WO2020140334A1 - 一种电池单体组件、电池模块及电池包 - Google Patents

一种电池单体组件、电池模块及电池包 Download PDF

Info

Publication number
WO2020140334A1
WO2020140334A1 PCT/CN2019/079584 CN2019079584W WO2020140334A1 WO 2020140334 A1 WO2020140334 A1 WO 2020140334A1 CN 2019079584 W CN2019079584 W CN 2019079584W WO 2020140334 A1 WO2020140334 A1 WO 2020140334A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
face
insulating film
cell assembly
Prior art date
Application number
PCT/CN2019/079584
Other languages
English (en)
French (fr)
Inventor
李振华
金海族
史东洋
陈宁
胡飞
陈元宝
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP19906932.9A priority Critical patent/EP3890085B1/en
Priority to US17/419,697 priority patent/US20220085448A1/en
Publication of WO2020140334A1 publication Critical patent/WO2020140334A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of energy storage devices, in particular to a battery cell assembly, battery module and battery pack.
  • the secondary battery has the advantages of large energy density, long service life, energy saving and environmental protection, and is widely used in new energy vehicles.
  • the casing of the battery cell is often made of a metal material in order to ensure sufficient strength.
  • an insulating film is wrapped around the outer periphery of the casing of each battery cell.
  • the inventor provides a battery cell assembly, including: more than two battery cells, the two or more battery cells are stacked, the battery cell includes an electrode assembly and a battery case , The electrode assembly is housed in the battery case, the electrode assembly includes a first pole piece, a second pole piece, and a separator disposed between the first pole piece and the second pole piece; and, An insulating film surrounds the outer periphery of the two or more battery cells, and wraps the two or more battery cells together.
  • an insulating member is provided between two adjacent battery cells.
  • the two side surfaces of the insulating member are respectively bonded to the two adjacent battery cells.
  • the insulating member has elasticity.
  • the battery cell further includes a cover plate, the battery case has an opening, and the battery case includes one end face, two first side faces, and two second side faces, wherein the area of the first side face Greater than the area of the second side and greater than the area of the end face, the first side faces of two adjacent battery cells face each other, the one end face, the two first side faces and the two The second side surrounds a cavity for accommodating the electrode assembly;
  • the cover plate covers the opening, and the battery cell includes a first electrode terminal and a second electrode terminal, the first electrode terminal and the second The electrode terminal is provided on the cover plate.
  • the insulating film surrounds the first side surface, the second side surface, and the end surface of the two or more battery cells.
  • the insulating film has a first glue groove, the first glue groove and the first side face each other, a part of the first side is exposed through the first glue groove, and the exposed first A part of the side is used to connect with the glue.
  • the insulating film has a second glue groove, the second glue groove and the end face face each other, a part of the end face is exposed through the second glue groove, and a part of the exposed end face is used for Glue connection.
  • a battery module including two or more battery cell assemblies arranged in a horizontal direction, and a plurality of busbars electrically connected to the plurality of battery cell assemblies
  • the battery cell assembly is the battery cell assembly described in any one of the above technical solutions.
  • the size of the battery module in the horizontal direction is larger than the size of the battery module in the vertical direction
  • the electrode assembly has a wound structure and is flat, and the outer surface of the electrode assembly includes two flat surfaces , The two flat surfaces face each other along the vertical direction; or, the electrode assembly is a laminated structure, and the first pole piece, the diaphragm, and the second pole piece are along the vertical Stacked straight.
  • a battery pack including: a box body with a containing cavity; and, a plurality of battery modules as described in any one of the above technical solutions, a plurality of said The battery module is located in the accommodating cavity.
  • the above technical solution battery cell assembly includes more than two battery cells, and more than two battery cells are wrapped together by an insulating film to form a battery cell assembly, so two adjacent cells There is no need to provide two layers of insulating films between battery cells, which is beneficial to increase the energy density of the battery module and battery pack, and also reduces the amount of insulating film.
  • FIG. 1 is a schematic structural diagram of a battery pack according to a specific embodiment
  • FIG. 2a is a schematic diagram of the battery module and the box body bonding according to a specific embodiment
  • Figure 2b is a partial enlarged view of A in Figure 2a;
  • FIG. 3 is a schematic structural diagram of a battery module according to a specific embodiment
  • FIG. 4 is a schematic structural diagram of a battery cell assembly according to a specific embodiment
  • FIG. 5 is an exploded view of the battery cell assembly according to a specific embodiment
  • FIG. 6 is a schematic structural diagram of a battery cell according to a specific embodiment
  • FIG. 7 is an exploded view of the battery cell according to a specific embodiment
  • FIG. 8 is a schematic structural view of the insulating film according to a specific embodiment
  • FIG. 9 is a schematic structural diagram of a battery cell assembly according to another specific embodiment.
  • FIG. 10 is a schematic structural view of the insulating film according to a specific embodiment
  • FIG. 11 is a cross-sectional view of the electrode assembly of the wound structure taken along line D-D in FIG. 3;
  • FIG. 12 is a schematic diagram of the outline of the electrode assembly of the wound structure taken along the line D-D in FIG. 3 according to a specific embodiment
  • FIG. 13 is a cross-sectional view of the electrode assembly of the laminated structure according to the specific embodiment taken along the direction D-D in FIG. 3.
  • connection refers to more than two; the terms “connection” and “fixation” should be understood in a broad sense.
  • connection may be a fixed connection, a detachable connection, or an integral connection, Or electrical connection; it can be directly connected or indirectly connected through an intermediary.
  • the direction indicated by arrow A is the length direction
  • the direction indicated by arrow B is the width direction
  • the direction indicated by arrow C is the vertical direction.
  • the horizontal direction is a direction parallel to the horizontal plane, and may be the above-mentioned longitudinal direction or the above-mentioned width direction.
  • the horizontal direction includes not only the direction absolutely parallel to the horizontal plane, but also the direction generally parallel to the horizontal plane conventionally recognized in engineering.
  • the vertical direction is the direction perpendicular to the horizontal plane.
  • the vertical direction includes not only the direction absolutely perpendicular to the horizontal plane, but also the direction generally perpendicular to the horizontal plane conventionally recognized in engineering.
  • directional words such as "upper”, “lower”, “top”, and “bottom” described in this application are all understood relative to the vertical direction.
  • FIG. 1 is a schematic structural diagram of a battery pack 200 in an embodiment.
  • the battery pack 200 includes a case 20 and a plurality of battery modules 100, wherein the case 20 includes a lower case 210 and an upper case cover 220, as shown in FIG. 1
  • the upper case cover 220 and the lower case 210 of the battery pack 200 are in a separated state.
  • the lower case 210 and the upper case cover 220 cooperate to form a closed case with a containing cavity 250, and a plurality of battery modules 100 are located in the containing cavity 250.
  • the box 20 can be made of aluminum, aluminum alloy or other metal materials.
  • the plurality of battery modules 100 may be arranged side by side along the length direction of the battery pack 200, or the plurality of battery modules 100 may be arranged side by side along the width direction of the battery pack 200.
  • the battery module 100 includes a plurality of battery cell assemblies 10 arranged in a horizontal direction and a plurality of first bus bars 5 electrically connected to the plurality of battery cell assemblies 10. Among them, adjacent battery modules 100 may be electrically connected to each other through the second bus bar 6.
