WO2020143577A1 - 参数配置方法和通信装置 - Google Patents

参数配置方法和通信装置 Download PDF

Info

Publication number
WO2020143577A1
WO2020143577A1 PCT/CN2020/070484 CN2020070484W WO2020143577A1 WO 2020143577 A1 WO2020143577 A1 WO 2020143577A1 CN 2020070484 W CN2020070484 W CN 2020070484W WO 2020143577 A1 WO2020143577 A1 WO 2020143577A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
mapping relationship
vector
space
vectors
Prior art date
Application number
PCT/CN2020/070484
Other languages
English (en)
French (fr)
Inventor
王潇涵
金黄平
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP23198759.5A priority Critical patent/EP4311122A3/en
Priority to EP20738409.0A priority patent/EP3907918B1/en
Publication of WO2020143577A1 publication Critical patent/WO2020143577A1/zh
Priority to US17/370,438 priority patent/US20210337565A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application relates to the field of communication, and more specifically, to a parameter configuration method and a communication device.
  • massive multiple-input multiple-output (Massive MIMO) technology network equipment can reduce interference between multiple users and interference between multiple signal streams of the same user through precoding technology. Thereby improving signal quality, realizing space division multiplexing and improving spectrum utilization.
  • the terminal device may determine the precoding vector by way of channel measurement, for example, and hope that through feedback, the network device obtains a precoding vector that is the same as or similar to the precoding vector determined by the terminal device.
  • the terminal device may indicate the precoding vector to the network device through a feedback method combining space domain compression and frequency domain compression. Specifically, the terminal device may select one or more space domain vectors and one or more frequency domain vectors based on the precoding vectors of each frequency domain unit on each transmission layer, so that the matrix of the matrix constructed by the space domain vectors and frequency domain vectors The weighted sum is used to fit the precoding vector corresponding to each frequency domain unit on each transmission layer.
  • This application provides a parameter configuration method and a communication device, in order to clarify the number of reports of the space domain vector and the frequency domain vector.
  • a parameter configuration method is provided.
  • the method may be executed by the terminal device, or may be executed by a chip configured in the terminal device.
  • the method includes: receiving an indication of a first mapping relationship, the first mapping relationship being a mapping relationship in a pre-configured first mapping relationship group, the first mapping relationship group including at least one mapping relationship, the at least one The mapping relationship is used to indicate at least one correspondence between the number of reports of the space domain vector and the number of reports of the frequency domain vector; according to the first mapping relationship, the number of reports of the space domain vector L 0 and the report of the frequency domain vector are determined
  • the number M 0 , L 0 space domain vectors and M 0 frequency domain vectors are used to construct precoding vectors of one or more frequency domain units; L 0 and M 0 are both positive integers.
  • the selection range of the number of reports can be narrowed, which is beneficial to reducing the calculation amount for the network device to determine the L value and the M value.
  • various combinations of pre-defined L values and M groups can meet the requirements of different feedback accuracy.
  • the number of possible combinations of the L value and the M value in the first mapping relationship group can be reduced, and the network device can indicate the first in the first mapping relationship group with fewer bits. The mapping relationship is helpful to reduce the indication overhead of network devices.
  • the various combinations of the L value and the M value defined in the embodiments of the present application take into account the requirements for different feedback accuracy.
  • the feedback cost is the same or close, the L value and M with better performance are as much as possible.
  • the combination of values is retained, and the feedback overhead and feedback accuracy are comprehensively considered, which is beneficial to improve the performance of the communication system.
  • the ratio of the number of space frequency vector pairs K 0 and 2L 0 ⁇ M 0 used to construct the precoding vector is a preset value
  • 2L 0 ⁇ M 0 means that The sum of the number of pairs of space-frequency vectors constructed by L 0 space-domain vectors and M 0 frequency-domain vectors in the polarization direction
  • K 0 represents the space frequencies used to construct precoding vectors in the two polarization directions, respectively The sum of the number of vector pairs.
  • the selection range of the number of space frequency vector pairs used to construct the precoding vector is narrowed . Since the weighting coefficient corresponds to the space-frequency vector pair, the selection range of the number of weighting coefficient reports is narrowed.
  • the weaker part of the space frequencies in the 2L 0 ⁇ M 0 space-frequency vector pair can be used The elimination of vector pairs is helpful to reduce feedback overhead while ensuring feedback accuracy.
  • K 0 is one of the possible values of K
  • L 0 is one of the possible values of L
  • M 0 is one of the possible values of M
  • K The ratio of 0 to 2L 0 ⁇ M 0 is also the ratio of K to 2L ⁇ M.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is a fixed value.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is 1/2.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is 1/3.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is 2/3.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is directly fixed without the network device further indicating the value of K 0 .
  • the terminal device may directly determine the K 0 value according to the predefined ratio and the L 0 value and the M 0 value determined by the first mapping relationship. Therefore, the instruction overhead of the network device can be reduced.
  • the method further includes: receiving first indication information, where the first indication information is used to indicate the preset value.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is one of the ratios of K to 2L ⁇ M.
  • the preset value is indicated by the network device, that is, the ratio of K to 2L ⁇ M can be configured into multiple possible values. Therefore, the number of combinations of L value, M value, and K value can be expanded, and a better performance combination can be selected from more combinations to keep.
  • the instruction overhead caused by indicating the preset value is relatively small. Therefore, more combinations of L value, M value, and K value can be selected through smaller indication overhead to meet the requirements of different feedback accuracy.
  • the method further includes: determining, according to the number of reports of the space domain vector L 0 and the number of reports of the frequency domain vector M 0 , a method for constructing the precoding space-frequency vector of the vectors of the number of K 0, K 0 ⁇ 2L 0 ⁇ M 0 and K 0 is a positive integer frequency vectors, 2L 0 ⁇ M 0 represents the two polarization directions respectively corresponding to the number of empty And, K 0 represents the sum of the number of space-frequency vector pairs used to construct precoding vectors in the two polarization directions, respectively.
  • K 0 terminal device may determine the value K 0 2L 0 ⁇ M 0 ratio, and the value of L 0 M 0 and the value determined by a first mapping relationship based.
  • the at least one mapping relationship is also used to indicate at least one of the number of reported space domain vectors and the frequency domain vector and the number of weighted coefficient reports Correspondence.
  • the first mapping relationship can be directly used to indicate the correspondence between the L 0 value, M 0 value, and K 0 value.
  • the terminal device may directly determine the L 0 value, M 0 value, and K 0 value according to the indication of the first mapping relationship. Therefore, the calculation amount of the terminal device can be reduced.
  • the first mapping relationship group is one of a plurality of mapping relationship groups, and the first mapping relationship group is determined by one of the following items: a. The number of frequency domain units included in the transmission bandwidth of the channel state information reference signal CSI-RS; or, b, the number of frequency domain units to be reported in the transmission bandwidth of the CSI-RS; or, c, the transmission bandwidth of the CSI-RS The number of frequency domain units included in the bandwidth occupied by the first frequency domain unit to be reported to the last frequency domain unit to be reported.
  • multiple mapping relationship groups may be pre-configured to correspond to different frequency domain unit numbers.
  • the number of frequency domain units here may be, for example, one of a, b, or c listed above. It can be seen that a, b and c listed above are related to the transmission resources of the CSI-RS and/or the number of frequency domain units to be reported. Based on this, defining multiple mapping relationship groups can enable the number of frequency domain vectors reported by the terminal device to increase as the number of frequency domain units to be reported or the number of frequency domain units included in the CSI-RS increases. Under the same overhead, when the number of frequency domain units to be reported is greater or the number of frequency domain units included in the CSI-RS is increased, increasing the number of frequency domain vector reports is beneficial to improve the feedback accuracy.
  • a parameter configuration method is provided.
  • the method may be executed by a network device, or may be executed by a chip configured in the network device.
  • the method includes: generating an indication of a first mapping relationship, where the first mapping relationship is used to indicate the number of reported space-frequency vectors L 0 and the number of reported frequency-domain vectors M 0 ; L 0 space-domain vector sums M 0 frequency domain vectors are used to construct precoding vectors of one or more frequency domain units; the first mapping relationship is a mapping relationship in a pre-configured first mapping relationship group, and the first mapping relationship group includes at least one Mapping relationship, the at least one mapping relationship is used to indicate at least one correspondence between the number of reports of the space domain vector and the number of reports of the frequency domain vector; wherein, L 0 and M 0 are both positive integers; the first mapping relationship is sent Instructions.
  • the selection range of the number of reports can be narrowed, which is beneficial to reducing the calculation amount for the network device to determine the L value and the M value.
  • various combinations of pre-defined L values and M groups can meet the requirements of different feedback accuracy.
  • the number of combinations that may contain L and M values in the first mapping relationship group can be reduced, and the network device can indicate the first in the first mapping relationship group with fewer bits The mapping relationship is helpful to reduce the indication overhead of network devices.
  • the various combinations of the L value and the M value defined in the embodiments of the present application take into account the requirements for different feedback accuracy. When the feedback cost is the same or close, the L value and M with better performance are as much as possible. The combination of values is retained, and the feedback overhead and feedback accuracy are comprehensively considered, which is beneficial to improve the performance of the communication system.
  • the selection range of the number of space frequency vector pairs used to construct the precoding vector is narrowed . Since the weighting coefficient corresponds to the space-frequency vector pair, the selection range of the number of weighting coefficient reports is narrowed.
  • the weaker part of the space frequencies in the 2L 0 ⁇ M 0 space-frequency vector pair can be used The elimination of vector pairs is helpful to reduce feedback overhead while ensuring feedback accuracy.
  • K 0 is one of the possible values of K
  • L 0 is one of the possible values of L
  • M 0 is one of the possible values of M
  • K The ratio of 0 to 2L 0 ⁇ M 0 is also the ratio of K to 2L ⁇ M.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is a fixed value.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is 1/2.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is 1/3.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is 2/3.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is directly fixed without the network device further indicating the value of K 0 .
  • the terminal device may directly determine the K 0 value according to the predefined ratio and the L 0 value and the M 0 value determined by the first mapping relationship. Therefore, the instruction overhead of the network device can be reduced.
  • the method further includes sending first indication information, where the first indication information is used to indicate the preset value.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is one of the ratios of K to 2L ⁇ M.
  • the preset value is indicated by the network device, that is, the ratio of K to 2L ⁇ M can be configured into multiple possible values. Therefore, the number of combinations of L value, M value, and K value can be expanded, and a better performance combination can be selected from more combinations to keep.
  • the instruction overhead caused by indicating the preset value is relatively small. Therefore, more combinations of L value, M value, and K value can be selected through smaller indication overhead to meet the requirements of different feedback accuracy.
  • the at least one mapping relationship is further used to indicate at least one of the number of reported space domain vectors and the frequency domain vector and the number of weighted coefficient reports Correspondence.
  • the first mapping relationship can be directly used to indicate the correspondence between the L 0 value, M 0 value, and K 0 value.
  • the terminal device may directly determine the L 0 value, M 0 value, and K 0 value according to the indication of the first mapping relationship. Therefore, the calculation amount of the terminal device can be reduced.
  • the first mapping relationship group is one of a plurality of mapping relationship groups, and the first mapping relationship group is determined by one of the following items: a 2. The number of frequency domain units included in the transmission bandwidth of the channel state information reference signal CSI-RS; or b. The number of frequency domain units to be reported in the transmission bandwidth of the CSI-RS; or c. The transmission of the CSI-RS The number of frequency domain units in the bandwidth occupied by the bandwidth from the first frequency domain unit to be reported to the last frequency domain unit to be reported.
  • multiple mapping relationship groups may be pre-configured to correspond to different frequency domain unit numbers.
  • the number of frequency domain units here may be, for example, one of a, b, or c listed above. It can be seen that a, b and c listed above are related to the transmission resources of the CSI-RS and/or the number of frequency domain units to be reported. Based on this, defining multiple mapping relationship groups can enable the number of frequency domain vectors reported by the terminal device to increase as the number of frequency domain units to be reported or the number of frequency domain units included in the CSI-RS increases. Under the same overhead, when the number of frequency domain units to be reported is greater or the number of frequency domain units included in the CSI-RS is increased, increasing the number of frequency domain vector reports is beneficial to improve the feedback accuracy.
  • a communication device including various modules or units for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory, and can be used to execute instructions in the memory to implement the first aspect or the method in any possible implementation manner of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in the terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including various modules or units for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute the instructions in the memory to implement the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor performs the first aspect or the second aspect and any possible implementation manner of the first aspect or the second aspect The method.
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to a receiver
  • the signal output by the output circuit may be, for example but not limited to, output to and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit at different times, respectively.
  • the embodiments of the present application do not limit the specific implementation manner of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter to perform the first aspect or the second aspect and any possible implementation manner of the first aspect or the second aspect Methods.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor are provided separately.
  • the memory may be non-transitory (non-transitory) memory, such as read-only memory (read only memory (ROM), which may be integrated with the processor on the same chip, or may be set in different On the chip, the embodiments of the present application do not limit the type of memory and the manner of setting the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processor may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processing device in the eighth aspect may be one or more chips, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.;
  • the processor When implemented by software, the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may be integrated in the processor, and may be located outside the processor and exist independently.
  • a computer program product includes: a computer program (also referred to as code or instructions) that, when the computer program is executed, causes the computer to perform the first aspect or the above The method in the second aspect and any possible implementation manner of the first aspect or the second aspect.
  • a computer program also referred to as code or instructions
  • a computer-readable medium that stores a computer program (also referred to as code or instructions) that when executed on a computer, causes the computer to perform the first aspect or the above
  • a computer program also referred to as code or instructions
  • a communication system including the aforementioned network device and terminal device.
  • FIG. 1 is a schematic diagram of a communication system suitable for a parameter configuration method provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a parameter configuration method provided by an embodiment of the present application.
  • FIG. 3 is a performance simulation diagram provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a frequency domain unit to be reported in a transmission bandwidth of CSI-RS provided by an embodiment of the present application;
  • FIG. 5 is a schematic flowchart of a parameter configuration method provided by another embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for a vector indication method for constructing a precoding vector according to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 can communicate through a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 may be configured with multiple antennas.
  • the configured multiple antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals. Therefore, the communication devices in the communication system 100, such as the network device 110 and the terminal device 120, can communicate through multi-antenna technology.
  • the network device in the communication system may be any device with wireless transceiver function.
  • the network equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC) ), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WiFi) system Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc.
  • 5G such as, NR, gNB in the system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) of the base station in the 5G system, or it can also be a network node that constitutes a gNB or transmission point
  • gNB may include a centralized unit (CU) and DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of gNB, and the DU implements some functions of gNB.
  • CU implements radio resource control (RRC), packet data convergence protocol (PDCP) layer functions
  • DU implements radio link control (RLC), media access control (media access control, MAC) and physical (PHY) layer functions. Since the information of the RRC layer will eventually become the information of the PHY layer or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU+CU.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in a radio access network (RAN), and may also be divided into network devices in a core network (CN), which is not limited in this application.
  • RAN radio access network
  • CN core network
  • terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, and an augmented reality (augmented reality, AR) terminal Wireless terminals in equipment, industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety ( Wireless terminals in transportation, safety terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit application scenarios.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding and examples.
  • the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1.
  • the processing procedure of the downlink signal at the physical layer before sending may be performed by the network device, or may also be performed by a chip configured in the network device. For convenience of explanation, they are collectively referred to as network devices hereinafter.
  • the network device can process the code word on the physical channel.
  • the codeword may be coded bits that have been coded (e.g. including channel coding).
  • the codeword is scrambled to generate scrambling bits.
  • the scrambled bits undergo modulation mapping to obtain modulation symbols.
  • the modulation symbols are mapped to multiple layers (layers) through layer mapping, or transmission layers.
  • the modulation symbols after layer mapping are subjected to precoding to obtain a precoded signal.
  • the pre-encoded signal is mapped to multiple REs after being mapped to resource elements (RE). These REs are then orthogonally multiplexed (orthogonal frequency division multiplexing, OFDM) modulated and transmitted through the antenna port.
  • OFDM orthogonally multiplexed
  • the sending device (such as a network device) can process the signal to be transmitted with the help of a precoding matrix that matches the channel resource when the channel state is known, so that the precoded signal to be transmitted and the channel It is adapted to reduce the complexity of receiving devices (such as terminal devices) to eliminate the influence between channels. Therefore, through the precoding process of the signal to be transmitted, the received signal quality (for example, signal to interference plus noise ratio (SINR), etc.) can be improved. Therefore, by using precoding technology, transmission devices and multiple receiving devices can be transmitted on the same time-frequency resources, that is, multiple users, multiple inputs, and multiple outputs (MU-MIMO).
  • SINR signal to interference plus noise ratio
  • the sending device may also perform precoding in other ways. For example, when channel information (such as, but not limited to, channel matrix) cannot be obtained, pre-coding is performed using a pre-coding matrix or a weighting processing method set in advance. For brevity, the specific content of this article will not be repeated here.
  • channel information such as, but not limited to, channel matrix
  • PMI Precoding matrix and precoding matrix indicator
  • the precoding matrix may be, for example, a precoding matrix corresponding to each frequency domain unit determined by the terminal device based on the channel matrix of each frequency domain unit (eg, subband).
  • the channel matrix may be determined by the terminal device through channel estimation or other methods or based on channel reciprocity.
  • the specific method for the terminal device to determine the channel matrix is not limited to the above, and the specific implementation manner may refer to the existing technology.
  • the precoding matrix can be obtained by singular value decomposition (SVD) of the channel matrix or the covariance matrix of the channel matrix, or by eigenvalue decomposition (eigenvalue decomposition) of the covariance matrix of the channel matrix. EVD).
  • SVD singular value decomposition
  • eigenvalue decomposition eigenvalue decomposition
  • the precoding matrix corresponding to the frequency domain unit may refer to the precoding matrix fed back for the frequency domain unit, for example, it may be performed based on the reference signal on the frequency domain unit Precoding matrix for channel measurement and feedback.
  • the precoding matrix corresponding to the frequency domain unit may be used as a precoding matrix for precoding subsequent data transmitted through the frequency domain unit.
  • the precoding matrix corresponding to the frequency domain unit may also be simply referred to as the precoding matrix of the frequency domain unit
  • the precoding vector corresponding to the frequency domain unit may also be referred to as the precoding vector of the frequency domain unit.
  • the precoding matrix determined by the network device based on the feedback of the terminal device may be directly used for downlink data transmission; it may also go through some beamforming methods, for example, including zero forcing (zero forcing, ZF), regularized zero-forcing (RZF), minimum mean square error (MMSE), signal-to-leakage-and-noise (SLNR), etc.
  • ZF zero forcing
  • RZF regularized zero-forcing
  • MMSE minimum mean square error
  • SLNR signal-to-leakage-and-noise
  • the precoding matrix (or vector) referred to below may refer to the precoding matrix (or vector) determined by the network device based on feedback from the terminal device.
  • a precoding matrix may include one or more vectors, such as column vectors. A precoding matrix can be used to determine one or more precoding vectors.
  • the precoding vector may be a precoding matrix.
  • the precoding vector may refer to the component of the precoding matrix on one transmission layer.
  • the precoding vector may refer to the component of the precoding matrix in one polarization direction.
  • the precoding vector may refer to the components of the precoding matrix in one transmission layer and one polarization direction.
  • the precoding vector may also be determined by the vector in the precoding matrix, for example, obtained by performing mathematical transformation on the vector in the precoding matrix. This application does not limit the mathematical transformation relationship between the precoding matrix and the precoding vector.
  • the transmission bandwidth of CSI-RS may refer to resources used for transmission of CSI-RS occupied in the frequency domain Bandwidth.
  • the terminal device may receive the CSI-RS on the transmission bandwidth of the CSI-RS for channel measurement and reporting.
  • the transmission bandwidth of the CSI-RS may be the bandwidth of the frequency band occupied by the CSI-RS on which the terminal device reports.
  • the transmission bandwidth of the CSI-RS may be the bandwidth occupied by the CSI-RS resource in the frequency domain.
  • the bandwidth occupied by the frequency domain of the CSI-RS resource can be configured through an information element (IE) (CSI-Frequency Occupation).
  • IE information element
  • the network device may further indicate the number and location of subbands (ie, an example of frequency domain units) to be reported through the reporting bandwidth (csi-ReportingBand) field in the CSI reporting configuration (CSI-ReportConfig) of the IE.
  • This field can be a bitmap.
  • the length of the bitmap may be the number of subbands included in the frequency domain occupied bandwidth of the CSI-RS-Resource.
  • Each indicator bit in the bitmap may correspond to a subband in the frequency domain occupied bandwidth of CSI-RS-Resource.
  • Each indicator bit is used to indicate whether the corresponding subband needs to report CSI.
  • the indication bit when the indication bit is set to "1", the corresponding subband needs to report CSI; when the indication bit is set to "0", the corresponding subband does not need to report CSI. It should be understood that the meanings expressed by the values of the indication bits listed here are only examples, and should not constitute any limitation to this application.
  • the above-listed signaling for configuring the frequency domain occupied bandwidth of the CSI measurement resource and signaling for indicating the subband to be reported are only examples, and should not constitute any limitation to this application. This application does not limit the signaling for indicating the bandwidth occupied by the frequency domain of the CSI measurement resource, the signaling for indicating the subband to be reported, and the specific indication method.
  • the transmission bandwidth of the CSI-RS may be a bandwidth corresponding to csi-ReportingBand.
  • the number of subbands included in the transmission bandwidth of the CSI-RS may be the number of bits included in the csi-ReportingBand, or may be the length of the csi-ReportingBand.
  • Antenna port short for port. It can be understood as a virtual antenna recognized by the receiving device. Or a transmit antenna that can be distinguished in space. One antenna port can be configured for each virtual antenna, each virtual antenna can be a weighted combination of multiple physical antennas, and each antenna port can correspond to one reference signal, therefore, each antenna port can be called a reference signal port . In the embodiment of the present application, the antenna port may refer to an actual independent transmitting unit (TxRU).
  • TxRU actual independent transmitting unit
  • Spatial vector spatial domain vector
  • Each element in the airspace vector may represent the weight of each antenna port. Based on the weight of each antenna port represented by each element in the space vector, linearly superimposing the signals of each antenna port can form a region with a strong signal in a certain direction in space.
  • the space vector is denoted as u.
  • the length of the space vector u can be the number of transmit antenna ports N s in one polarization direction, N s ⁇ 1 and an integer.
  • the space domain vector may be, for example, a column vector or a row vector of length N s . This application does not limit this.
  • the spatial domain vector please refer to the two-dimensional (2dimensions, 2D)-Discrete Fourier Transform (DFT) vector or The 2D-DFT vector v l,m is sampled. For the sake of brevity, I will not repeat them here.
  • DFT Discrete Fourier Transform
  • Airspace vector set can include a variety of airspace vectors of different lengths to correspond to different numbers of transmit antenna ports.
  • the length of the airspace vector is N s
  • the length of each airspace vector in the set of airspace vectors to which the airspace vector reported by the terminal device belongs is N s .
  • the set of space domain vectors may include N s space domain vectors, and the N s space domain vectors may be orthogonal to each other.
  • Each space vector in the set of space vectors can be taken from a 2D-DFT matrix. Among them, 2D can represent two different directions, such as a horizontal direction and a vertical direction.
  • the N s space domain vectors can be written as u 1 , for example, The N s space domain vectors can construct the matrix B s ,
  • the set of space domain vectors can be expanded to O s ⁇ N s space domain vectors by an oversampling factor O s .
  • the set of space domain vectors may include O s subsets, and each subset may include N s space domain vectors.
  • the N s space vectors in each subset can be orthogonal to each other.
  • Each space vector in the set of space vectors can be taken from an oversampled 2D-DFT matrix.
  • the N s space domain vectors in the o s (1 ⁇ o s ⁇ O s and o s are integers) subsets of the set of space domain vectors can be written as Then based on the N s space vectors in the o s subset, a matrix can be constructed
  • each space vector in the set of space vectors can be taken from a 2D-DFT matrix or an oversampled 2D-DFT matrix.
  • Each column vector in the set of spatial domain vectors may be referred to as a 2D-DFT vector or an oversampled 2D-DFT vector.
  • the spatial domain vector may be a 2D-DFT vector or an oversampled 2D-DFT vector.
  • Frequency domain vector a vector used in the embodiment of the present application to represent the change rule of the channel in the frequency domain.
  • Each frequency domain vector can represent a variation law. Since the signal is transmitted through the wireless channel, the transmitting antenna can reach the receiving antenna through multiple paths. Multipath delay causes frequency selective fading, which is the change of frequency domain channel. Therefore, different frequency domain vectors can be used to represent the change law of the channel in the frequency domain caused by the delay on different transmission paths.
  • the frequency domain vector is denoted as v.
  • the length of the frequency domain vector can be written as N f , N f ⁇ 1, and it is an integer.
  • Frequency domain vector set can include frequency domain vectors of different lengths. One or more frequency domain vectors in the set of frequency domain vectors are selected to construct a precoding vector.
  • the set of frequency domain vectors may include multiple frequency domain vectors.
  • the multiple frequency domain vectors may be orthogonal to each other.
  • Each frequency domain vector in the set of frequency domain vectors can be taken from a DFT matrix.
  • the N f frequency domain vectors can be written as The N f frequency domain vectors can construct a matrix B f ,
  • the frequency-domain vector set can be extended oversampling factor O f O f ⁇ N f is the frequency-domain vectors.
