WO2020138145A1 - Crushing test method for steel pipe for pipeline, manufacturing method for steel pipe for pipeline, and crushing test device - Google Patents

Crushing test method for steel pipe for pipeline, manufacturing method for steel pipe for pipeline, and crushing test device Download PDF

Info

Publication number
WO2020138145A1
WO2020138145A1 PCT/JP2019/050773 JP2019050773W WO2020138145A1 WO 2020138145 A1 WO2020138145 A1 WO 2020138145A1 JP 2019050773 W JP2019050773 W JP 2019050773W WO 2020138145 A1 WO2020138145 A1 WO 2020138145A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
deformable body
test
test steel
pressure
Prior art date
Application number
PCT/JP2019/050773
Other languages
French (fr)
Japanese (ja)
Inventor
隆洋 ▲崎▼本
久和 田近
恒久 半田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2020514774A priority Critical patent/JP6702525B1/en
Publication of WO2020138145A1 publication Critical patent/WO2020138145A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks

Definitions

  • the present invention relates to a crush test method for a pipeline steel pipe (outer diameter of about 300 to 1500 mm) laid on the deep sea floor, a method for manufacturing a pipeline steel pipe, and a crush test apparatus.
  • the pressure generating portion includes a pair of opposing walls arranged to face each other by sandwiching the test steel pipe from the axial direction so as to be in close contact with both end surfaces in the axial direction of the test steel pipe, and one outer peripheral edge portion of the pair of opposing walls.
  • a peripheral wall extending to the other side and surrounding the outer peripheral surface of the test steel pipe is provided, and a pair of opposing walls and the peripheral wall form a pressure chamber surrounding the outer periphery of the test steel pipe.
  • the fluid is supplied to the pressure chamber of the pressure generating part, and the pressurized fluid acts on the outer peripheral surface of the test steel pipe to deform the test steel pipe inward in the radial direction, and the strain sensor attached to the test steel pipe.
  • the crushing limit pressure until the test steel pipe is crushed is measured based on the change of the fluid pressure and the fluid pressure, and the crushing performance of the pipeline steel pipe is evaluated and predicted.
  • the test steel pipe is sandwiched from the axial direction so that the pair of opposing walls are in close contact with both end faces in the axial direction of the test steel pipe, even if the pressure chamber becomes high in pressure, the pressure chamber is forced from between the end face and the opposing wall. It is sealed without fluid leakage to the outside.
  • the present invention has been made by paying attention to the unsolved problem of the above-mentioned conventional example, and when the test steel pipe is deformed inward in the radial direction by the action of the pressurized fluid, it is formed on both end faces in the axial direction of the test steel pipe.
  • a crushing test method for a steel pipe for a pipeline a method for manufacturing a steel pipe for a pipeline, and a crushing test apparatus that can reproduce the crushing limit pressure of a steel pipe for a pipeline with high accuracy without generating frictional force.
  • the purpose is to
  • the crushing test method for a pipeline steel pipe is a ring-shaped test steel pipe formed by being cut from a part of the pipeline steel pipe, and a test steel pipe.
  • the step of supplying fluid to the pressure chamber formed surrounding the outer peripheral surface of the deformable body and causing the pressurized fluid to act on the outer peripheral surface of the deformable body the step of measuring the inner diameter of the test steel pipe, and the pressure of the fluid in the pressure chamber And a step of calculating the crushing limit pressure of the crushed test steel pipe based on the inner diameter measurement value of the test steel pipe and the pressure measurement value of the fluid in the pressure chamber.
  • the method for producing a steel pipe for a pipeline is a method for producing a steel pipe for a pipeline through the steps of performing the crushing test method for a steel pipe for a pipeline described above.
  • the crushing test apparatus for a steel pipe for a pipeline is a test steel pipe formed by cutting a part of a steel pipe for a pipeline to form a ring shape, and an axial length of the test steel pipe is increased. It is a cylindrical member that is set and formed of synthetic resin. The deformable body mounted on the outer circumference of the test steel pipe and the deformable body are clamped from the axial direction so that both axial end surfaces of the deformable body are in close contact with each other.
  • An apparatus main body that forms a pressure chamber that surrounds the outer periphery of the deformable body by including a pair of opposed walls that are arranged to face each other and a peripheral wall that extends from the pair of opposed walls and that surrounds the outer peripheral surface of the deformable body, Fluid supply means for supplying fluid to the pressure chamber, inner diameter measurement means for measuring the inner diameter of the test steel pipe, fluid pressure measurement means for measuring the pressure of the fluid in the pressure chamber, and inner diameter measurement value and fluid measured by the inner diameter measurement means And a calculating means for calculating the crush limit pressure of the crushed test steel pipe based on the pressure measurement value of the fluid measured by the pressure measuring means.
  • the manufacturing method of a pipeline steel pipe and the crushing test apparatus according to the present invention when the test steel pipe is deformed radially inward by the action of the pressurized fluid, No frictional force is generated on both end faces in the axial direction, and the crushing limit pressure of the pipeline steel pipe can be reproduced with high accuracy using the test steel pipe.
  • FIG. 1 It is sectional drawing which shows the crushing test apparatus of the steel pipe for pipelines of 1st Embodiment which concerns on this invention. It is a figure which shows the principal part of the crushing test apparatus of the steel pipe for pipelines of 1st Embodiment. It is a block diagram which shows the structure of the calculating part which comprises the crushing test apparatus of the steel pipe for pipelines of 1st Embodiment. It is a figure which shows the principal part of the crushing test apparatus of the steel pipe for pipelines of 2nd Embodiment. It is a figure which shows the principal part of the crushing test apparatus of the steel pipe for pipelines of 3rd Embodiment. It is a figure which shows the principal part of the crushing test apparatus of the steel pipe for pipelines of 4th Embodiment. It is a graph which shows inner diameter displacement of the test steel pipe which reproduced plastic crushing when a crushing test was performed.
  • first to third embodiments according to the present invention will be described with reference to the drawings.
  • the same or similar reference numerals are given to the same or similar parts.
  • the drawings are schematic and different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following description. Further, it is needless to say that the drawings include parts in which dimensional relationships and ratios are different from each other.
  • the following first to fourth embodiments exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is as follows: The shape, structure, arrangement, etc. are not specified below. Various changes can be added to the technical idea of the present invention within the technical scope defined by the claims described in the claims.
  • FIG. 1 and 2 show a crushing test apparatus for steel pipes for pipelines according to a first embodiment of the present invention.
  • a crushing test apparatus 1 for pipeline steel pipes according to the first embodiment sandwiches a test steel pipe 2, a deformable body 3 mounted on the outer periphery of the test steel pipe 2, and the deformable body 3 from an axial direction.
  • the apparatus main body 4 in which the test steel pipe 2 and the deformable body 3 are arranged, the pressurized water supply unit 5, the strain gauge 6, the pressure gauge 7, and the arithmetic unit 8 are provided.
