WO2020141871A1 - Preparation method for carbon nanotube foam and thermoelectric element comprising carbon nanotube - Google Patents

Preparation method for carbon nanotube foam and thermoelectric element comprising carbon nanotube Download PDF

Info

Publication number
WO2020141871A1
WO2020141871A1 PCT/KR2019/018825 KR2019018825W WO2020141871A1 WO 2020141871 A1 WO2020141871 A1 WO 2020141871A1 KR 2019018825 W KR2019018825 W KR 2019018825W WO 2020141871 A1 WO2020141871 A1 WO 2020141871A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
carbon nanotube
mixed solution
thermoelectric element
carbon nanotubes
Prior art date
Application number
PCT/KR2019/018825
Other languages
French (fr)
Korean (ko)
Inventor
조성윤
이민혜
강영훈
이영국
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190173235A external-priority patent/KR102361120B1/en
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2020141871A1 publication Critical patent/WO2020141871A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • It relates to a method of manufacturing a carbon nanotube foam and a thermoelectric element including the carbon nanotube.
  • thermoelectric elements such as thermoelectric elements, piezoelectric elements, and photovoltaic elements that use energy that can be obtained from nature are in the spotlight as the next generation energy according to the global demand to solve the rapid increase in energy consumption and realize the low carbon policy.
  • thermoelectric element is a technology for producing electricity from thermal energy or converting electrical energy to thermal energy, and it is possible to generate electricity by using a temperature difference as well as cooling and heating by supplying electricity.
  • thermoelectric material is proportional to the electric conductivity ( ⁇ ) and the Seebeck coefficient (S), which is the change in electromotive force (V) according to the temperature change (T), and is inversely proportional to the thermal conductivity ( ⁇ ). Therefore, in order to realize a high performance thermoelectric element, it is necessary to develop a thermoelectric material having a high electrical conductivity, a high thermoelectric coefficient, and a low thermal conductivity.
  • Carbon nanotubes as thermoelectric materials have undergone many studies due to their high electrical conductivity, strong mechanical strength, and the possibility of various doping. However, while carbon nanotube-based materials generally have high electrical conductivity, thermal conductivity is also very large at the same time, indicating limitations such as deterioration of the performance of thermoelectric elements. Need improvement.
  • Patent Document 1 Japanese Patent 5922126 B2
  • An object of one aspect of the present invention is to provide a method of manufacturing a porous carbon nanotube foam capable of reducing the high thermal conductivity of an existing carbon nanotube, realizing various shapes of structures, and controlling thermoelectric properties.
  • An object of another aspect of the present invention is to provide a method of manufacturing a composite material for a thermoelectric device comprising carbon nanotubes and an organic polymer.
  • Another object of the present invention is to provide a method for manufacturing a composite material for a thermoelectric device including a carbon nanotube and a p-type dopant or an n-type dopant.
  • Another object of the present invention is to provide a method of manufacturing an elastic composite material for a flexible thermoelectric element comprising carbon nanotubes and elastic polymers.
  • Another object of the present invention is to provide a composite material for a thermoelectric device including carbon nanotubes and organic polymers, elastic polymers, n-type dopants, and p-type dopants.
  • An object of another aspect of the present invention is to provide a method of manufacturing a thermoelectric element including a carbon nanotube foam and a thermoelectric element.
  • Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Preparing a mixed solution by dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride;
  • a method of manufacturing a carbon nanotube foam comprising a step of evaporating the support in a vacuum is provided.
  • Carbon nanotubes and organic polymers are cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone ( preparing a mixed solution by dispersing in one or more solvents selected from the group consisting of acetone), chloroform, and methylene chloride;
  • thermoelectric device A method of manufacturing a composite material for a thermoelectric device comprising a step of evaporating the support in a vacuum.
  • Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Dispersing in one or more solvents selected from the group consisting of chloroform, and methylene chloride, and then mixing a p-type dopant or an n-type dopant to prepare a mixed solution;
  • thermoelectric device A method of manufacturing a composite material for a thermoelectric device comprising a step of evaporating the support in a vacuum.
  • Carbon nanotubes and elastic polymers are cyclohexane, benzene, water (H 2 O), 1,4-dioxane, butyl alcohol, and acetone (preparing a mixed solution by dispersing in at least one solvent selected from the group consisting of acetone), chloroform, and methylene chloride;
  • a method of manufacturing an elastic composite material for a flexible thermoelectric element comprising a step of curing a product is provided.
  • carbon nanotubes in another aspect of the present invention. And at least one member selected from the group consisting of organic polymers, elastic polymers, n-type dopants, and p-type dopants.
  • thermoelectric element characterized in that it is in the form of a foam is provided.
  • Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, After dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride, the mixture is mixed with a p-type dopant to prepare a mixed solution to at least one of the grooves of the mold. Applying;
  • Carbon nanotubes are cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, After dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride, an n-type dopant is mixed to prepare a mixed solution to at least one of the grooves of the mold. Applying;
  • thermoelectric element including a step of forming an electrode
  • Carbon nanotubes And at least one member selected from the group consisting of organic polymers, elastic polymers, n-type dopants, and p-type dopants; the composite material for thermoelectric elements comprising a foam form;
  • thermoelectric element An electrode formed on the composite material for a thermoelectric element is provided.
  • the method of manufacturing a carbon nanotube foam provided in one aspect of the present invention can be formed through a dispersion method using an organic solvent and a simple vacuum evaporation drying method, and it is possible to implement a carbon nanotube foam having a porous structure.
  • the carbon nanotube foam having such a porous structure can be manufactured freely and in various shapes, and has the advantage of stably realizing a vertical thermoelectric element compared to a carbon nanotube film made in the same amount.
  • the carbon nanotube foam produced through this may have low thermal conductivity without serious loss of Seebeck coefficient due to the presence of multiple pores.
  • the method of manufacturing a composite material for a thermoelectric element provided in another aspect of the present invention is doped by mixing an organic polymer when dispersing carbon nanotubes or by mixing a p-type dopant or an n-type dopant in the dispersed carbon nanotubes.
  • This makes it possible to easily produce a carbon nanotube foam showing p-type or n-type characteristics, and thus has the advantage of implementing a pn pair of thermoelectric elements in a simple manner.
  • the method of manufacturing an elastic composite material for a flexible thermoelectric device provided in another aspect of the present invention has strong recovery characteristics against external pressure such as pressing, bending, warping and stretching by mixing an elastic polymer when dispersing carbon nanotubes. It is possible to implement flexible thermoelectric elements.
  • FIG. 1 is a photograph showing various shapes of a carbon nanotube foam prepared according to an embodiment
  • FIG. 2A to 2D are carbon nanotube films prepared according to one embodiment (Comparative Example 1, FIG. 2A), carbon nanotube foam (Example 1, FIG. 2B), and PEDOT:PSS/carbon nanotube foam (Example 7, FIG. 2c) and polyethyleneimine/carbon nanotube foam (Example 15, FIG. 2d) are photographs observed with a scanning electron microscope (SEM);
  • FIGS. 3A and 3B are graphs showing the Seebeck coefficient and electrical conductivity of carbon nanotube foams doped with various concentrations of iron chloride in the composite materials prepared in Examples 19 to 34 (FIG. 3A) and carbon nano doped with benzylbiogen. It is a graph showing the Seebeck coefficient and electrical conductivity of the tube foam (FIG. 3B);
  • FIG. 4A to 4C are schematic diagrams showing a method of manufacturing a thermoelectric element (FIG. 4A), output voltage and power output according to the output current of the thermoelectric element manufactured in Example 35 (FIG. 4B), and output power according to ⁇ T, A graph showing output power per area and output power per weight (FIG. 4C);
  • 5a and 5b is a graph showing the porosity of the carbon nanotube foam to which the elastic polymers prepared in Examples 36 to 38 were added with a scanning microscope and a stress-strain curve (FIG. 5A). And 900 wt% of the polydimethylsiloxane is added carbon nanotube foam is a photograph showing the recovery characteristics of the pressing, bending and warping (Fig. 5b).
  • Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Preparing a mixed solution by dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride;
  • a method of manufacturing a carbon nanotube foam comprising a step of evaporating the support in a vacuum is provided.
  • the method of manufacturing a carbon nanotube foam is a carbon nanotube cyclohexane (cyclohexane), benzene (benzen), water (H 2 O), 1,4-dioxane (1,4 -dioxane), butyl alcohol (tert-butyl alcohol), acetone (acetone), chloroform (chloroform), and methylene chloride (methylene chloride) selected from the group consisting of one or more solvents to disperse to prepare a mixed solution It includes.
  • the present invention provides a method for producing a carbon nanotube in the form of a foam by a simple method, and for this purpose, a carbon nanotube is dispersed in a specific solvent to prepare a mixed solution.
  • the solvent may be used alone or in combination of one or more of cyclohexane, benzene, water, 1,4-dioxane, butyl alcohol, acetone, chloroform, and methylene chloride.
  • the carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes, and single-walled carbon nanotubes advantageous for electrical conductivity properties may be used.
  • the content of the carbon nanotubes in the mixed solution may be 1 mg/mL to 20 mg/mL, 3 mg/mL to 15 mg/mL, and 5 mg/mL to 11 mg/mL. . If, when the content of the carbon nanotubes in the mixed solution is less than 1 mg/mL, the amount of the solvent is excessively greater than the amount of the carbon nanotubes, there is a problem that the formation of the carbon nanotube foam is difficult, and when it exceeds 20 mg/mL There is a problem in that dispersibility is low and formation of a uniform carbon nanotube foam is difficult.
  • the method of dispersing the carbon nanotubes in a solvent includes methods such as micronizing, ball mill, tip ultrasonication, and the like.
  • the mixed solution may further include at least one material of an organic polymer, metal, p-type dopant, and n-type dopant.
  • the mixed solution can be adjusted by mixing the organic polymer or metal together.
  • the organic polymer is polystyrene, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Poly(3-hexylthiophene-2,5-diyl)(P3HT), polyaniline, polyvinyl alcohol and polyethyleneimine. Can.
  • the mixing ratio of the carbon nanotube and the organic polymer is preferably 10:90 to 40:60 by weight, may be 15:85 to 35:65, and may be 20:80 to 30:70, 10:90 to 20:80, and may be 30:70 to 40:60.
  • the metal may be antimony (Sb), selenium (Se), silver (Ag), copper (Cu), tin (Sn), manganese (Mn) and iron (Fe).
  • the p-type dopant is iron chloride, gold chloride, silver chloride, carbazole and its derivatives, benzoquinone, tetracyanoquinone, terafluorquinodimethane, iodine compound, diphenylidine, imidazole, triazole, polyazaine, pyridine Triphenylamine, tetrathiafulvalene, pyrazine, and the like.
  • the n-type dopant may be benzylbiogen, hydrazine, ethylenediamine, triethyleneamine, ethylamine, pyrrolidine, triphenylphosphate, polyvinylpyrrolidone, tetramethyl-phenylenediamine and ferrocene.
  • the content of the p-type dopant or n-type dopant is preferably 0.1% to 300% by weight relative to the total mixed solution, and in the case of the p-type dopant, the content is preferably 0.1% to 50% by weight And, it is more preferably from 0.1% to 2.0% by weight, may be 0.1% to 1.0% by weight, may be 0.1% to 0.5% by weight, and may be 0.15% to 0.4% by weight.
  • the content is preferably 1% by weight to 300% by weight, more preferably 25% by weight to 150% by weight, and most preferably 80% by weight to 100% by weight.
  • a method of manufacturing a carbon nanotube foam provided in one aspect of the present invention includes applying the mixed solution to a support.
  • the support may be a material that is insoluble in an organic solvent, such as a silicone mold.
  • an organic solvent such as a silicone mold.
  • Vertical carbon nanotube foams of various shapes and sizes can be manufactured according to the specifications of the support.
  • a method of manufacturing a carbon nanotube foam provided in one aspect of the present invention includes a step of vacuum evaporating the support.
  • the carbon nanotube foam provided in one aspect of the present invention is a technology capable of forming a carbon nanotube foam by a simple process that has not existed, and in this step, the carbon nanotube is vacuum evaporated to realize the foam form.
  • the vacuum evaporation may be performed under a pressure of 10 -1 torr to 10 -3 torr.
  • the carbon nanotubes in the form of foam may be finally formed by vacuum evaporation at 10 -1 torr to 10 -3 torr (0.13 Pa to 13.3 Pa).
  • the carbon nanotube foam finally manufactured using the manufacturing method provided in one aspect of the present invention may have a density of 0.02 g/cm 3 to 0.04 g/cm 3 , a porosity of 90% to 98%, and average Pores having a diameter of 800 nm to 1,200 nm may be formed. In addition, it may have a thermal conductivity that is 100 times lower than that of the carbon nanotube film.
  • Carbon nanotubes and organic polymers include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, butyl alcohol, and acetone ( preparing a mixed solution by dispersing in at least one solvent selected from the group consisting of acetone), chloroform, and methylene chloride;
  • thermoelectric device A method of manufacturing a composite material for a thermoelectric device comprising a step of evaporating the support in a vacuum.
  • thermoelectric element provided in one aspect of the present invention
  • the method of manufacturing a composite material for a thermoelectric device is a carbon nanotube and an organic polymer cyclohexane (cyclohexane), benzene (benzen), water (H 2 O), 1,4-dioxane (1,4-dioxane), butyl alcohol (tert-butyl alcohol), acetone (acetone), chloroform (chloroform), and methylene chloride It includes the steps of manufacturing.
  • the present invention provides a method for manufacturing a composite material for a thermoelectric element including a foam type carbon nanotube by a simple method, and for this purpose, the carbon nanotube and the organic polymer are dispersed in a specific solvent to prepare a mixed solution.
  • the solvent may be used alone or in combination of one or more of cyclohexane, benzene, water, 1,4-dioxane, butyl alcohol, acetone, chloroform, and methylene chloride.
  • the content of the carbon nanotubes in the mixed solution may be 1 mg/mL to 20 mg/mL, 3 mg/mL to 15 mg/mL, and 5 mg/mL to 11 mg/mL. . If, when the content of the carbon nanotubes in the mixed solution is less than 1 mg/mL, the amount of the solvent is excessively greater than the amount of the carbon nanotubes, there is a problem that the formation of the carbon nanotube foam is difficult, and when it exceeds 20 mg/mL There is a problem in that dispersibility is low and formation of a uniform carbon nanotube foam is difficult.
  • the organic polymer is polystyrene, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Poly(3-hexylthiophene-2,5-diyl)(P3HT), polyaniline, polyvinyl alcohol and polyethyleneimine. Can.
  • the mixing ratio of the carbon nanotube and the organic polymer is preferably 10:90 to 40:60 by weight, may be 15:85 to 35:65, and may be 20:80 to 30:70, 10:90 to 20:80, and may be 30:70 to 40:60.
  • the method of dispersing the carbon nanotubes in a solvent includes methods such as micronizing, ball mill, tip ultrasonication, and the like.
  • the method of manufacturing a composite material for a thermoelectric element provided in one aspect of the present invention includes the step of applying the mixed solution to the support.
  • the support may be a material that is insoluble in an organic solvent, such as a silicone mold. According to the specification of the support, it is possible to manufacture a composite material for a thermoelectric element including vertical carbon nanotube foams of various shapes and sizes.
  • a method of manufacturing a composite material for a thermoelectric element provided in one aspect of the present invention includes vacuum evaporating the support.
  • the composite material for a thermoelectric element provided in one aspect of the present invention is a technology capable of manufacturing a composite material for a thermoelectric element including a carbon nanotube foam in a simple process that has not existed in the above step. Order.
  • the vacuum evaporation may be performed under a pressure of 10 -1 torr to 10 -3 torr.
  • the vacuum evaporation at 10 -1 torr to 10 -3 torr (0.13 Pa to 13.3 Pa) can finally produce a composite material for a thermoelectric element in the form of a foam.
  • Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Dispersing in one or more solvents selected from the group consisting of chloroform, and methylene chloride, and then mixing a p-type dopant or an n-type dopant to prepare a mixed solution;
  • thermoelectric device A method of manufacturing a composite material for a thermoelectric device comprising a step of evaporating the support in a vacuum.
  • thermoelectric element provided in one aspect of the present invention
  • the method of manufacturing a composite material for a thermoelectric element is a carbon nanotube cyclohexane (cyclohexane), benzene (benzen), water (H 2 O), 1,4-dioxane (1, 4-dioxane), butyl alcohol (tert-butyl alcohol), acetone (acetone), chloroform (chloroform), and after dispersing in one or more solvents selected from the group consisting of methylene chloride (methylene chloride), p-type plate It comprises the step of preparing a mixed solution by mixing the dopant or n-type dopant.
  • the present invention provides a method for manufacturing a composite material for a thermoelectric element including a carbon nanotube in the form of a foam by a simple method, and for this purpose, the carbon nanotube and the dopant are dispersed in a specific solvent to prepare a mixed solution.
  • the solvent may be used alone or in combination of one or more of cyclohexane, benzene, water, 1,4-dioxane, butyl alcohol, acetone, chloroform, and methylene chloride.
  • the content of the carbon nanotubes in the mixed solution may be 1 mg/mL to 20 mg/mL, 3 mg/mL to 15 mg/mL, and 5 mg/mL to 11 mg/mL. . If, when the content of the carbon nanotubes in the mixed solution is less than 1 mg/mL, the amount of the solvent is excessively greater than the amount of the carbon nanotubes, there is a problem that the formation of the carbon nanotube foam is difficult, and when it exceeds 20 mg/mL There is a problem in that dispersibility is low and formation of a uniform carbon nanotube foam is difficult.
  • the p-type dopant is iron chloride, gold chloride, silver chloride, carbazole and its derivatives, benzoquinone, tetracyanoquinone, terafluorquinodimethane, iodine compound, diphenylidine, imidazole, triazole, polyazaine, pyridine Triphenylamine, tetrathiafulvalene, pyrazine, and the like.
  • the n-type dopant may be benzylbiogen, hydrazine, ethylenediamine, triethyleneamine, ethylamine, pyrrolidine, triphenylphosphate, polyvinylpyrrolidone, tetramethyl-phenylenediamine and ferrocene.
  • the content of the p-type dopant or n-type dopant is preferably 0.1% to 300% by weight relative to the total mixed solution, and in the case of the p-type dopant, the content is preferably 0.1% to 50% by weight And, it is more preferably from 0.1% to 2.0% by weight, may be 0.1% to 1.0% by weight, may be 0.1% to 0.5% by weight, and may be 0.15% to 0.4% by weight.
  • the content is preferably 1% by weight to 300% by weight, more preferably 25% by weight to 150% by weight, and most preferably 80% by weight to 100% by weight.
  • the method of dispersing the carbon nanotubes in a solvent includes methods such as micronizing, ball mill, tip ultrasonication, and the like.
  • the method of manufacturing a composite material for a thermoelectric element provided in one aspect of the present invention includes the step of applying the mixed solution to the support.
  • the support may be a material that is insoluble in an organic solvent, such as a silicone mold. According to the specification of the support, it is possible to manufacture a composite material for a thermoelectric element including vertical carbon nanotube foams of various shapes and sizes.
  • a method of manufacturing a composite material for a thermoelectric element provided in one aspect of the present invention includes vacuum evaporating the support.
  • the composite material for a thermoelectric element provided in one aspect of the present invention is a technology capable of manufacturing a composite material for a thermoelectric element including a carbon nanotube foam in a simple process that has not existed in the above step. Order.
  • the vacuum evaporation may be performed under a pressure of 10 -1 torr to 10 -3 torr.
  • the vacuum evaporation at 10 -1 torr to 10 -3 torr (0.13 Pa to 1.13 Pa) can finally produce a composite material for a thermoelectric element in the form of a foam.
  • Carbon nanotubes and elastic polymers are cyclohexane, benzene, water (H 2 O), 1,4-dioxane, butyl alcohol, and acetone (preparing a mixed solution by dispersing in at least one solvent selected from the group consisting of acetone), chloroform, and methylene chloride;
  • a method of manufacturing an elastic composite material for a flexible thermoelectric element comprising a step of curing a product is provided.
  • a method of manufacturing an elastic composite material for a flexible thermoelectric element includes carbon nanotubes and an elastic polymer in cyclohexane, benzene, water (H 2 O), 1,4- Dioxane (1,4-dioxane), butyl alcohol (tert-butyl alcohol), acetone (acetone), chloroform (chloroform), and methylene chloride (methylene chloride) And preparing a mixed solution.
  • the present invention provides a method for manufacturing an elastic composite material for a flexible thermoelectric element including a carbon nanotube in the form of a foam by a simple method, and for this purpose, carbon nanotubes and an elastic polymer are dispersed in a specific solvent and mixed.
  • a specific solvent for this purpose, carbon nanotubes and an elastic polymer are dispersed in a specific solvent and mixed.
  • the solvent may be used alone or in combination of one or more of cyclohexane, benzene, water, 1,4-dioxane, butyl alcohol, acetone, chloroform, and methylene chloride.
  • the content of the carbon nanotubes in the mixed solution may be 1 mg/mL to 20 mg/mL, 3 mg/mL to 15 mg/mL, and 5 mg/mL to 11 mg/mL. . If, when the content of the carbon nanotubes in the mixed solution is less than 1 mg/mL, the amount of the solvent is excessively greater than the amount of the carbon nanotubes, there is a problem that the formation of the carbon nanotube foam is difficult, and when it exceeds 20 mg/mL There is a problem in that dispersibility is low and formation of a uniform carbon nanotube foam is difficult.
  • the elastic polymer may be used alone or in combination with a polydimethylsiloxane polymer or a polyurethane polymer.
  • the mixing ratio of the carbon nanotubes and the elastic polymer is preferably 1:1 to 1:9 by weight, and may be 1:3 to 1:7, and 1:5.
  • the method of dispersing the carbon nanotubes in a solvent includes methods such as micronizing, ball mill, tip ultrasonication, and the like.
  • the method of manufacturing an elastic composite material for a flexible thermoelectric element provided in one aspect of the present invention includes applying the mixed solution to a support.
  • the support may be a material that is insoluble in an organic solvent, such as a silicone mold. According to the specification of the support, it is possible to manufacture an elastic composite material for a flexible thermoelectric element including vertical carbon nanotube foams of various shapes and sizes.
  • a method of manufacturing an elastic composite material for a flexible thermoelectric element provided in one aspect of the present invention includes vacuum evaporating the support.
  • the elastic composite material for flexible thermoelectric elements provided in one aspect of the present invention is a technology capable of manufacturing an elastic composite material for flexible thermoelectric elements including carbon nanotube foam in a simple process that has not existed. To evaporate.
  • the vacuum evaporation may be performed under a pressure of 10 -1 torr to 10 -3 torr.
  • the elastic composite material for a flexible thermoelectric element in the form of a foam can be manufactured by vacuum evaporation at 10 -1 torr to 10 -3 torr (0.13 Pa to 1.13 Pa).
  • a method of manufacturing an elastic composite material for a flexible thermoelectric element provided in another aspect of the present invention includes curing a product.
  • the carbon nanotube foam By curing the elastic polymer of the foam-type product containing the elastic polymer, the carbon nanotube foam can be imparted with elastic properties strong against external pressure such as pressing, bending, warping, stretching, etc. on the carbon nanotube foam.
  • the curing may be performed in a temperature range of 473K or less, and finally, an elastic composite material for a flexible thermoelectric element may be manufactured.
  • Carbon nanotubes And at least one member selected from the group consisting of organic polymers, elastic polymers, n-type dopants, and p-type dopants.
  • thermoelectric element characterized in that the form of a foam.
  • the composite material is a carbon nanotube foam-based composite material, which can be freely formed in various shapes and stably implement a vertical thermoelectric element compared to a carbon nanotube film made in the same amount.
  • the carbon nanotube foam may have low thermal conductivity without serious loss of Seebeck coefficient due to the presence of multiple pores.
  • the n-type or p-type doped carbon nanotube foam can implement a pn pair of thermoelectric elements, and include an elastic polymer to resist external pressure. It is possible to implement flexible thermoelectric elements with recovery characteristics.
  • Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride to prepare a mixed solution and apply it to the grooves of the mold;
  • thermoelectric element Forming an electrode on the formed carbon nanotube foam; is provided a method of manufacturing a thermoelectric element comprising a.
  • Fig. 4 (a) shows an example of a method of manufacturing a thermoelectric element in a schematic diagram
  • the method of manufacturing a thermoelectric element is a method of manufacturing a thermoelectric element including a carbon nanotube in the form of a foam, and includes a plurality of grooves to position the composite material for the thermoelectric element in the first step. Prepare the mold.
  • the mold may be a material that does not dissolve in an organic solvent, such as a silicone mold. According to the specification of the groove of the mold, a composite material including carbon nanotube foams of various shapes and sizes may be formed.
  • thermoelectric element provided in one aspect of the present invention is a carbon nanotube cyclohexane (cyclohexane), benzene (benzen), water (H 2 O), 1,4-dioxane (1,4- dioxane), butyl alcohol (tert-butyl alcohol), acetone (acetone), chloroform (chloroform), and methylene chloride. And applying to the groove.
  • the carbon nanotubes are dispersed in a specific organic solvent in a method that can produce a foam-type carbon nanotube by a simple method, and this is applied to the grooves of the mold prepared in the previous step.
  • the content of the carbon nanotubes in the mixed solution may be 1 mg/mL to 20 mg/mL, 3 mg/mL to 15 mg/mL, and 5 mg/mL to 11 mg/mL. . If, when the content of the carbon nanotubes in the mixed solution is less than 1 mg/mL, the amount of the solvent is excessively greater than the amount of the carbon nanotubes, there is a problem that the formation of the carbon nanotube foam is difficult, and when it exceeds 20 mg/mL There is a problem in that dispersibility is poor and formation of a carbon nanotube foam is difficult.
  • the method of dispersing the carbon nanotubes in a solvent includes methods such as micronizing, ball mill, tip ultrasonication, and the like.
  • the mixed solution may further include at least one material of organic polymer, elastic polymer, metal, p-type dopant, and n-type dopant.
  • the mixed solution may be mixed with an organic polymer, an elastic polymer or a metal to control physical properties.
  • the organic polymer is polystyrene, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Poly(3-hexylthiophene-2,5-diyl)(P3HT), polyaniline, polyvinyl alcohol and polyethyleneimine. Can.
  • the mixing ratio of the carbon nanotube and the organic polymer is preferably 10:90 to 40:60 by weight, may be 15:85 to 35:65, and may be 20:80 to 30:70, 10:90 to 20:80, and may be 30:70 to 40:60.
  • the elastic polymer may be used alone or in combination with a polydimethylsiloxane polymer or a polyurethane polymer.
  • the mixing ratio of the carbon nanotubes and the elastic polymer is preferably 1:1 to 1:9 by weight, and may be 1:3 to 1:7, and 1:5.
  • the metal may be antimony (Sb), selenium (Se), silver (Ag), copper (Cu), tin (Sn), manganese (Mn) and iron (Fe).
  • the p-type dopant is iron chloride, gold chloride, silver chloride, carbazole and its derivatives, benzoquinone, tetracyanoquinone, terafluorquinodimethane, iodine compound, diphenylidine, imidazole, triazole, polyazaine, pyridine Triphenylamine, tetrathiafulvalene, pyrazine, and the like.
  • the n-type dopant may be benzylbiogen, hydrazine, ethylenediamine, triethyleneamine, ethylamine, pyrrolidine, triphenylphosphate, polyvinylpyrrolidone, tetramethyl-phenylenediamine and ferrocene.
  • the content of the p-type dopant or the n-type dopant is preferably 0.1% by weight to 300% by weight relative to the carbon nanotube, and in the case of the p-type dopant, the content is preferably 0.1% by weight to 50% by weight And, it is more preferably from 0.1% to 2.0% by weight, may be 0.1% to 1.0% by weight, may be 0.1% to 0.5% by weight, and may be 0.15% to 0.4% by weight.
  • the content is preferably 1% by weight to 300% by weight, more preferably 25% by weight to 150% by weight, and most preferably 80% by weight to 100% by weight.
  • a p-type composite material by applying a mixed solution capable of forming a composite material for a p-type thermoelectric element to at least one of the plurality of grooves, and at least one or more of the plurality of grooves. It is preferable to form an n-type composite material by applying a mixed solution capable of forming a composite material for an n-type thermoelectric element in the groove. Further, it is preferable that the p-type composite material and the n-type composite material are located in adjacent grooves.
  • the p-type composite material may be formed by dispersing the p-type dopant as described above in a specific solvent, such as a carbon nanotube, to prepare a mixed solution
  • a specific solvent such as a carbon nanotube
  • the n-type composite material is an n-type plate as described above. It can be formed by dispersing the soil in a specific solvent, such as carbon nanotubes, to prepare a mixed solution.
  • vacuum evaporation is performed to form a composite material including carbon nanotubes in the form of foam.
  • the vacuum evaporation may be performed under a pressure of 10 -1 torr to 10 -3 torr.
  • the carbon nanotubes in the form of foam may be finally formed by vacuum evaporation at 10 -1 torr to 10 -3 torr (0.13 Pa to 13.3 Pa).
  • a metal electrode is formed on the surface of a composite material for a thermoelectric element including a carbon nanotube foam or a carbon nanotube foam formed to realize the performance of the thermoelectric element.
  • Copper, gold, silver, and the like may be used as a material for forming the electrode, but are not limited thereto.
  • Step 1 Single-walled carbon nanotubes (SSWCNT, Meijo Nano Carbon Co., Japan) and organic solvents (Sigma-Aldrich) were used for the experiment without further processing or purification.
  • the carbon nanotube and the organic solvent mixed solution were prepared as follows.
  • a mixed solution was prepared by mixing 100 mg of single-walled carbon nanotubes with 20 mL of cyclohexane and dispersing them using a micronizing equipment (XRD-Mill McCrone, Retsch Inc., USA) for 2 hours.
  • Step 2 The mixed solution dispersed in step 1 was applied inside a groove of 4 ⁇ 6 ⁇ 5 mm 3 or 5 ⁇ 5 ⁇ 18 mm 3 in a silicone mold at normal temperature and pressure.
  • Step 3 The silicone mold coated with the mixed solution in step 2 was vacuum evaporated to dryness under a pressure of 10 ⁇ 1 to 10 ⁇ 3 torr (0.13 to 13.3 Pa) to prepare a carbon nanotube foam.
  • a carbon nanotube foam was prepared in the same manner as in Example 1, except that 140 mg of the single-walled carbon nanotube was dispersed in the mixed solution of Step 1 of Example 1.
  • a carbon nanotube foam was prepared in the same manner as in Example 1, except that 180 mg of single-walled carbon nanotubes were dispersed in the mixed solution of Step 1 of Example 1.
  • a carbon nanotube foam was prepared in the same manner as in Example 1, except that 220 mg of single-walled carbon nanotubes were dispersed in the mixed solution of Step 1 of Example 1.
  • a carbon nanotube foam was prepared in the same manner as in Example 1, except that cyclohexane was not used in step 1 of Example 1 and water was used.
  • a carbon nanotube foam was prepared in the same manner as in Example 1, except that cyclohexane was not used in step 1 of Example 1, and benzene was used.
  • Step 1 Single-walled carbon nanotubes (SSWCNT, Meijo Nano Carbon Co., Japan), organic polymers and organic solvents (Sigma-Aldrich) were used for the experiment without further processing or purification.
  • Carbon nanotube, organic polymer and organic solvent mixed solution was prepared as follows. 108 mg of single-walled carbon nanotubes and 72 mg of Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS, Sigma-Aldrich) were mixed with 20 mL of cyclohexane and micronised for 2 hours ( XRD-Mill McCrone, Retsch Inc., USA) to prepare a mixed solution.
  • PEDOT:PSS Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)
  • Step 2 The mixed solution dispersed in step 1 was applied inside a groove of 4 ⁇ 6 ⁇ 5 mm 3 or 5 ⁇ 5 ⁇ 18 mm 3 in a silicone mold at normal temperature and pressure.
  • Step 3 The silicone mold coated with the mixed solution in step 2 is vacuum evaporated to dryness under a pressure of 10 -2 to 10 -3 torr (0.13 to 1.13 Pa) to form a thermoelectric polymer/carbon nanotube composite material in the form of a foam.
  • a composite material for devices was prepared.
  • thermoelectric device A composite material for a thermoelectric device was prepared in the same manner as in Example 7, except that 126 mg of single-walled carbon nanotubes and 54 mg of PEDOT:PSS were dispersed in the mixed solution of Step 1 of Example 7.
  • thermoelectric device A composite material for a thermoelectric device was prepared in the same manner as in Example 7 except that 144 mg of single-walled carbon nanotubes and 36 mg of PEDOT:PSS were dispersed in the mixed solution of Step 1 of Example 7.
  • thermoelectric device A composite material for a thermoelectric device was prepared in the same manner as in Example 7, except that 162 mg of single-walled carbon nanotubes and 18 mg of PEDOT:PSS were dispersed in the mixed solution of Step 1 of Example 7.
  • thermoelectric element A composite material for a thermoelectric element was prepared in the same manner as in Example 7 except that polystyrene other than PEDOT:PSS was used for the mixed solution of Step 1 of Example 7.
  • thermoelectric element A composite material for a thermoelectric element was prepared in the same manner as in Example 11, except that 126 mg of single-walled carbon nanotubes and 54 mg of polystyrene were dispersed in the mixed solution of Step 1 of Example 11.
  • thermoelectric elements-7 Preparation of composite material for thermoelectric elements-7
  • thermoelectric device A composite material for a thermoelectric device was prepared in the same manner as in Example 11, except that 144 mg of single-walled carbon nanotubes and 36 mg of polystyrene were dispersed in the mixed solution of Step 1 of Example 11.
  • thermoelectric element A composite material for a thermoelectric element was prepared in the same manner as in Example 11, except that 162 mg of single-walled carbon nanotubes and 18 mg of polystyrene were dispersed in the mixed solution of Step 1 of Example 11.
  • thermoelectric element A composite material for a thermoelectric element was manufactured in the same manner as in Example 7 except that polyethyleneimine other than PEDOT:PSS was used for the mixed solution of Step 1 of Example 7.
  • thermoelectric device A composite material for a thermoelectric device was prepared in the same manner as in Example 15, except that 126 mg of single-walled carbon nanotubes and 54 mg of polyethyleneimine were dispersed in the mixed solution of Step 1 of Example 15.
  • thermoelectric device A composite material for a thermoelectric device was prepared in the same manner as in Example 15, except that 144 mg of single-walled carbon nanotubes and 36 mg of polyethyleneimine were dispersed in the mixed solution of Step 1 of Example 15.
  • thermoelectric element A composite material for a thermoelectric element was prepared in the same manner as in Example 15, except that 162 mg of single-walled carbon nanotubes and 18 mg of polyethyleneimine were dispersed in the mixed solution of Step 1 of Example 15.
  • Step 1 Single-walled carbon nanotubes (SSWCNT, Meijo Nano Carbon Co., Japan), p-type dopant and organic solvent (Sigma-Aldrich) were used for the experiment without further processing or purification.
  • Carbon nanotube, p-type dopant and organic solvent mixed solution were prepared as follows. 180 mg of single-walled carbon nanotubes and 20 mL of cyclohexane were mixed together, dispersed using a micronizing equipment (XRD-Mill McCrone, Retsch Inc., USA) for 2 hours, and then mixed with iron chloride to prepare a mixed solution. At this time, the content of the iron chloride is 0.17% by weight relative to the carbon nanotubes.
  • Step 2 The mixed solution dispersed in step 1 was applied to a 5 ⁇ 5 ⁇ 18 mm 3 standard groove in a silicone mold at room temperature and normal pressure.
  • Step 3 The silicone mold coated with the mixed solution in step 2 is vacuum evaporated to dryness under a pressure of 10 -2 to 10 -3 torr (0.13 to 1.13 Pa) to form a thermoelectric polymer/carbon nanotube composite material in the form of a foam.
  • a composite material for devices was prepared.
  • thermoelectric element A composite material for a thermoelectric element was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 0.35% by weight relative to the carbon nanotube.
  • thermoelectric device A composite material for a thermoelectric device was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 0.70% by weight relative to the carbon nanotube.
  • thermoelectric device A composite material for a thermoelectric device was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 1.4% by weight relative to the carbon nanotube.
  • thermoelectric element A composite material for a thermoelectric element was prepared in the same manner as in Example 19, except that the iron chloride content in Step 1 of Example 19 was 7.0% by weight relative to the carbon nanotube.
  • thermoelectric element A composite material for a thermoelectric element was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 14% by weight based on carbon nanotubes.
  • thermoelectric device A composite material for a thermoelectric device was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 28% by weight relative to the carbon nanotube.
  • thermoelectric device A composite material for a thermoelectric device was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 42.1% by weight relative to the carbon nanotube.
  • step 1 of Example 19 benzylbiogen is used as an n-type dopant other than iron chloride, and the content of the benzylbiogen is carried out in the same manner as in Example 19, except that the content is 13% by weight relative to the carbon nanotube.
  • a composite material for thermoelectric elements was prepared.
  • thermoelectric element A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in Step 1 of Example 27 was 17% by weight relative to the carbon nanotube.
  • step 1 of Example 27 the content of benzylbiogen was 35% by weight relative to the carbon nanotube, and the same procedure as in Example 27 was performed to prepare a composite material for a thermoelectric element.
  • thermoelectric element A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in Step 1 of Example 27 was 70% by weight relative to the carbon nanotube.
  • thermoelectric element A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in step 1 of Example 27 was 88% by weight relative to the carbon nanotube.
  • thermoelectric element A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in Step 1 of Example 27 was 133% by weight relative to the carbon nanotube.
  • thermoelectric element A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in Step 1 of Example 27 was 177% by weight relative to the carbon nanotube.
  • thermoelectric element A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in Step 1 of Example 27 was 266% by weight relative to the carbon nanotube.
  • thermoelectric element-1 Preparation of thermoelectric element-1
  • Step 1 A silicon mold having 4 ⁇ 6 ⁇ 5 mm 3 standard grooves 4 ⁇ 4 was prepared.
  • Step 2 Mixing 180 mg of single-walled carbon nanotubes and 20 mL of cyclohexane together and dispersing them using a micronizing equipment (XRD-Mill McCrone, Retsch Inc., USA) for 2 hours, followed by mixing with iron chloride. 1 A mixed solution was prepared, wherein the content of the iron chloride was 0.35% by weight relative to the carbon nanotube.
  • the first mixed solution was applied to 8 of the 16 grooves of the silicone mold, and the second mixed solution was applied to the remaining 8 grooves.
  • the groove to which the first mixed solution was applied and the groove to which the second mixed solution was applied were positioned adjacent to each other.
  • Step 3 In the above step 2, the silicone mold coated with the first mixed solution and the second mixed solution was subjected to vacuum evaporation and drying under a pressure of 10 -2 to 10 -3 torr (0.13 to 1.13 Pa) to form the first mixed solution. A p-type thermoelectric material was formed in the coated groove, and an n-type thermoelectric material was formed in the groove to which the second mixed solution was applied.
  • Step 4 The formed p-type thermoelectric material and n-type thermoelectric material were coated with silver on top and bottom surfaces to form electrodes.
  • Step 1 Single-walled carbon nanotubes (SSWCNT, Meijo Nano Carbon Co., Japan), elastomers and organic solvents (Sigma-Aldrich) were used for the experiment without further processing or purification.
  • Carbon nanotube, elastic polymer and organic solvent mixed solution was prepared as follows. 108 mg of single-walled carbon nanotubes and 108 mg of polydimethylsiloxane (Dow corning) were mixed with 20 mL of cyclohexane and used for 2 hours using a micronizing equipment (XRD-Mill McCrone, Retsch Inc., USA) And dispersed to prepare a mixed solution. At this time, the proportion of curing agent added to the polydimethylsiloxane was mixed at 10% by weight.
  • Step 2 The mixed solution dispersed in step 1 was applied inside a groove of 4 ⁇ 6 ⁇ 5 mm 3 or 5 ⁇ 5 ⁇ 18 mm 3 in a silicone mold at normal temperature and pressure.
  • Step 3 The silicone mold coated with the mixed solution in step 2 is vacuum evaporated to dryness under a pressure of 10 -2 to 10 -3 torr (0.13 to 1.13 Pa) to form a thermoelectric polymer/carbon nanotube composite material in the form of a foam.
  • a composite material for devices was prepared.
  • Step 4 In order to impart elasticity to the carbon nanotubes produced in step 3, curing was performed at a temperature of 473 K or less to prepare an elastic composite material for flexible thermoelectric elements.
  • the elastic composite material for flexible thermoelectric elements was prepared in the same manner as in Example 36, except that 126 mg of single-walled carbon nanotubes and 900 mg of polydimethylsiloxane were dispersed in the mixed solution of Step 1 of Example 36.
  • An elastic composite material for flexible thermoelectric elements was prepared in the same manner as in Example 36, except that 126 mg of single-walled carbon nanotubes and 1,620 mg of polydimethylsiloxane were dispersed in the mixed solution of Step 1 of Example 36.
  • a carbon nanotube film in the form of a film was prepared.
  • a mixed solution was prepared by mixing 180 mg of single-walled carbon nanotubes and 20 mL of cyclohexane and dispersing them using a micronizing equipment (XRD-Mill McCrone, Retsch Inc., USA) for 2 hours.
  • the mixed solution was applied to a silicone mold made to dimensions of 4 cm ⁇ 4 cm ⁇ 5 cm, and left at room temperature and pressure to produce a carbon nanotube film.
  • step 1 of Example 3 cyclohexane was not used, and the same procedure as Example 3 was performed except that trichlorobenzene was used, but a foamed carbon nanotube could not be prepared.
  • step 1 of Example 3 cyclohexane was not used, and dichlorobenzene was used, except that the same procedure as Example 3 was performed, but a carbon nanotube in the form of a foam could not be produced.
  • step 1 of Example 3 cyclohexane was not used, and the same procedure as in Example 3 was performed except that ethanol was used, but a foamed carbon nanotube could not be prepared.
  • Example 1 Film 9 0.009 0.018 0.5 27.98
  • Example 1 Form 5 0.009 0.45 0.020 0.17
  • Example 2 Form 7 0.011 0.45 0.024 0.28
  • Example 3 Form 9 0.017 0.45 0.038 0.42
  • Example 4 Form 11 0.018 0.45 0.040 0.54
  • FIG. 1 it was confirmed that various types of carbon nanotube foams were formed according to the shape of the mold.
  • FIG. 2 it was confirmed that pores were formed according to the formation of the carbon nanotube foam.
  • 2A is a carbon nanotube film of Comparative Example 1, and it can be confirmed that there are no pores
  • FIGS. 2B to 2D are Example 1 (carbon nanotube foam), Example 7 (PEDOT:PSS/carbon nanotube foam), and In the case of Example 15 (PEI/carbon nanotube foam), it can be confirmed that pores were formed.
  • the carbon nanotube foam having a high porosity shows a thermal conductivity of 100 times or more lower than that of the carbon nanotube film manufactured at the same weight.
  • thermoelectric elements of Examples 7 to 18 were analyzed, and the results are as follows. It is shown in Table 2.
  • the composite material was measured using a temperature-variable electrical resistivity meter (Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, Germany) to measure the whitening coefficient and electrical conductivity, and the Seebeck coefficient was calculated by Equation 1 below.
  • a temperature-variable electrical resistivity meter Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, Germany
  • Equation 1 S is the Seebeck coefficient, V is the voltage, and T is the temperature.
  • the polymer/carbon nanotube foam composite material for thermoelectric elements showed different Seebeck coefficients and electrical conductivity depending on the type and content of the polymer.
  • p or n-type properties could be changed according to the type of polymer, polystyrene and PEDOT:PSS showed p-type properties, and polyethyleneimine showed n-type properties.
  • thermoelectric elements In order to confirm the properties of the composite material produced by the manufacturing method according to the present invention, Seebeck coefficient, electrical conductivity and power factor of the composite material for thermoelectric elements of Examples 19 to 34 were analyzed, and the results are shown. It is shown in 3a, Figure 3b and Table 3 below.
  • the composite material was measured using a temperature-variable electrical resistivity meter (Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, Germany) to measure the whitening coefficient and electrical conductivity, and the Seebeck coefficient was calculated by Equation 1 below.
  • a temperature-variable electrical resistivity meter Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, Germany
  • Equation 1 S is the Seebeck coefficient, V is the voltage, and T is the temperature.
  • the composite material for a thermoelectric element including a carbon nanotube foam doped with iron chloride is made of iron chloride.
  • the Seebeck coefficient decreased, but electrical conductivity was greatly improved.
  • the elastic composite material for flexible thermoelectric elements of Examples 36 to 38 was analyzed by scanning electron microscope and stress-strain, and the results are shown in FIG. 5A. And 5B.
  • the composite material was measured using a temperature-variable electrical resistivity meter (Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, Germany) to measure the whitening coefficient and electrical conductivity, and the Seebeck coefficient was calculated by Equation 1 below.
  • a temperature-variable electrical resistivity meter Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, Germany
  • Equation 1 S is the Seebeck coefficient, V is the voltage, and T is the temperature.
  • the internal pores were confirmed by a scanning electron microscope, and it was confirmed that the elastic properties of the elastic carbon nanotube foam have elastic properties through a stress-strain curve.
  • FIG. 5B it was confirmed that the recovery characteristics were excellent even when various external pressures such as pressing, bending, and warping were applied to the elastic carbon nanotubes.
  • the composite material for a flexible thermoelectric element comprising a carbon nanotube foam to which an elastic polymer is added is an elastic polymer.
  • the electrical conductivity did not drop significantly due to the amount added, but the Seebeck coefficient increased significantly.
  • Figures 5a and 5b it can be confirmed that the pores are formed even when the elastic polymer is added, and the elastic thermoelectric material prepared in Example 37 can be stretched more permanently than in Example 3 It was confirmed that it is an elastic material.
  • thermoelectric element manufactured in Example 35 was measured using a Keithley 2400 source meter, and the results are shown in FIGS. 4A to 4C. Shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Disclosed is a preparation method for a carbon nanotube foam, the method comprising: a step of dispersing carbon nanotubes in at least one solvent selected from the group consisting of cyclohexane, benzene, water (H2O), 1,4-dioxane, tert-butyl alcohol, acetone, chloroform, and methylene chloride, to prepare a mixture solution; a step of applying the mixture solution to a support; and a step of evaporating the support under vacuum.

