WO2020141602A1 - Cylindrical body, method for manufacturing cylindrical body, and device for manufacturing cylindrical body - Google Patents

Cylindrical body, method for manufacturing cylindrical body, and device for manufacturing cylindrical body Download PDF

Info

Publication number
WO2020141602A1
WO2020141602A1 PCT/JP2019/051247 JP2019051247W WO2020141602A1 WO 2020141602 A1 WO2020141602 A1 WO 2020141602A1 JP 2019051247 W JP2019051247 W JP 2019051247W WO 2020141602 A1 WO2020141602 A1 WO 2020141602A1
Authority
WO
WIPO (PCT)
Prior art keywords
tape
tubular body
fiber
cut
reinforcing fibers
Prior art date
Application number
PCT/JP2019/051247
Other languages
French (fr)
Japanese (ja)
Inventor
フローリアン ヘンネ
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2020141602A1 publication Critical patent/WO2020141602A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core

Definitions

  • the present invention relates to a tubular body, a tubular body manufacturing method, and a tubular body manufacturing apparatus.
  • a tape-shaped fiber-reinforced resin obtained by impregnating a reinforcing fiber such as carbon fiber with a resin is supplied to the surface of another molded article while irradiating a laser, and the tape-shaped fiber-reinforced resin is fused and attached.
  • a technique of attaching is known (for example, Patent Document 1).
  • the fused body obtained by the above technique has high strength due to the fiber reinforced resin, and thus is expected to be applied to various uses. Further, according to this technique, when the tape-shaped fiber-reinforced resin is wrapped around the mandrel and fused, a tubular molded body can be produced.
  • Patent Document 3 when a tape obtained by impregnating a reinforcing fiber with a resin is attached around a frusto-conical mandrel, a cut is made in the tape to spread the cut into a triangular shape, and the tape is cut. Is easily wrapped around the mandrel.
  • the present invention provides a tubular body in which the strength of the refraction portion is less likely to decrease even when subjected to processing such as refraction, a method for producing the tubular body, and an apparatus for producing the tubular body.
  • the purpose is to provide.
  • the tubular body of the present invention for solving the above-mentioned problems includes a fiber layer in which a plurality of unidirectionally oriented reinforcing fibers are arranged, and a matrix resin containing the reinforcing fibers.
  • the reinforcing fibers are at least partially cut.
  • a fiber reinforced resin tape obtained by impregnating a reinforced fiber oriented in one direction with a matrix resin is supplied to the surface of a rotating mandrel. And a step of fusing the fiber-reinforced resin tape around the mandrel.
  • the fiber-reinforced resin tape to be fused is cut at least partially with the reinforcing fibers.
  • the apparatus for manufacturing a tubular body of the present invention for solving the above-mentioned problems a mandrel that rotates, and a fiber-reinforced resin tape obtained by impregnating a matrix resin into reinforcing fibers that are oriented in one direction is supplied to the mandrel. And a fusing part for fusing the fed fiber reinforced resin tape around the mandrel.
  • the supply unit supplies a fiber-reinforced resin tape in which the reinforcing fibers are at least partially cut.
  • a tubular body in which a decrease in strength at the refraction portion does not easily occur even when processing such as refraction a method for producing the tubular body, and an apparatus for producing the tubular body.
  • FIG. 1 is a schematic perspective view showing a pipe according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the wall surface of the pipe when a part of the wall surface is cut along the alternate long and short dash line 2-2 shown in FIG.
  • 3A is a schematic cross-sectional view of the wall surface of the pipe when the fiber layer is cut along the chain line 3A-3A shown in FIG. 2, and FIG. 3B is cut along the chain line 3B-3B shown in FIG.
  • FIG. 3C is a schematic cross-sectional view of the wall surface of the pipe at the time
  • FIG. 3C is a schematic cross-sectional view of the wall surface of the pipe when the fiber layer is cut along the alternate long and short dash line 3C-3C shown in FIG.
  • FIG. 4A is a schematic diagram showing a state in which tension is applied to the pipe in the lengthwise direction when bending the pipe, and FIG. 4B shows a state in which the pipe is then bent while the tension is being applied.
  • FIG. 5 is a schematic diagram which shows the typical structure of the apparatus which manufactures the pipe concerning 1st Embodiment.
  • FIG. 6 is a schematic diagram illustrating the configuration of an example of the cutting unit according to the first embodiment.
  • 7A, 7B, and 7C are schematic views showing the UD tape partially cut by the cutting portion shown in FIG.
  • FIG. 8 is a schematic diagram showing the configuration of another example of the cutting unit according to the first embodiment.
  • 9A and 9B are schematic diagrams showing the UD tape partially cut by the cutting portion shown in FIG. 8.
  • FIG. 10 is a flowchart showing representative steps of a method for manufacturing a pipe using the apparatus according to the first embodiment.
  • FIG. 11 is a schematic perspective view showing a pipe according to the second embodiment.
  • 12A is a schematic cross-sectional view of the wall surface of the pipe when the pipe is cut in a direction along the wall surface of the pipe, showing one fiber layer in the processed portion
  • FIG. 12B is the same as FIG. 11A in the non-processed portion.
  • It is a schematic cross section of the wall surface of a pipe when a pipe is cut like FIG. 12A which shows a fiber layer.
  • 13A and 13B are schematic views showing the operation of the pipe manufacturing apparatus when manufacturing the pipe according to the present embodiment.
  • tubular body the tubular body manufacturing method, and the tubular body manufacturing apparatus of the present invention will be described using a plurality of embodiments.
  • FIG. 1 is a schematic perspective view showing a pipe 100 according to the first embodiment.
  • the pipe 100 has a constant diameter along the length direction.
  • the pipe 100 is composed of a plurality of unidirectionally oriented reinforcing fibers impregnated with a matrix resin, and a fiber reinforced resin tape (Uni-Direction tape: UD tape) is wrapped around the mandrel in a single layer or a plurality of layers. It can be produced by the method of letting it go. Therefore, the reinforcing fibers oriented in the one direction are arranged in the wall surface of the pipe 100.
  • UD tape Uni-Direction tape
  • FIG. 2 and 3 are schematic diagrams showing the inside of the wall surface 110 of a part of the pipe 100.
  • FIG. 2 is a schematic cross-sectional view of the wall surface of the pipe 100 when a part of the wall surface 110 is cut in the thickness direction along the alternate long and short dash line 2-2 shown in FIG.
  • the wall surface of the pipe 100 has a matrix resin 210 and a reinforcing fiber 220, both of which are derived from the UD tape 530.
  • the matrix resin 210 is integrated between different UD tapes by the above-mentioned fusion bonding and integrally extends over the entire wall surface of the pipe 100.
  • the reinforcing fibers 220 form an aggregate 230 in which the fibers derived from each UD tape are aggregated. Then, at a predetermined position (depth) in the thickness direction of the wall surface 110, each aggregate 230 is in a direction parallel to the surface and the inner surface of the pipe 100 (in the present embodiment, in a coaxial circumferential shape).
  • the fibers are arranged to form each of the fiber layers 240a, 240b, and 240c. Then, the respective fiber layers 240a, 240b and 240c can be distinguished by the orientation direction of the reinforcing fibers 220.
  • the aggregate 230 forms three fiber layers, but the number of layers is not limited to this, and may be only one layer or a plurality of layers other than three layers. May be. Also, the number of layers may vary depending on the location.
  • FIG. 3A is a schematic cross-sectional view of the wall surface of the pipe 100 when the fiber layer 240 a is cut in the direction along the wall surface of the pipe 100 (the direction indicated by alternate long and short dash lines 3A-3A in FIG. 2).
  • the fiber layer 240a is composed of a matrix resin 210 and a reinforcing fiber 220, both of which are derived from a UD tape, and the reinforcing fiber 220 is collected for each fiber derived from each of the UD tapes.
  • the aggregate 230 is formed. Reinforcing fibers 220 forming the plurality of aggregates 230 are oriented in the same one direction within the fiber layer 240a.
  • the fiber layer 240a has a cut portion 225 in which the reinforcing fiber 220 is at least partially cut.
  • the plurality of reinforcing fibers 220 are collectively cut.
  • Each of the two reinforcing fibers 220 formed by cutting one reinforcing fiber 220, which is arranged to face each other via the cut portion 225, does not change the extending direction of the cut portion 225, They are arranged on the same straight line.
  • the cut surfaces (end portions) of the cut reinforced fibers 220 that face each other with the cut portion 225 interposed therebetween are straight lines parallel to each other.
  • FIG. 3B is a schematic cross-sectional view of the wall surface of the pipe 100 when the fiber layer 240b is cut in the direction along the wall surface of the pipe 100 (the direction of the alternate long and short dash line 3B-3B shown in FIG. 2).
  • the fiber layer 240b is composed of a matrix resin 210 and a reinforcing fiber 220, both of which are derived from a UD tape, and the reinforcing fiber 220 is collected for each fiber derived from each of the UD tapes.
  • the aggregate 230 is formed.
  • Each of the reinforcing fibers 220 constituting the plurality of aggregates 230 is oriented in the fiber layer 240b in one direction different from the orientation direction in the fiber layer 240a.
  • the fiber layer 240b has a cut portion 225 in which the reinforcing fiber 220 is at least partially cut.
  • a plurality of reinforcing fibers 220 are collectively cut, and the cut surfaces (end portions) of the cut reinforcing fibers 220 that face each other across the cut portion 225 are straight lines parallel to each other. It is a state.
  • FIG. 3C is a schematic cross-sectional view of the wall surface of the pipe 100 when the fiber layer 240c is cut in the direction along the wall surface of the pipe 100 (the direction indicated by alternate long and short dash lines 3C-3C in FIG. 2).
  • the fiber layer 240c is composed of the matrix resin 210 and the reinforcing fiber 220, both of which are derived from the UD tape, and the reinforcing fiber 220 is collected for each fiber derived from each of the UD tapes.
  • the aggregate 230 is formed.
  • Each of the reinforcing fibers 220 constituting the plurality of aggregates 230 is oriented in the fiber layer 240c in one direction different from the orientation direction in the fiber layer 240b.
  • the fiber layer 240c has a cut portion 225 in which the reinforcing fiber 220 is at least partially cut.
  • a plurality of reinforcing fibers 220 are collectively cut, and the cut surfaces (end portions) of the cut reinforcing fibers 220 that face each other across the cut portion 225 are straight lines parallel to each other. It is a state.
  • the reinforcing fibers 220 are oriented in different directions between the layers that are in contact with each other vertically (between the fiber layers 240a and 240b and between the fiber layers 240b and 240c). Further, the fiber layers 240a and 240c which are not in contact with each other are oriented in different directions, but the orientation direction of the reinforcing fibers 220 in each layer is not limited to these. For example, the reinforcing fibers 220 may be oriented in yet another third direction in another fiber layer.
  • each of the fiber layers 240a, 240b, and 240c is formed of one UD tape, but the UD tape is fused multiple times to form each fiber layer. You may. At this time, in each fiber layer, a plurality of aggregates 230 of reinforcing fibers 220 are arranged in the thickness direction.
  • the cross section of the pipe 100 is described assuming that the aggregate 230 of the reinforcing fibers 220 derived from each UD tape can be clearly distinguished from the other aggregate 230. It is not necessary that the aggregates 230 of the reinforcing fibers 220 derived from the respective UD tapes can be clearly distinguished when arranged and fused. Alternatively, when the UD tapes are arranged so densely that they are not fused, the matrix resin 210 generated between the aggregates 230 of the reinforcing fibers 220 derived from each UD tape is rich.
  • the aggregate 230 of the reinforcing fibers 220 derived from each UD tape may be discriminated with the region where the number of the reinforcing fibers 220 is small (or the reinforcing fibers 220 do not exist) as a boundary.
  • the UD tapes (aggregates 230) adjacent to each other in the same layer in FIG. Can exist Further, the regions where the matrix resin 210 is rich may exist between the UD tapes (aggregates 230) adjacent to each other in the same layer in FIGS. 3A to 3C.
  • the fact that the reinforcing fiber 220 is at least partially cut means that one or more of the reinforcing fibers 220, preferably a plurality of reinforcing fibers 220 among the plurality of reinforcing fibers 220 constituting the respective fiber layers 240a, 240b and 240c. This means that the reinforcing fiber 220 is cut. From the viewpoint of suppressing the decrease in strength at the bent portion due to the action described below, it is preferable that the plurality of reinforcing fibers 220 are collectively cut (at the same position) in each cut portion 225. At this time, all the reinforcing fibers 220 forming the aggregate 230 may be collectively cut.
  • the cutting of the reinforcing fiber 220 in the present embodiment means the intentional cutting of the reinforcing fiber 220, and the unintentional cutting of the reinforcing fiber at the time of manufacturing the UD tape or the pipe 100 is the reinforcing fiber in the present embodiment. Not included in cutting 220.
  • a cut surface is formed in each reinforcing fiber 220 such that the cross section of the reinforcing fiber 220 is a plane orthogonal to the longitudinal direction of the reinforcing fiber 220, or a plurality of reinforcing fibers 220 are aggregated. It is possible to determine that the reinforcing fiber 220 has been intentionally cut by the fact that the reinforcing fibers 220 are cut intentionally and the cut surfaces of the plurality of reinforcing fibers are on the same plane.
  • Each of the reinforcing fibers 220 has a predetermined length, and is arranged so as to wind the pipe 100 a plurality of times and extend in a direction parallel to the surface of the pipe 100.
  • FIG. 4A and 4B are schematic views showing an example of bending the pipe 100.
  • the pipe 100 is first tensioned in the length direction (FIG. 4A), and then bent while tension is applied (FIG. 4B). Since the reinforcing fiber 220 is at least partially cut in the pipe 100 according to the present embodiment, the stress applied to the reinforcing fiber 220 when applying these tensions and bending is at least partially cut. It is considered that the cut portion 225 relaxes.
  • the tensile deformation may break the reinforcing fiber 220, and the compressive deformation may cause the reinforcing fiber 220 to buckle or cause wrinkles. is there.
  • the original strength of the reinforcing fiber 220 is not exhibited, and the strength of the pipe 100 at the bent portion is reduced.
  • the reinforcing fiber 220 is at least partially cut. Therefore, the matrix resin filling the space between the cut reinforcing fibers 220 relieves the stress for the tensile deformation, and thus the reinforcing fibers 220 are less likely to break. Alternatively, since the cut reinforcing fibers 220 can move so as to be separated from each other, breakage of the reinforcing fibers 220 due to the tensile deformation is unlikely to occur.
  • the length of the reinforcing fiber 220 is shortened by cutting, buckling of the reinforcing fiber 220 due to the compressive deformation is unlikely to occur.
  • the cut reinforcing fibers 220 can move so as to overlap with each other (pass each other), buckling and wrinkling of the reinforcing fibers 220 due to the compressive deformation are unlikely to occur.
  • the pipe 100 according to the present embodiment suppresses the decrease in strength at the bent portion that is bent.
  • the matrix resin 210 may be any of a thermoplastic resin, a thermosetting resin, and a photocurable resin, but the thermoplastic resin is preferable from the viewpoint of facilitating the bending process by heating.
  • thermoplastic resin examples include polyolefin resin, polyamide resin, polyester resin, polystyrene resin, polyimide resin, polyamideimide resin, polycarbonate resin, polyphenylene ether resin, polyphenylene sulfide resin, polyacetal resin, acrylic resin (polymethylmethacrylate). Etc.), polyetherimide resin, polysulfone resin, polyethersulfone resin, polyketone resin, polyetherketone resin, polyetheretherketone resin, polyarylate resin, polyethernitrile resin, vinyl chloride resin, ABS resin and fluorine resin, etc. included.
  • polystyrene resin examples include ethylene-based polymers, propylene-based polymers, butylene-based polymers, 4-methyl-1-pentene-based polymers, and derivatives of these polymers.
  • the ethylene-based polymer means a homopolymer of ethylene or a copolymer containing a structural unit formed of ethylene and another monomer and having a content of the structural unit derived from ethylene of 50% by mass or more. ..
  • polyamide resin examples include aliphatic polyamide resins (nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 612, etc.), semi-aromatic polyamide resins (nylon 6T, nylon 6I, nylon 9T, etc.), and Includes wholly aromatic polyamide resins.
  • polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polyethylene naphthalate.
  • thermoplastic resins from the viewpoint of facilitating the production of the pipe 100, it is preferable to include a propylene polymer and its derivative.
  • thermosetting resin examples include epoxy resin, phenol resin, melamine resin, urea resin, diallyl phthalate resin, silicone resin, urethane resin, furan resin, ketone resin, xylene resin, thermosetting polyimide resin, unsaturated polyester. Resins and diallyl terephthalate resins are included.
  • the reinforcing fibers 220 include carbon fibers, glass fibers, aramid fibers, silicon carbide fibers, boron fibers, metal fibers, metal oxide fibers (alumina fibers, etc.), mosheige (basic magnesium sulfate inorganic fibers), and calcium carbonate whiskers. Either may be used, but carbon fibers and glass fibers are preferable because they are easily available, and carbon fibers are more preferable because they are lightweight and have high strength.
  • FIG. 5 is a schematic diagram showing a typical configuration of an apparatus 500 for manufacturing the pipe 100.
  • the device 500 has a rotating mandrel 510 and a fusing unit 520 that produces the pipe 100 by fusing the UD tape 530 to the surface of the mandrel 510.
  • a control unit (not shown) rotates the mandrel 510 and causes each component of the fusing unit 520 to perform the following operation.
  • the surface of the mandrel 510 means either the surface of the mandrel 510 that is in contact with the UD tape 530 or the surface of the UD tape 530 that has already been wound around the mandrel 510 and fused to each other. To do.
  • the UD tape 530 is a planar molded body having a tape-like shape, which is obtained by impregnating the reinforcing fibers 220 oriented in one direction with a resin composition.
  • the reinforcing fiber 220 and the resin composition may be made of the same material as the reinforcing fiber 220 and the matrix resin 210 that form the pipe 100, respectively.
  • the length direction of the UD tape 530 is the direction in which the distance between the end sides of the UD tape 530 is the longest.
  • the width direction of the UD tape 530 is a direction orthogonal to the length direction, and the distance between the end sides of the UD tape 530 becomes the second longest in the length direction.
  • the thickness direction of the UD tape 530 is a direction orthogonal to both the length direction and the width direction.
  • the distance between the edges in the length direction is usually 10 times or more longer than the distance between the edges in the width direction.
  • the distance between the edges in the width direction of the UD tape 530 is usually 10 times or more longer than the distance (the thickness) between the edges in the thickness direction.
  • Both ends of the mandrel 510 are supported by rotation supporting portions 504a and 504b held by the supports 502a and 502b, respectively, and are rotated by the rotation of the rotation supporting portions 504a and 504b.
  • the fusing unit 520 includes an accommodating portion 521 for accommodating the UD tape 530 wound into a roll so that the UD tape 530 can be extended, a guide roller 522 that guides the UD tape 530 delivered from the accommodating portion 521 to the mandrel 510, and an accommodating portion.
