WO2020140947A1 - 触控笔、触控面板、显示装置及触控感测方法 - Google Patents

触控笔、触控面板、显示装置及触控感测方法 Download PDF

Info

Publication number
WO2020140947A1
WO2020140947A1 PCT/CN2020/070111 CN2020070111W WO2020140947A1 WO 2020140947 A1 WO2020140947 A1 WO 2020140947A1 CN 2020070111 W CN2020070111 W CN 2020070111W WO 2020140947 A1 WO2020140947 A1 WO 2020140947A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
electrical signal
stylus
touch
electrode
Prior art date
Application number
PCT/CN2020/070111
Other languages
English (en)
French (fr)
Inventor
贺见紫
王建亭
郭瑞
孟智明
耿伟彪
苏俊宁
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/256,242 priority Critical patent/US11379059B2/en
Publication of WO2020140947A1 publication Critical patent/WO2020140947A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0442Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using active external devices, e.g. active pens, for transmitting changes in electrical potential to be received by the digitiser
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present disclosure relates to the field of touch control, and in particular, to a stylus, touch panel, display device, and touch sensing method.
  • the present disclosure provides a stylus, a touch panel, a display device, and a touch sensing method.
  • the present disclosure provides a stylus, the stylus includes:
  • a second emitting electrode, the distance between the first emitting electrode and the second emitting electrode in the extending direction of the stylus is greater than zero;
  • a transmitting circuit the transmitting circuit is respectively connected to the first transmitting electrode and the second transmitting electrode, and the transmitting circuit is used to transmit a first electrical signal outward through the first transmitting electrode within a first period of time, Transmitting a second electrical signal outward through the second emitting electrode during the second period of time, so that the touch panel obtains the stylus relative to the stylus according to the received first electrical signal and the second electrical signal
  • first period and the second period are separated from each other, and the frequency of the first electrical signal is different from the frequency of the second electrical signal.
  • the stylus pen further includes:
  • a detection circuit connected to the receiving electrode, and the detecting circuit is used to detect the frequency of the touch scan signal of the touch panel through the receiving electrode;
  • the detection circuit is also connected to the transmitting circuit, and the transmitting circuit is further used to generate the first electrical signal according to the frequency of the touch scanning signal, so that the frequency of the first electrical signal is the N times the frequency of the touch scan signal, where n is a positive integer.
  • the stylus pen further includes:
  • a first wake-up circuit connected to the detection circuit, the first wake-up circuit used to wake up the transmitting circuit when the detection circuit detects the frequency of the touch scan signal of the touch panel .
  • the stylus pen further includes:
  • a pressure sensor connected to the receiving electrode, the receiving electrode being at the tip of the stylus
  • a second wake-up circuit which is respectively connected to the pressure sensor and the detection circuit, and the second wake-up circuit is used to wake up when it is detected that the tip of the stylus is pressed by the pressure sensor
  • the detection circuit is used to wake up when it is detected that the tip of the stylus is pressed by the pressure sensor The detection circuit.
  • the transmitting circuit is further connected to the pressure sensor, and the transmitting circuit is further configured to generate the second electrical signal according to the pressure information obtained by the pressure sensor, so that the second The electrical signal contains the pressure information.
  • the stylus further includes a housing, the housing includes a tip through hole at the tip of the stylus, and the receiving electrode includes one end protruding from the tip through hole ,
  • the first emitter electrode and the second emitter electrode respectively include a conductor piece that is attached to the outer surface of the housing.
  • the present disclosure also provides a touch panel.
  • the touch panel includes:
  • a receiving circuit the receiving circuit is connected to each of the touch electrodes, the receiving circuit is used to receive the first electrical signal and the second electrical signal from the stylus through the plurality of touch electrodes;
  • the first electrical signal and the second electrical signal are respectively signals emitted by the stylus pen through the first emitting electrode and the second emitting electrode in different time periods, in the extending direction of the stylus pen The distance between the first emitting electrode and the second emitting electrode is greater than zero;
  • a processing circuit connected to the receiving circuit, and the processing circuit is used to detect a transmission position of the first electrical signal and the second electrical signal, and based on the first electrical signal and the first The emission position of the two electrical signals obtains the tilt angle of the stylus relative to the touch panel.
  • the receiving circuit includes:
  • a scanning sub-circuit the scanning sub-circuit is connected to at least one of the touch electrodes, and the scanning sub-circuit is used to provide a touch scan signal to the connected touch electrodes;
  • sampling sub-circuit the sampling sub-circuit is connected to each of the touch electrodes, and the sampling sub-circuit is used to sample the voltage on the plurality of touch electrodes;
  • a detection sub-circuit which is respectively connected to the sampling sub-circuit and the processing circuit, and the detection sub-circuit is used to detect that the frequency is the touch frequency based on the voltage sampling data on the plurality of touch electrodes
  • n is a positive integer.
  • the sampling sub-circuit samples the voltage on the plurality of touch electrodes at a frequency greater than the frequency of the first electrical signal.
  • the processing circuit is further configured to calculate the touch of the stylus in combination with the tilt angle of the stylus and the emission positions of the first electrical signal and the second electrical signal position.
  • the receiving circuit receives the first electrical signal and the second electrical signal by oversampling.
  • the processing circuit is further configured to extract pressure information when the tip of the stylus is pressed from the second electrical signal.
  • the processing circuit is further used to calculate the stroke strength level of the stylus in combination with the tilt angle of the stylus and the pressure information.
  • the present disclosure also provides a display device including any one of the above-mentioned touch panels.
  • the present disclosure also provides a touch sensing method.
  • the method is applied to a touch panel.
  • the touch panel includes a plurality of touch electrodes.
  • the method includes:
  • the tilt angle of the stylus relative to the touch panel is obtained based on the emission positions of the first electrical signal and the second electrical signal.
  • the stylus can respectively emit different electrical signals through the first emitting electrode and the second emitting electrode at different positions, so that the touch panel can detect two electrical signals to locate the two on the stylus.
  • the position of the electrical signal, and then the tilt angle of the stylus can be calculated, so that the present disclosure can enable the touch panel to more accurately locate the position of the tip of the stylus, which can help improve the performance of the active capacitive stylus Touch accuracy can also help realize various functions such as gesture recognition and pen tip recognition of the stylus based on the recognition of the tilt angle of the stylus.
  • FIG. 1 is a schematic structural diagram of a stylus provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the working principle of a stylus provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a calculation method of a tilt angle of a stylus provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a touch panel provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of yet another stylus provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a touch sensing method provided by an embodiment of the present disclosure.
  • the active capacitive stylus has become the most mainstream type of stylus with the advantages of high precision, low cost and high user experience.
  • the active capacitive stylus itself is a signal emission source, and the sensor of the touch screen can receive the signal sent by the active capacitive stylus to measure its azimuth coordinates. The effect of writing on paper.
  • FIG. 1 is a schematic structural diagram of a stylus provided by an embodiment of the present disclosure.
  • the stylus 100 includes a transmitting circuit 11, a first transmitting electrode 12, a second transmitting electrode 13, a receiving electrode 14 and a detection circuit 15.
  • the receiving electrode 14 is at the tip of the stylus 100, and the distance between the first emitting electrode 12 and the second emitting electrode 13 in the extending direction of the stylus 100 is a first length L1 (L1>0).
  • L1 first length L1