Description

탄소나노튜브 폼의 제조방법 및 탄소나노튜브를 포함하는 열전소자Manufacturing method of carbon nanotube foam and thermoelectric element comprising carbon nanotube
탄소나노튜브 폼의 제조방법 및 탄소나노튜브를 포함하는 열전소자에 관한 것이다.It relates to a method of manufacturing a carbon nanotube foam and a thermoelectric element including the carbon nanotube.
자연으로부터 얻을 수 있는 에너지를 이용하는 열전소자, 압전소자 및 태양광소자 등의 반도체 기술은 에너지 소비의 급증을 해결하고 저 탄소 정책을 실현하고자 하는 세계적인 요구에 따라 차세대에너지로 각광받고 있다.Semiconductor technologies such as thermoelectric elements, piezoelectric elements, and photovoltaic elements that use energy that can be obtained from nature are in the spotlight as the next generation energy according to the global demand to solve the rapid increase in energy consumption and realize the low carbon policy.
그 중, 열전소자는 열에너지로부터 전기를 생산하거나 전기에너지를 열에너지로 변환하는 기술로서, 전기를 공급함으로써 냉각과 가열이 모두 가능할 뿐 아니라 온도 차를 이용해 전력을 생산할 수 있다. Among them, a thermoelectric element is a technology for producing electricity from thermal energy or converting electrical energy to thermal energy, and it is possible to generate electricity by using a temperature difference as well as cooling and heating by supplying electricity.
열전재료의 성능은 온도변화(T)에 따른 기전력 변화(V)인 열전계수(S, Seebeck coefficient)와 전기전도도(σ)에 비례하고, 열전도도(κ)에 반비례한다고 알려져 있다. 그러므로 높은 성능의 열전소자를 구현하기 위해서는 높은 전기전도도 및 높은 열전계수와 낮은 열전도도를 갖는 열전재료의 개발이 필요하다. It is known that the performance of a thermoelectric material is proportional to the electric conductivity (σ) and the Seebeck coefficient (S), which is the change in electromotive force (V) according to the temperature change (T), and is inversely proportional to the thermal conductivity (κ). Therefore, in order to realize a high performance thermoelectric element, it is necessary to develop a thermoelectric material having a high electrical conductivity, a high thermoelectric coefficient, and a low thermal conductivity.
열전재료로서 탄소나노튜브는 높은 전기전도도, 강한 기계적 강도 및 다양한 도핑의 가능성 때문에 많은 연구가 진행되었다. 하지만 탄소나노튜브 기반의 재료는 일반적으로 전기전도도가 높은 반면, 열전도도도 동시에 매우 큰 경우가 많아 열전소자의 성능을 저하시키는 등의 한계를 나타내고 있어 이를 개선하기 위한 탄소나노튜브의 구조 및 물성의 개선이 필요하다.Carbon nanotubes as thermoelectric materials have undergone many studies due to their high electrical conductivity, strong mechanical strength, and the possibility of various doping. However, while carbon nanotube-based materials generally have high electrical conductivity, thermal conductivity is also very large at the same time, indicating limitations such as deterioration of the performance of thermoelectric elements. Need improvement.
<선행기술문헌><Prior Art Document>
(특허문헌 1) 일본 등록특허 5922126 B2(Patent Document 1) Japanese Patent 5922126 B2
본 발명의 일 측면에서의 목적은 기존 탄소나노튜브의 높은 열전도도를 낮추고 다양한 형상의 구조 구현 및 열전특성의 조절이 가능한 다공성의 탄소나노튜브 폼을 제조하는 방법을 제공하는 데 있다.An object of one aspect of the present invention is to provide a method of manufacturing a porous carbon nanotube foam capable of reducing the high thermal conductivity of an existing carbon nanotube, realizing various shapes of structures, and controlling thermoelectric properties.
본 발명의 다른 측면에서의 목적은 탄소나노튜브 및 유기 고분자를 포함하는 열전소자용 복합재료의 제조방법을 제공하는 데 있다.An object of another aspect of the present invention is to provide a method of manufacturing a composite material for a thermoelectric device comprising carbon nanotubes and an organic polymer.
본 발명의 또 다른 측면에서의 목적은 탄소나노튜브 및 p형 도판트 또는 n형 도판트를 포함하는 열전소자용 복합재료의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method for manufacturing a composite material for a thermoelectric device including a carbon nanotube and a p-type dopant or an n-type dopant.
본 발명의 또 다른 측면에서의 목적은 탄소나노튜브 및 탄성고분자를 포함하는 유연열전소자용 탄성복합재료의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method of manufacturing an elastic composite material for a flexible thermoelectric element comprising carbon nanotubes and elastic polymers.
본 발명의 또 다른 측면에서의 목적은 탄소나노튜브 및 유기 고분자, 탄성 고분자, n형 도판트 및 p형 도판트 등;을 포함하는 열전소자용 복합재료를 제공하는 데 있다.Another object of the present invention is to provide a composite material for a thermoelectric device including carbon nanotubes and organic polymers, elastic polymers, n-type dopants, and p-type dopants.
본 발명의 다른 측면에서의 목적은 탄소나노튜브 폼을 포함하는 열전소자의 제조방법 및 열전소자를 제공하는 데 있다.An object of another aspect of the present invention is to provide a method of manufacturing a thermoelectric element including a carbon nanotube foam and a thermoelectric element.
상기 목적을 달성하기 위하여, 본 발명의 일 측면에서In order to achieve the above object, in one aspect of the present invention
탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계; Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Preparing a mixed solution by dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride;
상기 혼합용액을 지지체에 도포하는 단계; 및Applying the mixed solution to a support; And
상기 지지체를 진공증발시키는 단계;를 포함하는 탄소나노튜브 폼의 제조방법이 제공된다.A method of manufacturing a carbon nanotube foam comprising a step of evaporating the support in a vacuum is provided.
또한, 본 발명의 다른 측면에서In addition, in another aspect of the present invention
탄소나노튜브와 유기 고분자를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계; Carbon nanotubes and organic polymers are cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone ( preparing a mixed solution by dispersing in one or more solvents selected from the group consisting of acetone), chloroform, and methylene chloride;
상기 혼합용액을 지지체에 도포하는 단계; 및Applying the mixed solution to a support; And
상기 지지체를 진공증발시키는 단계;를 포함하는 열전소자용 복합재료의 제조방법이 제공된다.A method of manufacturing a composite material for a thermoelectric device comprising a step of evaporating the support in a vacuum.
나아가, 본 발명의 또 다른 측면에서Furthermore, in another aspect of the present invention
탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시킨 후, p형 도판트 또는 n형 도판트를 혼합하여 혼합용액을 제조하는 단계; Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Dispersing in one or more solvents selected from the group consisting of chloroform, and methylene chloride, and then mixing a p-type dopant or an n-type dopant to prepare a mixed solution;
상기 혼합용액을 지지체에 도포하는 단계; 및Applying the mixed solution to a support; And
상기 지지체를 진공증발시키는 단계;를 포함하는 열전소자용 복합재료의 제조방법이 제공된다.A method of manufacturing a composite material for a thermoelectric device comprising a step of evaporating the support in a vacuum.
또한, 본 발명의 다른 측면에서In addition, in another aspect of the present invention
탄소나노튜브와 탄성 고분자를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계; Carbon nanotubes and elastic polymers are cyclohexane, benzene, water (H 2 O), 1,4-dioxane, butyl alcohol, and acetone ( preparing a mixed solution by dispersing in at least one solvent selected from the group consisting of acetone), chloroform, and methylene chloride;
상기 혼합용액을 지지체에 도포하는 단계;Applying the mixed solution to a support;
상기 지지체를 진공증발시키는 단계; 및Vacuum evaporating the support; And
생성물을 경화시키는 단계;를 포함하는 유연열전소자용 탄성복합재료의 제조방법이 제공된다.A method of manufacturing an elastic composite material for a flexible thermoelectric element comprising a step of curing a product is provided.
나아가, 본 발명의 다른 일 측면에서탄소나노튜브; 및 유기 고분자, 탄성 고분자, n형 도판트 및 p형 도판트로 이루어지는 군으로부터 선택되는 1종 이상;을 포함하고,Furthermore, carbon nanotubes in another aspect of the present invention; And at least one member selected from the group consisting of organic polymers, elastic polymers, n-type dopants, and p-type dopants.
폼 형태인 것을 특징으로 하는 열전소자용 복합재료가 제공된다.A composite material for a thermoelectric element characterized in that it is in the form of a foam is provided.
더욱 나아가, 본 발명의 다른 측면에서Furthermore, in another aspect of the present invention
복수 개의 홈을 포함하는 몰드를 준비하는 단계;Preparing a mold including a plurality of grooves;
탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시킨 후, p형 도판트와 혼합하여 혼합용액을 제조하여 몰드의 홈 중 적어도 1개 이상의 홈에 도포하는 단계;Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, After dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride, the mixture is mixed with a p-type dopant to prepare a mixed solution to at least one of the grooves of the mold. Applying;
탄소나노튜를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시킨 후, n형 도판트를 혼합하여 혼합용액을 제조하여 몰드의 홈 중 적어도 1개 이상의 홈에 도포하는 단계;Carbon nanotubes are cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, After dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride, an n-type dopant is mixed to prepare a mixed solution to at least one of the grooves of the mold. Applying;
상기 몰드를 진공증발시키는 단계; 및Vacuum evaporating the mold; And
전극을 형성하는 단계;를 포함하는 열전소자의 제조방법이 제공된다.A method of manufacturing a thermoelectric element including a step of forming an electrode is provided.
나아가, 본 발명의 다른 일 측면에서Furthermore, in another aspect of the present invention
탄소나노튜브; 및 유기 고분자, 탄성 고분자, n형 도판트 및 p형 도판트로 이루어지는 군으로부터 선택되는 1종 이상;을 포함하는 폼 형태인 것을 특징으로 하는 열전소자용 복합재료;Carbon nanotubes; And at least one member selected from the group consisting of organic polymers, elastic polymers, n-type dopants, and p-type dopants; the composite material for thermoelectric elements comprising a foam form;
상기 열전소자용 복합재료에 형성된 전극;을 포함하는 열전소자가 제공된다.An electrode formed on the composite material for a thermoelectric element is provided.
본 발명의 일 측면에서 제공되는 탄소나노튜브 폼의 제조방법은 유기 용매를 이용한 분산 및 간단한 진공증발 건조 방법을 통해 형성이 가능하며 다공성의 구조를 가지는 탄소나노튜브 폼을 구현하는 것이 가능하다. 이러한 다공성 구조의 탄소나노튜브 폼은 자유롭고 다양한 모양으로 제작이 가능하며, 동일한 양으로 만들어진 탄소나노튜브 필름에 비해 수직형의 열전소자를 안정적으로 구현할 수 있는 이점을 가지고 있다. 또한, 이를 통해 제조된 탄소나노튜브 폼은 다수 기공의 존재로 인해 제벡계수의 심각한 손실 없이 낮은 열전도도를 가질 수 있다. The method of manufacturing a carbon nanotube foam provided in one aspect of the present invention can be formed through a dispersion method using an organic solvent and a simple vacuum evaporation drying method, and it is possible to implement a carbon nanotube foam having a porous structure. The carbon nanotube foam having such a porous structure can be manufactured freely and in various shapes, and has the advantage of stably realizing a vertical thermoelectric element compared to a carbon nanotube film made in the same amount. In addition, the carbon nanotube foam produced through this may have low thermal conductivity without serious loss of Seebeck coefficient due to the presence of multiple pores.
나아가, 본 발명의 다른 측면에서 제공되는 열전소자용 복합재료의 제조방법은 탄소나노튜브의 분산 시 유기 고분자를 혼합하거나, 분산된 탄소나노튜브에 p형 도판트 또는 n형 도판트를 혼합함으로써 도핑이 가능하여 p형 또는 n형의 특성을 보이는 탄소나노튜브 폼을 손쉽게 제작할 수 있어, 간단한 방법으로 p-n 쌍의 열전소자를 구현할 수 있는 장점이 있다.Furthermore, the method of manufacturing a composite material for a thermoelectric element provided in another aspect of the present invention is doped by mixing an organic polymer when dispersing carbon nanotubes or by mixing a p-type dopant or an n-type dopant in the dispersed carbon nanotubes. This makes it possible to easily produce a carbon nanotube foam showing p-type or n-type characteristics, and thus has the advantage of implementing a pn pair of thermoelectric elements in a simple manner.
더욱 나아가, 본 발명의 다른 일 측면에서 제공되는 유연열전소자용 탄성복합재료의 제조방법은 탄소나노튜브의 분산 시 탄성 고분자를 혼합함으로써 눌림, 휘어짐, 뒤틀림 및 늘림 등의 외부압력에 강한 회복 특성이 있는 유연열전소자의 구현이 가능하다.Furthermore, the method of manufacturing an elastic composite material for a flexible thermoelectric device provided in another aspect of the present invention has strong recovery characteristics against external pressure such as pressing, bending, warping and stretching by mixing an elastic polymer when dispersing carbon nanotubes. It is possible to implement flexible thermoelectric elements.
도 1은 일 실시예에 따라 제조된 탄소나노튜브 폼의 다양한 형상을 나타낸 사진이고;1 is a photograph showing various shapes of a carbon nanotube foam prepared according to an embodiment;
도 2a 내지 도 2d는 일 실시예에 따라 제조된 탄소나노튜브 필름(비교예 1, 도 2a), 탄소나노튜브 폼(실시예 1, 도 2b), PEDOT:PSS/탄소나노튜브 폼(실시예 7, 도 2c) 및 폴리에틸렌이민/탄소나노튜브 폼(실시예 15, 도 2d)를 주사전자현미경(SEM)으로 관찰한 사진이고;2A to 2D are carbon nanotube films prepared according to one embodiment (Comparative Example 1, FIG. 2A), carbon nanotube foam (Example 1, FIG. 2B), and PEDOT:PSS/carbon nanotube foam (Example 7, FIG. 2c) and polyethyleneimine/carbon nanotube foam (Example 15, FIG. 2d) are photographs observed with a scanning electron microscope (SEM);
도 3a 및 도 3b는 실시예 19 내지 34에서 제조된 복합재료에서 다양한 농도의 염화철로 도핑된 탄소나노튜브 폼의 제벡계수 및 전기전도도를 나타낸 그래프(도 3a) 및 벤질바이올로젠으로 도핑된 탄소나노튜브 폼의 제벡계수 및 전기전도도를 나타낸 그래프(도 3b)이고;3A and 3B are graphs showing the Seebeck coefficient and electrical conductivity of carbon nanotube foams doped with various concentrations of iron chloride in the composite materials prepared in Examples 19 to 34 (FIG. 3A) and carbon nano doped with benzylbiogen. It is a graph showing the Seebeck coefficient and electrical conductivity of the tube foam (FIG. 3B);
도 4a 내지 도 4c는 열전소자의 제조방법을 나타낸 모식도(도 4a), 실시예 35에서 제조된 열전소자의 출력전류에 따른 출력전압 및 파워출력(도 4b), 및 △T에 따른 출력파워, 면적당 출력파워, 중량당 출력파워를 나타낸 그래프(도 4c)이고;4A to 4C are schematic diagrams showing a method of manufacturing a thermoelectric element (FIG. 4A), output voltage and power output according to the output current of the thermoelectric element manufactured in Example 35 (FIG. 4B), and output power according to ΔT, A graph showing output power per area and output power per weight (FIG. 4C);
도 5a 및 도 5b는 실시예 36 내지 38에서 제조된 탄성고분자를 첨가한 탄소나노튜브 폼의 기공도를 주사현미경으로 관찰한 사진 및 응력-변형률 (stress-strain) 곡선을 나타낸 그래프(도 5a) 및 900 wt%의 폴리디메틸실록산이 첨가된 탄소나노튜브 폼의 눌림, 휘어짐 및 뒤틀림에 대한 회복특성을 나타낸 사진(도 5b)이다.5a and 5b is a graph showing the porosity of the carbon nanotube foam to which the elastic polymers prepared in Examples 36 to 38 were added with a scanning microscope and a stress-strain curve (FIG. 5A). And 900 wt% of the polydimethylsiloxane is added carbon nanotube foam is a photograph showing the recovery characteristics of the pressing, bending and warping (Fig. 5b).
본 발명의 일 측면에서In one aspect of the invention
탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계; Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Preparing a mixed solution by dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride;
상기 혼합용액을 지지체에 도포하는 단계; 및Applying the mixed solution to a support; And
상기 지지체를 진공증발시키는 단계;를 포함하는 탄소나노튜브 폼의 제조방법이 제공된다.A method of manufacturing a carbon nanotube foam comprising a step of evaporating the support in a vacuum is provided.
이하, 본 발명의 일 측면에서 제공되는 탄소나노튜브 폼의 제조방법에 대하여 각 단계별로 상세히 설명한다.Hereinafter, a method of manufacturing a carbon nanotube foam provided in one aspect of the present invention will be described in detail for each step.
먼저, 본 발명의 일 측면에서 제공되는 탄소나노튜브 폼의 제조방법은 탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계를 포함한다.First, the method of manufacturing a carbon nanotube foam provided in one aspect of the present invention is a carbon nanotube cyclohexane (cyclohexane), benzene (benzen), water (H 2 O), 1,4-dioxane (1,4 -dioxane), butyl alcohol (tert-butyl alcohol), acetone (acetone), chloroform (chloroform), and methylene chloride (methylene chloride) selected from the group consisting of one or more solvents to disperse to prepare a mixed solution It includes.
본 발명에서는 간단한 방법으로 폼(foam) 형태의 탄소나노튜브를 제조할 수 있는 방법을 제공하며, 이를 위해 탄소나노튜브를 특정 용매에 분산시켜 혼합용액을 제조한다. 상기 용매는 시클로헥산, 벤젠, 물, 1,4-다이옥세인, 부틸알콜, 아세톤, 클로로폼, 및 메틸렌 클로라이드 중 1종 이상을 단독 또는 혼합하여 사용할 수 있다.The present invention provides a method for producing a carbon nanotube in the form of a foam by a simple method, and for this purpose, a carbon nanotube is dispersed in a specific solvent to prepare a mixed solution. The solvent may be used alone or in combination of one or more of cyclohexane, benzene, water, 1,4-dioxane, butyl alcohol, acetone, chloroform, and methylene chloride.
이때, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 다중벽 탄소나노튜브일 수 있으며, 전기전도도 특성에 유리한 단일벽 탄소나노튜브를 사용할 수 있다.At this time, the carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes, and single-walled carbon nanotubes advantageous for electrical conductivity properties may be used.
또한, 상기 혼합용액 내 탄소나노튜브의 함량은 1 mg/mL 내지 20 mg/mL일 수 있으며, 3 mg/mL 내지 15 mg/mL일 수 있고, 5 mg/mL 내지 11 mg/mL일 수 있다. 만약, 상기 혼합용액 내 탄소나노튜브의 함량이 1 mg/mL 미만인 경우에는 용매의 양이 탄소나노튜브의 양보다 과하게 많아 탄소나노튜브 폼 형성이 어려운 문제가 있으며, 20 mg/mL를 초과하는 경우에는 분산성이 낮아져 균일한 탄소나노튜브 폼의 형성이 어려운 문제가 있다.In addition, the content of the carbon nanotubes in the mixed solution may be 1 mg/mL to 20 mg/mL, 3 mg/mL to 15 mg/mL, and 5 mg/mL to 11 mg/mL. . If, when the content of the carbon nanotubes in the mixed solution is less than 1 mg/mL, the amount of the solvent is excessively greater than the amount of the carbon nanotubes, there is a problem that the formation of the carbon nanotube foam is difficult, and when it exceeds 20 mg/mL There is a problem in that dispersibility is low and formation of a uniform carbon nanotube foam is difficult.
상기 탄소나노튜브를 용매에 분산시키는 방법은 마이크로나이징, 볼 밀, 팁 초음파 등의 방법을 포함한다.The method of dispersing the carbon nanotubes in a solvent includes methods such as micronizing, ball mill, tip ultrasonication, and the like.
또한, 상기 혼합용액은 유기 고분자, 금속, p형 도판트 및 n형 도판트 중 1종 이상의 물질을 더 포함할 수 있다. 상기 혼합용액은 유기 고분자 또는 금속 등을 함께 혼합하여 물성을 조절할 수 있다.In addition, the mixed solution may further include at least one material of an organic polymer, metal, p-type dopant, and n-type dopant. The mixed solution can be adjusted by mixing the organic polymer or metal together.
상기 유기 고분자는 폴리스티렌, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Poly(3-hexylthiophene-2,5-diyl)(P3HT), 폴리아닐린, 폴리바이닐 알코올 및 폴리에틸렌이민 등일 수 있다.The organic polymer is polystyrene, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Poly(3-hexylthiophene-2,5-diyl)(P3HT), polyaniline, polyvinyl alcohol and polyethyleneimine. Can.
상기 탄소나노튜브 및 유기 고분자의 혼합비율은 10:90 내지 40:60 중량비인 것이 바람직하고, 15:85 내지 35:65일 수 있고, 20:80 내지 30:70일 수 있으며, 10:90 내지 20:80일 수 있고, 30:70 내지 40:60일 수 있다.The mixing ratio of the carbon nanotube and the organic polymer is preferably 10:90 to 40:60 by weight, may be 15:85 to 35:65, and may be 20:80 to 30:70, 10:90 to 20:80, and may be 30:70 to 40:60.
상기 금속은 안티몬(Sb), 셀레늄(Se), 은(Ag), 구리(Cu), 주석(Sn), 망간(Mn) 및 철(Fe) 등일 수 있다.The metal may be antimony (Sb), selenium (Se), silver (Ag), copper (Cu), tin (Sn), manganese (Mn) and iron (Fe).
상기 p형 도판트는 염화철, 염화금, 염화은, 카바졸 및 그 유도체, 벤조퀴논, 테트라시아노퀴논, 테르라플루오르퀴노디메테인, 요오드 화합물, 디페닐리딘, 이미다졸, 트리아졸, 폴리아자인, 피리딘 트리페닐아민, 테트라티아풀발렌 및 피라진 등일 수 있다.The p-type dopant is iron chloride, gold chloride, silver chloride, carbazole and its derivatives, benzoquinone, tetracyanoquinone, terafluorquinodimethane, iodine compound, diphenylidine, imidazole, triazole, polyazaine, pyridine Triphenylamine, tetrathiafulvalene, pyrazine, and the like.
