position. Receive (support). The moving magnet 22 is held at a position where the load and the supporting force are balanced with respect to the fixed magnet 20 (the equilibrium position according to the load of the moving body 12 ), and the moving body 12 moves between the pair of rails 16. It can be supported in a non-contact state.
 一方、磁気支持装置10には、案内手段及び制限手段を構成する電磁石24が配置されており、電磁石24は、対とされて移動体12のレール18側の面の各々に設置されている。なお、電磁石24は、1対でもよいが、複数対が移動体12の移動方向(軌道方向)に設けられることがより好ましい。 On the other hand, the magnetic support device 10 is provided with electromagnets 24 that constitute guide means and limiting means, and the electromagnets 24 are installed as a pair on each surface of the moving body 12 on the rail 18 side. The electromagnets 24 may be one pair, but it is more preferable that a plurality of pairs are provided in the moving direction (orbital direction) of the moving body 12.
 電磁石24の各々は、鉄心26及びコイル28を含んで構成されており、鉄心26は、移動体12のレール18側の面の各々に取り付けられ、コイル28は、鉄心26の外周部に鉄心26の周方向に巻回されている。電磁石24は、コイル28に電圧(例えば直流電圧)が印加されて電流(直流電流)が流れることで、鉄心26にレール18を吸引する磁力(吸引力となる磁力)を生じる。磁気支持装置10では、一対の電磁石24の各々に生じる吸引力が調整されることで、移動体12の軌道幅方向の位置を制限して、レール18側の各々においてレール18と鉄心26とを離間させる。 Each of the electromagnets 24 is configured to include an iron core 26 and a coil 28. The iron core 26 is attached to each surface of the moving body 12 on the rail 18 side, and the coil 28 is provided on the outer peripheral portion of the iron core 26. It is wound in the circumferential direction. A voltage (for example, a DC voltage) is applied to the coil 28 to cause a current (DC current) to flow in the electromagnet 24, so that the iron core 26 generates a magnetic force for attracting the rail 18 (a magnetic force serving as an attraction force). In the magnetic support device 10, by adjusting the attraction force generated in each of the pair of electromagnets 24, the position of the moving body 12 in the track width direction is limited, and the rail 18 and the iron core 26 are separated on the rail 18 side. Separate.
 磁気支持装置10では、移動体12を支持する際、軌道幅方向の両側に固定磁石20及び移動磁石22を配置することで、互いに軌道幅方向である固定磁石20の着磁方向に沿う移動を抑制するが、磁力に差が生じると、移動体12が一対の軌道台16の一方によってしまう。 In the magnetic support device 10, when the moving body 12 is supported, the fixed magnets 20 and the moving magnets 22 are arranged on both sides in the track width direction to move the fixed magnets 20 in the track width direction along the magnetization direction. Although restrained, when a difference in magnetic force occurs, the moving body 12 is lost by one of the pair of rails 16.
 一対の電磁石24は、各々において鉄心26とレール18との間に生じる吸引力(磁力)が調整されることで、反対側のレール18と鉄心26とを離間させて、固定磁石20と移動磁石22とを離間させる。このため、磁気支持装置10では、固定磁石20の着磁方向に沿う移動磁石22の移動(固定磁石20と移動磁石22との接近方向への移動)が制限される。これにより、固定磁石20の磁極面20Aに移動磁石22が接触するのが抑制され、固定磁石20の磁極面20Aの直近(所定のギャップで接近した状態)に移動磁石22が配置される。 The attraction force (magnetic force) generated between the iron core 26 and the rail 18 is adjusted in each of the pair of electromagnets 24, so that the rail 18 and the iron core 26 on the opposite side are separated from each other, and the fixed magnet 20 and the moving magnet. And 22 are separated from each other. Therefore, in the magnetic support device 10, the movement of the moving magnet 22 along the magnetization direction of the fixed magnet 20 (movement in the approaching direction of the fixed magnet 20 and the moving magnet 22) is limited. As a result, contact of the moving magnet 22 with the magnetic pole surface 20A of the fixed magnet 20 is suppressed, and the moving magnet 22 is arranged in the immediate vicinity of the magnetic pole surface 20A of the fixed magnet 20 (a state in which the moving magnet 22 approaches with a predetermined gap).
 次に、第1実施形態の作用を説明する。
 磁気支持装置10には、固定磁石20及び移動磁石22が用いられており、磁気支持装置10は、固定磁石20及び移動磁石22の磁力により移動体12を浮上させた状態で一対の軌道台16の間で支持する。移動体12は、一対の軌道台16に支持された状態で、駆動手段(図示省略)によって移動方向の駆動力が付与されることで、軌道14(軌道台16及びレール18)に沿って移動される。これにより、移動体12が一対の軌道台16の間を移動する際に、摩擦力(摩擦抵抗)が生じるのが抑制され、移動体12を移動するための駆動手段の負荷を抑制できる。
Next, the operation of the first embodiment will be described.
A fixed magnet 20 and a moving magnet 22 are used in the magnetic support device 10. The magnetic support device 10 includes a pair of rails 16 with the moving body 12 levitated by the magnetic force of the fixed magnet 20 and the moving magnet 22. Support between. The moving body 12 moves along the track 14 (the track 16 and the rail 18) by being applied with a driving force in the moving direction by a driving means (not shown) while being supported by the pair of track 16 To be done. As a result, when the moving body 12 moves between the pair of rails 16, it is possible to suppress the generation of frictional force (friction resistance), and it is possible to suppress the load of the drive means for moving the moving body 12.
 この駆動手段には、移動体12に駆動力を付与する各種の構成を適用できる。また、移動体12が軌道14に非接触状態で支持されることで、移動時に生じる摩擦力(摩擦抵抗)が抑制されるので、例えば、軌道14を傾斜させて移動体12を軌道14の傾斜によって上方から下方に移動(自然落下)させる構成であってもよい。 Various configurations for applying a driving force to the moving body 12 can be applied to this driving means. Further, since the moving body 12 is supported by the track 14 in a non-contact state, the frictional force (friction resistance) generated during the movement is suppressed. Therefore, for example, the track 14 is inclined and the moving body 12 is tilted. It may be configured to move (naturally drop) from the upper side to the lower side by.
 ここで、磁気支持部を構成する固定磁石20及び移動磁石22による移動体12の支持を説明する。図2には、磁気支持装置10において固定磁石20の直近に移動磁石22を配置した概略が模式的に示されている。 Here, the support of the moving body 12 by the fixed magnets 20 and the moving magnets 22 that constitute the magnetic support portion will be described. FIG. 2 schematically shows an outline in which the moving magnet 22 is arranged in the vicinity of the fixed magnet 20 in the magnetic support device 10.
 図2に示すように、磁気支持装置10では、軌道幅方向に固定磁石20及び移動磁石22が対で配置されており、固定磁石20及び移動磁石22は、軌道幅方向の中心線を対称線とする略線対称に配置されている。ここから、以下では、主に軌道台16L側の固定磁石20及び移動磁石22を例に説明する。図3及び図4には、一組の固定磁石20と固定磁石20の直近に配置した移動磁石22との間に生じる磁力により力関係の概略が模式的に示されており、図3には、移動磁石22が移動体12からの荷重を受けていない状態が示され、図4には、移動磁石22が移動体12からの荷重を受けた状態の一例が示されている。 As shown in FIG. 2, in the magnetic support device 10, a fixed magnet 20 and a moving magnet 22 are arranged in pairs in the track width direction, and the fixed magnet 20 and the moving magnet 22 have a symmetry line with respect to the center line in the track width direction. Are arranged substantially symmetrically. From here, below, mainly the fixed magnet 20 and the moving magnet 22 on the side of the track 16L will be described as an example. 3 and 4 schematically show the force relationship due to the magnetic force generated between the pair of fixed magnets 20 and the moving magnets 22 arranged in the immediate vicinity of the fixed magnets 20, and FIG. The state in which the moving magnet 22 does not receive the load from the moving body 12 is shown, and FIG. 4 shows an example of the state in which the moving magnet 22 receives the load from the moving body 12.
 一般に、永久磁石(磁性体)の内部には、分子電流が生じており、永久磁石は、分子電流によって形成される微小な電磁石が、分子電流の向きが揃えられて複数配列された構成とみなされる。永久磁石では、分子電流の向きが揃えられることで、内部において隣接する分子電流が相互に打ち消しあい、分子電流の成分が表面部分のみに残る。また、永久磁石の磁極面の表面中央部においては、表面中央部分に残った分子電流が相殺される。 Generally, a molecular current is generated inside a permanent magnet (magnetic material), and a permanent magnet is considered to have a configuration in which a plurality of minute electromagnets formed by the molecular current are arranged with the directions of the molecular current aligned. Be done. In the permanent magnet, since the directions of the molecular currents are aligned, the adjacent molecular currents cancel each other inside, and the component of the molecular current remains only on the surface portion. Further, at the surface central portion of the magnetic pole surface of the permanent magnet, the molecular current remaining in the surface central portion is canceled.
 このため、永久磁石では、磁極面の周縁部分に沿って磁化電流Im(又は磁化電流Imとは逆向きの磁化電流-Im、総称する場合、磁化電流Imとする)が生じているとみなすことができる。永久磁石では、この磁化電流Imにより起磁力が生じ、磁化電流Imの向き及び強さ(大きさ)に応じた磁場を形成する。また、永久磁石では、磁力に応じて磁化電流Imが変化し、永久磁石の磁力が強くなるほど磁化電流Imが増加する(大きくなる)。これにより、永久磁石は、磁化電流がコイル電流に置き換えられた電磁石とみなせる。 Therefore, in the permanent magnet, it is considered that the magnetizing current Im (or the magnetizing current −Im in the opposite direction to the magnetizing current Im, which is generically referred to as the magnetizing current Im) is generated along the peripheral portion of the magnetic pole surface. You can In the permanent magnet, a magnetomotive force is generated by this magnetizing current Im, and a magnetic field corresponding to the direction and strength (magnitude) of the magnetizing current Im is formed. In the permanent magnet, the magnetizing current Im changes according to the magnetic force, and the magnetizing current Im increases (increases) as the magnetic force of the permanent magnet increases. Accordingly, the permanent magnet can be regarded as an electromagnet in which the magnetizing current is replaced by the coil current.