  • the sizes of the first emitting electrode 12 and the second emitting electrode 13 are ignored when representing the first length L1 (that is, the first emitting electrode 12 and the second emitting electrode 13 are regarded as Two geometric points).
  • the transmitting circuit 11 is connected to the first transmitting electrode 12 and the second transmitting electrode 13, respectively, and the detecting circuit 15 is connected to the receiving electrode 14 and the transmitting circuit 11, respectively.
  • FIG. 2 is a schematic diagram of the working principle of a stylus provided by an embodiment of the present disclosure. 1 and 2, in the working state, the transmitting circuit 11 is used to transmit the first electrical signal outward through the first transmitting electrode 12 in the first period, and transmit the second electrical signal outward through the second transmitting electrode 13 in the second period
  • the electrical signal enables the touch panel 200 to obtain the tilt angle A1 of the stylus 100 relative to the touch panel 200 according to the received first electrical signal and second electrical signal.
  • the first period and the second period are separated from each other, and the frequency of the first electrical signal is different from the frequency of the second electrical signal.
  • the first electrical signal and/or the second electrical signal may be transmitted in a manner that the active capacitive stylus sends a touch signal to the touch screen.
  • FIG. 3 is a schematic diagram of a calculation method of a tilt angle of a stylus provided by an embodiment of the present disclosure.
  • the touch panel 200 may include several touch electrodes 21, and may receive electrical signals from the stylus 100 through the several touch electrodes 21, and accordingly The position coordinates of the touch electrode 21 corresponding to the emission position of the electrical signal on the plane where the touch panel 200 is located are obtained.
  • the touch panel 200 can receive the first electrical signal and the second electrical signal respectively, and accordingly obtain the coordinates of the projection points of the first emitting electrode 12 and the second emitting electrode 13 on the plane where the touch panel 200 is located ( X1, Y1) and (X2, Y2). It can be understood from FIG.
  • the distance between the coordinates (X1, Y1) and (X2, Y2) of the projection point will continue to increase.
  • the size of the inclination angle A1 corresponding to the value of the distance between the coordinates of each projection point can be obtained in advance and configured in the touch panel 200, so that the touch panel 200 can receive the first electrical signal and the Two electrical signals and calculate the coordinates of the two projection points and the distance between them to obtain the tilt angle A1 of the stylus 100 relative to the touch panel 200.
  • the touch panel 200 can also use the obtained inclination angle A1 of the stylus 100 to reflect the change of the user's gesture and the change of the user's stroke during writing. Therefore, the embodiments of the present disclosure can help to realize the gesture recognition and the stroke of the stylus, for example.
  • Various functions such as recognition.
  • the distance between the coordinates (X1, Y1) and (X2, Y2) of the projection point will only continue with the decrease of the tilt angle A1 when the first length L1 is greater than zero Increase, therefore, when the first emitting electrode 12 and the second emitting electrode 13 on the stylus 100 are provided, the distance between the two to the tip of the stylus 100 should be avoided to be the same.
  • the first emission electrode 12 and the second emission electrode 13 on the stylus 100 can be designed by comprehensively considering factors such as signal-to-noise ratio, signal interference, line arrangement, etc.
  • the touch panel 200 may also need to learn about the first emitting electrode on the stylus 100
  • the data of the positional relationship between 12 and the second emitting electrode 13 may be, for example, the size of the tilt angle A1 corresponding to the value of the distance between the coordinates of each projection point pre-configured in the touch panel 200 described above,
  • other parameters that are pre-configured in the touch panel 200 and can calculate the tilt angle A1 according to the coordinates of the projection point such as the first emitting electrode 12 and the second emitting electrode 13 in the three-dimensional coordinate system of the stylus 100 The coordinates of the geometric center of ).
  • the data in any of the above forms can also be modulated in the first electrical signal and/or the second electrical signal, so that the touch panel 200 can demodulate the first electrical signal and/or the second electrical signal Get these data.
  • the touch panel 200 can also detect the tilt angle A1 without the above data.
  • the touch panel 200 can determine the tilt angle A1 of the stylus by tracking the change in the distance between the projection position of the first electrical signal and the projection position of the second electrical signal.
  • the tilt angle A1 determined any time after the first time of the touch panel 200 is a degree of change from the tilt angle A1 determined for the first time.
  • the touch panel 200 may include a first receiving circuit 22, a second receiving circuit 23, a processing circuit 24 and a plurality of touch electrodes 21.
  • the multiple touch electrodes 21 include multiple rows of first touch electrodes and multiple columns of second touch electrodes, each of the first touch electrodes and each second touch electrode includes multiple diamond-shaped conductive electrodes Patterns and conductor lines connecting these diamond-shaped conductive patterns, each first touch electrode is connected to the first receiving circuit 22, each second touch electrode is connected to the second receiving circuit 23, and the processing circuit 24 is The first receiving circuit 22 and the second receiving circuit 23 are connected.
  • the processing circuit 24 can receive electrical signals on multiple rows of first touch electrodes through the first receiving circuit 22 to determine which rows have sensed touch actions, and can receive multiple columns of second touch electrodes through the second receiving circuit 23 Electrical signals to determine which columns sensed the touch action, thereby enabling touch sensing.
  • the receiving circuit composed of the first receiving circuit 22 and the second receiving circuit 23 is used to receive the first electrical signal and the second electrical signal from the stylus 100 through a plurality of touch electrodes
  • the processing circuit 24 It is used to detect the emission positions of the first electrical signal and the second electrical signal, and obtain the tilt angle of the stylus relative to the touch panel based on the emission positions of the first electrical signal and the second electrical signal.
  • the emission position may include, for example, the coordinates (X1, Y1) and (X2, Y2) of the above projection point, combined with the above-mentioned positional relationship between the first emission electrode 12 and the second emission electrode 13 on the stylus 100
  • the processing circuit 24 can process the tilt angle A1 according to any of the above methods.
  • the processing circuit 24 provides touch scan signals of a certain frequency to the first rows of touch electrodes through the first receiving circuit 22 as an excitation to receive electrical signals on the second rows of touch electrodes, and then passes The second receiving circuit 23 provides the touch scan signals to multiple columns of second touch electrodes as an incentive to receive electrical signals on multiple rows of first touch electrodes, and repeats this process to achieve touch sensing.
  • the detection circuit 15 may be configured to detect the frequency of the touch scan signal of the touch panel 200 through the receiving electrode 14, and the transmission circuit 11 may be configured to generate a first electrical signal according to the frequency of the touch scan signal.
  • the frequency of the first electrical signal is n times the frequency of the touch scan signal, and n is a positive integer.
  • the touch panel 200 can recognize an electrical signal with a frequency n times that of the touch scan signal as an electrical signal emitted by the stylus 100, and thus can distinguish it from electrical signals from other sources, It helps to achieve the effect of using the stylus 100 while being able to touch with a finger.
  • the functions of providing touch scan signals and detecting the frequency of electrical signals may be implemented by the receiving circuit.
  • the receiving circuit may include: a scanning sub-circuit connected to at least one touch electrode and used to provide a touch scan signal to the connected touch electrode, connected to each touch electrode and used to perform voltage on multiple touch electrodes A sampling sub-circuit for sampling, and a detection sub-circuit respectively connected to the sampling sub-circuit and the processing circuit, the detection sub-circuit is used to detect the frequency of the touch scan signal based on the voltage sampling data on the plurality of touch electrodes 21
  • the first electrical signal is n times times
  • a message (n is a positive integer) that the stylus 100 is detected is sent to the processing circuit 24.
  • the receiving circuit and the processing circuit 24 can also perform the above-mentioned functions in cooperation with each other.