  • the frequency-domain vector set may comprise O f subsets, each subset may include N f frequency-domain vectors.
  • the N f frequency domain vectors in each subset can be orthogonal to each other.
  • Each subset can be called an orthogonal group.
  • Each frequency domain vector in the set of frequency domain vectors can be taken from an oversampled DFT matrix.
  • the oversampling factor O f is a positive integer.
  • the N f frequency domain vectors in the o f ( 1 ⁇ o f ⁇ O f and o f are integers) subsets of the set of frequency domain vectors can be written as Then, based on the N f frequency domain vectors in the o f th subset, a matrix can be constructed
  • each frequency domain vector in the set of frequency domain vectors can be taken from a DFT matrix or an oversampled DFT matrix.
  • Each column vector in the set of frequency domain vectors may be referred to as a DFT vector or an oversampled DFT vector.
  • the frequency domain vector may be a DFT vector or an oversampled DFT vector.
  • a space frequency component matrix can be determined by a space domain vector and a frequency domain vector.
  • a space-frequency component matrix can be determined by, for example, the conjugate transposition of a space-domain vector and a frequency-domain vector, such as u ⁇ v H , and its dimension can be N s ⁇ N f .
  • the space-frequency component matrix may be an expression form of a basic unit of space-frequency determined by a space-domain vector and a frequency-domain vector.
  • the space-frequency basic unit can also be represented as a space-frequency component vector, for example, which can be determined by the Kronecker product of a space-domain vector and a frequency-domain vector; the space-frequency basic unit can also be represented, for example. Space-frequency vector equivalent.
  • This application does not limit the specific manifestation of the basic unit of space frequency. Based on the same conception, those skilled in the art should consider that all possible forms determined by one space domain vector and one frequency domain vector should fall within the scope of protection of the present application.
  • the operation relationship between the space frequency component matrix and the space domain vector and frequency domain vector may also be different. This application does not limit the operation relationship between the space-frequency component matrix, the space-domain vector, and the frequency-domain vector.
  • the space-frequency matrix can be understood as an intermediate quantity used for determining the precoding matrix.
  • the space frequency matrix may be determined by the precoding matrix or the channel matrix.
  • the space-frequency matrix may be a weighted sum of multiple space-frequency component matrices for restoring the downlink channel or precoding matrix.
  • the space-frequency component matrix can be expressed as a matrix of dimension N s ⁇ N f
  • the space-frequency matrix can also be expressed as a matrix of dimension N s ⁇ N f
  • the space-frequency matrix whose dimension is N s ⁇ N f may include N f column vectors of length N s .
  • the N f column vectors may correspond to N f frequency domain units, and each column vector may be used to determine the corresponding precoding vector of the frequency domain unit.
  • the space-frequency matrix can be written as H, Among them, w 1 to Are N f column vectors corresponding to N f frequency domain units, and the length of each column vector may be N s .
  • the N f column vectors can be used to determine the precoding vectors of N f frequency domain units, respectively.
  • the space-frequency matrix is only one form of expression for determining the intermediate quantity of the precoding matrix, and should not constitute any limitation to this application.
  • a vector of length N s ⁇ N f can also be obtained. This vector can be called Space frequency vector.
  • the dimensions of the space-frequency matrix and space-frequency vector shown above are only examples, and should not constitute any limitation to this application.
  • the space-frequency matrix may also be a matrix of dimension N f ⁇ N s .
  • Each row vector may correspond to a frequency domain unit, which is used to determine the corresponding precoding vector of the frequency domain unit.
  • the dimension of the space-frequency matrix can be further expanded.
  • the dimension of the space-frequency matrix may be 2N s ⁇ N f or N f ⁇ 2N s . It should be understood that the number of polarization directions of the transmitting antenna is not limited in this application.
  • the terminal device feeds back the overhead caused by the selected space domain vector, frequency domain vector and corresponding weighting coefficient indication information to the network device.
  • the terminal device may indicate the selected airspace vector by indicating the index of the combination of the selected airspace vector in the set of airspace vectors.
  • the resulting overhead can be, for example, Bits. If the spatial domain vector set is expanded into multiple subsets by an oversampling factor, the resulting overhead may be, for example, Bits.
  • the terminal device may also indicate the selected frequency domain vector by indicating the index of the combination of the selected frequency domain vector in the frequency domain vector set.
  • the resulting overhead can be, for example, Bits. If the spatial domain vector set is expanded into multiple subsets by an oversampling factor, the resulting overhead may be, for example, Bits.
  • the terminal device may indicate the position of the space-frequency vector pair corresponding to the K weighting coefficients among the L ⁇ M space-frequency vector pairs constructed by the L space-domain vectors and the M frequency-domain vectors through a bitmap.
  • the length of the bitmap may be L ⁇ M bits, for example.
  • the number K of weighting coefficients all represents the total number of weighting coefficients fed back by the terminal device. Therefore, when the number of polarization directions of the transmitting antenna is 2, K is at least an integer greater than or equal to 2. If the two polarization directions share the same one or more space-frequency vector pairs, then K is an even number. However, this application does not exclude the possibility of defining the number of reported weighting coefficients based on each polarization direction of the transmitting antenna in future protocols.
  • the number of reported weighting coefficients for each polarization direction may be K, and K'is a positive integer. Then the total number of reported weighting coefficients in the two polarization directions is 2K'.
  • K' is only defined to distinguish from K. If two polarization directions share the same one or more space-frequency vector pairs, K'may be equal to the above K/2.
  • the terminal device may indicate K weighting coefficients in a normalized manner. Then the terminal device can pass Bits to indicate the position of the normalization coefficient. It can be understood that, when the parameter K is not configured, the terminal device can pass Bits (corresponding to the number of polarization directions being 1) or Bits (corresponding to the number of polarization directions being 2) to indicate the position of the normalization coefficient.
  • the terminal device can also quantize the remaining K-1 weighting coefficients by (A+P)(K-1) bits, where A represents the number of quantization bits of the amplitude of each weighting coefficient, and P represents the phase of each weighting coefficient Quantize the number of bits. Both A and P are positive integers.
  • the feedback overhead may be, for example Bits, or, Bits.
  • the terminal device may also indicate the index of each space domain vector selected in the set of space domain vectors and the index of each frequency domain vector selected in the set of frequency domain vectors, respectively.
  • the terminal device may indicate the weighting coefficient in a normalized manner in each polarization direction, and therefore may indicate the position of a normalization coefficient in each polarization direction.
  • Dual domain compression Including air domain compression and frequency domain compression.
  • Spatial domain compression may refer to selecting one or more spatial domain vectors in the spatial domain vector set as the spatial domain vectors for constructing the precoding vector.
  • Frequency domain compression may refer to selecting one or more frequency domain vectors from a set of frequency domain vectors as frequency domain vectors for constructing a precoding vector.
  • the selected airspace vector is part or all of the airspace vectors in the set of airspace vectors.
  • the selected frequency domain vector is part or all of the frequency domain vectors in the frequency domain vector set.
  • the matrix determined by one space domain vector and one frequency domain vector may be, for example, the aforementioned space frequency component matrix.
  • the selected one or more space domain vectors and one or more frequency domain vectors can be used to determine one or more space frequency component matrices.
  • the weighted sum of the one or more space-frequency component matrices can be used to construct a space-frequency matrix corresponding to one transmission layer.
  • the space-frequency matrix can be approximated as the weighted sum of the space-frequency component matrix determined by the selected one or more space-domain vectors and one or more frequency-domain vectors.
  • the space domain vector and the frequency domain vector used to construct a space frequency component matrix may be called a space frequency vector pair.
  • the network device After the network device obtains the space domain vector, frequency domain vector, and weighting coefficients that can be used to construct the space frequency matrix, it can further determine the precoding vector corresponding to each frequency domain unit based on the constructed space frequency matrix.
  • the number of transmission layers is 1, and the number of polarization directions of the transmitting antenna is 2.
  • the terminal device may feed back indications of L space domain vectors, indications of M frequency domain vectors, and indications of K weighting coefficients to the network device.
  • the L space vectors may be feedback based on two polarization directions, and may be shared by the two polarization directions.
  • the M frequency domain vectors may also be feedback based on two polarization directions, and may be shared by the two polarization directions.
  • L space domain vectors and M frequency domain vectors can be used to construct L ⁇ M space frequency vector pairs.
  • the L ⁇ M space-frequency vector pairs can be shared by two polarization directions, and each polarization direction corresponds to L ⁇ M space-frequency vector pairs.
  • the total number of space-frequency vector pairs corresponding to the two polarization directions is 2L ⁇ M.
  • the K weighting coefficients may correspond to some or all of the 2L ⁇ M space-frequency vector pairs in the two polarization directions. That is, K ⁇ 2L ⁇ M.
  • L ⁇ M space frequency vector pairs in the first polarization direction and L ⁇ M space frequency vector pairs in the second polarization direction may be completely repeated. However, since they respectively correspond to different polarization directions, the sum of the number of space-frequency vector pairs corresponding to each polarization direction in the two polarization directions is still recorded as 2L ⁇ M.
  • the terminal device may feed back indications of L space domain vectors and M frequency domain vectors to the network device based on each polarization direction, and may feedback to the network device based on two polarization directions
  • An indication of K weighting factors L space domain vectors and M frequency domain vectors fed back based on each polarization direction can be used to construct L ⁇ M space frequency vector pairs. Then the sum of the number of space-frequency vector pairs corresponding to the two polarization directions is 2L ⁇ M.
  • the K weighting coefficients may correspond to some or all of the 2L ⁇ M space-frequency vector pairs in the two polarization directions. That is, K ⁇ 2L ⁇ M.
  • the L space vectors fed back based on the first polarization direction and the L space vectors fed back based on the second polarization direction may be the same or different.
  • the M frequency domain vectors fed back based on the first polarization direction and the M frequency domain vectors fed back based on the second polarization direction may be the same or different. Therefore, the L ⁇ M space-frequency vector pairs in the first polarization direction and the L ⁇ M space-frequency vector pairs in the second polarization direction may be completely different, or may be partially repeated It can also be completely repeated. This application does not limit this. However, since they respectively correspond to different polarization directions, the sum of the number of space-frequency vector pairs corresponding to each polarization direction in the two polarization directions is still recorded as 2L ⁇ M.
  • the K weighting coefficients fed back by the terminal device may correspond to the K space-frequency vector pairs in the 2L ⁇ M space-frequency vector pairs one-to-one.
  • the number of weighting coefficients is the same as the number of space-frequency vector pairs.
  • the terminal equipment feeds back K weighting coefficients, which can be understood as selecting K space-frequency vector pairs from 2L ⁇ M space-frequency vector pairs, so it can also be understood that the terminal equipment feeds back K number that can be used to construct precoding Vector space-frequency vector pair.
  • the dual-domain compression is separately compressed in the air domain and the frequency domain.
  • the terminal device feeds back, it can feed the selected one or more space domain vectors and one or more frequency domain vectors to the network device, instead of separately feeding back the subbands based on each frequency domain unit (such as subband). Weighting factors (including amplitude and phase). Therefore, the feedback overhead can be greatly reduced.
  • the frequency domain vector can represent the change law of the channel in frequency
  • the linear change of the channel in the frequency domain can be simulated by linear superposition of one or more frequency domain vectors. Therefore, high feedback accuracy can still be maintained, so that the precoding matrix recovered by the network device based on the feedback of the terminal device can still be well adapted to the channel.
  • the number of reported space-frequency vectors, frequency-domain vectors, and weighting coefficients has not been clearly defined. Different values of any one of L, M and K can obtain different combinations of L, M and K. However, if all the values of L, M, and K are arbitrarily combined, the number of combinations is large. If the network device is selected based on multiple combinations, it may bring a large amount of calculation, and may also cause a large indication overhead when instructing the terminal device. Moreover, in some cases, the feedback overheads caused by different combinations of L, M, and K are the same or close to each other, but the performance of the precoding vector recovered based on the feedback and the performance obtained is quite different. In this case, there is no need to keep all the combinations of L, M, and K, but only the combination of L, M, and K with better performance.
  • the embodiments of the present application provide a parameter configuration method. It is hoped that through a limited number of combinations of L, M, and K, the selection range of the number of reports can be narrowed, thereby reducing the calculation amount of the network device and avoiding unnecessary Indicates overhead.
  • the number of pairs of space-frequency vectors in the two polarization directions is counted separately. For example, when two polarization directions share the same L ⁇ M space-frequency vector pairs, the total number of space-frequency vector pairs corresponding to the two polarization directions is still recorded as 2L ⁇ M. Even if the L ⁇ M space-frequency vector pairs in the first polarization direction overlap with the L ⁇ M space-frequency vector pairs in the second polarization direction, since they correspond to different polarization directions, in this embodiment of the present application Medium is counted separately.
  • L the number of reported space-frequency vectors configured in the first mapping relationship group corresponding to one polarization direction, L can have multiple possible values, and L is a positive integer;
  • M the number of frequency domain vector reports configured in the first mapping relationship group corresponding to one polarization direction, M may have multiple possible values, and M is a positive integer;
  • K the number of reported weighting coefficients corresponding to the two polarization directions, or the total number of space-frequency vector pairs used to construct precoding vectors in the two polarization directions.
  • K can have multiple possible values, K is a positive integer.
  • K ⁇ 2L ⁇ M where 2L ⁇ M represents the total number of space-frequency vector pairs constructed by L space-domain vectors and M frequency-domain vectors in two polarization directions, respectively. That is, the sum of the number of space-frequency vector pairs corresponding to the two polarization directions respectively;
  • L 0 the number of reported spatial domain vectors corresponding to a polarization direction indicated by the network device, L 0 is one of the possible values of L, and L 0 is a positive integer;
  • M 0 the reported number of frequency domain vectors corresponding to a polarization direction indicated by the network device, M 0 is one of the possible values of M above, and M 0 is a positive integer;
  • K 0 the number of reported space-frequency vector pairs corresponding to one polarization direction indicated by the network device, K 0 is one of the possible values of K, and K 0 is a positive integer. In the embodiment of the present application, K 0 ⁇ 2L 0 ⁇ M 0 .
  • pre-configured and “pre-defined” can be pre-stored in the device (for example, including terminal devices and network devices) corresponding codes, tables or other available to indicate relevant information
  • the application is not limited in this application.
  • “save” may mean saving in one or more memories.
  • the one or more memories may be set separately, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly set separately and partly integrated in a decoder, processor, or communication device.
  • the type of memory may be any form of storage medium, which is not limited in this application.
  • the “protocol” involved in the embodiments of the present application may refer to standard protocols in the communication field, and may include, for example, the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not limited in this application.
  • the first, second, third, fourth, and various numerical numbers are only for the convenience of description, and are not intended to limit the scope of the embodiments of the present application. For example, to distinguish between different instructions and different mapping relationships.
  • the "instruction” may include a direct instruction and an indirect instruction, and may also include an explicit instruction and an implicit instruction.
  • the information indicated by a piece of information (the indication of the first mapping relationship as described below) is called information to be indicated.
  • the indication information there are many ways to indicate the indication information, such as but not limited to, you can Directly indicate the information to be indicated, such as the information to be indicated itself or the index of the information to be indicated.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the precoding matrix is composed of precoding vectors, and each precoding vector in the precoding matrix may have the same part in terms of composition or other attributes.
  • the specific indication method may also be various existing indication methods, such as, but not limited to, the above indication methods and various combinations thereof.
  • various indication methods reference may be made to the prior art, and details are not repeated herein. It can be seen from the foregoing that, for example, when multiple information of the same type needs to be indicated, there may be cases where different information is indicated in different ways.
  • the required indication method can be selected according to specific needs. The embodiments of the present application do not limit the selected indication method. In this way, the indication methods involved in the embodiments of the present application should be understood as covering Fang obtains various methods of the information to be indicated.
  • row vectors can be expressed as column vectors
  • a matrix can be represented by the transposed matrix of the matrix
  • a matrix can also be expressed in the form of a vector or an array, which is a vector or an array It can be formed by connecting the row vectors or column vectors of the matrix to each other.
  • the Kronecker product of two vectors can also be expressed by the product of one vector and the transposed vector of another vector.
  • the information to be indicated may be sent together as a whole, or may be divided into multiple sub-information and sent separately, and the sending period and/or sending timing of these sub-information may be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be pre-defined, for example, pre-defined according to a protocol, or may be configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example but not limited to, radio resource control signaling, such as RRC signaling, MAC layer signaling, such as MAC-CE signaling, and physical layer signaling, such as downlink control information (downlink control information, DCI) One or a combination of at least two of them.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the relationship of the related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related object is a “or” relationship.
  • “At least one of the following” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b, and c may represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B and c.
  • a, b and c may be single or multiple.
  • the communication system may include at least one network device and at least one terminal device.
  • Multi-antenna technology can communicate between network equipment and terminal equipment.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the present application, as long as the program that records the code of the method provided in the embodiments of the present application can be executed to
  • the method provided in the embodiment of the application may be used for communication.
  • the execution body of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the parameter configured for the terminal device based on the parameter configuration method may be configured for one of the at least one transmission layer (for example, the first transmission layer), or may be configured for each of the at least one transmission layer . This application does not limit this.
  • the number of spatial domain vectors, frequency domain vectors, and weighting coefficients reported for each transmission layer can be determined based on the parameter configuration method provided in this application.
  • the relationship of the number of reported spatial domain vectors configured for different transmission layers, the relationship of the number of reported frequency domain vectors configured for different transmission layers, and for different transmissions may be defined.
  • the relationship between the number of reported weighting coefficients of the layer configuration This application does not limit the relationship between the number of reported spatial domain vectors, frequency domain vectors, and weighting coefficients between transmission layers.
  • FIG. 2 is a schematic flowchart of a parameter configuration method 200 provided by an embodiment of the present application from the perspective of device interaction. As shown, the method 200 includes steps 210 to 250. The steps of the method 200 are described in detail below.
  • the network device In step 210, the network device generates an indication of a first mapping relationship, and the first mapping relationship indicates a correspondence between the number of reported space domain vectors and the number of reported frequency domain vectors.
  • the first mapping relationship may be a mapping relationship in a pre-configured mapping relationship group.
  • the mapping relationship group containing the first mapping relationship is denoted as the first mapping relationship group.
  • the first mapping relationship group may include one or more mapping relationships, and each mapping relationship indicates a correspondence between the number of reports of the space domain vector and the number of reports of the frequency domain vector.
  • the first mapping relationship group is used to indicate one or more correspondences between the number of reported space domain vectors and the number of reported frequency domain vectors.
  • a correspondence between the L value and the M value can be understood as a combination of the L value and the M value.
  • the first mapping relationship group may include one or more sets of L value and M value combinations.
  • the number of reports of the space domain vectors listed in the first mapping relationship group is recorded as the parameter L
  • the frequency domain vectors listed in the first mapping relationship group The number reported is recorded as parameter M. Distinguish it from this, let L 0 be the number of reported spatial domain vectors indicated in the first mapping relationship, and let M 0 be the number of reported frequency domain vectors indicated in the first mapping relationship. It can be understood that L 0 is one of the multiple values of L in the first mapping relationship group, and M 0 is one of the multiple values of M in the first mapping relationship group.
  • the first mapping relationship group may be pre-configured, for example, may be pre-stored in the network device.
  • the network device may determine which mapping relationship in the first mapping relationship group to use according to factors such as the number of antenna ports, channel conditions, historical data, or feedback accuracy requirements. For example, when higher feedback accuracy is required, it may be considered to use more feedback overhead to obtain higher accuracy feedback. For another example, when the number of antenna ports is 4, among the various possible first mapping relationship groups listed below, the value of L is only 2; when the number of antenna ports is 8, the various possible lists listed below In the first mapping relationship group, the value of L can only be 2, 3, or 4.
  • the network device When the network device determines to adopt a certain mapping relationship in the first mapping relationship group, it may indicate the selected mapping relationship of the terminal device through signaling, that is, the first mapping relationship described in the embodiment of the present application.
  • the indication of the first mapping relationship may be, for example, the first mapping relationship, an index of the first mapping relationship in the first mapping relationship group, or other information that can be used to determine the first mapping relationship. This application does not limit this.
  • the first mapping relationship group may be, for example, a table, and the table may include one or more sets of L value and M value combinations.
  • the first mapping relationship group may also be other forms that can be used to express the correspondence between the L value and the M value. This application does not limit this.
  • the network device may pre-store one or more of the tables listed below, or a mapping relationship group corresponding to one or more of the tables below. It should be understood that each table shown below can be used as an example of the first mapping relationship group. The tables can be independent of each other. Each table shows many possible combinations of L and M values.
  • first mapping relationship group listed above various combinations of L and M values are shown.
  • the combination of the L value and the M value listed in each first mapping relationship group may bring different feedback overheads.
  • FIG. 3 is a performance simulation diagram provided by an embodiment of the present application.
  • the performance simulation diagram shown in FIG. 3 takes the L value and the M value listed in Table 61 as examples, and shows the change trend of the average throughput with the feedback overhead.
  • the horizontal axis can represent feedback overhead
  • the vertical axis can represent average throughput. It can be seen that, as the feedback overhead caused by the L value and the M value increases, the average throughput also shows an increasing trend.
  • FIG. 3 is only for ease of understanding and shows an example of performance simulation provided by embodiments of the present application, and should not constitute any limitation to the present application.
  • the feedback overhead caused by the same L value and M value will also be different.
  • the average throughput corresponding to the same L value, M value, and K value may also be different.
  • the precoding vector in each polarization direction may be determined based on some or all of the space-frequency vector pairs of the L ⁇ M space-frequency vector pairs constructed based on the L space-domain vectors and the M frequency-domain vectors. Therefore, the terminal device does not necessarily feed back L ⁇ M weighting coefficients based on L ⁇ M space-frequency vector pairs constructed by L space-domain vectors and M frequency-domain vectors, but may only need L ⁇ M space-frequency vector pairs Part of the space-frequency vector in the feedback weighting coefficient. Therefore, the number of reported weighting coefficients can also be regarded as the number of space-frequency vector pairs used to construct the precoding vector.
  • the precoding vectors in the two polarization directions may be determined based on some or all of the space frequency vector pairs in the 2L ⁇ M space frequency vector pairs.
  • 2L ⁇ M can refer to the total number of space-frequency vector pairs constructed by L space-domain vectors and M frequency-domain vectors in two polarization directions, respectively.
  • the number of reported weighting coefficients may be the number of pairs of space-frequency vectors that can be used to construct precoding vectors in two polarization directions.
  • the number of reported weighting coefficients may also be pre-configured, or the number of space-frequency vector pairs used to construct the precoding vector may be pre-configured.
  • the number of weighted coefficients reported in the following (or the number of pairs of space-frequency vectors used to construct the precoding vector) may be written as K, K ⁇ 2L ⁇ M, and K is a positive integer.
  • the ratio of K to 2L ⁇ M is a preset value.
  • the ratio of K to 2L ⁇ M may be a fixed value or may be configured by the network device.
  • the ratio of K to 2L ⁇ M is a fixed value.
  • 2L ⁇ M can represent a total of space-frequency component pairs in two polarization directions
  • K can represent K spaces selected from 2L ⁇ M space-frequency vector pairs
  • the ratio of K to 2L ⁇ M is 1/3.
  • the ratio of K to 2L ⁇ M is 1/3, which may include that the ratio of K to 2L ⁇ M is equal to or approximately equal to 1/3.
  • the ratio of K to 2L ⁇ M is 2/3.
  • the ratio of K to 2L ⁇ M is 2/3, which may include that the ratio of K to 2L ⁇ M is equal to or approximately equal to 2/3.
  • Means round up Means round down, [] means round nearest.
  • the ratio of K to 2L ⁇ M is indicated by the network device.
  • the method further includes: the terminal device receives first indication information, and the first indication information indicates a ratio of K to 2L ⁇ M.
  • the network device sends the first indication information.
  • the network device may indicate the ratio of K to 2L ⁇ M to the terminal device through the first indication information.
  • the first indication information may directly indicate the ratio of K to 2L ⁇ M, may also indicate the index of the ratio of K to 2L ⁇ M, or may also indicate other information that can determine the ratio of K to 2L ⁇ M. The application does not limit this.
  • the first indication information may be carried by higher layer signaling.
  • the high-level signaling may be, for example, an RRC message or MAC CE.
  • the first indication information may also be carried by physical layer signaling.
  • the physical layer signaling may be DCI, for example. This application does not limit the specific signaling that carries the first indication information.
  • the signaling used to carry the first indication information may be existing signaling or newly added signaling.
  • the ratio of K to 2L ⁇ M is 1/4 or 1/2.
  • the ratio of K to 2L ⁇ M is 1/4 or 1/2, which may include that the ratio of K to 2L ⁇ M is equal to 1/4 or approximately equal to 1/4, or that the ratio of K to 2L ⁇ M is equal to 1 /2.
  • the ratio of K to 2L ⁇ M is 1/3 or 2/3.
  • Means round up Means round down, [] means round nearest.
  • the case where the ratio of K to 2L ⁇ M is configured by the network device is particularly applicable to the mapping relationship groups shown in Table 73 to Table 111 listed above.
  • the first mapping relationship group may be one of multiple pre-configured mapping relationship groups.
  • the plurality of pre-configured mapping relationships may include, for example, one or more of Table 1 to Table 111 listed above, or a mapping corresponding to one or more of Table 1 to Table 111 listed above. relationship.
  • the method 200 further includes: step 220, the network device determines a first mapping relationship group from a plurality of mapping relationship groups.
  • the first mapping relationship group may be determined by one of the following items:
  • the network device may determine the first mapping relationship group based on the item defined by the protocol.
  • the parameter used to determine the first mapping relationship group is denoted as N 3 , and then N 3 may be one of the above a, b, or c.
  • N 3 is a positive integer.
  • FIG. 4 shows a schematic diagram of the frequency domain unit to be reported in the transmission bandwidth of the CSI-RS.