  • a cutting unit 523 that partially cuts the UD tape 530 while being fed from the unit 521 and guided to the mandrel 510, and an objective that irradiates the UD tape 530 supplied to the mandrel 510 with a laser emitted from a laser oscillation source 524a. It has a laser irradiation unit 524 which is a lens unit, and a pressing roller 525 for pressing the UD tape 530 supplied to the mandrel 510 toward the surface of the mandrel 510.
  • the accommodating portion 521 accommodates the UD tape 530 wound in a roll shape, and unwinds the UD tape 530 when the pipe 100 is manufactured.
  • the payout speed of the UD tape 530 may be any speed that allows the UD tape 530 to be sufficiently fused to the UD tape 530 by laser irradiation, for example, in the range of 10 m/min to 100 m/min. It is possible to select from, and it is preferable to select from the range of 30 m/min to 90 m/min.
  • the guide roller 522 is disposed in contact with the movement path of the UD tape 530 that connects the housing 521 and the mandrel 510, and supports the UD tape 530 that moves along the movement path while applying tension to the surface of the mandrel 510. And lead.
  • the guide roller 522 thus operates as a supply unit for supplying the UD tape to the surface of the mandrel. Although only one guide roller 522 is shown in FIG. 5, the fusing unit 520 may have a plurality of guide rollers.
  • the cutting unit 523 is arranged on the moving path of the UD tape 530 that connects the housing unit 521 and the mandrel 510, and selectively and partially cuts the moving UD tape 530. As a result, the reinforcing fibers 220 included in the UD tape 530 are also partially cut.
  • the cutting unit 523 will be described later.
  • the laser irradiation unit 524 is connected to a laser oscillation source 524a arranged outside the fusion unit 520 via an optical fiber or the like so as to be capable of optical communication, and emits a laser oscillated by the laser oscillation source 524a while converging it with an objective lens.
  • the laser irradiation unit 524 irradiates at least one of the surfaces of the UD tape 530 and the mandrel 510 with a laser immediately before or when the moving UD tape 530 and the surface of the mandrel 510 contact each other. Thus, the laser is emitted.
  • the laser irradiation unit 524 melts the UD tape 530 by heat applied by laser irradiation when the UD tape 530 that is in contact with at least the surface of the mandrel 510 is pressed by the pressing roller 525.
  • the laser is emitted as if
  • the type of the laser oscillation source 524a is not particularly limited, and a solid laser including a ruby laser, a YAG laser, an Nd:YAG laser, and a diode-pumped solid state laser, a liquid laser including a dye laser, a gas laser including a CO 2 laser, and It can be appropriately selected from semiconductor lasers and the like.
  • the above-mentioned laser only needs to have enough energy to melt the resin composition forming the UD tape 530 (resin composition forming the matrix resin 210), while not causing deterioration or deformation of the resin composition.
  • the output of the laser can be selected from the range of 50 W or more and 5 kW or less.
  • the laser has a wavelength absorbed by the resin composition or the reinforcing fiber 220 that constitutes the UD tape 530.
  • the wavelength of the laser can be selected from the range of 300 nm to 3000 nm.
  • the pressing roller 525 presses the UD tape 530 supplied to the mandrel 510 toward the surface of the mandrel 510. At least one of the UD tape 530 supplied to the mandrel 510 and the UD tape 530 already wound around the mandrel 510 and fused to each other is melted, and the supplied UD tape 530 is applied to the surface of the mandrel 510. By being pressed down, the supplied UD tapes 530 are fused with each other and are molded into the shape of the pipe 100.
  • the fusing unit 520 accommodates each of the above components inside the robot arm.
  • the fusing unit 520 translates along the guide portion 526 and reciprocates along the axial direction of the rotating mandrel 510, Fuse the UD tape.
  • the fusing unit 520 thus operates as a fusing section for fusing the UD tape around the mandrel.
  • the pipe 100 having the plurality of fiber layers 240a, 240b and 240c is formed.
  • the fusing unit 520 is also configured to be vertically movable and rotationally movable. By changing the angle at which the UD tape contacts the surface of the mandrel 510 by the rotational movement, the direction in which the reinforcing fibers 220 are oriented can be changed between the fiber layers 240a, 240b and 240c.
  • FIG. 6 is a schematic view showing an example of the configuration of the cutting section 600 in the present embodiment
  • FIGS. 7A, 7B and 7C show the UD tape 530 partially cut by the cutting section 600 shown in FIG. It is a schematic diagram which shows.
  • the cutting section 600 has a cutting blade 610 and a pedestal section 620 which are arranged at opposite positions with the moving UD tape 530 interposed therebetween.
  • the white arrow in FIG. 6 indicates the moving direction of the UD tape 530.
  • the cutting blade 610 is movable in the vertical direction (direction AA in FIG. 6) with respect to the moving UD tape 530, moves toward the UD tape 530, and collides with the UD tape 530.
  • the UD tape 530 is cut, and the reinforcing fibers 220 included in the UD tape 530 are cut.
  • the pedestal portion 620 has a plurality of blade receiving portions 622a, 622b, and 622c on the surface facing the cutting blade 610, which partially cuts the UD tape 530 by pressing the UD tape 530 in cooperation with the cutting blade 610.
  • Each of the blade receiving portions 622a, 622b, and 622c has a plurality of holes 624 on the surface facing the cutting blade 610.
  • the blade receiving portions 622a, 622b, and 622c are different in the arrangement of the holes 624.
  • the pedestal portion 620 can change the position in the moving direction of the UD tape 530 (direction BB in FIG. 6), and by changing the position, the cutting blades of the blade receiving portions 622a, 622b, and 622c can be changed.
  • the blade receiving portion facing 610 can be switched.
  • the cutting blade 610 may change the position in the moving direction of the UD tape 530 (direction BB in FIG. 6).
  • a plurality of cutting blades 610 may be arranged at positions facing the blade receiving portions 622a, 622b, and 622c, respectively.
  • the cutting blade 610 collides with the UD tape 530 the cutting blade 610 and the pedestal portion 620 are pressed only in a region of the blade receiving portion 622a, 622b, or 622c where the hole 624 is not formed, and the UD The tape 530 is cut.
  • both ends and both end portions of the UD tape 530 are A total of four cutting portions 532 are formed in the width direction of the UD tape 530 at two positions having a predetermined distance in the width direction from. Further, when the pedestal portion 620 is arranged at a position where the blade receiving portion 622b faces the cutting blade 610 and the cutting blade 610 collides with the UD tape 530, as shown in FIG. 7B, both ends and both end portions of the UD tape 530 are shown.
  • a total of three cutting portions 532 are formed in the width direction of the UD tape 530 at one position having a predetermined distance in the width direction. Further, when the pedestal portion 620 is arranged at a position where the blade receiving portion 622c faces the cutting blade 610 and the cutting blade 610 collides with the UD tape 530, as shown in FIG. 7C, the width from both ends of the UD tape 530 is increased. Two cut portions 532 having a predetermined distance in the direction are formed in the width direction of the UD tape 530. At these cut portions 532, the reinforcing fibers 220 forming the UD tape are also partially cut. ..
  • the UD tape 530 shown in FIGS. 7A to 7C is cut so that the UD tape 530 is partially cut in the width direction and penetrates the UD tape 530 in the thickness direction at each cutting portion 532.
  • the interval between the cut portions 532 in the length direction of the UD tape 530 can be changed by changing the timing (cycle) at which the cutting blade 610 collides with the UD tape 530. Further, at this time, by changing the position of the pedestal portion 620 in the width direction of the UD tape 530 (direction CC in FIG. 6A), the position of the cutting portion 532 in the width direction of the UD tape 530 is formed. You can change it.
  • the position of the pedestal portion 620 (the position in the moving direction of the UD tape 530, and the position in the width direction of the UD tape 530) and the timing at which the cutting blade 610 collide are constant while the pipe 100 is being manufactured, and the same shape is maintained.
  • the cut portions 532 may be formed at the same position (position in the width direction of the UD tape 530) at the same cycle.
  • the position of the pedestal portion 620 or the timing at which the cutting blade 610 collides may be changed during the production of the pipe 100 to change the shape, position, or cycle of the cutting portion 532 formed on the UD tape 530. ..
  • FIG. 8 is a schematic diagram showing the configuration of another example of the cutting section 800 in the present embodiment, and FIGS. 9A and 9B show the UD tape 530 partially cut by the cutting section 800 shown in FIG. It is a schematic diagram.
  • the white arrow in FIG. 8 indicates the moving direction of the UD tape 530.
  • the cutting section 800 has two cutting blades 810a and 810b and a pedestal section 820, which are arranged at opposite positions with the moving UD tape 530 interposed therebetween.
  • Each of the cutting blades 810a and 810b is movable in the vertical direction (direction AA in FIG. 8) with respect to the moving UD tape 530, moves toward the UD tape 530, and collides with the UD tape 530. At this time, the UD tape 530 is pressed against the pedestal portion 820 to cut the UD tape 530, and the reinforcing fibers 220 included in the UD tape 530 are cut.
  • the cutting blade 810a has a cutout portion 812 in a part of the blade that faces the pedestal portion 820 and collides with the UD tape 530.
  • the cutting blade 810b is arranged so as to form a predetermined angle with respect to the width direction of the UD tape 530, and has a bent portion in which the predetermined angle changes.
  • the cutting blades 810a and 810b can change the position in the moving direction of the UD tape 530 (direction BB in FIG. 8), and by changing the position, the cutting blades 810a and 810b can be connected to the pedestal portion 820. The cutting blades facing each other can be switched.
  • the pedestal portion 820 may change the position of the UD tape 530 in the moving direction (direction BB in FIG. 6).
  • a plurality of pedestals 820 may be arranged at positions facing the cutting blades 810a and 810b.
  • the cutting blade 810a or the cutting blade 810b collides with the UD tape 530 and presses the UD tape 530 against the pedestal portion 820, only the region of the cutting blade 810a or the cutting blade 810b where the cutout portion 812 is not formed.
  • the UD tape 530 is partially cut by pressing between the cutting blade 810a and the pedestal portion 820.
  • the cutting blade 810b when the cutting blade 810b is arranged at a position where the cutting blade 810b faces the pedestal portion 820 and the cutting blade 810b collides with the UD tape 530, the cutting blade 810b faces the pedestal portion 820 (the pedestal portion 820 Since the UD tape 530 is cut only in the portion where it collides with each other, as shown in FIG. 9B, four cut portions 532 having a predetermined distance in the width direction from both ends of the UD tape 530 have the width of the UD tape 530.
  • the four cut portions 532 are composed of a combination of cut portions 532a and 532b having different inclination angles.
  • the cutting portion 532 formed in the UD tape 530 in the width direction is also possible to change the position.
  • the UD tape 530 shown in FIGS. 9A and 9B is cut so that the UD tape 530 is partially cut in the width direction and penetrates the UD tape 530 in the thickness direction at the cut portions 532, 532a, and 532b, respectively. Has been done.
  • the interval between the cut portions 532 in the length direction of the UD tape 530 can be changed by changing the timing (cycle) at which the cutting blade 810a or 810b collides with the UD tape 530. Further, at this time, the width of the UD tape 530 where the cutting portion 532 is formed by changing the position of the cutting blade 810a or 810b in the width direction (direction CC in FIG. 8) of the UD tape 530. The position of the direction can also be changed.
  • the position of the cutting blade 810a or 810b (the position in the moving direction of the UD tape 530, and the position in the width direction of the UD tape 530) and the timing at which the cutting blade 810a or 810b collide with each other are constant during the production of the pipe 100.
  • the cut portions 532 having the same shape may be formed at the same position (position in the width direction of the UD tape 530) at the same cycle.
  • the position of the cutting blade 810a or 810b or the timing at which the cutting blade 810a or 810b collides is changed during the production of the pipe 100 to change the shape, position or cycle of the cutting portion 532 formed on the UD tape 530. You may.
  • the cutting portion 523 (the cutting portion 600, the cutting portion 800) is formed in the width direction partially or in the thickness direction so that the UD tape 530 is not completely cut. It may be partially cut in the direction.
  • the respective cutting blades 610, 810a and 810b may be moved so as not to reach the lower end of the UD tape 530 in the thickness direction. This may form a groove-shaped cut portion having a predetermined depth that does not completely penetrate the UD tape 530 in the thickness direction. Even with such a cut portion that does not completely penetrate the UD tape 530, the reinforcing fibers 220 forming the UD tape 530 can be partially cut.
  • the configuration of the cutting unit 523 is not limited to the configurations shown in FIGS. 6 and 8, and various configurations other than these can be adopted.
  • FIG. 10 is a flowchart showing typical steps of a method for manufacturing the pipe 100 using the device 500.
  • the guide roller 522 rotates, and the UD tape 530 is unwound from the accommodating portion 521 and moved toward the surface of the mandrel 510 (step S110).
  • the moving UD tape 530 passes through the cutting section 523.
  • the cutting unit 523 having the above-described configuration repeatedly causes the cutting blade to collide with the moving UD tape 530 to partially cut the UD tape at a plurality of positions on the UD tape 530 (step S120).
  • the cutting unit 523 also at least partially cuts the reinforcing fibers 220 that form the UD tape 530.
  • the partially cut UD tape 530 is further moved and supplied (reached) to the surface of the mandrel 510 (step S130).
  • the supplied UD tape 530 is pressed down on the surface of the mandrel 510 by the pressing roller 525, and the laser is irradiated from the laser irradiation unit 524. As a result, the resin composition constituting the UD tape 530 is dissolved and fused with the resin composition constituting the already fused UD tape (step S140).
  • the mandrel 510 is rotated, and the fusing unit 520 is moved along the guide portion 526 in the axial direction of the mandrel 510. Therefore, the supplied UD tape 530 is fused so as to be wound in an oblique direction along the surface of the mandrel 510.
  • the moving fusing unit 520 reaches the end of the mandrel 510 (the end of the pipe 100 to be manufactured)
  • the UD tape 530 is fused while moving the fusing unit 520 in the opposite direction. Fill the gap between 530.
  • the UD tape 530 is fused on the surface of the mandrel 510, whereby the reinforcing fibers 220 are formed. It is possible to obtain the pipe 100 having a plurality of fiber layers whose orientation directions are different from each other.
  • the partially cut UD tape 530 is fused on the surface of the mandrel 510, and finally, the pipe 100 made from the mandrel 510 is pulled out to obtain a predetermined length and The pipe 100 having a sufficient thickness can be obtained.
  • the wall surface includes the matrix resin 210 derived from the resin composition forming the UD tape 530, and the unidirectionally oriented reinforcing fibers 220, and the reinforcing fibers 220. Has a cut portion 225 that is partially cut (see FIG. 2 ).
  • the pipe 100 may then be bent (see FIGS. 4A and 4B). At this time, first, the pipe 100 is elongated in the lengthwise direction (FIG. 4A), and then, it is bent while being elongated (FIG. 4B). At this time, in the pipe 100, since the reinforcing fibers 220 are partially cut, breakage and buckling of the reinforcing fibers 220 due to extension and bending are unlikely to occur. Therefore, in the bent pipe 100, the decrease in strength at the bent portion is suppressed.
  • the strength of the pipe 100 at the bent portion is less likely to decrease due to the bending process.
  • FIG. 11 is a schematic perspective view showing a pipe 1100 according to the second embodiment.
  • the pipe 1100 is preliminarily determined as a processed portion 1110 that is bent and becomes a bent portion.
  • FIG. 12A shows one fiber layer 1140 in the processed portion 1110, and shows the pipe 1100 when the pipe 1100 is cut in the direction along the wall surface of the pipe 1100 (the same direction as the one-dot chain line 3A-3A direction shown in FIG. 2).
  • 12B is a schematic cross-sectional view of the wall surface of the pipe 1100 when the pipe 1100 is cut in the same manner as in FIG. 12A, showing the same fiber layer 1140 in the unprocessed portion 1120 that does not become a bent portion. It is a figure.
  • the processed portion 1110 is a cut and gathered portion in which cut portions 225 in which the reinforcing fibers 220 are partially cut are gathered more densely.
  • the non-processed portion 1120 is a cut non-collecting portion in which the cut portions 225 in which the reinforcing fibers 220 are partially cut are gathered more sparsely.
  • the number of cut portions 225 existing per unit area of the fiber layer 1140 is larger than that in the non-processed portion 1120.
  • the cut portion 225 suppresses breakage and buckling of the reinforcing fiber 220 in the bent portion formed by bending work, and suppresses the reduction in the strength of the pipe 1100 in the bent portion. Therefore, the cut portions 225 are more densely gathered in the processed portion 1110 which becomes the bent portion by the bending work, so that the reduction in the strength of the pipe 1100 due to the suppression of the breakage and the buckling can be more significantly suppressed.
  • by gathering the cut portions 225 more sparsely in the non-processed portion 1120 that does not become the bent portion it is possible to maintain the high strength of the pipe 1100 expressed by the reinforcing fibers 220 in the portion.
  • the pipe 1100 according to this embodiment can be manufactured similarly to the first embodiment.
  • the cutting portion 523 is operated to partially cut the UD tape. While fusion-bonding (see FIG. 13A) and fusion-bonding the UD tape 530 to the non-processed portion 1120, the cutting portion 523 may not be operated and the UD tape may be fusion-bonded without partially cutting (FIG. 13A). 13B).
  • the plurality of bent points may be produced by fusing partially cut UD tapes.
  • the number of cut portions 225 in the non-processed portion 1120 may be smaller than that in the processed portion 1110, and the cut portions 225 may not exist at all as long as this is the case.
  • the UD tape is fused to the surface of the mandrel to fabricate the pipe while partially cutting the UD tape by the cutting unit.
  • a pipe may be prepared by preparing in advance and fusing the UD tape to the surface of the mandrel.
  • the density (number per unit area) of the cut portions in which the reinforcing fibers are cut is changed for different portions in the length direction of the pipe.
  • the density (the number per unit area) of the cut portions where the reinforcing fibers are cut may be changed between the outside and inside.
  • the cut portions of the reinforcing fibers or the cut portions of the UD tape may be arranged evenly distributed on the pipe or the UD tape for producing the pipe, or may be arranged unevenly. ..
  • the UD tape is fused to the surface of the mandrel by the laser, but the uncured thermosetting resin is supplied to the surface of the rotating mandrel with the tape impregnated with the reinforcing fibers.
  • the thermosetting resin may be cured by heat treatment afterwards.
  • a pipe having a constant diameter was manufactured using a mandrel having a constant diameter. You may manufacture the pipe whose diameter changes.
  • pipes made of fiber reinforced resin and having various bent shapes are provided.
  • the present invention is expected to extend the applicability of lighter weight and higher strength pipes and contribute to further development in both the fields of using fiber reinforced resins and pipes.