  • the sampling sub-circuit may sample the voltage on the plurality of touch electrodes 21 at a frequency greater than the frequency of the first electrical signal, for example, by oversampling the high-frequency pulse signal for each touch electrode 21
  • the electrical signals on are digitally sampled separately to help reduce random noise interference.
  • at least one of filtering, shaping, amplifying, and demodulating the first electrical signal or the second electrical signal may be performed according to application requirements.
  • the processing circuit 24 is also used to calculate the touch position of the stylus 100 in combination with the tilt angle A1 of the stylus 100 and the emission positions of the first and second electrical signals.
  • a scale factor X1 corresponding to each value of the tilt angle A1 is pre-configured in the touch panel 200.
  • the scale factor X1 is the touch position of the stylus 100 on the touch panel 200
  • the distance from the position coordinate on the plane to (X1, Y1) is higher than the distance between (X1, Y1) and (X2, Y2).
  • the processing circuit 24 can obtain the position coordinates of the touch position of the stylus 100 by positioning on the extension line connecting (X1, Y1) and (X2, Y2) through geometric calculation. It should be understood that the corresponding relationship between the scale factor X1 and the tilt angle A1 can be measured and configured in the touch panel 200 by way of experimental calibration and/or theoretical calculation.
  • FIG. 5 is a schematic structural diagram of yet another stylus provided by an embodiment of the present disclosure.
  • the stylus 100 shown in FIG. 5 further includes a first wake-up circuit 16, a pressure sensor 17, and a second wake-up circuit 18, and shows the stylus 100’s
  • the casing 19 and the casing 19 are used to extend the tip through hole of the receiving electrode 14 at the tip of the stylus 100.
  • the pressure sensor 17 is connected to the receiving electrode 14.
  • the receiving electrode 14 is a conductor rod extending from one end of the tip through hole.
  • the first transmitting electrode 12 and the second transmitting electrode 13 respectively include a surface that is attached to the outer surface of the housing 19. Conductor piece.
  • both the above-mentioned transmitting circuit 14 and the detecting circuit 15 can enter the sleep state when idle, for example, the state where the pressure on the tip of the stylus 100 is detected to be zero at the pressure sensor 17 exceeds a preset duration (such as 60 Seconds), the operation of switching the transmitting circuit 14 and the detecting circuit 15 to the sleep state can be triggered thereby to save the power consumption of the stylus 100.
  • the second wake-up circuit 18 connected to the pressure sensor 17 and the detection circuit 15 respectively is configured to wake up the detection circuit 15 when it is detected by the pressure sensor 17 that the tip of the stylus 100 is pressed, so that the detection The circuit 15 starts to detect the touch scan signal of the touch panel 200 through the receiving electrode 14.
  • the first wake-up circuit 16 connected to the detection circuit 15 and the transmission circuit 14 respectively is configured to wake up the transmission circuit 14 when the detection circuit 15 detects the frequency of the touch scan signal of the touch panel 200, so that the transmission circuit 14 starts to be based on the detected
  • the frequency of the touch scan signal emits the first electrical signal and the second electrical signal outward.
  • the stylus 100 can only retain the pressure sensing function in the idle state, while other parts can reduce power consumption through sleep, and can quickly return to the working state from the wake-up process when the user starts writing , So as to achieve a good balance between use effect and power loss.
  • the transmitting circuit 14 is connected to the pressure sensor 17, and the transmitting circuit 14 is further configured to generate the second electrical signal according to the pressure information obtained by the pressure sensor 17, so that the second electrical signal includes the Pressure information.
  • the transmitting circuit 14 may adopt a conventional signal modulation method to make the generated second electrical signal carry the pressure information obtained by the pressure sensor 17.
  • the processing circuit 24 in the touch panel 200 is further configured to extract the pressure information when the tip of the stylus is pressed from the second electrical signal, for example, using a demodulation method corresponding to the conventional signal modulation method Extract the pressure information of the second electrical signal.
  • the processing circuit 24 may be further used to calculate the stroke strength level of the stylus 100 in combination with the tilt angle A1 of the stylus 100 and the pressure information. For example, when the pressure at the tip of the stylus 100 is the same, the smaller the inclination angle A1, the greater the touch strength level of the stylus 100; and when the inclination angle A1 is the same, the tip of the stylus 100 The greater the amount of pressure received at the location, the greater the touch strength level of the stylus 100. Based on this, the touch force level corresponding to the combination of each pressure range and the value range of the inclination angle A1 can be pre-configured in the touch panel 200, so as to achieve the user's stroke force when writing with the stylus 100 Identification, to help realize more relevant practical functions.
  • the circuits other than the pressure sensor 17 may be implemented in hardware and/or software.
  • the stylus 100 includes a microprocessor (MCU) and a power supply circuit.
  • the microprocessor pre-stores a code program for implementing the functions of the above circuits.
  • the power supply of the power supply circuit Under supply, the microprocessor can implement the functions of the above circuits by executing these code programs.
  • at least one of the circuits mentioned in the stylus 100 may be implemented in the form of a logic gate circuit.
  • each receiving circuit and processing circuit 24 may be implemented in hardware and/or software.
  • the high signal-to-noise ratio and high processing speed characteristics of digital filtering and digital sampling can achieve faster and higher precision electrical signals Acquisition, and can simplify the design of the power circuit by using a smaller number and a lower voltage value.
  • the implementation of the present disclosure The way may not be limited to this.
  • different identification codes may be programmed into the first electrical signal and the second electrical signal, respectively, so that the touch panel 200 can distinguish the first electrical signal from the second electrical signal by identifying the identification code.
  • the transmission power of the first electrical signal and the second electrical signal may have a significant difference, so that the touch panel 200 can distinguish the first electrical signal from the second electrical signal by detecting the power of the electrical signal.
  • FIG. 6 is a schematic flowchart of a touch sensing method provided by an embodiment of the present disclosure. Referring to FIG. 6, this method can be applied to any of the above-mentioned touch panels 200 including a plurality of touch electrodes 21, and may include the following processes.
  • step 101 the first electrical signal and the second electrical signal from the stylus are received through the plurality of touch electrodes.
  • the first electrical signal and the second electrical signal are respectively signals emitted by the stylus through the first emitting electrode and the second emitting electrode in different time periods, in the extending direction of the stylus
  • the distance between the first transmitting electrode and the second transmitting electrode is greater than zero.
  • step 102 the transmission positions of the first electrical signal and the second electrical signal are detected.
  • step 103 the tilt angle of the stylus relative to the touch panel is obtained based on the emission positions of the first electrical signal and the second electrical signal.
  • embodiments of the present disclosure provide a display device including any of the above-mentioned touch panels.
  • the display device in the embodiments of the present disclosure may be any product or component having a display function, such as a display panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigator.
  • the stylus in the embodiments of the present disclosure can respectively emit different electrical signals through the first emitting electrode and the second emitting electrode at different positions, so that the touch panel can locate the touch by detecting two electrical signals
  • the transmission positions of the two electrical signals on the control pen can further calculate the inclination angle of the stylus, thus the embodiments of the present disclosure can enable the touch panel to more accurately locate the position of the tip of the stylus, which can help improve
  • the touch accuracy of the active capacitive stylus can also help realize various functions such as gesture recognition and pen tip recognition of the stylus based on the recognition of the inclination angle of the stylus.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种触控笔(100)、触控面板(200)、显示装置及触控感测方法,所述触控笔(100)包括:第一发射电极(12);第二发射电极(13),在所述触控笔(100)的延伸方向上所述第一发射电极(12)与所述第二发射电极(13)之间的距离大于零;以及,发射电路(11),发射电路(11)分别与第一发射电极(12)和第二发射电极(13)相连,发射电路(11)用于通过第一发射电极(12)向外发射第一电信号,通过第二发射电极(13)向外发射第二电信号,以使触控面板(200)根据接收到的第一电信号和第二电信号确定触控笔(100)相对于触控面板(200)的倾斜角度(A1)。由此,主动式电容触控笔(100)的触控精度可以得到提升。