  • the frequency domain occupied bandwidth of the transmission bandwidth of the CSI-RS shown in FIG. 4 may include 10 frequency domain units. That is, the number of frequency domain units corresponding to a is 10.
  • each shaded square Represents a frequency domain unit to be reported.
  • the transmission bandwidth of the CSI-RS shown in FIG. 4 includes a total of 5 frequency domain units to be reported. That is, the number of frequency domain units corresponding to c is 5.
  • the transmission bandwidth of the CSI-RS includes a total of 9 frequency domain units from the bandwidth occupied by the first frequency domain unit to be reported to the last frequency domain unit to be reported. That is, the number of frequency domain units corresponding to b is 9.
  • the protocol may predefine one or more correspondences between N 3 and the mapping relationship group, or the network device and the terminal device may pre-appoint one or more correspondences between N 3 and the mapping relationship group .
  • the network device determines the value of N 3 , it can select the first mapping relationship group that can be used as the current channel measurement according to the correspondence between N 3 and the mapping relationship group.
  • the value range of N 3 may be divided into multiple intervals based on different threshold values to correspond one-to-one with multiple mapping relationship groups.
  • the multiple intervals of the N 3 value may correspond to some or all of the multiple mapping relationship tables listed above.
  • the value range of N 3 can be divided into two intervals through a predefined threshold value N th1 .
  • a mapping relationship between a plurality of values of the mapping relationship N 3 group within a first range interval satisfying N 3 ⁇ N th1, may correspond to the enumerated above; N 3 of the second section within the range of values satisfying N 3 ⁇ N th1 , which may correspond to another mapping relationship group among the multiple mapping relationship groups listed above.
  • the mapping relationship groups corresponding to the two intervals are different.
  • N th1 is a positive integer.
  • the value range of N 3 can be divided into three intervals through two predefined threshold values N th2 and N th3 .
  • the value of N 3 within the range of the first interval satisfies N 3 ⁇ N th2 , which may correspond to one of the mapping relationship groups listed above;
  • the value of N 3 within the range of the second interval satisfies N th2 ⁇ N 3 ⁇ N th3 , which can correspond to another mapping relationship group among the multiple mapping relationship groups listed above;
  • the value of N 3 in the third interval range satisfies N 3 ⁇ N th3 , which can correspond to the above list
  • Another mapping relationship group among multiple mapping relationship groups is different from each other. Among them, N th3 >N th2 , and N th2 and N th3 are both positive integers.
  • the corresponding first mapping relationship group can be selected according to the interval to which the value of N 3 belongs to determine the first mapping relationship.
  • the network device may indicate the first mapping relationship to the terminal device, so that the terminal device reports the number L 0 of the space domain vector and the frequency domain vector according to the indication in the first mapping relationship
  • the number M 0 is used for channel measurement and feedback.
  • the network device pre-configures multiple mapping relationship groups, and determining the first mapping relationship group from the multiple mapping relationship groups is only one possible implementation manner, and should not constitute any limitation to this application.
  • the network device may also pre-configure a mapping relationship group, and directly determine the first mapping relationship from the mapping relationship group.
  • step 230 the terminal device receives the indication of the first mapping relationship.
  • the network device sends the indication of the first mapping relationship.
  • the indication of the first mapping relationship may be carried by higher layer signaling.
  • the high-level signaling may be, for example, an RRC message or MAC CE.
  • the indication of the first mapping relationship may also be carried by physical layer signaling.
  • the physical layer signaling may be DCI, for example. This application does not limit specific signaling that carries the indication of the first mapping relationship.
  • the signaling used to carry the indication of the first mapping relationship may be existing signaling or newly added signaling.
  • the indication of the first mapping relationship may be the first mapping relationship, or may be information that can be used to determine the first mapping relationship, such as an index of the first mapping relationship.
  • the terminal device may store the first mapping relationship group in advance.
  • the first mapping relationship may be determined based on the first mapping relationship group. For example, the terminal device receives the index of the first mapping relationship, and may determine the first mapping relationship from the first mapping relationship group.
  • step 240 the terminal device determines the number L 0 of space domain vectors and the number M 0 of frequency domain vectors according to the first mapping relationship.
  • the terminal device can determine the number L 0 of space domain vectors and the number M 0 of frequency domain vectors. Thereafter, the terminal device can perform channel measurement according to the L 0 value and the M 0 value to determine L 0 space domain vectors and M 0 frequency domain vectors.
  • the terminal equipment can perform channel measurement through existing estimation algorithms, such as DFT, multiple signal classification algorithm (MUSIC), Bartlett algorithm, or rotation invariant subspace algorithm (estimation of signal) parameters.via rotation (invariant technology, algorithm, ESPRIT), etc., I will not list them here. For brevity, a detailed description of the specific process is omitted here.
  • the terminal device may determine the first mapping relationship group before performing step 240.
  • the method 200 further includes: Step 250, the terminal device determines a first mapping relationship group from a plurality of mapping relationship groups.
  • the first mapping relationship group may be determined by one of the following items:
  • the terminal device may determine the frequency domain unit to be reported in the transmission bandwidth of the CSI-RS according to the signaling of the network device.
  • the method 200 further includes: the terminal device receives second indication information, where the second indication information is used to indicate the number and location of frequency domain units to be reported.
  • the network device sends the second indication information.
  • the second indication information may be an CSI reporting bandwidth (csi-ReportingBand) in an information element (IE) CSI reporting configuration (CSI-ReportConfig).
  • csi-ReportingBand can indicate the subband to be reported through the csi-ReportingBand (that is, an example of the frequency domain unit).
  • the csi-ReportingBand can be a bitmap.
  • the length of the bitmap may be the number of subbands included in the transmission bandwidth of the CSI-RS.
  • Each indicator bit in the bitmap may correspond to a subband in the transmission bandwidth of CSI-RS.
  • Each indicator bit is used to indicate whether the corresponding subband needs to report CSI.
  • FIG. 5 schematically shows the correspondence between each indicator bit and the subband in the bitmap. It should be understood that the meanings expressed by the values of the indicator bits listed above and in FIG. 5 are only examples, and should not constitute any limitation to this application.
  • the frequency domain unit to be reported indicated by the second indication information may be a frequency domain unit of subband granularity.
  • the frequency domain unit on which the terminal device feeds back the PMI may be a frequency domain unit of subband granularity, or may be a frequency domain unit of other granularity. This application does not limit this.
  • the determination of the N 3 value may still follow the to-be-reported indicated by the second indication information The granularity of the frequency domain unit is calculated.
  • step 250 is similar to the specific process in which the network device performs step 220, and for the sake of brevity, details are not described here.
  • the method 200 further includes: the terminal device determines the number K 0 of pairs of space-frequency vectors used to construct the precoding vector according to the number L 0 of space-space vector reports and the number M 0 of frequency-domain vector reports.
  • the precoding vector may be determined based on some or all of the L ⁇ M space frequency vector pairs constructed based on the L space domain vectors and the M frequency domain vectors. Therefore, in the embodiments of the present application, the terminal device does not necessarily feedback L 0 ⁇ M 0 weighting coefficients based on L 0 ⁇ M 0 space-frequency vector pairs constructed based on L 0 space-domain vectors and M 0 frequency-domain vectors. Instead, it is only necessary to feed back the weighting coefficients for some of the L 0 ⁇ M 0 space-frequency vector pairs. Therefore, the number of reported weighting coefficients can also be regarded as the number of space-frequency vector pairs used to construct the precoding vector.
  • the number of reported weighting coefficients may also be pre-configured, or the number of space-frequency vector pairs used to construct the precoding vector may be pre-configured.
  • the number of reported weighting coefficients determined by the terminal device according to the L 0 value and the M 0 value (or the number of space-frequency vector pairs used to construct the precoding vector) can be written as K 0 , K 0 ⁇ 2L 0 ⁇ M 0 , and K 0 is a positive integer. It can be understood that K 0 is one of the multiple values of K determined by various combinations of the L value and the M value in the first mapping relationship group listed above.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is a preset value.
  • the ratio of K to 2L ⁇ M may be a fixed value or may be configured by the network device.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is a fixed value.
  • the ratio of K 0 to 2L 0 ⁇ M 0 is indicated by the network device.
  • the terminal device may be based on the ratio of the respective values of L 0 and M 0 and a predetermined value can determine the value K 0.
  • K 0 represents the number of reported weighting coefficients, and does not mean that the terminal device must report K 0 weighting coefficients.
  • the number of weighting coefficients actually reported by the terminal device may be less than or equal to K 0 .
  • K 0 when the number of polarization directions is 2, in 2L 0 ⁇ M 0 space-frequency vector pairs corresponding to two polarization directions constructed based on L 0 space-domain vectors and M 0 frequency-domain vectors, There may be multiple (eg, greater than 2L 0 ⁇ M 0 -K 0 ) weighted coefficients of space-frequency vector pairs whose amplitude quantization value is zero.
  • the terminal device may not report.
  • the number of polarization directions is 1, there may be multiple pairs of L 0 ⁇ M 0 space frequency vectors constructed based on the L 0 space domain vectors and M 0 frequency domain vectors (for example Greater than L 0 ⁇ M 0 -K 0 )
  • the quantization value of the weighting coefficient of the space-frequency vector pair is zero.
  • the terminal device may not report.
  • the terminal device may indicate the corresponding relationship between the weighting coefficient and the space-frequency vector pair by indicating the position of the selected space-frequency vector pair.
  • the above-mentioned list of L 0 ⁇ M 0 space-frequency vector pairs is indicated by a bitmap.
  • the first mapping relationship group listed above can be extended to the number L of space vector reports, the number M of frequency domain reports, and the number K of weighting coefficients. Correspondence.
  • the first mapping relationship group is used to indicate a corresponding relationship between the number L of space domain vector reports and the number M of frequency domain vector reports and the number K of weighting coefficient reports.
  • the first mapping relationship group listed above can be further extended to the mapping relationship between the L value, the M value, and the K value. Take the first mapping relationship group shown in Table 1 and Table 41 as an example. If the ratio of K to 2L ⁇ M is 1/2, based on the combination of the L and M values listed in Table 1, the corresponding K value can be further determined as shown in Table 1-1:
  • mapping relationship between the L value, the M value, and the K value obtained by further expanding Table 1 to Table 111 listed above based on different ratios of K and 2L ⁇ M should fall within the protection scope of the present application.
  • the first mapping relationship group listed above can be further extended to the mapping of L value, M value and K value relationship. Take the first mapping relationship group shown in Table 99 as an example. If the ratio of K to 2L ⁇ M is 1/4 or 1/2, then based on the combination of the L and M values listed in Table X, the corresponding K value can be further determined as shown in Table 99-1 and Table 99-2 As shown:
  • mapping relationship between the L value, the M value, and the K value obtained by further expanding Table 1 to Table 111 listed above based on different ratios of K and 2L ⁇ M should fall within the protection scope of the present application.
  • the terminal device may directly determine the L 0 value, M 0 value, and K 0 value according to the indication of the first mapping relationship sent by the network device.
  • mapping relationship group listed above (ie, the correspondence between the L value and the M value, and the correspondence between the L value, the M value, and the K value) are only examples, and should not constitute any limited.
  • expressing the mapping relationship through a table is only one possible implementation manner, and should not constitute any limitation to this application.
  • the selection range of the number of reports can be narrowed, which is beneficial to reducing the calculation amount for the network device to determine the L value and the M value.
  • the number of possible combinations of the L value and the M value in the first mapping relationship group can be reduced, and the network device can indicate the first in the first mapping relationship group with fewer bits.
  • the mapping relationship is helpful to reduce the indication overhead of network devices.
  • the various combinations of the L value and the M value defined in the embodiments of the present application take into account the requirements for different feedback accuracy. When the feedback cost is the same or close, the L value and M with better performance are as much as possible. The combination of values is retained, and the feedback overhead and feedback accuracy are comprehensively considered, which is beneficial to improve the performance of the communication system.
  • FIG. 6 is a schematic flowchart of a parameter configuration method shown from the perspective of device interaction according to another embodiment of the present application. As shown, the method 500 may include steps 510 to 560. The steps of the method 500 are described in detail below.
  • step 510 the network device generates third indication information, which is used to indicate the number of reported weighting coefficients K 0 and the number of pairs of space-frequency vectors in two polarization directions 2L 0 ⁇ M 0 ratio.
  • the 2L 0 ⁇ M 0 empty vectors may comprise a frequency corresponding to the first polarization direction L 0 ⁇ M 0 of the null frequency and the second polarization vector direction corresponding to L 0 ⁇ M 0 th Space frequency vector pair.
  • the two polarization directions may share the same L 0 ⁇ M 0 space-frequency vector pairs, that is, the L 0 ⁇ M 0 space-frequency vector pairs corresponding to the first polarization direction and the corresponding The L 0 ⁇ M 0 space-frequency vector pairs can be completely repeated; the two polarization directions can also use independent L 0 ⁇ M 0 space-frequency vector pairs, that is, the L corresponding to the first polarization direction
  • the 0 ⁇ M 0 space-frequency vector pairs and the L 0 ⁇ M 0 space-frequency vector pairs corresponding to the second polarization direction may be completely different, or may be partially repeated, or may be completely repeated. This application does not limit this.
  • the ratio of K to 2L ⁇ M may be approximate values. It can be understood that, since K 0 is one of multiple values of K, L 0 is one of multiple values of L, and M 0 is one of multiple values of M. Therefore, the ratio of K 0 to 2L 0 ⁇ M 0 in the embodiment of the present application may be one of several possible values of the ratio of K to 2L ⁇ M listed below.
  • the ratio of K to 2L ⁇ M is 1/2 or 1.
  • the ratio of K to 2L ⁇ M is 1/4, 1/2, or 3/4.
  • the ratio of K to 2L ⁇ M is 1/4, 1/2, 3/4, or 1.
  • the ratio of K to 2L ⁇ M is 1/3 or 2/3.
  • the ratio of K to 2L ⁇ M is 1/3, 2/3, or 1.
  • Means round up Means round down, [] means round nearest.
  • step 520 the network device sends the third indication information. Accordingly, the terminal device receives the third indication information.
  • the third indication information may be carried by higher layer signaling.
  • the high-level signaling may be, for example, an RRC message or MAC CE.
  • the third indication information may also be carried by physical layer signaling.
  • the physical layer signaling may be DCI, for example. This application does not limit the specific signaling that carries the third indication information.
  • the signaling used to carry the third indication information may be existing signaling or newly added signaling.
  • step 530 the network device sends second indication information, where the second indication information is used to indicate the number and location of frequency domain units to be reported.
  • the number of reported frequency domain vectors may be related to the number of frequency domain units to be reported, or may be related to the number of frequency domain units in the transmission bandwidth of the CSI-RS.
  • the number M of reports in the frequency domain unit may be determined by one of the following items:
  • step 220 of the above method 200 the above a, b, and c have been described in detail in conjunction with the drawings, and for the sake of brevity, they are not described here.
  • the network device may determine the first mapping relationship based on the item defined by the protocol group.
  • the parameter used to determine the number of reports in the frequency domain vector is denoted as N 4 , and then N 4 may be one of the above a, b, or c. It should be understood that N 4 and N 3 in the above method 200 may have the same meaning or different meanings. This application does not limit this.
  • step 540 the terminal device determines the number M 0 of frequency domain vector reports according to the second indication information.
  • the protocol may predefine one or more correspondences between N 4 and the reported number of frequency domain vectors, or the network device and the terminal device may pre-appoint one or more N 4 and the reported number of frequency domain vectors Correspondence.
  • the network device determines the value of N 4 , it can select the number M 0 of frequency domain vector reports according to the correspondence between N 4 and the mapping relationship group.
  • the value range of N 4 may be divided into multiple intervals based on different threshold values to correspond one-to-one with multiple mapping relationship groups.
  • the multiple intervals of the N 4 value may correspond to some or all of the multiple mapping relationship tables listed above.
  • the value range of N 4 can be divided into two intervals through a predefined threshold value N th4 .
  • the value of N 4 in the range of the first interval satisfies N 4 ⁇ N th4 , which can correspond to one of the M values listed above; the value of N 4 in the range of the second interval satisfies N 4 ⁇ N th4 , and Corresponds to another one of the M values listed above.
  • the M values corresponding to the two intervals are different from each other.
  • N th4 is a positive integer.
  • the value range of N 4 can be divided into three intervals through two predefined threshold values N th5 and N th6 .
  • the value of N 4 in the range of the first interval satisfies N 4 ⁇ N th5 , which may correspond to one of the M values listed above;
  • the value of N 4 in the range of the second interval satisfies N th5 ⁇ N 4 ⁇ N th6 may correspond to another one of the multiple M values listed above;
  • the value of N 4 in the range of the third interval satisfies N 4 ⁇ N th6 , which may correspond to one of the multiple M values listed above.
  • the M values corresponding to the three intervals are different from each other. Among them, N th6 > N th5 , and N th5 and N th6 are both positive integers.
  • the terminal device can determine the number M 0 of frequency domain vector reports according to the interval to which the value of N 4 belongs.
  • step 540 the terminal device determines the number M 0 of frequency domain vector reports according to the second indication information.
  • step 550 the network device sends fourth indication information, where the fourth indication information is used to indicate the number L 0 of airspace vector reports. Accordingly, the terminal device receives the fourth indication information.
  • the fourth indication information may be the same signaling as defined in the type II codebook for indicating the number L 0 of reported airspace vectors, or may be other newly added signaling.
  • the fourth indication information may be carried by higher layer signaling.
  • the higher layer signaling may be, for example, RRC message or MAC CE.
  • the fourth indication information may also be carried by physical layer signaling.
  • the physical layer signaling may be DCI, for example. This application does not limit the specific signaling that carries the fourth indication information.
  • the signaling used to carry the fourth indication information may be existing signaling or newly added signaling.
  • the number L of reported airspace vectors may be 2, 3, or 4.
  • the number L of reported airspace vectors is 2, 3, 4, or 6.
  • the L 0 value indicated by the fourth indication information may be one of the multiple possible values of L listed above.
  • step 560 the terminal apparatus according to the ratio K 0 2L 0 ⁇ M 0, the frequency of reporting the number of L 0 M 0 and the number reported by the spatial vector field vector, determining the number reported by the weighting coefficients K 0.
  • the terminal device may determine the number M 0 of frequency domain vectors and the number L 0 of spatial domain vectors, respectively. Furthermore, the reported number K 0 of weighting coefficients may be determined according to the ratio of K indicated by the third instruction information to 2L ⁇ M.
  • third indication information and the fourth indication information listed above may be carried in the same signaling, or may be carried in different signaling. This application does not limit this.
  • the selection range of the number of reports can be narrowed, which is beneficial to reduce network equipment Determine the amount of calculation for the L, M, and K values.
  • the number of possible combinations of the L value, the M value, and the K value in the first mapping relationship group can be reduced, and the network device can indicate the first mapping relationship group with fewer bits
  • the first mapping relationship is helpful to reduce the indication overhead of network devices.
  • the various combinations of the N 4 value and the M value defined in the embodiments of the present application consider the number of frequency domain units to be reported, and configure different frequency domain units for different numbers of frequency domain units to be reported Number of reports in order to obtain higher feedback accuracy. Furthermore, the combination of L and M values with better performance is kept as much as possible, and the feedback overhead and feedback accuracy are comprehensively considered, which is beneficial to improve the performance of the communication system.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application .
  • the communication device 1000 may include a communication unit 1100 and a processing unit 1200.
  • the communication device 1000 may correspond to the terminal device in the foregoing method embodiment, for example, it may be a terminal device, or a chip configured in the terminal device.
  • the communication device 1000 may correspond to the terminal device in the method 200 or the method 500 according to an embodiment of the present application, and the communication device 1000 may include a terminal for performing the method 200 in FIG. 2 or the method 500 in FIG. 5 A unit of method performed by a device.
  • each unit in the communication device 1000 and the other operations and/or functions described above are for implementing the corresponding processes of the method 200 in FIG. 2 or the method 500 in FIG. 5, respectively.
  • the communication unit 1100 can be used to perform step 230 in the method 200
  • the processing unit 1200 can be used to perform step 240 and step 250 in the method 200. It should be understood that the specific process for each unit to execute the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, no further description is provided here.
  • the communication unit 1100 may be used to perform steps 520, 530, and 550 in the method 500, and the processing unit 1200 may be used to perform steps 540 and 560 in the method 500.
  • the specific process for each unit to execute the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, no further description is provided here.
  • the communication unit 1100 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 7, and the processing unit 1200 in the communication device 1000 may This corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 7.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • the communication device 1000 may correspond to the network device in the foregoing method embodiment, for example, it may be a network device, or a chip configured in the network device.
  • the communication device 1000 may correspond to the network device in the method 200 or the method 500 according to an embodiment of the present application, and the communication device 1000 may include a network for performing the method 200 in FIG. 2 or the method 500 in FIG. 5 A unit of method performed by a device.
  • each unit in the communication device 1000 and the other operations and/or functions described above are for implementing the corresponding processes of the method 200 in FIG. 2 or the method 500 in FIG. 5, respectively.
  • the communication unit 1100 may be used to perform step 230 in the method 200
  • the processing unit 1200 may be used to perform step 210 and step 220 in the method 200. It should be understood that the specific process for each unit to execute the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, no further description is provided here.
  • the communication unit 1100 may be used to perform steps 520, 530, and 550 in the method 500, and the processing unit 1200 may be used to perform step 510 in the method 500. It should be understood that the specific process for each unit to execute the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, no further description is provided here.
  • the communication unit in the communication device 1000 may correspond to the transceiver 3200 in the network device 3000 shown in FIG. 8, and the processing unit 1200 in the communication device 1000 may This corresponds to the processor 3100 in the network device 3000 shown in FIG. 8.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the above method embodiments.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002 and the memory 2030 can communicate with each other through an internal connection channel to transfer control and/or data signals.
  • the memory 2030 is used to store a computer program, and the processor 2010 is used from the memory 2030 Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for sending uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the processor 2010 and the memory 2030 may be combined into a processing device.
  • the processor 2010 is used to execute the program code stored in the memory 2030 to implement the above functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 6.
  • the above-mentioned transceiver 2020 may correspond to the communication unit in FIG. 6 and may also be referred to as a transceiver unit.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 7 can implement various processes involving the terminal device in the method embodiment shown in FIG. 2 or FIG. 5.
  • the operations and/or functions of each module in the terminal device 2000 are respectively to implement the corresponding processes in the above method embodiments.
  • the above-mentioned processor 2010 may be used to perform the actions described in the foregoing method embodiments that are internally implemented by the terminal device, and the transceiver 2020 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the transceiver 2020 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the terminal device 2000 may further include a power supply 2050, which is used to provide power to various devices or circuits in the terminal device.
  • a power supply 2050 which is used to provide power to various devices or circuits in the terminal device.
  • the terminal device 2000 may further include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, a sensor 2100, etc.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, may be a structural schematic diagram of a base station.
  • the base station 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the above method embodiments.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also called a distributed unit (DU) )) 3200.
  • RRU 3100 may be called a transceiver unit, corresponding to the communication unit 1200 in FIG. 6.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiving unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the RRU 3100 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal devices.
  • the 3200 part of the BBU is mainly used for baseband processing and controlling the base station.
  • the RRU 3100 and the BBU 3200 may be physically arranged together, or may be physically separated, that is, distributed base stations.
  • the BBU 3200 is the control center of the base station, and may also be referred to as a processing unit, which may correspond to the processing unit 1100 in FIG. 6 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation flow on the network device in the above method embodiment, for example, to generate the above indication information.
  • the BBU 3200 may be composed of one or more boards, and multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may support different access standards respectively. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be provided with necessary circuits.
  • the base station 3000 shown in FIG. 8 can implement various processes involving network devices in the method embodiment of FIG. 2 or FIG. 5.
  • the operations and/or functions of each module in the base station 3000 are to implement the corresponding processes in the above method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the foregoing method embodiments that are implemented internally by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • An embodiment of the present application further provides a processing device, including a processor and an interface; the processor is used to perform the communication method in any of the foregoing method embodiments.
  • the above processing device may be one or more chips.
  • the processing device may be a field programmable gate array (field programmable gate array (FPGA)), an application specific integrated circuit (ASIC), or a system chip (SoC), or It is a central processor (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller
  • MCU microcontroller
  • PLD programmable logic device
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they are not described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments may be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (random access memory, RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on the computer, the computer is caused to perform the operations shown in FIGS. 2 and 5 The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer is allowed to execute the operations shown in FIGS. 2 and 5. The method of any one of the embodiments is shown.
  • the present application further provides a system, which includes the foregoing one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disc
  • the network device in each of the above device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding steps are performed by the corresponding modules or units, for example, the communication unit (transceiver) performs the receiving or The steps of sending, other than sending and receiving, can be executed by the processing unit (processor).
  • the function of the specific unit can refer to the corresponding method embodiment. There may be one or more processors.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program, and/or a computer.
  • the application running on the computing device and the computing device can be components.
  • One or more components can reside in a process and/or thread of execution, and a component can be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • the component may, for example, be based on a signal having one or more data packets (eg, data from two components that interact with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components that interact with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions (programs). When the computer program instructions (programs) are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (eg, floppy disk, hard disk, magnetic tape), optical medium (eg, DVD), or semiconductor medium (eg, solid state disk (SSD)), or the like.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种参数配置方法和通信装置。该方法包括:终端设备接收来自网络设备的第一映射关系的指示,该第一映射关系为预先配置的第一映射关系组中的一个映射关系,该第一映射关系组包括至少一个映射关系,以用于指示空域向量的上报个数和频域向量的上报个数的至少一种对应关系;终端设备根据该第一映射关系确定空域向量的上报个数和频域向量的上报个数。因此,通过预先定义L值和M值的多种可能的对应关系,可以缩小上报个数的选择范围,可以缩小上报个数的选择范围,有利于减小网络设备确定上报个数的计算量和指示开销。