  • FIG. 2a is a schematic diagram of the battery module and the box body.
  • FIG. 2b is a partially enlarged view of part A in FIG. 2a.
  • the battery module 100 includes a plurality of battery cell assemblies 10, the surface of the battery cell assembly 10 has an insulating film 2, the second surface 21 of the insulating film 2 and the bottom wall of the box 20 and the top wall of the box 20 face each other, ie The second surface 21 of the insulating film 2 is directed in the direction of arrow C in the figure.
  • a first glue groove 211 is provided on the second surface 21 of the insulating film 2, and a glue 230 is provided in the first glue groove 211, and the battery module 100 and the case 20 are adhered by the glue 230.
  • the battery module 100 is connected to the case body 20 through the glue 230, so that the battery module 100 and the case body 20 are integrated, and the connection strength between the case body 20 and the battery module 100 is strengthened, so the overall rigidity of the battery pack 200 is improved. Since the surface of the insulating film 2 is relatively smooth, it may affect the bonding strength between the battery module 100 and the case 20.
  • the insulating film 2 of the battery cell assembly 10 is provided with a first glue groove 211. A part of the battery case 12 facing the second surface 21 of the insulating film 2 is exposed through the first glue groove 211, and the part where the battery case 12 is exposed is used to connect with the glue, thereby improving the battery cell assembly 10 and the glue 230 Bonding strength. And, the first glue groove 211 can restrict the glue 230 from overflowing outside when it is not solidified.
  • a battery module 100 is provided.
  • the battery module 100 includes a plurality of battery cell assemblies 10 arranged in a horizontal direction and a plurality of first cells electrically connected to the plurality of battery cell assemblies 10 Busbar 5.
  • the battery cell assembly 10 can be connected in series, parallel, or hybrid through the first bus bar 5.
  • FIG. 4 is a schematic structural diagram of the battery cell assembly 10
  • FIG. 5 is an exploded view of the battery cell assembly 10.
  • the battery cell assembly 10 includes two or more battery cells 1, an insulating film 2, and an insulating member 3.
  • the battery cell 1 may have a hexahedral structure, or another structure similar to a hexahedron.
  • the insulating member 3 may have a laminar structure.
  • the insulating member 3 can be made of elastic insulating materials such as rubber, silicone, etc. The use of the elastic insulating member 3 can not only insulate two adjacent battery cells 1 but also absorb the battery cells 1 Expansion force at work.
  • glue 31 is provided on both sides of the insulating member 3 respectively, and the insulating member 3 can be respectively adhered to two adjacent battery cells 1 through the glue 31.
  • the middle of the insulating member 3 may be hollowed out, so that the glue 31 penetrates the insulating member 3 and directly adheres to the battery cases 12 of two adjacent battery cells 1.
  • the insulating film 2 surrounds the outer peripheries of two or more battery cells 1 and wraps the two or more battery cells 1 together to form a whole.
  • the insulating film 2 surrounds the first side 110, the second side 120, and the end 130 of two or more battery cells 1.
  • two or more battery cells 1 may be stacked, and then the insulating film 2 is wound along the outer periphery of the two or more stacked battery cells 1, so that the surface of the exposed battery case 12 is covered by the insulating film 2 package.
  • FIG. 6 is a schematic structural diagram of the battery cell 1
  • FIG. 7 is an exploded view of the battery cell 1.
  • the battery cell 1 includes a battery case 12, an electrode assembly 11, and a cover plate 13.
  • the battery case 12 may be made of metal materials such as aluminum, aluminum alloy, or nickel-plated steel.
  • the battery case 12 may have a hexahedral shape or other shapes, and With opening 24.
  • the electrode assembly 11 is accommodated in the battery case 12.
  • the opening 24 of the battery case 12 is covered with the cover plate 13.
  • Two electrode terminals provided on the cover plate 13 on the cover plate 13 are the first electrode terminal 131 and the second electrode terminal 132, respectively.
  • the first electrode terminal 131 may be a positive electrode terminal
  • the second electrode terminal 132 may be a negative electrode terminal
  • the first electrode terminal 131 may also be a negative electrode terminal
  • the second electrode terminal 132 is a positive electrode terminal Electrode terminal.
  • the cover plate 13 may be made of metal materials such as aluminum and aluminum alloy, and the size of the cover plate 13 is adapted to the size of the opening 24.
  • the electrode terminal may be fixed to the cover plate 13 by welding or by fixing members such as rivets.
  • An adapter tab 14 is provided between the cover plate assembly 13 and the electrode assembly 11, and the tabs of the electrode assembly 11 are electrically connected to the electrode terminals on the cover plate 13 through the adapter tab 14.
  • the electrode assembly 11 includes a first pole piece 111, a second pole piece 112, and a separator 113 disposed between the first pole piece 111 and the second pole piece 112.
  • the first pole piece 111 may be a positive pole piece
  • the second pole piece 112 is a negative pole piece.
  • the first pole piece 111 may also be a negative pole piece
  • the second electrode is a positive pole piece.
  • the diaphragm 113 is an insulator between the first pole piece 111 and the second pole piece 112.
  • the active material of the positive electrode sheet may be coated on the coating area of the positive electrode sheet, and the active material of the negative electrode sheet may be coated on the coating area of the negative electrode sheet.
  • the part extending from the coating area of the positive electrode sheet serves as the positive electrode tab; the part extending from the coating region of the negative electrode sheet serves as the negative electrode tab.
  • the positive tab is connected to the positive electrode terminal on the cover plate 13 through the positive adapter tab.
  • the negative tab is connected to the negative electrode terminal on the cover plate 13 through the negative tab.
  • Two electrode assemblies 11 are provided in the battery case 12, of course, in other embodiments, one electrode assembly 11 may also be provided in the battery case 12, or more than three electrode assemblies are provided in the battery case 12 11.
  • the battery case 12 of the battery cell 1 has a roughly hexahedral structure.
  • the battery case 12 includes two first side faces 110, two second side faces 120, and one end face 130.
  • the area of the first side face 110 is greater than
  • the area of the second side surface 120 is larger than the area of the end surface 130, and the end surface 130 is the end surface facing the cover plate 13 with each other.
  • the first side 110 of the battery case 12 forms the first side 110 of the battery cell 1
  • the second side 120 of the battery case 12 forms the second side 120 of the battery cell 1
  • the end face of the battery case 12 130 forms the end face 130 of the battery cell 1.
  • the battery module 100 two or more battery cells 1 are stacked, and the first side surfaces 110 of two adjacent battery cells 1 face each other.
  • the two second side faces 120 face each other in the horizontal direction (for example, the length direction indicated by arrow A), and the two first side faces 110 are in the vertical direction (pointed by arrow C) Direction) facing each other.
  • the first side 110 and the second side 120 can be transitioned at a right angle.
  • the first side 110 and the second side 120 can also be transitioned by an arc curved surface or a curved surface bent multiple times.
  • the battery cell assembly 10 wraps more than two battery cells 1 through an insulating film, so there is no need to provide a double-layer insulating film between two adjacent battery cells 1, which not only has It is beneficial to increase the energy density of the battery module 100 and the battery pack 200, and also reduces the amount of the insulating film 2.
  • the battery cell assembly 10 has two upper battery cells 1, while in other embodiments, the battery cells 1 may be three or more.
  • the number of battery cells 1 in the battery cell assembly 10 is 2 to 4, that is, the number of stacked layers of the battery cells 1 is not more than 4 layers.
  • an insulating member 3 is provided between two adjacent battery cells 1.