상기 n형 도판트는 벤질바이올로젠, 히드라진, 에틸렌디아민, 트리에틸렌아민, 에틸아민, 피롤리딘, 트리페닐포스페이트, 폴리비닐피롤리돈, 테트라메틸-페닐렌디아민 및 페로센 등일 수 있다.The n-type dopant may be benzylbiogen, hydrazine, ethylenediamine, triethyleneamine, ethylamine, pyrrolidine, triphenylphosphate, polyvinylpyrrolidone, tetramethyl-phenylenediamine and ferrocene.
상기 p형 도판트 또는 n형 도판트의 함량은 전체 혼합용액에 대하여 0.1 중량% 내지 300 중량%인 것이 바람직하고, 상기 p형 도판트의 경우 그 함량은 0.1 중량% 내지 50 중량%인 것이 바람직하고, 0.1 중량% 내지 2.0 중량%인 것이 더욱 바람직하고, 0.1 중량% 내지 1.0 중량%일 수 있으며, 0.1 중량% 내지 0.5 중량%일 수 있고, 0.15 중량% 내지 0.4 중량%일 수 있다. 상기 n형 도판트의 경우 그 함량은 1 중량% 내지 300 중량%인 것이 바람직하고, 25 중량% 내지 150 중량%인 것이 더욱 바람직하며, 80 중량% 내지 100 중량%인 것이 가장 바람직하다.The content of the p-type dopant or n-type dopant is preferably 0.1% to 300% by weight relative to the total mixed solution, and in the case of the p-type dopant, the content is preferably 0.1% to 50% by weight And, it is more preferably from 0.1% to 2.0% by weight, may be 0.1% to 1.0% by weight, may be 0.1% to 0.5% by weight, and may be 0.15% to 0.4% by weight. In the case of the n-type dopant, the content is preferably 1% by weight to 300% by weight, more preferably 25% by weight to 150% by weight, and most preferably 80% by weight to 100% by weight.
다음으로, 본 발명의 일 측면에서 제공되는 탄소나노튜브 폼의 제조방법은 상기 혼합용액을 지지체에 도포하는 단계를 포함한다.Next, a method of manufacturing a carbon nanotube foam provided in one aspect of the present invention includes applying the mixed solution to a support.
상기 지지체는 실리콘 몰드와 같이 유기 용매에 녹지 않는 물성의 재료일 수 있다. 지지체의 규격에 따라 다양한 모양 및 크기의 수직형 탄소나노튜브 폼을 제조할 수 있다.The support may be a material that is insoluble in an organic solvent, such as a silicone mold. Vertical carbon nanotube foams of various shapes and sizes can be manufactured according to the specifications of the support.
다음으로, 본 발명의 일 측면에서 제공되는 탄소나노튜브 폼의 제조방법은 상기 지지체를 진공증발시키는 단계를 포함한다.Next, a method of manufacturing a carbon nanotube foam provided in one aspect of the present invention includes a step of vacuum evaporating the support.
본 발명의 일 측면에서 제공되는 탄소나노튜브 폼은 기존에 없던 단순한 공정으로 탄소나노튜브 폼을 형성할 수 있는 기술로서 상기 단계에서는 탄소나노튜브를 폼 형태로 구현하기 위해 진공증발시킨다.The carbon nanotube foam provided in one aspect of the present invention is a technology capable of forming a carbon nanotube foam by a simple process that has not existed, and in this step, the carbon nanotube is vacuum evaporated to realize the foam form.
상기 진공증발은 10-1 torr 내지 10-3 torr의 압력 하에서 수행될 수 있다. 상기 10-1 torr 내지 10-3 torr(0.13 Pa 내지 13.3 Pa)에서 진공증발시킴으로써 최종적으로 폼 형태의 탄소나노튜브를 형성할 수 있다.The vacuum evaporation may be performed under a pressure of 10 -1 torr to 10 -3 torr. The carbon nanotubes in the form of foam may be finally formed by vacuum evaporation at 10 -1 torr to 10 -3 torr (0.13 Pa to 13.3 Pa).
본 발명의 일 측면에서 제공되는 제조방법을 이용하여 최종적으로 제조된 탄소나노튜브 폼은 0.02 g/cm3 내지 0.04 g/cm3의 밀도, 90% 내지 98%의 기공도를 가질 수 있고, 평균 800 nm 내지 1,200 nm의 직경을 갖는 기공이 형성될 수 있다. 또한, 탄소나노튜브 필름에 비하여 100 배 이상 낮은 열전도도를 가질 수 있다.The carbon nanotube foam finally manufactured using the manufacturing method provided in one aspect of the present invention may have a density of 0.02 g/cm 3 to 0.04 g/cm 3 , a porosity of 90% to 98%, and average Pores having a diameter of 800 nm to 1,200 nm may be formed. In addition, it may have a thermal conductivity that is 100 times lower than that of the carbon nanotube film.
또한, 본 발명의 다른 측면에서In addition, in another aspect of the present invention
탄소나노튜브와 유기 고분자를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계; Carbon nanotubes and organic polymers include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, butyl alcohol, and acetone ( preparing a mixed solution by dispersing in at least one solvent selected from the group consisting of acetone), chloroform, and methylene chloride;
상기 혼합용액을 지지체에 도포하는 단계; 및Applying the mixed solution to a support; And
상기 지지체를 진공증발시키는 단계;를 포함하는 열전소자용 복합재료의 제조방법이 제공된다.A method of manufacturing a composite material for a thermoelectric device comprising a step of evaporating the support in a vacuum.
이하, 본 발명의 일 측면에서 제공되는 열전소자용 복합재료의 제조방법에 대하여 각 단계별로 상세히 설명한다.Hereinafter, a method of manufacturing a composite material for a thermoelectric element provided in one aspect of the present invention will be described in detail for each step.
먼저, 본 발명의 일 측면에서 제공되는 열전소자용 복합재료의 제조방법은 탄소나노튜브 및 유기 고분자를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계를 포함한다.First, the method of manufacturing a composite material for a thermoelectric device provided in one aspect of the present invention is a carbon nanotube and an organic polymer cyclohexane (cyclohexane), benzene (benzen), water (H 2 O), 1,4-dioxane (1,4-dioxane), butyl alcohol (tert-butyl alcohol), acetone (acetone), chloroform (chloroform), and methylene chloride It includes the steps of manufacturing.
본 발명에서는 간단한 방법으로 폼(foam) 형태의 탄소나노튜브를 포함하는 열전소자용 복합재료를 제조할 수 있는 방법을 제공하며, 이를 위해 탄소나노튜브와 유기 고분자를 특정 용매에 분산시켜 혼합용액을 제조한다. 상기 용매는 시클로헥산, 벤젠, 물, 1,4-다이옥세인, 부틸알콜, 아세톤, 클로로폼, 및 메틸렌 클로라이드 중 1종 이상을 단독 또는 혼합하여 사용할 수 있다.The present invention provides a method for manufacturing a composite material for a thermoelectric element including a foam type carbon nanotube by a simple method, and for this purpose, the carbon nanotube and the organic polymer are dispersed in a specific solvent to prepare a mixed solution. To manufacture. The solvent may be used alone or in combination of one or more of cyclohexane, benzene, water, 1,4-dioxane, butyl alcohol, acetone, chloroform, and methylene chloride.
또한, 상기 혼합용액 내 탄소나노튜브의 함량은 1 mg/mL 내지 20 mg/mL일 수 있으며, 3 mg/mL 내지 15 mg/mL일 수 있고, 5 mg/mL 내지 11 mg/mL일 수 있다. 만약, 상기 혼합용액 내 탄소나노튜브의 함량이 1 mg/mL 미만인 경우에는 용매의 양이 탄소나노튜브의 양보다 과하게 많아 탄소나노튜브 폼 형성이 어려운 문제가 있으며, 20 mg/mL를 초과하는 경우에는 분산성이 낮아져 균일한 탄소나노튜브 폼의 형성이 어려운 문제가 있다.In addition, the content of the carbon nanotubes in the mixed solution may be 1 mg/mL to 20 mg/mL, 3 mg/mL to 15 mg/mL, and 5 mg/mL to 11 mg/mL. . If, when the content of the carbon nanotubes in the mixed solution is less than 1 mg/mL, the amount of the solvent is excessively greater than the amount of the carbon nanotubes, there is a problem that the formation of the carbon nanotube foam is difficult, and when it exceeds 20 mg/mL There is a problem in that dispersibility is low and formation of a uniform carbon nanotube foam is difficult.
상기 유기 고분자는 폴리스티렌, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Poly(3-hexylthiophene-2,5-diyl)(P3HT), 폴리아닐린, 폴리바이닐 알코올 및 폴리에틸렌이민 등일 수 있다.The organic polymer is polystyrene, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Poly(3-hexylthiophene-2,5-diyl)(P3HT), polyaniline, polyvinyl alcohol and polyethyleneimine. Can.
상기 탄소나노튜브 및 유기 고분자의 혼합비율은 10:90 내지 40:60 중량비인 것이 바람직하고, 15:85 내지 35:65일 수 있고, 20:80 내지 30:70일 수 있으며, 10:90 내지 20:80일 수 있고, 30:70 내지 40:60일 수 있다.The mixing ratio of the carbon nanotube and the organic polymer is preferably 10:90 to 40:60 by weight, may be 15:85 to 35:65, and may be 20:80 to 30:70, 10:90 to 20:80, and may be 30:70 to 40:60.
상기 탄소나노튜브를 용매에 분산시키는 방법은 마이크로나이징, 볼 밀, 팁 초음파 등의 방법을 포함한다.The method of dispersing the carbon nanotubes in a solvent includes methods such as micronizing, ball mill, tip ultrasonication, and the like.
다음으로, 본 발명의 일 측면에서 제공되는 열전소자용 복합재료의 제조방법은 상기 혼합용액을 지지체에 도포하는 단계를 포함한다.Next, the method of manufacturing a composite material for a thermoelectric element provided in one aspect of the present invention includes the step of applying the mixed solution to the support.
상기 지지체는 실리콘 몰드와 같이 유기 용매에 녹지 않는 물성의 재료일 수 있다. 지지체의 규격에 따라 다양한 모양 및 크기의 수직형 탄소나노튜브 폼을 포함하는 열전소자용 복합재료를 제조할 수 있다.The support may be a material that is insoluble in an organic solvent, such as a silicone mold. According to the specification of the support, it is possible to manufacture a composite material for a thermoelectric element including vertical carbon nanotube foams of various shapes and sizes.
다음으로, 본 발명의 일 측면에서 제공되는 열전소자용 복합재료의 제조방법은 상기 지지체를 진공증발시키는 단계를 포함한다.Next, a method of manufacturing a composite material for a thermoelectric element provided in one aspect of the present invention includes vacuum evaporating the support.
본 발명의 일 측면에서 제공되는 열전소자용 복합재료는 기존에 없던 단순한 공정으로 탄소나노튜브 폼을 포함하는 열전소자용 복합재료를 제조할 수 있는 기술로서 상기 단계에서는 폼 형태를 구현하기 위해 진공증발시킨다.The composite material for a thermoelectric element provided in one aspect of the present invention is a technology capable of manufacturing a composite material for a thermoelectric element including a carbon nanotube foam in a simple process that has not existed in the above step. Order.
상기 진공증발은 10-1 torr 내지 10-3 torr의 압력 하에서 수행될 수 있다. 상기 10-1 torr 내지 10-3 torr(0.13 Pa 내지 13.3 Pa)에서 진공증발시킴으로써 최종적으로 폼 형태의 열전소자용 복합재료를 제조할 수 있다.The vacuum evaporation may be performed under a pressure of 10 -1 torr to 10 -3 torr. The vacuum evaporation at 10 -1 torr to 10 -3 torr (0.13 Pa to 13.3 Pa) can finally produce a composite material for a thermoelectric element in the form of a foam.
나아가, 본 발명의 또 다른 측면에서Furthermore, in another aspect of the present invention
탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시킨 후, p형 도판트 또는 n형 도판트를 혼합하여 혼합용액을 제조하는 단계; Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Dispersing in one or more solvents selected from the group consisting of chloroform, and methylene chloride, and then mixing a p-type dopant or an n-type dopant to prepare a mixed solution;
상기 혼합용액을 지지체에 도포하는 단계; 및Applying the mixed solution to a support; And
상기 지지체를 진공증발시키는 단계;를 포함하는 열전소자용 복합재료의 제조방법이 제공된다.A method of manufacturing a composite material for a thermoelectric device comprising a step of evaporating the support in a vacuum.
이하, 본 발명의 일 측면에서 제공되는 열전소자용 복합재료의 제조방법에 대하여 각 단계별로 상세히 설명한다.Hereinafter, a method of manufacturing a composite material for a thermoelectric element provided in one aspect of the present invention will be described in detail for each step.
먼저, 본 발명의 일 측면에서 제공되는 열전소자용 복합재료의 제조방법은 탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시킨 후, p형 도판트 또는 n형 도판트를 혼합하여 혼합용액을 제조하는 단계를 포함한다.First, the method of manufacturing a composite material for a thermoelectric element provided in one aspect of the present invention is a carbon nanotube cyclohexane (cyclohexane), benzene (benzen), water (H 2 O), 1,4-dioxane (1, 4-dioxane), butyl alcohol (tert-butyl alcohol), acetone (acetone), chloroform (chloroform), and after dispersing in one or more solvents selected from the group consisting of methylene chloride (methylene chloride), p-type plate It comprises the step of preparing a mixed solution by mixing the dopant or n-type dopant.
본 발명에서는 간단한 방법으로 폼(foam) 형태의 탄소나노튜브를 포함하는 열전소자용 복합재료를 제조할 수 있는 방법을 제공하며, 이를 위해 탄소나노튜브와 도판트를 특정 용매에 분산시켜 혼합용액을 제조한다. 상기 용매는 시클로헥산, 벤젠, 물, 1,4-다이옥세인, 부틸알콜, 아세톤, 클로로폼, 및 메틸렌 클로라이드 중 1종 이상을 단독 또는 혼합하여 사용할 수 있다.The present invention provides a method for manufacturing a composite material for a thermoelectric element including a carbon nanotube in the form of a foam by a simple method, and for this purpose, the carbon nanotube and the dopant are dispersed in a specific solvent to prepare a mixed solution. To manufacture. The solvent may be used alone or in combination of one or more of cyclohexane, benzene, water, 1,4-dioxane, butyl alcohol, acetone, chloroform, and methylene chloride.
또한, 상기 혼합용액 내 탄소나노튜브의 함량은 1 mg/mL 내지 20 mg/mL일 수 있으며, 3 mg/mL 내지 15 mg/mL일 수 있고, 5 mg/mL 내지 11 mg/mL일 수 있다. 만약, 상기 혼합용액 내 탄소나노튜브의 함량이 1 mg/mL 미만인 경우에는 용매의 양이 탄소나노튜브의 양보다 과하게 많아 탄소나노튜브 폼 형성이 어려운 문제가 있으며, 20 mg/mL를 초과하는 경우에는 분산성이 낮아져 균일한 탄소나노튜브 폼의 형성이 어려운 문제가 있다.In addition, the content of the carbon nanotubes in the mixed solution may be 1 mg/mL to 20 mg/mL, 3 mg/mL to 15 mg/mL, and 5 mg/mL to 11 mg/mL. . If, when the content of the carbon nanotubes in the mixed solution is less than 1 mg/mL, the amount of the solvent is excessively greater than the amount of the carbon nanotubes, there is a problem that the formation of the carbon nanotube foam is difficult, and when it exceeds 20 mg/mL There is a problem in that dispersibility is low and formation of a uniform carbon nanotube foam is difficult.
상기 p형 도판트는 염화철, 염화금, 염화은, 카바졸 및 그 유도체, 벤조퀴논, 테트라시아노퀴논, 테르라플루오르퀴노디메테인, 요오드 화합물, 디페닐리딘, 이미다졸, 트리아졸, 폴리아자인, 피리딘 트리페닐아민, 테트라티아풀발렌 및 피라진 등일 수 있다.The p-type dopant is iron chloride, gold chloride, silver chloride, carbazole and its derivatives, benzoquinone, tetracyanoquinone, terafluorquinodimethane, iodine compound, diphenylidine, imidazole, triazole, polyazaine, pyridine Triphenylamine, tetrathiafulvalene, pyrazine, and the like.
상기 n형 도판트는 벤질바이올로젠, 히드라진, 에틸렌디아민, 트리에틸렌아민, 에틸아민, 피롤리딘, 트리페닐포스페이트, 폴리비닐피롤리돈, 테트라메틸-페닐렌디아민 및 페로센 등일 수 있다.The n-type dopant may be benzylbiogen, hydrazine, ethylenediamine, triethyleneamine, ethylamine, pyrrolidine, triphenylphosphate, polyvinylpyrrolidone, tetramethyl-phenylenediamine and ferrocene.
상기 p형 도판트 또는 n형 도판트의 함량은 전체 혼합용액에 대하여 0.1 중량% 내지 300 중량%인 것이 바람직하고, 상기 p형 도판트의 경우 그 함량은 0.1 중량% 내지 50 중량%인 것이 바람직하고, 0.1 중량% 내지 2.0 중량%인 것이 더욱 바람직하고, 0.1 중량% 내지 1.0 중량%일 수 있으며, 0.1 중량% 내지 0.5 중량%일 수 있고, 0.15 중량% 내지 0.4 중량%일 수 있다. 상기 n형 도판트의 경우 그 함량은 1 중량% 내지 300 중량%인 것이 바람직하고, 25 중량% 내지 150 중량%인 것이 더욱 바람직하며, 80 중량% 내지 100 중량%인 것이 가장 바람직하다.The content of the p-type dopant or n-type dopant is preferably 0.1% to 300% by weight relative to the total mixed solution, and in the case of the p-type dopant, the content is preferably 0.1% to 50% by weight And, it is more preferably from 0.1% to 2.0% by weight, may be 0.1% to 1.0% by weight, may be 0.1% to 0.5% by weight, and may be 0.15% to 0.4% by weight. In the case of the n-type dopant, the content is preferably 1% by weight to 300% by weight, more preferably 25% by weight to 150% by weight, and most preferably 80% by weight to 100% by weight.
상기 탄소나노튜브를 용매에 분산시키는 방법은 마이크로나이징, 볼 밀, 팁 초음파 등의 방법을 포함한다.The method of dispersing the carbon nanotubes in a solvent includes methods such as micronizing, ball mill, tip ultrasonication, and the like.
다음으로, 본 발명의 일 측면에서 제공되는 열전소자용 복합재료의 제조방법은 상기 혼합용액을 지지체에 도포하는 단계를 포함한다.Next, the method of manufacturing a composite material for a thermoelectric element provided in one aspect of the present invention includes the step of applying the mixed solution to the support.
상기 지지체는 실리콘 몰드와 같이 유기 용매에 녹지 않는 물성의 재료일 수 있다. 지지체의 규격에 따라 다양한 모양 및 크기의 수직형 탄소나노튜브 폼을 포함하는 열전소자용 복합재료를 제조할 수 있다.The support may be a material that is insoluble in an organic solvent, such as a silicone mold. According to the specification of the support, it is possible to manufacture a composite material for a thermoelectric element including vertical carbon nanotube foams of various shapes and sizes.
다음으로, 본 발명의 일 측면에서 제공되는 열전소자용 복합재료의 제조방법은 상기 지지체를 진공증발시키는 단계를 포함한다.Next, a method of manufacturing a composite material for a thermoelectric element provided in one aspect of the present invention includes vacuum evaporating the support.
본 발명의 일 측면에서 제공되는 열전소자용 복합재료는 기존에 없던 단순한 공정으로 탄소나노튜브 폼을 포함하는 열전소자용 복합재료를 제조할 수 있는 기술로서 상기 단계에서는 폼 형태를 구현하기 위해 진공증발시킨다.The composite material for a thermoelectric element provided in one aspect of the present invention is a technology capable of manufacturing a composite material for a thermoelectric element including a carbon nanotube foam in a simple process that has not existed in the above step. Order.
상기 진공증발은 10-1 torr 내지 10-3 torr의 압력 하에서 수행될 수 있다. 상기 10-1 torr 내지 10-3 torr(0.13 Pa 내지 1.13 Pa)에서 진공증발시킴으로써 최종적으로 폼 형태의 열전소자용 복합재료를 제조할 수 있다.The vacuum evaporation may be performed under a pressure of 10 -1 torr to 10 -3 torr. The vacuum evaporation at 10 -1 torr to 10 -3 torr (0.13 Pa to 1.13 Pa) can finally produce a composite material for a thermoelectric element in the form of a foam.
또한, 본 발명의 다른 일 측면에서In addition, in another aspect of the present invention
탄소나노튜브와 탄성 고분자를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계; Carbon nanotubes and elastic polymers are cyclohexane, benzene, water (H 2 O), 1,4-dioxane, butyl alcohol, and acetone ( preparing a mixed solution by dispersing in at least one solvent selected from the group consisting of acetone), chloroform, and methylene chloride;
상기 혼합용액을 지지체에 도포하는 단계;Applying the mixed solution to a support;
상기 지지체를 진공증발시키는 단계; 및Vacuum evaporating the support; And
생성물을 경화시키는 단계;를 포함하는 유연열전소자용 탄성복합재료의 제조방법이 제공된다.A method of manufacturing an elastic composite material for a flexible thermoelectric element comprising a step of curing a product is provided.
이하, 본 발명의 다른 일 측면에서 제공되는 유연열전소자용 탄성복합재료의 제조방법에 대하여 각 단계별로 상세히 설명한다.Hereinafter, a method of manufacturing an elastic composite material for a flexible thermoelectric element provided in another aspect of the present invention will be described in detail for each step.
먼저, 본 발명의 일 측면에서 제공되는 유연열전소자용 탄성복합재료의 제조방법은 탄소나노튜브와 탄성 고분자를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계를 포함한다.First, a method of manufacturing an elastic composite material for a flexible thermoelectric element provided in one aspect of the present invention includes carbon nanotubes and an elastic polymer in cyclohexane, benzene, water (H 2 O), 1,4- Dioxane (1,4-dioxane), butyl alcohol (tert-butyl alcohol), acetone (acetone), chloroform (chloroform), and methylene chloride (methylene chloride) And preparing a mixed solution.
본 발명에서는 간단한 방법으로 폼(foam) 형태의 탄소나노튜브를 포함하는 유연열전소자용 탄성복합재료를 제조할 수 있는 방법을 제공하며, 이를 위해 탄소나노튜브와 탄성 고분자를 특정 용매에 분산시켜 혼합용액을 제조한다. 상기 용매는 시클로헥산, 벤젠, 물, 1,4-다이옥세인, 부틸알콜, 아세톤, 클로로폼, 및 메틸렌 클로라이드 중 1종 이상을 단독 또는 혼합하여 사용할 수 있다.The present invention provides a method for manufacturing an elastic composite material for a flexible thermoelectric element including a carbon nanotube in the form of a foam by a simple method, and for this purpose, carbon nanotubes and an elastic polymer are dispersed in a specific solvent and mixed. Prepare a solution. The solvent may be used alone or in combination of one or more of cyclohexane, benzene, water, 1,4-dioxane, butyl alcohol, acetone, chloroform, and methylene chloride.