  • the test steel pipe 2 is a member formed by cutting a part of a steel pipe for a pipeline for evaluating and predicting crush resistance performance to form a ring shape.
  • the test steel pipe 2 cut from the pipeline steel pipe is cut such that both axial end faces thereof are flat.
  • the deformable body 3 is a cylindrical member that is attached to the outer circumference of the test steel pipe 2 and is made of synthetic resin. Examples of the synthetic resin of the deformable body 3 include a nylon resin called NC nylon.
  • the thickness of the deformable body 3 is set to about 3 mm.
  • the inner diameter of the deformable body 3 may be the same as the outer diameter dimension of the test steel pipe 2 so as to be in close contact with the outer peripheral surface of the test steel pipe 2, but it is about 5 mm larger than the outer diameter dimension of the test steel pipe 2. However, it does not significantly affect the crush test.
  • the axial length Lc1 of the deformable body 3 is set longer than the axial length Lt1 of the test steel pipe 2, and the difference ⁇ L1 (in the axial length between the deformable body 3 and the test steel pipe 2).
  • Lc1-Lt1) is set in the range of 0.3 mm to 5.0 mm (0.3 ⁇ L1 ⁇ 5.0).
  • the device main body 4 includes a doughnut-shaped bottom plate 10 having a penetrating part 10a, a top plate 11 having the same outer peripheral shape as the bottom plate 10 and having a penetrating part 11a, and a bottom plate 10. And a ring-shaped intermediate plate 12 arranged coaxially between the roof 11 and the roof 11.
  • the intermediate plate 12 is arranged in a state of being fitted in annular step portions 10b and 11b provided on the outer peripheries of the surfaces of the bottom plate 10 and the top plate 11 facing each other.
  • grooves for inserting a sealing material are formed on the step surfaces extending along the axial direction of the step portions 10b and 11b and the inner wall surface of the intermediate plate 12 facing the step surfaces.
  • a packing is attached to maintain liquid tightness between the step portions 10b and 11b and the intermediate plate 12.
  • the shape of the groove and the shape of the rubber packing can be arbitrarily selected, and for example, the structure may be such that a rubber packing having a circular cross section or a rectangular cross section is mounted.
  • the apparatus main body 4 is provided with a ring-shaped test space ST surrounded by an upper surface 10h of the bottom board 10, a lower surface 11h of the top board 11, and an inner peripheral surface 12a of the intermediate board 12.
  • the test steel pipe 2 and the deformable body 3 are arranged so that the axis extends between the upper surface 10h of the bottom plate 10 and the lower surface 11h of the top plate 11.
  • a plurality of first connecting bolts 14 and second connecting bolts 15 are attached to the device body 4.
  • the plurality of first connecting bolts 14 pass through the through holes 11c, 12c which penetrate the axial direction at predetermined intervals in the outer circumferential side of the roof 11 and the intermediate plate 12, and the predetermined intervals in the circumferential direction of the bottom plate 10.
  • the threaded portion is screwed into the threaded hole 10c provided by opening.
  • the plurality of second bolts 15 pass through the through-holes 11d that penetrate through the axial direction in the circumferential direction on the inner circumferential side of the roof 11 at predetermined intervals, and set the predetermined intervals in the circumferential direction on the inner circumferential side of the bottom plate 10.
  • the screw portion is screwed into the screw hole 10d provided as above.
  • the bottom surface of the deformable body 3 By mounting the plurality of first and second connecting bolts 14 and 15, the bottom surface of the deformable body 3 in a state where both end surfaces 3a and 3b in the axial direction are in close contact with the lower surface 11h of the top 11 and the upper surface 10h of the bottom board 10. It is sandwiched between 10 and the roof 11.
  • a pressure chamber 16 is formed in a space surrounded by the outer peripheral surface of the deformable body 3, the inner peripheral surface of the intermediate plate 12, the lower surface 11h of the roof 11 and the upper surface 10h of the bottom plate 10.
  • a water supply passage 11e and a pressure measurement passage 11f, which communicate with the outside of the pressure chamber 16 and the apparatus body 4, are formed in the roof 11, and the pressurized water supply unit 5 is connected to the water supply passage 11e.
  • the pressure gauge 7 is connected to 11f. Further, a plurality of strain gauges 6 are attached to the inner peripheral surface of the test steel pipe 2.
  • the calculation unit 8 includes an input unit 8a, a crushing pressure calculation unit 8b, a display unit 8c, and the like.
  • the input unit 8a, the crushing pressure calculation unit 8b, and the display unit 8c are specifically realized by a general-purpose information processing device such as a personal computer or a workstation, and have, for example, a CPU, a ROM, a RAM, etc. as main components. In addition to being parts, they are connected by a network and are configured to exchange data.
  • the pressure value of the pressure chamber 16 measured by the pressure gauge 7 is input to the input section 8a of the calculation section 8, and the test steel pipe 2 measured by the plurality of strain gauges 6 mounted on the inner peripheral surface of the test steel pipe 2 is measured.
  • the displacement amount of is input.
  • the crushing pressure calculation unit 8b calculates the pressure when the test steel pipe 2 is crushed (crushing limit pressure) based on the change in the pressure value of the pressure chamber 16 input to the input unit 8a and the displacement amount of the test steel pipe 2.
  • the display unit 8c displays the value of the crush limit pressure of the test steel pipe 2 calculated by the crush pressure calculation unit 8b.
  • the pair of opposing walls described in the present invention correspond to the lower surface 11h of the top 11 and the upper surface 10h of the bottom board 10, and the fluid supply means described in the present invention corresponds to the pressurized water supply unit 5.
  • the inner diameter measuring means described in the present invention corresponds to the strain gauge 6, the fluid pressure measuring means described in the present invention corresponds to the pressure gauge 7, and the arithmetic means described in the present invention. , Corresponding to the calculation unit 8.
  • the deformable body 3 is attached to the outer circumference of the test steel pipe 2.
  • the test steel pipe 2 and the deformable body 3 are arranged in the test space ST of the apparatus main body 4 so that the axis extends between the upper surface 10h of the bottom plate 10 and the lower surface 11h of the top plate 11.
  • the plurality of first connecting bolts 14 and the second connecting bolts 15 are attached to the apparatus body 4, and both axial end surfaces 3a and 3b of the deformable body 3 are attached to the lower surface 11h of the roof 11 and the upper surface 10h of the bottom board 10.
  • the deformable body 3 is sandwiched between the bottom plate 10 and the top plate 11 in a state of being in close contact with each other.
  • the pressure chamber 16 is formed in the space surrounded by the outer peripheral surface of the deformable body 3, the inner peripheral surface of the intermediate plate 12, the lower surface 11h of the top 11 and the upper surface 10h of the bottom plate 10.