Abstract

The present invention has a fiber layer in which a plurality of reinforcing fibers aligned in one direction are arranged, and a matrix resin for accommodating the reinforcing fibers, the reinforcing fibers being at least partially cut. Provided is a cylindrical body. The cylindrical body can be manufactured by a method for manufacturing a cylindrical body, the method having a step for supplying a fiber-reinforced resin tape, in which reinforcing fibers aligned in one direction are impregnated with a matrix resin, to the surface of a rotating mandrel, and a step for melting the fiber-reinforced resin tape on the periphery of the mandrel, the reinforcing fibers being at least partially cut in the melted fiber-reinforced resin tape.

Description

筒状体、筒状体の製造方法および筒状体の製造装置Cylindrical body, cylindrical body manufacturing method, and cylindrical body manufacturing apparatus
 本発明は、筒状体、筒状体の製造方法および筒状体の製造装置に関する。 The present invention relates to a tubular body, a tubular body manufacturing method, and a tubular body manufacturing apparatus.
 炭素繊維などの強化繊維に樹脂を含浸させてなるテープ状の繊維強化樹脂を、レーザーを照射しながら他の成形体の表面に供給して、上記テープ状の繊維強化樹脂を融着させて貼り付けていく技術が知られている(たとえば、特許文献1)。上記技術により得られる融着体は、繊維強化樹脂による高い強度などを有することから、各種用途への応用が期待される。また、この技術により、上記テープ状の繊維強化樹脂をマンドレルの周囲に巻き付けながら融着させると、筒状の成形体を作製することができる。 A tape-shaped fiber-reinforced resin obtained by impregnating a reinforcing fiber such as carbon fiber with a resin is supplied to the surface of another molded article while irradiating a laser, and the tape-shaped fiber-reinforced resin is fused and attached. A technique of attaching is known (for example, Patent Document 1). The fused body obtained by the above technique has high strength due to the fiber reinforced resin, and thus is expected to be applied to various uses. Further, according to this technique, when the tape-shaped fiber-reinforced resin is wrapped around the mandrel and fused, a tubular molded body can be produced.
 ところで、筒状の成形体を各種配管などとして使用する際には、配管により接続される部材間の向きに合わせて配管を屈折させたり、あるいは配管を配置する空間の形状にあわせて配管を屈折させたりすることがある(たとえば、特許文献2など)。 By the way, when using a tubular molded body as various pipes, bend the pipes according to the direction between the members connected by the pipes, or bend the pipes according to the shape of the space where the pipes are arranged. In some cases (eg, Patent Document 2).
 なお、特許文献3では、強化繊維に樹脂を含浸させたテープを円錐台状のマンドレルの周囲に貼り付けていく際に、テープに切れ込みを入れて当該切れ込みを三角形状に広がらせて、当該テープを上記マンドレルの周囲に巻き付けやすくしている。 In Patent Document 3, when a tape obtained by impregnating a reinforcing fiber with a resin is attached around a frusto-conical mandrel, a cut is made in the tape to spread the cut into a triangular shape, and the tape is cut. Is easily wrapped around the mandrel.
国際公開第2010/031364号International Publication No. 2010/031364 英国特許出願広告第1126421号明細書British Patent Application Advertisement No. 1126421 米国特許第3095156号明細書U.S. Pat. No. 3,095,156
 筒状体に屈曲加工を施すとき、屈曲部の外側には筒状体を伸長させる方向に応力が働き、屈曲部の内側には筒状体を圧縮する方向に応力が働く。そして、本発明者らの知見によると、繊維強化樹脂により形成された筒状体に屈折加工を施すと、強化繊維は、引張に対する強度が比較的強いため外側では破断しにくいものの、屈曲部の内側においては強化繊維が圧縮による応力で座屈しやすい。上記強化繊維の座屈が生じると、屈折部で所望の強度が得られなくなってしまう。 When a bending process is performed on a tubular body, stress acts on the outside of the bend portion in the direction of extending the tubular body, and stress acts on the inside of the bend portion in the direction of compressing the tubular body. Then, according to the knowledge of the present inventors, when the tubular body formed of the fiber reinforced resin is subjected to a refraction process, the reinforcing fibers are hard to break on the outside because the strength against tensile strength is relatively strong, but On the inside, the reinforcing fibers tend to buckle under the stress of compression. If buckling of the reinforcing fiber occurs, desired strength cannot be obtained in the bending portion.
 上記問題に鑑み、本発明は、屈折などの加工を施したときにも屈折部での強度の低下が生じにくい筒状体、当該筒状体の製造方法、および当該筒状体を製造する装置を提供することを、目的とする。 In view of the above problems, the present invention provides a tubular body in which the strength of the refraction portion is less likely to decrease even when subjected to processing such as refraction, a method for producing the tubular body, and an apparatus for producing the tubular body. The purpose is to provide.
 上記の課題を解決するための本発明の筒状体は、一方向に配向された複数の強化繊維が配列された繊維層と、前記強化繊維を収容するマトリクス樹脂と、を有する。前記筒状体において、前記強化繊維は、少なくとも部分的に切断されている。 The tubular body of the present invention for solving the above-mentioned problems includes a fiber layer in which a plurality of unidirectionally oriented reinforcing fibers are arranged, and a matrix resin containing the reinforcing fibers. In the tubular body, the reinforcing fibers are at least partially cut.
 また、上記の課題を解決するための本発明の筒状体の製造方法は、一方向に配向された強化繊維にマトリクス樹脂が含浸されてなる繊維強化樹脂テープを、回転するマンドレルの表面に供給する工程と、前記マンドレルの周囲に前記繊維強化樹脂テープを融着させる工程と、を有する。前記筒状体の製造方法において、前記融着される繊維強化樹脂テープは、前記強化繊維が少なくとも部分的に切断されている。 Further, the method for manufacturing a tubular body of the present invention for solving the above-mentioned problems, a fiber reinforced resin tape obtained by impregnating a reinforced fiber oriented in one direction with a matrix resin is supplied to the surface of a rotating mandrel. And a step of fusing the fiber-reinforced resin tape around the mandrel. In the method for producing a tubular body, the fiber-reinforced resin tape to be fused is cut at least partially with the reinforcing fibers.
 上記の課題を解決するための本発明の筒状体の製造装置は、回転するマンドレルと、一方向に配向された強化繊維にマトリクス樹脂が含浸されてなる繊維強化樹脂テープを、前記マンドレルに供給する供給部と、前記供給された繊維強化樹脂テープを前記マンドレルの周囲に融着させる融着部と、を有する。前記筒状体の製造装置において、前記供給部は、前記強化繊維が少なくとも部分的に切断されている繊維強化樹脂テープを供給する。 The apparatus for manufacturing a tubular body of the present invention for solving the above-mentioned problems, a mandrel that rotates, and a fiber-reinforced resin tape obtained by impregnating a matrix resin into reinforcing fibers that are oriented in one direction is supplied to the mandrel. And a fusing part for fusing the fed fiber reinforced resin tape around the mandrel. In the tubular body manufacturing apparatus, the supply unit supplies a fiber-reinforced resin tape in which the reinforcing fibers are at least partially cut.
 本発明によれば、屈折などの加工を施したときにも屈折部での強度の低下が生じにくい筒状体、当該筒状体の製造方法、および当該筒状体を製造する装置が提供される。 According to the present invention, there is provided a tubular body in which a decrease in strength at the refraction portion does not easily occur even when processing such as refraction, a method for producing the tubular body, and an apparatus for producing the tubular body. It
図1は、第1の実施形態に関するパイプを示す模式的な斜視図である。FIG. 1 is a schematic perspective view showing a pipe according to the first embodiment. 図2は、図1に示す一点鎖線2-2で一部の壁面を切断したときの、パイプの壁面の模式断面図である。FIG. 2 is a schematic cross-sectional view of the wall surface of the pipe when a part of the wall surface is cut along the alternate long and short dash line 2-2 shown in FIG. 図3Aは、図2に示す一点鎖線3A-3Aで繊維層を切断したときの、パイプの壁面の模式断面図であり、図3Bは、図2に示す一点鎖線3B-3Bで繊維層を切断したときの、パイプの壁面の模式断面図であり、図3Cは、図2に示す一点鎖線3C-3Cで繊維層を切断したときの、パイプの壁面の模式断面図である。3A is a schematic cross-sectional view of the wall surface of the pipe when the fiber layer is cut along the chain line 3A-3A shown in FIG. 2, and FIG. 3B is cut along the chain line 3B-3B shown in FIG. FIG. 3C is a schematic cross-sectional view of the wall surface of the pipe at the time, and FIG. 3C is a schematic cross-sectional view of the wall surface of the pipe when the fiber layer is cut along the alternate long and short dash line 3C-3C shown in FIG. 図4Aは、パイプを屈曲加工するときにパイプに長さ方向に張力を印加される様子を示す模式図であり、図4Bは、その後、パイプが張力を印加されたまま屈曲させられる様子を示す模式図である。FIG. 4A is a schematic diagram showing a state in which tension is applied to the pipe in the lengthwise direction when bending the pipe, and FIG. 4B shows a state in which the pipe is then bent while the tension is being applied. It is a schematic diagram. 図5は、第1の実施形態に関するパイプを製造する装置の代表的な構成を示す模式図である。FIG. 5: is a schematic diagram which shows the typical structure of the apparatus which manufactures the pipe concerning 1st Embodiment. 図6は、第1の実施形態における切断部の一例の構成を示す模式図である。FIG. 6 is a schematic diagram illustrating the configuration of an example of the cutting unit according to the first embodiment. 図7A、図7Bおよび図7Cは、図6に示す切断部により部分的に切断されたUDテープを示す模式図である。7A, 7B, and 7C are schematic views showing the UD tape partially cut by the cutting portion shown in FIG. 図8は、第1の実施形態における切断部の別の例の構成を示す模式図である。FIG. 8 is a schematic diagram showing the configuration of another example of the cutting unit according to the first embodiment. 図9Aおよび図9Bは、図8に示す切断部により部分的に切断されたUDテープを示す模式図である。9A and 9B are schematic diagrams showing the UD tape partially cut by the cutting portion shown in FIG. 8. 図10は、第1の実施形態に関する装置を用いてパイプを製造する方法の代表的な工程を示すフローチャートである。FIG. 10 is a flowchart showing representative steps of a method for manufacturing a pipe using the apparatus according to the first embodiment. 図11は、第2の実施形態に関するパイプを示す模式的な斜視図である。FIG. 11 is a schematic perspective view showing a pipe according to the second embodiment. 図12Aは、加工部位における1つの繊維層を示す、パイプの壁面に沿った方向でパイプ切断したときの、パイプの壁面の模式断面図であり、図12Bは、非加工部位における図11Aと同じ繊維層を示す、図12Aと同様にパイプを切断したときの、パイプの壁面の模式断面図である。12A is a schematic cross-sectional view of the wall surface of the pipe when the pipe is cut in a direction along the wall surface of the pipe, showing one fiber layer in the processed portion, and FIG. 12B is the same as FIG. 11A in the non-processed portion. It is a schematic cross section of the wall surface of a pipe when a pipe is cut like FIG. 12A which shows a fiber layer. 図13Aおよび図13Bは、本実施形態に関するパイプを製造するときのパイプを製造する装置の動作を示す模式図である。13A and 13B are schematic views showing the operation of the pipe manufacturing apparatus when manufacturing the pipe according to the present embodiment.
 以下、複数の実施形態を用いて、本発明の筒状体、筒状体の製造方法および筒状体の製造装置を説明する。 Hereinafter, the tubular body, the tubular body manufacturing method, and the tubular body manufacturing apparatus of the present invention will be described using a plurality of embodiments.
 [第1の実施形態]
 (パイプ)
 図1は、第1の実施形態に関するパイプ100を示す模式的な斜視図である。パイプ100は、長さ方向に沿って、一定の径を有する。
[First Embodiment]
(pipe)
FIG. 1 is a schematic perspective view showing a pipe 100 according to the first embodiment. The pipe 100 has a constant diameter along the length direction.
 パイプ100は、一方向に配向された複数の強化繊維にマトリクス樹脂が含浸されてなる繊維強化樹脂テープ(Uni-Directionテープ:UDテープ)をマンドレルの周囲に単層または複数層に巻き付けながら融着させていく方法で、作製され得る。そのため、パイプ100の壁面中には、上記一方向に配向された強化繊維が配列されている。 The pipe 100 is composed of a plurality of unidirectionally oriented reinforcing fibers impregnated with a matrix resin, and a fiber reinforced resin tape (Uni-Direction tape: UD tape) is wrapped around the mandrel in a single layer or a plurality of layers. It can be produced by the method of letting it go. Therefore, the reinforcing fibers oriented in the one direction are arranged in the wall surface of the pipe 100.
 図2および図3は、パイプ100の一部の壁面110の、内部の様子を示す模式図である。図2は、図1に示す一点鎖線2-2で一部の壁面110を厚さ方向に切断したときの、パイプ100の壁面の模式断面図である。図2に示すように、パイプ100の壁面は、いずれもUDテープ530に由来する、マトリクス樹脂210と強化繊維220とを有する。マトリクス樹脂210は、上記融着により異なるUDテープ間で一体化され、パイプ100の壁面の全体にわたって一体的に延在している。 2 and 3 are schematic diagrams showing the inside of the wall surface 110 of a part of the pipe 100. FIG. 2 is a schematic cross-sectional view of the wall surface of the pipe 100 when a part of the wall surface 110 is cut in the thickness direction along the alternate long and short dash line 2-2 shown in FIG. As shown in FIG. 2, the wall surface of the pipe 100 has a matrix resin 210 and a reinforcing fiber 220, both of which are derived from the UD tape 530. The matrix resin 210 is integrated between different UD tapes by the above-mentioned fusion bonding and integrally extends over the entire wall surface of the pipe 100.
 強化繊維220は、それぞれのUDテープに由来する繊維ごとに集合した集合体230を形成している。そして、壁面110の厚さ方向への所定の位置(深さ)において、それぞれの集合体230は、パイプ100の表面および内面と平行な方向に(本実施形態では、同軸の円周状に)配列されて、繊維層240a、240bおよび240cのそれぞれを構成している。そして、それぞれの繊維層240a、240bおよび240cは、強化繊維220の配向方向によって区別され得る。なお、図2では集合体230が3つの繊維層を形成しているが、層の数はこれに限定されず、1層のみであってもよいし、3層以外の数の複数層であってもよい。また、層の数は、位置によって異なっていてもよい。 The reinforcing fibers 220 form an aggregate 230 in which the fibers derived from each UD tape are aggregated. Then, at a predetermined position (depth) in the thickness direction of the wall surface 110, each aggregate 230 is in a direction parallel to the surface and the inner surface of the pipe 100 (in the present embodiment, in a coaxial circumferential shape). The fibers are arranged to form each of the fiber layers 240a, 240b, and 240c. Then, the respective fiber layers 240a, 240b and 240c can be distinguished by the orientation direction of the reinforcing fibers 220. Note that, in FIG. 2, the aggregate 230 forms three fiber layers, but the number of layers is not limited to this, and may be only one layer or a plurality of layers other than three layers. May be. Also, the number of layers may vary depending on the location.
 図3Aは、繊維層240aを、パイプ100の壁面に沿った方向(図2に示す一点鎖線3A-3A方向)で切断したときの、パイプ100の壁面の模式断面図である。図3Aに示すように、繊維層240aは、いずれもUDテープに由来する、マトリクス樹脂210と強化繊維220とにより構成されており、強化繊維220は、それぞれのUDテープに由来する繊維ごとに集合した集合体230を形成している。複数の集合体230を構成するそれぞれの強化繊維220は、繊維層240a内において同じ一方向に配向している。 FIG. 3A is a schematic cross-sectional view of the wall surface of the pipe 100 when the fiber layer 240 a is cut in the direction along the wall surface of the pipe 100 (the direction indicated by alternate long and short dash lines 3A-3A in FIG. 2). As shown in FIG. 3A, the fiber layer 240a is composed of a matrix resin 210 and a reinforcing fiber 220, both of which are derived from a UD tape, and the reinforcing fiber 220 is collected for each fiber derived from each of the UD tapes. The aggregate 230 is formed. Reinforcing fibers 220 forming the plurality of aggregates 230 are oriented in the same one direction within the fiber layer 240a.