  • the battery cells in the same battery cell assembly may be connected in parallel with each other.
  • the insulating cells 3 may not be provided between adjacent battery cells 1 and the adjacent battery cells 1
  • the housings 12 are directly attached to each other.
  • FIG. 8 is a schematic diagram of the structure of the insulating film 2. Similar to the shape of the casing 12 of the battery cell 1, the insulating film 2 is roughly a hexahedral structure and has an opening.
  • the insulating film 2 includes a first surface 23, Two second surfaces 21 and two third surfaces 22, wherein the two second surfaces 21 face each other and the two third surfaces 22 face each other.
  • the first surface 23, the second surface 21, and the third surface 22 are connected to each other in a pair, and have a substantially vertical relationship.
  • a first surface 23, two second surfaces 21, and two third surfaces 22 together form a cavity that houses more than two battery cells 1.
  • the first surface 23 and the end surface 130 of the battery cell 1 face each other, the second surface 21 and the first side surface 110 face each other, and the third surface 22 and the second side surface 120 face each other.
  • FIG. 9 is a schematic structural diagram of a battery cell assembly according to another embodiment
  • FIG. 10 is a schematic structural diagram of an insulating film in this embodiment.
  • the difference from the battery cell assembly in the embodiment of FIG. 4 is that in the battery cell assembly 10 shown in FIG. 9, a first glue groove 211 is provided on the insulating film 2, wherein the first glue groove 211 is located
  • the second surface 21 of the insulating film 2 that is, the surface opposite to the first side 110 of the battery cell 1.
  • the insulating film at the position of the first glue groove 211 is excavated, so that a part of the first side surface 110 is exposed through the first glue groove 211, and a part of the exposed first side surface 110 is used for connecting with glue.
  • the first glue groove 211 is used for accommodating the glue 230 which is in contact with the exposed first side 110. As shown in FIGS. 1, 2 and 3, in the battery pack 200, the first glue groove 211 on the insulating film 2 is opposed to the upper case cover 220 and the lower case 210 of the case 20. The top surface of the battery cell assembly 10 can be directly adhered to the upper case cover 220 through the glue 230, and similarly, the bottom surface of the battery cell assembly 10 can be directly adhered to the lower case 210 through the glue 230.
  • the glue 230 is structural glue.
  • a second glue groove 231 may be further formed on the insulating film 2, wherein the second glue groove 231 is located on the first surface 23 of the insulating film 2 (that is, the battery case 12 The opposite surface of the end surface 130), a part of the end surface 130 is exposed through the second glue groove 231, and a part of the exposed end surface 130 is used to connect with the glue.
  • the second glue groove 231 may contain glue, and the glue 230 is in contact with the exposed end surface 130.
  • the dimension L of the battery module 100 in the horizontal direction is larger than the dimension H of the battery module 100 in the vertical direction, wherein the electrode assembly 11 of the battery cell 1 may be a wound structure as shown in FIG.
  • the component 11 may also be a laminated structure shown in FIG. 13.
  • the first pole piece 111, the separator 113, and the second pole piece 112 are all in the form of a strip
  • the first pole piece 111, the separator 113, and the second pole piece 112 are sequentially stacked and wound twice
  • the electrode assembly 11 is formed as described above, and the electrode assembly 11 is flat.
  • the electrode assembly 11 may be first wound into a hollow cylindrical structure, and then flattened after being wound.
  • 12 is a schematic diagram of the outline of the electrode assembly 11, the outer surface of the electrode assembly 11 includes two flat surfaces 114, the two flat surfaces 114 face each other in the vertical direction (the direction indicated by arrow C), that is, the flat surface 114 and
  • the first side 110 of the battery case 12 is oppositely arranged.
  • the electrode assembly 11 is substantially a hexahedral structure, and the flat surface 114 is substantially parallel to the winding axis and is the outer surface with the largest area.
  • the flat surface 114 may be a relatively flat surface, and is not required to be purely flat.
  • the two flat surfaces 114 are relative to the narrow surfaces 115 on both sides of the electrode assembly 11, and the area of the flat surface 114 is larger than the narrow surfaces 115 of the electrode assembly 11.
  • the electrode assembly 11 has a laminated structure, that is, the electrode assembly 11 has a plurality of first pole pieces 111 and a plurality of second pole pieces 112, and a separator 113 is provided between the first pole pieces 111 and the first Diode 112.
  • the first pole piece 111, the diaphragm 113, and the second pole piece 112 are stacked in this order.
  • the first pole piece 111, the diaphragm 113, and the second pole piece 112 are stacked in the vertical direction (the direction indicated by arrow C).
  • the electrode assembly 11 Since the electrode assembly 11 inevitably expands in the thickness direction of the pole piece during charging and discharging (in the electrode assembly 11 of the wound structure, the expansion force is greatest in the direction perpendicular to the flat surface 114; in the laminated structure In the electrode assembly 11, the expansion force along the stacking direction of the first pole piece 111 and the second pole piece 112 is the largest).
  • the direction in which the electrode assembly 11 applies the maximum expansion force to the battery case 12 is all toward the horizontal direction. Since the size of the battery module 100 in the horizontal direction is much larger than the size in the vertical direction (for example, due to the height limitation of the chassis of the vehicle, more battery cells 1 need to be stacked in the horizontal direction, and the accumulation of expansion force is large ), therefore, the expansion force of the existing battery module 100 in the horizontal direction is very large, so it is necessary to provide very thick end plates on both sides of the horizontal direction of the battery module 100 to resist the expansion force, and thickening the end plate will reduce the battery The energy density of the module 100.
  • the electrode assembly 11 may be a wound structure or a laminated structure.
  • the flat surface 114 faces the vertical direction.
  • the first pole piece 111 and the second pole piece 112 are laminated in the vertical direction. It can be seen that, whether the electrode assembly 11 adopts the wound structure or the laminated structure, the direction in which the electrode assembly 11 exerts the maximum expansion force on the battery case 12 is oriented in the vertical direction.
  • the direction in which the electrode assembly 11 applies the maximum expansion force to the battery case 12 is toward the vertical direction, and the number of battery cells stacked in the vertical direction is small. Therefore, compared with the prior art, this embodiment can reduce the maximum expansion force of the battery module 100, and therefore a smaller volume end plate can be selected, thereby improving the energy density of the battery module 100.
  • the number of layers of the battery cells 1 in the battery cell assembly 10 stacked in the vertical direction is 2 layers.
  • the number of battery cells 1 stacked in the vertical direction may be 1-5.
  • the number of layers of the battery cells 1 stacked in the vertical direction is 2 or 3 layers.
  • the two second side surfaces 120 in the battery cell 1 face each other in the horizontal direction (for example, the length direction indicated by arrow A), and the two first side surfaces 110 in the battery cell 1 are along the vertical direction
  • the straight directions face each other.
  • the area of the first side 110 is larger than the area of the second side 120.
  • the battery cell 1 Since the battery cell 1 also generates gas inside the battery case 12 during charging and discharging, the generated gas exerts a force on the battery case 12, thereby aggravating the outward expansion of the battery case 12. Since the area of the first side 110 in this embodiment is larger than the area of the second side 120, and the two first sides 110 in the battery cell 1 face each other in the vertical direction, the generated gas imposes on the battery case 12 The direction of the maximum force is also toward the vertical direction. Compared with the prior art, the maximum expansion force of the battery module 100 is further reduced.