Description

触控笔、触控面板、显示装置及触控感测方法
本公开要求于2019年01月02日提交的申请号为201910002792.9、发明名称为“触控笔、触控面板、显示装置及触控感测方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及触控领域,特别涉及一种触控笔、触控面板、显示装置及触控感测方法。
背景技术
随着智能手机和平板电脑的普及,越来越多的应用需要借助触控笔来实现高精度的触摸,对于触控笔的性能要求也越来越高。
发明内容
本公开提供一种触控笔、触控面板、显示装置及触控感测方法。
第一方面,本公开提供了一种触控笔,所述触控笔包括:
第一发射电极;
第二发射电极,在所述触控笔的延伸方向上所述第一发射电极与所述第二发射电极之间的距离大于零;以及,
发射电路,所述发射电路分别与所述第一发射电极和所述第二发射电极相连,所述发射电路用于在第一时段内通过所述第一发射电极向外发射第一电信号,在第二时段内通过所述第二发射电极向外发射第二电信号,以使触控面板根据接收到的所述第一电信号和所述第二电信号得到所述触控笔相对于所述触控面板的倾斜角度;
其中,所述第一时段与所述第二时段彼此分开,所述第一电信号的频率与所述第二电信号的频率不同。
在一种可能的实现方式中,所述触控笔还包括:
接收电极;
检测电路,所述检测电路与所述接收电极相连,所述检测电路用于通过所述接收电极检测所述触控面板的触摸扫描信号的频率;
其中,所述检测电路还与所述发射电路相连,所述发射电路还用于根据所述触控扫描信号的频率生成所述第一电信号,使得所述第一电信号的频率是所述触控扫描信号的频率的n倍,所述n为正整数。
在一种可能的实现方式中,所述触控笔还包括:
第一唤醒电路,所述第一唤醒电路与所述检测电路相连,所述第一唤醒电路用于在所述检测电路检测到所述触控面板的触摸扫描信号的频率时唤醒所述发射电路。
在一种可能的实现方式中,所述触控笔还包括:
压力传感器,所述压力传感器与所述接收电极相连,所述接收电极在所述触控笔的笔尖处;
第二唤醒电路,所述第二唤醒电路分别连接所述压力传感器和所述检测电路,所述第二唤醒电路用于在通过所述压力传感器检测到所述触控笔的笔尖受到按压时唤醒所述检测电路。
在一种可能的实现方式中,所述发射电路还与所述压力传感器相连,所述发射电路还用于根据所述压力传感器得到的压力信息生成所述第二电信号,使得所述第二电信号中包含所述压力信息。
在一种可能的实现方式中,所述触控笔还包括外壳,所述外壳在所述触控笔的笔尖处包括尖端通孔,所述接收电极包括一端从所述尖端通孔中伸出的导体棒,所述第一发射电极和所述第二发射电极分别包括一个与所述外壳的外表面相贴合的导体片。
第二方面,本公开还提供了一种触控面板,所述触控面板包括:
多个触控电极;
接收电路,所述接收电路与每一所述触控电极相连,所述接收电路用于通过所述多个触控电极接收来自触控笔的第一电信号和第二电信号;其中,所述第一电信号和所述第二电信号分别是所述触控笔通过第一发射电极和第二发射电极在不同时段内向外发射的信号,在所述触控笔的延伸方向上所述第一发射电极与所述第二发射电极之间的距离大于零;
处理电路,所述处理电路与所述接收电路相连,所述处理电路用于检测所述第一电信号和所述第二电信号的发射位置,并基于所述第一电信号和所述第二电信号的发射位置得到所述触控笔相对于所述触控面板的倾斜角度。
在一种可能的实现方式中,所述接收电路包括:
扫描子电路,所述扫描子电路连接至少一个所述触控电极,所述扫描子电路用于向所连接的所述触控电极提供触摸扫描信号;
采样子电路,所述采样子电路与每一所述触控电极相连,所述采样子电路用于对所述多个触控电极上的电压进行采样;
检测子电路,所述检测子电路分别连接所述采样子电路和所述处理电路,所述检测子电路用于在基于所述多个触控电极上的电压采样数据检测到频率为所述触控扫描信号的频率的n倍的所述第一电信号时,向所述处理电路发送检测到所述触控笔的消息,所述n为正整数。
在一种可能的实现方式中,所述采样子电路对所述多个触控电极上的电压进行采样的频率大于所述第一电信号的频率。
在一种可能的实现方式中,所述处理电路还用于结合所述触控笔的倾斜角度以及所述第一电信号和所述第二电信号的发射位置计算所述触控笔的触摸位置。
在一种可能的实现方式中,所述接收电路采用过采样的方式接收所述第一电信号和所述第二电信号。
在一种可能的实现方式中,所述处理电路还用于从所述第二电信号中提取出所述触控笔的笔尖受到按压时的压力信息。
在一种可能的实现方式中,所述处理电路还用于结合所述触控笔的倾斜角度和所述压力信息计算所述触控笔的笔触力度等级。
第三方面,本公开还提供了一种显示装置,所述显示装置包括上述任意一种的触控面板。
第四方面,本公开还提供了一种触控感测方法,所述方法应用于触控面板,所述触控面板包括多个触控电极,所述方法包括:
通过所述多个触控电极接收来自触控笔的第一电信号和第二电信号;其中,所述第一电信号和所述第二电信号分别是所述触控笔通过第一发射电极和第二发射电极在不同时段内向外发射的信号,在所述触控笔的延伸方向上所述第一 发射电极与所述第二发射电极之间的距离大于零;
检测所述第一电信号和所述第二电信号的发射位置;
基于所述第一电信号和所述第二电信号的发射位置得到所述触控笔相对于所述触控面板的倾斜角度。
由上述技术方案可知,触控笔能够分别通过不同位置处的第一发射电极和第二发射电极发射不同的电信号,使得触控面板能够通过检测两个电信号来定位触控笔上的两个电信号的发射位置,进而可以计算得到触控笔的倾斜角度,由此本公开可以使得触控面板能更加精确地定位触控笔的笔尖的位置,可以帮助提升主动式电容触控笔的触控精度,还可以基于触控笔的倾斜角度的识别帮助实现例如触控笔的手势识别和笔锋识别等丰富多彩的功能。
附图说明
图1是本公开一个实施例提供的触控笔的结构示意图;
图2是本公开一个实施例提供的触控笔的工作原理示意图;
图3是本公开一个实施例提供的触控笔的倾斜角度的计算方式示意图;
图4是本公开一个实施例提供的触控面板的结构示意图;
图5是本公开一个实施例提供的又一种触控笔的结构示意图;
图6是本公开一个实施例提供的触摸感测方法的流程示意图。
具体实施方式
为使本公开的原理和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
相关技术中,主动式电容触控笔凭借高精度、低成本和高用户体验的优势, 成为目前最主流的触控笔类型。不同于被动式电容触控笔,主动式电容触控笔自身就是一个信号发射源,触摸屏的传感器可以接收主动式电容触控笔发出的信号,从而测算出其方位坐标,如此实现类似于手写笔在纸面上书写的效果。
图1是本公开一个实施例提供的触控笔的结构示意图。参见图1,触控笔100包括发射电路11、第一发射电极12、第二发射电极13、接收电极14以及检测电路15。其中,接收电极14在触控笔100的笔尖处,在触控笔100的延伸方向上第一发射电极12与第二发射电极13之间的距离为第一长度L1(L1>0)。需要说明的是,为描述方便,在表示第一长度L1时忽略了第一发射电极12和第二发射电极13的大小(即将第一发射电极12和第二发射电极13分别视为空间中的两个几何点)。此外,发射电路11分别与第一发射电极12和第二发射电极13相连,检测电路15分别与接收电极14以及发射电路11相连。