  • one end surface 2b in the axial direction is placed on the upper surface 10h of the bottom plate 10 and the other end surface 2a in the axial direction contacts the lower surface 11h of the roof 11. It is arranged inside the deformable body 3 in a state where it is not.
  • the pressurized water is supplied from the pressurized water supply unit 5 to the pressure chamber 16 via the water supply passage 11e.
  • the water pressure in the pressure chamber 16 is increased by the supply of the pressurized water from the pressurized water supply unit 5, the water pressure acts on the outer peripheral surface of the deformable body 3 and the deformable body 3 is plastically deformed radially inward.
  • the test steel pipe 2 mounted inside the deformable body 3 also plastically deforms radially inward.
  • the deformable body 3 is made of synthetic resin, even if the deformable body 3 is in close contact with the lower surface 11h of the roof 11 and the upper surface 10h of the bottom board 10, a large frictional force is not generated between the lower surface 11h and the upper surface 10h. Since the water pressure of the pressure chamber 16 acts on the outer circumference of the test steel pipe 2 via the deformable body 3, the test steel pipe 2 is likewise plastically deformed radially inward. At this time, in the test steel pipe 2, one end surface 2b in the axial direction is placed on the upper surface 10h of the bottom plate 10 and the other end surface 2a in the axial direction is not in contact with the lower surface 11h of the roof 11, so that the bottom plate 10 is not in contact. Since it is not sandwiched between the roof 11 and the roof 11, frictional force is not generated between the axial end surfaces 2a and 2b and the lower surface 11h and the upper surface 10h.
  • the calculation unit 8 inputs the pressure value of the water pressure of the pressure chamber 16 acting on the outer circumference of the test steel pipe 2 to the input unit 8a from the pressure gauge 7, and the displacement amount of the test steel pipe 2 plastically deformed radially inward. Since input is made from a plurality of strain gauges 6, the crush pressure calculation unit 8b calculates the crush limit pressure when the test steel pipe 2 is crushed based on the change in the pressure value of the pressure chamber 16 and the displacement amount of the test steel pipe 2. .. Then, the display unit 8c displays the value of the crushing limit pressure of the test steel pipe 2.
  • the test steel pipe 2 which is plastically deformed radially inward is also plastically deformed in the direction in which the axial length increases.
  • the difference ⁇ L1 between the axial length Lc1 of the deformable body 3 and the axial length Lt1 of the test steel pipe 2 is set to 0.3 mm or more, but this difference ⁇ L1 (0.3 mm or more) is Even if the test steel pipe 2 is plastically deformed in the direction in which the axial length increases, the axial end surface of the test steel pipe 2 does not come into contact with the lower surface 11h of the roof 11. As a result, even if the test steel pipe 2 is plastically deformed in the direction in which the axial length increases, there is no possibility of generating a frictional force between the top plate 11 and the bottom plate 10.
  • the difference ⁇ L1 between the axial length Lc1 of the deformable body 3 and the axial length Lt1 of the test steel pipe 2 is less than 0.3 mm, the end surface of the test steel pipe 2 comes into contact with the lower surface 11h of the roof 11, so the test A frictional force may be generated between the steel pipe 2 and the top 11 and the bottom 10. Further, if the difference ⁇ L1 between the axial length Lc1 of the deformable body 3 and the axial length Lt1 of the test steel pipe 2 is too large, the deformable body 3 is excessively deformed by the action of water pressure in the pressure chamber 16, and the deformable body is deformed.
  • the liquid-tightness of the contact position between the axial end surface 3a of 3 and the lower surface 11h of the roof 11 and the contact position between the axial end surface 3b of the deformable body 3 and the upper surface 10h of the bottom plate 10 may deteriorate. Therefore, in the first embodiment, by setting the difference ⁇ L1 to a value of 5.0 mm or less, excessive deformation of the deformable body 3 is prevented, and the liquid at the contact position between the bottom board 10 and the roof 11 and the deformable body 3 is prevented. The tightness is secured.
  • the pressure chamber 16 that applies water pressure to the outer peripheral surface of the test steel pipe 2 to be subjected to the crush test includes the outer peripheral surface of the deformable body 3 mounted on the outer peripheral surface of the test steel pipe 2, the inner peripheral surface of the intermediate plate 12, It is formed in a space surrounded by a lower surface 11h of the top 11 and an upper surface 10h of the bottom 10. Then, the water pressure of the pressure chamber 16 acts on the test steel pipe 2 via the deformable body 3 and plastically deforms inward in the radial direction.
  • one end surface 2b in the axial direction is the bottom plate. 10
  • the other axial end surface 2a is not in contact with the lower surface 11h of the roof 11, and the axial end surfaces 2a and 2b generate a frictional force between the lower surface 11h and the upper surface 10h. do not do.
  • the crushing limit pressure of the pipeline steel pipe can be reproduced with high accuracy in the test steel pipe 2, and the pressure crushing performance of the pipeline steel pipe is highly accurate. Can be evaluated. Further, since the difference ⁇ L1 (Lc1-Lt1) between the axial length Lc1 of the deformable body 3 and the axial length Lt1 of the test steel pipe 2 is set to 0.3 mm or more, the test steel pipe 2 has an increased axial length. Even if it is plastically deformed in the direction in which it does not contact the lower surface 11h of the roof 11 and no frictional force is generated between it and the roof 11, the pressure crushing performance of the pipeline steel pipe can be evaluated with higher accuracy.
  • FIG. 4 shows a main part of a crushing test apparatus 17 for pipeline steel pipes according to a second embodiment of the present invention.
  • the same components as those of the crushing test apparatus 1 for a steel pipe for a pipeline according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • ring grooves are formed on the step surfaces along the axial direction of the step portions 10b and 11b shown in the first embodiment and on the inner wall surface of the intermediate plate 12 facing the step surfaces.
  • a ring groove having a quadrangular cross section is formed on the step surfaces orthogonal to the axial direction of the step portions 10b and 11b and the axial surface of the intermediate disk 12 facing the step surfaces.
  • An annular packing 23 having a rectangular cross section is attached to the ring grooves formed on the surfaces of the step portions 10b and 11b and the intermediate plate 12 that face each other in the axial direction.
  • the axial force generated in the first and second connecting bolts 14 and 15 by passing through the roof 11 and being screwed into the bottom plate 10 causes a step difference perpendicular to the axial direction of the step parts 10b and 11b. Since a large adhesion force acts on the annular packing 23 mounted between the surface and the surface of the intermediate plate 12 facing the surface and orthogonal to the axial direction, the water pressure in the pressure chamber 16 is increased as compared with the first embodiment. It is possible to greatly increase it. Therefore, the crushing test apparatus 17 for steel pipes for pipelines of the second embodiment measures the crushing limit pressure of the test steel tube 2 by significantly increasing the water pressure of the pressure chamber 16 as compared with the crushing test apparatus 1 of the first embodiment. Therefore, the crushing limit pressure of a significantly high value of the pipeline steel pipe can be reproduced with high accuracy in the test steel pipe 2.
