WO2020138854A1 - 연료전지용 막가습기 - Google Patents

연료전지용 막가습기 Download PDF

Info

Publication number
WO2020138854A1
WO2020138854A1 PCT/KR2019/018173 KR2019018173W WO2020138854A1 WO 2020138854 A1 WO2020138854 A1 WO 2020138854A1 KR 2019018173 W KR2019018173 W KR 2019018173W WO 2020138854 A1 WO2020138854 A1 WO 2020138854A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fluid
fuel cell
cartridge
filter
Prior art date
Application number
PCT/KR2019/018173
Other languages
English (en)
French (fr)
Inventor
오영석
김경주
안웅전
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to EP19906004.7A priority Critical patent/EP3905400A4/en
Priority to JP2021529782A priority patent/JP7196303B2/ja
Priority to US17/417,768 priority patent/US20220013798A1/en
Priority to CN201980086012.1A priority patent/CN113228359A/zh
Publication of WO2020138854A1 publication Critical patent/WO2020138854A1/ko
Priority to JP2022198721A priority patent/JP2023027263A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/201Closed housing, vessels or containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/44Cartridge types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/54Modularity of membrane module elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a membrane humidifier for a fuel cell, and more specifically, it removes gases such as nitrogen oxides (NO x ), sulfur oxides (SO x ), and ammonia (NH 3 ) in the humidification process without a separate gas filter device. It relates to a membrane humidifier for a fuel cell that can prevent the degradation of the battery performance.
  • a fuel cell is a power generation cell that generates electricity by combining hydrogen and oxygen.
  • Fuel cells have the advantage of being able to continue to produce electricity as long as hydrogen and oxygen are supplied, and are twice as efficient as internal combustion engines because they have no heat loss, unlike ordinary chemical cells such as batteries and accumulators.
  • the fuel cell is not only environmentally friendly, but also has the advantage of reducing the worry of resource exhaustion due to increased energy consumption.
  • PEMFC Polymer Electrolyte Membrane Fuel Cell
  • PAFC Phosphoric Acid Fuel Cell
  • MCFC Molten Carbonate Fuel Cell
  • SOFC Solid Oxide Fuel Cell
  • AFC Alkaline Fuel Cell
  • PEMFC polymer electrolyte fuel cell
  • PEMFC polymer electrolyte fuel cell
  • MEA membrane-electrode assembly
  • a method of humidifying the polymer electrolyte membrane 1) a bubbler humidification method in which water is supplied to a pressure-resistant container, and then the target gas is passed through a diffuser to supply moisture, and 2) the amount of moisture required for the fuel cell reaction
  • a direct injection method of calculating and supplying water directly to the gas flow pipe through a solenoid valve There are a direct injection method of calculating and supplying water directly to the gas flow pipe through a solenoid valve, and 3) a humidifying membrane method of supplying moisture to the fluidized bed of the gas using a polymer separator.
  • the humidifying membrane method for humidifying the polymer electrolyte membrane is advantageous in that the humidifier can be made lighter and smaller by providing water to the gas supplied to the polymer electrolyte membrane using a membrane that selectively transmits only water vapor contained in the exhaust gas.
  • the selective permeable membrane used in the humidifying membrane method is preferably a hollow fiber membrane having a large permeable area per unit volume when forming a module. That is, when a membrane humidifier is manufactured using a hollow fiber membrane, the high density of the hollow fiber membrane with a large contact surface area is possible, so that the humidification of the fuel cell can be sufficiently achieved even with a small capacity, the use of a low-cost material is possible, and the fuel cell has a high temperature. It has the advantage that it can be reused through the humidifier to recover the moisture and heat contained in the unreacted gas discharged.
  • a membrane humidifier for a fuel cell a hollow fiber membrane is accommodated inside the housing portion, and the hollow fiber membrane is adhered to the inner wall of the housing portion by a potting portion.
  • the hollow fiber membrane has a specific number of strands accommodated in the housing part according to the desired output value of the stack, and is adhered and fixed to the housing part by a potting part.
  • the membrane humidifier for the fuel cell flows hot air from the blower and hot and humid air from the stack.
  • the high temperature air generated from the compressor and blower flows into the stack through a humidifier.
  • Materials such as nitrogen oxide (NO x ), sulfur oxide (SO x ), and ammonia (NH 3 ) contained in the air
  • NO x nitrogen oxide
  • SO x sulfur oxide
  • NH 3 ammonia
  • the present invention removes gases such as nitrogen oxides (NO x ), sulfur oxides (SO x ), and ammonia (NH 3 ) during the humidification process without a separate gas filter device, thereby preventing fuel cell performance degradation. It aims to provide a humidifier.
  • gases such as nitrogen oxides (NO x ), sulfur oxides (SO x ), and ammonia (NH 3 ) during the humidification process without a separate gas filter device, thereby preventing fuel cell performance degradation. It aims to provide a humidifier.
  • the membrane humidifier for a fuel cell of the present invention for achieving the above object includes a first fluid inlet through which a first fluid flows, a first fluid inlet through which a first fluid flows, a second fluid inlet through which a second fluid flows, and a second 2 housing part including a second fluid outlet through which the fluid flows out-the humidity of the first fluid flowing through the first fluid inlet is different from the humidity of the second fluid flowing through the second fluid inlet- ; At least one first cartridge installed inside the housing part and receiving a plurality of hollow fiber membranes; And the inside of the first cartridge or provided between the inner circumferential surface of the housing part and the first cartridge to collect harmful gases contained in at least one of the first and second fluids, and the hollow fiber membrane.
  • Gas filter having a form different from the field-the harmful gas includes nitrogen oxides (NO x ), sulfur oxides (SO x ), ammonia (NH 3 ), or a mixture of two or more of them.
  • the membrane humidifier for the fuel cell may further include at least one second cartridge installed inside the housing, and the second cartridge may be filled only with the gas filter.
  • the gas filter may be arranged with the hollow fiber membranes inside the first cartridge.
  • the gas filter may include a nonwoven fabric and a gas trapping material applied to the nonwoven fabric.
  • the gas filter may include a yarn and a gas trapping material applied to the yarn.
  • the membrane humidifier for the fuel cell may include a plurality of the first cartridges, and the gas filter may be mounted to surround the plurality of first cartridges together in the housing part.
  • the gas filter may be mounted on the inner circumferential surface or the outer circumferential surface of the first cartridge to surround the plurality of hollow fiber membranes.
  • the gas filter may include a nonwoven fabric and a gas trapping material applied to the nonwoven fabric.
  • the gas trapping material is biochar, charcoal, active carbon, acidic polymer, zeolite, platinum, copper sulfate-titanium sulfate mixture, niobium (Nb), hydrogen carbonate It may be any one selected from the group consisting of sodium and mixtures of two or more of them.
  • the acidic polymer is poly(perfluorosulfonic acid) (PFSA), sulfonated polyethersulfone (S-PES), sulfonated polyarylethersulfone (S-PAES), sulfonated polystyrene (sulfonated polystyrene, S-PS), sulfonated polyetherketone (S-PEK), sulfonated polyetheretherketone (S-PEEK), and mixtures of two or more of these. It can be any one.
  • PFSA poly(perfluorosulfonic acid)
  • S-PES sulfonated polyethersulfone
  • S-PAES sulfonated polyarylethersulfone
  • S-PS sulfonated polystyrene
  • S-PEK sulfonated polyetherketone
  • S-PEEK sulfonated polyetheretherketone
  • the gas filter may be mounted inside the housing part, and may be mounted to pass through the gas filter before the first fluid flowing through the first fluid inlet flows into the hollows of the hollow fiber membranes.
  • the housing unit is a pair of the middle case is formed with the first cartridge and the second fluid inlet and the second fluid outlet, coupled to both sides of the middle case, the first fluid inlet and the first fluid outlet respectively It includes a cap case, and the gas filter may be detachably mounted between the cap case having the first fluid inlet and the middle case.
  • the gas filter may include a filter portion and a frame portion coupled to surround the filter portion, and the filter portion may include a nonwoven fabric and a gas collecting material applied to the nonwoven fabric.
  • the performance of the fuel cell by removing gases such as nitrogen oxides (NO x ), sulfur oxides (SO x ), and ammonia (NH 3 ) during the humidification process without a separate gas filter device. Deterioration can be prevented.
  • gases such as nitrogen oxides (NO x ), sulfur oxides (SO x ), and ammonia (NH 3 )
  • FIG. 1 is an exploded perspective view showing a membrane humidifier for a fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a film humidifier according to a first embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing embodiments related to the shape of a gas filter.
  • FIG. 4 is a cross-sectional view showing a film humidifier according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a film humidifier according to a third embodiment of the present invention.
  • FIG. 6 is a schematic view showing the structure of a gas filter mounted inside a middle case of a film humidifier.
  • FIG. 7 is a cross-sectional view showing a film humidifier according to a fourth embodiment of the present invention.
  • FIG 8 is a schematic view showing a structure in which a gas filter is mounted inside or outside the cartridge of the membrane humidifier.
  • FIG. 9 is a cross-sectional view showing a film humidifier according to a fifth embodiment of the present invention.
  • FIG. 10 is a schematic view showing the structure of a gas filter mounted between the middle case and the cap case of the film humidifier.
  • FIG. 1 is an exploded perspective view showing a membrane humidifier for a fuel cell according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a membrane humidifier according to a first embodiment of the present invention
  • FIG. 3 is an embodiment of the form of a gas filter It is a sectional view showing examples.
  • the membrane humidifier for a fuel cell includes a housing part and a plurality of cartridges 150 installed inside the housing part. At least one of the cartridges 150 is a first cartridge in which a plurality of hollow fiber membranes 160 are accommodated.
  • the housing part may be formed by combining the middle case 110 and the cap case 120, or may be integrally formed.
  • the middle case 110 is combined with a pair of cap cases 120 on both sides to form the outer shape of the film humidifier.
  • the middle case 110 and the cap cases 120 may be made of hard plastic or metal such as polycarbonate.
  • the middle case 110 and the cap cases 120 may have a polygonal cross-sectional shape in the width direction or a circular cross-sectional shape in the width direction as illustrated in FIG. 1.
  • the polygon may be a square, a square, a trapezoid, a parallelogram, a pentagon, or a hexagon, and the polygon may have a rounded corner. Further, the circle may be oval.
  • the middle case 110 is formed with a second fluid inlet 112 through which the second fluid is supplied and a second fluid outlet 113 through which the second fluid is discharged.
  • a first fluid inlet 121 is formed in one cap case 120 among the cap cases 120 respectively coupled to both ends of the middle case 110, and the first fluid outlet is 122 in the other cap case 120. ) Is formed.
  • the first fluid flowing into the housing part through the first fluid inlet 121 passes through the inner channel of the hollow fiber membranes 160 accommodated in the first cartridge 150 and then through the first fluid outlet 122. Is discharged.
  • the first fluid inlet 121 and the first fluid outlet 122 may be formed by changing positions with each other, so that the flow direction of the first fluid may be reversed.
  • the hollow fiber membrane 160 is, for example, Nafion material, polyetherimide material, polyimide (PI) material, polyphenylsulfone material, polysulfone (PS) material, polyethersulfone It may be a hollow fiber membrane made of (PES) material.
  • a mesh portion 152 is formed on one side of the first cartridge 150 to allow the second fluid introduced into the membrane humidifier through the second fluid inlet 112 to flow into the first cartridge 150.
  • a mesh portion 152 may be formed on the other side to allow the second fluid having undergone moisture exchange inside the hollow fiber membrane cartridge 150 to flow out of the first cartridge 150.
  • Porting portions are formed at both ends of the first cartridge 150 to fill the gap between the hollow fiber membranes 160 while binding the hollow fiber membranes 160. Accordingly, both ends of the first cartridge 150 are blocked by the potting portion, and a flow path through which the second fluid passes is formed therein.
  • the material of the potting part is according to a known one, and detailed description is omitted herein.
  • a second fluid inlet 112 and a second fluid outlet 113 are formed in the middle case 110.
  • the first fluid may be a low-humidity fluid (eg, external air supplied by a blower) and the second fluid may be a high-humidity fluid (eg, high-humidity offgas discharged from the fuel cell stack).
  • the second fluid may be low humidity outside air, and the first fluid may be high humidity offgas.
  • a plurality of insertion holes 140 in which the plurality of cartridges 150 may be mounted may be formed in the middle case 110, and the cartridge 150 may be inserted into each insertion hole 140.
  • a gas filter configured to collect harmful gas contained in at least one of the first and second fluids and having a different shape from the hollow fiber membranes 160 is provided with the first cartridge 150 ) Or provided between the inner circumferential surface of the housing part and the first cartridge 150.
  • the noxious gas includes nitrogen oxide (NO x ), sulfur oxide (SO x ), ammonia (NH 3 ), or a mixture of two or more of them. Therefore, the membrane humidifier 100 for a fuel cell of the present invention is provided with a gas filter inside the housing portion, thereby collecting harmful gases during the humidification process without a separate gas filter device to prevent deterioration of the fuel cell performance.
  • Nitric oxide (NO) and nitrogen dioxide (NO 2 ) contained in the air Dinitrogen monoxide (N 2 O), dinitrogen trioxide (N 2 O 3 ), dinitrogen tetroxide (N 2 O 4 ), dinitrogen pentoxide (N 2 O 5 ), etc.
  • the plurality of cartridges 150 are filled with at least one first cartridge containing the plurality of hollow fiber membranes 160 and the gas filter only. It may include one second cartridge.
  • hollow fiber membranes 160 are disposed in two first cartridges and a plurality of filter members 210 in one second cartridge
  • the deployed embodiment is shown.
  • the filter member 210 may be accommodated in the two or more cartridges 150.
  • low-humidity air flows into the housing part through the second fluid inlet 112. While some of the low-humidity air passes through the second cartridge 150 in which the filter member 210 is accommodated, harmful gases are collected and filtered, and the rest of the air passes through the first cartridge 150 in which the hollow fiber membranes 160 are accommodated. It is humidified by exchanging moisture with the first fluid, which is the off-gas. The filtered or humidified air passing through each cartridge 150 is combined and discharged through the second fluid outlet 113 to be supplied to the fuel cell stack.