图2是本公开一个实施例提供的触控笔的工作原理示意图。参见图1和图2,工作状态下发射电路11用于在第一时段内通过第一发射电极12向外发射第一电信号,在第二时段内通过第二发射电极13向外发射第二电信号,以使触控面板200能够根据接收到的第一电信号和第二电信号得到触控笔100相对于触控面板200的倾斜角度A1。其中,第一时段与第二时段彼此分开,第一电信号的频率与第二电信号的频率不同。示例性地,可以采用主动式电容触控笔向触摸屏发送触控信号的方式来发射上述第一电信号和/或第二电信号。
图3是本公开一个实施例提供的触控笔的倾斜角度的计算方式示意图。参见图1、图2和图3,在一个示例中:触控面板200可以包括若干个触控电极21,并可以通过若干个触控电极21接收触控笔100发出的电信号,并依此得到电信号的发射位置所对应的触控电极21在触控面板200所在平面上的位置坐标。由此,触控面板200能够分别接收第一电信号和第二电信号,并依此得到上述第一发射电极12与第二发射电极13在触控面板200所在平面上的投影点的坐标(X1,Y1)和(X2,Y2)。根据图3可以理解的是,随着倾斜角度A1从90°到0°的不断减小,投影点的坐标(X1,Y1)和(X2,Y2)之间的距离会随之不断增大。基于此,可以预先获取每个投影点的坐标之间的距离的数值所对应的倾斜角度A1的大小并配置在触控面板200中,使得触控面板200能够通过分别接收第一电信号和第二电信号并计算两个投影点的坐标及其之间的距离来得到触控笔100相对于触控面板200的倾斜角度A1。
应理解的是,虽然仅仅基于投影点的坐标(X1,Y1)和(X2,Y2)中的一个可能已经足以使触控面板200定位触控笔100的笔尖的大致位置,但是倾斜角度A1以及投影点的坐标(X1,Y1)和(X2,Y2)相比而言显然能够更全面地反映触控笔100与触控面板200在三维空间内彼此之间的关系,并可以使得触控面板200能够更加精确地定位触控笔100的笔尖的位置,因此本公开实施例可以帮助提升主动式电容触控笔的触控精度。此外,触控面板200还可以利用所得到的触控笔100的倾斜角度A1反映用户手势的变化以及用户书写时笔锋的变化,因此本公开实施例可以帮助实现例如触控笔的手势识别和笔锋识别等丰富多彩的功能。
还应理解的是,由于只有在上述第一长度L1大于零的情况下投影点的坐标(X1,Y1)和(X2,Y2)之间的距离才会随着倾斜角度A1的减小而不断增大,因此在设置触控笔100上的第一发射电极12和第二发射电极13时应当避免两者到触控笔100的笔尖的距离相同。在满足这一条件的基础上,可以在不同应用场景中综合考虑信噪比、信号干扰、线路排布等等的因素来设计触控笔100上的第一发射电极12和第二发射电极13,而不需要仅限于上述示例中所示出的靠近的触控笔100的笔尖位置处的两个导体环的形式,其他可选的形式例如是触控笔100的笔身位置处的导体片,或者隐藏在绝缘外壳内的导体块,等等。
还应理解的是,为了得到倾斜角度A1,触控面板200除了需要定位第一电信号和第二电信号分别对应的投影位置之外,还可能需要获知有关触控笔100上第一发射电极12与第二发射电极13之间的位置关系的数据,其可以例如是上述预先配置在触控面板200中的与每个投影点的坐标之间的距离的数值对应的倾斜角度A1的大小,还可以例如是预先配置在触控面板200中的其他可以配合投影点的坐标计算出倾斜角度A1的参数(例如在触控笔100的三维坐标系下第一发射电极12和第二发射电极13的几何中心的坐标)。在又一示例中,上述任意一种形式的数据还可以调制在第一电信号和/或第二电信号当中,使得触控面板200能够通过解调第一电信号和/或第二电信号得到这些数据。如此,可以省去在触控面板200中进行上述预先配置的麻烦,还可以使触控面板200能同时支持多种不同规格的触控笔100。当然,触控面板200还可以在没有上述数据的情况下实现倾斜角度A1的检测。例如,触控面板200可以通过追踪第一电信号投影位置和第二电信号的投影位置之间的距离变化来确定触控笔的倾斜角度 A1。在一个示例中,触控面板200将第一次确定的倾斜角度A1记为10.00(一个预定的常数),之后再通过计算倾斜角度A1的变化量以10.00为基础计算变化后的倾斜角度A1,比如倾斜角度A1变为原来的1.5倍之后可以计算得到变化后的倾斜角度A1为10.00×1.5=15.00,或者倾斜角度A1变化+3.00之后可以计算得到变化后的倾斜角度A1为10.00+3.00=13.00。此时,触控面板200第一次之后任一次确定的倾斜角度A1是相比于第一次确定的倾斜角度A1的变化程度。
图4是本公开一个实施例提供的触控面板的结构示意图。参见图4,触控面板200可以包括第一接收电路22、第二接收电路23、处理电路24和多个触控电极21。本示例中,所述多个触控电极21包括多行第一触控电极和多列第二触控电极,每个第一触控电极和每个第二触控电极均包括多个菱形导电图案和将这些菱形导电图案串接起来的导体线,每个第一触控电极均与第一接收电路22相连,每个第二触控电极均与第二接收电路23相连,处理电路24分别连接第一接收电路22和第二接收电路23。如此,处理电路24可以通过第一接收电路22接收多行第一触控电极上的电信号从而确定哪些行感应到了触摸动作,并可以通过第二接收电路23接收多列第二触控电极上的电信号来确定哪些列感应到了触摸动作,由此可以实现触摸感测。
应理解的是,由第一接收电路22和第二接收电路23组成的接收电路用于通过多个触控电极接收来自触控笔100的第一电信号和第二电信号,而处理电路24则用于检测第一电信号和第二电信号的发射位置,并基于第一电信号和第二电信号的发射位置得到触控笔相对于触控面板的倾斜角度。其中,所述发射位置可以例如包括上述投影点的坐标(X1,Y1)和(X2,Y2),结合上述有关触控笔100上第一发射电极12与第二发射电极13之间的位置关系的数据,处理电路24可以按照上述任一种方式处理得到上述倾斜角度A1。
在一个示例中,所述处理电路24通过第一接收电路22向多行第一触控电极提供一定频率的触摸扫描信号作为接收多列第二触控电极上的电信号的激励,之后再通过第二接收电路23向多列第二触控电极提供所述触摸扫描信号作为接收多行第一触控电极上的电信号的激励,并重复这一过程,以实现触摸感测。而上述检测电路15可以被配置为通过接收电极14检测触控面板200的触摸扫中描信号的频率,同时上述发射电路11被配置为根据所述触控扫描信号的 频率生成第一电信号,使得第一电信号的频率是触控扫描信号的频率的n倍,n为正整数。如此,触控面板200能够在接收到频率是触控扫描信号的n倍的电信号时将其识别为触控笔100所发射的电信号,进而能够将其与其他来源的电信号加以区分,帮助实现使用触控笔100的同时也能用手指进行触控的效果。
在又一示例中,提供触摸扫描信号和检测电信号频率的功能可以由接收电路来实现。例如,接收电路可以包括:连接至少一个触控电极并用于向所连接的触控电极提供触摸扫描信号的扫描子电路,与每一触控电极相连并用于对多个触控电极上的电压进行采样的采样子电路,以及分别连接采样子电路和处理电路的检测子电路,所述检测子电路用于在基于多个触控电极21上的电压采样数据检测到频率为触控扫描信号的频率的n倍的第一电信号时,向处理电路24发送检测到触控笔100的消息(n为正整数)。当然,接收电路和处理电路24也可以分工协作地完成上述功能。