  • the annular packing 23 is attached to the ring groove provided on the step surface orthogonal to the axial direction of the step portions 10b and 11b and the surface orthogonal to the axial direction of the intermediate plate 12 facing the step surface. Even if an arc-shaped ring groove is formed and an O-ring is attached to this ring groove, the same effect can be obtained.
  • FIG. 5 shows a main part of a crushing test apparatus for steel pipes for pipelines according to a third embodiment of the present invention.
  • the same components as those of the crushing test device for pipeline steel pipes according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • a cylindrical rubber packing 21 is attached to the outer periphery of the deformable body 3.
  • the rubber packing 21 is a member in which thick portions 21a and 21b are provided at both ends in the axial direction, and the thickness other than the thick portions 21a and 21b is 3 mm, and the axial length in the free length is It is set to be longer than the axial length Lc2 of the deformable body 3. Further, the thick portions 21a and 21b are not always necessary, and the effect of the present invention can be exhibited without the thick portions.
  • the axial length Lc2 of the deformable body 3 is set longer than the axial length Lt2 of the test steel pipe 2, and the difference ⁇ L2 (Lc2-Lt2) between the axial lengths of the deformable body 3 and the test steel pipe 2 is , 1.0 mm or more and 1.3 mm or less (1.0 ⁇ L2 ⁇ 1.3).
  • the cylindrical elastic body described in the present invention corresponds to the rubber packing 21.
  • the deformable body 3 is attached to the outer periphery of the test steel pipe 2, and the rubber packing 21 is attached to the outer periphery of the deformable body 3.
  • the test steel pipe 2, the deformable body 3, and the rubber packing 21 are arranged so that the axis extends between the upper surface 10h of the bottom plate 10 and the lower surface 11h of the roof 11.
  • the plurality of first connecting bolts 14 and the second connecting bolts 15 are attached to the apparatus body 4, and both axial end surfaces 3a and 3b of the deformable body 3 are attached to the lower surface 11h of the roof 11 and the upper surface 10h of the bottom board 10.
  • the thickened portions 21a and 21b at both ends of the rubber packing 21 in the axial direction are elastically deformed in a compressed state so as to sandwich the deformable body 3 between the bottom plate 10 and the top plate 11.
  • the pressure chamber 16 is formed in a space surrounded by the outer peripheral surface of the rubber packing 21, the inner peripheral surface of the intermediate plate 12, the lower surface 11h of the top 11 and the upper surface 10h of the bottom plate 10.
  • one end surface 2b in the axial direction is placed on the upper surface 10h of the bottom plate 10 and the other end surface 2a in the axial direction does not contact the lower surface 11h of the roof 11, and the deformable body 3 is deformed. Placed inside.
  • the pressurized water is supplied from the pressurized water supply unit 5 to the pressure chamber 16 via the water supply passage 11e.
  • the water pressure in the pressure chamber 16 increases due to the supply of the pressurized water from the pressurized water supply unit 5, the water pressure acts on the outer peripheral surface of the deformable body 3 via the rubber packing 21, and the deformable body 3 is plastically deformed radially inward. It transforms.
  • the test steel pipe 2 mounted inside the deformable body 3 also plastically deforms radially inward.
  • one end face 2b in the axial direction is placed on the upper face 10h of the bottom plate 10, and the other end face 2a in the axial direction contacts the lower face 11h of the roof 11. Since it is not sandwiched between the bottom plate 10 and the top plate 11, no frictional force is generated between the axial end faces 2a and 2b and the lower face 11h and the upper face 10h.
  • the test steel pipe 2 is plastically deformed inward in the radial direction and is also plastically deformed in a direction in which the axial length is increased.
  • the difference ⁇ L1 between the axial length Lc2 of the deformable body 3 and the axial length Lt2 of the test steel pipe 2 is set to 1.0 mm or more, but this difference ⁇ L2 (1.0 mm or more) is set. Even if the test steel pipe 2 is plastically deformed in the direction in which the axial length increases, the axial end surface of the test steel pipe 2 does not come into contact with the lower surface 11h of the roof 11.
  • the test steel pipe 2 is plastically deformed in the direction in which the axial length increases, there is no possibility of generating a frictional force between the top plate 11 and the bottom plate 10.
  • the difference ⁇ L2 by setting the difference ⁇ L2 to a value of 1.3 mm or less, excessive deformation of the deformable body 3 is prevented, and the liquid at the contact position between the bottom plate 10 and the roof 11 and the deformable body 3 is prevented. The tightness is secured.
  • the water pressure of the pressure chamber 16 acts on the test steel pipe 2 via the deformable body 3 and plastically deforms inward in the radial direction.
  • one end face 2b in the axial direction is the top face 10h of the bottom plate 10h.
  • the other end surface 2a in the axial direction is not in contact with the lower surface 11h of the roof 11, and the axial end surfaces 2a and 2b do not generate frictional force between the lower surface 11h and the upper surface 10h.
  • the rubber packing 21 is attached to the outer periphery of the deformable body 3, and when the deformable body 3 is sandwiched between the bottom plate 10 and the top plate 11, the rubber packing 21 moves in the axial direction of the rubber packing 21.
  • the thick portions 21a and 21b at both ends are elastically deformed in a compressed state on the lower surface 11h of the top board 11 and the upper surface 10h of the bottom board 10.
  • the crushing test apparatus 20 of the third embodiment can measure the high value of the crushing limit pressure of the test steel pipe 2 by increasing the water pressure in the pressure chamber 16, and the high value of the crushing limit pressure of the pipeline steel pipe can be measured. Can be reproduced with high precision using a test steel pipe.
  • the test steel pipe 2 Even if is plastically deformed in the direction of increasing the axial length, the lower surface 11h of the roof 11 does not come into contact with the roof 11 and no frictional force is generated between the roof 11 and the pressure crushing performance of the pipeline steel pipe. It can be performed with high accuracy, and the crush limit pressure of the test steel pipe 2 can be calculated with high accuracy.
  • FIG. 6 shows an essential part of a crushing test apparatus for pipeline steel pipes according to a fourth embodiment of the present invention.
  • the same components as those of the crushing test apparatus 20 for pipeline steel pipes according to the third embodiment shown in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted.
  • annular notches 3c and 3d are formed on the outer peripheral sides of the axially opposite end faces 3a and 3b of the deformable body 3, and the notches 3c and 3d have O Rings 31 and 32 are attached.
  • the difference ⁇ L2 (Lc2-Lt2) between the axial length Lc2 of the deformable body 3 and the axial length Lt2 of the test steel pipe 2 is 1.0 ⁇ L2 ⁇ 1.3. Is set to.