또한, 상기 혼합용액 내 탄소나노튜브의 함량은 1 mg/mL 내지 20 mg/mL일 수 있으며, 3 mg/mL 내지 15 mg/mL일 수 있고, 5 mg/mL 내지 11 mg/mL일 수 있다. 만약, 상기 혼합용액 내 탄소나노튜브의 함량이 1 mg/mL 미만인 경우에는 용매의 양이 탄소나노튜브의 양보다 과하게 많아 탄소나노튜브 폼 형성이 어려운 문제가 있으며, 20 mg/mL를 초과하는 경우에는 분산성이 낮아져 균일한 탄소나노튜브 폼의 형성이 어려운 문제가 있다.In addition, the content of the carbon nanotubes in the mixed solution may be 1 mg/mL to 20 mg/mL, 3 mg/mL to 15 mg/mL, and 5 mg/mL to 11 mg/mL. . If, when the content of the carbon nanotubes in the mixed solution is less than 1 mg/mL, the amount of the solvent is excessively greater than the amount of the carbon nanotubes, there is a problem that the formation of the carbon nanotube foam is difficult, and when it exceeds 20 mg/mL There is a problem in that dispersibility is low and formation of a uniform carbon nanotube foam is difficult.
상기 탄성 고분자는 폴리디메틸실록산(Polydimethylsiloxane)계 고분자 또는 폴리우레탄(Polyurethane)계 고분자 등을 단독 또는 혼합하여 사용할 수 있다.The elastic polymer may be used alone or in combination with a polydimethylsiloxane polymer or a polyurethane polymer.
상기 탄소나노튜브 및 탄성 고분자의 혼합비율은 1:1 내지 1:9의 중량비인 것이 바람직하고, 1:3 내지 1:7일 수 있고, 1:5일 수 있다.The mixing ratio of the carbon nanotubes and the elastic polymer is preferably 1:1 to 1:9 by weight, and may be 1:3 to 1:7, and 1:5.
상기 탄소나노튜브를 용매에 분산시키는 방법은 마이크로나이징, 볼 밀, 팁 초음파 등의 방법을 포함한다.The method of dispersing the carbon nanotubes in a solvent includes methods such as micronizing, ball mill, tip ultrasonication, and the like.
다음으로, 본 발명의 일 측면에서 제공되는 유연열전소자용 탄성복합재료의 제조방법은 상기 혼합용액을 지지체에 도포하는 단계를 포함한다.Next, the method of manufacturing an elastic composite material for a flexible thermoelectric element provided in one aspect of the present invention includes applying the mixed solution to a support.
상기 지지체는 실리콘 몰드와 같이 유기 용매에 녹지 않는 물성의 재료일 수 있다. 지지체의 규격에 따라 다양한 모양 및 크기의 수직형 탄소나노튜브 폼을 포함하는 유연열전소자용 탄성복합재료를 제조할 수 있다.The support may be a material that is insoluble in an organic solvent, such as a silicone mold. According to the specification of the support, it is possible to manufacture an elastic composite material for a flexible thermoelectric element including vertical carbon nanotube foams of various shapes and sizes.
다음으로, 본 발명의 일 측면에서 제공되는 유연열전소자용 탄성복합재료의 제조방법은 상기 지지체를 진공증발시키는 단계를 포함한다.Next, a method of manufacturing an elastic composite material for a flexible thermoelectric element provided in one aspect of the present invention includes vacuum evaporating the support.
본 발명의 일 측면에서 제공되는 유연열전소자용 탄성복합재료는 기존에 없던 단순한 공정으로 탄소나노튜브 폼을 포함하는 유연열전소자용 탄성복합재료를 제조할 수 있는 기술로서 상기 단계에서는 폼 형태를 구현하기 위해 진공증발시킨다.The elastic composite material for flexible thermoelectric elements provided in one aspect of the present invention is a technology capable of manufacturing an elastic composite material for flexible thermoelectric elements including carbon nanotube foam in a simple process that has not existed. To evaporate.
상기 진공증발은 10-1 torr 내지 10-3 torr의 압력 하에서 수행될 수 있다. 상기 10-1 torr 내지 10-3 torr(0.13 Pa 내지 1.13 Pa)에서 진공증발시킴으로써 폼 형태의 유연열전소자용 탄성복합재료를 제조할 수 있다.The vacuum evaporation may be performed under a pressure of 10 -1 torr to 10 -3 torr. The elastic composite material for a flexible thermoelectric element in the form of a foam can be manufactured by vacuum evaporation at 10 -1 torr to 10 -3 torr (0.13 Pa to 1.13 Pa).
다음으로, 본 발명의 다른 일 측면에서 제공되는 유연열전소자용 탄성복합재료의 제조방법은 생성물을 경화시키는 단계를 포함한다.Next, a method of manufacturing an elastic composite material for a flexible thermoelectric element provided in another aspect of the present invention includes curing a product.
탄성 고분자를 포함하는 폼 형태의 생성물의 탄성 고분자를 경화시킴으로써 탄소나노튜브 폼에 눌림, 휘어짐, 뒤틀림, 늘림 등의 외부압력에 강한 탄성 특성을 탄소나노튜브 폼에 부여할 수 있다.By curing the elastic polymer of the foam-type product containing the elastic polymer, the carbon nanotube foam can be imparted with elastic properties strong against external pressure such as pressing, bending, warping, stretching, etc. on the carbon nanotube foam.
상기 경화는 473K 이하의 온도 범위에서 수행될 수 있으며, 최종적으로 유연열전소자용 탄성복합재료가 제조될 수 있다.The curing may be performed in a temperature range of 473K or less, and finally, an elastic composite material for a flexible thermoelectric element may be manufactured.
나아가, 본 발명의 다른 일 측면에서Furthermore, in another aspect of the present invention
탄소나노튜브; 및 유기 고분자, 탄성 고분자, n형 도판트 및 p형 도판트로 이루어지는 군으로부터 선택되는 1종 이상;을 포함하고,Carbon nanotubes; And at least one member selected from the group consisting of organic polymers, elastic polymers, n-type dopants, and p-type dopants.
폼 형태인 것을 특징으로 하는 열전소자용 복합재료를 제공한다.It provides a composite material for a thermoelectric element characterized in that the form of a foam.
상기 복합재료는 탄소나노튜브 폼 기반의 복합재료로서, 자유롭고 다양한 모양으로 형성되어 동일한 양으로 만들어진 탄소나노튜브 필름에 비해 수직형 열전소자를 안정적으로 구현할 수 있다. 또한, 탄소나노튜브 폼은 다수 기공의 존재로 인해 제벡계수의 심각한 손실 없이 낮은 열전도도를 가질 수 있다. 더욱이, 유기 고분자, n형 도판트 및 p형 도판트 등을 포함함으로써 n형 또는 p형으로 도핑된 탄소나노튜브 폼은 p-n 쌍의 열전소자를 구현할 수 있으며, 탄성 고분자를 포함함으로써 외부압력에 강한 회복특성이 있는 유연열전소자의 구현이 가능하다.The composite material is a carbon nanotube foam-based composite material, which can be freely formed in various shapes and stably implement a vertical thermoelectric element compared to a carbon nanotube film made in the same amount. In addition, the carbon nanotube foam may have low thermal conductivity without serious loss of Seebeck coefficient due to the presence of multiple pores. Moreover, by including an organic polymer, n-type dopant, and p-type dopant, the n-type or p-type doped carbon nanotube foam can implement a pn pair of thermoelectric elements, and include an elastic polymer to resist external pressure. It is possible to implement flexible thermoelectric elements with recovery characteristics.
더욱 나아가, 본 발명의 다른 측면에서Furthermore, in another aspect of the present invention
복수 개의 홈을 포함하는 몰드를 준비하는 단계;Preparing a mold including a plurality of grooves;
탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하여 몰드의 홈에 도포하는 단계;Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride to prepare a mixed solution and apply it to the grooves of the mold;
상기 몰드를 진공증발시켜 탄소나노튜브 폼을 형성하는 단계; 및Forming a carbon nanotube foam by vacuum evaporating the mold; And
상기 형성된 탄소나노튜브 폼에 전극을 형성하는 단계;를 포함하는 열전소자의 제조방법이 제공된다.Forming an electrode on the formed carbon nanotube foam; is provided a method of manufacturing a thermoelectric element comprising a.
이때, 도 4(a)에 열전소자의 제조방법의 일례를 모식도로 나타내었으며,At this time, Fig. 4 (a) shows an example of a method of manufacturing a thermoelectric element in a schematic diagram,
이하, 도 4(a)의 모식도를 참조하여 본 발명의 일 측면에서 제공되는 열전소자의 제조방법에 대하여 각 단계별로 상세히 설명한다.Hereinafter, a method for manufacturing a thermoelectric element provided in one aspect of the present invention will be described in detail with each step with reference to the schematic diagram of FIG. 4(a).
먼저, 본 발명의 일 측면에서 제공되는 열전소자의 제조방법은 복수 개의 홈을 포함하는 몰드를 준비하는 단계를 포함한다.First, a method of manufacturing a thermoelectric element provided in one aspect of the present invention includes preparing a mold including a plurality of grooves.
본 발명의 일 측면에서 제공되는 열전소자의 제조방법은 폼 형태의 탄소나노튜브를 포함하는 열전소자를 제조하는 방법으로, 첫 번째 단계로 열전소자용 복합재료를 위치시키기 위해 복수 개의 홈을 포함하는 몰드를 준비한다.The method of manufacturing a thermoelectric element provided in one aspect of the present invention is a method of manufacturing a thermoelectric element including a carbon nanotube in the form of a foam, and includes a plurality of grooves to position the composite material for the thermoelectric element in the first step. Prepare the mold.
상기 몰드는 실리콘 몰드와 같이 유기 용매에 녹지 않는 물성의 재료일 수 있다. 상기 몰드의 홈의 규격에 따라 다양한 모양 및 크기의 탄소나노튜브 폼을 포함하는 복합재료를 형성할 수 있다.The mold may be a material that does not dissolve in an organic solvent, such as a silicone mold. According to the specification of the groove of the mold, a composite material including carbon nanotube foams of various shapes and sizes may be formed.
다음으로, 본 발명의 일 측면에서 제공되는 열전소자의 제조방법은 탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하여 몰드의 홈에 도포하는 단계를 포함한다.Next, the method of manufacturing a thermoelectric element provided in one aspect of the present invention is a carbon nanotube cyclohexane (cyclohexane), benzene (benzen), water (H 2 O), 1,4-dioxane (1,4- dioxane), butyl alcohol (tert-butyl alcohol), acetone (acetone), chloroform (chloroform), and methylene chloride. And applying to the groove.
상기 단계에서는 간단한 방법으로 폼(foam) 형태의 탄소나노튜브를 제조할 수 있는 방법으로 특정 유기 용매에 탄소나노튜브를 분산시키고 이를 전단계에서 준비된 몰드의 홈에 도포한다.In the above step, the carbon nanotubes are dispersed in a specific organic solvent in a method that can produce a foam-type carbon nanotube by a simple method, and this is applied to the grooves of the mold prepared in the previous step.
이때, 상기 혼합용액 내 탄소나노튜브의 함량은 1 mg/mL 내지 20 mg/mL일 수 있으며, 3 mg/mL 내지 15 mg/mL일 수 있고, 5 mg/mL 내지 11 mg/mL일 수 있다. 만약, 상기 혼합용액 내 탄소나노튜브의 함량이 1 mg/mL 미만인 경우에는 용매의 양이 탄소나노튜브의 양보다 과하게 많아 탄소나노튜브 폼 형성이 어려운 문제가 있으며, 20 mg/mL를 초과하는 경우에는 분산성이 떨어져 탄소나노튜브 폼의 형성이 어려운 문제가 있다.In this case, the content of the carbon nanotubes in the mixed solution may be 1 mg/mL to 20 mg/mL, 3 mg/mL to 15 mg/mL, and 5 mg/mL to 11 mg/mL. . If, when the content of the carbon nanotubes in the mixed solution is less than 1 mg/mL, the amount of the solvent is excessively greater than the amount of the carbon nanotubes, there is a problem that the formation of the carbon nanotube foam is difficult, and when it exceeds 20 mg/mL There is a problem in that dispersibility is poor and formation of a carbon nanotube foam is difficult.
상기 탄소나노튜브를 용매에 분산시키는 방법은 마이크로나이징, 볼 밀, 팁 초음파 등의 방법을 포함한다.The method of dispersing the carbon nanotubes in a solvent includes methods such as micronizing, ball mill, tip ultrasonication, and the like.
또한, 상기 혼합용액은 유기 고분자, 탄성 고분자, 금속, p형 도판트 및 n형 도판트 중 1종 이상의 물질을 더 포함할 수 있다. 상기 혼합용액은 유기 고분자, 탄성 고분자 또는 금속 등을 함께 혼합하여 물성을 조절할 수 있다.In addition, the mixed solution may further include at least one material of organic polymer, elastic polymer, metal, p-type dopant, and n-type dopant. The mixed solution may be mixed with an organic polymer, an elastic polymer or a metal to control physical properties.
상기 유기 고분자는 폴리스티렌, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Poly(3-hexylthiophene-2,5-diyl)(P3HT), 폴리아닐린, 폴리바이닐 알코올 및 폴리에틸렌이민 등일 수 있다.The organic polymer is polystyrene, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Poly(3-hexylthiophene-2,5-diyl)(P3HT), polyaniline, polyvinyl alcohol and polyethyleneimine. Can.
상기 탄소나노튜브 및 유기 고분자의 혼합비율은 10:90 내지 40:60 중량비인 것이 바람직하고, 15:85 내지 35:65일 수 있고, 20:80 내지 30:70일 수 있으며, 10:90 내지 20:80일 수 있고, 30:70 내지 40:60일 수 있다.The mixing ratio of the carbon nanotube and the organic polymer is preferably 10:90 to 40:60 by weight, may be 15:85 to 35:65, and may be 20:80 to 30:70, 10:90 to 20:80, and may be 30:70 to 40:60.
상기 탄성 고분자는 폴리디메틸실록산(Polydimethylsiloxane)계 고분자 또는 폴리우레탄(Polyurethane)계 고분자 등을 단독 또는 혼합하여 사용할 수 있다.The elastic polymer may be used alone or in combination with a polydimethylsiloxane polymer or a polyurethane polymer.
상기 탄소나노튜브 및 탄성 고분자의 혼합비율은 1:1 내지 1:9의 중량비인 것이 바람직하고, 1:3 내지 1:7일 수 있고, 1:5일 수 있다.The mixing ratio of the carbon nanotubes and the elastic polymer is preferably 1:1 to 1:9 by weight, and may be 1:3 to 1:7, and 1:5.
상기 금속은 안티몬(Sb), 셀레늄(Se), 은(Ag), 구리(Cu), 주석(Sn), 망간(Mn) 및 철(Fe) 등일 수 있다.The metal may be antimony (Sb), selenium (Se), silver (Ag), copper (Cu), tin (Sn), manganese (Mn) and iron (Fe).
상기 p형 도판트는 염화철, 염화금, 염화은, 카바졸 및 그 유도체, 벤조퀴논, 테트라시아노퀴논, 테르라플루오르퀴노디메테인, 요오드 화합물, 디페닐리딘, 이미다졸, 트리아졸, 폴리아자인, 피리딘 트리페닐아민, 테트라티아풀발렌 및 피라진 등일 수 있다.The p-type dopant is iron chloride, gold chloride, silver chloride, carbazole and its derivatives, benzoquinone, tetracyanoquinone, terafluorquinodimethane, iodine compound, diphenylidine, imidazole, triazole, polyazaine, pyridine Triphenylamine, tetrathiafulvalene, pyrazine, and the like.
상기 n형 도판트는 벤질바이올로젠, 히드라진, 에틸렌디아민, 트리에틸렌아민, 에틸아민, 피롤리딘, 트리페닐포스페이트, 폴리비닐피롤리돈, 테트라메틸-페닐렌디아민 및 페로센 등일 수 있다.The n-type dopant may be benzylbiogen, hydrazine, ethylenediamine, triethyleneamine, ethylamine, pyrrolidine, triphenylphosphate, polyvinylpyrrolidone, tetramethyl-phenylenediamine and ferrocene.
상기 p형 도판트 또는 n형 도판트의 함량은 탄소나노튜브에 대하여 0.1 중량% 내지 300 중량%인 것이 바람직하고, 상기 p형 도판트의 경우 그 함량은 0.1 중량% 내지 50 중량%인 것이 바람직하고, 0.1 중량% 내지 2.0 중량%인 것이 더욱 바람직하고, 0.1 중량% 내지 1.0 중량%일 수 있으며, 0.1 중량% 내지 0.5 중량%일 수 있고, 0.15 중량% 내지 0.4 중량%일 수 있다. 상기 n형 도판트의 경우 그 함량은 1 중량% 내지 300 중량%인 것이 바람직하고, 25 중량% 내지 150 중량%인 것이 더욱 바람직하며, 80 중량% 내지 100 중량%인 것이 가장 바람직하다.The content of the p-type dopant or the n-type dopant is preferably 0.1% by weight to 300% by weight relative to the carbon nanotube, and in the case of the p-type dopant, the content is preferably 0.1% by weight to 50% by weight And, it is more preferably from 0.1% to 2.0% by weight, may be 0.1% to 1.0% by weight, may be 0.1% to 0.5% by weight, and may be 0.15% to 0.4% by weight. In the case of the n-type dopant, the content is preferably 1% by weight to 300% by weight, more preferably 25% by weight to 150% by weight, and most preferably 80% by weight to 100% by weight.
나아가, 상기 복수 개의 홈 중 적어도 1개 이상의 홈에는 p형 열전소자용 복합재료를 구성할 수 있는 혼합용액을 도포하여 p형 복합재료를 형성하는 것이 바람직하고, 상기 복수 개의 홈 중 적어도 1개 이상의 홈에는 n형 열전소자용 복합재료를 구성할 수 있는 혼합용액을 도포하여 n형 복합재료를 형성하는 것이 바람직하다. 또한, 서로 이웃하는 홈에는 p형 복합재료 및 n형 복합재료가 위치하는 것이 바람직하다. 이때, 상기 p형 복합재료는 전술한 바와 같은 p형 도판트를 탄소나노튜브와 같이 특정 용매에 분산시켜 혼합용액을 제조하여 형성할 수 있으며, 상기 n형 복합재료는 전술한 바와 같은 n형 도판트를 탄소나노튜브와 같이 특정 용매에 분산시켜 혼합용액을 제조하여 형성할 수 있다.Furthermore, it is preferable to form a p-type composite material by applying a mixed solution capable of forming a composite material for a p-type thermoelectric element to at least one of the plurality of grooves, and at least one or more of the plurality of grooves. It is preferable to form an n-type composite material by applying a mixed solution capable of forming a composite material for an n-type thermoelectric element in the groove. Further, it is preferable that the p-type composite material and the n-type composite material are located in adjacent grooves. At this time, the p-type composite material may be formed by dispersing the p-type dopant as described above in a specific solvent, such as a carbon nanotube, to prepare a mixed solution, and the n-type composite material is an n-type plate as described above. It can be formed by dispersing the soil in a specific solvent, such as carbon nanotubes, to prepare a mixed solution.
다음으로, 본 발명의 일 측면에서 제공되는 열전소자의 제조방법은 상기 몰드를 진공증발시켜 탄소나노튜브 폼을 형성하는 단계를 포함한다.Next, a method of manufacturing a thermoelectric element provided in one aspect of the present invention includes forming a carbon nanotube foam by vacuum evaporating the mold.
상기 단계에서는 폼 형태인 탄소나노튜브 포함하는 복합재료를 형성하기 위해 진공증발을 수행한다.In this step, vacuum evaporation is performed to form a composite material including carbon nanotubes in the form of foam.
상기 진공증발은 10-1 torr 내지 10-3 torr의 압력 하에서 수행될 수 있다. 상기 10-1 torr 내지 10-3 torr(0.13 Pa 내지 13.3 Pa)에서 진공증발시킴으로써 최종적으로 폼 형태의 탄소나노튜브를 형성할 수 있다.The vacuum evaporation may be performed under a pressure of 10 -1 torr to 10 -3 torr. The carbon nanotubes in the form of foam may be finally formed by vacuum evaporation at 10 -1 torr to 10 -3 torr (0.13 Pa to 13.3 Pa).
다음으로, 본 발명의 일 측면에서 제공되는 열전소자의 제조방법은 상기 형성된 탄소나노튜브 폼에 전극을 형성하는 단계를 포함한다.Next, a method of manufacturing a thermoelectric element provided in one aspect of the present invention includes forming an electrode on the formed carbon nanotube foam.
최종적으로 열전소자의 성능을 구현할 수 있도록 형성된 탄소나노튜브 폼 또는 탄소나노튜브 폼을 포함하는 열전소자용 복합재료 표면에 금속 전극을 형성한다. 상기 전극을 형성하기 위한 재료로 구리, 금, 은 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.Finally, a metal electrode is formed on the surface of a composite material for a thermoelectric element including a carbon nanotube foam or a carbon nanotube foam formed to realize the performance of the thermoelectric element. Copper, gold, silver, and the like may be used as a material for forming the electrode, but are not limited thereto.
이하, 본 발명의 실시예 및 실험예를 통해 더욱 상세히 설명한다. Hereinafter, it will be described in more detail through examples and experimental examples of the present invention.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시예 및 실험예에 의해 한정되는 것은 아니다.However, the following examples and experimental examples are only illustrative of the present invention, and the contents of the present invention are not limited by the following examples and experimental examples.
<실시예 1> 탄소나노튜브 폼의 제조-1<Example 1> Preparation of carbon nanotube foam-1
단계 1: 단일벽 탄소나노튜브(SSWCNT, Meijo Nano Carbon Co., 일본) 및 유기 용매(Sigma-Aldrich)는 추가적인 가공 또는 정제과정 없이 실험에 사용하였다. 탄소나노튜브 및 유기 용매 혼합용액은 다음과 같이 제조되었다. 단일벽 탄소나노튜브 100 mg을 20 mL의 시클로헥산과 함께 혼합하여 2시간 동안 마이크로나이징 장비(XRD-Mill McCrone, Retsch Inc., 미국)를 이용하여 분산시켜 혼합용액을 제조하였다.Step 1: Single-walled carbon nanotubes (SSWCNT, Meijo Nano Carbon Co., Japan) and organic solvents (Sigma-Aldrich) were used for the experiment without further processing or purification. The carbon nanotube and the organic solvent mixed solution were prepared as follows. A mixed solution was prepared by mixing 100 mg of single-walled carbon nanotubes with 20 mL of cyclohexane and dispersing them using a micronizing equipment (XRD-Mill McCrone, Retsch Inc., USA) for 2 hours.
단계 2: 상기 단계 1에서 분산된 혼합용액은 상온 및 상압 상태에서 실리콘 몰드 내 4 × 6 × 5 mm3 또는 5 × 5 × 18 mm3 규격의 홈 내부에 도포하였다.Step 2: The mixed solution dispersed in step 1 was applied inside a groove of 4 × 6 × 5 mm 3 or 5 × 5 × 18 mm 3 in a silicone mold at normal temperature and pressure.
단계 3: 상기 단계 2에서 혼합용액이 도포된 실리콘 몰드는 10-1 ~ 10-3 torr(0.13 ~ 13.3 Pa)의 압력하에서 진공증발 건조를 실시하여 탄소나노튜브 폼을 제조하였다. Step 3: The silicone mold coated with the mixed solution in step 2 was vacuum evaporated to dryness under a pressure of 10 −1 to 10 −3 torr (0.13 to 13.3 Pa) to prepare a carbon nanotube foam.
<실시예 2> 탄소나노튜브 폼의 제조-2<Example 2> Preparation of carbon nanotube foam-2
상기 실시예 1의 단계 1의 혼합용액에 단일벽 탄소나노튜브를 140 mg를 분산시킨 것을 제외하고 상기 실시예 1과 동일하게 수행하여 탄소나노튜브 폼을 제조하였다.A carbon nanotube foam was prepared in the same manner as in Example 1, except that 140 mg of the single-walled carbon nanotube was dispersed in the mixed solution of Step 1 of Example 1.
<실시예 3> 탄소나노튜브 폼의 제조-3<Example 3> Preparation of carbon nanotube foam-3
상기 실시예 1의 단계 1의 혼합용액에 단일벽 탄소나노튜브를 180 mg를 분산시킨 것을 제외하고 상기 실시예 1과 동일하게 수행하여 탄소나노튜브 폼을 제조하였다.A carbon nanotube foam was prepared in the same manner as in Example 1, except that 180 mg of single-walled carbon nanotubes were dispersed in the mixed solution of Step 1 of Example 1.