  • the gas filter shown in FIG. 3(a) includes a nonwoven fabric 213 and a gas trapping material 211 applied to the nonwoven fabric 213.
  • the non-woven fabric 213 is a non-woven fabric, which is mechanically, chemically, or thermally treated to bind the fiber aggregate to form a fabric, and is also referred to as an adhesive fabric.
  • the nonwoven fabric 213 is formed in a sheet or film form and serves as a substrate for fixing the gas trapping material 211.
  • the gas filter may be made by dissolving or dispersing the gas trapping material 211 in a liquid phase and applying it to the nonwoven fabric 213, followed by drying, or by spraying the gaseous trapping material 211 onto the nonwoven fabric 213. .
  • the filter member 210 made by applying the gas trapping material 211 to the nonwoven fabric 213 is cut to have the same length as the hollow fiber membrane 160 or a smaller length and a predetermined width, and the first and/or second cartridges ( 150) and can be fixed by being ported.
  • the gas filter illustrated in FIG. 3B includes a yarn 214 and a gas trapping material 212 applied to the yarn 214.
  • the yarn 214 is a mono-filament or multi-filament selected from one or more of polyvinylidene fluoride, polycarbonate, polystyrene, polyester, polyolefin, polyamide, polymethylmethacrylate, polyvinyl chloride and glass fiber. Or it may be a mono-filament and a multi-filament mixed yarn.
  • the gas trapping material 212 may be the same kind of gas trapping material 211 of FIG. 3(a).
  • the gas filter of FIG. 3(b) may be made by applying a liquid gas trapping material 212 to the outer circumferential surface of the yarn 214 having a circular cross section and then drying it.
  • the gas trapping materials 211 and 212 are biochar, charcoal, active carbon, acidic polymer, zeolite, platinum, copper sulfate-titanium sulfate mixture, and niobium ( Nb), sodium hydrogen carbonate, and mixtures of two or more of them.
  • the acidic polymer is poly(perfluorosulfonic acid) (PFSA), sulfonated polyethersulfone (S-PES), sulfonated polyarylethersulfone (S-PAES), sulfonated polystyrene (sulfonated polystyrene, S-PS), sulfonated polyetherketone (S-PEK), sulfonated polyetheretherketone (S-PEEK), and mixtures of two or more of these. It can be any one.
  • PFSA poly(perfluorosulfonic acid)
  • S-PES sulfonated polyethersulfone
  • S-PAES sulfonated polyarylethersulfone
  • S-PS sulfonated polystyrene
  • S-PEK sulfonated polyetherketone
  • S-PEEK sulfonated polyetheretherketone
  • FIG. 4 is a cross-sectional view showing a film humidifier according to a second embodiment of the present invention.
  • the filter member 220 of the gas filter may be arranged with a plurality of hollow fiber membranes 160 inside the first cartridge 150.
  • the filter member 220 may have a form in which the gas collection material 211 is applied to the nonwoven fabric 213 or a form in which the gas collection material 212 is applied to the outer circumferential surface of the yarn 214. have.
  • a plurality of filter members 220 are arranged between each of the three first cartridges 150 together with a plurality of hollow fiber membranes 160 and ported together.
  • the low-humidity air is introduced into the housing part through the second fluid inlet 112 and then (i) humidified while flowing along the hollows of the hollow fiber membranes 160 or (ii) filtered through the filter member 220 do.
  • the humidified or filtered air is discharged from each cartridge 150 and then discharged through the second fluid outlet 113 to be supplied to the fuel cell stack.
  • FIG. 5 is a cross-sectional view showing a membrane humidifier according to a third embodiment of the present invention
  • FIG. 6 is a schematic diagram showing the structure of a gas filter mounted inside the middle case of the membrane humidifier.
  • the membrane humidifier 100 includes a plurality of first cartridges 150 for receiving a plurality of hollow fiber membranes 160, and the filter member 230 of the gas filter is inside the housing part. It is mounted to surround the plurality of first cartridges 150 together.
  • the filter member 230 since the filter member 230 should have a shape that can surround the plurality of first cartridges 150 at the same time, it can be formed by applying a gas trapping material to the nonwoven fabric.
  • the gas trapping material may be the same as described above, and the gas filter 230 is preferably provided with a gas trapping material sandwiched between nonwoven fabrics.
  • the filter member 230 is preferably mounted on the outer peripheral surface of the filter frame forming a polygonal pipe or a circular pipe.
  • the filter frame forms an outer circumferential surface of a square pipe, and a plurality of mainframe parts 235 and a pair of mainframe parts 235 disposed at both ends in the longitudinal direction of the hollow fiber membrane It may include a connection frame portion 232.
  • a filter fixing groove 236 is formed inside the pair of main frame parts 235 facing each other, so that one side end of the filter member 230 may be inserted and fixed.
  • the sealing member 238 is seated on the outer peripheral portion of the main frame portion 235.
  • the sealing member 238 is made of an elastic material such as rubber, and is compressed between the main frame portion 235 and the inner surface of the middle case 110 so that a gap is not formed therebetween.
  • the filter member 230 formed by applying the gas collecting material to the nonwoven fabric is mounted to surround the frame, so that the shape of the filter member 230 can be kept constant, and the gas filter 230 is the middle case 110. It can be easily mounted on or removed from the inner circumferential surface.
  • FIG. 7 is a cross-sectional view showing a membrane humidifier according to a fourth embodiment of the present invention
  • FIG. 8 is a schematic diagram showing a structure in which a gas filter is mounted inside or outside the cartridge of the membrane humidifier.
  • the filter member 240 of the gas filter may be mounted to surround the plurality of hollow fiber membranes 160 on the inner circumferential surface or the outer circumferential surface of each of the plurality of first cartridges 150.
  • the filter member 240 is mounted on the inner peripheral surface of the first cartridge 150. Since the filter member 240 must have a shape corresponding to the shape of the inner circumferential surface of the cartridge 150, it can be formed by applying a gas trapping material to the nonwoven fabric.
  • the first cartridge 150 is formed in a pipe shape with both ends opened, and a mesh portion 152 is formed on at least two side surfaces so that the second fluid flows through one mesh portion 152 and then another mesh. It is leaked through the part 152.
  • the filter member 240 is inserted into the inner circumferential surface of the first cartridge 150 and mounted, and a plurality of hollow fiber membranes 160 are arranged therein, and then the hollow fiber membranes 160 and the filter member 240 are disposed.
  • One module can be manufactured by porting the first cartridge 150 together. At this time, the filter member 240 is mounted to block all the mesh portions 152 so that the second fluid must pass through the filter member 240 when it enters or exits the first cartridge 150. have.
  • the filter member 242 is mounted on the outer peripheral surface of the first cartridge 150.
  • a plurality of filter members 242 may be mounted to block each of the plurality of mesh portions 152 of the first cartridge 150 from the outside.
  • the filter member 242 may be formed by including a gas trapping material on the nonwoven fabric.
  • the first cartridge 150 may include a plurality of protruding ribs for mounting the filter member 242 around each mesh portion 152.
  • the filter member(s) 242 is mounted on the outer circumferential surface of the first cartridge 150, and a plurality of hollow fiber membranes 160 are arranged therein, and then the hollow fiber membranes 160 and the first cartridge 150 By porting the filter member(s) 242 together, one module can be manufactured.
  • the gas trapping material described in the previous embodiment can be used as the gas trapping material.
  • FIG. 9 is a cross-sectional view showing a film humidifier according to a fifth embodiment of the present invention
  • FIG. 10 is a schematic view showing the structure of a gas filter mounted between the middle case and the cap case of the film humidifier.
  • the filter member 250 of the gas filter is mounted inside the housing, but the first fluid flowing through the first fluid inlet 121 is hollow fiber membranes of the first cartridge 150 It is mounted to pass through the filter member 250 of the gas filter before flowing into the hollows of 160.
  • the housing part may be formed of a structure in which the middle case 110 and a pair of cap cases 120 are coupled, and the filter member 250 of the gas filter is the first fluid inlet 121 It may be detachably mounted inside the cap case 120 having the or between the middle case 110 and the cap case 120 having the first fluid inlet 121.
  • the middle case 110 in which the first cartridges 150 are mounted is capped. It can be combined with the case 120.
  • the filter member 250 is mounted only on the side of the cap case 120 on which the first fluid inlet 121 is formed, but the filter member is also on the side of the cap case 120 on which the first fluid outlet 122 is formed. 250 may be mounted. Then, the filter member 250 may collect the harmful gas from the first fluid flowing into the membrane humidifier 100 and once again collect the harmful gas from the first fluid flowing out from the membrane humidifier 100.
  • the filter member 250 may include a filter portion made by applying a gas trapping material to a nonwoven fabric, and a frame portion 255 coupled to surround the filter portion.
  • the frame portion 255 may have a polygonal or circular shape as a whole corresponding to the cross-sectional shape of the housing portion.
  • the frame portion 255 may have a filter fixing groove 256 into which an edge portion of the filter member 250 is inserted, on its inner circumferential surface.
  • the filter member 150 preferably further includes a sealing member 258 provided at an end of the frame portion 255, particularly at an end to be coupled to the cap case 120 having the first fluid inlet 121.
  • the sealing member 258 is made of an elastic material such as rubber, and is compressed when the filter member 250 is mounted inside the cap case 120, thereby leaking gas through the gap between the filter member 250 and the cap case 120. Can be prevented.
  • the gas filter is coated with PFSA on a PET (polyethylene terephthalate) non-woven fabric having a thickness of 100 ⁇ m, and then coated with zeolite and niobium particles, and then again fused with a 100 ⁇ m PET non-woven fabric to form a film-type filter member.
  • PFSA polyethylene terephthalate
  • the filter member thus manufactured was cut and used according to the shape of each example.
  • a membrane humidifier composed of 4 cartridges, 250 filter elements cut into 10 mm x 300 mm were ported to one cartridge, and hollow fiber membranes for humidification were put in the remaining 3 cartridges, and a membrane humidifier was produced using the filter. Subsequently, each of the three types of dry air containing 10 ppm of NH 3 , 10 ppm of NO 3 , and 10 ppm of SO 2 gas was added to the membrane humidifier toward the second fluid inlet 112, and the second fluid outlet 113 The effect of the gas filter was confirmed by collecting the gases coming out of the furnace and measuring the concentration of harmful gases.
  • the gas collection performance of the gas filter according to the first embodiment was 64%, 38%, and 42%, respectively, depending on the type of harmful gas. It was found that the gas collection performance was the best in the case of NH 3 .
  • the gas collection performance of the gas filter according to the second embodiment was 72%, 59%, and 63%, respectively, depending on the type of harmful gas. It was found that the gas collection performance was the best in the case of NH 3 .
  • the dew point of the humidified air discharged from the membrane humidifier was 56°C.
  • a membrane humidifier composed of three cartridges, a membrane humidifier was manufactured by mounting a filter member cut out of 120 mm x 460 mm between the housing part and the three cartridges. Subsequently, the effect of the gas filter was confirmed in the same manner as in the first embodiment described above.
  • the gas collection performance of the gas filter according to the third embodiment was 91%, 89%, and 87%, respectively, depending on the type of harmful gas. It was found that the gas collection performance was the best in the case of NH 3 .
  • the gas collecting performance of the third embodiment is much better than that of the first and second embodiments, whereas in the case of the first and second embodiments, a part of the dry air flowing through the gas filter passes through the gas filter. This is because in the case of the embodiment, all dry air is configured to pass through the gas filter.
  • the dew point of the humidified air discharged from the membrane humidifier was 55°C.
  • a filter member cut into 280 mm x 220 mm was mounted on the inner circumferential surface of each cartridge, and ported together with a hollow fiber membrane bundle to produce a membrane humidifier. Subsequently, the effect of the gas filter was confirmed in the same manner as in the first embodiment described above.
  • the gas collection performance of the gas filter according to the fourth embodiment was 94%, 93%, and 94%, respectively, depending on the type of harmful gas. It was found that the gas collection performance was the best in the case of NH 3 and SO 2 .
  • the gas collecting performance of the fourth embodiment is much better than that of the first and second embodiments, whereas in the case of the first and second embodiments, a part of the dry air flowing through the gas filter passes through the gas filter. This is because in the case of the embodiment, all dry air is configured to pass through the gas filter.
  • the dew point of the humidified air discharged from the membrane humidifier was 56°C.
  • a membrane humidifier was manufactured by mounting a filter member cut into 170 mm x 170 mm between the cap case and the middle case. Subsequently, each of three types of dry air containing 10 ppm of NH 3 , 10 ppm of NO 3 , and 10 ppm of SO 2 gas was introduced into the membrane humidifier toward the first fluid inlet 121, and the first fluid outlet 122 The effect of the gas filter was confirmed by collecting the gases coming out of the furnace and measuring the concentration of harmful gases.
  • the gas collection performance of the gas filter according to the fifth embodiment was 95%, 96%, and 96%, respectively, depending on the type of harmful gas.
  • the gas collection performance was found to be the best in the case of NO 3 and SO 2 .
  • the gas collecting performance of the fifth embodiment is much better than that of the first and second embodiments, whereas in the case of the first and second embodiments, a part of the dry air flowing through the gas filter passes through the gas filter. This is because in the case of the embodiment, all dry air is configured to pass through the gas filter.
  • the dew point of the humidified air discharged from the membrane humidifier was 57°C.
  • the dew point of the humidified air discharged from the membrane humidifier was 54 to 57°C, from which it can be seen that the humidification performance in each of the examples is almost similar.
  • a gas filter capable of collecting and filtering a significant portion of harmful gas contained in dry air while maintaining the humidification performance may be integrally included in the membrane humidifier.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Fuel Cell (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