  • the annular recesses described in the present invention correspond to the annular notches 3c and 3d, and the O-rings described in the present invention correspond to the O-rings 31 and 32.
  • the deformable body 3 is mounted on the outer circumference of the test steel pipe 2, and the O-rings 31, 32 are provided in the annular cutouts 3c, 3d provided on both end faces 3a, 3b of the deformable body 3. Put on. Then, in the test space ST of the apparatus body 4, the deformable body 3 in which the test steel pipe 2 and the O-rings 31, 32 are mounted is arranged so that the axis extends between the upper surface 10h of the bottom plate 10 and the lower surface 11h of the top plate 11. To do.
  • first connecting bolts 14 and second connecting bolts 15 are attached to the device body 4, and both axial end faces 3a and 3b of the deformable body 3 are closely attached to the lower surface 11h of the roof 11 and the upper surface 10h of the bottom board 10. Then, the O-rings 31 and 32 are elastically deformed to the lower surface 11h and the upper surface 10h in a compressed state, and the deformable body 3 is sandwiched between the bottom plate 10 and the top plate 11. As a result, the pressure chamber 16 is formed in the space surrounded by the outer peripheral surface of the deformable body 3, the inner peripheral surface of the intermediate plate 12, the lower surface 11h of the top 11 and the upper surface 10h of the bottom plate 10.
  • one end surface 2b in the axial direction is placed on the upper surface 10h of the bottom plate 10 and the other end surface 2a in the axial direction does not contact the lower surface 11h of the roof 11, and the deformable body 3 is deformed. Placed inside.
  • the O-rings 31 and 32 are attached to both end surfaces 3a and 3b of the deformable body 3, and when the deformable body 3 is sandwiched between the bottom plate 10 and the top plate 11, The O-rings 31 and 32 are elastically deformed on the lower surface 11h of the top 11 and the upper surface 10h of the bottom 10 in a compressed state.
  • the crushing test apparatus 30 of the fourth embodiment also has higher liquid-tightness at the contact position between the bottom plate 10 and the roof 11 and the deformable body 3, as compared with the crushing test apparatus 1 of the first embodiment.
  • the water pressure in the pressure chamber 16 can be increased.
  • the crushing test apparatus 30 of the fourth embodiment can measure the high value of the crushing limit pressure of the test steel pipe 2 by increasing the water pressure in the pressure chamber 16, and the high value of the crushing limit pressure of the pipeline steel pipe can be measured. Can be reproduced with high precision using a test steel pipe. Further, by performing a crush test using the crush test devices 1, 17, 20, 30 of the first to fourth embodiments, it is possible to manufacture a steel pipe for pipeline in which a crush limit pressure with high accuracy is set. it can.
  • Example 1 Next, the measurement of the crush limit pressure by the crush test method using the crush test device for pipeline steel pipe according to the present invention, and the measurement of the crush limit pressure by the crush test method using the conventional crush test device, The effects of the present invention were verified by making a comparison as shown in Table 1 above.
  • Inventive Example 1 to Inventive Example 5 are measurement results using the crushing test apparatus 1 of the first embodiment in which the deformable body 3 is mounted on the outer circumference of the test steel pipe 2.
  • Examples 4 and 5 of the present invention are measurement results using the crushing test apparatus 20 of the second embodiment in which the deformable body 3 is mounted on the outer circumference of the test steel pipe 2 and the rubber packing 21 is mounted on the outer circumference of the deformable body 3. is there.
  • the crushing limit pressures of Inventive Example 1 to Inventive Example 5 and Comparative Examples 1 and 2 are the result of measuring the actual pipe without cutting a part of the pipeline steel pipe (actual pipe test result) and the pipeline.
  • the result (crushing device result) measured by the crushing test device of the first and third embodiments using the test steel pipe 2 obtained by cutting a part of the steel pipe for use is shown, and the actual pipe test result and the crushing device result are compared.
  • the measurement accuracy was shown.
  • examples 1 to 3 the frictional force is not generated in the test steel pipe 2 when the crushing test is performed by mounting the deformable body 3 on the outer periphery of the test steel pipe 2. Since the difference ⁇ L1 between the axial length Lc1 of the deformable body 3 and the axial length Lt1 of the test steel pipe 2 is set to 0.3 mm ⁇ L1 ⁇ 5.0 mm, the measurement accuracy error is 0.5%. It is within.
  • the deformable body 3 was attached to the outer circumference of the test steel pipe 2, and the rubber packing 21 was attached to the outer peripheral side of the deformable body 3, so that the test steel pipe 2 was not subjected to the crush test. Since no frictional force is generated and the difference ⁇ L2 between the axial length Lc2 of the deformable body 3 and the axial length Lt2 of the test steel pipe 2 is set to 1.0 mm ⁇ L2 ⁇ 1.3 mm, The error is less than 1.0%.
  • Comparative Example 2 the measurement error is 10% or more.
  • This comparative example 2 uses the crushing test apparatus 1 of the first embodiment in which the deformable body 3 is mounted on the outer circumference of the test steel pipe 2, but the difference ⁇ L1 in the axial length between the deformable body 3 and the test steel pipe 2 is used. It exceeds 5.0 mm.
  • the deformable body 3 is deformed in a state of entering between the end surface of the test steel pipe 2 and the lower surface 11h of the roof 11 and the liquid tightness of the pressure chamber 16 is increased. Became impossible, and the maximum pressure of the pressure chamber 16 was greatly reduced before the test steel pipe 2 was crushed.
  • the method using the crushing test apparatus 1 according to the first embodiment of the present invention and the method using the crushing test apparatus 20 according to the third embodiment are highly accurate in determining the crushing limit pressure of the steel pipe for pipeline with the test steel pipe. It was confirmed that it can be reproduced.
  • the method using the crushing test apparatus 30 of the fourth embodiment can also accurately reproduce the crushing limit pressure of the pipeline steel pipe with the test steel pipe.
  • the crushing limit pressure is measured by the crushing test method using the crushing test device for pipeline steel pipes according to the present invention, and the crushing limit pressure is measured by the crushing test method using the conventional crushing test device.
  • the effect of the present invention was verified by determining whether crushing was reproduced. Whether or not the plastic crush is reproduced is determined from the elastic deformation line of the test steel pipe 2 and the inner diameter displacement ⁇ R (average value of the measured inner diameter change) of the test steel pipe 2 subjected to the crush test calculated by the following formula (1). Judgment is made by comparison with the amount of separation, and when the inner diameter displacement ⁇ R of the test steel pipe 2 is more than 0.2% from the elastic deformation line, it is judged that the plastic indentation is reproduced.
  • ⁇ R -(PR 2 )/(tE) .
  • P is the pressure (Mpa)
  • R is the initial inner diameter (mm) of the test steel pipe 2
  • t is the thickness (mm) of the test steel pipe 2
  • E is the Young's modulus (Mpa).