<실시예 4> 탄소나노튜브 폼의 제조-4<Example 4> Preparation of carbon nanotube foam-4
상기 실시예 1의 단계 1의 혼합용액에 단일벽 탄소나노튜브를 220 mg를 분산시킨 것을 제외하고 상기 실시예 1과 동일하게 수행하여 탄소나노튜브 폼을 제조하였다.A carbon nanotube foam was prepared in the same manner as in Example 1, except that 220 mg of single-walled carbon nanotubes were dispersed in the mixed solution of Step 1 of Example 1.
<실시예 5> 탄소나노튜브 폼의 제조-5<Example 5> Preparation of carbon nanotube foam-5
상기 실시예 1의 단계 1에서 시클로헥산을 사용하지 않고, 물을 사용한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 탄소나노튜브 폼을 제조하였다.A carbon nanotube foam was prepared in the same manner as in Example 1, except that cyclohexane was not used in step 1 of Example 1 and water was used.
<< 실시예Example 6> 탄소나노튜브 폼의 제조-6 6> Preparation of carbon nanotube foam-6
상기 실시예 1의 단계 1에서 시클로헥산을 사용하지 않고, 벤젠을 사용한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 탄소나노튜브 폼을 제조하였다.A carbon nanotube foam was prepared in the same manner as in Example 1, except that cyclohexane was not used in step 1 of Example 1, and benzene was used.
<실시예 7> 열전소자용 복합재료의 제조-1<Example 7> Preparation of composite material for thermoelectric elements-1
단계 1: 단일벽 탄소나노튜브(SSWCNT, Meijo Nano Carbon Co., 일본), 유기 고분자 및 유기 용매(Sigma-Aldrich)는 추가적인 가공 또는 정제과정 없이 실험에 사용하였다. 탄소나노튜브, 유기 고분자 및 유기 용매 혼합용액은 다음과 같이 제조되었다. 단일벽 탄소나노튜브 108 mg 및 Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS, Sigma-Aldrich) 72 mg을 20 mL의 싸이클로헥산과 함께 혼합하여 2시간 동안 마이크로나이징 장비(XRD-Mill McCrone, Retsch Inc., 미국)를 이용하여 분산시켜 혼합용액을 제조하였다.Step 1: Single-walled carbon nanotubes (SSWCNT, Meijo Nano Carbon Co., Japan), organic polymers and organic solvents (Sigma-Aldrich) were used for the experiment without further processing or purification. Carbon nanotube, organic polymer and organic solvent mixed solution was prepared as follows. 108 mg of single-walled carbon nanotubes and 72 mg of Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS, Sigma-Aldrich) were mixed with 20 mL of cyclohexane and micronised for 2 hours ( XRD-Mill McCrone, Retsch Inc., USA) to prepare a mixed solution.
단계 2: 상기 단계 1에서 분산된 혼합용액은 상온 및 상압 상태에서 실리콘 몰드 내 4 × 6 × 5 mm3 또는 5 × 5 × 18 mm3 규격의 홈 내부에 도포하였다.Step 2: The mixed solution dispersed in step 1 was applied inside a groove of 4 × 6 × 5 mm 3 or 5 × 5 × 18 mm 3 in a silicone mold at normal temperature and pressure.
단계 3: 상기 단계 2에서 혼합용액이 도포된 실리콘 몰드는 10-2 ~ 10-3 torr(0.13 ~ 1.13 Pa)의 압력하에서 진공증발 건조를 실시하여 폼 형태의 고분자/탄소나노튜브 복합재료로 열전소자용 복합재료를 제조하였다. Step 3: The silicone mold coated with the mixed solution in step 2 is vacuum evaporated to dryness under a pressure of 10 -2 to 10 -3 torr (0.13 to 1.13 Pa) to form a thermoelectric polymer/carbon nanotube composite material in the form of a foam. A composite material for devices was prepared.
<실시예 8> 열전소자용 복합재료의 제조-2<Example 8> Preparation of composite material for thermoelectric elements-2
상기 실시예 7의 단계 1의 혼합용액에 단일벽 탄소나노튜브 126 mg 및 PEDOT:PSS 54 mg을 분산시킨 것을 제외하고 상기 실시예 7과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric device was prepared in the same manner as in Example 7, except that 126 mg of single-walled carbon nanotubes and 54 mg of PEDOT:PSS were dispersed in the mixed solution of Step 1 of Example 7.
<실시예 9> 열전소자용 복합재료의 제조-3<Example 9> Preparation of composite material for thermoelectric elements-3
상기 실시예 7의 단계 1의 혼합용액에 단일벽 탄소나노튜브 144 mg 및 PEDOT:PSS 36 mg을 분산시킨 것을 제외하고 상기 실시예 7과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric device was prepared in the same manner as in Example 7 except that 144 mg of single-walled carbon nanotubes and 36 mg of PEDOT:PSS were dispersed in the mixed solution of Step 1 of Example 7.
<실시예 10> 열전소자용 복합재료의 제조-4<Example 10> Preparation of composite material for thermoelectric elements-4
상기 실시예 7의 단계 1의 혼합용액에 단일벽 탄소나노튜브 162 mg 및 PEDOT:PSS 18 mg을 분산시킨 것을 제외하고 상기 실시예 7과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric device was prepared in the same manner as in Example 7, except that 162 mg of single-walled carbon nanotubes and 18 mg of PEDOT:PSS were dispersed in the mixed solution of Step 1 of Example 7.
<실시예 11> 열전소자용 복합재료의 제조-5<Example 11> Preparation of composite material for thermoelectric elements-5
상기 실시예 7의 단계 1의 혼합용액에 PEDOT:PSS가 아닌 폴리스티렌을 사용한 것을 제외하고 상기 실시예 7과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was prepared in the same manner as in Example 7 except that polystyrene other than PEDOT:PSS was used for the mixed solution of Step 1 of Example 7.
<실시예 12> 열전소자용 복합재료의 제조-6<Example 12> Preparation of composite material for thermoelectric elements-6
상기 실시예 11의 단계 1의 혼합용액에 단일벽 탄소나노튜브 126 mg 및 폴리스티렌 54 mg을 분산시킨 것을 제외하고 상기 실시예 11과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was prepared in the same manner as in Example 11, except that 126 mg of single-walled carbon nanotubes and 54 mg of polystyrene were dispersed in the mixed solution of Step 1 of Example 11.
<실시예 13> 열전소자용 복합재료의 제조-7<Example 13> Preparation of composite material for thermoelectric elements-7
상기 실시예 11의 단계 1의 혼합용액에 단일벽 탄소나노튜브 144 mg 및 폴리스티렌 36 mg을 분산시킨 것을 제외하고 상기 실시예 11과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric device was prepared in the same manner as in Example 11, except that 144 mg of single-walled carbon nanotubes and 36 mg of polystyrene were dispersed in the mixed solution of Step 1 of Example 11.
<실시예 14> 열전소자용 복합재료의 제조-8<Example 14> Preparation of composite material for thermoelectric elements-8
상기 실시예 11의 단계 1의 혼합용액에 단일벽 탄소나노튜브 162 mg 및 폴리스티렌 18 mg을 분산시킨 것을 제외하고 상기 실시예 11과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was prepared in the same manner as in Example 11, except that 162 mg of single-walled carbon nanotubes and 18 mg of polystyrene were dispersed in the mixed solution of Step 1 of Example 11.
<실시예 15> 열전소자용 복합재료의 제조-9<Example 15> Preparation of composite material for thermoelectric elements-9
상기 실시예 7의 단계 1의 혼합용액에 PEDOT:PSS가 아닌 폴리에틸렌이민을 사용한 것을 제외하고 상기 실시예 7과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was manufactured in the same manner as in Example 7 except that polyethyleneimine other than PEDOT:PSS was used for the mixed solution of Step 1 of Example 7.
<실시예 16> 열전소자용 복합재료의 제조-10<Example 16> Preparation of composite material for thermoelectric elements -10
상기 실시예 15의 단계 1의 혼합용액에 단일벽 탄소나노튜브 126 mg 및 폴리에틸렌이민 54 mg을 분산시킨 것을 제외하고 상기 실시예 15와 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric device was prepared in the same manner as in Example 15, except that 126 mg of single-walled carbon nanotubes and 54 mg of polyethyleneimine were dispersed in the mixed solution of Step 1 of Example 15.
<실시예 17> 열전소자용 복합재료의 제조-11<Example 17> Preparation of composite material for thermoelectric elements-11
상기 실시예 15의 단계 1의 혼합용액에 단일벽 탄소나노튜브 144 mg 및 폴리에틸렌이민 36 mg을 분산시킨 것을 제외하고 상기 실시예 15와 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric device was prepared in the same manner as in Example 15, except that 144 mg of single-walled carbon nanotubes and 36 mg of polyethyleneimine were dispersed in the mixed solution of Step 1 of Example 15.
<실시예 18> 열전소자용 복합재료의 제조-12<Example 18> Preparation of composite material for thermoelectric elements-12
상기 실시예 15의 단계 1의 혼합용액에 단일벽 탄소나노튜브 162 mg 및 폴리에틸렌이민 18 mg을 분산시킨 것을 제외하고 상기 실시예 15와 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was prepared in the same manner as in Example 15, except that 162 mg of single-walled carbon nanotubes and 18 mg of polyethyleneimine were dispersed in the mixed solution of Step 1 of Example 15.
<실시예 19> 열전소자용 복합재료의 제조-13<Example 19> Preparation of composite material for thermoelectric elements-13
단계 1: 단일벽 탄소나노튜브(SSWCNT, Meijo Nano Carbon Co., 일본), p형 도판트 및 유기 용매(Sigma-Aldrich)는 추가적인 가공 또는 정제과정 없이 실험에 사용하였다. 탄소나노튜브, p형 도판트 및 유기 용매 혼합용액은 다음과 같이 제조되었다. 단일벽 탄소나노튜브 180 mg 및 20 mL의 시클로헥산을함께 혼합하여 2시간 동안 마이크로나이징 장비(XRD-Mill McCrone, Retsch Inc., 미국)를 이용하여 분산시킨 후 염화철과 혼합하여 혼합용액을 제조하였으며, 이때, 상기 염화철의 함량은 탄소나노튜브에 대하여 0.17 중량%이다.Step 1: Single-walled carbon nanotubes (SSWCNT, Meijo Nano Carbon Co., Japan), p-type dopant and organic solvent (Sigma-Aldrich) were used for the experiment without further processing or purification. Carbon nanotube, p-type dopant and organic solvent mixed solution were prepared as follows. 180 mg of single-walled carbon nanotubes and 20 mL of cyclohexane were mixed together, dispersed using a micronizing equipment (XRD-Mill McCrone, Retsch Inc., USA) for 2 hours, and then mixed with iron chloride to prepare a mixed solution. At this time, the content of the iron chloride is 0.17% by weight relative to the carbon nanotubes.
단계 2: 상기 단계 1에서 분산된 혼합용액은 상온 및 상압 상태에서 실리콘 몰드 내 5 × 5 × 18 mm3 규격의 홈 내부에 도포하였다.Step 2: The mixed solution dispersed in step 1 was applied to a 5×5×18 mm 3 standard groove in a silicone mold at room temperature and normal pressure.
단계 3: 상기 단계 2에서 혼합용액이 도포된 실리콘 몰드는 10-2 ~ 10-3 torr(0.13 ~ 1.13 Pa)의 압력하에서 진공증발 건조를 실시하여 폼 형태의 고분자/탄소나노튜브 복합재료로 열전소자용 복합재료를 제조하였다. Step 3: The silicone mold coated with the mixed solution in step 2 is vacuum evaporated to dryness under a pressure of 10 -2 to 10 -3 torr (0.13 to 1.13 Pa) to form a thermoelectric polymer/carbon nanotube composite material in the form of a foam. A composite material for devices was prepared.
<실시예 20> 열전소자용 복합재료의 제조-14<Example 20> Preparation of composite material for thermoelectric elements-14
상기 실시예 19의 단계 1에서 염화철의 함량이 탄소나노튜브에 대하여 0.35 중량%인 것을 제외하고 상기 실시예 19와 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 0.35% by weight relative to the carbon nanotube.
<실시예 21> 열전소자용 복합재료의 제조-15<Example 21> Preparation of composite material for thermoelectric elements-15
상기 실시예 19의 단계 1에서 염화철의 함량이 탄소나노튜브에 대하여 0.70 중량%인 것을 제외하고 상기 실시예 19와 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric device was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 0.70% by weight relative to the carbon nanotube.
<실시예 22> 열전소자용 복합재료의 제조-16<Example 22> Preparation of composite material for thermoelectric elements-16
상기 실시예 19의 단계 1에서 염화철의 함량이 탄소나노튜브에 대하여 1.4 중량%인 것을 제외하고 상기 실시예 19와 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric device was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 1.4% by weight relative to the carbon nanotube.
<실시예 23> 열전소자용 복합재료의 제조-17<Example 23> Preparation of composite material for thermoelectric elements-17
상기 실시예 19의 단계 1에서 염화철의 함량이 탄소나노튜브에 대하여 7.0 중량%인 것을 제외하고 상기 실시예 19와 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was prepared in the same manner as in Example 19, except that the iron chloride content in Step 1 of Example 19 was 7.0% by weight relative to the carbon nanotube.
<실시예 24> 열전소자용 복합재료의 제조-18<Example 24> Preparation of composite material for thermoelectric elements-18
상기 실시예 19의 단계 1에서 염화철의 함량이 탄소나노튜브에 대하여 14 중량%인 것을 제외하고 상기 실시예 19와 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 14% by weight based on carbon nanotubes.
<실시예 25> 열전소자용 복합재료의 제조-19<Example 25> Preparation of composite material for thermoelectric elements-19
상기 실시예 19의 단계 1에서 염화철의 함량이 탄소나노튜브에 대하여 28 중량%인 것을 제외하고 상기 실시예 19와 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric device was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 28% by weight relative to the carbon nanotube.
<실시예 26> 열전소자용 복합재료의 제조-20<Example 26> Preparation of composite material for thermoelectric elements-20
상기 실시예 19의 단계 1에서 염화철의 함량이 탄소나노튜브에 대하여 42.1 중량%인 것을 제외하고 상기 실시예 19와 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric device was manufactured in the same manner as in Example 19, except that the content of iron chloride in Step 1 of Example 19 was 42.1% by weight relative to the carbon nanotube.
<실시예 27> 열전소자용 복합재료의 제조-21<Example 27> Preparation of composite material for thermoelectric elements-21
상기 실시예 19의 단계 1에서 염화철이 아닌 n형 도판트로 벤질바이올로젠을 사용하고, 상기 벤질바이올로젠의 함량은 탄소나노튜브에 대하여 13 중량%인 것을 제외하고 상기 실시예 19와 동일하게 수행하여 열전소자용 복합재료를 제조하였다.In step 1 of Example 19, benzylbiogen is used as an n-type dopant other than iron chloride, and the content of the benzylbiogen is carried out in the same manner as in Example 19, except that the content is 13% by weight relative to the carbon nanotube. A composite material for thermoelectric elements was prepared.
<실시예 28> 열전소자용 복합재료의 제조-22<Example 28> Preparation of composite material for thermoelectric elements-22
상기 실시예 27의 단계 1에서 벤질바이올로젠의 함량이 탄소나노튜브에 대하여 17 중량%인 것을 제외하고 상기 실시예 27과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in Step 1 of Example 27 was 17% by weight relative to the carbon nanotube.
<실시예 29> 열전소자용 복합재료의 제조-23<Example 29> Preparation of composite material for thermoelectric elements-23
상기 실시예 27의 단계 1에서 벤질바이올로젠의 함량이 탄소나노튜브에 대하여 35 중량%인 것을 제외하고 상기 실시예 27과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.In step 1 of Example 27, the content of benzylbiogen was 35% by weight relative to the carbon nanotube, and the same procedure as in Example 27 was performed to prepare a composite material for a thermoelectric element.
<실시예 30> 열전소자용 복합재료의 제조-24<Example 30> Preparation of composite material for thermoelectric elements-24
상기 실시예 27의 단계 1에서 벤질바이올로젠의 함량이 탄소나노튜브에 대하여 70 중량%인 것을 제외하고 상기 실시예 27과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in Step 1 of Example 27 was 70% by weight relative to the carbon nanotube.
<실시예 31> 열전소자용 복합재료의 제조-25<Example 31> Preparation of composite material for thermoelectric elements-25
상기 실시예 27의 단계 1에서 벤질바이올로젠의 함량이 탄소나노튜브에 대하여 88 중량%인 것을 제외하고 상기 실시예 27과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in step 1 of Example 27 was 88% by weight relative to the carbon nanotube.
<실시예 32> 열전소자용 복합재료의 제조-26<Example 32> Preparation of composite material for thermoelectric elements-26
상기 실시예 27의 단계 1에서 벤질바이올로젠의 함량이 탄소나노튜브에 대하여 133 중량%인 것을 제외하고 상기 실시예 27과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in Step 1 of Example 27 was 133% by weight relative to the carbon nanotube.
<실시예 33> 열전소자용 복합재료의 제조-27<Example 33> Preparation of composite material for thermoelectric elements-27
상기 실시예 27의 단계 1에서 벤질바이올로젠의 함량이 탄소나노튜브에 대하여 177 중량%인 것을 제외하고 상기 실시예 27과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in Step 1 of Example 27 was 177% by weight relative to the carbon nanotube.
<실시예 34> 열전소자용 복합재료의 제조-28<Example 34> Preparation of composite material for thermoelectric elements-28
상기 실시예 27의 단계 1에서 벤질바이올로젠의 함량이 탄소나노튜브에 대하여 266 중량%인 것을 제외하고 상기 실시예 27과 동일하게 수행하여 열전소자용 복합재료를 제조하였다.A composite material for a thermoelectric element was prepared in the same manner as in Example 27, except that the content of benzylbiogen in Step 1 of Example 27 was 266% by weight relative to the carbon nanotube.
<실시예 35> 열전소자의 제조-1<Example 35> Preparation of thermoelectric element-1
단계 1: 4 × 6 × 5 mm3 규격의 홈이 4 × 4 개 형성된 실리콘 몰드를 준비하였다.Step 1: A silicon mold having 4×6×5 mm 3 standard grooves 4×4 was prepared.
단계 2: 단일벽 탄소나노튜브 180 mg 및 20 mL의 시클로헥산을 함께 혼합하여 2시간 동안 마이크로나이징 장비(XRD-Mill McCrone, Retsch Inc., 미국)를 이용하여 분산시킨 후 염화철과 혼합하여 제1 혼합용액을 제조하였으며, 이때, 상기 염화철의 함량은 탄소나노튜브에 대하여 0.35 중량%이다.Step 2: Mixing 180 mg of single-walled carbon nanotubes and 20 mL of cyclohexane together and dispersing them using a micronizing equipment (XRD-Mill McCrone, Retsch Inc., USA) for 2 hours, followed by mixing with iron chloride. 1 A mixed solution was prepared, wherein the content of the iron chloride was 0.35% by weight relative to the carbon nanotube.
또한, 단일벽 탄소나노튜브 180 mg 및 20 mL의 싸이클로헥산을 함께 혼합하여 2시간 동안 마이크로나이징 장비(XRD-Mill McCrone, Retsch Inc., 미국)를 이용하여 분산시킨 후 벤질바이올로젠을 혼합하여 제2 혼합용액을 제조하였으며, 이때, 상기 벤질바이올로젠의 함량은 탄소나노튜브에 대하여 88 중량%이다.In addition, 180 mg of single-walled carbon nanotubes and 20 mL of cyclohexane were mixed together and dispersed using a micronizing equipment (XRD-Mill McCrone, Retsch Inc., USA) for 2 hours, followed by mixing of benzylbiogen. A second mixed solution was prepared, wherein the content of the benzylbiogen was 88% by weight relative to the carbon nanotubes.
상기 제1 혼합용액을 이용하여 실리콘 몰드의 16개의 홈 중 8개의 홈에 도포하고, 상기 제2 혼합용액을 나머지 8개의 홈에 도포하였다. 제1 혼합용액이 도포된 홈과 제2 혼합용액이 도포된 홈은 서로 이웃하여 위치하였다.The first mixed solution was applied to 8 of the 16 grooves of the silicone mold, and the second mixed solution was applied to the remaining 8 grooves. The groove to which the first mixed solution was applied and the groove to which the second mixed solution was applied were positioned adjacent to each other.
단계 3: 상기 단계 2에서 제1 혼합용액 및 제2 혼합용액이 도포된 실리콘 몰드는 10-2 ~ 10-3 torr(0.13 ~ 1.13 Pa)의 압력하에서 진공증발 건조를 실시하여 제1 혼합용액이 도포된 홈에는 p형 열전재료가 형성되고, 제2 혼합용액이 도포된 홈에는 n형 열전재료가 형성되었다.Step 3: In the above step 2, the silicone mold coated with the first mixed solution and the second mixed solution was subjected to vacuum evaporation and drying under a pressure of 10 -2 to 10 -3 torr (0.13 to 1.13 Pa) to form the first mixed solution. A p-type thermoelectric material was formed in the coated groove, and an n-type thermoelectric material was formed in the groove to which the second mixed solution was applied.
단계 4: 형성된 p형 열전재료 및 n형 열전재료 상단면 및 하단면에 실버를 도포하여 전극을 형성하였다.Step 4: The formed p-type thermoelectric material and n-type thermoelectric material were coated with silver on top and bottom surfaces to form electrodes.
<실시예 36> 유연열전소자용 탄성복합재료의 제조-1<Example 36> Preparation of elastic composite material for flexible thermoelectric element-1
단계 1: 단일벽 탄소나노튜브(SSWCNT, Meijo Nano Carbon Co., 일본), 탄성 고분자 및 유기 용매(Sigma-Aldrich)는 추가적인 가공 또는 정제과정 없이 실험에 사용하였다. 탄소나노튜브, 탄성 고분자 및 유기 용매 혼합용액은 다음과 같이 제조되었다. 단일벽 탄소나노튜브 108 mg 및 폴리디메틸실록산 (Polydimethylsiloxane, Dow corning) 108 mg을 20 mL의 싸이클로헥산과 함께 혼합하여 2시간 동안 마이크로나이징 장비(XRD-Mill McCrone, Retsch Inc., 미국)를 이용하여 분산시켜 혼합용액을 제조하였다. 이때 폴리디메틸실록산에 첨가되는 경화제 비율은 10 중량%로 혼합되었다. Step 1: Single-walled carbon nanotubes (SSWCNT, Meijo Nano Carbon Co., Japan), elastomers and organic solvents (Sigma-Aldrich) were used for the experiment without further processing or purification. Carbon nanotube, elastic polymer and organic solvent mixed solution was prepared as follows. 108 mg of single-walled carbon nanotubes and 108 mg of polydimethylsiloxane (Dow corning) were mixed with 20 mL of cyclohexane and used for 2 hours using a micronizing equipment (XRD-Mill McCrone, Retsch Inc., USA) And dispersed to prepare a mixed solution. At this time, the proportion of curing agent added to the polydimethylsiloxane was mixed at 10% by weight.