별도의 가스 필터 장치 없이도 가습 과정에서 유해가스로 인한 연료전지의 성능 저하를 방지할 수 있는 연료전지용 막가습기가 개시된다. 본 발명의 연료전지용 가습기는 제1유체가 유입되는 제1유체유입구, 제1유체가 유출되는 제1유체유출구, 제2유체가 유입되는 제2유체유입구, 및 제2유체가 유출되는 제2유체유출구를 포함하는 하우징부 - 상기 제1유체유입구를 통해 유입되는 상기 제1유체의 습도는 상기 제2유체유입구를 통해 유입되는 상기 제2유체의 습도와 상이함 -; 상기 하우징부 내부에 설치되고 복수의 중공사막들이 수용된 적어도 하나의 제1 카트리지; 및 상기 제1 카트리지의 내부에 구비되거나 상기 하우징부의 내주면과 상기 제1 카트리지 사이에 구비되어 상기 제1 및 제2 유체들 중 적어도 하나에 포함된 유해가스를 포집할 수 있도록 구성되어 있고 상기 중공사막들과 상이한 형태를 갖는 가스필터를 포함한다.

Description

연료전지용 막가습기
본 발명은 연료전지용 막가습기에 관한 것으로서, 더욱 구체적으로는 별도의 가스 필터 장치 없이도 가습 과정에서 질소산화물(NOx), 황산화물(SOx), 암모니아(NH3) 등의 가스를 제거하여 연료전지의 성능 저하를 방지할 수 있는 연료전지용 막가습기에 관한 것이다.
연료전지란 수소와 산소를 결합시켜 전기를 생산하는 발전(發電)형 전지이다. 연료전지는 건전지나 축전지 등 일반 화학전지와 달리 수소와 산소가 공급되는 한 계속 전기를 생산할 수 있고, 열손실이 없어 내연기관보다 효율이 2배 가량 높다는 장점이 있다.
또한, 수소와 산소의 결합에 의해 발생하는 화학 에너지를 전기 에너지로 직접 변환하기 때문에 공해물질 배출이 적다. 따라서, 연료전지는 환경 친화적일 뿐만 아니라 에너지 소비 증가에 따른 자원 고갈에 대한 걱정을 줄일 수 있다는 장점이 있다.
이러한 연료전지는 사용되는 전해질의 종류에 따라 크게 고분자 전해질형 연료전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC), 인산형 연료전지(Phosphoric Acid Fuel Cell: PAFC), 용융 탄산염형 연료전지(Molten Carbonate Fuel Cell: MCFC), 고체 산화물형 연료전지(Solid Oxide Fuel Cell: SOFC), 및 알칼리형 연료전지(Alkaline Fuel Cell: AFC) 등으로 분류할 수 있다.
이들 각각의 연료전지는 근본적으로 동일한 원리에 의해 작동하지만 사용되는 연료의 종류, 운전 온도, 촉매, 전해질 등이 서로 다르다. 이 중에서 고분자 전해질형 연료전지(PEMFC)는 다른 연료전지에 비해 저온에서 동작한다는 점, 및 출력밀도가 커서 소형화가 가능하기 때문에 소규모 거치형 발전장비뿐만 아니라 수송 시스템에서도 가장 유망한 것으로 알려져 있다.
고분자 전해질형 연료전지(PEMFC)의 성능을 향상시키는데 있어서 가장 중요한 요인 중 하나는, 막-전극 접합체(Membrane Electrode Assembly: MEA)의 고분자 전해질 막(Polymer Electrolyte Membrane 또는 Proton Exchange Membrane: PEM)에 일정량 이상의 수분을 공급함으로써 함수율을 유지하도록 하는 것이다. 고분자 전해질 막이 건조되면 발전 효율이 급격히 저하되기 때문이다.
고분자 전해질 막을 가습하는 방법으로는, 1) 내압 용기에 물을 채운 후 대상 기체를 확산기(diffuser)로 통과시켜 수분을 공급하는 버블러(bubbler) 가습 방식, 2) 연료전지 반응에 필요한 공급 수분량을 계산하여 솔레노이드 밸브를 통해 가스 유동관에 직접 수분을 공급하는 직접 분사(direct injection) 방식, 및 3) 고분자 분리막을 이용하여 가스의 유동층에 수분을 공급하는 가습 막 방식 등이 있다.
이들 중에서도 배기 가스 중에 포함되는 수증기만을 선택적으로 투과시키는 막을 이용하여 수증기를 고분자 전해질 막에 공급되는 가스에 제공함으로써 고분자 전해질 막을 가습하는 가습막 방식이 가습기를 경량화 및 소형화할 수 있다는 점에서 유리하다.
가습 막 방식에 사용되는 선택적 투과막은 모듈을 형성할 경우 단위 체적당 투과 면적이 큰 중공사막이 바람직하다. 즉, 중공사막을 이용하여 막가습기를 제조할 경우 접촉 표면적이 넓은 중공사막의 고집적화가 가능하여 소용량으로도 연료전지의 가습이 충분히 이루어질 수 있고, 저가 소재의 사용이 가능하며, 연료전지에서 고온으로 배출되는 미반응 가스에 포함된 수분과 열을 회수하여 가습기를 통해 재사용할 수 있다는 이점을 갖는다.
일반적인 연료전지용 막가습기는, 하우징부 내부에 중공사막이 수용되고, 포팅부에 의해 중공사막은 하우징부 내벽에 접착된다. 중공사막은 스택의 원하는 출력 값에 따라 특정한 가닥의 수가 하우징부 내에 수용되며 포팅부에 의해 하우징부에 접착 및 고정된다. 연료전지용 막가습기에는 블로워로부터 유입된 고온의 공기와 스택으로부터 유입된 고온다습한 공기가 유입된다.
연료전지 시스템에서 압축기 및 블로워로부터 발생하는 고온의 공기는 가습기를 통해 스택으로 유입되는데, 상기 공기 중에 포함되어 있는 질소산화물(NOx), 황산화물(SOx), 암모니아(NH3) 등의 물질이 연료전지의 스택으로 유입되면 스택의 성능을 저하시킬 수 있다. 따라서, 공기 압축기 전단 또는 후단에 이러한 물질들을 제거할 수 있는 별도의 가스 필터 장치가 사용되고 있는 실정이다.
[관련 특허문헌]
1. 대한민국 공개특허 제10-2009-0013304호
2. 대한민국 공개특허 제10-2009-0057773호
3. 대한민국 공개특허 제10-2009-0128005호
4. 대한민국 공개특허 제10-2000-0108092호
5. 대한민국 공개특허 제10-2000-0131631호
6. 대한민국 공개특허 제10-2001-0001022호
7. 대한민국 공개특허 제10-2001-0006122호
8. 대한민국 공개특허 제10-2001-0006128호
9. 대한민국 공개특허 제10-2001-0021217호
10. 대한민국 공개특허 제10-2001-0026696호
11. 대한민국 공개특허 제10-2001-0063366호
본 발명은 별도의 가스 필터 장치 없이도 가습 과정에서 질소산화물(NOx), 황산화물(SOx), 암모니아(NH3) 등의 가스를 제거하여 연료전지의 성능 저하를 방지할 수 있는 연료전지용 막가습기를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위한 본 발명의 연료전지용 막가습기는, 제1유체가 유입되는 제1유체유입구, 제1유체가 유출되는 제1유체유출구, 제2유체가 유입되는 제2유체유입구, 및 제2유체가 유출되는 제2유체유출구를 포함하는 하우징부 - 상기 제1유체유입구를 통해 유입되는 상기 제1유체의 습도는 상기 제2유체유입구를 통해 유입되는 상기 제2유체의 습도와 상이함 -; 상기 하우징부 내부에 설치되고 복수의 중공사막들이 수용된 적어도 하나의 제1 카트리지; 및 상기 제1 카트리지의 내부에 구비되거나 상기 하우징부의 내주면과 상기 제1 카트리지 사이에 구비되어 상기 제1 및 제2 유체들 중 적어도 하나에 포함된 유해가스를 포집할 수 있도록 구성되어 있고 상기 중공사막들과 상이한 형태를 갖는 가스필터 - 상기 유해가스는 질소산화물(NOx), 황산화물(SOx), 암모니아(NH3), 또는 이들 중 2 이상의 혼합물을 포함함 - 를 포함한다.
상기 연료전지용 막가습기는 상기 하우징부 내부에 설치된 적어도 하나의 제2 카트리지를 더 포함할 수 있고, 상기 제2 카트리지는 상기 가스필터로만 채워질 수 있다.
상기 가스필터는 상기 제1 카트리지의 내부에 상기 중공사막들과 함께 배열될 수 있다.
상기 가스필터는 부직포 및 상기 부직포에 도포된 가스포집물질을 포함할 수 있다.
상기 가스필터는 원사 및 상기 원사에 도포된 가스포집물질을 포함할 수 있다.
상기 연료전지용 막가습기는 복수의 상기 제1 카트리지들을 포함할 수 있고, 상기 가스필터는 상기 하우징부 내부에서 복수의 상기 제1 카트리지들을 함께 둘러싸도록 장착될 수 있다.
상기 가스필터는 상기 제1 카트리지의 내주면 또는 외주면에 상기 복수의 중공사막들을 둘러싸도록 장착될 수 있다.
상기 가스필터는 부직포 및 상기 부직포에 도포된 가스포집물질을 포함할 수 있다.