 そして、繊維層240aは、強化繊維220が少なくとも部分的に切断されたカット部225を有する。カット部225では、複数本の強化繊維220が集合的に切断されている。カット部225を介して対向して配置されている、1本の強化繊維220が切断されてなる2本の強化繊維220のそれぞれは、カット部225で延在する方向を変化させられることなく、同一直線上に配置されている。また、切断された強化繊維220のカット部225を挟んで対向する切断面(端部)同士は、互いに平行な直線状である。切断された強化繊維220をこのような配置とすることで、カット部225に広い隙間が形成されることによる、パイプ100の強度の低下を抑制することができる。 The fiber layer 240a has a cut portion 225 in which the reinforcing fiber 220 is at least partially cut. In the cut portion 225, the plurality of reinforcing fibers 220 are collectively cut. Each of the two reinforcing fibers 220 formed by cutting one reinforcing fiber 220, which is arranged to face each other via the cut portion 225, does not change the extending direction of the cut portion 225, They are arranged on the same straight line. Further, the cut surfaces (end portions) of the cut reinforced fibers 220 that face each other with the cut portion 225 interposed therebetween are straight lines parallel to each other. By arranging the cut reinforcing fibers 220 in this manner, it is possible to prevent the strength of the pipe 100 from being reduced due to the formation of a wide gap in the cut portion 225.
 図3Bは、繊維層240bを、パイプ100の壁面に沿った方向(図2に示す一点鎖線3B-3B方向)で切断したときの、パイプ100の壁面の模式断面図である。図3Bに示すように、繊維層240bは、いずれもUDテープに由来する、マトリクス樹脂210と強化繊維220とにより構成されており、強化繊維220は、それぞれのUDテープに由来する繊維ごとに集合した集合体230を形成している。複数の集合体230を構成するそれぞれの強化繊維220は、繊維層240bにおいて、繊維層240aにおける配向方向とは異なる一方向に配向している。 FIG. 3B is a schematic cross-sectional view of the wall surface of the pipe 100 when the fiber layer 240b is cut in the direction along the wall surface of the pipe 100 (the direction of the alternate long and short dash line 3B-3B shown in FIG. 2). As shown in FIG. 3B, the fiber layer 240b is composed of a matrix resin 210 and a reinforcing fiber 220, both of which are derived from a UD tape, and the reinforcing fiber 220 is collected for each fiber derived from each of the UD tapes. The aggregate 230 is formed. Each of the reinforcing fibers 220 constituting the plurality of aggregates 230 is oriented in the fiber layer 240b in one direction different from the orientation direction in the fiber layer 240a.
 そして、繊維層240bは、強化繊維220が少なくとも部分的に切断されたカット部225を有する。カット部225では、複数本の強化繊維220が集合的に切断されており、かつ、切断された強化繊維220のカット部225を挟んで対向する切断面(端部)同士は、互いに平行な直線状である。切断された強化繊維220をこのような配置とすることで、カット部225に広い隙間が形成されることによる、パイプ100の強度の低下を抑制することができる。 The fiber layer 240b has a cut portion 225 in which the reinforcing fiber 220 is at least partially cut. In the cut portion 225, a plurality of reinforcing fibers 220 are collectively cut, and the cut surfaces (end portions) of the cut reinforcing fibers 220 that face each other across the cut portion 225 are straight lines parallel to each other. It is a state. By arranging the cut reinforcing fibers 220 in this manner, it is possible to prevent the strength of the pipe 100 from being reduced due to the formation of a wide gap in the cut portion 225.
 図3Cは、繊維層240cを、パイプ100の壁面に沿った方向(図2に示す一点鎖線3C-3C方向)で切断したときの、パイプ100の壁面の模式断面図である。図3Cに示すように、繊維層240cは、いずれもUDテープに由来する、マトリクス樹脂210と強化繊維220とにより構成されており、強化繊維220は、それぞれのUDテープに由来する繊維ごとに集合した集合体230を形成している。複数の集合体230を構成するそれぞれの強化繊維220は、繊維層240cにおいて、繊維層240bにおける配向方向とは異なる一方向に配向している。 FIG. 3C is a schematic cross-sectional view of the wall surface of the pipe 100 when the fiber layer 240c is cut in the direction along the wall surface of the pipe 100 (the direction indicated by alternate long and short dash lines 3C-3C in FIG. 2). As shown in FIG. 3C, the fiber layer 240c is composed of the matrix resin 210 and the reinforcing fiber 220, both of which are derived from the UD tape, and the reinforcing fiber 220 is collected for each fiber derived from each of the UD tapes. The aggregate 230 is formed. Each of the reinforcing fibers 220 constituting the plurality of aggregates 230 is oriented in the fiber layer 240c in one direction different from the orientation direction in the fiber layer 240b.
 そして、繊維層240cは、強化繊維220が少なくとも部分的に切断されたカット部225を有する。カット部225では、複数本の強化繊維220が集合的に切断されており、かつ、切断された強化繊維220のカット部225を挟んで対向する切断面(端部)同士は、互いに平行な直線状である。切断された強化繊維220をこのような配置とすることで、カット部225に広い隙間が形成されることによる、パイプ100の強度の低下を抑制することができる。 The fiber layer 240c has a cut portion 225 in which the reinforcing fiber 220 is at least partially cut. In the cut portion 225, a plurality of reinforcing fibers 220 are collectively cut, and the cut surfaces (end portions) of the cut reinforcing fibers 220 that face each other across the cut portion 225 are straight lines parallel to each other. It is a state. By arranging the cut reinforcing fibers 220 in this manner, it is possible to prevent the strength of the pipe 100 from being reduced due to the formation of a wide gap in the cut portion 225.
 なお、図3A~図3Cでは、強化繊維220が、上下に接する層の間(繊維層240aと繊維層240bとの間、および繊維層240bと繊維層240cとの間)では異なる方向に配向し、かつ上下に接しない繊維層240aと繊維層240cとの間では異なる方向に配向しているが、各層における強化繊維220の配向方向はこれらに限定されない。たとえば、強化繊維220は、別の繊維層においてさらに異なる第三の方向に配向していてもよい。 3A to 3C, the reinforcing fibers 220 are oriented in different directions between the layers that are in contact with each other vertically (between the fiber layers 240a and 240b and between the fiber layers 240b and 240c). Further, the fiber layers 240a and 240c which are not in contact with each other are oriented in different directions, but the orientation direction of the reinforcing fibers 220 in each layer is not limited to these. For example, the reinforcing fibers 220 may be oriented in yet another third direction in another fiber layer.
 また、図3A~図3Cでは、それぞれの繊維層240a、240b、および240cが、いずれも1枚のUDテープにより形成されているが、UDテープを複数回融着させてそれぞれの繊維層を形成してもよい。このとき、それぞれの繊維層は、強化繊維220の集合体230が厚み方向に複数個配置されることになる。 3A to 3C, each of the fiber layers 240a, 240b, and 240c is formed of one UD tape, but the UD tape is fused multiple times to form each fiber layer. You may. At this time, in each fiber layer, a plurality of aggregates 230 of reinforcing fibers 220 are arranged in the thickness direction.
 また、図2および図3では、それぞれのUDテープに由来する強化繊維220の集合体230が明瞭に他の集合体230から区別できるものとしてパイプ100の断面を説明したが、UDテープをより密に配置して融着させたときなどには、それぞれのUDテープに由来する強化繊維220の集合体230が明瞭に区別できる必要はない。あるいは、UDテープをさほど密に配置して融着させなかったときなどは、それぞれのUDテープに由来する強化繊維220の集合体230の間に生じている、マトリクス樹脂210がリッチとなっており強化繊維220の数が少ない(あるいは強化繊維220が存在しない)領域を境目として、それぞれのUDテープに由来する強化繊維220の集合体230を判別してもよい。上記マトリクス樹脂210がリッチとなっている領域は、図2では同じ層で隣接するUDテープ(集合体230)の間、または上下に接する層で隣接するUDテープ(集合体230)の間に、存在し得る。また、上記マトリクス樹脂210がリッチとなっている領域は、図3A~図3Cでは、同じ層で隣接するUDテープ(集合体230)の間に、存在し得る。 2 and 3, the cross section of the pipe 100 is described assuming that the aggregate 230 of the reinforcing fibers 220 derived from each UD tape can be clearly distinguished from the other aggregate 230. It is not necessary that the aggregates 230 of the reinforcing fibers 220 derived from the respective UD tapes can be clearly distinguished when arranged and fused. Alternatively, when the UD tapes are arranged so densely that they are not fused, the matrix resin 210 generated between the aggregates 230 of the reinforcing fibers 220 derived from each UD tape is rich. The aggregate 230 of the reinforcing fibers 220 derived from each UD tape may be discriminated with the region where the number of the reinforcing fibers 220 is small (or the reinforcing fibers 220 do not exist) as a boundary. In the region where the matrix resin 210 is rich, the UD tapes (aggregates 230) adjacent to each other in the same layer in FIG. Can exist Further, the regions where the matrix resin 210 is rich may exist between the UD tapes (aggregates 230) adjacent to each other in the same layer in FIGS. 3A to 3C.
 また、強化繊維220が少なくとも部分的に切断されているとは、それぞれの繊維層240a、240bおよび240cを構成する複数の強化繊維220のうち、1本以上の強化繊維220、好ましくは複数本の強化繊維220が切断されていることを意味する。後述する作用による屈曲部における強度の低下を抑制する観点からは、それぞれのカット部225において、複数本の強化繊維220が集合的に(同じ位置で)切断されていることが好ましい。このとき、集合体230を構成するすべての強化繊維220が集合的に切断されていてもよい。ただし、製造時のUDテープの切断を抑制して、後述する方法によるパイプ100の製造を容易にする観点からは、集合体230を構成する強化繊維220のうち、所定の割合の複数本のみが集合的に切断され、残りの複数本は切断されていないことが好ましい。 Further, the fact that the reinforcing fiber 220 is at least partially cut means that one or more of the reinforcing fibers 220, preferably a plurality of reinforcing fibers 220 among the plurality of reinforcing fibers 220 constituting the respective fiber layers 240a, 240b and 240c. This means that the reinforcing fiber 220 is cut. From the viewpoint of suppressing the decrease in strength at the bent portion due to the action described below, it is preferable that the plurality of reinforcing fibers 220 are collectively cut (at the same position) in each cut portion 225. At this time, all the reinforcing fibers 220 forming the aggregate 230 may be collectively cut. However, from the viewpoint of suppressing the cutting of the UD tape at the time of manufacturing and facilitating the manufacturing of the pipe 100 by the method described below, only a plurality of reinforcing fibers 220 constituting the aggregate 230 at a predetermined ratio are provided. It is preferable that they are collectively cut and the remaining plural pieces are not cut.
 本実施形態における強化繊維220の切断は、強化繊維220の意図的な切断を意味し、UDテープの製造時やパイプ100の製造時における強化繊維の意図せぬ切断は、本実施形態における強化繊維220の切断には含まれない。たとえば、カット部225において、強化繊維220の断面が強化繊維220の長さ方向に直交する平面となるような切断面がそれぞれの強化繊維220に形成されていたり、複数本の強化繊維220が集合的に切断されており、かつ当該複数本の強化繊維の切断面が同一面上に存在したりすることにより、強化繊維220が意図的に切断されたと判断することができる。 The cutting of the reinforcing fiber 220 in the present embodiment means the intentional cutting of the reinforcing fiber 220, and the unintentional cutting of the reinforcing fiber at the time of manufacturing the UD tape or the pipe 100 is the reinforcing fiber in the present embodiment. Not included in cutting 220. For example, in the cut portion 225, a cut surface is formed in each reinforcing fiber 220 such that the cross section of the reinforcing fiber 220 is a plane orthogonal to the longitudinal direction of the reinforcing fiber 220, or a plurality of reinforcing fibers 220 are aggregated. It is possible to determine that the reinforcing fiber 220 has been intentionally cut by the fact that the reinforcing fibers 220 are cut intentionally and the cut surfaces of the plurality of reinforcing fibers are on the same plane.
 なお、それぞれの強化繊維220は、いずれも所定の長さを有し、パイプ100を複数回にわたって巻回し、かつパイプ100の表面に平行な方向に延びるように配置されている。 Each of the reinforcing fibers 220 has a predetermined length, and is arranged so as to wind the pipe 100 a plurality of times and extend in a direction parallel to the surface of the pipe 100.
 図4Aおよび図4Bは、パイプ100を屈曲加工する様子を示す一例の模式図である。屈曲加工時に、パイプ100は、まず長さ方向に張力を印加され(図4A)、その後、張力を印加されたまま屈曲させられる(図4B)。そして、本実施形態に関するパイプ100は、強化繊維220が少なくとも部分的に切断されているため、これらの張力の印加時および屈曲時に強化繊維220に印加された応力が、上記少なくとも部分的に切断されたカット部225で緩和されると考えられる。 4A and 4B are schematic views showing an example of bending the pipe 100. During bending, the pipe 100 is first tensioned in the length direction (FIG. 4A), and then bent while tension is applied (FIG. 4B). Since the reinforcing fiber 220 is at least partially cut in the pipe 100 according to the present embodiment, the stress applied to the reinforcing fiber 220 when applying these tensions and bending is at least partially cut. It is considered that the cut portion 225 relaxes.
 つまり、張力の印加時(図4A)には、それぞれの強化繊維220には引張応力が印加される。また、屈曲時(図4B)には、屈曲部におけるパイプ100の外側120の強化繊維220は引張変形され、かつ屈曲部におけるパイプ100の内側130の強化繊維220は圧縮変形される。これらの引張変形および圧縮変形のための応力は、強化繊維220のうち、特に屈曲時に屈曲加工される位置に配置された部分に集中的に印加される。そして、当該屈曲加工される位置に配置された部分において、上記引張変形は強化繊維220を破断させることがあり、上記圧縮変形は強化繊維220を座屈させたり、皺を生じさせたりることがある。これらの座屈および皺の発生が発生すると、強化繊維220本来の強度が発揮されず、屈曲部におけるパイプ100の強度が低下してしまう。 That is, when a tension is applied (FIG. 4A), a tensile stress is applied to each reinforcing fiber 220. Further, at the time of bending (FIG. 4B), the reinforcing fiber 220 on the outer side 120 of the pipe 100 at the bent portion is tensile-deformed, and the reinforcing fiber 220 on the inner side 130 of the pipe 100 at the bent portion is deformed by compression. The stresses for the tensile deformation and the compressive deformation are concentratedly applied to the portion of the reinforcing fiber 220, which is arranged at a position where the reinforcing fiber 220 is bent, especially during bending. Then, in the portion arranged at the position where the bending process is performed, the tensile deformation may break the reinforcing fiber 220, and the compressive deformation may cause the reinforcing fiber 220 to buckle or cause wrinkles. is there. When these buckling and wrinkling occur, the original strength of the reinforcing fiber 220 is not exhibited, and the strength of the pipe 100 at the bent portion is reduced.
 これに対し、本実施形態では、強化繊維220が少なくとも部分的に切断されている。そのため、切断された強化繊維220間を充填するマトリクス樹脂により上記引張変形のための応力が緩和されるため、強化繊維220の破断は生じにくい。あるいは、切断された強化繊維220同士が互いに離れあうように移動できるので、上記引張変形による強化繊維220の破断は生じにくい。 On the other hand, in this embodiment, the reinforcing fiber 220 is at least partially cut. Therefore, the matrix resin filling the space between the cut reinforcing fibers 220 relieves the stress for the tensile deformation, and thus the reinforcing fibers 220 are less likely to break. Alternatively, since the cut reinforcing fibers 220 can move so as to be separated from each other, breakage of the reinforcing fibers 220 due to the tensile deformation is unlikely to occur.
 また、本実施形態では、切断により強化繊維220の長さは短くなっているので、上記圧縮変形による強化繊維220の座屈も生じにくい。あるいは、切断された強化繊維220同士が互いに重なりあう(互いを通り越す)ように移動できるので、上記圧縮変形による強化繊維220の座屈、皺も生じにくい。 Further, in this embodiment, since the length of the reinforcing fiber 220 is shortened by cutting, buckling of the reinforcing fiber 220 due to the compressive deformation is unlikely to occur. Alternatively, since the cut reinforcing fibers 220 can move so as to overlap with each other (pass each other), buckling and wrinkling of the reinforcing fibers 220 due to the compressive deformation are unlikely to occur.
 これらの作用により、本実施形態に関するパイプ100は、屈曲加工を施した屈曲部における強度の低下が抑制されていると考えられる。 Due to these actions, it is considered that the pipe 100 according to the present embodiment suppresses the decrease in strength at the bent portion that is bent.
 マトリクス樹脂210は、熱可塑性樹脂、熱硬化性樹脂および光硬化性樹脂のいずれであってもよいが、加熱することにより屈曲加工を容易にする観点からは、熱可塑性樹脂が好ましい。 The matrix resin 210 may be any of a thermoplastic resin, a thermosetting resin, and a photocurable resin, but the thermoplastic resin is preferable from the viewpoint of facilitating the bending process by heating.