Landscapes

  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)

Abstract

本申请涉及储能器件技术领域,提供了一种电池单体组件(10)、电池模块(100)及电池包(200),电池单体组件(10),包括:两个以上的电池单体(1)和绝缘膜(2),两个以上的电池单体(1)堆叠设置,电池单体(1)包括电极组件(11)和电池壳体(12),电极组件(11)容纳于所述电池壳体(12)内,电极组件(11)包括第一极片(111)、第二极片(112)以及设置于第一极片(111)和第二极片(112)之间的隔膜(113);绝缘膜(2)包围两个以上的电池单体(1)的外周,将两个以上的所述电池单体(1)包裹在一起。本电池单体组件(10)可减小了相邻电池单体(1)之间的间隙,不仅有利于提高电池模块(100)以及电池包(200)的能量密度,同时也减小了绝缘膜(2)的用量。

Description

一种电池单体组件、电池模块及电池包
交叉引用
本申请引用于2018年12月30日递交的名称为“一种电池单体组件、电池模块及电池包”的第201822274884.6号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及储能器件技术领域,尤其涉及一种电池单体组件、电池模块及电池包。
背景技术
二次电池具有能量密度大,使用寿命长,节能环保等优点,被广泛应用于新能源汽车中。
在现有技术中,电池单体的壳体为了保证足够的强度往往采用金属材料制成,为了满足电池单体的绝缘要求,在每个电池单体的壳体外周都会包裹上绝缘膜。当多个电池单体组装成电池模组时,需要将多个电池单体进行堆叠,因此在相邻的两个电池单体之间至少会具有两层绝缘膜,这不仅占用电池包内部体积,影响电池包的能量密度,同时还会增大绝缘膜的用量。
申请内容
为此,需要提供一种电池单体组件,用于解决现有技术中相邻两个电池单体之间至少具有两层绝缘膜,占用电池包内部体积,影响电池包的能量密度的技术问题。
为实现上述目的,发明人提供了一种电池单体组件,包括:两个以上的电池单体,所述两个以上的电池单体堆叠设置,所述电池单体包括电极组件和电池壳体,所述电极组件容纳于所述电池壳体内,所述电极组件包括第一极片、第二极片以及设置于所述第一极片和所述第二极片之间的隔膜;以及,绝缘膜,包围所述两个以上的电池单体的外周,将所述两个以上的电池单体包裹在一起。
例如,相邻的两个所述电池单体之间设置有绝缘件。
例如,所述绝缘件的两侧表面分别与所述相邻的两个所述电池单体粘合。
例如,所述绝缘件具有弹性。
例如,所述电池单体还包括盖板,所述电池壳体具有开口,所述电池壳体包括一个端面、两个第一侧面以及两个第二侧面,其中,所述第一侧面的面积大于所述第二侧面的面积且大于所述端面的面积,相邻两个所述电池单体的第一侧面相互面对,所述一个端面、所述两个第一侧面和所述两个第二侧面围成容纳所述电极组件的腔体;所述盖板覆盖所述开口,所述电池单体包括第一电极端子和第二电极端子,所述第一电极端子和所述第二电极端子设置在所述盖板上。
例如,所述绝缘膜包围所述两个以上的电池单体的所述第一侧面、所述第二侧面和所述端面。
例如,所述绝缘膜具有第一胶槽,所述第一胶槽与所述第一侧面相互面 对,所述第一侧面的一部分通过所述第一胶槽露出,露出的所述第一侧面的一部分用于与胶连接。
例如,所述绝缘膜具有第二胶槽,所述第二胶槽与所述端面相互面对,所述端面的一部分通过所述第二胶槽露出,露出的所述端面的一部分用于与胶连接。
为解决上述技术问题,还提供了另一技术方案:一种电池模块,包括沿水平方向排列的两个以上的电池单体组件,以及与所述多个电池单体组件电连接的多个汇流排,其中,所述电池单体组件为以上任一技术方案中所述的电池单体组件。
例如,所述电池模块沿水平方向的尺寸大于所述电池模块沿竖直方向的尺寸,并且所述电极组件为卷绕式结构且为扁平状,所述电极组件的外表面包括两个扁平面,两个所述扁平面沿所述竖直方向相互面对;或,所述电极组件为叠片式结构,所述第一极片、所述隔膜和所述第二极片沿所述竖直方向层叠。
为解决上述技术问题,还提供了另一技术方案:一种电池包,包括:箱体,具有容置腔;以及,多个如以上任一技术方案中所述的电池模块,多个所述电池模块位于所述容置腔内。
区别于现有技术,上述技术方案电池单体组件包括两个以上的电池单体,并且通过绝缘膜将两个以上的电池单体包裹在一起从而形成电池单体组件,因此相邻的两个电池单体之间可以不用设置两层绝缘膜,有利于提高电池模块以及电池包的能量密度,同时也减小了绝缘膜的用量。
附图说明
图1为具体实施例所述电池包的结构示意图;
图2a为具体实施例所述电池模块与箱体粘接的示意图;
图2b为图2a中A的局部放大图;
图3为具体实施例所述电池模块的结构示意图;
图4为具体实施例所述电池单体组件的结构示意图;
图5为具体实施例所述电池单体组件的***图;
图6为具体实施例所述电池单体的结构示意图;
图7为具体实施例所述电池单体的***图;
图8为具体实施例所述绝缘膜的结构示意图;
图9为另一具体实施例所述电池单体组件的结构示意图;
图10为具体实施例所述绝缘膜的结构示意图;
图11为具体实施例所述卷绕式结构的电极组件沿图3中D-D向的剖视图;
图12为具体实施例所述卷绕式结构的电极组件沿图3中D-D向截面的外形轮廓示意图;
图13为具体实施例所述叠片式结构的电极组件沿图3中D-D向的剖视图。
附图标记说明:
100、电池模块;
10、电池单体组件;
1、电池单体;
11、电极组件;
111、第一极片;
112、第二极片;
113、隔膜;
114、扁平面;
115、窄面;
110、第一侧面;
120、第二侧面;
130、端面;
12、电池壳体;
13、盖板;
14、转接片;
131、第一电极端子;
132、第二电极端子;
200、电池包;
210、下箱体;
220、上箱盖;
230、胶;
2、绝缘膜;
21、第二表面;
22、第三表面;
23、第一表面;
24、开口;
211、第一胶槽;
231、第二胶槽;
3、绝缘件;
31、胶;
5、第一汇流排;
6、第二汇流排。
具体实施例
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二”、仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“多个”是指两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本申请的描述中,所有附图中箭头A所指方向为长度方向,箭头B所指方向为宽度方向,箭头C所指方向为竖直方向。水平方向为平行于水平面的方向,既可以是上述长度方向也可以是上述宽度方向。另外,水平方向不仅包括绝对平行于水平面的方向,也包括了工程上常规认知的大致平行于水平面的方向。竖直方向为垂直于水平面的方向,竖直方向不仅包括绝对垂直于水平面 的方向,也包括了工程上常规认知的大致垂直于水平面的方向。此外,本申请描述的“上”、“下”、“顶”、“底”等方位词均是相对于竖直方向来进行理解的。