 一般に永久磁石においては、磁極の磁力が支配的となって吸引力及び反発力が生じるが、互いの磁極面が直近に配置された2つの永久磁石の間では、磁化電流Imが支配的となって吸引力及び反発力が生じる。 Generally, in a permanent magnet, the magnetic force of the magnetic pole is dominant to generate an attractive force and a repulsive force, but the magnetizing current Im is dominant between the two permanent magnets whose magnetic pole surfaces are arranged closest to each other. As a result, suction force and repulsion force are generated.
 図2から図4では、固定磁石20において、移動磁石22に隣接されるN極の磁極面20Aの周縁近傍に磁化電流Im、-Imの流れると仮定した点のうち上側(移動磁石22の着磁方向側)をA点、及び下側(移動磁石22の着磁方向とは反対側)をB点としている。また、図2から図4では、移動磁石22において、S極の磁極面22Bの周縁近傍において磁化電流Imの流れると仮定した点のうち固定磁石20側をC点、及び固定磁石20とは反対側をD点としている。 In FIGS. 2 to 4, in the fixed magnet 20, the upper side (the moving magnet 22 is attached to the upper side of the assumption that the magnetizing currents Im and −Im flow near the periphery of the magnetic pole surface 20A of the N pole adjacent to the moving magnet 22). The magnetic direction side) is the point A, and the lower side (the side opposite to the magnetizing direction of the moving magnet 22) is the point B. In addition, in FIGS. 2 to 4, in the moving magnet 22, the fixed magnet 20 side is the point C, and the fixed magnet 20 is opposite to the fixed magnet 20 among the points assuming that the magnetizing current Im flows near the periphery of the magnetic pole surface 22B of the S pole. The side is D point.
 移動磁石22のC点と固定磁石20のA点とでは、磁化電流Imが同方向(Im又は-Im)に向き、移動磁石22のC点と固定磁石20のB点とでは、磁化電流Imが逆方向に向く(-Im)。一般に、同方向にコイル電流が流れる2つのコイルの間には、吸引力が生じ、逆方向にコイル電流が流れる2つのコイルの間には、反発力が生じる。 At the point C of the moving magnet 22 and the point A of the fixed magnet 20, the magnetizing current Im is directed in the same direction (Im or −Im), and at the point C of the moving magnet 22 and the point B of the fixed magnet 20, Turns in the opposite direction (-Im). Generally, an attractive force is generated between two coils in which a coil current flows in the same direction, and a repulsive force is generated between two coils in which a coil current flows in the opposite direction.
 このため、図3に示すように、固定磁石20と移動磁石22との間では、C点とA点との間に吸引力Fsが作用し、C点とB点との間には、反発力Fiが作用する。吸引力Fsは、C点をA点に近づける向きに作用し、反発力Fiは、C点をB点から離間させる方向に作用する。これにより、C点には、吸引力Fsと反発力Fiの合力Frが作用する。 Therefore, as shown in FIG. 3, between the fixed magnet 20 and the moving magnet 22, the attractive force Fs acts between the points C and A, and the repulsion occurs between the points C and B. The force Fi acts. The attractive force Fs acts in a direction to bring the point C closer to the point A, and the repulsive force Fi acts in a direction to separate the point C from the point B. As a result, the resultant force Fr of the attractive force Fs and the repulsive force Fi acts on the point C.
 磁気支持装置10では、軌道台16R側の固定磁石20と移動磁石22との間においても、軌道台16L側の固定磁石20と移動磁石22との間と同様の力関係が生じる(軌道幅方向成分は逆向き)。また、磁気支持装置10では、一対の電磁石24によって軌道幅方向の位置が調整される。このため、C点における合力Frの固定磁石20の着磁方向成分である軌道幅方向成分Frhが電磁石24等によって相殺され、移動磁石22のC点には、合力Frの移動磁石22の着磁方向成分である上下方向成分(鉛直方向成分)Frvが上向きの浮上力として作用する。 In the magnetic support device 10, even between the fixed magnet 20 and the moving magnet 22 on the side of the track 16R, the same force relationship as between the fixed magnet 20 and the moving magnet 22 on the side of the track 16L is generated (track width direction). The ingredients are in the opposite direction). In the magnetic support device 10, the position in the track width direction is adjusted by the pair of electromagnets 24. Therefore, the orbit width direction component Frh, which is the component in the magnetizing direction of the fixed magnet 20 at the point C, is canceled by the electromagnet 24 and the like, and the point C of the moving magnet 22 magnetizes the moving magnet 22 of the resultant force Fr. A vertical component (vertical component) Frv, which is a directional component, acts as an upward levitation force.
 すなわち、固定磁石20のN極の磁極面20Aの直近に移動磁石22のS極の磁極面22Bが配置されることで、移動磁石22には、移動磁石22の着磁方向に向かう合力Frが作用し、固定磁石20に対して移動磁石22を着磁方向に相対移動させる浮上力が生じる。また、固定磁石20のS極の磁極面20Bの直近に移動磁石22のN極の磁極面22Aが配置されることで、移動磁石22には、移動磁石22の着磁方向とは反対方向に向かう合力Frが作用し、固定磁石20に対して移動磁石22を着磁方向とは反対方向に相対移動させる浮上力が生じる。 That is, by disposing the magnetic pole surface 22B of the S pole of the moving magnet 22 in the immediate vicinity of the magnetic pole surface 20A of the N pole of the fixed magnet 20, the resultant force Fr toward the magnetizing direction of the moving magnet 22 is applied to the moving magnet 22. A levitation force is generated that moves the moving magnet 22 relative to the fixed magnet 20 in the magnetizing direction. Further, by disposing the N-pole magnetic pole surface 22A of the moving magnet 22 in the immediate vicinity of the S-pole magnetic pole surface 20B of the fixed magnet 20, the moving magnet 22 is moved in the direction opposite to the magnetization direction of the moving magnet 22. The resultant resultant force Fr acts to generate a levitation force that moves the moving magnet 22 relative to the fixed magnet 20 in a direction opposite to the magnetizing direction.
 したがって、これらの磁力に起因する浮上力により移動磁石22は、移動体12の荷重Flが作用していない状態において、固定磁石20に対する所定位置となる平衡位置(上下方向の平衡位置)に保持される。なお、実際には、移動磁石22に重量があるので、移動磁石22の平衡位置は、固定磁石20の磁力、移動磁石22の磁力及び移動磁石22の重量に応じて定まる。 Therefore, the moving magnet 22 is held at the equilibrium position (vertical equilibrium position) that is a predetermined position with respect to the fixed magnet 20 in a state where the load Fl of the moving body 12 is not applied by the levitation force caused by these magnetic forces. It Since the moving magnet 22 is actually heavy, the equilibrium position of the moving magnet 22 is determined by the magnetic force of the fixed magnet 20, the magnetic force of the moving magnet 22, and the weight of the moving magnet 22.
 一方、図4に示すように、磁気支持装置10では、移動磁石22に移動体12の荷重Flが作用することで、固定磁石20に対して、移動磁石22が移動体12によって押し下げられる。このため、移動磁石22は、固定磁石20の磁極面20Aに沿って下方移動し、移動磁石22のC点と固定磁石20のA点及びB点の各々との距離や、移動磁石22のC点に対する固定磁石20のA点及びB点の各々の向きが変化する。これにより、移動磁石22のC点における吸引力Fs及び反発力Fiの各々の方向と大きさとが変化し、合力Frの方向及び大きさが変化することで、合力Frの鉛直方向成分Frvが大きくなる(移動磁石22のD点においても略同様)。 On the other hand, as shown in FIG. 4, in the magnetic support device 10, when the load Fl of the moving body 12 acts on the moving magnet 22, the moving magnet 22 is pushed down by the moving body 12 with respect to the fixed magnet 20. Therefore, the moving magnet 22 moves downward along the magnetic pole surface 20A of the fixed magnet 20, and the distance between the point C of the moving magnet 22 and each of the points A and B of the fixed magnet 20 and the point C of the moving magnet 22. The orientation of each of the points A and B of the fixed magnet 20 with respect to the point changes. As a result, the direction and magnitude of the attraction force Fs and the repulsive force Fi at point C of the moving magnet 22 change, and the direction and magnitude of the resultant force Fr change, so that the vertical component Frv of the resultant force Fr becomes large. (Similarly at the point D of the moving magnet 22).
 ここで、移動磁石22が受ける荷重Flを相殺できるC点における合力Frの鉛直方向成分Frv(及びD点における合力の鉛直方向成分)が生じる移動磁石22の位置が存在することで、当該位置において移動磁石22及び移動体12が固定磁石20を介して軌道台16(16L)に支持できる。 Here, the position of the moving magnet 22 where the vertical component Frv of the resultant force Fr at point C (and the vertical component of the resultant force at point D) at which the load Fl received by the moving magnet 22 can be offset is present. The moving magnet 22 and the moving body 12 can be supported on the track 16 (16L) via the fixed magnet 20.
 このように磁気支持装置10では、固定磁石20と固定磁石20の直近に配置された移動磁石22との間において磁化電流Imにより生じる吸引力及び反発力を用いる。このため、磁気支持装置10では、固定磁石20と移動磁石22との間の吸引力のみ又は固定磁石20と移動磁石22との間の磁力による反発力のみを用いる場合に比して、固定磁石20と移動磁石22との間の磁力を効果的に用いることができる。これにより、磁気支持装置10は、移動体12を磁気支持する際に、装置が大型化するのを抑制できる。 As described above, the magnetic support device 10 uses the attractive force and the repulsive force generated by the magnetizing current Im between the fixed magnet 20 and the moving magnet 22 arranged in the immediate vicinity of the fixed magnet 20. Therefore, in the magnetic support device 10, as compared with the case where only the attraction force between the fixed magnet 20 and the moving magnet 22 or only the repulsive force due to the magnetic force between the fixed magnet 20 and the moving magnet 22 is used, The magnetic force between 20 and the moving magnet 22 can be effectively used. Thereby, the magnetic support device 10 can suppress an increase in size of the device when magnetically supporting the moving body 12.