在一个示例中,上述采样子电路对多个触控电极21上的电压进行采样的频率可以大于第一电信号的频率,例如采用过采样的方式基于高频脉冲信号对每个触控电极21上的电信号分别进行数字采样,从而帮助减小随机噪声的干扰。在采样之前或之后,还可以视应用需求对第一电信号或第二电信号进行滤波、整形、放大、解调中的至少一种操作。
在一个示例中,处理电路24还用于结合触控笔100的倾斜角度A1以及第一电信号和第二电信号的发射位置计算触控笔100的触摸位置。作为一种示例,参见图3,触控面板200中预先配置有与倾斜角度A1的每个数值一一对应的比例系数X1,该比例系数X1为触控笔100的触摸位置在触控面板200所在平面上的位置坐标到(X1,Y1)的距离比上(X1,Y1)与(X2,Y2)之间的距离。由此,在查询得到该比例系数X1之后,处理电路24可以通过几何计算在(X1,Y1)与(X2,Y2)连线的延长线上定位得到触控笔100的触摸位置的位置坐标。应理解的是,上述比例系数X1与倾斜角度A1的数值对应关系可以例如通过实验标定和/理论计算的方式测得并配置到触控面板200中。
图5是本公开一个实施例提供的又一种触控笔的结构示意图。参见图5,相比于图1所示的结构,图5所示的触控笔100还包括第一唤醒电路16、压力传感器17、第二唤醒电路18,并示出了触控笔100的外壳19及外壳19在触控笔100的笔尖处用于伸出接收电极14的尖端通孔。其中,压力传感器17与接收电 极相连14,接收电极14为一端从上述尖端通孔中伸出的导体棒,第一发射电极12和第二发射电极13分别包括一个与外壳19的外表面相贴合的导体片。
在一个示例中,上述发射电路14和检测电路15均可以在空闲时进入休眠状态,例如在压力传感器17处检测到触控笔100的笔尖受到的压力为零的状态超过预设时长(比如60秒)时,可以由此触发将发射电路14和检测电路15切换至休眠状态的操作,以节省触控笔100的使用功耗。在一种唤醒方式的示例中,分别连接压力传感器17和检测电路15的第二唤醒电路18被配置为在通过压力传感器17检测到触控笔100的笔尖受到按压时唤醒检测电路15,使得检测电路15开始通过接收电极14检测触控面板200的触控扫描信号。而分别连接检测电路15和发射电路14的第一唤醒电路16被配置为在检测电路15检测到触控面板200的触摸扫描信号的频率时唤醒发射电路14,使得发射电路14开始基于检测到的触摸扫描信号的频率向外发射第一电信号和第二电信号。基于上述休眠机制,触控笔100可以在空闲状态下仅保留压力传感的功能,而其他部分均可以通过休眠来降低功耗,并可以在用户开始书写时由上述唤醒过程迅速恢复至工作状态,从而很好地取得使用效果与功率损耗之间的平衡。
在一个示例中,发射电路14与压力传感器17相连,发射电路14还被配置为根据所述压力传感器17得到的压力信息生成所述第二电信号,使得所述第二电信号中包含所述压力信息。例如,发射电路14可以采用约定的信号调制方式使生成的第二电信号中携带压力传感器17得到的压力信息。相应地,触控面板200中的处理电路24还被配置为从第二电信号中提取出触控笔的笔尖受到按压时的压力信息,例如采用约定的信号调制方式所对应的解调方式来提取出第二电信号的压力信息。此外,所述处理电路24可以还用于结合所述触控笔100的倾斜角度A1和所述压力信息计算所述触控笔100的笔触力度等级。例如,在触控笔100的笔尖处受到的压力大小相同时,倾斜角度A1越小,所述触控笔100的笔触力度等级越大;而在倾斜角度A1相同时,触控笔100的笔尖处受到的压力大小越大,所述触控笔100的笔触力度等级越大。基于此,可以依此在触控面板200中预先配置各个压力大小区间以及倾斜角度A1的数值区间的组合所对应的笔触力度等级,从而由此实现用户使用触控笔100进行书写时的笔触力度的识别,帮助实现更多相关的实用功能。
需要说明的是,在上述任意一种触控笔100的示例中,除压力传感器17以 外的各电路均可以采用硬件和/或软件的方式实现。在一个软件实现方式示例中,所述触控笔100包括一微处理器(MCU)和一电源电路,该微处理器中预先存储有上述各电路的功能实现的代码程序,在电源电路的电源供应下,微处理器可以通过执行这些代码程序实现上述各电路的功能。在一个硬件实现方式示例中,触控笔100中所述及的电路中的至少一个可以采用逻辑门电路的形式实现。类似地,在上述任意一种触控面板200的示例中,各接收电路和处理电路24均可以采用硬件和/或软件的方式实现。应理解的是,在通过软件方式实现第一电信号和第二电信号的处理时,利用数字滤波和数字采样的高信噪比和高处理速度特性可以实现更快且更高精度的电信号采集,并可以通过使用数量更少、电压值更低的电压来简化电源电路的设计。
还需要说明的是,虽然上文中均以“第一电信号与第二电信号频率不同”且“第一电信号与第二电信号的发射时段不同”的情况作为示例,但本公开的实施方式可以不仅限于此。例如,可以分别在第一电信号与第二电信号中编入不同的标识码,以使触控面板200能够通过识别标识码来区分第一电信号和第二电信号。或者,第一电信号与第二电信号的发射功率可以具有明显差异,以使触控面板200能够通过检测电信号的功率来区分第一电信号和第二电信号。当然,还可以参考相关技术中其他能够实现电信号区分的方式来实现本公开中第一电信号与第二电信号之间的区分,在此不再一一赘述。
图6是本公开一个实施例提供的触摸感测方法的流程示意图。参见图6,该方法可以应用于上述任一种包括多个触控电极21的触摸面板200,并可以包括以下过程。
在步骤101中,通过所述多个触控电极接收来自触控笔的第一电信号和第二电信号。
其中,所述第一电信号和所述第二电信号分别是所述触控笔通过第一发射电极和第二发射电极在不同时段内向外发射的信号,在所述触控笔的延伸方向上所述第一发射电极与所述第二发射电极之间的距离大于零。
在步骤102中,检测所述第一电信号和所述第二电信号的发射位置。
在步骤103中,基于所述第一电信号和所述第二电信号的发射位置得到所述触控笔相对于所述触控面板的倾斜角度。
可以理解的是,上文中所述的任意一种触控面板200的工作原理均可以视 为上述方法的一种实现方式示例,故相应步骤的可选实现方式可以根据上文进行理解,在此不再一一赘述。
基于同样的公开构思,本公开实施例提供一种显示装置,该显示装置包括上述任意一种的触控面板。本公开实施例中的显示装置可以为:显示面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可理解的是,本公开实施例中的触控笔能够分别通过不同位置处的第一发射电极和第二发射电极发射不同的电信号,使得触控面板能够通过检测两个电信号来定位触控笔上的两个电信号的发射位置,进而可以计算得到触控笔的倾斜角度,由此本公开实施例可以使得触控面板能更加精确地定位触控笔的笔尖的位置,可以帮助提升主动式电容触控笔的触控精度,还可以基于触控笔的倾斜角度的识别帮助实现例如触控笔的手势识别和笔锋识别等丰富多彩的功能。
在可能的范围内,上述各示例所说明的不同方面的技术要素可以相互组合。而且,以上所述仅为本公开的实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开所附权利要求的范围之内。