Description

参数配置方法和通信装置
本申请要求于2019年1月9日提交中国专利局、申请号为201910021166.4、申请名称为“参数配置方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及参数配置方法和通信装置。
背景技术
在大规模多输入多输出(massive multiple-input multiple output,Massive MIMO)技术中,网络设备可以通过预编码技术减小多用户之间的干扰以及同一用户的多个信号流之间的干扰。从而提高信号质量,实现空分复用,提高频谱利用率。
终端设备例如可以通过信道测量等方式确定预编码向量,并希望通过反馈,使得网络设备获得与终端设备确定的预编码向量相同或者相近的预编码向量。为降低反馈开销,提高反馈精度,在一种实现方式中,终端设备可以通过空域压缩和频域压缩结合的反馈方式来向网络设备指示预编码向量。具体地,终端设备可以基于每个传输层上各频域单元的预编码向量,选择一个或多个空域向量和一个或多个频域向量,以通过空域向量和频域向量所构建的矩阵的加权和来拟合与各传输层上各频域单元对应的预编码向量。
然而,在这种实现方式中,空域向量和频域向量的上报个数均尚未明确定义。
发明内容
本申请提供一种参数配置方法和通信装置,以期明确空域向量和频域向量的上报个数。
第一方面,提供了一种参数配置方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。
具体地,该方法包括:接收第一映射关系的指示,该第一映射关系为预先配置的第一映射关系组中的一个映射关系,该第一映射关系组包括至少一个映射关系,该至少一个映射关系用于指示空域向量的上报个数和频域向量的上报个数的至少一种对应关系;根据该第一映射关系,确定该空域向量的上报个数L 0和该频域向量的上报个数M 0,L 0个空域向量和M 0个频域向量用于构建一个或多个频域单元的预编码向量;L 0和M 0均为正整数。
因此,本申请实施例通过预先定义L值和M值的多种可能的对应关系,可以缩小上报个数的选择范围,有利于减小网络设备确定L值和M值的计算量。同时,预定义的L值和M组的多种组合,可以满足不同的反馈精度的需求。并且,通过缩小上报个数的选择范围,可以减小第一映射关系组中可能包含L值和M值的组合数,网络设备可以用更少的比特来指示第一映射关系组中的第一映射关系,有利于减小网络设备的指示开销。此 外,本申请实施例所定义的L值和M值的多种组合考虑了不同的反馈精度的需求,在反馈开销相同或相接近的情况下,尽可能地将性能较好的L值和M值的组合保留下来,综合考虑了反馈开销和反馈精度,有利于提高通信***的性能。
结合第一方面,在第一方面的某些实现方式中,该L 0个空域向量和M 0个频域向量所构建的L 0×M 0个空频向量对中的部分或全部空频向量对用于构建该预编码向量;其中,用于构建该预编码向量的空频向量对的个数K 0与2L 0×M 0的比值为预设值,2L 0×M 0表示与两个极化方向上分别由L 0个空域向量和M 0个频域向量构建的空频向量对的个数之和,K 0表示该两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
通过进一步限定用于构建该预编码向量的空频向量对的个数K 0与2L 0×M 0的比值,也就是将用于构建预编码向量的空频向量对的个数的选择范围缩小。由于加权系数与空频向量对对应,因此也就是缩小了加权系数的上报个数的选择范围。此外,通过从2L 0×M 0个空频向量对中选择部分或全部的空频向量对用于构建预编码向量,可以将2L 0×M 0个空频向量对中较弱的一部分空频向量对排除,有利于在保证反馈精度的前提下减小反馈开销。
应理解,由于K 0为K的多个可能的取值中的一个,L 0为L的多个可能的取值中的一个,M 0为M的多个可能的取值中的一个,K 0与2L 0×M 0的比值也就是K与2L×M的比值。
可选地,K 0与2L 0×M 0的比值为固定值。
例如,K 0与2L 0×M 0的比值为1/2。又例如,K 0与2L 0×M 0的比值为1/3。又例如,K 0与2L 0×M 0的比值为2/3。
直接将K 0与2L 0×M 0的比值固定,无需网络设备进一步指示K 0的取值。终端设备可以直接根据预定义的比值以及由第一映射关系确定的L 0值和M 0值确定K 0值。从而可以减小网络设备的指示开销。
可选地,该方法还包括:接收第一指示信息,该第一指示信息用于指示该预设值。
如前所述,K 0与2L 0×M 0的比值也就是K与2L×M的比值的一种。通过网络设备指示该预设值,也就是可以将K与2L×M的比值配置为多种可能的取值。因此,可以扩展L值、M值和K值的组合数,并从更多的组合中选择性能较好的组合保留下来。而通过指示该预设值所带来的指示开销较小。因此,可以通过较小的指示开销来获得L值、M值和K值的更多组合来选择,以满足不同的反馈精度的需求。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:根据该空域向量的上报个数L 0和该频域向量的上报个数M 0,确定用于构建该预编码向量的空频向量对的个数K 0,K 0≤2L 0×M 0且K 0为正整数,2L 0×M 0表示与两个极化方向分别对应的空频向量对的个数之和,K 0表示与该两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
终端设备可以根据K 0与2L 0×M 0的比值,以及由第一映射关系所确定的L 0值和M 0值确定K 0值。
结合第一方面,在第一方面的某些实现方式中,该至少一个映射关系还用于指示空域向量的上报个数和频域向量的上报个数与加权系数的上报个数的至少一种对应关系。
即,该第一映射关系可直接用于指示L 0值、M 0值和K 0值的对应关系。终端设备可直 接根据该第一映射关系的指示确定L 0值、M 0值和K 0值。因此,可以减小终端设备的计算量。
结合第一方面,在第一方面的某些实现方式中,该第一映射关系组为多个映射关系组中的一个,该第一映射关系组由以下多项中的一项确定:a、信道状态信息参考信号CSI-RS的传输带宽中包含的频域单元数;或,b、该CSI-RS的传输带宽中待上报的频域单元数;或,c、该CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域单元所占带宽中包含的频域单元数。
也就是说,可以预先配置多个映射关系组,以与不同的频域单元数对应。这里的频域单元数例如可以是上文列举的a、b或c中的一项。可以看到,上文列举的a、b和c与CSI-RS的传输资源和/或待上报的频域单元数相关。基于此而定义多个映射关系组,可以使得终端设备上报的频域向量的个数能够随待上报的频域单元数或CSI-RS中包含频域单元数的增加而增加。而在同等开销下,当待上报的频域单元数较多或CSI-RS中包含频域单元数较多时,增加频域向量的上报个数,有利于提高反馈精度。
第二方面,提供了一种参数配置方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行。
具体地,该方法包括:生成第一映射关系的指示,该第一映射关系用于指示空频向量的上报个数L 0和该频域向量的上报个数M 0;L 0个空域向量和M 0个频域向量用于构建一个或多个频域单元的预编码向量;该第一映射关系为预先配置的第一映射关系组中的一个映射关系,该第一映射关系组包括至少一个映射关系,该至少一个映射关系用于指示空域向量的上报个数和频域向量的上报个数的至少一种对应关系;其中,L 0和M 0均为正整数;发送该第一映射关系的指示。
因此,本申请实施例通过预先定义L值和M值的多种可能的对应关系,可以缩小上报个数的选择范围,有利于减小网络设备确定L值和M值的计算量。同时,预定义的L值和M组的多种组合,可以满足不同的反馈精度的需求。并且,通过缩小上报个数的选择范围,可以减小第一映射关系组中可能包含L值和M值的组合数,网络设备可以用更少的比特来指示第一映射关系组中的第一映射关系,有利于减小网络设备的指示开销。此外,本申请实施例所定义的L值和M值的多种组合考虑了不同的反馈精度的需求,在反馈开销相同或相接近的情况下,尽可能地将性能较好的L值和M值的组合保留下来,综合考虑了反馈开销和反馈精度,有利于提高通信***的性能。
结合第二方面,在第二方面的某些实现方式中,该L 0个空域向量和M 0个频域向量所构建的L 0×M 0个空频向量对中的部分或全部空频向量对用于构建该预编码向量;其中,用于构建该预编码向量的空频向量对的个数K 0与2L 0×M 0的比值为预设值,2L 0×M 0表示两个极化方向上分别由L 0个空域向量和M 0个频域向量构建的空频向量对的个数之和,K 0表示该两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
通过进一步限定用于构建该预编码向量的空频向量对的个数K 0与2L 0×M 0的比值,也就是将用于构建预编码向量的空频向量对的个数的选择范围缩小。由于加权系数与空频向量对对应,因此也就是缩小了加权系数的上报个数的选择范围。此外,通过从2L 0×M 0个空频向量对中选择部分或全部的空频向量对用于构建预编码向量,可以将2L 0×M 0个空频向量对中较弱的一部分空频向量对排除,有利于在保证反馈精度的前提下减小反馈开 销。
应理解,由于K 0为K的多个可能的取值中的一个,L 0为L的多个可能的取值中的一个,M 0为M的多个可能的取值中的一个,K 0与2L 0×M 0的比值也就是K与2L×M的比值。
可选地,K 0与2L 0×M 0的比值为固定值。
例如,K 0与2L 0×M 0的比值为1/2。又例如,K 0与2L 0×M 0的比值为1/3。又例如,K 0与2L 0×M 0的比值为2/3。
直接将K 0与2L 0×M 0的比值固定,无需网络设备进一步指示K 0的取值。终端设备可以直接根据预定义的比值以及由第一映射关系确定的L 0值和M 0值确定K 0值。从而可以减小网络设备的指示开销。
可选地,该方法还包括:发送第一指示信息,该第一指示信息用于指示该预设值。
如前所述,K 0与2L 0×M 0的比值也就是K与2L×M的比值的一种。通过网络设备指示该预设值,也就是可以将K与2L×M的比值配置为多种可能的取值。因此,可以扩展L值、M值和K值的组合数,并从更多的组合中选择性能较好的组合保留下来。而通过指示该预设值所带来的指示开销较小。因此,可以通过较小的指示开销来获得L值、M值和K值的更多组合来选择,以满足不同的反馈精度的需求。
结合第二方面,在第二方面的某些实现方式中,该至少一个映射关系还用于指示空域向量的上报个数和频域向量的上报个数与加权系数的上报个数的至少一种对应关系。
即,该第一映射关系可直接用于指示L 0值、M 0值和K 0值的对应关系。终端设备可直接根据该第一映射关系的指示确定L 0值、M 0值和K 0值。因此,可以减小终端设备的计算量。
结合第二方面,在第二方面的某些实现方式中,该第一映射关系组为多个映射关系组中的一个,该第一映射关系组由以下多项中的一项确定::a、信道状态信息参考信号CSI-RS的传输带宽中包含的频域单元数;或,b、该CSI-RS的传输带宽中待上报的频域单元数;或,c、该CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域单元所占带宽中包含的频域单元数。
也就是说,可以预先配置多个映射关系组,以与不同的频域单元数对应。这里的频域单元数例如可以是上文列举的a、b或c中的一项。可以看到,上文列举的a、b和c与CSI-RS的传输资源和/或待上报的频域单元数相关。基于此而定义多个映射关系组,可以使得终端设备上报的频域向量的个数能够随待上报的频域单元数或CSI-RS中包含频域单元数的增加而增加。而在同等开销下,当待上报的频域单元数较多或CSI-RS中包含频域单元数较多时,增加频域向量的上报个数,有利于提高反馈精度。
第三方面,提供了一种通信装置,包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的各个模块或单元。
第四方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信 接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第五方面,提供了一种通信装置,包括用于执行第二方面或第二方面中任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面或第二方面以及第一方面或第二方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面或第二方面以及第一方面或第二方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统 称为收发器。
上述第八方面中的处理装置可以是一个或多个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信***,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例提供的参数配置方法的通信***的示意图;
图2是本申请一实施例提供的参数配置方法的示意性流程图;
图3是本申请一实施例提供的性能仿真图;
图4是本申请一实施例提供的CSI-RS的传输带宽中待上报的频域单元的示意图;
图5是本申请另一实施例提供的参数配置方法的示意性流程图;
图6是本申请实施例提供的通信装置的示意性框图;
图7是本申请实施例提供的终端设备的结构示意图;
图8是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通信(global system for mobile communications,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、未来的第五代(5th generation,5G)***或新无线(new radio,NR)等。
为便于理解本申请实施例,首先以图1中示出的通信***为例详细说明适用于本申请实施例的通信***。图1是适用于本申请实施例的用于构建预编码向量的向量指示方法的通信***100的示意图。如图1所示,该通信***100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信***100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,均可以配置多个天线。对于该通信***100中的每一个通信 设备而言,所配置的多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。因此,该通信***100中的各通信设备之间,如网络设备110与终端设备120之间,可通过多天线技术通信。
应理解,该通信***中的网络设备可以是任意一种具有无线收发功能的设备。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,***中的gNB,或,传输点(TRP或TP),5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信***中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
还应理解,图1仅为便于理解而示例的简化示意图,该通信***100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为了便于理解本申请实施例,下面简单说明下行信号在发送之前在物理层的处理过程。应理解,下文所描述的对下行信号的处理过程可以由网络设备执行,也可以由配置于网络设备中的芯片执行。为方便说明,下文统称为网络设备。
网络设备在物理信道可对码字(code word)进行处理。其中,码字可以为经过编码(例 如包括信道编码)的编码比特。码字经过加扰(scrambling),生成加扰比特。加扰比特经过调制映射(modulation mapping),得到调制符号。调制符号经过层映射(layer mapping),被映射到多个层(layer),或者称,传输层。经过层映射后的调制符号经过预编码(precoding),得到预编码后的信号。预编码后的信号经过资源元素(resource element,RE)映射后,被映射到多个RE上。这些RE随后经过正交复用(orthogonal frequency division multiplexing,OFDM)调制后通过天线端口(antenna port)发射出去。
应理解,上文所描述的对下行信号的处理过程仅为示例性描述,不应对本申请构成任何限定。对下行信号的处理过程具体可以参考现有技术,为了简洁,这里省略对其具体过程的详细说明。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语做简单说明。
1、预编码技术:发送设备(如网络设备)可以在已知信道状态的情况下,借助与信道资源相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备(如终端设备)消除信道间影响的复杂度降低。因此,通过对待发送信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。
应理解,有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
2、预编码矩阵和预编码矩阵指示(PMI):PMI可以用于指示预编码矩阵。其中,该预编码矩阵例如可以是终端设备基于各个频域单元(如,子带)的信道矩阵确定的、与各频域单元对应的预编码矩阵。
其中,信道矩阵可以是终端设备通过信道估计等方式或者基于信道互易性确定。但应理解,终端设备确定信道矩阵的具体方法并不限于上文所述,具体实现方式可参考现有技术,为了简洁,这里不再一一列举。
预编码矩阵可以通过对信道矩阵或信道矩阵的协方差矩阵进行奇异值分解(singular value decomposition,SVD)的方式获得,或者,也可以通过对信道矩阵的协方差矩阵进行特征值分解(eigenvalue decomposition,EVD)的方式获得。
应理解,上文中列举的预编码矩阵的确定方式仅为示例,不应对本申请构成任何限定。预编码矩阵的确定方式可以参考现有技术,为了简洁,这里不再一一列举。
需要说明的是,在本申请实施例中,与频域单元对应的预编码矩阵,可以是指,针对该频域单元反馈的预编码矩阵,例如可以是基于该频域单元上的参考信号进行信道测量和反馈的预编码矩阵。与频域单元对应的预编码矩阵可用于对后续通过该频域单元传输的数据做预编码的预编码矩阵。下文中,与频域单元对应的预编码矩阵也可以简称为该频域单元的预编码矩阵,与频域单元对应的预编码向量也可以称为该频域单元的预编码向量。
还需要说明的是,在本申请实施例中,网络设备基于终端设备的反馈所确定的预编码矩阵可以直接用于下行数据传输;也可以经过一些波束成形方法,例如包括迫零(zero  forcing,ZF)、正则化迫零(regularized zero-forcing,RZF)、最小均方误差(minimum mean-squared error,MMSE)、最大化信漏噪比(signal-to-leakage-and-noise,SLNR)等,以得到最终用于下行数据传输的预编码矩阵。本申请对此不作限定。在未作出特别说明的情况下,下文中所涉及的预编码矩阵(或向量)均可以是指网络设备基于终端设备反馈所确定的预编码矩阵(或向量)。
3、预编码向量:一个预编码矩阵可以包括一个或多个向量,如列向量。一个预编码矩阵可以用于确定一个或多个预编码向量。
当传输层数为1且发射天线的极化方向数也为1时,预编码向量可以是预编码矩阵。当传输层数为多个且发射天线的极化方向数为1时,预编码向量可以是指预编码矩阵在一个传输层上的分量。当传输层数为1且发射天线的极化方向数为多个时,预编码向量可以是指预编码矩阵在一个极化方向上的分量。当传输层数为多个且发射天线的极化方向数也为多个时,预编码向量可以是指预编码矩阵在一个传输层、一个极化方向上的分量。
应理解,预编码向量也可以由预编码矩阵中的向量确定,如,对预编码矩阵中的向量进行数学变换后得到。本申请对于预编码矩阵与预编码向量之间的数学变换关系不作限定。
4、信道状态信息参考信号(channel state information reference signal,CSI-RS)的传输带宽:在本申请实施例中,CSI-RS的传输带宽可以是指用于传输CSI-RS的资源在频域占用的带宽。终端设备可以在该CSI-RS的传输带宽上接收CSI-RS,以进行信道测量和上报。换句话说,CSI-RS的传输带宽可以是终端设备上报所基于的CSI-RS所占的频带宽度。
在一种实现方式中,该CSI-RS的传输带宽可以是CSI-RS资源的频域占用带宽。该CSI-RS资源的频域占用带宽可以通过信息元素(information element,IE)CSI频域占用带宽(CSI-FrequencyOccupation)来配置。
网络设备可以进一步通过IE CSI上报配置(CSI-ReportConfig)中的上报带宽(csi-ReportingBand)字段来指示待上报的子带(即,频域单元的一例)的个数和位置。该字段可以为位图。该位图的长度可以是上述CSI-RS-Resource的频域占用带宽中包含的子带数。该位图中的每个指示比特可以对应于CSI-RS-Resource的频域占用带宽中的一个子带。每个指示比特用于指示所对应的子带是否需要上报CSI。例如,当指示比特置“1”时,所对应的子带需要上报CSI;当指示比特置“0”时,所对应的子带不需要上报CSI。应理解,这里所列举的指示比特的值所表达的含义仅为示例,不应对本申请构成任何限定。
还应理解,上文所列举的用于配置CSI测量资源的频域占用带宽的信令以及用于指示待上报的子带的信令仅为示例,不应对本申请构成任何限定。本申请对用于指示CSI测量资源的频域占用带宽的信令、用于指示待上报的子带的信令以及具体的指示方式均不作限定。
在另一种实现方式中,该CSI-RS的传输带宽可以是与csi-ReportingBand相对应的带宽。该CSI-RS的传输带宽中所包含的子带数可以是csi-ReportingBand包含的比特数,或者说,可以是csi-ReportingBand的长度。
5、天线端口(antenna port):简称端口。可以理解为被接收设备所识别的虚拟天线。或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号对应,因此,每 个天线端口可以称为一个参考信号的端口。在本申请实施例中,天线端口可以是指实际的独立发送单元(transceiver unit,TxRU)。
6、空域向量(spatial domain vector):或者称波束向量。空域向量中的各个元素可以表示各个天线端口的权重。基于空域向量中各个元素所表示的各个天线端口的权重,将各个天线端口的信号做线性叠加,可以在空间某一方向上形成信号较强的区域。
下文中为方便说明,假设空域向量记作u。空域向量u的长度可以为一个极化方向上的发射天线端口数N s,N s≥1且为整数。空域向量例如可以为长度为N s的列向量或行向量。本申请对此不作限定。
关于空域向量的定义可以参考NR协议TS 38.214版本15(release 15,R15)中类型II码本中定义的二维(2dimensions,2D)-离散傅里叶变换(Discrete Fourier Transform,DFT)向量或过采样2D-DFT向量v l,m。这里为了简洁,不再赘述。
7、空域向量集合:可以包括多种不同长度的空域向量,以与不同的发射天线端口数对应。在本申请实施例中,由于空域向量的长度为N s,故终端设备所上报的空域向量所属的空域向量集合中的各空域向量的长度均为N s
在一种可能的设计中,该空域向量集合可以包括N s个空域向量,该N s个空域向量之间可以两两相互正交。该空域向量集合中的每个空域向量可以取自2D-DFT矩阵。其中,2D可以表示两个不同的方向,如,水平方向和垂直方向。
该N s个空域向量例如可以记作u 1
Figure PCTCN2020070484-appb-000001
该N s个空域向量可以构建矩阵B s
Figure PCTCN2020070484-appb-000002
在另一种可能的设计中,该空域向量集合可以通过过采样因子O s扩展为O s×N s个空域向量。此情况下,该空域向量集合可以包括O s个子集,每个子集可以包括N s个空域向量。每个子集中的N s个空域向量之间可以两两相互正交。该空域向量集合中的每个空域向量可以取自过采样2D-DFT矩阵。其中,过采样因子O s为正整数。具体地,O s=O 1×O 2,O 1可以是水平方向的过采样因子,O 2可以是垂直方向的过采样因子。O 1≥1,O 2≥1,O 1、O 2不同时为1,且均为整数。
该空域向量集合中的第o s(1≤o s≤O s且o s为整数)个子集中的N s个空域向量例如可以分别记作
Figure PCTCN2020070484-appb-000003
则基于该第o s个子集中的N s个空域向量可以构造矩阵
Figure PCTCN2020070484-appb-000004
Figure PCTCN2020070484-appb-000005
因此,空域向量集合中的各空域向量可以取自2D-DFT矩阵或过采样2D-DFT矩阵。该空域向量集合中的每个列向量可以称为一个2D-DFT向量或过采样2D-DFT向量。换句话说,空域向量可以为2D-DFT向量或过采样2D-DFT向量。
8、频域向量(frequency domain vector):本申请实施例中提出的用于表示信道在频域的变化规律的向量。每个频域向量可以表示一种变化规律。由于信号在经过无线信道传输时,从发射天线可以经过多个路径到达接收天线。多径时延导致频率选择性衰落,就是频域信道的变化。因此,可以通过不同的频域向量来表示不同传输路径上时延导致的信道在频域上的变化规律。
下文中为方便说明,假设频域向量记作v。频域向量的长度可以记作N f,N f≥1,且为整数。
9、频域向量集合:可以包括多种不同长度的频域向量。该频域向量集合中的一个或多个频域向量被选择用于构建预编码向量。
在一种可能的设计中,该频域向量集合可以包括多个频域向量。该多个频域向量之间可以两两相互正交。该频域向量集合中的每个频域向量可以取自DFT矩阵。
例如,该N f个频域向量例如可以记作
Figure PCTCN2020070484-appb-000006
该N f个频域向量可以构建矩阵B f
Figure PCTCN2020070484-appb-000007
在另一种可能的设计中,该频域向量集合可以通过过采样因子O f扩展为O f×N f个频域向量。此情况下,该频域向量集合可以包括O f个子集,每个子集可以包括N f个频域向量。每个子集中的N f个频域向量之间可以两两相互正交。每个子集可以称为一个正交组。该频域向量集合中的每个频域向量可以取自过采样DFT矩阵。其中,过采样因子O f为正整数。
例如,该频域向量集合中的第o f(1≤o f≤O f且o f为整数)个子集中的N f个频域向量例如可以分别记作
Figure PCTCN2020070484-appb-000008
则基于该第o f个子集中的N f个频域向量可以构造矩阵
Figure PCTCN2020070484-appb-000009
因此,频域向量集合中的各频域向量可以取自DFT矩阵或过采样DFT矩阵。该频域向量集合中的每个列向量可以称为一个DFT向量或过采样DFT向量。换句话说,频域向量可以为DFT向量或过采样DFT向量。
10、空频分量矩阵:通过一个空域向量和一个频域向量可以确定一个空频分量矩阵。一个空频分量矩阵例如可以由一个空域向量和一个频域向量的共轭转置确定,如u×v H,其维度可以为N s×N f
应理解,空频分量矩阵可以是由一个空域向量和一个频域向量确定的空频基本单位的一种表现形式。空频基本单位例如还可以表现为空频分量向量,该空频分量向量例如可以由一个空域向量和一个频域向量的克罗内克(Kronecker)积确定;该空频基本单位例如还可以表现为空频向量对等。本申请对于空频基本单位的具体表现形式不作限定。本领域的技术人员基于相同的构思,由一个空域向量和一个频域向量确定的各种可能的形式均应落入本申请保护的范围内。此外,如果对空域向量或频域向量定义了与上文列举所不同的形式,空频分量矩阵与空域向量、频域向量的运算关系也可能不同。本申请对于空频分量矩阵与空域向量、频域向量的运算关系不作限定。
11、空频矩阵:在本申请实施例中,空频矩阵可以理解为用于确定预编码矩阵的一个中间量。对于终端设备来说,空频矩阵可以由预编码矩阵或信道矩阵确定。对于网络设备来说,空频矩阵可以是由多个空频分量矩阵的加权和得到,以用于恢复下行信道或预编码矩阵。
如前所述,空频分量矩阵可以表示为维度为N s×N f的矩阵,空频矩阵也可以表示为维度为N s×N f的矩阵。该维度为N s×N f的空频矩阵可以包括N f个长度为N s的列向量。该N f个列向量可以与N f个频域单元对应,每个列向量可用于确定所对应的频域单元的预编码向量。
例如,空频矩阵可以记作H,
Figure PCTCN2020070484-appb-000010
其中,w 1
Figure PCTCN2020070484-appb-000011
是与N f个频域单元对应的N f个列向量,各列向量的长度均可以为N s。该N f个列向量可分别用于确定 N f个频域单元的预编码向量。
应理解,空频矩阵仅为用于确定预编码矩阵的中间量的一种表现形式,不应对本申请构成任何限定。例如,将空频矩阵中的各列向量按从左至右的顺序依次首位相接,或者按照其他预定义的规则排列,也可以得到长度为N s×N f的向量,该向量可以称为空频向量。
还应理解,上文所示的空频矩阵和空频向量的维度仅为示例,不应对本申请构成任何限定。例如,该空频矩阵也可以是维度为N f×N s的的矩阵。其中,每个行向量可对应于一个频域单元,以用于确定所对应的频域单元的预编码向量。
此外,当发射天线配置有多个极化方向时,该空频矩阵的维度还可以进一步扩展。如,对于双极化方向天线,该空频矩阵的维度可以为2N s×N f或N f×2N s。应理解,本申请对于发射天线的极化方向数不作限定。
12、反馈开销:终端设备向网络设备反馈被选择的空域向量、频域向量以及对应的加权系数的指示信息所带来的开销。
在一种实现方式中,终端设备可以通过指示被选择的空域向量的组合在空域向量集合中的索引的方式来指示被选择的空域向量。由此带来的开销例如可以是
Figure PCTCN2020070484-appb-000012
个比特。若该空域向量集合通过过采样因子扩展为多个子集,则由此带来的开销例如可以是
Figure PCTCN2020070484-appb-000013
个比特。
终端设备也可以通过指示被选择的频域向量的组合在频域向量集合中的索引的方式来指示被选择的频域向量。由此带来的开销例如可以是
Figure PCTCN2020070484-appb-000014
个比特。若该空域向量集合通过过采样因子扩展为多个子集,则由此带来的开销例如可以是
Figure PCTCN2020070484-appb-000015
个比特。
终端设备可以通过位图来指示K个加权系数所对应的空频向量对在L个空域向量和M个频域向量所构建的L×M个空频向量对中的位置。该位图的长度例如可以是L×M个比特。