 磁気支持装置10では、軌道台16L、16Rの各々に固定磁石20が配置され、固定磁石20の各々の直近に移動磁石22が配置されている。これにより、磁気支持装置10では、軌道台16L、16R側の各々において、移動磁石22が固定磁石20の着磁方向に移動しようとするのが抑制される。 In the magnetic support device 10, a fixed magnet 20 is arranged on each of the rails 16L and 16R, and a moving magnet 22 is arranged in the immediate vicinity of each fixed magnet 20. As a result, in the magnetic support device 10, the moving magnet 22 is suppressed from moving in the magnetizing direction of the fixed magnet 20 on each of the rails 16L and 16R.
 また、磁気支持装置10では、移動磁石22が受ける移動体12の荷重を分散できて、一つの移動磁石22の受ける荷重Flを小さくできる。さらに、磁気支持装置10では、移動体12の移動方向(軌道方向)に複数の移動磁石22を配置することで、移動体12の荷重をさらに分散でき、一つの移動磁石22が受ける荷重Flをさらに小さくできる。また、磁気支持装置10では、固定磁石20及び移動磁石22の磁力を強くすることで、合力Frの鉛直方向成分Frvを大きくできる。 Further, in the magnetic support device 10, the load of the moving body 12 received by the moving magnet 22 can be dispersed, and the load Fl received by one moving magnet 22 can be reduced. Further, in the magnetic support device 10, by arranging the plurality of moving magnets 22 in the moving direction (orbital direction) of the moving body 12, the load of the moving body 12 can be further dispersed, and the load Fl received by one moving magnet 22 can be reduced. It can be made smaller. Further, in the magnetic support device 10, by increasing the magnetic forces of the fixed magnet 20 and the moving magnet 22, the vertical component Frv of the resultant force Fr can be increased.
 したがって、磁気支持装置10では、移動体12の荷重に応じて、固定磁石20及び移動磁石22を配置することで、移動体12を軌道台16に非接触状態で支持できる。また、支持可能な荷重を大きくする際には、軌道14の軌道方向に移動磁石22を配列できるので、磁気支持装置10は、支持荷重を大きくするために軌道幅方向に広がるのを抑制できる。 Therefore, in the magnetic support device 10, by arranging the fixed magnet 20 and the moving magnet 22 according to the load of the moving body 12, the moving body 12 can be supported on the track base 16 in a non-contact state. Further, when the load that can be supported is increased, the moving magnets 22 can be arranged in the track direction of the track 14, so the magnetic support device 10 can suppress the spread in the track width direction to increase the support load.
 ここで、本態様における第1の永久磁石と第2の永久磁石との組み合わせ(配置の変形例)を説明する。図5A~図5D、図6A及び図6Bには、本態様における第1の永久磁石と第2の永久磁石の組み合わせの変形例が示されている。 Here, the combination of the first permanent magnet and the second permanent magnet in this aspect (variation of arrangement) will be described. 5A to 5D, 6A and 6B show modified examples of the combination of the first permanent magnet and the second permanent magnet in this embodiment.
 第1実施形態では、固定磁石20と移動磁石22とを対で配置したが、図3及び図4に示すように、少なくとも1組の第1の永久磁石と第2の永久磁石を備えた構成であれば、第1の永久磁石と第2の永久磁石との間の吸引力と反発力とを用いて、被支持体の支持が可能となる。 In the first embodiment, the fixed magnet 20 and the moving magnet 22 are arranged in pairs, but as shown in FIGS. 3 and 4, a configuration including at least one set of the first permanent magnet and the second permanent magnet. In this case, the supported body can be supported by using the attractive force and the repulsive force between the first permanent magnet and the second permanent magnet.
 図5Aには、磁気支持部30Aが示されている。磁気支持部30Aには、第1の永久磁石としての磁石32(固定磁石20に対応)を複数配置している(図5Aでは、一例として2個)。この場合、第2の永久磁石としての磁石34(移動磁石22に対応)は、2個の磁石32の間(境界部分)に配置され、上側の磁石32は、下側の磁石32とは着磁方向が反対方向となるように配置すればよい。これにより、2つの磁石32の各々の第1磁極面(磁石34側の磁極面)の直近には、磁石34において極性の異なる磁極面(第2磁極面)を配置できる。 The magnetic support portion 30A is shown in FIG. 5A. A plurality of magnets 32 (corresponding to the fixed magnets 20) as the first permanent magnets are arranged in the magnetic support portion 30A (two magnets as an example in FIG. 5A). In this case, the magnet 34 (corresponding to the moving magnet 22) as the second permanent magnet is arranged between the two magnets 32 (boundary portion), and the upper magnet 32 is attached to the lower magnet 32. It may be arranged so that the magnetic directions are opposite to each other. Thereby, the magnetic pole surfaces (second magnetic pole surfaces) having different polarities in the magnet 34 can be arranged in the immediate vicinity of the first magnetic pole surface (the magnetic pole surface on the magnet 34 side) of each of the two magnets 32.
 磁気支持部30Aでは、被支持体から荷重を受ける磁石34が2個の磁石32の各々との間に生じる吸引力及び反発力によって支持されるので、支持力を効果的に大きくできる。また、磁石34は、平衡位置よりも上側への移動が磁石32により抑制される。さらに、磁気支持部30Aでは、支持力を大きくする際、設置面積が広がることがないので、装置の小型化が可能になる。 In the magnetic support portion 30A, the magnet 34, which receives a load from the supported body, is supported by the attraction force and the repulsive force generated between each of the two magnets 32, so that the support force can be effectively increased. Further, the magnets 32 are restrained from moving above the equilibrium position by the magnets 32. Further, in the magnetic support portion 30A, when the supporting force is increased, the installation area does not expand, so that the device can be downsized.
 図5Bには、磁気支持部30Bが示されている。磁気支持部30Bには、第1の永久磁石としての磁石32(32A、32B)が対で設けられると共に、2個の磁石32A、32Bの間に第2の永久磁石としての磁石34を配置している。この場合、磁石32A、32Bは、同極(例えばN極)の磁極面が対向され、磁石34は、磁石32A、32Bの磁極面の間に極性の異なる磁極面(例えば、S極の磁極面)が配置される。 FIG. 5B shows the magnetic support portion 30B. The magnet 32 (32A, 32B) as a first permanent magnet is provided in a pair in the magnetic support portion 30B, and the magnet 34 as a second permanent magnet is arranged between the two magnets 32A, 32B. ing. In this case, the magnets 32A and 32B are opposed to each other with magnetic pole surfaces of the same pole (for example, N pole), and the magnet 34 has a magnetic pole surface of different polarity (for example, an S pole magnetic pole surface) between the magnetic pole surfaces of the magnets 32A and 32B. ) Is placed.
 これにより、磁石34は、一対の磁石32A、32Bの各々との間に生じる吸引力及び反発力によって支持されるので、磁気支持部30Bは、支持力を効果的に大きくできる。また、磁石32A、32Bの間隔を狭くできるので、磁気支持部30Bは、狭い設置面積で被支持体を支持できて、装置の小型化が可能になる。さらに、磁石32Aと磁石34との吸引力及び磁石32Bと磁石34との吸引力における磁石34の着磁方向成分が打ち消し合うので、磁石32A、32Bによって磁石34が磁石32A側及び磁石32B側の各々へ向けて移動するのを相互に制限できる。 With this, the magnet 34 is supported by the attractive force and the repulsive force generated between the magnet 34 and each of the pair of magnets 32A and 32B, so that the magnetic support portion 30B can effectively increase the supporting force. Moreover, since the gap between the magnets 32A and 32B can be narrowed, the magnetic support portion 30B can support the supported object in a small installation area, and the device can be downsized. Further, the magnetizing direction components of the magnets 34 in the attraction force between the magnet 32A and the magnet 34 and the attraction force between the magnet 32B and the magnet 34 cancel each other. The movement towards each can be mutually restricted.
 また、図5Cには、磁気支持部30Cが示されている。磁気支持部30Cには、第1の永久磁石としての磁石32の各々を上下に対で配置すると共に、第2の永久磁石としての複数個の磁石34を該磁石34の着磁方向に配列している。また、磁石32は、着磁方向が交互に反対方向となるように配置され、磁石34は、2個の磁石32の間の位置、下側の磁石32の下側部分、及び上側の磁石32の上側部分の各々に、着磁方向が交互に反対方向となるように配置される。 Further, FIG. 5C shows the magnetic support portion 30C. In the magnetic support portion 30C, each of the magnets 32 as the first permanent magnets is vertically arranged in pairs, and a plurality of magnets 34 as the second permanent magnets are arranged in the magnetizing direction of the magnets 34. ing. The magnets 32 are arranged so that the magnetizing directions are alternately opposite to each other, and the magnets 34 are positioned between the two magnets 32, the lower part of the lower magnet 32, and the upper magnet 32. Are arranged so that the magnetization directions are alternately opposite to each other.
 これにより、上側の磁石32の上側部分及び下側の磁石32の下側部分に隣接する磁石34の各々は、隣接する2個の磁石32の各々との間の吸引力及び反発力によって各々の着磁方向とは反対側に向けて支持される。また、磁石32の中間位置の磁石34は、4個の磁石32との間の吸引力及び反発力によって着磁方向に向けて支持される。この際、磁気支持部30Cでは、複数の磁石34に対して両側に配置される磁石32により、磁石34が該磁石34の着磁方向に沿う相対移動(磁石34が両側の磁石32の何れか一方に接近する方向への相対移動)が抑制される。また、上側の磁石32と下側の磁石32との間の磁石34は、平衡位置から上側又は下側に移動するのが抑制される。 As a result, each of the magnets 34 adjacent to the upper part of the upper magnet 32 and the lower part of the lower magnet 32 has its own attraction force and repulsion force between the two adjacent magnets 32. It is supported toward the side opposite to the magnetizing direction. Further, the magnet 34 at the intermediate position of the magnet 32 is supported in the magnetizing direction by the attractive force and the repulsive force between the magnets 34. At this time, in the magnetic support portion 30C, the magnets 32 arranged on both sides of the plurality of magnets 34 cause the magnets 34 to move relative to each other along the magnetizing direction of the magnets 34 (either of the magnets 32 on either side of the magnet 34). (Relative movement in a direction approaching one side) is suppressed. Further, the magnet 34 between the upper magnet 32 and the lower magnet 32 is suppressed from moving from the equilibrium position to the upper side or the lower side.