Claims (16)

  1. 一种触控笔,包括:
    第一发射电极;
    第二发射电极,在所述触控笔的延伸方向上所述第一发射电极与所述第二发射电极之间的距离大于零;以及,
    发射电路,所述发射电路分别与所述第一发射电极和所述第二发射电极相连,所述发射电路用于通过所述第一发射电极发射第一电信号,通过所述第二发射电极发射第二电信号,以使触控面板根据接收到的所述第一电信号和所述第二电信号确定所述触控笔相对于所述触控面板的倾斜角度。
  2. 根据权利要求1所述的触控笔,还包括:
    接收电极;
    检测电路,所述检测电路与所述接收电极相连,所述检测电路用于通过所述接收电极检测所述触控面板的触摸扫描信号的频率;
    其中,所述检测电路还与所述发射电路相连,所述发射电路还用于根据所述触控扫描信号的频率生成所述第一电信号,使得所述第一电信号的频率是所述触控扫描信号的频率的n倍,所述n为正整数。
  3. 根据权利要求2所述的触控笔,还包括:
    第一唤醒电路,所述第一唤醒电路与所述检测电路相连,所述第一唤醒电路用于在所述检测电路检测到所述触控面板的触摸扫描信号的频率时唤醒所述发射电路。
  4. 根据权利要求2所述的触控笔,还包括:
    压力传感器,所述压力传感器与所述接收电极相连,所述接收电极在所述触控笔的笔尖处;
    第二唤醒电路,所述第二唤醒电路分别连接所述压力传感器和所述检测电路,所述第二唤醒电路用于在通过所述压力传感器检测到所述触控笔的笔尖受到按压时唤醒所述检测电路。
  5. 根据权利要求4所述的触控笔,其中,所述发射电路还与所述压力传感器相连,所述发射电路还用于根据所述压力传感器得到的压力信息生成所述第二电信号,使得所述第二电信号中包含所述压力信息。
  6. 根据权利要求2至5中任一项所述的触控笔,其中,所述触控笔还包括外壳,所述外壳在所述触控笔的笔尖处包括尖端通孔,所述接收电极包括一端从所述尖端通孔中伸出的导体棒,所述第一发射电极和所述第二发射电极分别包括一个与所述外壳的外表面相贴合的导体片。
  7. 根据权利要求2至5中任一项所述的触控笔,其中,所述发射电路具体用于在第一时段内通过所述第一发射电极向外发射所述第一电信号,在第二时段内通过所述第二发射电极向外发射所述第二电信号;其中,所述第一时段与所述第二时段彼此分开,所述第一电信号的频率与所述第二电信号的频率不同。
  8. 一种触控面板,包括:
    多个触控电极;
    接收电路,所述接收电路与每一所述触控电极相连,所述接收电路用于通过所述多个触控电极接收来自触控笔的第一电信号和第二电信号;
    处理电路,所述处理电路与所述接收电路相连,所述处理电路用于检测所述第一电信号和所述第二电信号的发射位置,并基于所述第一电信号和所述第二电信号的发射位置确定所述触控笔相对于所述触控面板的倾斜角度。
  9. 根据权利要求8所述的触控面板,其中,所述接收电路包括:
    扫描子电路,所述扫描子电路连接至少一个所述触控电极,所述扫描子电路用于向所连接的所述触控电极提供触摸扫描信号;
    采样子电路,所述采样子电路与每一所述触控电极相连,所述采样子电路用于对所述多个触控电极上的电压进行采样;
    检测子电路,所述检测子电路分别连接所述采样子电路和所述处理电路,所述检测子电路用于在基于所述多个触控电极上的电压采样数据检测到频率为 所述触控扫描信号的频率的n倍的所述第一电信号时,向所述处理电路发送检测到所述触控笔的消息,所述n为正整数。
  10. 根据权利要求9所述的触控面板,其中,所述采样子电路对所述多个触控电极上的电压进行采样的频率大于所述第一电信号的频率。
  11. 根据权利要求8所述的触控面板,其中,所述处理电路还用于结合所述触控笔的倾斜角度以及所述第一电信号和所述第二电信号的发射位置确定所述触控笔的触摸位置。
  12. 根据权利要求8所述的触控面板,其中,所述接收电路采用过采样的方式接收所述第一电信号和所述第二电信号。
  13. 根据权利要求8至12中任一项所述的触控面板,其中,所述处理电路还用于从所述第二电信号中提取出所述触控笔的笔尖受到按压时的压力信息。
  14. 根据权利要求13所述的触控面板,其中,所述处理电路还用于结合所述触控笔的倾斜角度和所述压力信息确定所述触控笔的笔触力度等级。
  15. 一种显示装置,其中,所述显示装置包括如权利要求9至14中任一项所述的触控面板。
  16. 一种触控感测方法,其中,所述方法应用于触控面板,所述触控面板包括多个触控电极,所述方法包括:
    通过所述多个触控电极接收来自触控笔的第一电信号和第二电信号;其中,所述第一电信号是所述触控笔通过第一发射电极发射的信号,所述第二电信号是所述触控笔通过第二发射电极发射的信号,在所述触控笔的延伸方向上所述第一发射电极与所述第二发射电极之间的距离大于零;
    检测所述第一电信号和所述第二电信号的发射位置;
    基于所述第一电信号和所述第二电信号的发射位置确定所述触控笔相对于 所述触控面板的倾斜角度。
PCT/CN2020/070111 2019-01-02 2020-01-02 触控笔、触控面板、显示装置及触控感测方法 WO2020140947A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/256,242 US11379059B2 (en) 2019-01-02 2020-01-02 Stylus, touch panel, display device and touch sensing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910002792.9A CN109683733B (zh) 2019-01-02 2019-01-02 触控笔、触控面板、显示装置及触控感测方法
CN201910002792.9 2019-01-02