 上記熱可塑性樹脂の例には、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルファイド樹脂、ポリアセタール樹脂、アクリル系樹脂(ポリメチルメタクリレートなど)、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、ポリエーテルニトリル樹脂、塩化ビニル樹脂、ABS樹脂およびフッ素樹脂などが含まれる。 Examples of the thermoplastic resin include polyolefin resin, polyamide resin, polyester resin, polystyrene resin, polyimide resin, polyamideimide resin, polycarbonate resin, polyphenylene ether resin, polyphenylene sulfide resin, polyacetal resin, acrylic resin (polymethylmethacrylate). Etc.), polyetherimide resin, polysulfone resin, polyethersulfone resin, polyketone resin, polyetherketone resin, polyetheretherketone resin, polyarylate resin, polyethernitrile resin, vinyl chloride resin, ABS resin and fluorine resin, etc. included.
 上記ポリオレフィン樹脂の例には、エチレン系重合体、プロピレン系重合体、ブチレン系重合体および4-メチル-1-ペンテン系重合体及びこれらの重合体の誘導体などが含まれる。なお、エチレン系重合体とは、エチレンの単独重合体又はエチレンと他のモノマーから形成された構成単位を含みエチレンに由来する構成単位の含有率が50質量%以上である共重合体を意味する。プロピレン系重合体、ブチレン系重合体及び4-メチル-1-ペンテン系重合体も同様である。 Examples of the polyolefin resin include ethylene-based polymers, propylene-based polymers, butylene-based polymers, 4-methyl-1-pentene-based polymers, and derivatives of these polymers. The ethylene-based polymer means a homopolymer of ethylene or a copolymer containing a structural unit formed of ethylene and another monomer and having a content of the structural unit derived from ethylene of 50% by mass or more. .. The same applies to propylene-based polymers, butylene-based polymers and 4-methyl-1-pentene-based polymers.
 上記ポリアミド樹脂の例には、脂肪族ポリアミド樹脂(ナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン610およびナイロン612など)、半芳香族ポリアミド樹脂(ナイロン6T、ナイロン6Iおよびナイロン9Tなど)および全芳香族ポリアミド樹脂が含まれる。 Examples of the polyamide resin include aliphatic polyamide resins (nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 612, etc.), semi-aromatic polyamide resins (nylon 6T, nylon 6I, nylon 9T, etc.), and Includes wholly aromatic polyamide resins.
 上記ポリエステル樹脂の例には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートおよびポリエチレンナフタレートなどが含まれる。 Examples of the above polyester resin include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polyethylene naphthalate.
 これらの熱可塑性樹脂の中でも、パイプ100の製造を容易にする観点から、プロピレン系重合体およびその誘導体を含むことが好ましい。 Among these thermoplastic resins, from the viewpoint of facilitating the production of the pipe 100, it is preferable to include a propylene polymer and its derivative.
 上記熱硬化性樹脂の例には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ウレタン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化性ポリイミド樹脂、不飽和ポリエステル樹脂およびジアリルテレフタレート樹脂などが含まれる。 Examples of the thermosetting resin include epoxy resin, phenol resin, melamine resin, urea resin, diallyl phthalate resin, silicone resin, urethane resin, furan resin, ketone resin, xylene resin, thermosetting polyimide resin, unsaturated polyester. Resins and diallyl terephthalate resins are included.
 強化繊維220は、炭素繊維、ガラス繊維、アラミド繊維、炭化珪素繊維、ボロン繊維、金属繊維、金属酸化物繊維(アルミナ繊維など)、モスハイジ(塩基性硫酸マグネシウム無機繊維)、および炭酸カルシウムウィスカーなどのいずれであってもよいが、入手が容易であることから炭素繊維およびガラス繊維が好ましく、軽量かつ強度が高いことから炭素繊維がより好ましい。 The reinforcing fibers 220 include carbon fibers, glass fibers, aramid fibers, silicon carbide fibers, boron fibers, metal fibers, metal oxide fibers (alumina fibers, etc.), mosheige (basic magnesium sulfate inorganic fibers), and calcium carbonate whiskers. Either may be used, but carbon fibers and glass fibers are preferable because they are easily available, and carbon fibers are more preferable because they are lightweight and have high strength.
 (パイプの製造)
 図5は、パイプ100を製造する装置500の代表的な構成を示す模式図である。
(Manufacture of pipes)
FIG. 5 is a schematic diagram showing a typical configuration of an apparatus 500 for manufacturing the pipe 100.
 装置500は、回転するマンドレル510と、UDテープ530をマンドレル510の表面に融着させることによりパイプ100を作製する融着ユニット520と、を有する。なお、装置500は、不図示の制御部が、マンドレル510を回転させ、かつ融着ユニット520の各構成部に下記の動作を行わせる。 The device 500 has a rotating mandrel 510 and a fusing unit 520 that produces the pipe 100 by fusing the UD tape 530 to the surface of the mandrel 510. In the device 500, a control unit (not shown) rotates the mandrel 510 and causes each component of the fusing unit 520 to perform the following operation.
 なお、本明細書において、マンドレル510の表面とは、マンドレル510のUDテープ530と接する表面、および、すでにマンドレル510に巻かれて互いに融着しているUDテープ530の表面、のいずれかを意味する。 In the present specification, the surface of the mandrel 510 means either the surface of the mandrel 510 that is in contact with the UD tape 530 or the surface of the UD tape 530 that has already been wound around the mandrel 510 and fused to each other. To do.
 なお、UDテープ530は、一方向に配向された強化繊維220に樹脂組成物が含浸されてなる、テープ状の形状を有する平面状の成形体である。これらの強化繊維220および樹脂組成物はそれぞれ、上述したパイプ100を構成する強化繊維220およびマトリクス樹脂210と同じ材料とすればよい。 Note that the UD tape 530 is a planar molded body having a tape-like shape, which is obtained by impregnating the reinforcing fibers 220 oriented in one direction with a resin composition. The reinforcing fiber 220 and the resin composition may be made of the same material as the reinforcing fiber 220 and the matrix resin 210 that form the pipe 100, respectively.
 また、以下の説明において、UDテープ530の長さ方向とは、UDテープ530の端辺間の距離が最も長くなる方向である。また、UDテープ530の幅方向とは、長さ方向に直交し、かつUDテープ530の端辺間の距離が長さ方向の次に長くなる方向である。また、UDテープ530の厚み方向とは、長さ方向および幅方向の両方に直交する方向である。UDテープ530は、通常、長さ方向への端辺間の距離が、幅方向への端辺間の距離の、10倍以上長い。また、UDテープ530は、通常、幅方向への端辺間の距離が、厚み方向への端辺間の距離(厚さ)の、10倍以上長い。 Further, in the following description, the length direction of the UD tape 530 is the direction in which the distance between the end sides of the UD tape 530 is the longest. The width direction of the UD tape 530 is a direction orthogonal to the length direction, and the distance between the end sides of the UD tape 530 becomes the second longest in the length direction. The thickness direction of the UD tape 530 is a direction orthogonal to both the length direction and the width direction. In the UD tape 530, the distance between the edges in the length direction is usually 10 times or more longer than the distance between the edges in the width direction. In addition, the distance between the edges in the width direction of the UD tape 530 is usually 10 times or more longer than the distance (the thickness) between the edges in the thickness direction.
 マンドレル510は、それぞれ支持体502aおよび502bに保持された回転支持部504aおよび504bに両端を支持され、回転支持部504aおよび504bの回転により回転される。 Both ends of the mandrel 510 are supported by rotation supporting portions 504a and 504b held by the supports 502a and 502b, respectively, and are rotated by the rotation of the rotation supporting portions 504a and 504b.
 融着ユニット520は、ロール状に巻回されたUDテープ530を繰り出し可能に収容する収容部521、収容部521から繰り出されたUDテープ530を支持しつつマンドレル510へと導くガイドローラー522、収容部521から繰り出されてマンドレル510へと導かれる途中でUDテープ530を部分的に切断する切断部523、マンドレル510に供給されたUDテープ530にレーザー発振源524aから発振されたレーザーを照射する対物レンズユニットであるレーザー照射部524、およびマンドレル510に供給されたUDテープ530をマンドレル510の表面に向けて圧下する圧下ローラー525を有する。 The fusing unit 520 includes an accommodating portion 521 for accommodating the UD tape 530 wound into a roll so that the UD tape 530 can be extended, a guide roller 522 that guides the UD tape 530 delivered from the accommodating portion 521 to the mandrel 510, and an accommodating portion. A cutting unit 523 that partially cuts the UD tape 530 while being fed from the unit 521 and guided to the mandrel 510, and an objective that irradiates the UD tape 530 supplied to the mandrel 510 with a laser emitted from a laser oscillation source 524a. It has a laser irradiation unit 524 which is a lens unit, and a pressing roller 525 for pressing the UD tape 530 supplied to the mandrel 510 toward the surface of the mandrel 510.
 収容部521は、ロール状に巻回されたUDテープ530を収容し、かつ、パイプ100の作製時にはUDテープ530を繰り出す。UDテープ530の繰り出し速度(UDテープ530の移動速度)は、レーザーの照射によりUDテープ530に十分に融着させることができる速度であればよく、たとえば、10m/分以上100m/分以下の範囲から選択することができ、30m/分以上90m/分以下の範囲から選択されることが好ましい。 The accommodating portion 521 accommodates the UD tape 530 wound in a roll shape, and unwinds the UD tape 530 when the pipe 100 is manufactured. The payout speed of the UD tape 530 (moving speed of the UD tape 530) may be any speed that allows the UD tape 530 to be sufficiently fused to the UD tape 530 by laser irradiation, for example, in the range of 10 m/min to 100 m/min. It is possible to select from, and it is preferable to select from the range of 30 m/min to 90 m/min.
 ガイドローラー522は、収容部521とマンドレル510とを繋ぐUDテープ530の移動経路に接して配置され、上記移動経路を移動するUDテープ530を張力がかかった状態で支持しつつマンドレル510の表面へと導く。ガイドローラー522は、このようにして、UDテープをマンドレルの表面に供給する供給部として動作する。また、図5には一つのガイドローラー522のみが示されているが、融着ユニット520は複数のガイドローラーを有していてもよい。 The guide roller 522 is disposed in contact with the movement path of the UD tape 530 that connects the housing 521 and the mandrel 510, and supports the UD tape 530 that moves along the movement path while applying tension to the surface of the mandrel 510. And lead. The guide roller 522 thus operates as a supply unit for supplying the UD tape to the surface of the mandrel. Although only one guide roller 522 is shown in FIG. 5, the fusing unit 520 may have a plurality of guide rollers.
 切断部523は、収容部521とマンドレル510とを繋ぐUDテープ530の移動経路上に配置され、上記移動するUDテープ530を、選択的かつ部分的に切断する。これにより、UDテープ530に含まれる強化繊維220も、部分的に切断される。切断部523については、後述する。 The cutting unit 523 is arranged on the moving path of the UD tape 530 that connects the housing unit 521 and the mandrel 510, and selectively and partially cuts the moving UD tape 530. As a result, the reinforcing fibers 220 included in the UD tape 530 are also partially cut. The cutting unit 523 will be described later.
 レーザー照射部524は、融着ユニット520の外部に配置されたレーザー発振源524aと光ファイバーなどにより光通信可能に接続され、レーザー発振源524aが発振したレーザーを、対物レンズにより収束させながら出射する。具体的には、レーザー照射部524は、移動するUDテープ530とマンドレル510の表面とが接触する直前、または接触するときに、UDテープ530およびマンドレル510の表面の少なくとも一方にレーザーが照射されるように、上記レーザーを出射する。より具体的には、レーザー照射部524は、少なくともマンドレル510の表面に接触したUDテープ530が圧下ローラー525により圧下される際に、レーザーの照射によって付与される熱によりUDテープ530が溶融しているように、レーザーを出射する。 The laser irradiation unit 524 is connected to a laser oscillation source 524a arranged outside the fusion unit 520 via an optical fiber or the like so as to be capable of optical communication, and emits a laser oscillated by the laser oscillation source 524a while converging it with an objective lens. Specifically, the laser irradiation unit 524 irradiates at least one of the surfaces of the UD tape 530 and the mandrel 510 with a laser immediately before or when the moving UD tape 530 and the surface of the mandrel 510 contact each other. Thus, the laser is emitted. More specifically, the laser irradiation unit 524 melts the UD tape 530 by heat applied by laser irradiation when the UD tape 530 that is in contact with at least the surface of the mandrel 510 is pressed by the pressing roller 525. The laser is emitted as if
 レーザー発振源524aの種類は特に限定されず、ルビーレーザー、YAGレーザー、Nd:YAGレーザー、およびダイオード-励起固体レーザーを含む固体レーザー、色素レーザーを含む液体レーザー、COレーザーを含むガスレーザー、ならびに半導体レーザーなどから適宜選択することができる。 The type of the laser oscillation source 524a is not particularly limited, and a solid laser including a ruby laser, a YAG laser, an Nd:YAG laser, and a diode-pumped solid state laser, a liquid laser including a dye laser, a gas laser including a CO 2 laser, and It can be appropriately selected from semiconductor lasers and the like.
 上記レーザーは、UDテープ530を構成する樹脂組成物(マトリクス樹脂210となる樹脂組成物)を溶融させ、一方では上記樹脂組成物の劣化および変形などを生じさせない程度のエネルギーを有すればよい。たとえば、上記レーザーの出力は、50W以上5kW以下の範囲から選択することができる。 The above-mentioned laser only needs to have enough energy to melt the resin composition forming the UD tape 530 (resin composition forming the matrix resin 210), while not causing deterioration or deformation of the resin composition. For example, the output of the laser can be selected from the range of 50 W or more and 5 kW or less.
 また、上記レーザーは、UDテープ530を構成する上記樹脂組成物または強化繊維220が吸収する波長を有することが好ましい。たとえば、上記レーザーの波長は300nm以上3000nm以下の範囲から選択することができる。 Further, it is preferable that the laser has a wavelength absorbed by the resin composition or the reinforcing fiber 220 that constitutes the UD tape 530. For example, the wavelength of the laser can be selected from the range of 300 nm to 3000 nm.
 圧下ローラー525は、マンドレル510に供給されたUDテープ530をマンドレル510の表面に向けて圧下する。マンドレル510に供給されたUDテープ530、および、すでにマンドレル510に巻かれて互いに融着しているUDテープ530、の少なくとも一方が溶融した状態で、供給されたUDテープ530がマンドレル510の表面に向けて圧下されることにより、供給されたUDテープ530が互いに融着して、パイプ100の形状に成形されていく。 The pressing roller 525 presses the UD tape 530 supplied to the mandrel 510 toward the surface of the mandrel 510. At least one of the UD tape 530 supplied to the mandrel 510 and the UD tape 530 already wound around the mandrel 510 and fused to each other is melted, and the supplied UD tape 530 is applied to the surface of the mandrel 510. By being pressed down, the supplied UD tapes 530 are fused with each other and are molded into the shape of the pipe 100.
 融着ユニット520は、ロボットアームの内部に上記各構成部を収容する、融着ユニット520は、ガイド部526に沿って平行移動しつつ、回転するマンドレル510の軸方向に沿って往復しながら、UDテープを融着させていく。融着ユニット520は、このようにして、UDテープをマンドレルの周囲に融着していく融着部として動作する。これにより、複数層の繊維層240a、240bおよび240cを有するパイプ100が形成される。 The fusing unit 520 accommodates each of the above components inside the robot arm. The fusing unit 520 translates along the guide portion 526 and reciprocates along the axial direction of the rotating mandrel 510, Fuse the UD tape. The fusing unit 520 thus operates as a fusing section for fusing the UD tape around the mandrel. As a result, the pipe 100 having the plurality of fiber layers 240a, 240b and 240c is formed.
 なお、融着ユニット520は、垂直移動および回転移動も可能に構成されている。回転移動によって、マンドレル510の表面にUDテープが接触する角度を変更することにより、強化繊維220が配向する方向を、繊維層240a、240bおよび240cの層間で変更させることができる。 Note that the fusing unit 520 is also configured to be vertically movable and rotationally movable. By changing the angle at which the UD tape contacts the surface of the mandrel 510 by the rotational movement, the direction in which the reinforcing fibers 220 are oriented can be changed between the fiber layers 240a, 240b and 240c.
 図6は、本実施形態における切断部600の一例の構成を示す模式図であり、図7A、図7Bおよび図7Cは、図6に示す切断部600により部分的に切断されたUDテープ530を示す模式図である。 FIG. 6 is a schematic view showing an example of the configuration of the cutting section 600 in the present embodiment, and FIGS. 7A, 7B and 7C show the UD tape 530 partially cut by the cutting section 600 shown in FIG. It is a schematic diagram which shows.