상기 가스포집물질은 바이오차(biochar), 차콜(charcoal), 활성탄(active carbon), 산성 폴리머(acidic polymer), 제올라이트(zeolite), 백금, 황산구리-황산티타늄 혼합물, 나이오븀(Nb), 탄산수소나트륨 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 산성 폴리머는 폴리(퍼플루오로술폰산)(PFSA), 술폰화된 폴리에테르술폰(sulfonated polyethersulfone, S-PES), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리에테르케톤(sulfonated polyetherketone, S-PEK), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, S-PEEK) 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 가스필터는 상기 하우징부 내부에 장착되되 상기 제1유체유입구를 통해 유입되는 상기 제1 유체가 상기 중공사막들의 중공들 내로 유입되기 전에 상기 가스필터를 통과하도록 장착될 수 있다.
상기 하우징부는 상기 제1 카트리지가 장착되고 상기 제2유체유입구 및 제2유체유출구가 형성된 미들케이스와, 상기 미들케이스의 양측에 각각 결합되고 상기 제1유체유입구 및 제1유체유출구를 각각 갖는 한 쌍의 캡케이스들을 포함하고, 상기 가스필터는 상기 제1유체유입구를 갖는 캡케이스와 상기 미들케이스 사이에 착탈가능하게 장착될 수 있다.
상기 가스필터는 필터부 및 상기 필터부를 둘러싸도록 결합된 프레임부를 포함할 수 있고, 상기 필터부는 부직포 및 상기 부직포에 도포된 가스포집물질을 포함할 수 있다.
상기한 본 발명의 연료전지용 막가습기에 의하면, 별도의 가스 필터 장치 없이도 가습 과정에서 질소산화물(NOx), 황산화물(SOx), 암모니아(NH3) 등의 가스를 제거하여 연료전지의 성능 저하를 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 연료전지용 막가습기를 나타내는 분해 사시도이다.
도 2는 본 발명의 제1실시예에 따른 막가습기를 나타내는 단면도이다.
도 3은 가스필터의 형태에 관한 실시예들을 나타내는 단면도이다.
도 4는 본 발명의 제2실시예에 따른 막가습기를 나타내는 단면도이다.
도 5는 본 발명의 제3실시예에 따른 막가습기를 나타내는 단면도이다.
도 6은 막가습기의 미들케이스 내부에 장착되는 가스필터의 구조를 나타내는 개략도이다.
도 7은 본 발명의 제4실시예에 따른 막가습기를 나타내는 단면도이다.
도 8은 막가습기의 카트리지 내부 또는 외부에 가스필터가 장착되는 구조를 나타내는 개략도이다.
도 9는 본 발명의 제5실시예에 따른 막가습기를 나타내는 단면도이다.
도 10은 막가습기의 미들케이스와 캡케이스 사이에 장착되는 가스필터의 구조를 나타내는 개략도이다.
도 1은 본 발명의 일 실시예에 따른 연료전지용 막가습기를 나타내는 분해 사시도이고, 도 2는 본 발명의 제1실시예에 따른 막가습기를 나타내는 단면도이며, 도 3은 가스필터의 형태에 관한 실시예들을 나타내는 단면도이다.
본 발명의 일 실시예에 따른 연료전지용 막가습기는, 하우징부와, 하우징부 내부에 설치된복수의 카트리지들(150)을 포함한다. 상기 카트리지들(150) 중 적어도 하나는 내부에 복수의 중공사막들(160)이 수용된 제1 카트리지이다. 하우징부는 미들케이스(110)와 캡케이스(120)가 결합하여 형성될 수도 있고, 일체로 형성될 수도 있다.
미들케이스(110)는 그 양측에서 한 쌍의 캡케이스들(120)과 결합하여 막가습기의 외형을 형성한다. 미들케이스(110)와 캡케이스들(120)은 폴리카보네이트 등의 경질 플라스틱이나 금속으로 이루어질 수 있다. 미들케이스(110)와 캡케이스들(120)은, 도 1에 도시된 바와 같이 폭 방향 단면 형상이 다각형이거나 또는, 폭 방향 단면 형상이 원형일 수 있다. 상기 다각형은 사각형, 정사각형, 사다리꼴, 평행사변형, 오각형, 육각형 등일 수 있으며, 상기 다각형은 모서리가 라운드진 형태일 수도 있다. 또한, 상기 원형은 타원형일 수도 있다.
미들케이스(110)에는 제2유체가 공급되는 제2유체유입구(112)와 제2유체가 배출되는 제2유체유출구(113)가 각각 형성되어 있다.
미들케이스(110)의 양단에 각각 결합된 캡케이스들(120) 중 한 캡케이스(120)에는 제1유체유입구(121)가 형성되고, 다른 한 캡케이스(120)에는 제1유체유출구(122)가 형성된다. 상기 제1유체유입구(121)를 통해 하우징부 내로 유입된 제1유체는 제1 카트리지(150) 내부에 수용된 중공사막들(160)의 내부 관로를 통과한 후 제1유체유출구(122)를 통해 배출된다. 제1유체유입구(121)와 제1유체유출구(122)는 서로 위치를 바꾸어 형성되어 제1유체의 유동 방향이 반대로 될 수도 있다.
중공사막(160)은, 예를 들어 나피온(Nafion) 재질, 폴리에테르이미드(polyetherimide) 재질, 폴리이미드(PI) 재질, 폴리페닐설폰(polyphenylsulfone) 재질, 폴리설폰(PS) 재질, 폴리에테르설폰(PES) 재질의 중공사막일 수 있다.
제1 카트리지(150)의 일측에는 제2유체유입구(112)를 통해 막가습기로 유입된 제2유체가 상기 제1 카트리지(150)의 내부로 유입되는 것을 허용하기 위한 메쉬부(152)가 형성되고, 타측에는 중공사막 카트리지(150) 내부에서 수분 교환을 수행한 제2유체가 상기 제1 카트리지(150) 외부로 유출되는 것을 허용하기 위한 메쉬부(152)가 형성될 수 있다.
상기 제1 카트리지(150)의 양단부에는 중공사막들(160)을 결속하면서 중공사막들(160) 사이의 갭을 메우는 포팅부가 형성된다. 이로써, 상기 제1 카트리지(150)의 양단부는 포팅부에 의해 막히고, 그 내부에는 제2유체가 통과하는 유로가 형성된다. 포팅부의 재질은 공지된 바에 따른 것으로 본 명세서에서 자세한 설명은 생략한다.
상기 미들케이스(110)에는 제2유체유입구(112) 및 제2유체유출구(113)가 형성되어 있다.
상기 제1유체는 저습의 유체(예를 들어, 블로워에 의해 공급되는 외부 공기)이며 제2유체는 고습의 유체(예를 들어, 연료전지 스택에서 배출되는 고습의 오프가스)일 수 있다. 반대로, 상기 제2유체가 저습의 외부 공기이고, 제1유체가 고습의 오프가스일 수도 있다.
미들케이스(110) 내에는 상기 복수의 카트리지들(150)이 장착될 수 있는 다수개의 삽입구(140)가 형성되고, 각각의 삽입구(140)에는 카트리지(150)가 삽입될 수 있다.
본 발명에 의하면, 상기 제1 및 제2 유체들 중 적어도 하나에 포함된 유해가스를 포집할 수 있도록 구성되어 있고 상기 중공사막들(160)과 상이한 형태를 갖는 가스필터가 상기 제1 카트리지(150)의 내부에 구비되거나 상기 하우징부의 내주면과 상기 제1 카트리지(150) 사이에 구비된다. 상기 유해가스는 질소산화물(NOx), 황산화물(SOx), 암모니아(NH3), 또는 중 이들 중 2 이상의 혼합물을 포함한다. 따라서, 본 발명의 연료전지용 막가습기(100)는 하우징부 내부에 가스필터를 구비함으로써, 별도의 가스 필터 장치 없이도 가습 과정에서 유해가스를 포집하여 연료전지의 성능 저하를 방지할 수 있다.
즉, 연료전지 시스템에서 압축기 및 블로워로부터 공급되는 고온의 공기는 가습기를 통해 스택으로 유입되는데, 상기 공기 중에 포함되어 있는 (i) 일산화질소(Nitric oxide, NO), 이산화질소(Nitrogen dioxide, NO2), 일산화이질소(Dinitrogen monoxide, N2O), 삼산화이질소(Dinitrogen trioxide, N2O3), 사산화이질소(Dinitrogen tetroxide, N2O4), 오산화이질소(Dinitrogen pentoxide, N2O5) 등의 질소산화물(NOx), (ii) 이산화황(SO2), 삼산화황(SO3), 아황산(H2 SO3), 황산(H2SO4) 등의 황산화물(SOx), (iii) 암모니아(NH3) 등의 유해물질이 연료전지의 스택으로 유입되면 스택의 성능을 저하시킬 수 있다. 본 발명에서는 상기 공기의 가습시 막가습기(100)에 구비된 가스필터에 의하여 상기 유해물질들을 포집하여 제거함으로써 연료전지의 성능 저하를 방지할 수 있다.
도 2에 도시된 바와 같이, 본 발명의 제1실시예에 의하면, 상기 복수의 카트리지들(150)은 복수의 중공사막들(160)이 수용된 적어도 하나의 제1 카트리지 및 상기 가스필터로만 채워진 적어도 하나의 제2 카트리지를 포함할 수 있다.
도 2에서는, 미들케이스(110) 내에 장착된 3개의 카트리지들(150) 중 2개의 제1 카트리지들 내에 중공사막들(160)이 배치되고 1개의 제2 카트리지 내에 복수의 필터부재(210)가 배치된 실시예가 도시되어 있다. 그러나, 상기 미들케이스(110) 내에 4개 이상의 카트리지들(150)이 장착될 경우 2개 이상의 카트리지들(150)에 필터부재(210)가 수용될 수도 있다.
제1실시예의 막가습기(100)에서는, 저습의 공기가 제2유체유입구(112)를 통해 하우징부 내부로 유입된다. 저습의 공기 중 일부가 필터부재(210)가 수용된 제2 카트리지(150)를 통과하면서 유해가스가 포집되어 필터링되고, 나머지 공기는 중공사막(160)들이 수용된 제1 카트리지(150)를 통과하면서 고습의 오프가스인 제1유체와 수분 교환을 하여 가습된다. 각 카트리지(150)를 통과하며 필터링되거나 가습된 공기는 합쳐져서 제2유체유출구(113)를 통해 배출되어 연료전지 스택으로 공급된다.