请参阅图1,为一实施例中电池包200的结构示意图,电池包200包括箱体20和多个电池模块100,其中,箱体20包括下箱体210和上箱盖220,图1中,电池包200的上箱盖220与下箱体210是呈分开状态的。其中,下箱体210和上箱盖220配合形成具有容置腔250的密闭箱体,多个电池模块100位于容置腔250内。其中,箱体20可以由铝、铝合金或其他金属材料制成。多个电池模块100可以沿电池包200的长度方向并排设置,多个电池模块100也可以沿电池包200的宽度方向并排设置。电池模块100包括沿水平方向排列的多个电池单体组件10以及与多个电池单体组件10电连接的多个第一汇流排5。其中,相邻的电池模块100之间可通过第二汇流排6相互电连接。
请参照图2a和图2b,图2a为电池模块与箱体粘接的示意图,图2b为图2a中A部分的局部放大图。电池模块100中包括多个电池单体组件10,电池单体组件10表面具有绝缘膜2,绝缘膜2的第二表面21与箱体20的底壁以及箱体20顶壁相互面对,即绝缘膜2的第二表面21是朝向图中箭头C的方向。在绝缘膜2的第二表面21开设有第一胶槽211,在第一胶槽211内设置有胶230,电池模块100与所述箱体20之间通过胶230粘接。电池模块100通过胶230与箱体20相连接,使电池模块100与箱体20形成一个整体,加强了箱体20与电池模块100之间的连接强度,因此提高了电池包200的整体刚度。由于绝缘膜2的表面较光滑,可能影响电池模块100与箱体20之间的粘接强度,在本实施例中,在电池单体组件10的绝缘膜2上开设有第一胶槽211,绝缘膜2的 第二表面21所面对的电池壳体12的一部分通过第一胶槽211露出,露出电池壳体12的部分用于与胶连接,从而可提高电池单体组件10与胶230的粘接强度。并且,第一胶槽211可限制胶230在未凝固时向外溢流。
请参照图3,在一实施例中提供了一种电池模块100,电池模块100包括沿水平方向排列的多个电池单体组件10以及与多个电池单体组件10电连接的多个第一汇流排5。其中,电池单体组件10通过第一汇流排5可实现串联、并联或混联。
请参照图4和图5,在一实施例中提供了一种电池单体组件10,其中,图4为电池单体组件10的结构示意图;图5为电池单体组件10的***图。电池单体组件10包括两个以上的电池单体1、绝缘膜2和绝缘件3。
两个以上的电池单体1堆叠设置,绝缘件3设置于相邻的两个电池单体1之间,防止相邻的两个电池单体1的壳体12之间电连接。电池单体1可以为六面体结构,或近似六面体的其他结构。绝缘件3可以为薄片状结构。例如,绝缘件3可以由橡胶、硅胶等具有弹性的绝缘材料制成,采用具有弹性的绝缘件3不仅可起到相邻两个电池单体1的绝缘作用,同时还可吸收电池单体1工作时的膨胀力。
如图5所示,在一实施例中,在绝缘件3的两侧表面分别设置有胶31,通过胶31可将绝缘件3分别与相邻的两个电池单体1粘合在一起,从而提高电池单体组件10的整体结构强度。例如,可将绝缘件3的中部挖空,从而使胶31贯穿绝缘件3并且直接与相邻的两个电池单体1的电池壳体12相粘接。
绝缘膜2包围两个以上的电池单体1的外周,将两个以上的电池单体1包裹在一起,从而形成一个整体。绝缘膜2包围两个以上的电池单体1的第一 侧面110、第二侧面120和端面130。其中,两个以上的电池单体1可堆叠设置,然后再由绝缘膜2沿堆叠好的两个以上电池单体1的外周缠绕,从而使暴露在外的电池壳体12的表面被绝缘膜2包裹。
如图6至图8所示,图6为电池单体1的结构示意图,图7为电池单体1的***图。
电池单体1包括电池壳体12、电极组件11和盖板13,电池壳体12可由铝、铝合金或镀镍钢等金属材料制成,电池壳体12可具有六面体形状或其他形状,且具有开口24。电极组件11容纳于电池壳体12内。电池壳体12的开口24覆盖有盖板13。盖板13上设置于盖板13上的两个电极端子,两个电极端子分别为第一电极端子131和第二电极端子132。其中,第一电极端子131可以为正电极端子,第二电极端子132为负电极端子,在其他的实施例中,第一电极端子131还可以为负电极端子,而第二电极端子132为正电极端子。盖板13可以由铝、铝合金等金属材料制成,盖板13的尺寸与开口24的尺寸相适配。电极端子可通过焊接或通过铆钉等固定件固定于盖板13上。在盖板组件13与电极组件11之间设置有转接片14,电极组件11的极耳通过转接片14与盖板13上的电极端子电连接。本实施例中,转接片14有两个,即分别为正极转接片和负极转接片。
请参照图11至图13,电极组件11包括第一极片111、第二极片112以及设置于所述第一极片111和所述第二极片112之间的隔膜113。其中,第一极片111可以为正极片,第二极片112为负极片。在其他的实施例中,第一极片111还可以为负极片,而第二电极为正极片。其中,隔膜113是介于第一极片111和第二极片112之间的绝缘体。正极片的活性物质可被涂覆在正极片的 涂覆区上,负极片的活性物质可被涂覆到负极片的涂覆区上。由正极片的涂覆区延伸出的部分则作为正极极耳;由负极片的涂覆区延伸出的部分则作为负极极耳。正极极耳通过正极转接片连接于盖板13上的正电极端子,同样地,负极极耳通过负极转接片连接于盖板13上的负电极端子。
电池壳体12内设置有两个电极组件11,当然,在其他实施例中,在电池壳体12内也可设置有一个电极组件11,或者在电池壳体12内设置有三个以上的电极组件11。
如图6所示,电池单体1的电池壳体12大致为六面体结构,电池壳体12包括两个第一侧面110、两个第二侧面120和一个端面130,第一侧面110的面积大于第二侧面120的面积并且大于端面130的面积,端面130即为与盖板13相互面对的端面。其中,电池壳体12的第一侧面110形成了电池单体1的第一侧面110,电池壳体12的第二侧面120形成了电池单体1的第二侧面120,电池壳体12的端面130形成了电池单体1的端面130。
例如,电池模块100中,两个以上的电池单体1堆叠设置,并且相邻两个的电池单体1的第一侧面110相互面对。例如,每个电池单体1中,两个第二侧面120沿水平方向(例如,箭头A所指的长度方向)相互面对,两个第一侧面110沿竖直方向(箭头C所指的方向)相互面对。其中,第一侧面110和第二侧面120之间可通过直角过渡,同样地,第一侧面110和第二侧面120之间也可通过圆弧曲面或多次折弯的曲面过渡。