 したがって、磁気支持部30Cでは、被支持体を一体で支持する3個の磁石34に大きな支持力が効果的に生じ、荷重が付与された状態であっても、磁石34の着磁方向の移動が抑制されて被支持体を支持できる。また、磁気支持部30Cでは、支持力を大きくする際、設置面積が広がることがないので、装置のより一層の小型化が可能になる。 Therefore, in the magnetic support portion 30C, a large supporting force is effectively generated on the three magnets 34 that integrally support the supported body, and even if a load is applied, the magnets 34 move in the magnetization direction. Can be suppressed and the supported object can be supported. Further, in the magnetic support portion 30C, when the supporting force is increased, the installation area does not expand, so that the size of the device can be further reduced.
 図5Dには、磁気支持部30Dが示されている。磁気支持部30Dには、第2の永久磁石としての磁石34(34A、34B)が対で設けられると共に、磁石34A、34Bの間に第1の永久磁石としての磁石32が配置されている。また、磁気支持部30Dでは、磁石32が固定されると共に、磁石34A、34Bに跨って被支持体が支持される。 The magnetic support 30D is shown in FIG. 5D. The magnet 34 (34A, 34B) as a second permanent magnet is provided in a pair in the magnetic support portion 30D, and the magnet 32 as a first permanent magnet is arranged between the magnets 34A, 34B. Further, in the magnetic support portion 30D, the magnet 32 is fixed, and the supported body is supported across the magnets 34A and 34B.
 この場合、磁石34A、34Bの着磁方向は、上下方向(荷重方向)とされ、磁石32の着磁方向は、水平方向(上下方向と垂直に交差する方向)とされる。また、磁石32の磁極面の各々の直近には、該磁極面の極性とは異なる極性となる磁極面にされた磁石34A、34Bが配置される。 In this case, the magnets 34A and 34B are magnetized in the vertical direction (load direction), and the magnet 32 is magnetized in the horizontal direction (direction perpendicular to the vertical direction). Further, magnets 34A and 34B having magnetic pole surfaces having polarities different from those of the magnetic pole surfaces are arranged in the immediate vicinity of the magnetic pole surfaces of the magnet 32.
 これにより、一対の磁石34A、34Bの各々は、磁石32との間に生じる吸引力及び反発力によって支持されるので、支持力を効果的に大きくできる。また、磁石34A、34Bの間隔が広がるのを抑制できるので、装置の設置面積が広がるのを抑制できて、装置の小型化が可能になる。さらに、磁石34A、34Bが被支持体によって連結される状態となることで、磁石34Aと磁石32との吸引力及び磁石34Bと磁石32との吸引力における磁石32の着磁方向成分が打ち消し合うので、磁石34A、34Bの各々の磁石32側への移動を相互に抑制できる。 With this, each of the pair of magnets 34A and 34B is supported by the attraction force and the repulsive force generated between the pair of magnets 34A and 34B, so that the support force can be effectively increased. In addition, since it is possible to prevent the gap between the magnets 34A and 34B from increasing, it is possible to prevent the installation area of the device from increasing and it is possible to reduce the size of the device. Further, since the magnets 34A and 34B are connected by the supported body, the magnetizing direction components of the magnet 32 in the attraction force between the magnet 34A and the magnet 32 and the attraction force between the magnet 34B and the magnet 32 cancel each other out. Therefore, the movement of the magnets 34A and 34B toward the magnet 32 side can be mutually suppressed.
 一方、空芯のソレノイドコイルでは、内部の磁場がほぼ均一となっている。ソレノイドコイルでは、巻数を多くしたり長さを長くしたりすることで起磁力を大きくすることができるが、磁気抵抗も増加するので、内部の磁束の増加が抑えられて、磁力が抑えられる。このソレノイドコイルには、コイル半径とコイルの軸方向長さが等しいヘルムホルツコイルがあり、ヘルムホルツコイルでは、巻数に対する起磁力の効率が最良となっている。 On the other hand, in the air core solenoid coil, the internal magnetic field is almost uniform. In the solenoid coil, the magnetomotive force can be increased by increasing the number of turns or increasing the length, but since the magnetic resistance also increases, the increase of the internal magnetic flux is suppressed and the magnetic force is suppressed. This solenoid coil includes a Helmholtz coil whose coil radius is equal to the axial length of the coil, and the Helmholtz coil has the best magnetomotive force efficiency with respect to the number of turns.
 永久磁石においても、着磁方向の断面が正方形状であれば、着磁方向に対称位置にある任意の磁化電流でソレノイドコイルと同様の効果が得られる磁化電流が存在するので、単位体積当たりの磁界の強さが最大となる。また、2つの永久磁石を用いた磁気支持においては、少なくとも一方の起磁力を大きくすることで支持力を大きくできる。 Even in a permanent magnet, if the cross section in the magnetizing direction is square, there is a magnetizing current that has the same effect as a solenoid coil at any magnetizing current symmetrically located in the magnetizing direction. The strength of the magnetic field is maximum. Further, in the magnetic support using two permanent magnets, the supporting force can be increased by increasing the magnetomotive force of at least one of them.
 ここから、第1の永久磁石及び第2の永久磁石は、少なくとも一方の着磁方向断面が正方形状であることで、磁界の強さを強くできて、第1の永久磁石及び第2の永久磁石による支持力を大きくできる。 From here, at least one of the first permanent magnet and the second permanent magnet has a square cross section in the magnetization direction, so that the strength of the magnetic field can be increased, and the first permanent magnet and the second permanent magnet can be made stronger. The supporting force by the magnet can be increased.
 図6A及び図6Bには、第1の永久磁石及び第2の永久磁石として、着磁方向断面が略正方形状とされた永久磁石が用いられている。 6A and 6B, as the first permanent magnet and the second permanent magnet, permanent magnets having a substantially square cross section in the magnetization direction are used.
 図6Aには、磁気支持部40Aが示されている。磁気支持部40Aには、第1の永久磁石としての磁石42及び第2の永久磁石としての磁石44が用いられ、磁石42、44は、着磁方向が互いに垂直に交差する方向に配置される。磁石42、44の形状としては、磁石42の着磁方向に沿いかつ磁石44の着磁方向に沿う断面が略正方形状であればよく、磁石42、44は、外形が正方形ブロック状であることが好ましいが、矩形ブロック状であってもよい。 6A shows the magnetic support portion 40A. A magnet 42 as a first permanent magnet and a magnet 44 as a second permanent magnet are used for the magnetic support portion 40A, and the magnets 42, 44 are arranged in directions in which the magnetization directions intersect each other vertically. .. The magnets 42, 44 may have any shape as long as the cross section along the magnetizing direction of the magnet 42 and the magnetizing direction of the magnet 44 is substantially square. The magnets 42, 44 have a square block outer shape. However, the shape may be a rectangular block.
 磁石42は、着磁方向が水平方向とされ、磁石44は、着磁方向が磁石42の着磁方向と垂直に交差する方向とされており、磁石42の磁極面(例えば、N極の磁極面)の直近に磁石44が配置される。また、磁石44は、磁石42に隣接する磁極面(例えば、下側の面)が、磁石42の磁極面の極性とは異なる極性とされている(例えば、磁石42のN極に対してS極)。 The magnet 42 has a magnetizing direction horizontal, and the magnet 44 has a magnetizing direction perpendicular to the magnetizing direction of the magnet 42, and has a magnetic pole surface (for example, an N-pole magnetic pole). The magnet 44 is arranged in the immediate vicinity of the (surface). Further, in the magnet 44, the magnetic pole surface (for example, the lower surface) adjacent to the magnet 42 has a polarity different from the polarity of the magnetic pole surface of the magnet 42 (for example, S with respect to the N pole of the magnet 42). very).
 これにより、磁気支持部40Aでは、磁石42と磁石44との間に吸引力及び反発力が生じて、この吸引力及び反発力によって磁石42が磁石44に非接触で支持される。また、磁気支持部40Aでは、磁石42、44の着磁方向断面が略正方形状となっているので、磁気支持部30A(図5A参照)に比して効率的に支持力を得ることができて、装置の小型化を可能にできる。 Thereby, in the magnetic support portion 40A, an attractive force and a repulsive force are generated between the magnet 42 and the magnet 44, and the magnet 42 is supported by the magnet 44 in a non-contact manner by the attractive force and the repulsive force. Further, in the magnetic support portion 40A, since the magnets 42 and 44 have substantially square cross sections in the magnetization direction, it is possible to obtain a supporting force more efficiently than the magnetic support portion 30A (see FIG. 5A). Thus, the device can be downsized.
 図6Bには、磁気支持部40Bが示されている。磁気支持部40Bには、第1の永久磁石としての複数対(図6Bでは、一例として4対)の磁石42が、磁石42の着磁方向(一例として水平方向)と交差する方向(一例として垂直方向)に配列されている。一対の磁石42は、互いに対向された磁極面が同極とされている。対で配置された磁石42の間には、第2の永久磁石としての複数の磁石44が、磁石44の着磁方向(磁石42の着磁方向と交差する方向)に沿って配列されており、磁石44は、各々の着磁方向の向きが交互に逆方向に向けられている。 FIG. 6B shows the magnetic support portion 40B. In the magnetic support portion 40B, a plurality of pairs of magnets (four pairs in FIG. 6B) as first permanent magnets intersect with a magnetization direction (horizontal direction in one example) of the magnets 42 (in one example in one example). Vertically). The pair of magnets 42 have magnetic pole surfaces that face each other and have the same pole. A plurality of magnets 44 as second permanent magnets are arranged between the magnets 42 arranged in pairs along the magnetizing direction of the magnets 44 (direction intersecting with the magnetizing direction of the magnets 42). The magnets 44 are alternately magnetized in opposite directions.