 図6に示すように、切断部600は、移動するUDテープ530を挟んで対向する位置に配置された、切断刃610および台座部620を有する。なお、図6中の白抜き矢印は、UDテープ530の移動方向である。 As shown in FIG. 6, the cutting section 600 has a cutting blade 610 and a pedestal section 620 which are arranged at opposite positions with the moving UD tape 530 interposed therebetween. The white arrow in FIG. 6 indicates the moving direction of the UD tape 530.
 切断刃610は、移動するUDテープ530に対して垂直方向(図6中の方向A-A)に移動可能であり、UDテープ530に向けて移動してUDテープ530に衝突し、このときに台座部620との間でUDテープ530を押圧することにより、UDテープ530を切断して、UDテープ530に含まれる強化繊維220を切断する。 The cutting blade 610 is movable in the vertical direction (direction AA in FIG. 6) with respect to the moving UD tape 530, moves toward the UD tape 530, and collides with the UD tape 530. By pressing the UD tape 530 against the pedestal portion 620, the UD tape 530 is cut, and the reinforcing fibers 220 included in the UD tape 530 are cut.
 台座部620は、切断刃610に対向する面に、切断刃610と協働してのUDテープ530の押圧によりUDテープ530を部分的に切断する、複数の刃受け部622a、622bおよび622cを有する。刃受け部622a、622bおよび622cは、いずれも、切断刃610に対向する面に複数の穴624を有する。そして、刃受け部622a、622bおよび622cは、それぞれ穴624の配置が異なる。 The pedestal portion 620 has a plurality of blade receiving portions 622a, 622b, and 622c on the surface facing the cutting blade 610, which partially cuts the UD tape 530 by pressing the UD tape 530 in cooperation with the cutting blade 610. Have. Each of the blade receiving portions 622a, 622b, and 622c has a plurality of holes 624 on the surface facing the cutting blade 610. The blade receiving portions 622a, 622b, and 622c are different in the arrangement of the holes 624.
 また、台座部620は、UDテープ530の移動方向(図6中の方向B-B)における位置を変更可能であり、上記位置の変更により、刃受け部622a、622bおよび622cのうち、切断刃610と対向する刃受け部を、切り替え可能である。なお、別の実施形態において切断刃610は、UDテープ530の移動方向(図6中の方向B-B)における位置を変更可能にしてもよい。また、切断刃610を刃受け部622a、622bおよび622cのそれぞれ対向する位置に複数配置してもよい。 Further, the pedestal portion 620 can change the position in the moving direction of the UD tape 530 (direction BB in FIG. 6), and by changing the position, the cutting blades of the blade receiving portions 622a, 622b, and 622c can be changed. The blade receiving portion facing 610 can be switched. Note that, in another embodiment, the cutting blade 610 may change the position in the moving direction of the UD tape 530 (direction BB in FIG. 6). In addition, a plurality of cutting blades 610 may be arranged at positions facing the blade receiving portions 622a, 622b, and 622c, respectively.
 切断刃610がUDテープ530に衝突すると、刃受け部622a、622bまたは622cのうち穴624が形成されていない領域でのみ、切断刃610と台座部620との間での押圧がなされて、UDテープ530が切断される。 When the cutting blade 610 collides with the UD tape 530, the cutting blade 610 and the pedestal portion 620 are pressed only in a region of the blade receiving portion 622a, 622b, or 622c where the hole 624 is not formed, and the UD The tape 530 is cut.
 そのため、刃受け部622aが切断刃610に対向する位置に台座部620を配置して、切断刃610をUDテープ530に衝突させると、図7Aに示すように、UDテープ530の両端および両端部から幅方向に所定の距離を有する2ヶ所の位置の、合計4ヶ所の切断部位532が、UDテープ530の幅方向に形成される。また、刃受け部622bが切断刃610に対向する位置に台座部620を配置して、切断刃610をUDテープ530に衝突させると、図7Bに示すように、UDテープ530の両端および両端部から幅方向に所定の距離を有する1ヶ所の位置の、合計3ヶ所の切断部位532が、UDテープ530の幅方向に形成される。また、刃受け部622cが切断刃610に対向する位置に台座部620を配置して、切断刃610をUDテープ530に衝突させると、図7Cに示すように、UDテープ530の両端部から幅方向に所定の距離を有する2ヶ所の位置の切断部位532が、UDテープ530の幅方向に形成される。これらの切断部位532では、UDテープを構成する強化繊維220も、部分的に切断されている。  Therefore, when the pedestal portion 620 is arranged at a position where the blade receiving portion 622a faces the cutting blade 610 and the cutting blade 610 collides with the UD tape 530, as shown in FIG. 7A, both ends and both end portions of the UD tape 530 are A total of four cutting portions 532 are formed in the width direction of the UD tape 530 at two positions having a predetermined distance in the width direction from. Further, when the pedestal portion 620 is arranged at a position where the blade receiving portion 622b faces the cutting blade 610 and the cutting blade 610 collides with the UD tape 530, as shown in FIG. 7B, both ends and both end portions of the UD tape 530 are shown. A total of three cutting portions 532 are formed in the width direction of the UD tape 530 at one position having a predetermined distance in the width direction. Further, when the pedestal portion 620 is arranged at a position where the blade receiving portion 622c faces the cutting blade 610 and the cutting blade 610 collides with the UD tape 530, as shown in FIG. 7C, the width from both ends of the UD tape 530 is increased. Two cut portions 532 having a predetermined distance in the direction are formed in the width direction of the UD tape 530. At these cut portions 532, the reinforcing fibers 220 forming the UD tape are also partially cut. ‥
 図7A~図7Cに示すUDテープ530は、それぞれの切断部位532において、UDテープ530が幅方向には部分的に切断され、厚み方向にはUDテープ530を貫通するように切断されている。 The UD tape 530 shown in FIGS. 7A to 7C is cut so that the UD tape 530 is partially cut in the width direction and penetrates the UD tape 530 in the thickness direction at each cutting portion 532.
 なお、このとき、UDテープ530の長さ方向における切断部位532間の間隔は、切断刃610をUDテープ530に衝突させるタイミング(周期)を変更することによって、変更することができる。また、このとき、台座部620のUDテープ530の幅方向(図6A中の方向C-C)における位置を変更することにより、UDテープ530のうち切断部位532が形成される幅方向の位置を変更することもできる。 At this time, the interval between the cut portions 532 in the length direction of the UD tape 530 can be changed by changing the timing (cycle) at which the cutting blade 610 collides with the UD tape 530. Further, at this time, by changing the position of the pedestal portion 620 in the width direction of the UD tape 530 (direction CC in FIG. 6A), the position of the cutting portion 532 in the width direction of the UD tape 530 is formed. You can change it.
 上記台座部620の位置(UDテープ530の移動方向への位置、およびUDテープ530の幅方向への位置)および切断刃610を衝突させるタイミングは、パイプ100の作製中に一定として、同型状の切断部位532をおよび同じ位置(UDテープ530の幅方向への位置)に同じ周期で形成してもよい。あるいは、上記台座部620の位置または切断刃610を衝突させるタイミングを、パイプ100の作製中に変更して、UDテープ530に形成される切断部位532の形状、位置または周期を変化させてもよい。 The position of the pedestal portion 620 (the position in the moving direction of the UD tape 530, and the position in the width direction of the UD tape 530) and the timing at which the cutting blade 610 collide are constant while the pipe 100 is being manufactured, and the same shape is maintained. The cut portions 532 may be formed at the same position (position in the width direction of the UD tape 530) at the same cycle. Alternatively, the position of the pedestal portion 620 or the timing at which the cutting blade 610 collides may be changed during the production of the pipe 100 to change the shape, position, or cycle of the cutting portion 532 formed on the UD tape 530. ..
 図8は、本実施形態における切断部800の別の例の構成を示す模式図であり、図9Aおよび図9Bは、図8に示す切断部800により部分的に切断されたUDテープ530を示す模式図である。なお、図8中の白抜き矢印は、UDテープ530の移動方向である。 FIG. 8 is a schematic diagram showing the configuration of another example of the cutting section 800 in the present embodiment, and FIGS. 9A and 9B show the UD tape 530 partially cut by the cutting section 800 shown in FIG. It is a schematic diagram. The white arrow in FIG. 8 indicates the moving direction of the UD tape 530.
 図8に示すように、切断部800は、移動するUDテープ530を挟んで対向する位置に配置された、2つの切断刃810aおよび810b、ならびに台座部820を有する。 As shown in FIG. 8, the cutting section 800 has two cutting blades 810a and 810b and a pedestal section 820, which are arranged at opposite positions with the moving UD tape 530 interposed therebetween.
 切断刃810aおよび810bはいずれも、移動するUDテープ530に対して垂直方向(図8中の方向A-A)に移動可能であり、UDテープ530に向けて移動してUDテープ530に衝突し、このときに台座部820との間でUDテープ530を押圧することにより、UDテープ530を切断して、UDテープ530に含まれる強化繊維220を切断する。 Each of the cutting blades 810a and 810b is movable in the vertical direction (direction AA in FIG. 8) with respect to the moving UD tape 530, moves toward the UD tape 530, and collides with the UD tape 530. At this time, the UD tape 530 is pressed against the pedestal portion 820 to cut the UD tape 530, and the reinforcing fibers 220 included in the UD tape 530 are cut.
 切断刃810aは、台座部820と対向する、UDテープ530に衝突する刃の一部に、切り欠き部812を有する。切断刃810bは、UDテープ530の幅方向に対して所定の角度となるように配置されており、かつ上記所定の角度が変化する折れ曲がり部を有する。 The cutting blade 810a has a cutout portion 812 in a part of the blade that faces the pedestal portion 820 and collides with the UD tape 530. The cutting blade 810b is arranged so as to form a predetermined angle with respect to the width direction of the UD tape 530, and has a bent portion in which the predetermined angle changes.
 また、切断刃810aおよび810bは、UDテープ530の移動方向(図8中の方向B-B)における位置を変更可能であり、上記位置の変更により、切断刃810aおよび810bうち、台座部820と対向する切断刃を、切り替え可能である。別の実施形態において台座部820は、UDテープ530の移動方向(図6中の方向B-B)における位置を変更可能にしてもよい。また、台座部820を切断刃810aおよび810bに対抗する位置に複数配置してもよい。 Further, the cutting blades 810a and 810b can change the position in the moving direction of the UD tape 530 (direction BB in FIG. 8), and by changing the position, the cutting blades 810a and 810b can be connected to the pedestal portion 820. The cutting blades facing each other can be switched. In another embodiment, the pedestal portion 820 may change the position of the UD tape 530 in the moving direction (direction BB in FIG. 6). In addition, a plurality of pedestals 820 may be arranged at positions facing the cutting blades 810a and 810b.
 切断刃810aまたは切断刃810bがUDテープ530に衝突して台座部820との間でUDテープ530を押圧すると、切断刃810aまたは切断刃810bのうち切り欠き部812が形成されていない領域でのみ、切断刃810aと台座部820との間での押圧がなされて、UDテープ530が部分的に切断される。 When the cutting blade 810a or the cutting blade 810b collides with the UD tape 530 and presses the UD tape 530 against the pedestal portion 820, only the region of the cutting blade 810a or the cutting blade 810b where the cutout portion 812 is not formed. The UD tape 530 is partially cut by pressing between the cutting blade 810a and the pedestal portion 820.
 そのため、切断刃810aが台座部820に対向する位置に切断刃810aを配置して、切断刃810aをUDテープ530に衝突させると、図9Aに示すように、UDテープ530の両端および中央付近の2ヶ所の、合計4ヶ所の切断部位532が、UDテープ530の幅方向に形成される。 Therefore, when the cutting blade 810a is arranged at a position where the cutting blade 810a faces the pedestal portion 820 and the cutting blade 810a collides with the UD tape 530, as shown in FIG. Two cutting sites 532, that is, four cutting sites 532 are formed in the width direction of the UD tape 530.
 また、切断刃810bが台座部820に対向する位置に切断刃810bを配置して、切断刃810bをUDテープ530に衝突させると、切断刃810bのうち台座部820に対向する(台座部820に衝突する)部分でのみUDテープ530が切断されるため、図9Bに示すように、UDテープ530の両端部から幅方向に所定の距離を有する4ヶ所の切断部位532が、UDテープ530の幅方向かつUDテープ530の移動方向および幅方向のいずれに対しても傾斜して、形成される。上記4ヶ所の切断部位532は、上記傾斜の角度が互いに異なる切断部位532aおよび532bの組み合わせからなる。 Further, when the cutting blade 810b is arranged at a position where the cutting blade 810b faces the pedestal portion 820 and the cutting blade 810b collides with the UD tape 530, the cutting blade 810b faces the pedestal portion 820 (the pedestal portion 820 Since the UD tape 530 is cut only in the portion where it collides with each other, as shown in FIG. 9B, four cut portions 532 having a predetermined distance in the width direction from both ends of the UD tape 530 have the width of the UD tape 530. Direction, and is inclined with respect to both the moving direction and the width direction of the UD tape 530. The four cut portions 532 are composed of a combination of cut portions 532a and 532b having different inclination angles.
 このとき、台座部820に対する切断刃810bの位置を微調整して、切断刃810bのうち台座部820と衝突する部分を変更することにより、UDテープ530に形成される切断部位532の幅方向における位置を変更することも可能である。 At this time, by finely adjusting the position of the cutting blade 810b with respect to the pedestal portion 820 and changing the portion of the cutting blade 810b that collides with the pedestal portion 820, the cutting portion 532 formed in the UD tape 530 in the width direction. It is also possible to change the position.
 図9Aおよび図9Bに示すUDテープ530は、それぞれの切断部位532、532aおよび532bにおいて、UDテープ530が幅方向には部分的に切断され、厚み方向にはUDテープ530を貫通するように切断されている。 The UD tape 530 shown in FIGS. 9A and 9B is cut so that the UD tape 530 is partially cut in the width direction and penetrates the UD tape 530 in the thickness direction at the cut portions 532, 532a, and 532b, respectively. Has been done.
 なお、このときも、UDテープ530の長さ方向における切断部位532間の間隔は、切断刃810aまたは810bをUDテープ530に衝突させるタイミング(周期)を変更することによって、変更することができる。また、このとき、切断刃810aまたは810bのUDテープ530UDテープ530の幅方向(図8中の方向C-C)における位置を変更することにより、UDテープ530のうち切断部位532が形成される幅方向の位置を変更することもできる。 Note that, also at this time, the interval between the cut portions 532 in the length direction of the UD tape 530 can be changed by changing the timing (cycle) at which the cutting blade 810a or 810b collides with the UD tape 530. Further, at this time, the width of the UD tape 530 where the cutting portion 532 is formed by changing the position of the cutting blade 810a or 810b in the width direction (direction CC in FIG. 8) of the UD tape 530. The position of the direction can also be changed.
 上記切断刃810aまたは810bの位置(UDテープ530の移動方向への位置、およびUDテープ530の幅方向への位置)および切断刃810aまたは810bを衝突させるタイミングは、パイプ100の作製中に一定として、同型状の切断部位532をおよび同じ位置(UDテープ530の幅方向への位置)に同じ周期で形成してもよい。あるいは、上記切断刃810aまたは810bの位置または切断刃810aまたは810bを衝突させるタイミングを、パイプ100の作製中に変更して、UDテープ530に形成される切断部位532の形状、位置または周期を変更してもよい。 The position of the cutting blade 810a or 810b (the position in the moving direction of the UD tape 530, and the position in the width direction of the UD tape 530) and the timing at which the cutting blade 810a or 810b collide with each other are constant during the production of the pipe 100. The cut portions 532 having the same shape may be formed at the same position (position in the width direction of the UD tape 530) at the same cycle. Alternatively, the position of the cutting blade 810a or 810b or the timing at which the cutting blade 810a or 810b collides is changed during the production of the pipe 100 to change the shape, position or cycle of the cutting portion 532 formed on the UD tape 530. You may.
 図7A~図7Cおよび図9Aおよび図9Bに示すように、切断部523(切断部600、切断部800)は、UDテープ530が完全に切断されないように、幅方向に部分的に、あるいは厚み方向に部分的に、切断すればよい。 As shown in FIGS. 7A to 7C and FIGS. 9A and 9B, the cutting portion 523 (the cutting portion 600, the cutting portion 800) is formed in the width direction partially or in the thickness direction so that the UD tape 530 is not completely cut. It may be partially cut in the direction.