若进一步考虑发射天线的极化方向数,则该K个加权系数可以是与两个极化方向上的2L×M个空频向量对中的部分或全部空频向量对对应。若两个极化方向共用相同的一个或多个空频向量对,如K/2个,则该位图的长度仍然可以为L×M个比特;若两个极化方向分别使用各自的空频向量对,如第一极化方向使用了L×M个空频向量对中的K 1个空频向量对,第二极化方向使用了L×M个空频向量对中的K 2个空频向量对,K=K 1+K 2,则,该位图的长度可以为2L×M个比特。
应理解,本申请实施例中,为方便说明,在发射天线的极化方向数不同的情况下,加权系数的个数K均表示终端设备所反馈的加权系数的总个数。因此,当发射天线的极化方向数为2时,K至少是大于或等于2的整数。若两个极化方向共用相同的一个或多个空频向量对,则K为偶数。然而,本申请并不排除在未来的协议中基于发射天线的每个极化方向来定义加权系数的上报个数的可能。例如,在发射天线的极化方向数为2的情况下,每个极化方向的加权系数的上报个数可以为K,K’为正整数。则两个极化方向上的加权系数的上报总个数为2K’。这里,K’仅为与K区分而定义。若两个极化方向共用相同的一个或多个空频向量对,K’可以等于上述K/2。
终端设备可以通过归一化方式来指示K个加权系数。则终端设备可以通过
Figure PCTCN2020070484-appb-000016
个比特来指示归一化系数的位置。可以理解,在未配置参数K的情况下,终端设备可以通过
Figure PCTCN2020070484-appb-000017
个比特(对应于极化方向数为1)或
Figure PCTCN2020070484-appb-000018
个比特(对应于极化方 向数为2)来指示归一化系数的位置。
终端设备还可通过(A+P)(K-1)个比特来量化其余K-1个加权系数其中,A表示每个加权系数的幅度的量化比特数,P表示每个加权系数的相位的量化比特数。A和P均为正整数。
综上,在发射天线的极化方向数为2且两个极化方向共用相同的L个空域向量、M个频域向量和L×M个空频向量对的情况下,反馈开销例如可以是
Figure PCTCN2020070484-appb-000019
Figure PCTCN2020070484-appb-000020
个比特,或,
Figure PCTCN2020070484-appb-000021
Figure PCTCN2020070484-appb-000022
个比特。
由上文列举的反馈开销可以看到,随着空域向量、频域向量和加权系数的上报个数的增加,反馈开销也呈现增加的趋势。
应理解,上文仅为便于理解,示出了终端设备反馈空域向量、频域向量和加权系数所带来的指示开销的一种可能的示例。但这不应对本申请构成任何限定。本申请对于终端设备反馈空域向量、频域向量和加权系数的具体方式和反馈开销并不做限定。例如,终端设备也可以通过分别指示空域向量集合中被选择的每个空域向量的索引和频域向量集合中被选择的每个频域向量的索引。又例如,终端设备可以在每个极化方向上采用归一化的方式指示加权系数,因此在每个极化方向上可以分别指示一个归一化系数的位置。
13、双域压缩:包括空域压缩和频域压缩。空域压缩可以是指在空域向量集合中选择一个或多个空域向量,作为构建预编码向量的空域向量。频域压缩可以是指在频域向量集合中选择一个或多个频域向量,作为构建预编码向量的频域向量。被选择的空域向量为空域向量集合中的部分或全部空域向量。被选择的频域向量为频域向量集合中的部分或全部频域向量。
其中,一个空域向量和一个频域向量所确定的矩阵例如可以为上述空频分量矩阵。被选择的一个或多个空域向量和一个或多个频域向量可用于确定一个或多个空频分量矩阵。该一个或多个空频分量矩阵的加权和可用于构建与一个传输层对应的空频矩阵。换句话说,空频矩阵可以近似为由上述被选择的一个或多个空域向量和一个或多个频域向量所确定的空频分量矩阵的加权和。这里,用于构建一个空频分量矩阵的空域向量和频域向量可以称为一个空频向量对。
因此,当网络设备获取了可用于构建空频矩阵的空域向量、频域向量和加权系数后,便可以基于所构建的空频矩阵进一步确定与各频域单元对应的预编码向量。
假设传输层数为1,发射天线的极化方向数为2。
在一种可能的实现方式中,终端设备可以向网络设备反馈L个空域向量的指示、M个频域向量的指示以及K个加权系数的指示。其中,L个空域向量可以是基于两个极化方向反馈的,可以被两个极化方向共用。M个频域向量也可以是基于两个极化方向反馈的,可以被两个极化方向共用。L个空域向量和M个频域向量可用于构建得到L×M个空频向量对。该L×M个空频向量对可以被两个极化方向共用,每个极化方向对应L×M个空频向量对。则两个极化方向对应的空频向量对的个数总和为2L×M。K个加权系数可以与两个极化方向上的2L×M个空频向量对中的部分或全部空频向量对对应。即,K≤2L×M。其中,两个极化方向中的第一极化方向上的L×M个空频向量对与第二极化方向上的L×M 个空频向量对可以是完全重复的。但由于分别对应不同的极化方向,因此,两个极化方向上中每个极化方向对应的空频向量对的个数之和仍记为2L×M。
在另一种可能的实现方式中,终端设备可以基于每个极化方向向网络设备反馈L个空域向量的指示和M个频域向量的指示,并可基于两个极化方向向网络设备反馈K个加权系数的指示。基于每个极化方向反馈的L个空域向量和M个频域向量可用于构建得到L×M个空频向量对。则两个极化方向对应的空频向量对的个数总和为2L×M。K个加权系数可以与两个极化方向上的2L×M个空频向量对中的部分或全部空频向量对对应。即,K≤2L×M。其中,基于第一极化方向反馈的L个空域向量与基于第二极化方向反馈的L个空域向量可以相同或不同。基于第一极化方向反馈的M个频域向量与基于第二极化方向反馈的M个频域向量可以相同或不同。故该两个极化方向中的第一极化方向上的L×M个空频向量对与第二极化方向上的L×M个空频向量对可以完全不同的,也可以是部分重复的,还可以是完全重复的。本申请对此不作限定。但由于分别对应不同的极化方向,因此,两个极化方向上中每个极化方向对应的空频向量对的个数之和仍记为2L×M。
由于终端设备反馈的K个加权系数可以与2L×M个空频向量对中的K个空频向量对一一对应。加权系数的个数与空频向量对的个数相同。终端设备反馈了K个加权系数,也就可理解为从2L×M个空频向量对中选择了K个空频向量对,因此也就可以理解为终端设备反馈了K个可用于构建预编码向量的空频向量对。
应理解,上文仅为便于理解,示出了双域压缩的一种可能的实现方式,但这不应对本申请构成任何限定。例如,L个空域向量和M个频域向量中的至少一项也可以是预定义的,本申请对此不作限定。
综上,双域压缩在空域和频域都分别进行了压缩。终端设备在反馈时,可以将被选择的一个或多个空域向量和一个或多个频域向量反馈给网络设备,而不再需要基于每个频域单元(如子带)分别反馈子带的加权系数(如包括幅度和相位)。因此,可以大大减小反馈开销。同时,由于频域向量能够表示信道在频率的变化规律,通过一个或多个频域向量的线性叠加来模拟信道在频域上的变化。因此,仍能够保持较高的反馈精度,使得网络设备基于终端设备的反馈恢复出来的预编码矩阵仍然能够较好地与信道适配。
然而,在双域压缩的反馈方式中,空频向量、频域向量和加权系数的上报个数尚未明确定义。L、M和K中任意一个参数的不同取值都可以获得L、M和K的不同组合。但如果将所有L、M和K的取值做任意组合,则组合数很多。若网络设备基于多种组合来选择,可能会带来较大的计算量,并且在指示终端设备时,也可能会造成较大的指示开销。并且,在有些情况下,L、M和K的不同组合带来的反馈开销是相同或相接近的,但基于反馈所恢复的预编码向量并所获得的性能却有较大的差异。在这种情况下,没有必要将L、M和K的多种组合全部保留下来,而仅需将性能较好的L、M和K的组合保留下来。
有鉴于此,本申请实施例提供一种参数配置方法,希望通过有限的几种L、M和K的组合,来缩小上报个数的选择范围,进而减小网络设备计算量,避免不必要的指示开销。
下面结合附图详细说明本申请实施例提供的参数配置方法和通信装置。
为便于理解本申请实施例,在介绍本申请实施例之前,先先做出以下几点说明。
第一,在下文示出的实施例中,以至少一传输层中的一个传输层、发射天线的极化方向数为2为例,详细本申请实施例提供的参数配置方法。
需注意,在涉及两个极化方向的数量时,将两个极化方向上的空频向量对的个数分别计数。例如,当两个极化方向共用相同的L×M个空频向量对时,仍将两个极化方向对应的空频向量对的总个数记作2L×M。即便第一极化方向上的L×M个空频向量对与第二极化方向上的L×M个空频向量对有重复,但由于对应于不同的极化方向,在本申请实施例中是分别计数的。
对于本申请实施例中涉及的其他参量,如加权系数等,均做相似的处理。为了简洁,这里不一一举例说明。
为方便理解,这里将下文中涉及的参数做相关说明。
L:第一映射关系组中配置的、对应于一个极化方向的空频向量的上报个数,L可以有多个可能的取值,L为正整数;
M:第一映射关系组中配置的、对应于一个极化方向的频域向量的上报个数,M可以有多个可能的取值,M为正整数;
K:对应于两个极化方向的加权系数的上报个数,或者说,在两个极化方向上用于构建预编码向量的空频向量对的总个数。K可以有多个可能的取值,K为正整数。在本申请实施例中,K≤2L×M,2L×M表示两个极化方向上分别由L个空域向量和M个频域向量构建的空频向量对的总个数。即,与两个极化方向分别对应的空频向量对的个数之和;
L 0:网络设备指示的、对应于一个极化方向的空域向量的上报个数,L 0为上述L的多个可能取值中的一个,L 0为正整数;
M 0:网络设备指示的、对应于一个极化方向的频域向量的上报个数,M 0为上述M的多个可能取值中的一个,M 0为正整数;
K 0:网络设备指示的、对应于一个极化方向的空频向量对的上报个数,K 0为上述K的多个可能取值中的一个,K 0为正整数。在本申请实施例中,K 0≤2L 0×M 0
第二,在下文示出的实施例中,“预先配置”和“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。其中,“保存”可以是指,保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第三,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
第四,在下文示出的实施例中,第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息、不同的映射关系等。
第五,本申请对很多特性(例如克罗内克积、PMI、频域单元、双域压缩、空域向量、频域向量以及CSI-RS等)所列出的定义仅用于以举例方式来解释该特性的功能,其详细内容可以参考现有技术。
第六,在本申请实施例中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的第一映射关系的指示)所指示的信息称为待 指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。例如,本领域的技术人员应当明白,预编码矩阵是由预编码向量组成的,预编码矩阵中的各个预编码向量,在组成或者其他属性方面,可能存在相同的部分。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,例如行向量可以表现为列向量,一个矩阵可以通过该矩阵的转置矩阵来表示,一个矩阵也可以表现为向量或者数组的形式,该向量或者数组可以由该矩阵的各个行向量或者列向量相互连接而成,两个向量的克罗内克尔积也可以通过一个向量与另一个向量的转置向量的乘积等形式来表现等。本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令,例如RRC信令、MAC层信令,例如MAC-CE信令和物理层信令,例如下行控制信息(downlink control information,DCI)中的一种或者至少两种的组合。
第七,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
应理解,本申请实施例提供的参数配置方法可以应用于通过多天线技术通信的***,例如,图1中所示的通信***100。该通信***可以包括至少一个网络设备和至少一个终端设备。网络设备和终端设备之间可通过多天线技术通信。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构 特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
还应理解,下文中为方便说明,以至少一个传输层中的一个传输层为例,详细说明了本申请实施例提供的参数配置方法。基于该参数配置方法为终端设备配置的参数可以是为至少一个传输层中的某一个传输层(如,第一个传输层)配置,也可以是为至少一个传输层中的每个传输层配置。本申请对此不作限定。
例如,当传输层数为多个时,针对每个传输层分别上报的空域向量的个数、频域向量的个数和加权系数的个数均可以基于本申请提供的参数配置方法确定。
又例如,当传输层数为多个时,可以预先定义针对不同传输层配置的空域向量的上报个数的关系,针对不同传输层配置的频域向量的上报个数的关系,以及针对不同传输层配置的加权系数的上报个数的关系。本申请对于各传输层间空域向量、频域向量以及加权系数的上报个数的关系不作限定。
以下,不失一般性,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的参数配置方法。图2是从设备交互的角度示出的本申请实施例提供的参数配置方法200的示意性流程图。如图所示,该方法200包括步骤210至步骤250。下面详细说明方法200中的各步骤。
在步骤210中,网络设备生成第一映射关系的指示,该第一映射关系指示空域向量的上报个数和频域向量的上报个数之间的对应关系。
具体地,该第一映射关系可以是预先配置的映射关系组中的一个映射关系。为便于区分和说明,将包含该第一映射关系的映射关系组记作第一映射关系组。该第一映射关系组可以包括一个或多个映射关系,每个映射关系指示空域向量的上报个数和频域向量的上报个数的一种对应关系。换句话说,该第一映射关系组用于指示空域向量的上报个数和频域向量的上报个数的一种或多种对应关系。L值和M值的一种对应关系可以理解为L值和M值的一种组合。则该第一映射关系组可以包括一组或多组L值和M值的组合。
此外,为便于区分和说明,在下文示出的实施例中,将第一映射关系组中列举的空域向量的上报个数记作参数L,将第一映射关系组中列举的频域向量的上报个数记作参数M。与之相区分,将第一映射关系中指示的空域向量的上报个数记作L 0,将第一映射关系中指示的频域向量的上报个数记作M 0。可以理解的是,L 0为第一映射关系组中L的多个取值中的一个,M 0为第一映射关系组中M的多个取值中的一个。
该第一映射关系组可以是预先配置的,例如可预先保存在网络设备中。网络设备例如可以根据天线端口数、信道条件、历史数据或反馈精度的要求等因素确定采用第一映射关系组中的哪一个映射关系。例如,当对反馈精度要求较高时,可以考虑使用较多的反馈开销以获得较高精度的反馈。又例如,当天线端口数为4时,在下文列举的多种可能的第一映射关系组中,L的取值仅为2;当天线端口数为8时,在下文列举的多种可能的第一映射关系组中,L的取值仅可以为2、3或4。
当网络设备确定采用第一映射关系组中的某一映射关系时,可以通过信令指示终端设备被选择的映射关系,即本申请实施例中所述的第一映射关系。该第一映射关系的指示例 如可以是该第一映射关系,也可以是该第一映射关系在第一映射关系组中的索引,或者还可以是其他可用于确定该第一映射关系的信息。本申请对此不作限定。
其中,该第一映射关系组例如可以是一个表格,该表格可以包括一组或多组L值和M值的组合。该第一映射关系组也可以是其他可用于表示L值和M值的对应关系的形式。本申请对此不作限定。
下文中为便于理解,以表格的形式示出了第一映射关系组的几种可能的形式。网络设备中可以预先保存下文列举的表格中的一个或多个,或者与下文表格中的一个或多个对应的映射关系组。应理解,下文中示出的每个表格均可以作为第一映射关系组的一例。各表格之间可以是相互独立的。每个表格示出了L值和M值的多种可能的组合。
表1
Figure PCTCN2020070484-appb-000023
表2
Figure PCTCN2020070484-appb-000024
表3
Figure PCTCN2020070484-appb-000025
表4
Figure PCTCN2020070484-appb-000026
表5
Figure PCTCN2020070484-appb-000027
表6
Figure PCTCN2020070484-appb-000028
表7
Figure PCTCN2020070484-appb-000029
表8
Figure PCTCN2020070484-appb-000030
表9
Figure PCTCN2020070484-appb-000031
表10
Figure PCTCN2020070484-appb-000032
表11
Figure PCTCN2020070484-appb-000033
表12
Figure PCTCN2020070484-appb-000034
表13
Figure PCTCN2020070484-appb-000035
表14
Figure PCTCN2020070484-appb-000036
表15
Figure PCTCN2020070484-appb-000037
表16
Figure PCTCN2020070484-appb-000038
表17
Figure PCTCN2020070484-appb-000039
表18
Figure PCTCN2020070484-appb-000040
表19
Figure PCTCN2020070484-appb-000041
表20
Figure PCTCN2020070484-appb-000042
表21
Figure PCTCN2020070484-appb-000043
表22
Figure PCTCN2020070484-appb-000044
表23
Figure PCTCN2020070484-appb-000045
表24
Figure PCTCN2020070484-appb-000046
表25
Figure PCTCN2020070484-appb-000047
表26
Figure PCTCN2020070484-appb-000048
Figure PCTCN2020070484-appb-000049
表27
Figure PCTCN2020070484-appb-000050
表28
Figure PCTCN2020070484-appb-000051
表29
Figure PCTCN2020070484-appb-000052
表30
Figure PCTCN2020070484-appb-000053
表31
Figure PCTCN2020070484-appb-000054
表32
Figure PCTCN2020070484-appb-000055
表33
Figure PCTCN2020070484-appb-000056
表34
Figure PCTCN2020070484-appb-000057
表35
Figure PCTCN2020070484-appb-000058
表36
Figure PCTCN2020070484-appb-000059
表37
Figure PCTCN2020070484-appb-000060
表38
Figure PCTCN2020070484-appb-000061
表39
Figure PCTCN2020070484-appb-000062
表40
Figure PCTCN2020070484-appb-000063
表41
Figure PCTCN2020070484-appb-000064
表42
Figure PCTCN2020070484-appb-000065
表43
Figure PCTCN2020070484-appb-000066
表44
Figure PCTCN2020070484-appb-000067
表45
Figure PCTCN2020070484-appb-000068
表46
Figure PCTCN2020070484-appb-000069
表47
Figure PCTCN2020070484-appb-000070
表48
Figure PCTCN2020070484-appb-000071
表49
Figure PCTCN2020070484-appb-000072
表50
Figure PCTCN2020070484-appb-000073
表51
Figure PCTCN2020070484-appb-000074
表52
Figure PCTCN2020070484-appb-000075
表53
Figure PCTCN2020070484-appb-000076
表54
Figure PCTCN2020070484-appb-000077
表55
Figure PCTCN2020070484-appb-000078
表56
Figure PCTCN2020070484-appb-000079
表57
Figure PCTCN2020070484-appb-000080
表58
Figure PCTCN2020070484-appb-000081
表59
Figure PCTCN2020070484-appb-000082
表60
Figure PCTCN2020070484-appb-000083
表61
Figure PCTCN2020070484-appb-000084
表62
Figure PCTCN2020070484-appb-000085
表63
Figure PCTCN2020070484-appb-000086
表64
Figure PCTCN2020070484-appb-000087
表65
Figure PCTCN2020070484-appb-000088
表66
Figure PCTCN2020070484-appb-000089
表67
Figure PCTCN2020070484-appb-000090
表68
Figure PCTCN2020070484-appb-000091
表69
Figure PCTCN2020070484-appb-000092
表70
Figure PCTCN2020070484-appb-000093
表71
Figure PCTCN2020070484-appb-000094
表72
Figure PCTCN2020070484-appb-000095
表73
Figure PCTCN2020070484-appb-000096
表74
Figure PCTCN2020070484-appb-000097
表75
Figure PCTCN2020070484-appb-000098
表76
Figure PCTCN2020070484-appb-000099
表77
Figure PCTCN2020070484-appb-000100
表78
Figure PCTCN2020070484-appb-000101
表79
Figure PCTCN2020070484-appb-000102
表80
Figure PCTCN2020070484-appb-000103
表81
Figure PCTCN2020070484-appb-000104
表82
Figure PCTCN2020070484-appb-000105
表83
Figure PCTCN2020070484-appb-000106
表84
Figure PCTCN2020070484-appb-000107
表85
Figure PCTCN2020070484-appb-000108
表86
Figure PCTCN2020070484-appb-000109
表87
Figure PCTCN2020070484-appb-000110
表88
Figure PCTCN2020070484-appb-000111
表89
Figure PCTCN2020070484-appb-000112
表90
Figure PCTCN2020070484-appb-000113
表91
Figure PCTCN2020070484-appb-000114
表92
Figure PCTCN2020070484-appb-000115
表93
Figure PCTCN2020070484-appb-000116
表94
Figure PCTCN2020070484-appb-000117
表95
Figure PCTCN2020070484-appb-000118
表96
Figure PCTCN2020070484-appb-000119
表97
Figure PCTCN2020070484-appb-000120
表98
Figure PCTCN2020070484-appb-000121
表99
Figure PCTCN2020070484-appb-000122
表100
Figure PCTCN2020070484-appb-000123
表101
Figure PCTCN2020070484-appb-000124
表102
Figure PCTCN2020070484-appb-000125
表103
Figure PCTCN2020070484-appb-000126
表104
Figure PCTCN2020070484-appb-000127
表105
Figure PCTCN2020070484-appb-000128
表106
Figure PCTCN2020070484-appb-000129
表107
Figure PCTCN2020070484-appb-000130
表108
Figure PCTCN2020070484-appb-000131
表109
Figure PCTCN2020070484-appb-000132
表110
Figure PCTCN2020070484-appb-000133
表111
Figure PCTCN2020070484-appb-000134
上文所列举的第一映射关系组中,示出了多种L值和M值的组合。在上文列举的多种可能的第一映射关系组中,每个第一映射关系组中列举的L值和M值的组合可带来不同的反馈开销。
图3是本申请实施例提供的性能仿真图。图3示出的性能仿真图以表61中列举的L值和M值为例,示出了平均吞吐随反馈开销的变化趋势。具体地,图3的仿真结果可基于以下假设条件:K与2L×M的比值为1/2,幅度的量化比特数A=3,相位的量化比特数P=4。图中横轴可以表示反馈开销,纵轴可以表示平均吞吐。可以看到,随着L值和M值所带来的反馈开销的增大,平均吞吐也呈现增长的趋势。
应理解,图3仅为便于理解,示出了本申请实施例提供的性能仿真的一例,不应对本申请构成任何限定。例如,基于不同的反馈方式,相同的L值和M值所带来的反馈开销也会有差异。又例如,基于不同的仿真平台、不同的算法,相同的L值、M值和K值所对应的平均吞吐可能也有差异。
如前所述,每个极化方向上的预编码向量可以是基于L个空域向量和M个频域向量所构建的L×M个空频向量对中的部分或全部空频向量对确定。因此,终端设备并不一定基于L个空域向量和M个频域向量所构建的L×M个空频向量对反馈L×M个加权系数,而可能仅需针对L×M个空频向量对中的部分空频向量对反馈加权系数。因此,加权系数的上报个数也就可以当作用于构建预编码向量的空频向量对的个数。
当极化方向数为2时,两个极化方向上的预编码向量可以是基于2L×M个空频向量对中的部分或全部空频向量对确定。2L×M可以是指两个极化方向上分别由L个空域向量和M个频域向量构建的空频向量对的总个数。加权系数的上报个数可以是两个极化方向上可以用作构建预编码向量的空频向量对的个数。
在本申请实施例中,加权系数的上报个数也可以预先配置,或者说,用于构建预编码向量的空频向量对的个数可以预先配置。为方便说明,下文中加权系数的上报个数(或者说,用于构建预编码向量的空频向量对的个数)可以记作K,K≤2L×M,且K为正整数。
在一种可能的设计中,K与2L×M的比值为预设值。例如,K与2L×M的比值可以是固定值,也可以由网络设备配置。
作为一个实施例,K与2L×M的比值为固定值。
以发射天线的极化方向数为2为例,2L×M可以表示两个极化方向上的共个空频分量对,K可以表示从2L×M个空频向量对中选择的K个空频向量对或K个空频向量对的加权系数。
可选地,K与2L×M的比值为1/2。或者说,K=2L×M/2。即,K=L×M。
可选地,K与2L×M的比值为1/3。这里,K与2L×M的比值为1/3,可以包括,K与2L×M的比值等于1/3或约等于1/3。
具体地说,
Figure PCTCN2020070484-appb-000135
或,
Figure PCTCN2020070484-appb-000136
或,K=[2L×M/3]。
可选地,K与2L×M的比值为2/3。这里,K与2L×M的比值为2/3,可以包括,K与2L×M的比值等于2/3或约等于2/3。
具体地说,
Figure PCTCN2020070484-appb-000137
或,
Figure PCTCN2020070484-appb-000138
或,K=[4L×M/3]。
其中,
Figure PCTCN2020070484-appb-000139
表示向上取整,
Figure PCTCN2020070484-appb-000140
表示向下取整,[]表示就近取整。当协议定义了按照某一种方式取整后,网络设备和终端设备便可以按照相同的方式确定K值。
K与2L×M的比值为固定值的情况特别适用于上文列举的表1至表72所示出的映射关系组。
应理解,上文示例性地列举了K与2L×M的几种可能的比值,但这不应对本申请构成任何限定。根据K与2L×M的比值和预先确定的L 0值和M 0值确定K 0值的方法均应落入本申请的保护范围内。
还应理解,上文仅以极化方向数为2为例,列举了K与2L×M的几种可能的比值。上文列举的K与2L×M的比值也可以变形为K与L×M的比值或者2K’(K’=K/2)与2L×M的比值等。本申请对此不作限定。
作为另一个实施例,K与2L×M的比值由网络设备指示。
可选地,该方法还包括:终端设备接收第一指示信息,该第一指示信息指示K与2L×M的比值。相应地,网络设备发送该第一指示信息。
也就是说,K与2L×M的比值可以有多个可能的值。网络设备可以通过第一指示信息向终端设备指示K与2L×M的比值。具体地,该第一指示信息可以直接指示K与2L×M的比值,也可以指示K与2L×M的比值的索引,或者还可以指示其他可确定K与2L×M的比值的信息,本申请对此不作限定。
该第一指示信息可以通过高层信令携带。该高层信令例如可以是RRC消息或MAC CE。该第一指示信息也可以通过物理层信令携带。该物理层信令例如可以是DCI。本申请对于携带该第一指示信息的具体信令不作限定。用于携带该第一指示信息的信令可以是已有的信令,也可以新增的信令。
可选地,K与2L×M的比值为1/4或1/2。
这里,K与2L×M的比值为1/4或1/2,可以包括,K与2L×M的比值等于1/4或约等于1/4,或者,K与2L×M的比值等于1/2。
具体地说,K=L×M,或,
Figure PCTCN2020070484-appb-000141
或,
Figure PCTCN2020070484-appb-000142
或,K=[L×M/2]。
可选地,K与2L×M的比值为1/3或2/3。
具体地说,
Figure PCTCN2020070484-appb-000143
或,
Figure PCTCN2020070484-appb-000144
或,K=[2L×M/3],或,