 また、磁気支持部40Bでは、上下方向(垂直方向)に隣接する磁石42の中間位置に磁石44の磁極面が配置されている。さらに、磁気支持部40Bでは、磁石42の磁石44側の磁極面の極性と、この磁極面に隣接する磁石44の磁極面の極性とが異なる極性とされている。なお、互いに隣接する磁石44の間では、同極の磁極面が接するように配置されており、互いに隣接する磁石44の間には反発力が生じる。このため、磁気支持部40Bでは、互いに隣接する磁石44が接着剤などの接着手段によって接着され、互いに隣接する磁石44が反発力によって離間するのが制限されている。 Further, in the magnetic support portion 40B, the magnetic pole surface of the magnet 44 is arranged at an intermediate position between the magnets 42 that are vertically adjacent to each other (vertical direction). Further, in the magnetic support portion 40B, the polarity of the magnetic pole surface of the magnet 42 on the magnet 44 side is different from the polarity of the magnetic pole surface of the magnet 44 adjacent to this magnetic pole surface. The magnets 44 adjacent to each other are arranged such that the magnetic pole surfaces of the same pole are in contact with each other, and a repulsive force is generated between the magnets 44 adjacent to each other. Therefore, in the magnetic support portion 40B, the magnets 44 adjacent to each other are adhered by an adhesive means such as an adhesive, and the magnets 44 adjacent to each other are restricted from being separated by the repulsive force.
 これにより、磁気支持部40Bでは、磁石44と該磁石44の両側の磁石42の各々との間に生じる吸引力(及び反発力)のうち磁石42の着磁方向成分が打ち消し合う。このため、磁気支持部40Bでは、磁石42、44が互いに接近する方向(磁石42の着磁方向)へ相対移動するのを相互に抑制できる。また、磁気支持部40Bでは、3個の磁石44の各々が4個の磁石42の各々との間の吸引力及び反発力によって支持されるので、3個の磁石44により大きな荷重の被支持体を支持できる。 As a result, in the magnetic support portion 40B, the components of the magnetizing direction of the magnets 42 among the attractive forces (and repulsive forces) generated between the magnets 44 and the magnets 42 on both sides of the magnets 44 cancel each other out. Therefore, in the magnetic support portion 40B, it is possible to mutually suppress relative movement of the magnets 42 and 44 in a direction in which they approach each other (magnetization direction of the magnet 42). Further, in the magnetic support portion 40B, since each of the three magnets 44 is supported by the attraction force and the repulsive force between each of the four magnets 42, the three magnets 44 support the object to which a large load is applied. Can support.
 したがって、磁気支持部40Bでは、複数の磁石42が磁石44の着磁方向に沿い、かつ磁石44側の磁極面の極性が交互に異なるように配置され、さらに、磁石42の各々の磁石44側の磁極面の直近に該磁極面の極性とは異なる極性の磁石44の磁極面が配置されることで、被支持体に対する支持力を効果的に大きくできる。 Therefore, in the magnetic support portion 40B, a plurality of magnets 42 are arranged along the magnetizing direction of the magnets 44, and the polarities of the magnetic pole surfaces on the magnet 44 side are alternately different. By arranging the magnetic pole surface of the magnet 44 having a polarity different from that of the magnetic pole surface in the vicinity of the magnetic pole surface, the supporting force for the supported body can be effectively increased.
 また、磁気支持部40Bでは、複数の磁石44が該磁石44の着磁方向に沿い、かつ磁石42の磁極面の直近において互いに異なる磁極面が密接されて配置されることで、被支持体の支持力をより効果的に大きくできる。さらに、磁気支持部40Bでは、磁石44を挟んで複数対の磁石42が配置されることで、被支持体の支持力をより一層効果的に大きくできる。 Further, in the magnetic support portion 40B, the plurality of magnets 44 are arranged along the magnetizing direction of the magnets 44, and the magnetic pole surfaces different from each other are arranged in close contact with each other in the immediate vicinity of the magnetic pole surface of the magnet 42. Supporting power can be increased more effectively. Further, in the magnetic support portion 40B, a plurality of pairs of magnets 42 are arranged with the magnet 44 interposed therebetween, so that the supporting force of the supported object can be further effectively increased.
 また、磁気支持部40Bでは、磁石42、44の各々の断面形状が単位体積当たりの磁束を大きくできる略正方形状とされているので、効果的に大きな支持力が得られる。このため、磁気支持部40Bでは、装置の大型化を抑制しながら高い支持力が得られる。また、磁石44の各々は、対向する磁石42の各々の磁極面により平衡位置から上側又は下側に移動するのが抑制される。 Further, in the magnetic support portion 40B, since the cross-sectional shape of each of the magnets 42 and 44 is a substantially square shape that can increase the magnetic flux per unit volume, a large supporting force can be effectively obtained. Therefore, in the magnetic support portion 40B, a high supporting force can be obtained while suppressing an increase in the size of the device. Further, each of the magnets 44 is restrained from moving from the equilibrium position to the upper side or the lower side by the magnetic pole surface of each of the facing magnets 42.
〔第2実施形態〕
 次に、第2実施形態を説明する。
 第1実施形態では、線状(帯状)の軌道14に沿って移動される移動体12を支持する磁気支持装置10を例に説明したが、第2実施形態では、磁気支持装置として磁気軸受50を適用している。図7には、第2実施形態に係る磁気軸受50の主要部の概略構成が軸線方向に沿う断面図にて示されている。
[Second Embodiment]
Next, a second embodiment will be described.
In the first embodiment, the magnetic support device 10 that supports the moving body 12 that is moved along the linear (strip) track 14 has been described as an example, but in the second embodiment, the magnetic bearing 50 is used as the magnetic support device. Has been applied. FIG. 7 shows a schematic configuration of a main part of the magnetic bearing 50 according to the second embodiment in a sectional view taken along the axial direction.
 図7に示すように、磁気軸受50には、浮上体及び被支持体として回転軸52が適用されており、回転軸52は、外形円柱状に形成されている。磁気軸受50は、回転軸52を非接触状態(磁気軸受50の固定側に対して回転軸52が浮いた状態)で支持することで、回転軸52を回転自在に支持する。なお、回転軸52は、円筒状であってもよく、回転軸52には、電動機の回転軸(出力軸)などの任意の回転軸を適用できる。 As shown in FIG. 7, a rotary shaft 52 is applied to the magnetic bearing 50 as a floating body and a supported body, and the rotary shaft 52 is formed in a cylindrical outer shape. The magnetic bearing 50 supports the rotating shaft 52 in a non-contact state (the rotating shaft 52 is floating with respect to the fixed side of the magnetic bearing 50), so that the rotating shaft 52 is rotatably supported. The rotating shaft 52 may be cylindrical, and any rotating shaft such as a rotating shaft (output shaft) of an electric motor can be applied to the rotating shaft 52.
 磁気軸受50には、磁気支持部が構成される軸受部50A、50Bが設けられており、磁気軸受50は、軸受部50A、50Bの各々において回転軸52を支持することで、回転軸52を軸方向の2箇所で支持する。第2実施形態において磁気軸受50では、軸受部50A、50Bの一方が他方の軸方向への移動を制限する制限手段として機能する。なお、2つの軸受部50A、50Bは、基本的構造が同一であり、以下では、磁気軸受50として主に軸受部50Aについて説明する。 The magnetic bearing 50 is provided with bearing portions 50A and 50B that form a magnetic support portion. The magnetic bearing 50 supports the rotary shaft 52 at each of the bearing portions 50A and 50B, thereby supporting the rotary shaft 52. Support at two points in the axial direction. In the magnetic bearing 50 of the second embodiment, one of the bearing portions 50A and 50B functions as a limiting means that limits the movement of the other bearing portion in the axial direction. The two bearings 50A and 50B have the same basic structure, and hereinafter, the bearing 50A will be mainly described as the magnetic bearing 50.
 磁気軸受50(軸受部50A)は、回転部54及び固定部としての支持部56によって構成されている。回転部54には、外周部が所定の外径で略円筒状に形成されたリング体58が配置されている。リング体58内には、連結部としての円板状のフランジ部58Aが形成されている。フランジ部58Aは、軸心部が回転軸52の外周部に連結され、径方向の外側端がリング体58の軸方向中間部の内周面に連結されている。 The magnetic bearing 50 (bearing portion 50A) is composed of a rotating portion 54 and a supporting portion 56 as a fixed portion. A ring body 58 having an outer peripheral portion formed in a substantially cylindrical shape with a predetermined outer diameter is arranged in the rotating portion 54. In the ring body 58, a disc-shaped flange portion 58A as a connecting portion is formed. The flange portion 58A has an axial center portion connected to the outer peripheral portion of the rotary shaft 52, and an outer end in the radial direction connected to an inner peripheral surface of an axially intermediate portion of the ring body 58.
 これにより、リング体58は、回転軸52に取り付けられ、回転軸52が回転されることで回転軸52と一体に回転される。なお、リング体58は、円板状のフランジ部58Aに限らず、回転時の遠心力にばらつきが生じなければよく、例えば、回転軸52の外周部から放射状に延設された複数のスポーク等によって回転軸52に連結される構成であってもよい。 By this, the ring body 58 is attached to the rotating shaft 52, and the rotating shaft 52 is rotated and thereby rotated integrally with the rotating shaft 52. Note that the ring body 58 is not limited to the disk-shaped flange portion 58A, as long as the centrifugal force at the time of rotation does not vary, and for example, a plurality of spokes radially extended from the outer peripheral portion of the rotating shaft 52 and the like. It may be configured to be connected to the rotary shaft 52 by.
 回転部54には、第2の永久磁石としての回転磁石60が設けられている。回転磁石60は、軸方向長さがリング体58の軸方向長さと同様(回転磁石60がリング体58よりも僅かに長くてもよい)にされた円筒状(円管状)に形成されており、回転磁石60は、径方向断面が矩形にされている。回転磁石60は、着磁方向が径方向とされており、回転磁石60は、内周面がS極の磁極面60Bとされ、外周面がN極の磁極面60Aとされている。 The rotating unit 54 is provided with a rotating magnet 60 as a second permanent magnet. The rotary magnet 60 is formed in a cylindrical shape (circular tubular shape) whose axial length is the same as the axial length of the ring body 58 (the rotary magnet 60 may be slightly longer than the ring body 58). The rotary magnet 60 has a rectangular radial cross section. The rotating magnet 60 is magnetized in the radial direction. The rotating magnet 60 has an inner peripheral surface serving as an S-pole magnetic pole surface 60B and an outer peripheral surface serving as an N-pole magnetic pole surface 60A.