단계 2: 상기 단계 1에서 분산된 혼합용액은 상온 및 상압 상태에서 실리콘 몰드 내 4 × 6 × 5 mm3 또는 5 × 5 × 18 mm3 규격의 홈 내부에 도포하였다.Step 2: The mixed solution dispersed in step 1 was applied inside a groove of 4 × 6 × 5 mm 3 or 5 × 5 × 18 mm 3 in a silicone mold at normal temperature and pressure.
단계 3: 상기 단계 2에서 혼합용액이 도포된 실리콘 몰드는 10-2 ~ 10-3 torr(0.13 ~ 1.13 Pa)의 압력하에서 진공증발 건조를 실시하여 폼 형태의 고분자/탄소나노튜브 복합재료로 열전소자용 복합재료를 제조하였다. Step 3: The silicone mold coated with the mixed solution in step 2 is vacuum evaporated to dryness under a pressure of 10 -2 to 10 -3 torr (0.13 to 1.13 Pa) to form a thermoelectric polymer/carbon nanotube composite material in the form of a foam. A composite material for devices was prepared.
단계 4: 상기 단계 3에서 제작된 탄소나노튜브에 탄성특성을 부여하기 위하여 473K 이하 온도에서 경화하여 유연열전소자용 탄성복합재료를 제조하였다.Step 4: In order to impart elasticity to the carbon nanotubes produced in step 3, curing was performed at a temperature of 473 K or less to prepare an elastic composite material for flexible thermoelectric elements.
<실시예 37> 유연열전소자용 탄성복합재료의 제조-2<Example 37> Preparation of elastic composite material for flexible thermoelectric element-2
상기 실시예 36의 단계 1의 혼합용액에 단일벽 탄소나노튜브 126 mg 및 폴리디메틸실록산 900 mg을 분산시킨 것을 제외하고 상기 실시예 36과 동일하게 수행하여 유연열전소자용 탄성복합재료를 제조하였다.The elastic composite material for flexible thermoelectric elements was prepared in the same manner as in Example 36, except that 126 mg of single-walled carbon nanotubes and 900 mg of polydimethylsiloxane were dispersed in the mixed solution of Step 1 of Example 36.
<실시예 38> 유연열전소자용 탄성복합재료의 제조-3<Example 38> Preparation of elastic composite material for flexible thermoelectric element-3
상기 실시예 36의 단계 1의 혼합용액에 단일벽 탄소나노튜브 126 mg 및 폴리디메틸실록산 1,620 mg을 분산시킨 것을 제외하고 상기 실시예 36과 동일하게 수행하여 유연열전소자용 탄성복합재료를 제조하였다.An elastic composite material for flexible thermoelectric elements was prepared in the same manner as in Example 36, except that 126 mg of single-walled carbon nanotubes and 1,620 mg of polydimethylsiloxane were dispersed in the mixed solution of Step 1 of Example 36.
<비교예 1> 탄소나노튜브 필름의 제조<Comparative Example 1> Preparation of carbon nanotube film
필름 형태의 탄소나노튜브 필름을 제조하였다.A carbon nanotube film in the form of a film was prepared.
구체적으로, 단일벽 탄소나노튜브 180 mg과 20 mL의 시클로헥산을 혼합하여 2시간 동안 마이크로나이징 장비(XRD-Mill McCrone, Retsch Inc., 미국)를 이용하여 분산시켜 혼합용액을 제조하였다. 혼합용액은 4 cm × 4 cm × 5 cm의 치수로 제작된 실리콘 몰드에 도포하였으며, 상온 및 상압에서 방치하여 탄소나노튜브 필름으로 제작하였다.Specifically, a mixed solution was prepared by mixing 180 mg of single-walled carbon nanotubes and 20 mL of cyclohexane and dispersing them using a micronizing equipment (XRD-Mill McCrone, Retsch Inc., USA) for 2 hours. The mixed solution was applied to a silicone mold made to dimensions of 4 cm × 4 cm × 5 cm, and left at room temperature and pressure to produce a carbon nanotube film.
<비교예 2> <Comparative Example 2>
상기 실시예 3의 단계 1에서 시클로헥산을 사용하지 않고, 트리클로로벤젠을 사용한 것을 제외하고 상기 실시예 3과 동일하게 수행하였으나, 폼 형태의 탄소나노튜브를 제조할 수 없었다.In step 1 of Example 3, cyclohexane was not used, and the same procedure as Example 3 was performed except that trichlorobenzene was used, but a foamed carbon nanotube could not be prepared.
<비교예 3> <Comparative Example 3>
상기 실시예 3의 단계 1에서 시클로헥산을 사용하지 않고, 디클로로벤젠을 사용한 것을 제외하고 상기 실시예 3과 동일하게 수행하였으나, 폼 형태의 탄소나노튜브를 제조할 수 없었다.In step 1 of Example 3, cyclohexane was not used, and dichlorobenzene was used, except that the same procedure as Example 3 was performed, but a carbon nanotube in the form of a foam could not be produced.
<비교예 4> <Comparative Example 4>
상기 실시예 3의 단계 1에서 시클로헥산을 사용하지 않고, 에탄올을 사용한 것을 제외하고 상기 실시예 3과 동일하게 수행하였으나, 폼 형태의 탄소나노튜브를 제조할 수 없었다.In step 1 of Example 3, cyclohexane was not used, and the same procedure as in Example 3 was performed except that ethanol was used, but a foamed carbon nanotube could not be prepared.
<실험예 1> 탄소나노튜브 폼 분석<Experimental Example 1> Carbon nanotube foam analysis
본 발명에 따른 제조방법으로 제조된 탄소나노튜브 폼의 형태 및 특성을 확인하기 위하여, 상기 실시예 1, 실시예 7, 실시예 15 및 비교예 1의 탄소나노튜브 폼 및 탄소나노튜브 필름을 육안 및 주사전자현미경(SEM)으로 관찰하였으며, 그 결과를 도 1 및 도 2a 내지 도 2d에 나타내었다.In order to confirm the shape and properties of the carbon nanotube foam prepared by the manufacturing method according to the present invention, the carbon nanotube foam and the carbon nanotube film of Example 1, Example 7, Example 15 and Comparative Example 1 were visually observed. And scanning electron microscope (SEM), and the results are shown in FIGS. 1 and 2A to 2D.
또한, 상기 실시예 1 내지 4 및 비교예 1의 탄소나노튜브 폼 및 탄소나노튜브 필름의 무게, 부피, 밀도 및 열전도도를 측정하였으며 그 결과를 하기 표 1에 나타내었다.In addition, the weight, volume, density, and thermal conductivity of the carbon nanotube foams and carbon nanotube films of Examples 1 to 4 and Comparative Example 1 were measured, and the results are shown in Table 1 below.
시료형태Sample type 탄소나노튜브 함량(mg/mL)Carbon nanotube content (mg/mL) 무게(g)Weight (g) 부피(cm3)Volume (cm 3 ) 밀도(g/cm3)Density (g/cm 3 ) 열전도도(W/mㆍK)Thermal conductivity (W/mㆍK)
비교예 1Comparative Example 1 필름film 99 0.0090.009 0.0180.018 0.50.5 27.9827.98
실시예 1Example 1 Form 55 0.0090.009 0.450.45 0.0200.020 0.170.17
실시예 2Example 2 Form 77 0.0110.011 0.450.45 0.0240.024 0.280.28
실시예 3Example 3 Form 99 0.0170.017 0.450.45 0.0380.038 0.420.42
실시예 4Example 4 Form 1111 0.0180.018 0.450.45 0.0400.040 0.540.54
도 1에 나타낸 바와 같이, 몰드의 형태에 따라 다양한 형태의 탄소나노튜브 폼이 형성되었음을 확인하였다.도 2에 나타낸 바와 같이, 탄소나노튜브 폼의 형성에 따라 기공이 형성됨을 확인할 수 있었다. 도 2a는 비교예 1의 탄소나노튜브 필름으로 기공이 없는 것을 확인할 수 있고, 도 2b 내지 도 2d는 실시예 1(탄소나노튜브 폼), 실시예 7(PEDOT:PSS/탄소나노튜브 폼) 및 실시예 15(PEI/탄소나노튜브 폼)의 경우 기공이 형성된 것을 확인할 수 있다.As shown in FIG. 1, it was confirmed that various types of carbon nanotube foams were formed according to the shape of the mold. As shown in FIG. 2, it was confirmed that pores were formed according to the formation of the carbon nanotube foam. 2A is a carbon nanotube film of Comparative Example 1, and it can be confirmed that there are no pores, and FIGS. 2B to 2D are Example 1 (carbon nanotube foam), Example 7 (PEDOT:PSS/carbon nanotube foam), and In the case of Example 15 (PEI/carbon nanotube foam), it can be confirmed that pores were formed.
또한, 상기 표 1에 나타낸 바와 같이, 이러한 기공도가 높은 탄소나노튜브 폼은 같은 중량으로 제조된 탄소나노튜브 필름에 비해 100배 이상 낮은 열전도도를 나타냄을 확인할 수 있었다.In addition, as shown in Table 1, it was confirmed that the carbon nanotube foam having a high porosity shows a thermal conductivity of 100 times or more lower than that of the carbon nanotube film manufactured at the same weight.
<실험예 2> 고분자/탄소나노튜브 복합재료 분석<Experiment 2> Polymer/carbon nanotube composite material analysis
본 발명에 따른 제조방법으로 제조된 복합재료의 특성을 확인하기 위하여, 상기 실시예 7 내지 18의 열전소자용 복합재료의 제벡계수(Seebeck coefficient), 전기전도도 및 역률을 분석하였으며, 그 결과를 하기 표 2에 나타내었다.In order to confirm the properties of the composite material produced by the manufacturing method according to the present invention, Seebeck coefficient, electrical conductivity and power factor of the composite material for thermoelectric elements of Examples 7 to 18 were analyzed, and the results are as follows. It is shown in Table 2.
구체적으로, 상기 복합재료를 온도가변 전기비저항 측정기(Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, 독일)를 이용하여 제백계수와 전기전도도를 측정하였으며, 제벡계수는 하기 식 1에 의하여 계산되었다.Specifically, the composite material was measured using a temperature-variable electrical resistivity meter (Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, Germany) to measure the whitening coefficient and electrical conductivity, and the Seebeck coefficient was calculated by Equation 1 below.
<식 1><Equation 1>
Figure PCTKR2019018825-appb-I000001
Figure PCTKR2019018825-appb-I000001
(상기 식 1에서, S는 제벡계수이고, V는 전압이며, T는 온도이다.)(In Equation 1, S is the Seebeck coefficient, V is the voltage, and T is the temperature.)
고분자/탄소나노튜브 혼합비율(wt%/wt%)Polymer/carbon nanotube mixing ratio (wt%/wt%) 제벡계수(㎶/K)Seebeck coefficient (㎶/K) 비저항(μΩㆍm)Specific resistance (μΩㆍm) 역률(μW/mㆍk2)Power factor (μW/mㆍk 2 )
실시예 7Example 7 PEDOT:PSS/탄소나노튜브=40/60PEDOT:PSS/carbon nanotube=40/60 23.723.7 9.64×102 9.64×10 2 0.590.59
실시예 8Example 8 PEDOT:PSS/탄소나노튜브=30/70PEDOT:PSS/carbon nanotube=30/70 25.625.6 4.86×102 4.86×10 2 1.351.35
실시예 9Example 9 PEDOT:PSS/탄소나노튜브=20/80PEDOT:PSS/carbon nanotube=20/80 28.428.4 7.77×102 7.77×10 2 1.041.04
실시예 10Example 10 PEDOT:PSS/탄소나노튜브=10/90PEDOT:PSS/carbon nanotube=10/90 32.932.9 2.30×102 2.30×10 2 4.724.72
실시예 11Example 11 폴리스티렌/탄소나노튜브=40/60Polystyrene/carbon nanotube=40/60 34.934.9 1.08×106 1.08×10 6 1.12×10-3 1.12×10 -3
실시예 12Example 12 폴리스티렌/탄소나노튜브=30/70Polystyrene/carbon nanotube=30/70 26.926.9 7.25×104 7.25×10 4 9.95×10-3 9.95×10 -3
실시예 13Example 13 폴리스티렌/탄소나노튜브=20/80Polystyrene/carbon nanotube=20/80 30.630.6 1.52×104 1.52×10 4 0.060.06
실시예 14Example 14 폴리스티렌/탄소나노튜브=10/90Polystyrene/carbon nanotube=10/90 40.040.0 4.40×103 4.40×10 3 0.360.36
실시예 15Example 15 폴리에틸렌이민/탄소나노튜브=40/60Polyethyleneimine/carbon nanotube=40/60 -33.5-33.5 1.28×103 1.28×10 3 0.870.87
실시예 16Example 16 폴리에틸렌이민/탄소나노튜브=30/70Polyethyleneimine/carbon nanotube=30/70 -34.9-34.9 1.28×103 1.28×10 3 0.950.95
실시예 17Example 17 폴리에틸렌이민/탄소나노튜브=20/80Polyethyleneimine/carbon nanotube=20/80 -35.7-35.7 1.69×103 1.69×10 3 0.750.75
실시예 18Example 18 폴리에틸렌이민/탄소나노튜브=10/90Polyethyleneimine/carbon nanotube=10/90 -17.4-17.4 2.05×103 2.05×10 3 0.150.15
실시예 3Example 3 탄소나노튜브=100Carbon nanotube=100 33.433.4 1.52×103 1.52×10 3 0.730.73
상기 표 2에 나타낸 바와 같이, 상기 고분자/탄소나노튜브 폼인 열전소자용 복합재료는 고분자의 종류 및 함량에 따라 각각 다른 제벡계수(Seebeck coefficient) 및 전기전도도를 나타내었다. 또한, 표 2에서와 같이 고분자의 종류에 따라 p 또는 n형의 특성을 바꿀 수 있었으며, 폴리스티렌 및 PEDOT:PSS는 p형 특성을 보였고 폴리에틸렌이민은 n형 특성을 나타내었다.As shown in Table 2, the polymer/carbon nanotube foam composite material for thermoelectric elements showed different Seebeck coefficients and electrical conductivity depending on the type and content of the polymer. In addition, as shown in Table 2, p or n-type properties could be changed according to the type of polymer, polystyrene and PEDOT:PSS showed p-type properties, and polyethyleneimine showed n-type properties.
<실험예 2> 도판트/탄소나노튜브 복합재료 분석<Experimental Example 2> Dopant/carbon nanotube composite material analysis
본 발명에 따른 제조방법으로 제조된 복합재료의 특성을 확인하기 위하여, 상기 실시예 19 내지 34의 열전소자용 복합재료의 제벡계수(Seebeck coefficient), 전기전도도 및 역률을 분석하였으며, 그 결과를 도 3a, 도 3b 및 하기 표 3에 나타내었다.In order to confirm the properties of the composite material produced by the manufacturing method according to the present invention, Seebeck coefficient, electrical conductivity and power factor of the composite material for thermoelectric elements of Examples 19 to 34 were analyzed, and the results are shown. It is shown in 3a, Figure 3b and Table 3 below.
구체적으로, 상기 복합재료를 온도가변 전기비저항 측정기(Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, 독일)를 이용하여 제백계수와 전기전도도를 측정하였으며, 제벡계수는 하기 식 1에 의하여 계산되었다.Specifically, the composite material was measured using a temperature-variable electrical resistivity meter (Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, Germany) to measure the whitening coefficient and electrical conductivity, and the Seebeck coefficient was calculated by Equation 1 below.
<식 1><Equation 1>
Figure PCTKR2019018825-appb-I000002
Figure PCTKR2019018825-appb-I000002
(상기 식 1에서, S는 제벡계수이고, V는 전압이며, T는 온도이다.)(In Equation 1, S is the Seebeck coefficient, V is the voltage, and T is the temperature.)
도핑물질Doping material 도펀트 함량 (wt%)Dopant content (wt%) 제벡계수(μV/K)Seebeck coefficient (μV/K) 비저항(μΩㆍm)Specific resistance (μΩㆍm) 역률(μW/mㆍk2)Power factor (μW/mㆍk 2 )
실시예 3Example 3 -- 00 33.433.4 1.52×103 1.52×10 3 0.730.73
실시예 19Example 19 염화철Iron chloride 0.170.17 35.335.3 1.69×103 1.69×10 3 0.730.73
실시예 20Example 20 염화철Iron chloride 0.350.35 39.639.6 1.39×103 1.39×10 3 1.131.13
실시예 21Example 21 염화철Iron chloride 0.700.70 30.730.7 1.05×103 1.05×10 3 0.890.89
실시예 22Example 22 염화철Iron chloride 1.41.4 26.526.5 0.76×103 0.76×10 3 0.920.92
실시예 23Example 23 염화철Iron chloride 7.07.0 16.916.9 0.21×103 0.21×10 3 0.780.78
실시예 24Example 24 염화철Iron chloride 14.014.0 15.215.2 0.26×103 0.26×10 3 0.900.90
실시예 25Example 25 염화철Iron chloride 28.028.0 12.212.2 0.15×103 0.15×10 3 1.01.0
실시예 26Example 26 염화철Iron chloride 42.142.1 12.112.1 0.14×103 0.14×10 3 1.01.0
실시예 27Example 27 벤질바이올로젠Benzyl Biogen 1313 12.212.2 2.13×103 2.13×10 3 0.070.07
실시예 28Example 28 벤질바이올로젠Benzyl Biogen 1717 - 18.6-18.6 1.24×103 1.24×10 3 0.280.28
실시예 29Example 29 벤질바이올로젠Benzyl Biogen 3535 - 28.7-28.7 1.21×103 1.21×10 3 0.680.68
실시예 30Example 30 벤질바이올로젠Benzyl Biogen 7070 - 30.6-30.6 1.89×103 1.89×10 3 0.500.50
실시예 31Example 31 벤질바이올로젠Benzyl Biogen 8888 - 40.4-40.4 1.63×103 1.63×10 3 1.021.02
실시예 32Example 32 벤질바이올로젠Benzyl Biogen 133133 - 28.9-28.9 1.91×103 1.91×10 3 0.450.45
실시예 33Example 33 벤질바이올로젠Benzyl Biogen 177177 - 26.1-26.1 2.49×103 2.49×10 3 0.280.28
실시예 34Example 34 벤질바이올로젠Benzyl Biogen 266266 - 25.0-25.0 1.34×103 1.34×10 3 0.470.47
상기 표 3에 나타낸 바와 같이, 염화철이 도핑된 탄소나노튜브 폼을 포함하는 열전소자용 복합재료는 염화철의 첨가량이 증가함에 따라서 제벡계수는 감소하였지만 전기전도도가 크게 향상되었다. 또한 벤질바이올로젠을 도핑한 경우 첨가량이 증가함에 따라서 전기전도도는 유지되었으며, p형 특성을 보이던 탄소나노튜브 폼은 n형 특성으로 변환되었고, 그 결과 제벡계수는 33.4 μV K-1에서 최고 - 40.4 μV K-1로 변하였다.As shown in Table 3, the composite material for a thermoelectric element including a carbon nanotube foam doped with iron chloride is made of iron chloride. As the addition amount increased, the Seebeck coefficient decreased, but electrical conductivity was greatly improved. Further benzyl when doped with a halogen Biology amount increases, therefore the electrical conductivity is retained, which had carbon nanotubes form a p-type property was converted to the n-type characteristics, and as a result Seebeck coefficient is highest at 33.4 μV K -1 - 40.4 changed to μV K −1 .
<실험예 4> 탄성고분자/탄소나노튜브 복합재료 분석<Experiment 4> Elastic polymer/carbon nanotube composite material analysis
본 발명에 따른 제조방법으로 제조된 탄성복합재료의 특성을 확인하기 위하여, 상기 실시예 36 내지 38의 유연열전소자용 탄성복합재료를 주사전자현미경 및 응력-변형률 분석을 하였으며, 그 결과를 도 5a 및 도 5b에 나타내었다.In order to confirm the properties of the elastic composite material produced by the manufacturing method according to the present invention, the elastic composite material for flexible thermoelectric elements of Examples 36 to 38 was analyzed by scanning electron microscope and stress-strain, and the results are shown in FIG. 5A. And 5B.
또한, 상기 실시예 36 내지 38의 유연열전소자용 탄성복합재료의 제벡계수(Seebeck coefficient), 전기전도도 및 역률을 분석하였으며, 그 결과를 하기 표 4에 나타내었다.In addition, Seebeck coefficient, electrical conductivity and power factor of the elastic composite material for flexible thermoelectric elements of Examples 36 to 38 were analyzed, and the results are shown in Table 4 below.
구체적으로, 상기 복합재료를 온도가변 전기비저항 측정기(Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, 독일)를 이용하여 제백계수와 전기전도도를 측정하였으며, 제벡계수는 하기 식 1에 의하여 계산되었다.Specifically, the composite material was measured using a temperature-variable electrical resistivity meter (Seebeck Coefficient & Electric Resistivity Unit, Linseis-3, Germany) to measure the whitening coefficient and electrical conductivity, and the Seebeck coefficient was calculated by Equation 1 below.
<식 1><Equation 1>
Figure PCTKR2019018825-appb-I000003
Figure PCTKR2019018825-appb-I000003
(상기 식 1에서, S는 제벡계수이고, V는 전압이며, T는 온도이다.)(In Equation 1, S is the Seebeck coefficient, V is the voltage, and T is the temperature.)
첨가물질Additive 첨가 함량 (wt%)Addition content (wt%) 제벡계수(μV/K)Seebeck coefficient (μV/K) 비저항(μΩㆍm)Specific resistance (μΩㆍm) 역률(μW/mㆍK2)Power factor (μW/mㆍK 2 )
실시예 3Example 3 -- 00 33.433.4 1.52×103 1.52×10 3 0.730.73
실시예 36Example 36 폴리디메틸실록산산 Polydimethylsiloxane 100100 51.151.1 1.02×103 1.02×10 3 2.562.56
실시예 37Example 37 폴리디메틸실록산 Polydimethylsiloxane 500500 51.651.6 9.35×102 9.35×10 2 2.852.85
실시예 38Example 38 폴리디메틸실록산 Polydimethylsiloxane 900900 50.450.4 1.57×103 1.57×10 3 1.611.61
도 5a에 나타낸 바와 같이, 내부 기공을 주사전자현미경으로 확인하였으며, 탄성 탄소나노튜브폼의 탄성 특성을 응력-변형률 (stress-strain) 곡선으로 탄성 특성을 가짐을 확인할 수 있었다. 또한, 도 5b에 나타낸 바와 같이, 탄성 탄소나노튜브에 눌림, 휘어짐 및 뒤틀림과 같은 다양한 외부압력을 가해도 회복 특성이 우수한 것을 확인하였다.As shown in FIG. 5A, the internal pores were confirmed by a scanning electron microscope, and it was confirmed that the elastic properties of the elastic carbon nanotube foam have elastic properties through a stress-strain curve. In addition, as shown in FIG. 5B, it was confirmed that the recovery characteristics were excellent even when various external pressures such as pressing, bending, and warping were applied to the elastic carbon nanotubes.
상기 표 4에 나타낸 바와 같이, 탄성고분자가 첨가된 탄소나노튜브 폼을 포함하는 유연 열전소자용 복합재료는 탄성고분자의 첨가량로 인하여 전기전도도는 크게 낮아지지 않았지만, 제벡계수는 크게 증가하였다. 특히 도 5a 및 도 5b에 나타낸 바와 같이, 탄성고분자를 첨가하여도 기공이 형성됨을 확인할 수 있으며, 실시예 37번에서 제조된 탄성열전재료의 경우 실시예 3에 비하여 영구적 변형없이 더 많이 늘어날 수 있는 탄성재료임을 확인하였다.As shown in Table 4, the composite material for a flexible thermoelectric element comprising a carbon nanotube foam to which an elastic polymer is added is an elastic polymer. The electrical conductivity did not drop significantly due to the amount added, but the Seebeck coefficient increased significantly. In particular, as shown in Figures 5a and 5b, it can be confirmed that the pores are formed even when the elastic polymer is added, and the elastic thermoelectric material prepared in Example 37 can be stretched more permanently than in Example 3 It was confirmed that it is an elastic material.
<실험예 5> 열전소자 분석<Experimental Example 5> Thermoelectric element analysis
본 발명에 따른 제조방법으로 제조된 열전소자의 특성을 확인하기 위하여, 상기 실시예 35에서 제조된 열전소자를 Keithley 2400 소스미터를 사용하여 소자성능을 측정하였으며, 그 결과를 도 4a 내지 도 4c에 나타내었다.In order to confirm the characteristics of the thermoelectric element manufactured by the manufacturing method according to the present invention, the device performance of the thermoelectric element manufactured in Example 35 was measured using a Keithley 2400 source meter, and the results are shown in FIGS. 4A to 4C. Shown.
도 4a 내지 도 4c에 나타낸 바와 같이, △T가 14.9℃일 때 1.01 μW의 출력파워를 확인하였으며, 중량 당 출력파워는 △T가 14.9℃일 때 15 μW g- 1 이었다.As it is shown in Figure 4a to Figure 4c, △ when T is 14.9 ℃ was confirmed that the output power of 1.01 μW, the output power per unit weight is 15 g μW when △ T is 14.9 ℃ - 1.