도 3에는 가스필터의 2가지 형태가 도시되어 있다. 도 3(a)에 도시된 가스필터는 부직포(213) 및 상기 부직포(213)에 도포된 가스포집물질(211)을 포함한다. 부직포(213)는 섬유를 직조하지 않고 기계적, 화학적 또는 열적 처리하여 섬유 집합체를 결속시켜 포의 형태를 이루게 한 것으로서 접착포라고도 한다. 부직포(213)는 시트(sheet) 또는 필름 형태로 이루어져 가스포집물질(211)을 고정하는 기판 역할을 한다.
가스필터는 가스포집물질(211)을 액상으로 용해 또는 분산시키고 이를 부직포(213)에 도포한 후 건조하여 만들어지거나, 가루상의 가스포집물질(211)을 부직포(213)에 분사하여 제작될 수 있다. 특히, 부직포(213)에 가스포집물질(211)을 도포한 다음 가스포집물질(211) 위에 부직포(213)를 덮어서 결합시킨 것이 더 바람직하다. 가스포집물질(211)의 유실을 방지할 수 있기 때문이다.
부직포(213)에 가스포집물질(211)을 도포하여 만든 필터부재(210)는 중공사막(160)과 동일한 길이나 그보다 작은 길이와 소정의 폭을 갖도록 재단하여 제1 및/또는 제2 카트리지(150) 내에 배치되고 포팅되어 고정될 수 있다.
도 3(b)에 도시된 가스필터는 원사(214) 및 상기 원사(214)에 도포된 가스포집물질(212)을 포함한다. 원사(214)는 폴리불화비닐리덴, 폴리카보네이트, 폴리스타이렌, 폴리에스테로, 폴리올레핀, 폴리아마이드, 폴리메틸메타아크릴레이트, 폴리염화비닐 및 유리섬유로 구성된 구성에서 하나 이상 선택된 모노-필라멘트이거나 멀티-필라멘트이거나 모노-필라멘트와 멀티-필라멘트가 혼합된 실일 수 있다.
가스포집물질(212)은 도 3(a)의 가스포집물질(211)과 동일한 종류의 것이 사용될 수 있다. 도 3(b)의 가스필터는 원형 단면을 가진 원사(214)의 외주면에 액상의 가스포집물질(212)을 도포한 후 건조하여 만들어질 수 있다.
상기 가스포집물질(211, 212)은 바이오차(biochar), 차콜(charcoal), 활성탄(active carbon), 산성 폴리머(acidic polymer), 제올라이트(zeolite), 백금, 황산구리-황산티타늄 혼합물, 나이오븀(Nb), 탄산수소나트륨 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 산성 폴리머는 폴리(퍼플루오로술폰산)(PFSA), 술폰화된 폴리에테르술폰(sulfonated polyethersulfone, S-PES), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리에테르케톤(sulfonated polyetherketone, S-PEK), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, S-PEEK) 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
도 4는 본 발명의 제2실시예에 따른 막가습기를 나타내는 단면도이다.
제2실시예에 따른 막가습기에서, 가스필터의 필터부재(220)는 제1 카트리지(150)의 내부에 복수의 중공사막(160)과 함께 배열될 수 있다.
필터부재(220)는 도 3에 도시된 바와 같이, 부직포(213)에 가스포집물질(211)이 도포된 형태이거나, 원사(214)의 외주면에 가스포집물질(212)이 도포된 형태일 수 있다.
도 4의 실시예에서는, 3개의 제1 카트리지들(150) 각각의 내부에 복수의 중공사막들(160)과 함께 그 사이사이에 복수의 필터부재들(220)을 배열하고 함께 포팅한다.
저습의 공기는 제2유체유입구(112)를 통해 하우징부 내부로 유입된 후 (i) 상기 중공사막들(160)의 중공들을 따라 흐르면서 가습되거나 (ii) 상기 필터부재(220)를 통과하며 필터링된다. 가습되거나 필터링된 공기는 각 카트리지(150)에서 빠져나온 후 제2유체유출구(113)를 통해 배출되어 연료전지 스택으로 공급된다.
도 5는 본 발명의 제3실시예에 따른 막가습기를 나타내는 단면도이고, 도 6은 막가습기의 미들케이스 내부에 장착되는 가스필터의 구조를 나타내는 개략도이다.
제3실시예에 따른 막가습기(100)는 복수의 중공사막들(160)을 각각 수용하는 복수의 제1 카트리지들(150)을 포함하고, 가스필터의 필터부재(230)는 하우징부 내부에 복수의 상기 제1 카트리지들(150)을 함께 둘러싸도록 장착된다.
제3실시예에서 필터부재(230)는, 복수의 제1 카트리지들(150)을 한꺼번에 둘러쌀 수 있는 형태를 가져야 하므로, 부직포에 가스포집물질을 도포함으로써 형성될 수 있다.
가스포집물질은 상기한 바와 마찬가지의 것들이 사용될 수 있고, 가스필터(230)는 부직포들의 사이에 가스포집물질이 샌드위치 형태로 구비되는 것이 바람직하다.
필터부재(230)는 다각형 파이프 또는 원형 파이프 형태를 이루는 필터프레임의 외주면에 장착되는 것이 바람직하다. 도 6의 실시예에서 필터프레임은 사각형 파이프의 외주면을 이루고, 중공사막의 길이방향 양단부에 배치되는 한 쌍의 메인프레임부(235)와 한 쌍의 메인프레임부(235) 사이를 연결하는 복수의 연결프레임부(232)를 포함할 수 있다.
한 쌍의 메인프레임부(235)의 서로 마주보는 내측에는 필터고정홈(236)이 형성되어 있어서 필터부재(230)의 일측단이 삽입되어 고정될 수 있다.
또한, 메인프레임부(235)의 외주부에는 실링부재(238)가 안착되는 것이 바람직하다. 실링부재(238)는 고무와 같은 탄성 재질로 이루어지고, 메인프레임부(235)와 미들케이스(110)의 내측면 사이에 압착되어 그 사이에 틈이 생기지 않도록 밀봉할 수 있다.
이와 같이, 부직포에 가스포집물질을 도포함으로써 형성된 필터부재(230)가 프레임을 감싸도록 장착됨으로써, 필터부재(230)의 형태를 일정하게 유지할 수 있고, 가스필터(230)를 미들케이스(110) 내주면에 쉽게 장착하거나 그로부터 분리할 수 있다.
도 7은 본 발명의 제4실시예에 따른 막가습기를 나타내는 단면도이고, 도 8은 막가습기의 카트리지 내부 또는 외부에 가스필터가 장착되는 구조를 나타내는 개략도이다.
제4실시예의 막가습기에서, 가스필터의 필터부재(240)는 복수의 제1 카트리지들(150) 각각의 내주면 또는 외주면에 복수의 중공사막들(160)을 둘러싸도록 장착될 수 있다.
도 7 및 도 8(a)에는 필터부재(240)가 제1 카트리지(150)의 내주면에 장착되는 것이 도시되어 있다. 필터부재(240)는 카트리지(150)의 내주면 형태에 대응하는 형태를 가져야 하므로, 부직포에 가스포집물질을 도포함으로써 형성될 수 있다.
제1 카트리지(150)는 양단부가 개구된 파이프 형태로 이루어지고, 적어도 2곳의 측면에 메쉬부(152)가 형성되어 제2유체가 어느 한 메쉬부(152)를 통해 유입되었다가 다른 한 메쉬부(152)를 통해 유출된다.
필터부재(240)를 제1 카트리지(150)의 내주면에 삽입하여 장착하고, 그 내부에 복수의 중공사막들(160)을 배열한 다음, 상기 중공사막들(160)과 필터부재(240)와 제1 카트리지(150)를 함께 포팅함으로써 하나의 모듈을 제작할 수 있다. 이때, 필터부재(240)는 모든 메쉬부(152)를 막도록 장착됨으로써 상기 제2 유체가 상기 제1 카트리지(150) 내로 유입되거나 그로부터 유출될 때 상기 필터부재(240)를 반드시 통과하도록 할 수 있다.
도 8(b)에 예시된 본 발명의 제4실시예에 따르면, 필터부재(242)가 제1 카트리지(150)의 외주면에 장착되는 것이 도시되어 있다. 이 경우, 복수개의 필터부재들(242)이 상기 제1 카트리지(150)의 복수의 메쉬부들(152) 각각을 외측에서 막도록 장착될 수 있다.
상기 필터부재(242)는 제1 카트리지(150)의 외주면의 적어도 일부의 형태에 대응하는 형태를 가져야 하므로, 부직포에 가스포집물질을 도포함으로서 형성될 수 있다.
도시하지 않았으나, 상기 제1 카트리지(150)는 각 메쉬부(152)의 주위에 필터부재(242)를 장착하기 위한 복수의 돌출리브들을 구비할 수 있다.
제1 카트리지(150)의 외주면에 필터부재(들)(242)를 장착하고, 그 내부에 복수의 중공사막들(160)을 배열한 다음, 중공사막들(160)과 제1 카트리지(150)와 필터부재(들)(242)를 함께 포팅함으로써 하나의 모듈을 제작할 수 있다.
제3실시예와 제4실시예에서 가스포집물질은 이전의 실시예에서 설명한 가스포집물질이 사용될 수 있다.
도 9는 본 발명의 제5실시예에 따른 막가습기를 나타내는 단면도이고, 도 10은 막가습기의 미들케이스와 캡케이스 사이에 장착되는 가스필터의 구조를 나타내는 개략도이다.