 回転磁石60の内径は、リング体58の外径と同様にされており、回転磁石60は、内周面にリング体58が嵌合されて、リング体58の外周に取り付けられている。これにより、回転磁石60は、回転軸52が回転されてリング体58が回転されることで、回転軸52及びリング体58と一体に回転される。 The inner diameter of the rotating magnet 60 is the same as the outer diameter of the ring body 58, and the rotating magnet 60 is attached to the outer periphery of the ring body 58 with the ring body 58 fitted to the inner peripheral surface. As a result, the rotary magnet 60 is rotated integrally with the rotary shaft 52 and the ring body 58 by rotating the rotary shaft 52 and the ring body 58.
 支持部56には、一対の支持脚62(62A、62B)が設けられている。支持脚62は、回転軸52の軸方向に沿って所定の間隔を隔てて対で配置され、支持脚62は、各々が磁気軸受50の設置位置(図示省略)に固定されている。なお、以下の説明において一対の支持脚62を区別する場合、軸方向の一側を支持脚62Aとし、軸方向の他側を支持脚62Bとする。 The support portion 56 is provided with a pair of support legs 62 (62A, 62B). The support legs 62 are arranged in pairs along the axial direction of the rotary shaft 52 at a predetermined interval, and each of the support legs 62 is fixed to the installation position (not shown) of the magnetic bearing 50. In the following description, when distinguishing a pair of support legs 62, one side in the axial direction is a support leg 62A and the other side in the axial direction is a support leg 62B.
 一対の支持脚62には、各々円形の貫通孔64が同軸上に貫通形成されており、貫通孔64の内径は、回転軸52の外径よりも大きくされている。一対の支持脚62には、貫通孔64内に回転軸52が挿通されて配置され、一対の支持脚62の間に回転部54(リング体58及び回転磁石60)が配置されており、一対の支持脚62は、回転軸52と相対回転可能にされている。 A circular through hole 64 is coaxially formed through the pair of support legs 62, and the inner diameter of the through hole 64 is larger than the outer diameter of the rotary shaft 52. The rotating shaft 52 is inserted into the through hole 64 in the pair of support legs 62, and the rotating portion 54 (the ring body 58 and the rotating magnet 60) is disposed between the pair of support legs 62. The support leg 62 of is rotatable relative to the rotary shaft 52.
 一対の支持脚62の各々には、第1の永久磁石としてのリング状の固定磁石66が配置されており、固定磁石66は、径方向断面が矩形とされている。固定磁石66は、着磁方向が軸方向とされており、軸方向の一方の面がN極の磁極面66Aとされ、軸方向の他方の面がS極の磁極面66Bとされている。固定磁石66は、支持脚62の各々の回転部54(回転磁石60)側の面に、軸心が回転磁石60の軸心と同軸上となるように取り付けられている。 A ring-shaped fixed magnet 66 serving as a first permanent magnet is arranged on each of the pair of support legs 62, and the fixed magnet 66 has a rectangular radial cross section. The magnetization direction of the fixed magnet 66 is the axial direction, one surface in the axial direction is an N pole magnetic pole surface 66A, and the other surface in the axial direction is an S pole magnetic pole surface 66B. The fixed magnet 66 is attached to the surface of the support leg 62 on the rotating portion 54 (rotating magnet 60) side so that the axis is coaxial with the axis of the rotating magnet 60.
 固定磁石66は、内径、外径及び磁力の各々が、回転磁石60の内径、回転磁石60の外径、回転磁石60の磁力及び回転磁石60の着磁方向の各々に合わせて形成されている。この際、固定磁石66の内径、外径及び回転磁石60に向けられる磁極面の極性は、固定磁石66において回転磁石60に対向する磁極面直近における磁化電流Imの方向が、該磁極面に隣接する回転磁石60における磁極面の磁化電流Imと同方向となるようにされている。 Each of the inner diameter, the outer diameter, and the magnetic force of the fixed magnet 66 is formed in accordance with the inner diameter of the rotating magnet 60, the outer diameter of the rotating magnet 60, the magnetic force of the rotating magnet 60, and the magnetizing direction of the rotating magnet 60. .. At this time, the inner and outer diameters of the fixed magnet 66 and the polarities of the magnetic pole faces directed to the rotating magnet 60 are such that the direction of the magnetizing current Im in the fixed magnet 66 in the immediate vicinity of the magnetic pole face facing the rotating magnet 60 is adjacent to the magnetic pole face. The magnetizing current Im of the magnetic pole surface of the rotating magnet 60 is set to be in the same direction.
 回転磁石60の内周面となる磁極面60Bに固定磁石66を合わせる場合、支持脚62A、62Bの各々には、N極の磁極面66Aが回転磁石60側に向けられて固定磁石66が取り付けられる。また、固定磁石66は、内径が回転磁石60の内径より小さくされ、外径が回転磁石60の外径よりも小さくされる。また、固定磁石66は、軸心が回転磁石60の軸心と同軸上に配置された際に、回転磁石60が平衡点に位置するように、内径、外径及び磁力が設定されることがより好ましい。 When the fixed magnet 66 is aligned with the magnetic pole surface 60B that is the inner peripheral surface of the rotating magnet 60, the fixed magnet 66 is attached to each of the supporting legs 62A and 62B with the magnetic pole surface 66A of the N pole facing the rotating magnet 60 side. To be The fixed magnet 66 has an inner diameter smaller than the inner diameter of the rotating magnet 60 and an outer diameter smaller than the outer diameter of the rotating magnet 60. Further, the fixed magnet 66 may have an inner diameter, an outer diameter, and a magnetic force set so that the rotary magnet 60 is located at an equilibrium point when the shaft center is arranged coaxially with the shaft center of the rotary magnet 60. More preferable.
 なお、回転磁石60の内周面がN極の磁極面60Aとされる場合、支持脚62Aには、磁極面66Bが回転磁石60側に向けられて固定磁石66が取り付けられる。また、固定磁石66は、回転磁石60の外周側の磁極面60Aに合わせて形成されてもよい。何れも場合においても、回転磁石60は、径方向位置が固定磁石66との間における平衡点となる位置に配置されればよい。 When the inner circumferential surface of the rotating magnet 60 is the N pole magnetic pole surface 60A, the fixed magnet 66 is attached to the support leg 62A with the magnetic pole surface 66B facing the rotating magnet 60 side. Further, the fixed magnet 66 may be formed so as to match the magnetic pole surface 60A on the outer peripheral side of the rotary magnet 60. In any case, the rotary magnet 60 may be arranged at a position where the radial position is the equilibrium point with the fixed magnet 66.
 一対の支持脚62の各々には、互いに対向する面にリング状の凹陥部68が形成されており、固定磁石66の各々は、凹陥部68に嵌め込まれている。これにより、固定磁石66の各々は、回転磁石60の側面(磁極面60A、60Bとは異なる面)が、磁極面66A又は磁極面66Bの直近で所定のギャップとなる位置に配置可能にされている。 Ring-shaped recesses 68 are formed on the surfaces of the pair of support legs 62 facing each other, and the fixed magnets 66 are fitted into the recesses 68. As a result, each of the fixed magnets 66 can be arranged at a position where a side surface of the rotating magnet 60 (a surface different from the magnetic pole surfaces 60A and 60B) forms a predetermined gap in the immediate vicinity of the magnetic pole surface 66A or the magnetic pole surface 66B. There is.
 一方、一対の支持脚62には、一方に制限手段としての電磁石70が配置されており、電磁石70は、支持脚62の回転部54とは反対側の面に取り付けられている。なお、第2実施形態では、軸受部50Aの支持脚62B及び軸受部50Bの支持脚62Aに電磁石70を取り付けている。 On the other hand, the pair of support legs 62 is provided with an electromagnet 70 as a limiting means on one side, and the electromagnet 70 is attached to the surface of the support legs 62 opposite to the rotating portion 54. In the second embodiment, the electromagnet 70 is attached to the support leg 62B of the bearing portion 50A and the support leg 62A of the bearing portion 50B.
 電磁石70は、鉄心72及びコイル74を含んで構成されている。鉄心72は、所定厚さのリング状に形成されている。鉄心72は、軸方向の一側の面にリング状の凹陥部72Aが形成され、凹陥部72Aは、軸方向断面が固定磁石66とは反対側に向けて解放された略U字状とされている。鉄心72は、軸心が支持脚62の貫通孔64軸心と同軸上に配置されて、凹陥部72Aとは反対側の面が支持脚62に取り付けられている。また、コイル74は、鉄心72の凹陥部72A内において鉄心72の周方向に巻回されて形成されている。 The electromagnet 70 is configured to include an iron core 72 and a coil 74. The iron core 72 is formed in a ring shape having a predetermined thickness. The iron core 72 has a ring-shaped recessed portion 72A formed on one surface in the axial direction, and the recessed portion 72A has a substantially U-shaped axial cross-section released toward the side opposite to the fixed magnet 66. ing. The iron core 72 is arranged such that its axis is coaxial with the axis of the through hole 64 of the support leg 62, and the surface opposite to the recess 72A is attached to the support leg 62. In addition, the coil 74 is formed by winding in the circumferential direction of the iron core 72 in the concave portion 72A of the iron core 72.
 回転軸52には、電磁石70に対向されて円板76が一体回転するように取り付けられている。円板76は、鉄などの強磁性材料が用いられて形成されており、円板76は、軸心部に貫通された回転軸52の外周部に一体的に連結されている。これにより、電磁石70は、コイル74に所定の電流(直流電流)が流れることで鉄心72が着磁され、円板76の吸引力が発生する。 A disk 76 is attached to the rotating shaft 52 so as to face the electromagnet 70 and rotate integrally. The disc 76 is formed by using a ferromagnetic material such as iron, and the disc 76 is integrally connected to the outer peripheral portion of the rotary shaft 52 that penetrates the shaft center portion. As a result, in the electromagnet 70, the iron core 72 is magnetized by a predetermined current (DC current) flowing through the coil 74, and the attractive force of the disc 76 is generated.