在本实施例中,电池单体组件10通过绝缘膜将两个以上的电池单体1包裹在一起,因此相邻的两个电池单体1之间可不用设置双层绝缘膜,这不仅有利于提高电池模块100以及电池包200的能量密度,同时也减小了绝缘膜2 的用量。在本实施例中,电池单体组件10中具有两上电池单体1,而在其他实施例中,电池单体1可以为三个或更多。例如,电池单体组件10中的电池单体1的数量为2~4个,即电池单体1堆叠的层数为不超过4层。
在图5所示的实施例中,相邻的两个电池单体1之间设置有绝缘件3。而在一些实施例中,同一电池单体组件中的各电池单体可相互并联,此时相邻的电池单体1之间可以不用设置绝缘件3,而将相邻的电池单体1的壳体12直接贴靠在一起。
请参照图8所示,为绝缘膜2的结构示意图,与电池单体1的壳体12的形状相似,绝缘膜2大致为六面体结构,且具有开口,绝缘膜2包括一个第一表面23、两个第二表面21和两个第三表面22,其中,两个第二表面21相互面对,两个第三表面22相互面对。第一表面23、第二表面21、第三表面22两两相互连接,并且大致呈垂直关系。一个第一表面23、两个第二表面21和两个第三表面22共同围成容纳两个以上电池单体1的空腔。第一表面23与电池单体1的端面130相互面对,第二表面21与第一侧面110相互面对,第三表面22与第二侧面120相互面对。
请参照图9和图10,图9为另一实施例电池单体组件的结构示意图,图10为该实施例中绝缘膜的结构示意图。与图4实施例中的电池单体组件不同之处在于,在图9所示的电池单体组件10中,在绝缘膜2上开设有第一胶槽211,其中,第一胶槽211位于绝缘膜2的第二表面21,即电池单体1的第一侧面110相对的表面。第一胶槽211所在位置的绝缘膜挖除,从而使第一侧面110的一部分通过第一胶槽211露出,露出的第一侧面110的一部分用于与胶连。第一胶槽211用于容纳胶230,胶230与露出的第一侧面110接触。如图1、图2 和图3所示,其中,在电池包200中,绝缘膜2上的第一胶槽211是与箱体20的上箱盖220以及下箱体210相互面对的。通过胶230可将电池单体组件10的顶面直接与上箱盖220粘接,同样地,通过胶230将电池单体组件10的底面直接与下箱体210粘接。例如,所述胶230为结构胶。
如图10所示,在另一实施例中,绝缘膜2上还可开设有第二胶槽231,其中,第二胶槽231位于绝缘膜2的第一表面23(即与电池壳体12的端面130相对的表面),端面130的一部分通过第二胶槽231露出,露出的端面130的一部分用于与胶连接。第二胶槽231内可容纳有胶,胶230与露出的端面130接触。
如图3所示,电池模块100沿水平方向的尺寸L大于电池模块100沿竖直方向的尺寸H,其中,电池单体1的电极组件11可以图11所示的为卷绕式结构,电极组件11可以也可以为图13中所示的叠片式结构。
如图11所示,其中,第一极片111、隔膜113以及第二极片112均为带状结构,将第一极片111、隔膜113以及第二极片112依次层叠并卷绕两圈以上形成电极组件11,并且电极组件11呈扁平状。在电极组件11制作时,电极组件11可先卷绕成中空的圆柱形结构,卷绕之后再压平为扁平状。图12为电极组件11的外形轮廓示意图,电极组件11的外表面包括两个扁平面114,两个扁平面114沿竖直方向(箭头C所指的方向)相互面对,即扁平面114与电池壳体12的第一侧面110相对设置。其中,电极组件11大致为六面体结构,扁平面114大致平行于卷绕轴线且为面积最大的外表面。扁平面114可以是相对平整的表面,并不要求是纯平面。两个扁平面114是相对电极组件11两侧的窄面115而言的,并且扁平面114的面积大于电极组件11的窄面115。
如图13所示,其中,电极组件11为叠片式结构,即电极组件11中具有多个第一极片111以及多个第二极片112,隔膜113设置在第一极片111和第二极片112之间。第一极片111、隔膜113、第二极片112依次层叠设置。其中,第一极片111、隔膜113和第二极片112沿竖直方向层叠(箭头C所指的方向)。
由于电极组件11在充放电过程中不可避免的会沿极片的厚度方向发生膨胀(在卷绕式结构的电极组件11中,沿垂直于扁平面114的方向膨胀力最大;在叠片式结构的电极组件11中,沿第一极片111和第二极片112的堆叠方向膨胀力最大)。
在现有技术中,电池模块100以及电池单体组件10的电池单体1中,电极组件11对电池壳体12施加最大膨胀力的方向都是朝向水平方向。由于电池模块100在沿水平方向的尺寸相比于竖直方向的尺寸大的多(例如,受到车辆的底盘高度尺寸限制,需要有更多的电池单体1沿水平方向堆叠,膨胀力累积大),因此,现有电池模块100在水平方向上受到的膨胀力非常大,因此需要在电池模块100的水平方向两侧设置非常厚的端板以抵抗膨胀力,而端板加厚会降低电池模块100的能量密度。而本实施例中,电极组件11可以选用卷绕式结构或者叠片式结构。当电极组件11为卷绕式结构时,扁平面114朝向竖直方向。当电极组件为叠片式结构时,第一极片111和第二极片112沿竖直方向层叠。可见,电极组件11无论是采用卷绕式结构还是采用叠片式结构,电极组件11对电池壳体12施加最大膨胀力的方向都朝向竖直方向。
由于电极组件11对电池壳体12施加最大膨胀力的方向是朝向竖直方向,而竖直方向上堆叠的电池单体1个数较少。因此,相比于现有技术,本实施例可以减小电池模块100的最大膨胀力,因此可选用体积更小的端板,从而提高 电池模块100的能量密度。
如图3所示,在电池模块100中,电池单体组件10内的电池单体1沿竖直方向(箭头C所指的方向)堆叠的层数为2层。而在其他实施例中,沿竖直方向堆叠的电池单体1的层数可以为1-5层。例如,沿竖直方向堆叠的电池单体1的层数为2层或3层。
如图6所示,电池单体1中的两个第二侧面120沿水平方向(例如,箭头A所指的长度方向)相互面对,电池单体1中的两个第一侧面110沿竖直方向(箭头C所指的方向)相互面对。例如,第一侧面110的面积大于所述第二侧面120的面积。
由于电池单体1在充放电过程中还会在电池壳体12内部产生气体,产生的气体会对电池壳体12施加作用力,从而加剧电池壳体12向外膨胀。由于本实施例的第一侧面110的面积大于第二侧面120的面积,并且电池单体1中的两个第一侧面110沿竖直方向相互面对,因此产生的气体对电池壳体12施加最大作用力的方向也是朝向竖直方向。相比于现有技术,进一步减少了电池模块100的最大膨胀力。
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本申请的专利保护范围。因此,基于本申请的创新理念,对本文所述实施例进行的变更和修改,或利用本申请说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本申请专利的保护范围之内。