Claims (16)

  1. 탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계; Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Preparing a mixed solution by dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride;
    상기 혼합용액을 지지체에 도포하는 단계; 및Applying the mixed solution to a support; And
    상기 지지체를 진공증발시키는 단계;를 포함하는 탄소나노튜브 폼의 제조방법.A method of manufacturing a carbon nanotube foam comprising; evaporating the support in a vacuum.
  2. 제1항에 있어서,According to claim 1,
    상기 진공증발은 10-1 torr 내지 10-3 torr의 압력에서 수행되는 것을 특징으로 하는 탄소나노튜브 폼의 제조방법.The vacuum evaporation method of manufacturing a carbon nanotube foam, characterized in that is performed at a pressure of 10 -1 torr to 10 -3 torr.
  3. 제1항에 있어서,According to claim 1,
    상기 혼합용액은 유기 고분자, 금속, p형 도판트 및 n형 도판트로 이루어지는 군으로부터 선택되는 1종 이상을 더 포함하는 탄소나노튜브 폼의 제조방법.The mixed solution is a method for producing a carbon nanotube foam further comprising at least one member selected from the group consisting of organic polymers, metals, p-type dopants, and n-type dopants.
  4. 제3항에 있어서,According to claim 3,
    상기 금속은 안티몬(Sb), 셀레늄(Se), 은(Ag), 구리(Cu), 주석(Sn), 망간(Mn) 및 철(Fe)로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 탄소나노튜브 폼의 제조방법.The metal is at least one selected from the group consisting of antimony (Sb), selenium (Se), silver (Ag), copper (Cu), tin (Sn), manganese (Mn), and iron (Fe). Manufacturing method of carbon nanotube foam.
  5. 탄소나노튜브와 유기 고분자를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계; Carbon nanotubes and organic polymers include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, butyl alcohol, and acetone ( preparing a mixed solution by dispersing in at least one solvent selected from the group consisting of acetone), chloroform, and methylene chloride;
    상기 혼합용액을 지지체에 도포하는 단계; 및Applying the mixed solution to a support; And
    상기 지지체를 진공증발시키는 단계;를 포함하는 열전소자용 복합재료의 제조방법.Method of manufacturing a composite material for a thermoelectric element comprising a; evaporating the support in a vacuum.
  6. 제5항에 있어서,The method of claim 5,
    상기 유기 고분자는 폴리스티렌, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Poly(3-hexylthiophene-2,5-diyl)(P3HT), 폴리아닐린, 폴리바이닐 알코올 및 폴리에틸렌이민으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 열전소자용 복합재료의 제조방법.The organic polymer is polystyrene, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Poly(3-hexylthiophene-2,5-diyl)(P3HT), polyaniline, polyvinyl alcohol and polyethyleneimine. Method for producing a composite material for a thermoelectric element, characterized in that at least one selected from the group consisting of.
  7. 제5항에 있어서,The method of claim 5,
    상기 탄소나노튜브 및 유기 고분자의 혼합비율은 10:90 내지 40:60 중량비인 것을 특징으로 하는 열전소자용 복합재료의 제조방법.The mixing ratio of the carbon nanotubes and the organic polymer is 10:90 to 40:60 weight ratio method for manufacturing a composite material for a thermoelectric device.
  8. 탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시킨 후, p형 도판트 또는 n형 도판트를 혼합하여 혼합용액을 제조하는 단계; Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, Dispersing in one or more solvents selected from the group consisting of chloroform, and methylene chloride, and then mixing a p-type dopant or an n-type dopant to prepare a mixed solution;
    상기 혼합용액을 지지체에 도포하는 단계; 및Applying the mixed solution to a support; And
    상기 지지체를 진공증발시키는 단계;를 포함하는 열전소자용 복합재료의 제조방법.Method of manufacturing a composite material for a thermoelectric element comprising a; evaporating the support in a vacuum.
  9. 제8항에 있어서,The method of claim 8,
    상기 p형 도판트는 염화철, 염화금, 염화은, 카바졸 및 그 유도체, 벤조퀴논, 테트라시아노퀴논, 테르라플루오르퀴노디메테인, 요오드 화합물, 디페닐리딘, 이미다졸, 트리아졸, 폴리아자인, 피리딘 트리페닐아민, 테트라티아풀발렌 및 피라진으로 이루어지는 군으로부터 선택되는 1종 이상을 포함하는 열전소자용 복합재료의 제조방법.The p-type dopant is iron chloride, gold chloride, silver chloride, carbazole and its derivatives, benzoquinone, tetracyanoquinone, terafluorquinodimethane, iodine compound, diphenylidine, imidazole, triazole, polyazaine, pyridine Method for producing a composite material for a thermoelectric device comprising at least one member selected from the group consisting of triphenylamine, tetrathiafulvalene and pyrazine.
  10. 제8항에 있어서,The method of claim 8,
    상기 n형 도판트는 벤질바이올로젠, 히드라진, 에틸렌디아민, 트리에틸렌아민, 에틸아민, 피롤리딘, 트리페닐포스페이트, 폴리비닐피롤리돈, 테트라메틸-페닐렌디아민 및 페로센으로 이루어지는 군으로부터 선택되는 1종 이상을 포함하는 열전소자용 복합재료의 제조방법.The n-type dopant is selected from the group consisting of benzylbiogen, hydrazine, ethylenediamine, triethyleneamine, ethylamine, pyrrolidine, triphenylphosphate, polyvinylpyrrolidone, tetramethyl-phenylenediamine and ferrocene. Method of manufacturing a composite material for a thermoelectric element containing more than one species.
  11. 제8항에 있어서,The method of claim 8,
    상기 p형 도판트 또는 n형 도판트의 함량은 전체 혼합용액에 대하여 0.1 중량% 내지 300 중량%인 열전소자용 복합재료의 제조방법.The content of the p-type dopant or n-type dopant is 0.1 wt% to 300 wt% based on the total mixed solution.
  12. 탄소나노튜브와 탄성 고분자를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시켜 혼합용액을 제조하는 단계; Carbon nanotubes and elastic polymers are cyclohexane, benzene, water (H 2 O), 1,4-dioxane, butyl alcohol, and acetone ( preparing a mixed solution by dispersing in at least one solvent selected from the group consisting of acetone), chloroform, and methylene chloride;
    상기 혼합용액을 지지체에 도포하는 단계;Applying the mixed solution to a support;
    상기 지지체를 진공증발시키는 단계; 및Vacuum evaporating the support; And
    생성물을 경화시키는 단계;를 포함하는 유연열전소자용 탄성복합재료의 제조방법.Curing the product; Method for producing an elastic composite material for a flexible thermoelectric element comprising a.
  13. 제12항에 있어서,The method of claim 12,
    상기 탄성 고분자는 폴리디메틸실록산계 고분자 및 폴리우레탄계 고분자로 이루어지는 군으로부터 선택되는 1종 이상인 유연열전소자용 탄성복합재료의 제조방법.The elastic polymer is a method of manufacturing an elastic composite material for a flexible thermoelectric element selected from the group consisting of polydimethylsiloxane polymer and polyurethane polymer.
  14. 탄소나노튜브; 및 유기 고분자, 탄성 고분자, n형 도판트 및 p형 도판트로 이루어지는 군으로부터 선택되는 1종 이상;을 포함하고,Carbon nanotubes; And at least one member selected from the group consisting of organic polymers, elastic polymers, n-type dopants, and p-type dopants.
    폼 형태인 것을 특징으로 하는 열전소자용 복합재료.Composite material for thermoelectric elements, characterized in that the form of a foam.
  15. 복수 개의 홈을 포함하는 몰드를 준비하는 단계;Preparing a mold including a plurality of grooves;
    탄소나노튜브를 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시킨 후, p형 도판트를 혼합하여 혼합용액을 제조하여 몰드의 홈 중 적어도 1개 이상의 홈에 도포하는 단계;Carbon nanotubes include cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, After dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride, a mixed solution is prepared by mixing a p-type dopant to at least one of the grooves of the mold. Applying;
    탄소나노튜브 시클로헥산(cyclohexane), 벤젠(benzen), 물(H2O), 1,4-다이옥세인(1,4-dioxane), 부틸알콜(tert-butyl alcohol), 아세톤(acetone), 클로로폼(chloroform), 및 메틸렌 클로라이드(methylene chloride)로 이루어지는 군으로부터 선택되는 1종 이상의 용매에 분산시킨 후, n형 도판트를 혼합하여 혼합용액을 제조하여 몰드의 홈 중 적어도 1개 이상의 홈에 도포하는 단계;Carbon nanotubes cyclohexane, benzene, water (H 2 O), 1,4-dioxane, tert-butyl alcohol, acetone, chloro After dispersing in one or more solvents selected from the group consisting of chloroform and methylene chloride, an n-type dopant is mixed to prepare a mixed solution and applied to at least one of the grooves of the mold To do;
    상기 몰드를 진공증발시키는 단계; 및Vacuum evaporating the mold; And
    전극을 형성하는 단계;를 포함하는 열전소자의 제조방법.Method of manufacturing a thermoelectric element comprising a; forming an electrode.
  16. 탄소나노튜브; 및 유기 고분자, 탄성 고분자, n형 도판트 및 p형 도판트로 이루어지는 군으로부터 선택되는 1종 이상;을 포함하는 폼 형태인 것을 특징으로 하는 열전소자용 복합재료;Carbon nanotubes; And at least one member selected from the group consisting of organic polymers, elastic polymers, n-type dopants, and p-type dopants; the composite material for thermoelectric elements comprising a foam form;
    상기 열전소자용 복합재료에 형성된 전극;을 포함하는 열전소자.Electrode formed on the composite material for the thermoelectric element; includes a thermoelectric element.
PCT/KR2019/018825 2019-01-03 2019-12-31 Preparation method for carbon nanotube foam and thermoelectric element comprising carbon nanotube WO2020141871A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0000674 2019-01-03
KR20190000674 2019-01-03
KR1020190173235A KR102361120B1 (en) 2019-01-03 2019-12-23 Carbon nanotube foam and thermoelectric comprising carbon nanotube foam
KR10-2019-0173235 2019-12-23