  • Inventive Example 6 and Comparative Example 3 used steel pipes for pipelines having a nominal pipe thickness of 40 mm, a nominal outer diameter of 691 mm, the same outer diameter shape, and the same steel pipe characteristics.
  • the deformable body 3 is mounted on the outer circumference of the test steel pipe 2, and the shaft generated in the first and second connecting bolts 14 and 15 by penetrating the roof 11 and being screwed into the bottom 10
  • the force exerts a large adhesion force on the annular packing 23 mounted between the step surfaces of the step portions 10b and 11b which are orthogonal to the axial direction and the surface of the intermediate plate 12 which faces the step surfaces and which is orthogonal to the axial direction, and the pressure is applied.
  • FIG. 7 shows the relationship between the water pressure change and the inner diameter displacement of the pressure chamber 16 for the test steel pipe 2 of the present invention example 6.
  • the test steel pipe 2 of the present invention example 6 plastically deforms as the water pressure of the pressure chamber 16 increases. It was verified that the plastic indentation was reproduced when the distance from the elastic deformation line was 0.8%. It was also verified that when the plastic indentation of Inventive Example 6 was reproduced, a crushing test at an ultrahigh pressure exceeding 50 MPa could be reproduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

A cylindrical deformation body (3), which has been made from a synthetic resin and is longer in the axial direction than a test steel pipe (2) consisting of a portion of a steel pipe for a pipeline that has been cut off so as to be formed into a ring shape, is fit onto the outer periphery of the test steel pipe. Next, the test steel pipe and deformation body are disposed such that the axes thereof extend along the space between a pair of opposing walls (10, 11) disposed so as to oppose each other. The pair of opposing walls sandwich the deformation body such that both axial-direction end surfaces (3a, 3b) of the deformation body are in close contact with the pair of opposing walls. Subsequently, a fluid is supplied to a pressure chamber (16) formed by surrounding the outer peripheral surface of the deformation body with the pair of opposing walls and a peripheral wall (12a) opposing the outer peripheral surface of the deformation body, and the fluid is pressurized and made to act on the outer peripheral surface of the deformation body. Next, the inner diameter of the test steel pipe is measured, the pressure of the fluid in the pressure chamber is measured, and the crushing limit pressure of the crushed test steel pipe is calculated on the basis of these measured values.

Description

パイプライン用鋼管の圧潰試験方法、パイプライン用鋼管の製造方法及び圧潰試験装置Crush test method for steel pipe for pipeline, manufacturing method of steel pipe for pipeline, and crush test apparatus
 本発明は、深海海底に敷設されるパイプライン用鋼管(外径300~1500mm程度)の圧潰試験方法、パイプライン用鋼管の製造方法及び圧潰試験装置に関する。 The present invention relates to a crush test method for a pipeline steel pipe (outer diameter of about 300 to 1500 mm) laid on the deep sea floor, a method for manufacturing a pipeline steel pipe, and a crush test apparatus.
 近年、エネルギー需要の増大に伴い、原油や天然ガスの長距離輸送方法としてパイプラインの重要性が高まっている。油田やガス田と供給基地との間のパイプラインの一部を深海海底に設ける場合、例えば水深2000~3000m程度の海底に沈めても水圧に耐えるパイプライン用鋼管を選定する必要がある。パイプライン用鋼管を選定する手段の一つとして、海底の水圧と同程度の流体圧力が鋼管外周に作用しても圧潰が生じない耐圧潰性能を評価・予測する試験がある(例えば、特許文献1)。 In recent years, along with the increase in energy demand, the importance of pipelines as a long-distance transportation method for crude oil and natural gas has increased. When a part of the pipeline between the oil field or gas field and the supply base is provided on the deep sea floor, it is necessary to select a steel pipe for a pipeline that can withstand the water pressure even if it is submerged at a depth of about 2000 to 3000 m. As one of the means for selecting a steel pipe for a pipeline, there is a test for evaluating and predicting a crush resistance performance in which crushing does not occur even if a fluid pressure similar to the water pressure of the seabed acts on the outer circumference of the steel pipe (for example, Patent Document 1).
 特許文献1記載の管試験は、パイプライン用鋼管の一部を切断してリング形状の試験鋼管を形成し、この試験鋼管を圧力発生部に装着する。圧力発生部は、試験鋼管の軸方向の両端面に密着するように試験鋼管を軸方向から挟持して互いに対向配置されている一対の対向壁と、一対の対向壁の一方の外周縁部から他方に延在して試験鋼管の外周面を囲む周壁とを備え、一対の対向壁及び周壁で前記試験鋼管の外周を囲む圧力室を形成している。 In the pipe test described in Patent Document 1, a part of the steel pipe for pipeline is cut to form a ring-shaped test steel pipe, and this test steel pipe is attached to the pressure generating part. The pressure generating portion includes a pair of opposing walls arranged to face each other by sandwiching the test steel pipe from the axial direction so as to be in close contact with both end surfaces in the axial direction of the test steel pipe, and one outer peripheral edge portion of the pair of opposing walls. A peripheral wall extending to the other side and surrounding the outer peripheral surface of the test steel pipe is provided, and a pair of opposing walls and the peripheral wall form a pressure chamber surrounding the outer periphery of the test steel pipe.
 そして、圧力発生部の圧力室に流体を供給していき、加圧された流体が試験鋼管の外周面に作用することで試験鋼管を径方向内方に変形させ、試験鋼管に装着した歪センサと流体圧力との変化に基づいて試験鋼管が圧潰に至るまでの圧潰限界圧力を測定し、パイプライン用鋼管の耐圧潰性能の評価及び予測を行っている。ここで、一対の対向壁が試験鋼管の軸方向の両端面に密着するように試験鋼管を軸方向から挟持しているので、圧力室が高圧になっても端面及び対向壁の間から圧力室外部への流体漏れが発生せずシールされる。 Then, the fluid is supplied to the pressure chamber of the pressure generating part, and the pressurized fluid acts on the outer peripheral surface of the test steel pipe to deform the test steel pipe inward in the radial direction, and the strain sensor attached to the test steel pipe. The crushing limit pressure until the test steel pipe is crushed is measured based on the change of the fluid pressure and the fluid pressure, and the crushing performance of the pipeline steel pipe is evaluated and predicted. Here, since the test steel pipe is sandwiched from the axial direction so that the pair of opposing walls are in close contact with both end faces in the axial direction of the test steel pipe, even if the pressure chamber becomes high in pressure, the pressure chamber is forced from between the end face and the opposing wall. It is sealed without fluid leakage to the outside.