 たとえば、それぞれの切断刃610、810aおよび810bは、UDテープ530の厚み方向下端部まで到達しないように移動してもよい。これによりUDテープ530を厚み方向には完全には貫通しない、所定の深さの溝状である切断部位を形成してもよい。このような、UDテープ530を完全には貫通しない切断部位によっても、UDテープ530を構成する強化繊維220を、部分的に切断することができる。 For example, the respective cutting blades 610, 810a and 810b may be moved so as not to reach the lower end of the UD tape 530 in the thickness direction. This may form a groove-shaped cut portion having a predetermined depth that does not completely penetrate the UD tape 530 in the thickness direction. Even with such a cut portion that does not completely penetrate the UD tape 530, the reinforcing fibers 220 forming the UD tape 530 can be partially cut.
 なお、切断部523の構成は図6および図8に示す構成に限定されることはなく、これら以外の様々な構成を採用可能である。 The configuration of the cutting unit 523 is not limited to the configurations shown in FIGS. 6 and 8, and various configurations other than these can be adopted.
 図10は、装置500を用いてパイプ100を製造する方法の代表的な工程を示すフローチャートである。 FIG. 10 is a flowchart showing typical steps of a method for manufacturing the pipe 100 using the device 500.
 装置500を稼働させると、ガイドローラー522が回転して、収容部521からUDテープ530を繰り出して、マンドレル510の表面に向けて移動させる(工程S110)。 When the device 500 is operated, the guide roller 522 rotates, and the UD tape 530 is unwound from the accommodating portion 521 and moved toward the surface of the mandrel 510 (step S110).
 移動するUDテープ530は、切断部523を通過する。このとき、上述の構成を有する切断部523は、移動するUDテープ530に切断刃を繰り返し衝突させ、UDテープ530の複数の位置において、UDテープを部分的に切断する(工程S120)。これにより、切断部523は、UDテープ530を構成する強化繊維220も、少なくとも部分的に切断する。 The moving UD tape 530 passes through the cutting section 523. At this time, the cutting unit 523 having the above-described configuration repeatedly causes the cutting blade to collide with the moving UD tape 530 to partially cut the UD tape at a plurality of positions on the UD tape 530 (step S120). As a result, the cutting unit 523 also at least partially cuts the reinforcing fibers 220 that form the UD tape 530.
 部分的に切断されたUDテープ530は、さらに移動させられ、マンドレル510の表面に供給(到達)される(工程S130)。 The partially cut UD tape 530 is further moved and supplied (reached) to the surface of the mandrel 510 (step S130).
 上記供給されたUDテープ530は、圧下ローラー525によってマンドレル510の表面に圧下させられ、かつレーザー照射部524からレーザーを照射させられる。これにより、UDテープ530を構成する樹脂組成物が溶解して、すでに融着されたUDテープを構成していた樹脂組成物と融着する(工程S140)。 The supplied UD tape 530 is pressed down on the surface of the mandrel 510 by the pressing roller 525, and the laser is irradiated from the laser irradiation unit 524. As a result, the resin composition constituting the UD tape 530 is dissolved and fused with the resin composition constituting the already fused UD tape (step S140).
 このとき、マンドレル510は回転させられており、かつ融着ユニット520はガイド部526に沿ってマンドレル510の軸方向に移動させられている。そのため、供給されたUDテープ530はマンドレル510の表面に沿って斜め方向に巻き付いていくように融着されていく。移動する融着ユニット520がマンドレル510の端部(作製しようとするパイプ100の端部)まで到達したら、融着ユニット520を逆方向に移動させながらUDテープ530を融着していき、UDテープ530間の隙間を埋めていけばよい。 At this time, the mandrel 510 is rotated, and the fusing unit 520 is moved along the guide portion 526 in the axial direction of the mandrel 510. Therefore, the supplied UD tape 530 is fused so as to be wound in an oblique direction along the surface of the mandrel 510. When the moving fusing unit 520 reaches the end of the mandrel 510 (the end of the pipe 100 to be manufactured), the UD tape 530 is fused while moving the fusing unit 520 in the opposite direction. Fill the gap between 530.
 また、融着ユニット520の向きを回転させて、UDテープ530がマンドレル510に巻き付いていく方向を変化させながら、マンドレル510の表面にUDテープ530を融着させていくことにより、強化繊維220が配向している方向が互いに異なる複数の繊維層を有するパイプ100を得ることができる。 Further, by rotating the direction of the fusing unit 520 and changing the direction in which the UD tape 530 winds around the mandrel 510, the UD tape 530 is fused on the surface of the mandrel 510, whereby the reinforcing fibers 220 are formed. It is possible to obtain the pipe 100 having a plurality of fiber layers whose orientation directions are different from each other.
 上述の各工程を繰り返して、部分的に切断されたUDテープ530をマンドレル510の表面で融着させていき、最後に、マンドレル510から作製されたパイプ100を引き抜くことで、所定の長さおよび十分な厚みを有するパイプ100を得ることができる。 By repeating the above-described steps, the partially cut UD tape 530 is fused on the surface of the mandrel 510, and finally, the pipe 100 made from the mandrel 510 is pulled out to obtain a predetermined length and The pipe 100 having a sufficient thickness can be obtained.
 このようにして得られたパイプ100は、壁面が、UDテープ530を構成していた樹脂組成物に由来するマトリクス樹脂210と、一方向に配向された強化繊維220とを含み、かつ強化繊維220が部分的に切断されたカット部225を有する(図2参照)。 In the pipe 100 thus obtained, the wall surface includes the matrix resin 210 derived from the resin composition forming the UD tape 530, and the unidirectionally oriented reinforcing fibers 220, and the reinforcing fibers 220. Has a cut portion 225 that is partially cut (see FIG. 2 ).
 パイプ100は、その後、屈曲加工されてもよい(図4Aおよび図4B参照)。このとき、まずパイプ100を長さ方向に伸長させ(図4A)、その後、伸長させられたまま屈曲させられる(図4B)。このとき、パイプ100は、強化繊維220が部分的に切断されているため、伸長および屈曲による、強化繊維220の破断および座屈が生じにくい。そのため、屈曲加工されたパイプ100は、屈曲部における強度の低下が抑制されている。 The pipe 100 may then be bent (see FIGS. 4A and 4B). At this time, first, the pipe 100 is elongated in the lengthwise direction (FIG. 4A), and then, it is bent while being elongated (FIG. 4B). At this time, in the pipe 100, since the reinforcing fibers 220 are partially cut, breakage and buckling of the reinforcing fibers 220 due to extension and bending are unlikely to occur. Therefore, in the bent pipe 100, the decrease in strength at the bent portion is suppressed.
 このように構成した本実施形態によれば、パイプ100を構成する強化繊維220が部分的に切断されているため、屈曲加工による、屈曲部におけるパイプ100の強度の低下が生じにくい。 According to the present embodiment configured as described above, since the reinforcing fibers 220 forming the pipe 100 are partially cut, the strength of the pipe 100 at the bent portion is less likely to decrease due to the bending process.
 [第2の実施形態]
 図11は、第2の実施形態に関するパイプ1100を示す模式的な斜視図である。パイプ1100は、屈曲加工されて屈曲部となる加工部位1110が予め決定されている。
[Second Embodiment]
FIG. 11 is a schematic perspective view showing a pipe 1100 according to the second embodiment. The pipe 1100 is preliminarily determined as a processed portion 1110 that is bent and becomes a bent portion.
 図12Aは、加工部位1110における1つの繊維層1140を示す、パイプ1100の壁面に沿った方向(図2に示す一点鎖線3A-3A方向と同方向)でパイプ1100を切断したときの、パイプ1100の壁面の模式断面図であり、図12Bは、屈曲部とはならない非加工部位1120における同じ繊維層1140を示す、図12Aと同様にパイプ1100を切断したときの、パイプ1100の壁面の模式断面図である。 FIG. 12A shows one fiber layer 1140 in the processed portion 1110, and shows the pipe 1100 when the pipe 1100 is cut in the direction along the wall surface of the pipe 1100 (the same direction as the one-dot chain line 3A-3A direction shown in FIG. 2). 12B is a schematic cross-sectional view of the wall surface of the pipe 1100 when the pipe 1100 is cut in the same manner as in FIG. 12A, showing the same fiber layer 1140 in the unprocessed portion 1120 that does not become a bent portion. It is a figure.
 図12Aに示すように、加工部位1110は、強化繊維220が部分的に切断されたカット部225がより密に集合された切断集合部となっている。また、図12Bに示すように、非加工部位1120は、強化繊維220が部分的に切断されたカット部225がよりまばらに集合された切断非集合部となっている。言い換えると、加工部位1110では、繊維層1140の単位面積あたりに存在するカット部225の数が、非加工部位1120よりも多くなっている。 As shown in FIG. 12A, the processed portion 1110 is a cut and gathered portion in which cut portions 225 in which the reinforcing fibers 220 are partially cut are gathered more densely. Further, as shown in FIG. 12B, the non-processed portion 1120 is a cut non-collecting portion in which the cut portions 225 in which the reinforcing fibers 220 are partially cut are gathered more sparsely. In other words, in the processed portion 1110, the number of cut portions 225 existing per unit area of the fiber layer 1140 is larger than that in the non-processed portion 1120.
 第1の実施形態で説明したように、カット部225は、屈曲加工により形成された屈曲部における強化繊維220の破断および座屈を抑制し、屈曲部におけるパイプ1100の強度の低下を抑制する。そのため、屈曲加工により屈曲部となる加工部位1110にカット部225をより密に集合させることで、上記破断および座屈の抑制によるパイプ1100の強度の低下をより顕著に抑制することができる。一方で、屈曲部とはならない非加工部位1120ではカット部225をよりまばらに集合させることで、当該部位においては強化繊維220による発現されるパイプ1100の高い強度を維持することができる。 As described in the first embodiment, the cut portion 225 suppresses breakage and buckling of the reinforcing fiber 220 in the bent portion formed by bending work, and suppresses the reduction in the strength of the pipe 1100 in the bent portion. Therefore, the cut portions 225 are more densely gathered in the processed portion 1110 which becomes the bent portion by the bending work, so that the reduction in the strength of the pipe 1100 due to the suppression of the breakage and the buckling can be more significantly suppressed. On the other hand, by gathering the cut portions 225 more sparsely in the non-processed portion 1120 that does not become the bent portion, it is possible to maintain the high strength of the pipe 1100 expressed by the reinforcing fibers 220 in the portion.
 本実施形態に関するパイプ1100は、第1の実施形態と同様に作製することができる。このとき、融着ユニット520を移動させながらUDテープ530を融着させていく際に、加工部位1110にUDテープ530を融着させるときは切断部523を作動させてUDテープを部分的に切断しながら融着させ(図13A参照)、非加工部位1120にUDテープ530を融着させるときは切断部523を作動させずUDテープを部分的に切断せずに融着させればよい(図13B参照)。 The pipe 1100 according to this embodiment can be manufactured similarly to the first embodiment. At this time, when the UD tape 530 is fused while the fusion unit 520 is moved, when the UD tape 530 is fused to the processing portion 1110, the cutting portion 523 is operated to partially cut the UD tape. While fusion-bonding (see FIG. 13A) and fusion-bonding the UD tape 530 to the non-processed portion 1120, the cutting portion 523 may not be operated and the UD tape may be fusion-bonded without partially cutting (FIG. 13A). 13B).
 パイプ1100に対して複数箇所で屈曲加工を行うときは、当該複数の屈曲箇所を、部分的に切断されたUDテープの融着により作製すればよい。 When the pipe 1100 is bent at a plurality of points, the plurality of bent points may be produced by fusing partially cut UD tapes.
 なお、非加工部位1120は、カット部225の数が加工部位1110における数よりも少なくなっていればよく、この限りにおいてカット部225が全く存在しなくてもよい。 The number of cut portions 225 in the non-processed portion 1120 may be smaller than that in the processed portion 1110, and the cut portions 225 may not exist at all as long as this is the case.
 このように構成した本実施形態によれば、屈曲部におけるパイプ1100の強度の低下を抑制し、かつ、非屈曲部においてはパイプ1100にUDテープに由来する本来の強度を発現させることができる。 According to the present embodiment configured as described above, it is possible to suppress the decrease in the strength of the pipe 1100 at the bent portion and to make the pipe 1100 exhibit the original strength derived from the UD tape at the non-bent portion.
 [その他の実施形態]
 なお、上述の各実施形態はそれぞれ本発明を実施するための形態の例を示すものであり、本発明は上述の各実施形態に限定されるものではなく、発明の思想の範囲内において、他の種々多様な各実施形態も可能であることは言うまでもない。
[Other Embodiments]
It should be noted that each of the above-described embodiments represents an example of a mode for carrying out the present invention, and the present invention is not limited to the above-described respective embodiments, and within the scope of the idea of the invention, other It goes without saying that various various embodiments of are also possible.
 たとえば、上述の各実施形態では、切断部によりUDテープを部分的に切断しながら、UDテープをマンドレルの表面に融着させてパイプを作製していたが、部分的に切断されたUDテープを予め用意しておき、当該UDテープをマンドレルの表面に融着させてパイプを作製してもよい。 For example, in each of the above-described embodiments, the UD tape is fused to the surface of the mandrel to fabricate the pipe while partially cutting the UD tape by the cutting unit. A pipe may be prepared by preparing in advance and fusing the UD tape to the surface of the mandrel.
 あるいは、第2の実施形態では、パイプの長さ方向における異なる箇所に対して、強化繊維が切断されているカット部の密度(単位面積あたりの数)を変更していたが、屈曲時におけるパイプの外側と内側とで、強化繊維が切断されているカット部の密度(単位面積あたりの数)を変更してもよい。いずれにせよ、強化繊維のカット部またはUDテープのカット部は、パイプまたはパイプを作製するためのUDテープに均等に分散して配置されていてもよいし、不均一に配置されていてもよい。 Alternatively, in the second embodiment, the density (number per unit area) of the cut portions in which the reinforcing fibers are cut is changed for different portions in the length direction of the pipe. The density (the number per unit area) of the cut portions where the reinforcing fibers are cut may be changed between the outside and inside. In any case, the cut portions of the reinforcing fibers or the cut portions of the UD tape may be arranged evenly distributed on the pipe or the UD tape for producing the pipe, or may be arranged unevenly. ..
 また、上述の各実施形態では、UDテープをレーザーによりマンドレルの表面に融着させていたが、未硬化の熱硬化性樹脂が強化繊維に含振されたテープを回転するマンドレルの表面に供給して巻き付けていき、後から熱処理によって当該熱硬化性樹脂を硬化させてもよい。 Further, in each of the above-described embodiments, the UD tape is fused to the surface of the mandrel by the laser, but the uncured thermosetting resin is supplied to the surface of the rotating mandrel with the tape impregnated with the reinforcing fibers. The thermosetting resin may be cured by heat treatment afterwards.
 また、上述の各実施形態では、一定径のマンドレルを用いて一定径のパイプを作製していたが、径が変化する円錐台形の部分を一部または全体に有するマンドレルを用いて、長さ方向に径が変化するパイプを作製してもよい。 Further, in each of the above-described embodiments, a pipe having a constant diameter was manufactured using a mandrel having a constant diameter. You may manufacture the pipe whose diameter changes.
 また、上述の各実施形態では、液体や気体を輸送するためのパイプについて説明を行ったが、筒状の形状を有する筒状体全般に、本発明は適用可能である。 Also, in each of the above-described embodiments, the pipe for transporting a liquid or gas has been described, but the present invention is applicable to all tubular bodies having a tubular shape.
 本出願は、2019年1月2日出願のドイツ国出願番号102019200008.8号に基づく優先権を主張する出願であり、当該出願の明細書、特許請求の範囲および図面に記載された内容は本出願に援用される。 This application is an application claiming priority based on German application No. 1020192008.8 filed on January 2, 2019, and the contents described in the specification, claims and drawings of the application are as follows. Incorporated in the application.
 本発明によれば、繊維強化樹脂からなる、様々な折れ曲がり形状を有するパイプが提供される。本発明は、より軽量かつ高強度のパイプの適用可能性を広げ、繊維強化樹脂の使用およびパイプの使用の両分野のさらなる発展に寄与すると期待される。 According to the present invention, pipes made of fiber reinforced resin and having various bent shapes are provided. The present invention is expected to extend the applicability of lighter weight and higher strength pipes and contribute to further development in both the fields of using fiber reinforced resins and pipes.
 100、1100 パイプ
 110 一部の壁面
 120 外側
 130 内側
 210 マトリクス樹脂
 220 強化繊維
 225 カット部
 230 集合体
 240a、240b、240c、1140 繊維層
 500 装置
 502a、502b 支持体
 504a、504b 回転支持部
 510 マンドレル
 520 融着ユニット
 521 収容部
 522 ガイドローラー
 523、600、800 切断部
 524 レーザー照射部
 524a レーザー発振源
 525 圧下ローラー
 526 ガイド部
 530 UDテープ
 532、532a、532b 切断部位
 610、810a、810b 切断刃
 620、820 台座部
 622a、622b、622c 刃受け部
 624 穴
 812 切り欠き部 
 1110 加工部位
 1120 非加工部位
 