Publications (1)

Publication Number Publication Date
WO2020141871A1 true WO2020141871A1 (en) 2020-07-09

Family

ID=71406772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018825 WO2020141871A1 (en) 2019-01-03 2019-12-31 Preparation method for carbon nanotube foam and thermoelectric element comprising carbon nanotube

Country Status (1)

Country Link
WO (1) WO2020141871A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713472B2 (en) * 1975-10-17 1982-03-17
KR20160039170A (en) * 2016-03-23 2016-04-08 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same
KR20180052269A (en) * 2016-11-10 2018-05-18 한국과학기술연구원 Flexible thermoelement comprising carbon nanotube strand, preparation method thereof
JP2018098435A (en) * 2016-12-16 2018-06-21 国立研究開発法人産業技術総合研究所 Method for manufacturing thermoelectric conversion material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713472B2 (en) * 1975-10-17 1982-03-17
KR20160039170A (en) * 2016-03-23 2016-04-08 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same
KR20180052269A (en) * 2016-11-10 2018-05-18 한국과학기술연구원 Flexible thermoelement comprising carbon nanotube strand, preparation method thereof
JP2018098435A (en) * 2016-12-16 2018-06-21 国立研究開発法人産業技術総合研究所 Method for manufacturing thermoelectric conversion material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3D porous nanotube structure by simple vacuum-evaporation method for free-shaped thermoelectric power generator", 11 October 2018 (2018-10-11) *

Similar Documents

Publication Publication Date Title
WO2012060601A2 (en) Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
WO2020231214A1 (en) Organic light-emitting device
WO2017142231A1 (en) Metal plate, mask for deposition and manufacturing method therefor
WO2016072810A1 (en) Perovskite light emitting device containing exciton buffer layer and method for manufacturing same
WO2010147318A2 (en) Aminoanthracene derivative and an organic electroluminescent element employing the same
WO2018124459A1 (en) Perovskite compound and preparation method therefor, and solar cell comprising perovskite compound and manufacturing method therefor
WO2016024728A1 (en) Organic light-emitting element
WO2016032299A1 (en) Polyimide preparation method using monomer salt
WO2013070022A9 (en) Apparatus and method for transmitting and receiving a quasi-cyclic low density parity check code in a multimedia communication system
WO2014181986A1 (en) Organic electronic element comprising fullerene derivative
WO2012093861A2 (en) Organic light emitting compound and organic electroluminescent device including same
WO2019083338A1 (en) Oxide semiconductor thin-film transistor and method for manufacturing same
WO2014133285A1 (en) Conductive thin film, method for producing same, and electronic element comprising same
WO2020141871A1 (en) Preparation method for carbon nanotube foam and thermoelectric element comprising carbon nanotube
WO2017213379A1 (en) Organic transistor and gas sensor
WO2021075874A1 (en) Positive electrode active material and method for preparing same
WO2018164353A1 (en) Polymer and organic solar cell comprising same
WO2019125052A1 (en) Aerogel composition and preparation method therefor
WO2016175573A2 (en) Compound and organic solar cell comprising same
WO2019172571A1 (en) Organic solar cell manufacturing method and organic solar cell manufactured using same
WO2023136508A1 (en) Organic compound and organic electroluminescent device comprising same
WO2021145639A1 (en) Polymer and organic light-emitting diode using same
WO2019098542A1 (en) Heterocyclic compound and organic photoelectric device comprising same
WO2016099037A2 (en) Organic compound and organic electroluminescent device comprising same
WO2018080027A1 (en) Flexible thermoelectric module and thermoelectric apparatus comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906849

Country of ref document: EP

Kind code of ref document: A1