Claims (11)

  1. 一种电池单体组件,其中,包括:
    两个以上的电池单体,所述两个以上的电池单体堆叠设置,所述电池单体包括电极组件和电池壳体,所述电极组件容纳于所述电池壳体内,所述电极组件包括第一极片、第二极片以及设置于所述第一极片和所述第二极片之间的隔膜;以及
    绝缘膜,包围所述两个以上的电池单体的外周,将所述两个以上的电池单体包裹在一起。
  2. 根据权利要求1所述的电池单体组件,其中,相邻的两个所述电池单体之间设置有绝缘件。
  3. 根据权利要求1或2所述的电池单体组件,其中,所述绝缘件的两侧表面分别与所述相邻的两个所述电池单体粘合。
  4. 根据权利要求1至3中任一项所述的电池单体组件,其中,所述绝缘件具有弹性。
  5. 根据权利要求1至4中任一项所述的电池单体组件,其中,所述电池单体还包括盖板,所述电池壳体具有开口,所述电池壳体包括一个端面、两个第一侧面以及两个第二侧面,其中,所述第一侧面的面积大于所述第二侧面的面积且大于所述端面的面积,相邻两个所述电池单体的第一侧面相互面对,所述一个端面、所述两个第一侧面和所述两个第二侧面围成容纳所述电极组件的腔体;
    所述盖板覆盖所述开口,所述电池单体包括第一电极端子和第二电极端子,所述第一电极端子和所述第二电极端子设置在所述盖板上。
  6. 根据权利要求1至5中任一项所述的电池单体组件,其中,所述绝缘膜包围所述两个以上的电池单体的所述第一侧面、所述第二侧面和所述端面。
  7. 根据权利要求1至6中任一项所述的电池单体组件,其中,所述绝缘膜具有第一胶槽,所述第一胶槽与所述第一侧面相互面对,所述第一侧面的一部分通过所述第一胶槽露出,露出的所述第一侧面的所述一部分用于与胶连接。
  8. 根据权利要求1至7中任一项所述的电池单体组件,其中,所述绝缘膜具有第二胶槽,所述第二胶槽与所述端面相互面对,所述端面的一部分通过所述第二胶槽露出,露出的所述端面的所述一部分用于与胶连接。
  9. 一种电池模块,其中,包括沿水平方向排列的两个以上的电池单体组件,以及与多个所述电池单体组件电连接的多个汇流排,其中,所述电池单体组件为权利要求1至8中任一所述的电池单体组件。
  10. 根据权利要求9所述的电池模块,其中,所述电池模块沿水平方向的尺寸大于所述电池模块沿竖直方向的尺寸,并且所述电极组件为卷绕式结构且为扁平状,所述电极组件的外表面包括两个扁平面,两个所述扁平面沿所述竖直方向相互面对;或,所述电极组件为叠片式结构,所述第一极片、所述隔膜和所述第二极片沿所述竖直方向层叠。
  11. 一种电池包,其中,包括:
    箱体,具有容置腔;以及
    多个如权利要求9至10任一所述的电池模块,多个所述电池模块位于所述容置腔内。
PCT/CN2019/079584 2018-12-30 2019-03-25 一种电池单体组件、电池模块及电池包 WO2020140334A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19906932.9A EP3890085B1 (en) 2018-12-30 2019-03-25 Battery cell assembly, battery module and battery pack
US17/419,697 US20220085448A1 (en) 2018-12-30 2019-03-25 Battery cell assembly, battery module, and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201822274884.6U CN209447944U (zh) 2018-12-30 2018-12-30 一种电池单体组件、电池模块及电池包
CN201822274884.6 2018-12-30