100 1100 Pipe 110 Partial wall surface 120 Outside 130 Inside 210 Matrix resin 220 Reinforcing fiber 225 Cut part 230 Aggregate 240a, 240b, 240c, 1140 Fiber layer 500 Device 502a, 502b Support 504a, 504b Rotation support 510 510 Mandrel 520 Fusing unit 521 Storage section 522 Guide roller 523, 600, 800 Cutting section 524 Laser irradiation section 524a Laser oscillation source 525 Reduction roller 526 Guide section 530 UD tape 532, 532a, 532b Cutting section 610, 810a, 810b Cutting blade 620, 820 Base part 622a, 622b, 622c Blade receiving part 624 Hole 812 Notch part
1110 Processed part 1120 Non-processed part

Claims (14)

  1.  一方向に配向された複数の強化繊維が配列された繊維層と、
     前記強化繊維を収容するマトリクス樹脂と、を有する、筒状体であって、
     前記強化繊維は少なくとも部分的に切断されている、
     筒状体。
    A fiber layer in which a plurality of reinforcing fibers oriented in one direction are arranged,
    A matrix resin containing the reinforcing fibers, which is a tubular body,
    The reinforcing fibers are at least partially cut,
    Tubular body.
  2.  前記強化繊維は、複数本の前記強化繊維が集合的に切断されている、
     請求項1に記載の筒状体。
    The reinforcing fibers, a plurality of the reinforcing fibers are collectively cut,
    The tubular body according to claim 1.
  3.  複数層の前記繊維層を有し、
     前記強化繊維が配向された方向は、隣接する前記繊維層の間で異なる方向である、
     請求項2に記載の筒状体。
    Having a plurality of layers of the fiber layer,
    The direction in which the reinforcing fibers are oriented is a different direction between the adjacent fiber layers,
    The tubular body according to claim 2.
  4.  前記筒状体は、
     前記強化繊維が切断されているカット部がより密に集合した切断集合部と、
     前記強化繊維が切断されているカット部がよりまばらに集合した切断非集合部を、有する、
     請求項1~3のいずれか1項に記載の筒状体。
    The tubular body is
    A cut collecting portion in which the cut portion in which the reinforcing fibers are cut is densely gathered,
    The cut portion, in which the reinforcing fibers are cut, has cutting non-collecting portions, which are more sparsely gathered,
    The tubular body according to any one of claims 1 to 3.
  5.  前記筒状体は、屈曲加工される筒状体であって、
     前記切断集合部は、前記屈曲加工される部位に配置されている、
     請求項4に記載の筒状体。
    The tubular body is a tubular body to be bent,
    The cutting assembly is arranged at the portion to be bent.
    The tubular body according to claim 4.
  6.  前記筒状体は、前記切断集合部において屈曲加工された筒状体である、
     請求項4または5に記載の筒状体。
    The tubular body is a tubular body that has been bent in the cutting assembly.
    The tubular body according to claim 4 or 5.
  7.  前記筒状体は、前記マトリクス樹脂が一方向に配向された前記強化繊維に含浸されてなる繊維強化樹脂テープにより形成されており、
     前記繊維強化樹脂テープは少なくとも部分的に切断されている、
     請求項1~6のいずれか1項に記載の筒状体。
    The tubular body is formed of a fiber reinforced resin tape in which the matrix resin is impregnated with the reinforced fibers oriented in one direction,
    The fiber reinforced resin tape is at least partially cut,
    The tubular body according to any one of claims 1 to 6.
  8.  一方向に配向された複数の強化繊維にマトリクス樹脂が含浸されてなる繊維強化樹脂テープを、回転するマンドレルの表面に供給する工程と、
     前記マンドレルの周囲に前記繊維強化樹脂テープを融着させる工程と、
     を有する、筒状体の製造方法であって、
     前記融着される繊維強化樹脂テープは、前記強化繊維が少なくとも部分的に切断されている、
     筒状体の製造方法。
    A step of supplying a fiber-reinforced resin tape obtained by impregnating a plurality of reinforcing fibers oriented in one direction with a matrix resin, to the surface of a rotating mandrel,
    Fusing the fiber reinforced resin tape around the mandrel,
    A method of manufacturing a tubular body, comprising:
    The fiber-reinforced resin tape to be fused, the reinforcing fibers are at least partially cut,
    A method for manufacturing a tubular body.
  9.  前記繊維強化樹脂テープを部分的に切断して、前記強化繊維を少なくとも部分的に切断する工程を有する、
     請求項8に記載の筒状体の製造方法。
    Partially cutting the fiber reinforced resin tape, at least partially cutting the reinforcing fiber,
    The method for manufacturing the tubular body according to claim 8.
  10.  前記筒状体は、屈曲加工される筒状体であって、
     前記切断する工程は、前記繊維強化樹脂テープのうち前記屈曲加工される部位に配置される前記繊維強化樹脂テープを少なくとも部分的に切断する工程である、
     請求項9に記載の筒状体の製造方法。
    The tubular body is a tubular body to be bent,
    The step of cutting is a step of cutting at least partially the fiber-reinforced resin tape arranged in the portion to be bent of the fiber-reinforced resin tape,
    The method for manufacturing the tubular body according to claim 9.
  11.  前記繊維強化樹脂テープを融着させて得られた筒状体を、前記部分的に切断された繊維強化樹脂テープが配置された部位で屈曲加工する工程を有する、
     請求項8~10のいずれか1項に記載の筒状体の製造方法。
    A tubular body obtained by fusing the fiber reinforced resin tape, and having a step of bending at a portion where the partially cut fiber reinforced resin tape is arranged,
    The method for manufacturing the tubular body according to any one of claims 8 to 10.
  12.  回転するマンドレルと、
     一方向に配向された強化繊維にマトリクス樹脂が含浸されてなる繊維強化樹脂テープを、前記マンドレルに供給する供給部と、
     前記供給された繊維強化樹脂テープを前記マンドレルの周囲に融着させる融着部と、
     を有し、
     前記供給部は、前記強化繊維が少なくとも部分的に切断されている繊維強化樹脂テープを供給する、
     筒状体の製造装置。
    A rotating mandrel,
    A fiber reinforced resin tape obtained by impregnating reinforced fibers oriented in one direction with a matrix resin, a supply unit for supplying the mandrel,
    A fusing portion for fusing the supplied fiber reinforced resin tape around the mandrel,
    Have
    The supply unit supplies a fiber-reinforced resin tape in which the reinforcing fibers are at least partially cut.
    Machine for manufacturing tubular bodies.
  13.  前記繊維強化樹脂テープを部分的に切断して前記強化繊維を少なくとも部分的に切断する、切断部を有する、
     請求項12に記載の筒状体の製造装置。
    A cutting portion, which partially cuts the fiber-reinforced resin tape to cut the reinforcing fiber at least partially.
    The apparatus for manufacturing a tubular body according to claim 12.
  14.  前記筒状体は、屈曲加工される筒状体であって、
     前記切断部は、前記繊維強化樹脂テープのうち、前記筒状体の前記屈曲加工される部位に配置される部位を選択的に、部分的に切断する、
     請求項13に記載の筒状体の製造装置。
     
     
     
    The tubular body is a tubular body to be bent,
    The cutting portion selectively cuts a part of the fiber-reinforced resin tape, which is arranged at the bent portion of the tubular body, and partially cuts the portion.
    The apparatus for manufacturing a tubular body according to claim 13.


PCT/JP2019/051247 2019-01-02 2019-12-26 Cylindrical body, method for manufacturing cylindrical body, and device for manufacturing cylindrical body WO2020141602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019200008 2019-01-02
DEDE102019200008.8 2019-01-02

Publications (1)

Publication Number Publication Date
WO2020141602A1 true WO2020141602A1 (en) 2020-07-09

Family

ID=71407434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051247 WO2020141602A1 (en) 2019-01-02 2019-12-26 Cylindrical body, method for manufacturing cylindrical body, and device for manufacturing cylindrical body

Country Status (2)

Country Link
TW (1) TW202039224A (en)
WO (1) WO2020141602A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2603596A (en) * 2020-11-26 2022-08-10 Bae Systems Plc Enhanced automated fibre placement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129471A (en) * 1975-05-02 1976-11-11 Kubota Ltd Apparatus for feeding short cut glass fiber used for reinforcement of resin in its axial direction of resin pipe in production of glass fiber reinforced resin pipe
JPS562124A (en) * 1979-06-21 1981-01-10 Sekisui Chem Co Ltd Manufacture of reinforced plastic pipe
WO2010016756A2 (en) * 2008-08-07 2010-02-11 Delft University Of Technology Semi-finished product and method for obtaining it
JP2019202435A (en) * 2018-05-22 2019-11-28 三井化学株式会社 Tape winding pipe provided with resin molded article, automobile component, construction material, and manufacturing method of tape winding pipe provided with resin molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129471A (en) * 1975-05-02 1976-11-11 Kubota Ltd Apparatus for feeding short cut glass fiber used for reinforcement of resin in its axial direction of resin pipe in production of glass fiber reinforced resin pipe
JPS562124A (en) * 1979-06-21 1981-01-10 Sekisui Chem Co Ltd Manufacture of reinforced plastic pipe
WO2010016756A2 (en) * 2008-08-07 2010-02-11 Delft University Of Technology Semi-finished product and method for obtaining it
JP2019202435A (en) * 2018-05-22 2019-11-28 三井化学株式会社 Tape winding pipe provided with resin molded article, automobile component, construction material, and manufacturing method of tape winding pipe provided with resin molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2603596A (en) * 2020-11-26 2022-08-10 Bae Systems Plc Enhanced automated fibre placement method
GB2603596B (en) * 2020-11-26 2023-07-05 Bae Systems Plc Enhanced automated fibre placement method

Also Published As

Publication number Publication date
TW202039224A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
US20190061238A1 (en) Continuous fiber-reinforced component fabrication
CA2043540C (en) Continuous process for the preparation of thermoplastic honeycomb
JP3687607B2 (en) Cutting method of prepreg
EP0768942B1 (en) Improved composite materials and method for making them
JP4273092B2 (en) Prepreg manufacturing method and prepreg manufacturing apparatus
EP2777907B1 (en) Composite core and method of making same
US9365022B2 (en) System and method of post-cure processing of composite core
EP2772344B1 (en) System and method of manufacturing composite core
US11065775B2 (en) System and method of post-cure processing of composite core
WO2020141602A1 (en) Cylindrical body, method for manufacturing cylindrical body, and device for manufacturing cylindrical body
JP2015030959A (en) Woven fabric, and fiber bundle and fiber-reinforced composite material for composing woven fabric
EP2832533A1 (en) Method of configuring composite core in a core stiffened structure and a structure incorporating the same
EP0603177B1 (en) Process for the preparation of thermoplastic honeycomb shaped structures without machining
JP2023505667A (en) Entangled Composite Material Integrated with Transfer Material and Method for Making Same
WO2020141596A1 (en) Cylindrical body manufacturing device, restraining member, and cylindrical body manufacturing method
JP2009138858A (en) Tank manufacturing method, tank manufacturing facility, and tank
JP2020116749A (en) Modeling device
US8388787B2 (en) Method of making a composite sheet
KR102070824B1 (en) Manufacturing apparatus of unidirectionally oriented fiber sheet for composite material capable of adjusting the orient angle and method of manufacturing the same, manufacturing apparatus of the fiber sheet laminate and manufacturing the same
JP2015000554A (en) Filament winding device
JP5614384B2 (en) Reinforcing fiber sheet, fiber-reinforced composite material, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite material
EP2960043A1 (en) System and method of manufaturing composite core
JP2012087190A (en) Method for production of prepreg having discontinuous fiber
JP5636864B2 (en) Method for producing prepreg having discontinuous fibers
JP2009137066A (en) Fiber-reinforced resin member and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19907551

Country of ref document: EP

Kind code of ref document: A1