Figure PCTCN2020070484-appb-000145
或,
Figure PCTCN2020070484-appb-000146
或,K=[4L×M/3]。
其中,
Figure PCTCN2020070484-appb-000147
表示向上取整,
Figure PCTCN2020070484-appb-000148
表示向下取整,[]表示就近取整。当协议定义了按照 某一种方式取整后,网络设备和终端设备便可以按照相同的方式确定K值。
K与2L×M的比值由网络设备配置的情况特别适用于上文列举的表73至表111所示出的映射关系组。
应理解,上文示例性地列举了K与2L×M的几种可能的比值,但这不应对本申请构成任何限定。根据K与2L×M的比值和预先确定的L 0值和M 0值确定K 0值的方法均应落入本申请的保护范围内。
还应理解,上文仅以极化方向数为2为例,列举了K与2L×M的几种可能的比值。上文列举的K与2L×M的比值也可以变形为K与L×M的比值或者2K’(K’=K/2)与2L×M的比值等。本申请对此不作限定。
还应理解,当极化方向数为其他值时,上述K与2L×M的也可以做相应变换。例如,当极化方向数为1时,可以变换为K与L×M的比值。
如前所述,上述第一映射关系组可以为预先配置的多个映射关系组中的一个。该预先配置的多个映射关系例如可以包括上文所列举的表1至表111中的一个或多个,或者,如上文所列举的表1至表111中的一个或多个所对应的映射关系。
可选地,在步骤210之前,该方法200还包括:步骤220,网络设备从多个映射关系组中确定第一映射关系组。
具体地,该第一映射关系组可以由以下多项中的一项确定:
a、CSI-RS的传输带宽中频域单元的个数;或
b、CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域单元占用的带宽中频域单元的个数;或
c、CSI-RS的传输带宽中待上报的频域单元的个数。
当协议定义了用于确定第一映射关系组的参数为上文列举的a、b或c中的某一项时,网络设备可以基于协议所定义的这一项来确定第一映射关系组。下文中为方便说明,将用于确定第一映射关系组的参数记作N 3,则N 3可以为上述a、b或c中的一项。N 3为正整数。
为方便理解,图4示出了CSI-RS的传输带宽中待上报的频域单元的示意图。如图所示,图4示出的CSI-RS的传输带宽的频域占用带宽可以包括10个频域单元。即,与a对应的频域单元的个数为10。
该10个频域单元中,每个带有阴影的方格
Figure PCTCN2020070484-appb-000149
表示一个待上报的频域单元。图4示出的CSI-RS的传输带宽中共包含5个待上报的频域单元。即,与c对应的频域单元的个数为5。
该CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域单元占用的带宽中,共包含有9个频域单元。即,与b对应的频域单元的个数为9。
应理解,图中示意仅为示例,不应对本申请构成任何限定。本申请对于CSI-RS中包含的频域单元数以及待上报的频域单元的数量和位置等均不作限定。
在一种可能的实现方式中,协议可以预先定义N 3与映射关系组的一个或多个对应关系,或者,网络设备和终端设备可以预先约定N 3与映射关系组的一个或多个对应关系。网络设备在确定了N 3的取值时,便可以根据N 3与映射关系组的对应关系选择可用作当前信道测量的第一映射关系组。
具体地,可以基于不同的门限值将N 3的取值范围分为多个区间,以与多个映射关系组一一对应。在本实施例中,该N 3取值的多个区间可以与上文所列举的多个映射关系表中的部分或全部一一对应。
例如,可通过一个预定义的门限值N th1将N 3的取值范围分为两个区间。第一区间范围内的N 3取值满足N 3<N th1,可对应于上文列举的多个映射关系组中的某一个映射关系组;第二区间范围内的N 3取值满足N 3≥N th1,可对应于上文列举的多个映射关系组中的另一个映射关系组。该两个区间分别对应的映射关系组是不同的。其中,N th1为正整数。
又例如,可通过两个预定义的门限值N th2和N th3,将N 3的取值范围分为三个区间。第一区间范围内的N 3取值满足N 3<N th2,可对应于上文列举的多个映射关系组中的某一个映射关系组;第二区间范围内的N 3取值满足N th2≤N 3<N th3,可对应于上文列举的多个映射关系组中的另一个映射关系组;第三区间范围内的N 3取值满足N 3≥N th3,可对应于上文列举的多个映射关系组中的又一个映射关系组。该三个区间分别对应的映射关系组是互不相同的。其中,N th3>N th2,且N th2和N th3均为正整数。
因此,当网络设备配置了CSI-RS的传输带宽和/或待上报的频域单元之后,便可以根据N 3的取值所属的区间,选择相应的第一映射关系组,以确定第一映射关系。网络设备在确定了第一映射关系之后,可以向终端设备指示该第一映射关系,以便终端设备根据该第一映射关系中所指示的空域向量的上报个数L 0和频域向量的上报个数M 0进行信道测量和反馈。
应理解,网络设备预先配置多个映射关系组,并从多个映射关系组中确定第一映射关系组仅为一种可能的实现方式,不应对本申请构成任何限定。网络设备也可以预先配置一个映射关系组,直接从该映射关系组中确定第一映射关系。
在步骤230中,终端设备接收第一映射关系的指示。相应地,网络设备发送该第一映射关系的指示。
该第一映射关系的指示可以通过高层信令携带。该高层信令例如可以是RRC消息或MAC CE。该第一映射关系的指示也可以通过物理层信令携带。该物理层信令例如可以是DCI。本申请对于携带该第一映射关系的指示的具体信令不作限定。用于携带该第一映射关系的指示的信令可以是已有的信令,也可以新增的信令。
如前所述,该第一映射关系的指示可以是该第一映射关系,也可以是可用于确定该第一映射关系的信息,如该第一映射关系的索引。
终端设备可以预先保存上述第一映射关系组。在接收到来自网络设备的第一映射关系的指示时,可以基于该第一映射关系组确定第一映射关系。例如,终端设备接收到该第一映射关系的索引,可以从该第一映射关系组中确定该第一映射关系。
在步骤240中,终端设备根据第一映射关系确定空域向量的上报个数L 0和频域向量的上报个数M 0
在确定了第一映射关系之后,终端设备便可以确定空域向量的上报个数L 0和频域向量的上报个数M 0。此后,终端设备可以根据L 0值和M 0值进行信道测量以确定L 0个空域向量和M 0个频域向量。
终端设备例如可以通过已有的估计算法进行信道测量,如DFT、多重信号分类算法(multiple signal classification algorithm,MUSIC)、巴特利特(Bartlett)算法或旋转不变 子空间算法(estimation of signal parameters via rotation invariant technique algorithm,ESPRIT)等,这里不再一一列举说明。为了简洁,这里省略对该具体过程的详细说明。
由于该第一映射关系组可能是从预先配置的多个映射关系组中选择的,故终端设备可以在执行步骤240之前先确定第一映射关系组。
可选地,该方法200还包括:步骤250,终端设备从多个映射关系组中确定第一映射关系组。
具体地,该第一映射关系组可以由以下多项中的一项确定:
a、CSI-RS的传输带宽中频域单元的个数;或
b、CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域单元占用的带宽中频域单元的个数;或
c、CSI-RS的传输带宽中待上报的频域单元的个数。
上文步骤220中已经结合附图对上述a、b和c分别作了详细说明,为了简洁,这里不再赘述。
终端设备可以根据网络设备的信令,确定CSI-RS的传输带宽中待上报的频域单元。可选地,该方法200还包括:终端设备接收第二指示信息,该第二指示信息用于指示待上报的频域单元的个数和位置。相应地,网络设备发送该第二指示信息。
在一种可能的设计中,该第二指示信息可以为信息元素(information element,IE)CSI上报配置(CSI-ReportConfig)中的CSI上报带宽(csi-ReportingBand)。也就是说,网络设备可以通过该csi-ReportingBand指示待上报的子带(即,频域单元的一例)。其中,csi-ReportingBand具体可以为位图。该位图的长度可以是上述CSI-RS的传输带宽中包含的子带数。该位图中的每个指示比特可以对应于CSI-RS的传输带宽中的一个子带。每个指示比特用于指示所对应的子带是否需要上报CSI。例如,当指示比特置“1”时,所对应的子带需要上报CSI;当指示比特置“0”时,所对应的子带不需要上报CSI。图5示意性地示出了位图中每个指示比特与子带的对应关系。应理解,上文和图5中所列举的指示比特的值所表达的含义仅为示例,不应对本申请构成任何限定。
应理解,上文列举的用于指示待上报的频域单元的个数和位置的信令仅为示例,不应对本申请构成任何限定。本申请对用于指示待上报的频域单元的个数和位置的具体信令不作限定。
需要说明的是,该第二指示信息所指示的待上报的频域单元可以是子带粒度的频域单元。终端设备反馈PMI所基于的频域单元可以是子带粒度的频域单元,也可以是其他粒度的频域单元。本申请对此不作限定。当终端设备反馈PMI所基于的频域单元的粒度与第二指示信息所指示的待上报的频域单元的粒度不同时,上述N 3值的确定可以依然按照第二指示信息所指示的待上报的频域单元的粒度来计算。
此外,终端设备执行步骤250的具体过程与网络设备执行步骤220的具体过程相似,为了简洁,这里不再赘述。
可选地,该方法200还包括:终端设备根据空域向量的上报个数L 0和频域向量的上报个数M 0,确定用于构建预编码向量的空频向量对的个数K 0
如前所述,预编码向量可以是基于L个空域向量和M个频域向量所构建的L×M个空频向量对中的部分或全部空频向量对确定。因此,在本申请实施例中,终端设备并不一 定基于L 0个空域向量和M 0个频域向量所构建的L 0×M 0个空频向量对反馈L 0×M 0个加权系数,而可能仅需针对L 0×M 0个空频向量对中的部分空频向量对反馈加权系数。因此,加权系数的上报个数也就可以当作用于构建预编码向量的空频向量对的个数。
在本申请实施例中,加权系数的上报个数也可以预先配置,或者说,用于构建预编码向量的空频向量对的个数可以预先配置。为方便说明,将终端设备根据L 0值和M 0值确定的加权系数的上报个数(或者说,用于构建预编码向量的空频向量对的个数)可以记作K 0,K 0≤2L 0×M 0,且K 0为正整数。可以理解的是,K 0是上述列举的第一映射关系组中的L值和M值多种组合所确定的K的多个取值中的一个。
在一种可能的设计中,K 0与2L 0×M 0的比值为预设值。例如,K与2L×M的比值可以是固定值,也可以由网络设备配置。
作为一个实施例,K 0与2L 0×M 0的比值为固定值。
作为另一个实施例,K 0与2L 0×M 0的比值由网络设备指示。
应理解,K 0与2L 0×M 0的比值与上文步骤210中所述的K与2L×M的比值的关系相似。为了简洁,这里不再赘述。
当协议定义了K 0与2L 0×M 0的比值采用上述某种设计时,终端设备可以基于相应的比值和预先确定的L 0值和M 0值便可以确定K 0值。
还应理解,K 0表示加权系数的上报个数,并不代表终端设备一定上报了K 0个加权系数。终端设备实际上报的加权系数的个数可以小于或等于K 0。例如,在极化方向数为2的情况下,在基于L 0个空域向量和M 0个频域向量所构建的对应于两个极化方向的2L 0×M 0个空频向量对中,可能有多个(例如大于2L 0×M 0-K 0个)空频向量对的加权系数的幅度量化值为零,对于幅度量化值为零的加权系数,终端设备可以不作上报。又例如,在极化方向数为1的情况下,在基于该L 0个空域向量和M 0个频域向量所构建的L 0×M 0个空频向量对中,可能有多个(例如大于L 0×M 0-K 0个)空频向量对的加权系数的幅度量化值为零,对于幅度量化值为零的加权系数,终端设备可以不作上报。
但可以理解的是,终端设备可以通过指示被选择的空频向量对的位置来指示加权系数和空频向量对的对应关系。例如,上文所列举的通过位图的方式来指示L 0×M 0个空频向量对被选择的空频向量对。
事实上,基于K与2L×M的比值,可以将上文列举的第一映射关系组扩展为空域向量的上报个数L、频域向量的上报个数M和加权系数的上报个数K的对应关系。
可选地,该第一映射关系组用于指示空域向量的上报个数L和频域向量的上报个数M与加权系数的上报个数K的对应关系。
以上文列举的几个第一映射关系组为例:
若K与2L×M的比值为固定值,上文列举的第一映射关系组可以进一步扩展为L值、M值与K值的映射关系。以表1和表41示出的第一映射关系组为例。若K与2L×M的比值为1/2,则基于表1中列举的L值和M值的组合,可以进一步确定所对应的K值如表1-1所示:
表1-1
Figure PCTCN2020070484-appb-000150
若K与与2L×M的比值为1/2,则基于表1中列举的L值和M值的组合,可以进一步确定所对应的K值如表44-1所示:
表44-1
Figure PCTCN2020070484-appb-000151
基于相同的方式,上文列举的各表可进一步扩展为L值、M值和K值的对应关系。为了简洁,这里不一一列举。
应理解,基于K与2L×M的不同比值分别对上文列举的表1至表111进一步扩展所得到的L值、M值和K值的映射关系均应落入本申请的保护范围内。
若K与2L×M的比值由网络设备配置,且可以取值为1/2或1/4,上文列举的第一映射关系组也可以进一步扩展为L值、M值与K值的映射关系。以表99示出的第一映射关系组为例。若K与2L×M的比值为1/4或1/2,则基于表X中列举的L值和M值的组合,可以进一步确定所对应的K值如表99-1和表99-2所示:
表99-1
Figure PCTCN2020070484-appb-000152
表99-2
Figure PCTCN2020070484-appb-000153
基于相同的方式,上文列举的各表可进一步扩展为L值、M值和K值的对应关系。为了简洁,这里不一一列举。
应理解,基于K与2L×M的不同比值分别对上文列举的表1至表111进一步扩展所得到的L值、M值和K值的映射关系均应落入本申请的保护范围内。
在这种情况下,终端设备可以直接根据网络设备发送的第一映射关系的指示确定L 0值、M 0值和K 0值。
上文列举的第一映射关系组的两种可能的形式(即,L值和M值的对应关系,以及L值、M值和K值的对应关系)仅为示例,不应对本申请构成任何限定。此外,通过表格来表现映射关系仅为一种可能的实现方式,不应对本申请构成任何限定。
因此,本申请实施例通过预先定义L值和M值的多种可能的对应关系,可以缩小上报个数的选择范围,有利于减小网络设备确定L值和M值的计算量。并且,通过缩小上报个数的选择范围,可以减小第一映射关系组中可能包含L值和M值的组合数,网络设备可以用更少的比特来指示第一映射关系组中的第一映射关系,有利于减小网络设备的指示开销。此外,本申请实施例所定义的L值和M值的多种组合考虑了不同的反馈精度的需求,在反馈开销相同或相接近的情况下,尽可能地将性能较好的L值和M值的组合保留下来,综合考虑了反馈开销和反馈精度,有利于提高通信***的性能。
上文中结合附图详细说明了本申请一实施例提供的参数配置方法。但这不应对本申请构成任何限定。本申请还提供了一种参数配置方法,可以预先配置N 4(N 4为正整数,下文中会详细说明N 4的具体意义)与频域向量的上报个数M的对应关系以及L和K的对应关系。下面结合图5详细说明本申请另一实施例提供的参数配置方法。
图6是本申请另一实施例提供的从设备交互的角度示出的参数配置方法的示意性流程图。如图所示,该方法500可以包括步骤510至步骤560。下面详细说明方法500中的各步骤。
在步骤510中,网络设备生成第三指示信息,该第三指示信息用于指示加权系数的上报个数K 0与两个极化方向上的空频向量对的个数2L 0×M 0的比值。
具体地,该2L 0×M 0个空频向量对中可以包括与第一极化方向对应的L 0×M 0个空频向量对和与第二极化方向对应的L 0×M 0个空频向量对。该两个极化方向可以共用相同的L 0×M 0个空频向量对,即,与第一极化方向对应的L 0×M 0个空频向量对和与第二极化方向对应的L 0×M 0个空频向量对可以是完全重复的;该两个极化方向也可以分别使用独立的L 0×M 0个空频向量对,即,与第一极化方向对应的L 0×M 0个空频向量对和与第二极化方向对应的L 0×M 0个空频向量对可以完全不同的,也可以是部分重复的,也可以是完全重复的。本申请对此不作限定。
下文列举了K与2L×M的比值的几种可能的取值。应理解,下文列举的K与2L×M的比值的可能取值可以是近似值。可以理解的是,由于K 0是K的多种取值中的一个,L 0是L的多种取值中的一个,M 0是M的多种取值中的一个。故,本申请实施例中K 0与2L 0×M 0的比值可以是下文列举的K与2L×M的比值的几种可能的取值中的一种。
可选地,K与2L×M的比值为1/2或1。
即,K=2L×M或K=L×M。
可选地,K与2L×M的比值为1/4、1/2或3/4。
具体地,K与2L×M的比值为1/4、1/2或3/4,可以是指,K与2L×M的比值等于1/4、1/2或3/4,或约等于1/4、1/2或3/4。即,
Figure PCTCN2020070484-appb-000154
或,
Figure PCTCN2020070484-appb-000155
或, K=[L×M/2],或,K=L×M,或,
Figure PCTCN2020070484-appb-000156
或,
Figure PCTCN2020070484-appb-000157
或,K=[3L×M/2]。
可选地,K与2L×M的比值为1/4、1/2、3/4或1。
具体地,K与2L×M的比值为1/4、1/2、3/4或1,可以是指,K与2L×M的比值等于1/4、1/2、3/4或1,或约等于1/4、1/2、3/4或1。即,
Figure PCTCN2020070484-appb-000158
或,
Figure PCTCN2020070484-appb-000159
或,K=[L×M/2],或,K=L×M,或,
Figure PCTCN2020070484-appb-000160
或,
Figure PCTCN2020070484-appb-000161
或,K=[3L×M/2],或,K=2L×M。
可选地,K与2L×M的比值为1/3或2/3。
具体地,K与2L×M的比值为1/3或2/3,可以是指,K与2L×M的比值等于1/3或2/3,或约等于1/3或2/3。即,
Figure PCTCN2020070484-appb-000162
或,
Figure PCTCN2020070484-appb-000163
或,K=[2L×M/3],或,
Figure PCTCN2020070484-appb-000164
或,
Figure PCTCN2020070484-appb-000165
或,K=[4L×M/3]。
可选地,K与2L×M的比值为1/3、2/3或1。
具体地,K与2L×M的比值为1/3、2/3或1,可以是指,K与2L×M的比值等于1/3、2/3或1,或约等于1/3、2/3或1。即,
Figure PCTCN2020070484-appb-000166
或,
Figure PCTCN2020070484-appb-000167
或,K=[2L×M/3],或,
Figure PCTCN2020070484-appb-000168
或,
Figure PCTCN2020070484-appb-000169
或,K=[4L×M/3],或,K=2L×M。
其中,
Figure PCTCN2020070484-appb-000170
表示向上取整,
Figure PCTCN2020070484-appb-000171
表示向下取整,[]表示就近取整。当协议定义了按照某一种方式取整后,网络设备和终端设备便可以按照相同的方式确定K值。
应理解,上文列举的K与2L×M的比值仅为示例,不应对本申请构成任何限定。本申请对于K与2L×M的比值的具体取值不作限定。
还应理解,上文仅以极化方向数为2为例,列举了K与2L×M的几种可能的比值。上文列举的K与2L×M的比值也可以变形为K与L×M的比值或者2K’(K’=K/2)与2L×M的比值等。本申请对此不作限定。
还应理解,当极化方向数为其他值时,上述K与2L×M的也可以做相应变换。例如,当极化方向数为1时,可以变换为K与L×M的比值。
在步骤520中,网络设备发送该第三指示信息。相应地,终端设备接收该第三指示信息。
该第三指示信息可以通过高层信令携带。该高层信令例如可以是RRC消息或MAC CE。该第三指示信息也可以通过物理层信令携带。该物理层信令例如可以是DCI。本申请对于携带该第三指示信息的具体信令不作限定。用于携带该第三指示信息的信令可以是已有的信令,也可以新增的信令。
在步骤530中,网络设备发送第二指示信息,该第二指示信息用于指示待上报的频域单元的个数和位置。
上文方法200中对网络设备发送第二指示信息以及通过第二指示信息指示待上报的频域单元的个数和位置的具体方法做了详细说明,为了简洁,这里不再赘述。
在本申请实施例中,频域向量的上报个数可以与待上报的频域单元的个数相关,也可以与CSI-RS的传输带宽中频域单元的个数相关。
具体地,频域单元的上报个数M可以由以下多项中的一项确定:
a、CSI-RS的传输带宽中频域单元的个数;或
b、CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域单元占用的带宽中频域单元的个数;或
c、CSI-RS的传输带宽中待上报的频域单元的个数。
上文方法200的步骤220中已经结合附图对上述a、b和c分别作了详细说明,为了简洁,这里不再赘述。
当协议定义了用于确定频域向量的上报个数的参数为上文列举的a、b或c中的某一项时,网络设备可以基于协议所定义的这一项来确定第一映射关系组。下文中为方便说明,将用于确定频域向量的上报个数的参数记作N 4,则N 4可以为上述a、b或c中的一项。应理解,N 4与上文方法200中的N 3可以表示相同的含义,也可以表示不同的含义。本申请对此不作限定。
在步骤540中,终端设备根据第二指示信息确定频域向量的上报个数M 0
具体地,协议可以预先定义N 4与频域向量的上报个数的一个或多个对应关系,或者,网络设备和终端设备可以预先约定N 4与频域向量的上报个数的一个或多个对应关系。网络设备在确定了N 4的取值时,便可以根据N 4与映射关系组的对应关系选择频域向量的上报个数M 0
具体地,可以基于不同的门限值将N 4的取值范围分为多个区间,以与多个映射关系组一一对应。在本实施例中,该N 4取值的多个区间可以与上文所列举的多个映射关系表中的部分或全部一一对应。
例如,可通过一个预定义的门限值N th4将N 4的取值范围分为两个区间。第一区间范围内的N 4取值满足N 4<N th4,可对应于上文列举的多个M值中的一个;第二区间范围内的N 4取值满足N 4≥N th4,可对应于上文列举的多个M值中的另一个。该两个区间分别对应的M值是互不相同的。其中,N th4为正整数。
又例如,可通过两个预定义的门限值N th5和N th6,将N 4的取值范围分为三个区间。第一区间范围内的N 4取值满足N 4<N th5,可对应于上文列举的多个M值中的一个;第二区间范围内的N 4取值满足N th5≤N 4<N th6,可对应于上文列举的多个M值中的另一个;第三区间范围内的N 4取值满足N 4≥N th6,可对应于上文列举的多个M值中的一个。该三个区间分别对应的M值是互不相同的。其中,N th6>N th5,且N th5和N th6均为正整数。
因此,终端设备接收到第二指示信息之后,便可以根据N 4的取值所属的区间,确定频域向量的上报个数M 0
在步骤540中,终端设备根据第二指示信息确定频域向量的上报个数M 0
在步骤550中,网络设备发送第四指示信息,该第四指示信息用于指示空域向量的上报个数L 0。相应地,终端设备接收该第四指示信息。
具体地,该第四指示信息可以与type II码本中定义的用于指示空域向量的上报个数L 0的信令为同一信令,也可以为其他新增的信令。本申请对此不作限定。例如,该第四指示信息可以通过高层信令携带。该高层信令例如可以是RRC消息或MAC CE。该第四指示信息也可以通过物理层信令携带。该物理层信令例如可以是DCI。本申请对于携带该第四指示信息的具体信令不作限定。用于携带该第四指示信息的信令可以是已有的信令,也可以新增的信令。
可选地,空域向量的上报个数L可以为2、3或4。
可选地,空域向量的上报个数L为2、3、4或6。
本申请实施例中,第四指示信息所指示的L 0值可以为上文所列举的L的多种可能的 取值中的一个。
应理解,上文列举的空域向量的上报个数仅为示例,不应对本申请构成任何限定。本申请对于空域向量的上报个数的具体取值不作限定。
在步骤560中,终端设备根据K 0与2L 0×M 0的比值、频域向量的上报个数M 0和空域向量的上报个数L 0,确定加权系数的上报个数K 0
终端设备在接收到上述第二指示信息和第四指示信息之后,可以分别确定频域向量的上报个数M 0和空域向量的上报个数L 0。进而可以根据第三指示信息所指示的K与2L×M的比值确定加权系数的上报个数K 0
应理解,上文列举的第三指示信息和第四指示信息可以携带在同一信令中,也可以携带在不同的信令中。本申请对此不作限定。
因此,本申请实施例通过预先定义N 4值和M值的多种可能的对应关系以及K与2L×M的多种可能的比值,可以缩小上报个数的选择范围,有利于减小网络设备确定L值、M值和K值的计算量。并且,通过缩小上报个数的选择范围,可以减小第一映射关系组中可能包含L值、M值和K值的组合数,网络设备可以用更少的比特来指示第一映射关系组中的第一映射关系,有利于减小网络设备的指示开销。此外,本申请实施例所定义的N 4值和M值的多种组合考虑了待上报的频域单元的个数,为不同的待上报的频域单元的个数,配置不同的频域单元的上报个数,以获得较高的反馈精度。并且,尽可能地将性能较好的L值和M值的组合保留下来,综合考虑了反馈开销和反馈精度,有利于提高通信***的性能。
应理解,上述实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图2至图5详细说明了本申请实施例提供的参数指示方法。以下,结合图6至图8详细说明本申请实施例提供的通信装置。
图6是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括通信单元1100和处理单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法200或方法500中的终端设备,该通信装置1000可以包括用于执行图2中的方法200或图5中的方法500中终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200或图5中的方法500的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,通信单元1100可用于执行方法200中的步骤230,处理单元1200可用于执行方法200中的步骤240和步骤250。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图5中的方法500时,通信单元1100可用于执行方法500中的步骤520、步骤530和步骤550,处理单元1200可用于执行方法500中的步骤540和步骤560。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的通信单元1100可对应于图7中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图7中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法200或方法500中的网络设备,该通信装置1000可以包括用于执行图2中的方法200或图5中的方法500中网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200或图5中的方法500的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,通信单元1100可用于执行方法200中的步骤230,处理单元1200可用于执行方法200中的步骤210和步骤220。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图5中的方法500时,通信单元1100可用于执行方法500中的步骤520、步骤530和步骤550,处理单元1200可用于执行方法500中的步骤510。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的通信单元为可对应于图8中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1200可对应于图8中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
图7是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的***中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图6中的处理单元对应。
上述收发器2020可以与图6中的通信单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图7所示的终端设备2000能够实现图2或图5所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图8是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1所示的***中,执行上述方法实施例中网络设备的功能。如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3200。所述RRU 3100可以称为收发单元,与图6中的通信单元1200对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图6中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图8所示的基站3000能够实现图2或图5的方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的通信的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是***芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM, SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2和图5所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2和图5所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种***,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应 用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (49)