 ここで、磁気軸受50では、軸受部50A、50Bの各々の電磁石70の吸引力が調整されることで、回転軸52の軸方向における軸受部50A、50Bの相対移動が制限されて相対位置が調整される。すなわち、磁気軸受50では、対で配置した電磁石70により軸受部50A、50Bの各々において、一対の支持脚62の間のリング体58の位置が調整される。これにより、磁気軸受50では、軸受部50A、50Bの各々において、回転磁石6と固定磁石66の各々との間が所定ギャップとなるように支持脚62に対する回転部54の軸方向位置が制限される。 Here, in the magnetic bearing 50, the relative movement of the bearing portions 50A and 50B in the axial direction of the rotating shaft 52 is limited by adjusting the attraction force of the electromagnets 70 of the bearing portions 50A and 50B, so that the relative position is changed. Adjusted. That is, in the magnetic bearing 50, the position of the ring body 58 between the pair of support legs 62 is adjusted in each of the bearing portions 50A and 50B by the electromagnets 70 arranged in pairs. As a result, in the magnetic bearing 50, the axial position of the rotating portion 54 with respect to the support leg 62 is restricted so that a predetermined gap is formed between the rotating magnet 6 and the fixed magnet 66 in each of the bearing portions 50A and 50B. It
 このように構成されている磁気軸受50では、回転磁石60の軸方向両側に固定磁石66が配置され、固定磁石66の各々の磁極面66Aの直近に回転磁石60の磁極面60Bが配置されている。このため、回転磁石60は、固定磁石66によって径方向の平衡位置に保持され、回転軸52が軸受部50A、50Bの各々において支持部56に対して非接触で支持されている。 In the magnetic bearing 50 thus configured, the fixed magnets 66 are arranged on both sides of the rotary magnet 60 in the axial direction, and the magnetic pole surfaces 60B of the rotary magnet 60 are arranged in the immediate vicinity of the magnetic pole surfaces 66A of the fixed magnet 66. There is. Therefore, the rotary magnet 60 is held at the radial equilibrium position by the fixed magnet 66, and the rotary shaft 52 is supported in the bearing portions 50A and 50B in a non-contact manner with the support portion 56.
 回転磁石60では、軸方向の両側の固定磁石66の各々との間で吸引力(吸引力と反発力との合成力の軸方向成分)が生じるので、回転磁石60は、固定磁石66の各々によって軸方向への移動が抑制される。また、磁気軸受50では、軸受部50A、50Bの各々に電磁石70が設けられており、電磁石70が各々円板76を吸引する。この際、電磁石70は、回転軸52の軸方向において、互いに反対方向の円板76を吸引する。 In the rotating magnet 60, an attractive force (an axial component of the combined force of the attractive force and the repulsive force) is generated between the stationary magnets 66 on both sides in the axial direction. This suppresses the movement in the axial direction. Further, in the magnetic bearing 50, an electromagnet 70 is provided in each of the bearing portions 50A and 50B, and the electromagnet 70 attracts the disc 76, respectively. At this time, the electromagnet 70 attracts the discs 76 in mutually opposite directions in the axial direction of the rotating shaft 52.
 このため、磁気軸受50では、電磁石70により回転軸52の軸方向への移動が制限され、回転磁石60が固定磁石66に向けて移動するのが抑制される。これにより、磁気軸受50では、回転磁石60が固定磁石66に接触することなく回転可能にされて回転軸52が非接触で回転されるので、回転軸52が摩擦抵抗を受けるのを抑制できて円滑に回転できる。 Therefore, in the magnetic bearing 50, the movement of the rotary shaft 52 in the axial direction is restricted by the electromagnet 70, and the movement of the rotary magnet 60 toward the fixed magnet 66 is suppressed. As a result, in the magnetic bearing 50, the rotating magnet 60 is rotatable without contacting the fixed magnet 66 and the rotating shaft 52 is rotated in a non-contact manner, so that the rotating shaft 52 can be prevented from receiving frictional resistance. It can rotate smoothly.
 ところで、回転軸52が回転されると、回転部54には、径方向の外側に向けた遠心力が生じる。通常、遠心力は、直径方向の両側において生じるが、周方向の一部において他よりも遠心力が大きくなることで、当該部位において回転磁石60は、径外側に移動されようとする。 By the way, when the rotating shaft 52 is rotated, a centrifugal force outward in the radial direction is generated in the rotating portion 54. Normally, the centrifugal force is generated on both sides in the diametrical direction, but when the centrifugal force becomes larger than the other in a part in the circumferential direction, the rotary magnet 60 tends to be moved radially outward at the relevant portion.
 ここで、回転磁石60と固定磁石66の各々との間には、径方向外側に移動しようとする回転磁石60に対して径方向内側に向けて引戻す力が生じ、径方向内側に移動しようとする回転磁石60に対して径方向外側に向けて引戻す力が生じる。これにより、磁気軸受50では、回転軸52が回転される際に、回転軸52の軸心が径方向に移動する軸ずれが生じるのを抑制できて、回転軸52が円滑に回転するように支持できる。 Here, between each of the rotating magnet 60 and the fixed magnet 66, a force for pulling back inward in the radial direction with respect to the rotating magnet 60 trying to move in the radial direction is generated, and the rotary magnet 60 moves in the radial direction inward. A force to pull back the rotating magnet 60 toward the outside in the radial direction is generated. As a result, in the magnetic bearing 50, when the rotating shaft 52 is rotated, it is possible to prevent the axial center of the rotating shaft 52 from being displaced in the radial direction, so that the rotating shaft 52 rotates smoothly. Can support.
 一方、磁気軸受50では、回転磁石60と固定磁石66との間に生じる吸引力及び反発力を大きくすることで、回転軸52の円滑な回転支持が可能になる。また、図5A等に示すように、磁気軸受50では、固定磁石66又は回転磁石60と固定磁石66とを複数荷重方向(回転磁石60の着磁方向)に配列することで、より大きな吸引力及び反発力を得ることができる。 On the other hand, in the magnetic bearing 50, by increasing the attractive force and the repulsive force generated between the rotating magnet 60 and the fixed magnet 66, it is possible to smoothly rotate and support the rotating shaft 52. Further, as shown in FIG. 5A and the like, in the magnetic bearing 50, by arranging the fixed magnet 66 or the rotating magnet 60 and the fixed magnet 66 in a plurality of load directions (magnetizing direction of the rotating magnet 60), a larger attractive force is obtained. And repulsive force can be obtained.
 これにより、磁気軸受50では、回転軸52の支持力を大きくするために回転軸52の軸方向に装置が大きくなってしまうのを抑制できて、効果的に回転軸52の支持力を大きくできる。 As a result, in the magnetic bearing 50, it is possible to suppress an increase in the size of the device in the axial direction of the rotating shaft 52 in order to increase the supporting force of the rotating shaft 52, and it is possible to effectively increase the supporting force of the rotating shaft 52. ..
 なお、第2実施形態では、支持部56が固定されて、支持部56に対して回転部54が非接触で回転されることで、回転軸52が支持部56に支持されて非接触で回転されるように説明した。しかしながら、磁気軸受50は、例えば支持部56が台車に取り付けられ、回転部54がレールや路面上を回転することで、台車がレール又は路面に沿って移動される構成であってもよい。これにより、車輪となる回転部54が支持部56に非接触で支持されて回転できる。 In the second embodiment, the support portion 56 is fixed, and the rotating portion 54 is rotated without contact with the support portion 56, so that the rotation shaft 52 is supported by the support portion 56 and rotates without contact. As explained. However, the magnetic bearing 50 may have a structure in which the supporting unit 56 is attached to the dolly and the rotating unit 54 rotates on the rail or the road surface to move the dolly along the rail or the road surface. As a result, the rotating portion 54 serving as a wheel is supported by the supporting portion 56 in a non-contact manner and can rotate.
 また、第2実施形態では、各々の径方向断面が矩形とされたリング状の回転磁石60及び固定磁石66を用いた。しかしながら、回転磁石60及び固定磁石66は、各々一体に形成された構成に限らず、複数の永久磁石が周方向に配列されて形成されていてもよい。 Further, in the second embodiment, the ring-shaped rotary magnet 60 and the fixed magnet 66 each having a rectangular radial cross section are used. However, the rotary magnet 60 and the fixed magnet 66 are not limited to being integrally formed, but may be formed by arranging a plurality of permanent magnets in the circumferential direction.
 さらに、第2実施形態では、回転磁石60を挟んで固定磁石66を対で配置した。しかしながら、軸受部50A、50Bは、径方向に密接された2個ずつの固定磁石66が対で配置されてもよく、また、軸受部50A、50Bは、複数の回転磁石60を径方向に配置すると共に、複数の回転磁石60を挟んで複数対の固定磁石66を配置してもよい。 Further, in the second embodiment, the fixed magnets 66 are arranged in pairs with the rotary magnet 60 interposed therebetween. However, in the bearing parts 50A and 50B, two fixed magnets 66 that are closely contacted in the radial direction may be arranged in pairs, and in the bearing parts 50A and 50B, the plurality of rotary magnets 60 are arranged in the radial direction. In addition, a plurality of pairs of fixed magnets 66 may be arranged with the plurality of rotating magnets 60 sandwiched therebetween.