제5실시예의 막가습기에서, 가스필터의 필터부재(250)는 하우징부 내부에 장착되되 상기 제1유체유입구(121)를 통해 유입되는 제1 유체가 상기 제1 카트리지(150)의 중공사막들(160)의 중공들 내로 유입되기 전에 상기 가스필터의 필터부재(250)를 통과하도록 장착된다.
상기한 바와 같이, 하우징부는 미들케이스(110)와 한 쌍의 캡케이스들(120)이 결합되는 구조로 이루어질 수 있는바, 상기 가스필터의 필터부재(250)는 상기 제1 유체유입구(121)를 갖는 캡케이스(120)의 내부 또는 상기 미들케이스(110)와 상기 제1 유체유입구(121)를 갖는 캡케이스(120) 사이에 착탈 가능하게 장착될 수 있다.
예를 들어, 필터부재(250)를 제1유체유입구(121)가 형성된 캡케이스(120) 내부에 장착한 후, 제1 카트리지들(150)이 내부에 장착된 미들케이스(110)를 상기 캡케이스(120)와 결합할 수 있다.
도 9에서는 제1유체유입구(121)가 형성된 캡케이스(120) 쪽에만 필터부재(250)가 장착된 것이 도시되어 있으나, 제1유체유출구(122)가 형성된 캡케이스(120) 쪽에도 역시 필터부재(250)가 장착될 수 있다. 그러면, 필터부재(250)는 막가습기(100)로 유입되는 제1유체에서 유해가스를 포집하고, 막가습기(100)로부터 유출되는 제1유체에서 유해가스를 다시 한번 포집할 수 있다.
도 10에 도시된 바와 같이, 필터부재(250)는 부직포에 가스포집물질을 도포하여 만들어진 필터부와, 필터부를 둘러싸도록 결합된 프레임부(255)를 포함할 수 있다.
프레임부(255)는 하우징부의 단면 형태에 대응하여 전체적으로 다각형 또는 원형 형태를 가질 수 있다.
도 10의 일부 확대 단면도에 도시된 바와 같이, 프레임부(255)는 필터부재(250)의 테두리부가 삽입되는 필터고정홈(256)을 그 내주면에 가질 수 있다.
또한, 상기 필터부재(150)는 프레임부(255)의 단부, 특히 제1유체유입구(121)를 갖는 캡케이스(120)에 결합될 단부에 구비되는 실링부재(258)를 더 포함하는 것이 바람직하다. 실링부재(258)는 고무와 같은 탄성 재질로 이루어져서, 필터부재(250)를 캡케이스(120) 내측에 장착할 때 압착되어 필터부재(250)와 캡케이스(120) 사이의 틈을 통한 가스 누출을 방지할 수 있다.
이하, 상술한 실시예들에 의한 막가습기를 제작하여 가스필터의 성능을 실험한 결과를 설명한다.
우선, 각 실시예에서 가스필터는 두께 100㎛의 PET(폴리에틸렌 테레프탈레이트) 부직포에 PFSA를 코팅한 후 제올라이트와 나이오븀 입자를 도포한 다음, 다시 100㎛의 PET 부직포를 융착하여 필름 형태의 필터부재를 제작하였다.
이와 같이 제작된 필터부재를 각 실시예의 형태에 맞게 잘라서 사용하였다.
[제1실시예]
4개의 카트리지들로 구성된 막가습기에서 한 개의 카트리지에 10mmХ300mm로 재단된 250개의 필터부재들을 포팅하고 나머지 3개의 카트리지에는 가습용 중공사막들을 넣어 포팅하고 이를 이용하여 막가습기를 제작하였다. 이어서, 막가습기에 10ppm의 NH3, 10ppm의 NO3, 및 10ppm의 SO2 가스를 각각 포함하는 3 종류의 건조 공기들 각각을 제2유체유입구(112) 쪽으로 넣고, 제2유체유출구(113)로 나오는 가스를 포집하여 유해가스의 농도를 측정하여 가스필터의 효과를 확인하였다.
유입 가스 농도 (ppm) 유출 가스 농도 (ppm)
NH3 10 3.6
NO3 10 6.2
SO2 10 5.8
표 1에 나타난 같이, 제1실시예에 따른 가스필터의 가스 포집 성능은 유해가스의 종류에 따라 64%, 38%, 42%를 각각 나타내었다. 가스 포집 성능은 NH3의 경우에 가장 우수함을 알 수 있었다.
또한, 가습 성능을 평가하기 위하여 건조 공기(유량: 3500sLPM, 온도: 80℃, 상대습도: 5~10 %RH, 절대압력: 1.8bar)와 습윤 공기(유량: 3500sLPM, 온도: 80℃, 상대습도: 80 %RH, 절대압력: 1.6bar)를 막가습기에 각각 공급하여 가습을 수행한 결과, 막가습기로부터 배출되는 가습된 공기의 이슬점은 54℃이었다.
[제2실시예]
3개의 카트리지들로 구성된 막가습기에서 각 카트리지에 10mmХ300mm로 재단된 80개의 필터부재들을 복수의 중공사막들과 함께 넣고 포팅하여 막가습기를 제작하였다. 이어서, 상술한 제1 실시예와 동일한 방법으로 가스필터의 효과를 확인하였다.
유입 가스 농도 (ppm) 유출 가스 농도 (ppm)
NH3 10 2.8
NO3 10 4.1
SO2 10 3.7
표 2에 나타난 바와 같이, 제2실시예에 따른 가스필터의 가스 포집 성능은 유해가스의 종류에 따라 72%, 59%, 63%를 각각 나타내었다. 가스 포집 성능은 NH3의 경우에 가장 우수함을 알 수 있었다.
또한, 상술한 제1 실시예와 동일한 방법으로 가습 성능을 평가한 결과, 막가습기로부터 배출되는 가습된 공기의 이슬점은 56℃이었다.
[제3실시예]
3개의 카트리지로 구성된 막가습기에서 하우징부와 3개의 카트리지 사이에 120mmХ460mm로 재단된 필터부재를 장착하여 막가습기를 제작하였다. 이어서, 상술한 제1 실시예와 동일한 방법으로 가스필터의 효과를 확인하였다.
유입 가스 농도 (ppm) 유출 가스 농도 (ppm)
NH3 10 0.9
NO3 10 1.1
SO2 10 1.3
표 3에서와 같이, 제3실시예에 따른 가스필터의 가스 포집 성능은 유해가스의 종류에 따라 91%, 89%, 87%를 각각 나타내었다. 가스 포집 성능은 NH3의 경우에 가장 우수함을 알 수 있었다. 제3실시예의 가스 포집 성능은 제1실시예 및 제2실시예에 비해 훨씬 우수한데, 이는 제1실시예 및 제2실시예의 경우 유입되는 건조 공기의 일부가 가스필터를 통과함에 반해, 제3실시예의 경우 모든 건조 공기가 가스필터를 통과하도록 구성되었기 때문이다.
상술한 제1 실시예와 동일한 방법으로 가습 성능을 평가한 결과, 막가습기로부터 배출되는 가습된 공기의 이슬점은 55℃이었다
[제4실시예]
3개의 카트리지로 구성된 막가습기에서 각 카트리지의 내주면에 280mmХ220mm로 재단된 필터부재를 각각 장착하고 중공사막 다발과 함께 포팅하여 막가습기를 제작하였다. 이어서, 상술한 제1 실시예와 동일한 방법으로 가스필터의 효과를 확인하였다.
유입 가스 농도 (ppm) 유출 가스 농도 (ppm)
NH3 10 0.6
NO3 10 0.7
SO2 10 0.6
표 4에 나타난 바와 같이, 제4실시예에 따른 가스필터의 가스 포집 성능은 유해가스의 종류에 따라 94%, 93%, 94%를 각각 나타내었다. 가스 포집 성능은 NH3와 SO2의 경우에 가장 우수함을 알 수 있었다. 제4실시예의 가스 포집 성능은 제1실시예 및 제2실시예에 비해 훨씬 우수한데, 이는 제1실시예 및 제2실시예의 경우 유입되는 건조 공기의 일부가 가스필터를 통과함에 반해, 제4실시예의 경우 모든 건조 공기가 가스필터를 통과하도록 구성되었기 때문이다.
상술한 제1 실시예와 동일한 방법으로 가습 성능을 평가한 결과, 막가습기로부터 배출되는 가습된 공기의 이슬점은 56℃이었다
[제5실시예]
3개의 카트리지로 구성된 막가습기에서 캡케이스와 미들케이스 사이에 170mmХ170mm로 재단된 필터부재를 장착하여 막가습기를 제작하였다. 이어서, 막가습기에 10ppm의 NH3, 10ppm의 NO3, 및 10ppm의 SO2 가스를 각각 포함하는 3 종류의 건조 공기들 각각을 제1유체유입구(121) 쪽으로 넣고, 제1유체유출구(122)로 나오는 가스를 포집하여 유해가스의 농도를 측정하여 가스필터의 효과를 확인하였다.
유입 가스 농도 (ppm) 유출 가스 농도 (ppm)
NH3 10 0.5
NO3 10 0.4
SO2 10 0.4
표 5에 나타난 바와 같이, 제5실시예에 따른 가스필터의 가스 포집 성능은 유해가스의 종류에 따라 95%, 96%, 96%를 각각 나타내었다. 가스 포집 성능은 NO3와 SO2의 경우에 가장 우수함을 알 수 있었다. 제5실시예의 가스 포집 성능은 제1실시예 및 제2실시예에 비해 훨씬 우수한데, 이는 제1실시예 및 제2실시예의 경우 유입되는 건조 공기의 일부가 가스필터를 통과함에 반해, 제5실시예의 경우 모든 건조 공기가 가스필터를 통과하도록 구성되었기 때문이다.
상술한 제1 실시예와 동일한 방법으로 가습 성능을 평가한 결과, 막가습기로부터 배출되는 가습된 공기의 이슬점은 57℃이었다.
제1실시예 내지 제5실시예에서 막가습기로부터 배출되는 가습된 공기의 이슬점은 54~57℃를 나타내었는데, 이로부터 각 실시예에서 가습 성능은 거의 유사함을 알 수 있다.
본 발명의 연료전지용 막가습기에 의하면, 가습 성능은 그대로 유지하면서도 건조 공기에 포함된 유해가스를 상당 부분 포집하여 필터링할 수 있는 가스필터를 막가습기에 일체로 포함할 수 있다.