Publications (1)

Publication Number Publication Date
WO2020140947A1 true WO2020140947A1 (zh) 2020-07-09

Family

ID=66191806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070111 WO2020140947A1 (zh) 2019-01-02 2020-01-02 触控笔、触控面板、显示装置及触控感测方法

Country Status (3)

Country Link
US (1) US11379059B2 (zh)
CN (1) CN109683733B (zh)
WO (1) WO2020140947A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113268175A (zh) * 2021-03-15 2021-08-17 荣耀终端有限公司 功能控制方法和***
WO2023134408A1 (zh) * 2022-01-11 2023-07-20 荣耀终端有限公司 一种信息传输方法和装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683733B (zh) * 2019-01-02 2021-01-26 京东方科技集团股份有限公司 触控笔、触控面板、显示装置及触控感测方法
US20210011601A1 (en) * 2019-07-12 2021-01-14 Novatek Microelectronics Corp. Method, apparatus, and computer system of using an active pen to wake a computer device from a power-saving mode
CN112346582B (zh) * 2019-08-08 2022-07-22 华为技术有限公司 一种触控笔以及电子设备
CN110471546B (zh) * 2019-08-21 2023-06-20 京东方科技集团股份有限公司 一种触控笔、触控面板、触控***和触控方法
CN110703928B (zh) * 2019-09-27 2021-04-13 联想(北京)有限公司 一种处理方法及电子设备
CN110851004B (zh) * 2019-11-19 2023-10-27 合肥京东方光电科技有限公司 一种触控笔及其驱动方法、触控***
CN111045537A (zh) * 2019-11-28 2020-04-21 联想(北京)有限公司 一种触控笔及控制方法、计算机存储介质
CN113076015B (zh) * 2020-01-03 2023-07-18 华为技术有限公司 用于触发显示笔迹的信号发射方法以及笔迹显示方法
TWI774535B (zh) * 2020-09-09 2022-08-11 元太科技工業股份有限公司 觸控顯示裝置及其感測方法
CN112214118B (zh) * 2020-10-15 2024-01-26 维沃移动通信有限公司 触控笔及其控制方法、电子设备
CN113325961B (zh) * 2021-06-11 2023-04-07 武汉华星光电半导体显示技术有限公司 一种触控笔及电子设备
TWI826917B (zh) * 2021-07-13 2023-12-21 聯詠科技股份有限公司 傳輸系統、處理器以及傳輸方法
US11747936B2 (en) 2021-07-13 2023-09-05 Novatek Microelectronics Corp. Transmission system, processor, and transmission method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160098110A1 (en) * 2014-10-01 2016-04-07 Samsung Display Co., Ltd. Display device including touch sensor
CN107357472A (zh) * 2016-05-10 2017-11-17 义隆电子股份有限公司 触控***、触控笔及其检测方法
CN107918500A (zh) * 2016-10-05 2018-04-17 翰硕电子股份有限公司 电容笔发射与应用信号的方法及应用此方法的电容笔
CN108027669A (zh) * 2015-09-09 2018-05-11 微软技术许可有限责任公司 压敏触控笔
CN109683733A (zh) * 2019-01-02 2019-04-26 京东方科技集团股份有限公司 触控笔、触控面板、显示装置及触控感测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140133274A (ko) * 2013-05-10 2014-11-19 (주)멜파스 터치 감지 장치 및 터치 감지 방법
US10379661B2 (en) * 2015-09-25 2019-08-13 Samsung Electronics Co., Ltd. Coordinate measuring apparatus and coordinate measuring system having the same
CN105912147B (zh) * 2015-12-08 2020-05-12 汉王科技股份有限公司 主动电容笔及其倾角检测方法、电容式触控屏以及触控***
CN107422877B (zh) 2016-03-08 2020-07-17 禾瑞亚科技股份有限公司 提供倾斜角与笔身轴向的触控笔与其控制方法
US9841828B2 (en) * 2016-04-20 2017-12-12 Microsoft Technology Licensing, Llc Pressure sensitive stylus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160098110A1 (en) * 2014-10-01 2016-04-07 Samsung Display Co., Ltd. Display device including touch sensor
CN108027669A (zh) * 2015-09-09 2018-05-11 微软技术许可有限责任公司 压敏触控笔
CN107357472A (zh) * 2016-05-10 2017-11-17 义隆电子股份有限公司 触控***、触控笔及其检测方法
CN107918500A (zh) * 2016-10-05 2018-04-17 翰硕电子股份有限公司 电容笔发射与应用信号的方法及应用此方法的电容笔
CN109683733A (zh) * 2019-01-02 2019-04-26 京东方科技集团股份有限公司 触控笔、触控面板、显示装置及触控感测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113268175A (zh) * 2021-03-15 2021-08-17 荣耀终端有限公司 功能控制方法和***
EP4092510A4 (en) * 2021-03-15 2023-12-13 Honor Device Co., Ltd. PEN AND ELECTRONIC DEVICE ARRANGEMENT
WO2023134408A1 (zh) * 2022-01-11 2023-07-20 荣耀终端有限公司 一种信息传输方法和装置

Also Published As

Publication number Publication date
CN109683733B (zh) 2021-01-26
US20210173497A1 (en) 2021-06-10
CN109683733A (zh) 2019-04-26
US11379059B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2020140947A1 (zh) 触控笔、触控面板、显示装置及触控感测方法
US10303303B2 (en) Combination touch and transducer input system and method
CN107111409B (zh) 触控笔、触摸面板以及具有上述装置的坐标指示***
US10649552B2 (en) Input method and electronic device using pen input device
US10895921B2 (en) Touch sensitive processing apparatus, system and operating method thereof for receiving electrical signals carrying pressure information
US11392221B2 (en) Touch sensitive processing apparatus, system and operating method thereof for receiving electrical signals carrying pressure information
US10890987B2 (en) Stylus and operating method thereof for transmitting electrical signals carrying pressure information
CN111373357B (zh) 在主动笔与传感器控制器之间执行的通信方法及主动笔
US11995262B2 (en) Touch apparatus and touch detection method thereof
US11409379B2 (en) Stylus and operating method thereof for transmitting electrical signals carrying pressure information
KR20230165742A (ko) 터치 장치 및 이의 터치 검출 방법
US9285901B2 (en) Electronic device for recognizing asynchronous digital pen and recognizing method thereof
KR20200045286A (ko) 터치 장치 및 이의 터치 검출 방법
TWI775242B (zh) 接收攜帶有壓力訊息之電信號的觸控處理裝置與其處理方法和系統
TWI775237B (zh) 發出攜帶壓力資訊之電信號的觸控筆與操作方法
CN112783344B (zh) 接收携带有压力信息的电信号的触控处理装置与方法
TWI775236B (zh) 接收攜帶有壓力訊息之電信號的觸控處理裝置與其處理方法和系統
WO2019041238A1 (zh) 一种输入方法及智能终端设备
US12045412B2 (en) Electronic device, active stylus pen, method of synchronizing thereof
KR20200140779A (ko) 터치 장치 및 이의 터치 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20736039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20736039

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 20736039

Country of ref document: EP

Kind code of ref document: A1