 これらの場合、複数の固定磁石66は、回転磁石60の着磁方向(回転軸52の径方向)に沿い、かつ回転磁石60側の磁極面の極性が交互に異なるように配置され、固定磁石66の回転磁石60側の磁極面の直近に該磁極面の極性とは異なる極性の回転磁石60の磁極面が配置されればよい。また、複数の回転磁石60は、該回転磁石60の着磁方向(回転軸52の径方向)に沿い、かつ固定磁石66の磁極面の直近において互いに異なる磁極面が密接されていればよい。これにより、磁気軸受50(軸受部50A、50B)は、回転軸52の軸方向に沿う長さを長くすることなく、回転軸52に対する支持力を効果的に大きくできて、高速回転時であっても回転軸52に軸ぶれ等が生じてしまうのを効果的に抑制できる。 In these cases, the plurality of fixed magnets 66 are arranged along the magnetization direction of the rotating magnet 60 (the radial direction of the rotating shaft 52), and the polarities of the magnetic pole surfaces on the rotating magnet 60 side are alternately different. The magnetic pole surface of the rotary magnet 60 having a polarity different from the polarity of the magnetic pole surface may be arranged in the immediate vicinity of the magnetic pole surface of the rotary magnet 60 on the side of 66. Further, the plurality of rotating magnets 60 may be arranged so that different magnetic pole surfaces are closely contacted along the magnetizing direction of the rotating magnet 60 (radial direction of the rotating shaft 52) and in the vicinity of the magnetic pole surface of the fixed magnet 66. As a result, the magnetic bearing 50 (bearing portions 50A and 50B) can effectively increase the supporting force for the rotating shaft 52 without increasing the length along the axial direction of the rotating shaft 52, and is capable of operating at high speed. Even in this case, it is possible to effectively prevent the shaft 52 from being shaken.
 また、回転磁石60及び固定磁石66は、径方向断面が矩形に限らず、少なくとも一方は、略正方形状であってもよい。回転磁石60及び固定磁石66の径方向断面を略正方形状とすることで、単位体積当たりの磁束を大きくできて、大きな支持力を得られるので、高速回転時であっても回転軸52に軸ぶれ等が生じてしまうのを効果的に抑制できる。 Further, the rotary magnet 60 and the fixed magnet 66 are not limited to have a rectangular cross section in the radial direction, and at least one may have a substantially square shape. By making the radial cross-sections of the rotating magnet 60 and the fixed magnet 66 substantially square, the magnetic flux per unit volume can be increased and a large supporting force can be obtained. It is possible to effectively suppress the occurrence of blurring and the like.
 なお、第1実施形態では、磁気支持装置10を例に説明し、第2実施形態では、磁気軸受50を例に説明した。しかしながら、本開示は、これらに限らず、永久磁石を用いて被支持体を非接触で支持する各種の構成に適用できる。 In the first embodiment, the magnetic support device 10 is described as an example, and in the second embodiment, the magnetic bearing 50 is described as an example. However, the present disclosure is not limited to these, and can be applied to various configurations in which a supported body is supported in a non-contact manner using a permanent magnet.
 日本国特許出願2019-003809の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願及びその技術規格には、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application 2019-003809 is incorporated herein by reference in its entirety.
All documents, patent applications and their technical standards mentioned in this specification are incorporated to the extent that individual documents, patent applications and technical standards are specifically and individually incorporated, to the same extent as Incorporated herein by reference.

Claims (6)

  1.  互いの着磁方向が垂直に交差された第1の永久磁石及び第2の永久磁石を含み、前記第1の永久磁石の一方の磁極面の直近に該磁極面とは異なる極性の前記第2の永久磁石の磁極面が配置され、前記第1の永久磁石と前記第2の永久磁石とが前記第2の永久磁石の着磁方向に沿って相対移動可能とされた磁気支持部と、
     前記第1の永久磁石及び前記第2の永久磁石の一方が固定され、前記第1の永久磁石及び前記第2の永久磁石の他方に被支持体が設けられ、該被支持体を前記第1の永久磁石と前記第2の永久磁石との間に生じる吸引力及び反発力により支持する固定部と、
     を備えた磁気支持装置。
    The second permanent magnet includes a first permanent magnet and a second permanent magnet whose magnetization directions are perpendicular to each other, and the second permanent magnet having a polarity different from that of the magnetic pole surface in the immediate vicinity of one magnetic pole surface of the first permanent magnet. And a magnetic support portion in which the magnetic pole surface of the permanent magnet is arranged, and the first permanent magnet and the second permanent magnet are relatively movable along the magnetization direction of the second permanent magnet,
    One of the first permanent magnet and the second permanent magnet is fixed, a supported body is provided on the other of the first permanent magnet and the second permanent magnet, and the supported body is the first supported magnet. A fixed portion which is supported by an attractive force and a repulsive force generated between the permanent magnet and the second permanent magnet,
    Magnetic support device.
  2.  前記磁気支持部は、前記第1の永久磁石及び前記第2の永久磁石の一方が対で設けられ、前記第1の永久磁石及び前記第2の永久磁石の他方が前記対で設けられた前記一方の間に配置されている請求項1に記載の磁気支持装置。 In the magnetic support part, one of the first permanent magnet and the second permanent magnet is provided in a pair, and the other of the first permanent magnet and the second permanent magnet is provided in the pair. The magnetic support device according to claim 1, wherein the magnetic support device is disposed between the two.
  3.  前記磁気支持部は、前記被支持体を挟んだ両側に前記第1の永久磁石及び前記第2の永久磁石の各々が設けられた請求項1又は請求項2に記載の磁気支持装置。 The magnetic support device according to claim 1 or 2, wherein the magnetic support portion is provided with the first permanent magnet and the second permanent magnet on both sides of the supported body.
  4.  前記固定部に固定された前記第1の永久磁石及び前記第2の永久磁石の一方に対する前記第1の永久磁石及び前記第2の永久磁石の他方の前記第1の永久磁石の着磁方向に沿う相対移動を制限する制限手段をさらに含む請求項1から請求項3の何れか1項に記載の磁気支持装置。 In the magnetizing direction of the first permanent magnet of the other of the first permanent magnet and the second permanent magnet with respect to one of the first permanent magnet and the second permanent magnet fixed to the fixing portion. The magnetic support device according to claim 1, further comprising a limiting unit that limits relative movement along the magnetic support unit.
  5.  前記第1の永久磁石及び前記第2の永久磁石の少なくとも一方の着磁方向に沿う断面が正方形状である請求項1から請求項4のいずれか1項に記載の磁気支持装置。 The magnetic support device according to any one of claims 1 to 4, wherein a cross section of at least one of the first permanent magnet and the second permanent magnet along a magnetization direction is square.
  6.  前記磁気支持部は、前記第1の永久磁石及び前記第2の永久磁石が各々円環状に形成されて互いの中心軸線が重ねられて配置され、前記被支持体として前記第1の永久磁石及び前記第2の永久磁石の軸心部に配置された回転体が前記第1の永久磁石及び前記第2の永久磁石の他方と一体に回転される請求項1から請求項5のいずれか1項に記載の磁気支持装置。 In the magnetic support part, the first permanent magnet and the second permanent magnet are each formed in an annular shape, and central axes of the first permanent magnet and the second permanent magnet are overlapped with each other. The rotating body arranged in the axial center portion of the second permanent magnet is integrally rotated with the other of the first permanent magnet and the second permanent magnet. Magnetic support device according to.
PCT/JP2020/000304 2019-01-11 2020-01-08 Magnetic support device WO2020145301A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020565180A JP7412776B2 (en) 2019-01-11 2020-01-08 magnetic support device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019003809 2019-01-11
JP2019-003809 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020145301A1 true WO2020145301A1 (en) 2020-07-16

Family

ID=71521678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000304 WO2020145301A1 (en) 2019-01-11 2020-01-08 Magnetic support device

Country Status (2)

Country Link
JP (1) JP7412776B2 (en)
WO (1) WO2020145301A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220367096A1 (en) * 2019-08-20 2022-11-17 Koninklijke Philips N.V. Coupling system for hand held device and base

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275124A (en) * 1985-09-30 1987-04-07 Toshiba Corp Magnetic bearing device
JPS62177314A (en) * 1986-01-30 1987-08-04 Shimadzu Corp Magnetic floating type rotary machine
JP2015218887A (en) * 2014-05-21 2015-12-07 国立大学法人茨城大学 Magnetic bearing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6275124B2 (en) 2012-05-24 2018-02-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Aqueous binder composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275124A (en) * 1985-09-30 1987-04-07 Toshiba Corp Magnetic bearing device
JPS62177314A (en) * 1986-01-30 1987-08-04 Shimadzu Corp Magnetic floating type rotary machine
JP2015218887A (en) * 2014-05-21 2015-12-07 国立大学法人茨城大学 Magnetic bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220367096A1 (en) * 2019-08-20 2022-11-17 Koninklijke Philips N.V. Coupling system for hand held device and base
US11996234B2 (en) * 2019-08-20 2024-05-28 Koninklijke Philips N.V. Coupling system for hand held device and base

Also Published As

Publication number Publication date
JP7412776B2 (en) 2024-01-15
JPWO2020145301A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP6556829B2 (en) Vibration absorber
US20150115756A1 (en) Axial-loading megnetic reluctance device
US6507257B2 (en) Permanent magnet brushless torque latching actuator
US20160108957A1 (en) Magnetic bearing having permanent magnet assemblies with repulsive bearing surfaces
JP2005527176A (en) Rotary electric motor having a plurality of diagonal stator poles and / or rotor poles
JP7017577B2 (en) Electric motors, electric motor systems and power generation systems
JPS5942165B2 (en) Magnetic non-contact bearing device
WO2020145301A1 (en) Magnetic support device
KR101963565B1 (en) Thrust magnetic bearing using flux switching
JP7227792B2 (en) Magnetic rotating device
JPS6146683B2 (en)
WO2006126307A1 (en) Superconductivity utilizing support mechanism, and permanent magnet utilizing support mechanism
US11978589B2 (en) Magnetic actuator for a magnetic suspension system
JPH09303395A (en) Magnetic bearing device
JP2004316756A (en) Five-axis control magnetic bearing
JP2005076792A5 (en)
JP4229928B2 (en) Superconducting support mechanism
JPWO2005039019A1 (en) Actuator
KR101064226B1 (en) Hybrid thrust magnetic bearing
WO2006098500A1 (en) Magnetic device
JP2002257135A (en) Magnetic bearing device
JPS5854285B2 (en) Five-axis controlled magnetic bearing
JP2006022944A (en) Magnetic bearing
PL229714B1 (en) Magnetic bearing
JP6794907B2 (en) Engagement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20737867

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020565180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20737867

Country of ref document: EP

Kind code of ref document: A1