Claims (13)

  1. 제1유체가 유입되는 제1유체유입구, 제1유체가 유출되는 제1유체유출구, 제2유체가 유입되는 제2유체유입구, 및 제2유체가 유출되는 제2유체유출구를 포함하는 하우징부 - 상기 제1유체유입구를 통해 유입되는 상기 제1유체의 습도는 상기 제2유체유입구를 통해 유입되는 상기 제2유체의 습도와 상이함 -;
    상기 하우징부 내부에 설치되고 복수의 중공사막들이 수용된 적어도 하나의 제1 카트리지; 및
    상기 제1 카트리지의 내부에 구비되거나 상기 하우징부의 내주면과 상기 제1 카트리지 사이에 구비되어 상기 제1 및 제2 유체들 중 적어도 하나에 포함된 유해가스를 포집할 수 있도록 구성되어 있고 상기 중공사막들과 상이한 형태를 갖는 가스필터 - 상기 유해가스는 질소산화물(NOx), 황산화물(SOx), 암모니아(NH3), 또는 이들 중 2 이상의 혼합물을 포함함 -
    를 포함하는,
    연료전지용 막가습기.
  2. 제1항에 있어서,
    상기 하우징부 내부에 설치된 적어도 하나의 제2 카트리지를 더 포함하고,
    상기 제2 카트리지는 상기 가스필터로만 채워진 것을 특징으로 하는 연료전지용 막가습기.
  3. 제1항에 있어서,
    상기 가스필터는 상기 제1 카트리지의 내부에 상기 중공사막들과 함께 배열된 것을 특징으로 하는 연료전지용 막가습기.
  4. 제2항 또는 제3항에 있어서,
    상기 가스필터는 부직포 및 상기 부직포에 도포된 가스포집물질을 포함하는 것을 특징으로 하는 연료전지용 막가습기.
  5. 제2항 또는 제3항에 있어서,
    상기 가스필터는 원사 및 상기 원사에 도포된 가스포집물질을 포함하는 것을 특징으로 하는 연료전지용 막가습기.
  6. 제1항에 있어서,
    상기 연료전지용 막가습기는 복수의 상기 제1 카트리지들을 포함하고,
    상기 가스필터는 상기 하우징부 내부에서 복수의 상기 제1 카트리지들을 함께 둘러싸도록 장착되는 것을 특징으로 하는 연료전지용 막가습기.
  7. 제1항에 있어서,
    상기 가스필터는 상기 제1 카트리지의 내주면 또는 외주면에 상기 복수의 중공사막들을 둘러싸도록 장착되는 것을 특징으로 하는 연료전지용 막가습기.
  8. 제6항 또는 제7항에 있어서,
    상기 가스필터는 부직포 및 상기 부직포에 도포된 가스포집물질을 포함하는 것을 특징으로 하는 연료전지용 막가습기.
  9. 제8항에 있어서,
    상기 가스포집물질은 바이오차(biochar), 차콜(charcoal), 활성탄(active carbon), 산성 폴리머(acidic polymer), 제올라이트(zeolite), 백금, 황산구리-황산티타늄 혼합물, 나이오븀(Nb), 탄산수소나트륨 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 연료전지용 막가습기.
  10. 제9항에 있어서,
    상기 산성 폴리머는 폴리(퍼플루오로술폰산)(PFSA), 술폰화된 폴리에테르술폰(sulfonated polyethersulfone, S-PES), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리에테르케톤(sulfonated polyetherketone, S-PEK), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, S-PEEK) 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 연료전지용 막가습기.
  11. 제1항에 있어서,
    상기 가스필터는 상기 하우징부 내부에 장착되되 상기 제1유체유입구를 통해 유입되는 상기 제1 유체가 상기 중공사막들의 중공들 내로 유입되기 전에 상기 가스필터를 통과하도록 장착되는 것을 특징으로 하는 연료전지용 막가습기.
  12. 제11항에 있어서,
    상기 하우징부는 상기 제1 카트리지가 장착되고 상기 제2유체유입구 및 제2유체유출구가 형성된 미들케이스와, 상기 미들케이스의 양측에 각각 결합되고 상기 제1유체유입구 및 제1유체유출구를 각각 갖는 한 쌍의 캡케이스들을 포함하고,
    상기 가스필터는 상기 제1유체유입구를 갖는 캡케이스와 상기 미들케이스 사이에 착탈가능하게 장착되는 것을 특징으로 하는 연료전지용 막가습기.
  13. 제12항에 있어서,
    상기 가스필터는 필터부 및 상기 필터부를 둘러싸도록 결합된 프레임부를 포함하고,
    상기 필터부는 부직포 및 상기 부직포에 도포된 가스포집물질을 포함하는 것을 특징으로 하는 연료전지용 막가습기.
PCT/KR2019/018173 2018-12-28 2019-12-20 연료전지용 막가습기 WO2020138854A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19906004.7A EP3905400A4 (en) 2018-12-28 2019-12-20 MEMBRANE HUMIDIFIER FOR FUEL CELL
JP2021529782A JP7196303B2 (ja) 2018-12-28 2019-12-20 燃料電池用膜加湿器
US17/417,768 US20220013798A1 (en) 2018-12-28 2019-12-20 Membrane humidifier for fuel cell
CN201980086012.1A CN113228359A (zh) 2018-12-28 2019-12-20 用于燃料电池的膜加湿器
JP2022198721A JP2023027263A (ja) 2018-12-28 2022-12-13 燃料電池用膜加湿器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0171473 2018-12-28
KR20180171473 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138854A1 true WO2020138854A1 (ko) 2020-07-02