  1. 一种参数配置方法,其特征在于,包括:
    接收第一映射关系的指示,所述第一映射关系为预先配置的第一映射关系组中的一个映射关系,所述第一映射关系组包括至少一个映射关系,所述至少一个映射关系用于指示空域向量的上报个数和频域向量的上报个数的至少一种对应关系;
    根据所述第一映射关系,确定所述空域向量的上报个数L 0和所述频域向量的上报个数M 0,L 0个空域向量和M 0个频域向量用于构建一个或多个频域单元的预编码向量;L 0和M 0均为正整数。
  2. 如权利要求1所述的方法,其特征在于,所述L 0个空域向量和M 0个频域向量所构建的L 0×M 0个空频向量对中的部分或全部空频向量对用于构建所述预编码向量;
    其中,用于构建所述预编码向量的空频向量对的个数K 0与2L 0×M 0的比值为预设值,2L 0×M 0表示与两个极化方向上分别由L 0个空域向量和M 0个频域向量构建的空频向量对的个数之和,K 0表示所述两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
  3. 如权利要求2所述的方法,其特征在于,K 0与2L 0×M 0的比值为1/2。
  4. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示所述预设值。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述空域向量的上报个数L 0和所述频域向量的上报个数M 0,确定用于构建所述预编码向量的空频向量对的个数K 0,K 0≤2L 0×M 0且K 0为正整数,2L 0×M 0表示与两个极化方向上分别由L 0个空域向量和M 0个频域向量构建的空频向量对的个数之和,K 0表示与所述两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
  6. 如权利要求1所述的方法,其特征在于,所述至少一个映射关系还用于指示空域向量的上报个数和频域向量的上报个数与加权系数的上报个数的至少一种对应关系。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述第一映射关系组为多个映射关系组中的一个,所述第一映射关系组由以下多项中的一项确定:信道状态信息参考信号CSI-RS的传输带宽中包含的频域单元数、所述CSI-RS的传输带宽中待上报的频域单元数或所述CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域单元所占带宽中包含的频域单元数。
  8. 一种参数配置方法,其特征在于,包括:
    生成第一映射关系的指示,所述第一映射关系用于指示空频向量的上报个数L 0和所述频域向量的上报个数M 0;L 0个空域向量和M 0个频域向量用于构建一个或多个频域单元的预编码向量;所述第一映射关系为预先配置的第一映射关系组中的一个映射关系,所述第一映射关系组包括至少一个映射关系,所述至少一个映射关系用于指示空域向量的上报个数和频域向量的上报个数的至少一种对应关系;其中,L 0和M 0均为正整数;
    发送所述第一映射关系的指示。
  9. 如权利要求8所述的方法,其特征在于,所述L 0个空域向量和M 0个频域向量所 构建的L 0×M 0个空频向量对中的部分或全部空频向量对用于构建所述预编码向量;
    其中,用于构建所述预编码向量的空频向量对的上报个数K 0与2L 0×M 0的比值为预设值,2L 0×M 0表示与两个极化方向上分别由L 0个空域向量和M 0个频域向量构建的空频向量对的个数之和,K 0表示所述两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
  10. 如权利要求9所述的方法,其特征在于,K 0与2L 0×M 0的比值为1/2。
  11. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    发送第一指示信息,所述第一指示信息用于指示所述预设值。
  12. 如权利要求8所述的方法,其特征在于,所述至少一个映射关系还用于指示空域向量的上报个数和频域向量的上报个数与加权系数的上报个数的至少一种对应关系。
  13. 如权利要求8至12中任一项所述的方法,其特征在于,所述第一映射关系组为多个映射关系组中的一个,所述第一映射关系组由以下多项中的一项确定:信道状态信息参考信号CSI-RS的传输带宽中包含的频域单元数、所述CSI-RS的传输带宽中待上报的频域单元数或所述CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域资源所占带宽中包含的频域单元数。
  14. 一种通信装置,其特征在于,包括:
    通信单元,用于接收第一映射关系的指示,所述第一映射关系为预先配置的第一映射关系组中的一个映射关系,所述第一映射关系组包括至少一个映射关系,所述至少一个映射关系用于指示空域向量的上报个数和频域向量的上报个数的至少一种对应关系;
    处理单元,用于根据所述第一映射关系,确定所述空域向量的上报个数L 0和所述频域向量的上报个数M 0,L 0个空域向量和M 0个频域向量用于构建一个或多个频域单元的预编码向量;L 0和M 0均为正整数。
  15. 如权利要求14所述的装置,其特征在于,所述L 0个空域向量和M 0个频域向量所构建的L 0×M 0个空频向量对中的部分或全部空频向量对用于构建所述预编码向量;
    其中,用于构建所述预编码向量的空频向量对的个数K 0与2L 0×M 0的比值为预设值,2L 0×M 0表示与两个极化方向上分别由L 0个空域向量和M 0个频域向量构建的空频向量对的个数之和,K 0表示所述两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
  16. 如权利要求15所述的装置,其特征在于,K 0与2L 0×M 0的比值为1/2。
  17. 如权利要求15所述的装置,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示所述预设值。
  18. 如权利要求14至17中任一项所述的装置,其特征在于,所述处理单元还用于根据所述空域向量的上报个数L 0和所述频域向量的上报个数M 0,确定用于构建所述预编码向量的空频向量对的个数K 0,K 0≤2L 0×M 0且K 0为正整数,2L 0×M 0表示与两个极化方向上分别由L 0个空域向量和M 0个频域向量构建的空频向量对的个数之和,K 0表示所述两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
  19. 如权利要求14所述的装置,其特征在于,所述至少一个映射关系还用于指示空域向量的上报个数和频域向量的上报个数与加权系数的上报个数的至少一种对应关系。
  20. 如权利要求14至19中任一项所述的装置,其特征在于,所述第一映射关系组为 多个映射关系组中的一个,所述第一映射关系组由以下多项中的一项确定:信道状态信息参考信号CSI-RS的传输带宽中包含的频域单元数、所述CSI-RS的传输带宽中待上报的频域单元数或所述CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域单元所占带宽中包含的频域单元数。
  21. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第一映射关系的指示,所述第一映射关系用于指示空频向量的上报个数L 0和所述频域向量的上报个数M 0;L 0个空域向量和M 0个频域向量用于构建一个或多个频域单元的预编码向量;所述第一映射关系为预先配置的第一映射关系组中的一个映射关系,所述第一映射关系组包括至少一个映射关系,所述至少一个映射关系用于指示空域向量的上报个数和频域向量的上报个数的至少一种对应关系;其中,L 0和M 0均为正整数;
    通信单元,用于发送所述第一映射关系的指示。
  22. 如权利要求21所述的装置,其特征在于,所述L 0个空域向量和M 0个频域向量所构建的L 0×M 0个空频向量对中的部分或全部空频向量对用于构建所述预编码向量;
    其中,用于构建所述预编码向量的空频向量对的个数K 0与2L 0×M 0的比值为预设值,2L 0×M 0表示与两个极化方向上分别由L 0个空域向量和M 0个频域向量构建的空频向量对的个数之和,K 0表示所述两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
  23. 如权利要求22所述的装置,其特征在于,K 0与2L 0×M 0的比值为1/2。
  24. 如权利要求22所述的装置,其特征在于,所述通信单元还用于发送第一指示信息,所述第一指示信息用于指示所述预设值。
  25. 如权利要求21所述的装置,其特征在于,所述至少一个映射关系还用于指示空域向量的上报个数和频域向量的上报个数与加权系数的上报个数的至少一种对应关系。
  26. 如权利要求21至25中任一项所述的装置,其特征在于,所述第一映射关系组为多个映射关系组中的一个,所述第一映射关系组由以下多项中的一项确定:信道状态信息参考信号CSI-RS的传输带宽中包含的频域单元数、所述CSI-RS的传输带宽中待上报的频域单元数或所述CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域单元所占带宽中包含的频域单元数。
  27. 一种通信装置,其特征在于,包括:
    收发器,用于接收第一映射关系的指示,所述第一映射关系为预先配置的第一映射关系组中的一个映射关系,所述第一映射关系组包括至少一个映射关系,所述至少一个映射关系用于指示空域向量的上报个数和频域向量的上报个数的至少一种对应关系;
    处理器,用于根据所述第一映射关系,确定所述空域向量的上报个数L 0和所述频域向量的上报个数M 0,L 0个空域向量和M 0个频域向量用于构建一个或多个频域单元的预编码向量;L 0和M 0均为正整数。
  28. 如权利要求27所述的装置,其特征在于,所述L 0个空域向量和M 0个频域向量所构建的L 0×M 0个空频向量对中的部分或全部空频向量对用于构建所述预编码向量;
    其中,用于构建所述预编码向量的空频向量对的个数K 0与2L 0×M 0的比值为预设值,2L 0×M 0表示与两个极化方向上分别由L 0个空域向量和M 0个频域向量构建的空频向量对 的个数之和,K 0表示所述两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
  29. 如权利要求28所述的装置,其特征在于,K 0与2L 0×M 0的比值为1/2。
  30. 如权利要求28所述的装置,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示所述预设值。
  31. 如权利要求27至30中任一项所述的装置,其特征在于,所述处理器还用于根据所述空域向量的上报个数L 0和所述频域向量的上报个数M 0,确定用于构建所述预编码向量的空频向量对的个数K 0,K 0≤2L 0×M 0且K 0为正整数,2L 0×M 0表示与两个极化方向上分别由L 0个空域向量和M 0个频域向量构建的空频向量对的个数之和,K 0表示所述两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
  32. 如权利要求27所述的装置,其特征在于,所述至少一个映射关系还用于指示空域向量的上报个数和频域向量的上报个数与加权系数的上报个数的至少一种对应关系。
  33. 如权利要求27至32中任一项所述的装置,其特征在于,所述第一映射关系组为多个映射关系组中的一个,所述第一映射关系组由以下多项中的一项确定:信道状态信息参考信号CSI-RS的传输带宽中包含的频域单元数、所述CSI-RS的传输带宽中待上报的频域单元数或所述CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域单元所占带宽中包含的频域单元数。
  34. 一种通信装置,其特征在于,包括:
    处理器,用于生成第一映射关系的指示,所述第一映射关系用于指示空频向量的上报个数L 0和所述频域向量的上报个数M 0;L 0个空域向量和M 0个频域向量用于构建一个或多个频域单元的预编码向量;所述第一映射关系为预先配置的第一映射关系组中的一个映射关系,所述第一映射关系组包括至少一个映射关系,所述至少一个映射关系用于指示空域向量的上报个数和频域向量的上报个数的至少一种对应关系;其中,L 0和M 0均为正整数;
    收发器,用于发送所述第一映射关系的指示。
  35. 如权利要求34所述的装置,其特征在于,所述L 0个空域向量和M 0个频域向量所构建的L 0×M 0个空频向量对中的部分或全部空频向量对用于构建所述预编码向量;
    其中,用于构建所述预编码向量的空频向量对的个数K 0与2L 0×M 0的比值为预设值,2L 0×M 0表示与两个极化方向上分别由L 0个空域向量和M 0个频域向量构建的空频向量对的个数之和,K 0表示所述两个极化方向上分别用于构建预编码向量的空频向量对的个数之和。
  36. 如权利要求35所述的装置,其特征在于,K 0与2L 0×M 0的比值为1/2。
  37. 如权利要求35所述的装置,其特征在于,所述收发器还用于发送第一指示信息,所述第一指示信息用于指示所述预设值。
  38. 如权利要求34所述的装置,其特征在于,所述至少一个映射关系还用于指示空域向量的上报个数和频域向量的上报个数与加权系数的上报个数的至少一种对应关系。
  39. 如权利要求34至38中任一项所述的装置,其特征在于,所述第一映射关系组为多个映射关系组中的一个,所述第一映射关系组由以下多项中的一项确定:信道状态信息参考信号CSI-RS的传输带宽中包含的频域单元数、所述CSI-RS的传输带宽中待上报的频 域单元数或所述CSI-RS的传输带宽中从首个待上报的频域单元至末个待上报的频域单元所占带宽中包含的频域单元数。
  40. 一种通信装置,其特征在于,所述装置用于实现如权利要求1至7中任一项所述的方法。
  41. 一种通信装置,其特征在于,所述装置用于实现如权利要求8至13中任一项所述的方法。
  42. 一种通信装置,其特征在于,包括处理器,所述处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至7中任一项所述的方法。
  43. 一种通信装置,其特征在于,包括处理器,所述处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求8至13中任一项所述的方法。
  44. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求1至7中任一项所述的方法。
  45. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求8至13中任一项所述的方法。
  46. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至7中任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求8至13中任一项所述的方法。
  48. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法。
  49. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求8至13中任一项所述的方法。
PCT/CN2020/070484 2019-01-09 2020-01-06 参数配置方法和通信装置 WO2020143577A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP23198759.5A EP4311122A3 (en) 2019-01-09 2020-01-06 Parameter configuration method and communications apparatus
EP20738409.0A EP3907918B1 (en) 2019-01-09 2020-01-06 Parameter configuration method and communication apparatus
US17/370,438 US20210337565A1 (en) 2019-01-09 2021-07-08 Parameter configuration method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910021166.4 2019-01-09
CN201910021166.4A CN111431679B (zh) 2019-01-09 2019-01-09 参数配置方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/370,438 Continuation US20210337565A1 (en) 2019-01-09 2021-07-08 Parameter configuration method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020143577A1 true WO2020143577A1 (zh) 2020-07-16