特許第5123327号公報Japanese Patent No. 5123327
 しかし、特許文献1の管試験は、試験鋼管が径方向内方に変形する際に、一対の対向壁に密着している試験鋼管の軸方向の両端面に摩擦力が発生するので、試験鋼管が圧潰に至るまでの圧潰限界圧力が高い値を示すおそれがある。したがって、特許文献1の管試験は、圧潰限界圧力が高い値を示すことで、パイプライン用鋼管の耐圧潰性能を過大評価してしまうおそれがある。 However, in the pipe test of Patent Document 1, when the test steel pipe is deformed inward in the radial direction, a frictional force is generated on both axial end faces of the test steel pipe that is in close contact with the pair of opposing walls. There is a risk that the crushing limit pressure until the crushing will show a high value. Therefore, in the pipe test of Patent Literature 1, there is a possibility that the pressure crushing performance of the steel pipe for a pipeline may be overestimated because the crushing limit pressure shows a high value.
 本発明は、上記従来例の未解決の課題に着目してなされたものであり、加圧流体の作用で試験鋼管が径方向内方に変形する際には試験鋼管の軸方向の両端面に摩擦力が発生せず、パイプライン用鋼管の圧潰限界圧力を試験鋼管で高精度に再現することができるパイプライン用鋼管の圧潰試験方法、パイプライン用鋼管の製造方法及び圧潰試験装置を提供することを目的としている。 The present invention has been made by paying attention to the unsolved problem of the above-mentioned conventional example, and when the test steel pipe is deformed inward in the radial direction by the action of the pressurized fluid, it is formed on both end faces in the axial direction of the test steel pipe. Provided are a crushing test method for a steel pipe for a pipeline, a method for manufacturing a steel pipe for a pipeline, and a crushing test apparatus that can reproduce the crushing limit pressure of a steel pipe for a pipeline with high accuracy without generating frictional force. The purpose is to
 上記目的を達成するために、本発明の一態様に係るパイプライン用鋼管の圧潰試験方法は、パイプライン用鋼管の一部より切断され形成されたリング形状の試験鋼管の外周に、試験鋼管に対して軸方向長さを長く設定して合成樹脂で形成した円筒形状の変形体を装着する工程と、互いに対向配置した一対の対向壁の間を軸が延在するように試験鋼管及び変形体を配置し、一対の対向壁に変形体の軸方向の両端面が密着した状態で一対の対向壁で変形体を挟持する工程と、一対の対向壁及び変形体の外周面に対向する周壁で変形体の外周面を囲んで形成した圧力室に流体を供給し、変形体の外周面に加圧した流体を作用させる工程と、試験鋼管の内径を測定する工程と、圧力室の流体の圧力を測定する工程と、試験鋼管の内径測定値及び圧力室の流体の圧力測定値に基づいて圧潰した試験鋼管の圧潰限界圧力を演算する工程と、を備えている。 In order to achieve the above object, the crushing test method for a pipeline steel pipe according to an aspect of the present invention is a ring-shaped test steel pipe formed by being cut from a part of the pipeline steel pipe, and a test steel pipe. On the other hand, a step of mounting a cylindrical deformable body made of synthetic resin with a long axial length set, and a test steel pipe and deformable body so that the axis extends between a pair of opposing walls arranged to face each other. And a step of sandwiching the deformable body between the pair of opposing walls in a state where both end faces in the axial direction of the deformable body are in close contact with the pair of opposing walls, and a peripheral wall facing the outer peripheral surface of the pair of opposing walls and the deformable body. The step of supplying fluid to the pressure chamber formed surrounding the outer peripheral surface of the deformable body and causing the pressurized fluid to act on the outer peripheral surface of the deformable body, the step of measuring the inner diameter of the test steel pipe, and the pressure of the fluid in the pressure chamber And a step of calculating the crushing limit pressure of the crushed test steel pipe based on the inner diameter measurement value of the test steel pipe and the pressure measurement value of the fluid in the pressure chamber.
 また、本発明の一態様に係るパイプライン用鋼管の製造方法は、上述したパイプライン用鋼管の圧潰試験方法を行う工程を経てパイプライン用鋼管の製造を行う方法である。 The method for producing a steel pipe for a pipeline according to an aspect of the present invention is a method for producing a steel pipe for a pipeline through the steps of performing the crushing test method for a steel pipe for a pipeline described above.
 また、本発明の一態様に係るパイプライン用鋼管の圧潰試験装置は、パイプライン用鋼管の一部を切断してリング形状に形成した試験鋼管と、試験鋼管に対して軸方向長さを長く設定して合成樹脂で形成した円筒形状の部材であり、試験鋼管の外周に装着される変形体と、変形体の軸方向の両端面が密着するように変形体を軸方向から挟持して互いに対向配置されている一対の対向壁と、当該一対の対向壁から延在して変形体の外周面を囲む周壁とを備えて変形体の外周を囲む圧力室を形成している装置本体と、圧力室に流体を供給する流体供給手段と、試験鋼管の内径を測定する内径測定手段と、圧力室の流体の圧力を測定する流体圧力測定手段と、内径測定手段で測定した内径測定値及び流体圧力測定手段で測定した流体の圧力測定値に基づいて圧潰した試験鋼管の圧潰限界圧力を演算する演算手段と、を備えている。 Further, the crushing test apparatus for a steel pipe for a pipeline according to an aspect of the present invention is a test steel pipe formed by cutting a part of a steel pipe for a pipeline to form a ring shape, and an axial length of the test steel pipe is increased. It is a cylindrical member that is set and formed of synthetic resin.The deformable body mounted on the outer circumference of the test steel pipe and the deformable body are clamped from the axial direction so that both axial end surfaces of the deformable body are in close contact with each other. An apparatus main body that forms a pressure chamber that surrounds the outer periphery of the deformable body by including a pair of opposed walls that are arranged to face each other and a peripheral wall that extends from the pair of opposed walls and that surrounds the outer peripheral surface of the deformable body, Fluid supply means for supplying fluid to the pressure chamber, inner diameter measurement means for measuring the inner diameter of the test steel pipe, fluid pressure measurement means for measuring the pressure of the fluid in the pressure chamber, and inner diameter measurement value and fluid measured by the inner diameter measurement means And a calculating means for calculating the crush limit pressure of the crushed test steel pipe based on the pressure measurement value of the fluid measured by the pressure measuring means.
 本発明に係るパイプライン用鋼管の圧潰試験方法、パイプライン用鋼管の製造方法及び圧潰試験装置によれば、加圧流体の作用で試験鋼管が径方向内方に変形する際には試験鋼管の軸方向の両端面に摩擦力が発生せず、パイプライン用鋼管の圧潰限界圧力を試験鋼管で高精度に再現することができる。 According to the crushing test method of a pipeline steel pipe, the manufacturing method of a pipeline steel pipe and the crushing test apparatus according to the present invention, when the test steel pipe is deformed radially inward by the action of the pressurized fluid, No frictional force is generated on both end faces in the axial direction, and the crushing limit pressure of the pipeline steel pipe can be reproduced with high accuracy using the test steel pipe.