Publications (1)

Publication Number Publication Date
WO2020140334A1 true WO2020140334A1 (zh) 2020-07-09

Family

ID=68015842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079584 WO2020140334A1 (zh) 2018-12-30 2019-03-25 一种电池单体组件、电池模块及电池包

Country Status (4)

Country Link
US (1) US20220085448A1 (zh)
EP (1) EP3890085B1 (zh)
CN (1) CN209447944U (zh)
WO (1) WO2020140334A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122106A1 (de) 2021-08-26 2023-03-02 Bayerische Motoren Werke Aktiengesellschaft Batteriezellenpaket für eine Batterie und Batterie
CN116154390A (zh) * 2021-11-23 2023-05-23 宁德时代新能源科技股份有限公司 电池模块及其制造方法和制造装备、电池及用电装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384336A (zh) 2018-12-30 2020-07-07 宁德时代新能源科技股份有限公司 一种电池模块、电池包及车辆
CN112350003A (zh) * 2020-10-12 2021-02-09 欣旺达电动汽车电池有限公司 单体电池及其膨胀测试方法
CN113782804B (zh) * 2021-08-20 2023-09-15 欣旺达惠州动力新能源有限公司 电池包的装配方法及电池包
CN115732833A (zh) * 2021-08-31 2023-03-03 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电设备及电池的制造方法和设备
JP2024060679A (ja) * 2022-10-20 2024-05-07 プライムプラネットエナジー&ソリューションズ株式会社 電池モジュール
DE102022129116A1 (de) 2022-11-03 2024-05-08 Huhn Holding GmbH Batteriezellenvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058089A (zh) * 2015-04-17 2016-10-26 三星Sdi株式会社 电池模块
US20160365552A1 (en) * 2015-06-15 2016-12-15 Toyota Jidosha Kabushiki Kaisha Battery pack
CN108899593A (zh) * 2018-06-08 2018-11-27 合肥国轩高科动力能源有限公司 一种标准vda电池模组结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102200552B1 (ko) * 2018-05-30 2021-01-07 주식회사 엘지화학 배터리 셀 장착 장치 및 그 방법
KR102640327B1 (ko) * 2018-10-19 2024-02-22 삼성에스디아이 주식회사 배터리의 대형 모듈

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058089A (zh) * 2015-04-17 2016-10-26 三星Sdi株式会社 电池模块
US20160365552A1 (en) * 2015-06-15 2016-12-15 Toyota Jidosha Kabushiki Kaisha Battery pack
CN108899593A (zh) * 2018-06-08 2018-11-27 合肥国轩高科动力能源有限公司 一种标准vda电池模组结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122106A1 (de) 2021-08-26 2023-03-02 Bayerische Motoren Werke Aktiengesellschaft Batteriezellenpaket für eine Batterie und Batterie
CN116154390A (zh) * 2021-11-23 2023-05-23 宁德时代新能源科技股份有限公司 电池模块及其制造方法和制造装备、电池及用电装置

Also Published As

Publication number Publication date
EP3890085B1 (en) 2023-08-16
EP3890085A1 (en) 2021-10-06
CN209447944U (zh) 2019-09-27
EP3890085A4 (en) 2022-01-26
US20220085448A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2020140334A1 (zh) 一种电池单体组件、电池模块及电池包
KR100599709B1 (ko) 이차 전지
US10177353B2 (en) Rechargeable battery module
WO2020177721A1 (zh) 一种电池模块及电池包
US20210242549A1 (en) Battery cell, battery module, battery pack, device using battery cell as power supply, and method for assembling battery cell
WO2023185283A1 (zh) 电池
KR102453383B1 (ko) 이차 전지 모듈
EP3852165A1 (en) Current collecting member, secondary battery, and manufacturing method for secondary battery
EP3800686B1 (en) Secondary battery and battery module
US11289762B2 (en) Battery pack
WO2020233302A1 (zh) 一种二次电池、电池组及用电装置
WO2018142809A1 (ja) 蓄電装置
US11139540B2 (en) Battery module and battery pack
US20210126310A1 (en) Battery module and battery pack
US11646474B2 (en) Secondary battery module
US11929510B2 (en) Secondary battery and manufacturing method thereof, battery module, and apparatus
US20230318151A1 (en) Battery
US20190020009A1 (en) Stack-type nonaqueous electrolyte secondary battery
JP2013222705A (ja) 二次電池
WO2024119911A1 (zh) 电化学装置以及电子装置
US12009546B2 (en) Battery module and battery pack
WO2020177738A1 (zh) 一种电池模块及电池包
CN209447946U (zh) 一种电池模块及电池包
KR20190069875A (ko) 크러쉬 플레이트를 구비하는 배터리 모듈 및 그 제조 방법
WO2023115744A1 (zh) 一种便于成组的锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019906932

Country of ref document: EP

Effective date: 20210630