Family

ID=71520657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070484 WO2020143577A1 (zh) 2019-01-09 2020-01-06 参数配置方法和通信装置

Country Status (4)

Country Link
US (1) US20210337565A1 (zh)
EP (2) EP4311122A3 (zh)
CN (3) CN112533295B (zh)
WO (1) WO2020143577A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533295B (zh) * 2019-01-09 2021-11-19 华为技术有限公司 参数配置方法和通信装置
CN111315016B (zh) * 2019-01-11 2023-04-07 北京紫光展锐通信技术有限公司 码本反馈方法、用户终端及计算机可读存储介质
CN117097375A (zh) * 2022-05-12 2023-11-21 华为技术有限公司 一种信号传输方法及装置
CN117425170A (zh) * 2022-07-07 2024-01-19 上海朗帛通信技术有限公司 用于无线通信的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969522A (zh) * 2004-06-18 2007-05-23 三星电子株式会社 用于通信***中的空间频率块编码/解码的装置和方法
WO2008069579A1 (en) * 2006-12-05 2008-06-12 Electronics And Telecommunications Research Institute Method for transmitting signal and information on antenna, and method for estimating the number of antennas
EP3038270A1 (en) * 2014-12-23 2016-06-29 Telefonica S.A. Method for performing multiple access in wireless OFDM cellular systems over multipath wireless channels considering both space and frequency domains, base station and computer programs thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944985B2 (en) * 2006-08-24 2011-05-17 Interdigital Technology Corporation MIMO transmitter and receiver for supporting downlink communication of single channel codewords
US9967810B2 (en) * 2013-10-31 2018-05-08 Lg Electronics Inc. Method for transmitting discovery message in wireless communication system and apparatus for same
PL3940965T3 (pl) * 2014-09-25 2023-05-02 Telefonaktiebolaget Lm Ericsson (Publ) Węzeł sieciowy, wyposażenie użytkownika oraz stosowane w nich sposoby umożliwiające ue wyznaczanie książki kodowej koderów wstępnych
CN107181562A (zh) * 2016-03-11 2017-09-19 电信科学技术研究院 一种csi反馈方法、预编码及装置
MX2021002304A (es) * 2018-08-29 2021-04-28 Fraunhofer Ges Forschung Receptor, transmisor, sistema y metodo que emplean precodificacion de retardo espacial.
WO2020142882A1 (zh) * 2019-01-07 2020-07-16 Oppo广东移动通信有限公司 一种码本处理方法、终端设备及网络设备
CN112533295B (zh) * 2019-01-09 2021-11-19 华为技术有限公司 参数配置方法和通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969522A (zh) * 2004-06-18 2007-05-23 三星电子株式会社 用于通信***中的空间频率块编码/解码的装置和方法
WO2008069579A1 (en) * 2006-12-05 2008-06-12 Electronics And Telecommunications Research Institute Method for transmitting signal and information on antenna, and method for estimating the number of antennas
EP3038270A1 (en) * 2014-12-23 2016-06-29 Telefonica S.A. Method for performing multiple access in wireless OFDM cellular systems over multipath wireless channels considering both space and frequency domains, base station and computer programs thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: ""Discussion on CSI enhancement"", "3GPP TSG RAN WG1 MEETING #95 R1-1812242", 16 November 2018 (2018-11-16), XP051478408 *

Also Published As

Publication number Publication date
US20210337565A1 (en) 2021-10-28
CN112533295A (zh) 2021-03-19
CN112533295B (zh) 2021-11-19
CN111431679B (zh) 2024-04-12
EP3907918B1 (en) 2023-10-18
CN111431679A (zh) 2020-07-17
EP3907918A1 (en) 2021-11-10
EP4311122A3 (en) 2024-04-03
EP4311122A2 (en) 2024-01-24
EP3907918A4 (en) 2022-03-16
CN118199834A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
WO2020125510A1 (zh) 一种信道测量方法和通信装置
WO2020125534A1 (zh) 一种信道测量方法和通信装置
WO2020143577A1 (zh) 参数配置方法和通信装置
WO2020221118A1 (zh) 指示和确定预编码矩阵的方法以及通信装置
WO2020125511A1 (zh) 一种信道测量方法和通信装置
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
WO2020211681A1 (zh) 一种信道测量方法和通信装置
CN111757382B (zh) 指示信道状态信息的方法以及通信装置
US11362707B2 (en) Precoding vector indicating and determining method and communications apparatus
WO2020221117A1 (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
WO2020244496A1 (zh) 一种信道测量方法和通信装置
CN115088224B (zh) 一种信道状态信息反馈方法及通信装置
WO2020135101A1 (zh) 用于构建预编码向量的向量指示方法以及通信装置
CN111756422A (zh) 指示信道状态信息的方法以及通信装置
CN110875767B (zh) 指示和确定预编码向量的方法和通信装置
WO2020073788A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2020164387A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2020078251A1 (zh) 指示和确定预编码向量的方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020738409

Country of ref document: EP

Effective date: 20210806

WWE Wipo information: entry into national phase

Ref document number: 521422505

Country of ref document: SA