Family

ID=71129159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018173 WO2020138854A1 (ko) 2018-12-28 2019-12-20 연료전지용 막가습기

Country Status (6)

Country Link
US (1) US20220013798A1 (ko)
EP (1) EP3905400A4 (ko)
JP (2) JP7196303B2 (ko)
KR (2) KR102427722B1 (ko)
CN (1) CN113228359A (ko)
WO (1) WO2020138854A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033393A1 (ko) * 2021-09-02 2023-03-09 코오롱인더스트리 주식회사 막가습기용 카트리지 및 이를 포함하는 연료전지 막가습기

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220109051A (ko) * 2021-01-28 2022-08-04 코오롱인더스트리 주식회사 연료전지 막가습기 및 이를 포함하는 연료전지 시스템
KR20230046841A (ko) * 2021-09-30 2023-04-06 코오롱인더스트리 주식회사 중공사막 카트리지 및 이를 포함하는 중공사막 모듈
EP4331713A1 (en) * 2022-09-02 2024-03-06 Mann+Hummel Life Sciences & Environment Holding Singapore Pte. Ltd. Acid-base polymer blend membranes for selective separation of gas
KR102622265B1 (ko) * 2023-10-20 2024-01-09 주식회사 디에스필터 막가습기용 카트리지

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010001022A (ko) 1999-06-01 2001-01-05 윤종용 병렬 프로세서를 위한 무순서 명령어 발행 방법 및 장치
KR20010006128A (ko) 1997-04-08 2001-01-26 파워 엑스 리미티드 데이터 전송 시스템용 폐루프 동기화 구조
KR20010006122A (ko) 1997-04-14 2001-01-26 크리트먼 어윈 엠 인터넷 정보를 병합하는 mpeg 호환 데이터 스트림을 형성 및 처리하기 위한 시스템
KR20010021217A (ko) 1999-08-05 2001-03-15 야스카와 히데아키 액정 표시 장치의 배선 패턴, 액정 표시 장치 및 전자기기
KR20010026696A (ko) 1999-09-08 2001-04-06 이중구 개인별 업무 효율 자동 측정 방법 및 이를 수행하기 위한 장치
KR20010063366A (ko) 1999-12-22 2001-07-09 서평원 이동통신교환기의 프로세서 재시동을 위한 프로그램 및데이터 적재방법
KR20090013304A (ko) 2007-08-01 2009-02-05 주식회사 코오롱 중공사막 및 그 제조방법
JP2009507350A (ja) * 2005-09-06 2009-02-19 カール・フロイデンベルク・カーゲー 再利用反応ガスを燃料電池に供給するための装置
KR20090057773A (ko) 2007-12-03 2009-06-08 주식회사 코오롱 내한성이 향상된 연료전지용 가습기
KR20090128005A (ko) 2008-06-10 2009-12-15 주식회사 코오롱 연료전지용 가습 시스템 및 이를 이용한 연료전지 시스템
KR20130029306A (ko) * 2011-09-14 2013-03-22 현대자동차주식회사 연료전지용 막 가습기
KR20140003182A (ko) * 2012-06-29 2014-01-09 코오롱인더스트리 주식회사 연료전지용 가습기
KR20140038223A (ko) * 2012-09-20 2014-03-28 현대자동차주식회사 연료 전지용 가습장치
KR20150113503A (ko) * 2014-03-31 2015-10-08 코오롱인더스트리 주식회사 유체교환막 모듈

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632175Y2 (ja) * 1988-11-29 1994-08-24 宇部興産株式会社 中空糸膜モジュールカートリッジ
KR100394849B1 (ko) * 2000-10-20 2003-08-19 한국에너지기술연구원 중·저온용 촉매 필터 및 그 제조 방법
EP1469544A1 (en) * 2003-04-11 2004-10-20 Matsushita Electric Industrial Co., Ltd. Method of operating a fuel cell, air purifying apparatus and fuel cell
DE102005042407A1 (de) * 2005-09-06 2007-03-08 Carl Freudenberg Kg Anordnung zur Versorgung einer Brennstoffzelle mit aufbereitetem Reaktionsgas
JP2007285600A (ja) * 2006-04-17 2007-11-01 Toyota Motor Corp 加湿装置
WO2011126786A1 (en) * 2010-04-05 2011-10-13 Generon Igs, Inc. Integrated membrane module for gas dehydration and gas separation
JP3169785U (ja) * 2011-05-23 2011-08-18 イチプラ株式会社 脱臭材及び脱臭装置
DE102014205029A1 (de) * 2014-03-18 2015-09-24 Volkswagen Ag Konditionierungseinheit zur Konditionierung eines Betriebsmediums sowie Brennstoffzellenanordnung mit einer solchen
KR101996477B1 (ko) * 2014-12-23 2019-07-04 코오롱인더스트리 주식회사 중공사막 카트리지형 가습 모듈 및 그 제조방법
US20180145357A1 (en) * 2016-11-18 2018-05-24 GM Global Technology Operations LLC Mitigation strategies for enhanced durability of pfsa-based sheet style water vapor transfer devices
JP6894103B2 (ja) * 2017-05-31 2021-06-23 住江織物株式会社 消臭フィルター及び該消臭フィルターを備えた空気清浄機
KR102490366B1 (ko) * 2018-06-12 2023-01-20 코오롱인더스트리 주식회사 복합 중공사막, 이의 제조 방법, 이를 포함하는 중공사막 카트리지 및 연료 전지 막가습기

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010006128A (ko) 1997-04-08 2001-01-26 파워 엑스 리미티드 데이터 전송 시스템용 폐루프 동기화 구조
KR20010006122A (ko) 1997-04-14 2001-01-26 크리트먼 어윈 엠 인터넷 정보를 병합하는 mpeg 호환 데이터 스트림을 형성 및 처리하기 위한 시스템
KR20010001022A (ko) 1999-06-01 2001-01-05 윤종용 병렬 프로세서를 위한 무순서 명령어 발행 방법 및 장치
KR20010021217A (ko) 1999-08-05 2001-03-15 야스카와 히데아키 액정 표시 장치의 배선 패턴, 액정 표시 장치 및 전자기기
KR20010026696A (ko) 1999-09-08 2001-04-06 이중구 개인별 업무 효율 자동 측정 방법 및 이를 수행하기 위한 장치
KR20010063366A (ko) 1999-12-22 2001-07-09 서평원 이동통신교환기의 프로세서 재시동을 위한 프로그램 및데이터 적재방법
JP2009507350A (ja) * 2005-09-06 2009-02-19 カール・フロイデンベルク・カーゲー 再利用反応ガスを燃料電池に供給するための装置
KR20090013304A (ko) 2007-08-01 2009-02-05 주식회사 코오롱 중공사막 및 그 제조방법
KR20090057773A (ko) 2007-12-03 2009-06-08 주식회사 코오롱 내한성이 향상된 연료전지용 가습기
KR20090128005A (ko) 2008-06-10 2009-12-15 주식회사 코오롱 연료전지용 가습 시스템 및 이를 이용한 연료전지 시스템
KR20130029306A (ko) * 2011-09-14 2013-03-22 현대자동차주식회사 연료전지용 막 가습기
KR20140003182A (ko) * 2012-06-29 2014-01-09 코오롱인더스트리 주식회사 연료전지용 가습기
KR20140038223A (ko) * 2012-09-20 2014-03-28 현대자동차주식회사 연료 전지용 가습장치
KR20150113503A (ko) * 2014-03-31 2015-10-08 코오롱인더스트리 주식회사 유체교환막 모듈

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033393A1 (ko) * 2021-09-02 2023-03-09 코오롱인더스트리 주식회사 막가습기용 카트리지 및 이를 포함하는 연료전지 막가습기

Also Published As

Publication number Publication date
CN113228359A (zh) 2021-08-06
JP7196303B2 (ja) 2022-12-26
KR102427722B1 (ko) 2022-08-01
EP3905400A4 (en) 2022-10-19
EP3905400A1 (en) 2021-11-03
JP2022513641A (ja) 2022-02-09
KR102458460B1 (ko) 2022-10-26
KR20200083250A (ko) 2020-07-08
KR20220111227A (ko) 2022-08-09
US20220013798A1 (en) 2022-01-13
JP2023027263A (ja) 2023-03-01

Similar Documents

Publication Publication Date Title
WO2020138854A1 (ko) 연료전지용 막가습기
WO2016208878A1 (ko) 중공사막 모듈
WO2019240481A1 (ko) 복합 중공사막, 이의 제조 방법, 이를 포함하는 중공사막 카트리지 및 연료 전지 막가습기
WO2019235683A1 (ko) 연료전지용 막가습기
WO2014171677A1 (en) Hollow fiber module
WO2020262912A1 (ko) 연료전지용 가습기 및 그 제조방법
WO2004004055A1 (ja) 固体高分子型セルアセンブリ
WO2020180169A1 (ko) 연료전지 막가습기 및 이를 포함하는 연료전지 시스템
WO2015147511A1 (ko) 중공사막 모듈
WO2022164162A1 (ko) 가습막의 훼손을 방지하는 연료전지 막가습기
WO2014119976A1 (ko) 중공사막 및 이를 포함하는 중공사막 모듈
WO2021107683A1 (ko) 연료전지용 가습기
WO2021107668A1 (ko) 연료전지용 가습기
WO2022164139A1 (ko) 연료전지 막가습기 및 이를 포함하는 연료전지 시스템
WO2015102374A1 (ko) 유체교환막 모듈
WO2022196963A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
WO2022005089A1 (ko) 연료전지용 가습기
WO2022097870A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
WO2015102377A1 (ko) 유체교환막 모듈
WO2020138852A1 (ko) 멀티 채널 중공사막을 포함하는 연료전지용 막가습기
WO2022164140A1 (ko) 연료전지 막가습기 및 이를 포함하는 연료전지 시스템
WO2022139169A1 (ko) 연료전지용 가습시스템
WO2022164067A1 (ko) 연료전지 막가습기 및 이를 포함하는 연료전지 시스템
WO2022191556A1 (ko) 연료전지 막가습기
WO2023033343A1 (ko) 연료전지 막가습기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019906004

Country of ref document: EP

Effective date: 20210728