本発明に係る第1実施形態のパイプライン用鋼管の圧潰試験装置を示す断面図である。It is sectional drawing which shows the crushing test apparatus of the steel pipe for pipelines of 1st Embodiment which concerns on this invention. 第1実施形態のパイプライン用鋼管の圧潰試験装置の要部を示す図である。It is a figure which shows the principal part of the crushing test apparatus of the steel pipe for pipelines of 1st Embodiment. 第1実施形態のパイプライン用鋼管の圧潰試験装置を構成する演算部の構成を示すブロック図である。It is a block diagram which shows the structure of the calculating part which comprises the crushing test apparatus of the steel pipe for pipelines of 1st Embodiment. 第2実施形態のパイプライン用鋼管の圧潰試験装置の要部を示す図である。It is a figure which shows the principal part of the crushing test apparatus of the steel pipe for pipelines of 2nd Embodiment. 第3実施形態のパイプライン用鋼管の圧潰試験装置の要部を示す図である。It is a figure which shows the principal part of the crushing test apparatus of the steel pipe for pipelines of 3rd Embodiment. 第4実施形態のパイプライン用鋼管の圧潰試験装置の要部を示す図である。It is a figure which shows the principal part of the crushing test apparatus of the steel pipe for pipelines of 4th Embodiment. 圧潰試験を行った際に塑性圧潰を再現した試験鋼管の内径変位を示すグラフである。It is a graph which shows inner diameter displacement of the test steel pipe which reproduced plastic crushing when a crushing test was performed.
 次に、図面を参照して、本発明に係る第1から第3実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 また、以下に示す第1から第4実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
Next, first to third embodiments according to the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar reference numerals are given to the same or similar parts. However, it should be noted that the drawings are schematic and different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following description. Further, it is needless to say that the drawings include parts in which dimensional relationships and ratios are different from each other.
Further, the following first to fourth embodiments exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is as follows: The shape, structure, arrangement, etc. are not specified below. Various changes can be added to the technical idea of the present invention within the technical scope defined by the claims described in the claims.
[第1実施形態の圧潰試験装置]
 図1及び図2は、本発明に係る第1実施形態のパイプライン用鋼管の圧潰試験装置を示すものである。
 図1に示すように、第1実施形態のパイプライン用鋼管の圧潰試験装置1は、試験鋼管2と、試験鋼管2の外周に装着した変形体3と、変形体3を軸方向から挟持した状態で試験鋼管2及び変形体3を内部に配置した装置本体4と、加圧水供給部5と、歪み計6と、圧力計7と、演算部8と、を備えている。
[Crush Test Apparatus of First Embodiment]
1 and 2 show a crushing test apparatus for steel pipes for pipelines according to a first embodiment of the present invention.
As shown in FIG. 1, a crushing test apparatus 1 for pipeline steel pipes according to the first embodiment sandwiches a test steel pipe 2, a deformable body 3 mounted on the outer periphery of the test steel pipe 2, and the deformable body 3 from an axial direction. In the state, the apparatus main body 4 in which the test steel pipe 2 and the deformable body 3 are arranged, the pressurized water supply unit 5, the strain gauge 6, the pressure gauge 7, and the arithmetic unit 8 are provided.
 試験鋼管2は、耐圧潰性能の評価及び予測を行うパイプライン用鋼管の一部を切断してリング形状に形成した部材である。パイプライン用鋼管から切断された試験鋼管2は、その軸方向の両端面が平坦面となるように切削されている。
 変形体3は、試験鋼管2の外周に装着されている合成樹脂で形成した円筒形状の部材である。変形体3の合成樹脂としては、例えばNCナイロンと呼ばれるナイロン樹脂が挙げられる。変形体3の肉厚は3mm程度に設定されている。また、変形体3の内径は、試験鋼管2の外径寸法と同一寸法として試験鋼管2の外周面に密着するようにしてもよいが、試験鋼管2の外径寸法より5mm程度大きな寸法であっても圧潰試験には大きな影響を与えない。
The test steel pipe 2 is a member formed by cutting a part of a steel pipe for a pipeline for evaluating and predicting crush resistance performance to form a ring shape. The test steel pipe 2 cut from the pipeline steel pipe is cut such that both axial end faces thereof are flat.
The deformable body 3 is a cylindrical member that is attached to the outer circumference of the test steel pipe 2 and is made of synthetic resin. Examples of the synthetic resin of the deformable body 3 include a nylon resin called NC nylon. The thickness of the deformable body 3 is set to about 3 mm. The inner diameter of the deformable body 3 may be the same as the outer diameter dimension of the test steel pipe 2 so as to be in close contact with the outer peripheral surface of the test steel pipe 2, but it is about 5 mm larger than the outer diameter dimension of the test steel pipe 2. However, it does not significantly affect the crush test.
 図2に示すように、変形体3の軸方向長さLc1は、試験鋼管2の軸方向長さLt1に対して長く設定され、変形体3及び試験鋼管2の軸方向長さの差ΔL1(Lc1-Lt1)は、0.3mm以上5.0mm以内の範囲に設定されている(0.3≦ΔL1≦5.0)。 As shown in FIG. 2, the axial length Lc1 of the deformable body 3 is set longer than the axial length Lt1 of the test steel pipe 2, and the difference ΔL1 (in the axial length between the deformable body 3 and the test steel pipe 2). Lc1-Lt1) is set in the range of 0.3 mm to 5.0 mm (0.3≦ΔL1≦5.0).
 装置本体4は、図1に示すように、貫通部10aを設けたドーナツ盤形状の底盤10と、底盤10と同一の外周形状を有して貫通部11aを設けた天盤11と、底盤10及び天盤11の間に同軸に配置された円環形状の中間盤12と、を備えている。中間盤12は、底盤10及び天盤11の互いに対向する面の外周に設けた環状の段差部10b,11bに嵌まり込んだ状態で配置されている。図示されていないが、これら段差部10b,11bの軸方向に沿って延在する段差面及びこれに対面する中間盤12の内壁面にシール材を挿入できる溝が形成され、それらの溝にゴムパッキンが装着され段差部10b,11b及び中間盤12の間の液密が保持されている。なお、溝の形状、ゴムパッキンの形状は任意に選択でき、たとえば円形断面あるいは矩形断面のゴムパッキンの装着する構造としてもよい。 As shown in FIG. 1, the device main body 4 includes a doughnut-shaped bottom plate 10 having a penetrating part 10a, a top plate 11 having the same outer peripheral shape as the bottom plate 10 and having a penetrating part 11a, and a bottom plate 10. And a ring-shaped intermediate plate 12 arranged coaxially between the roof 11 and the roof 11. The intermediate plate 12 is arranged in a state of being fitted in annular step portions 10b and 11b provided on the outer peripheries of the surfaces of the bottom plate 10 and the top plate 11 facing each other. Although not shown, grooves for inserting a sealing material are formed on the step surfaces extending along the axial direction of the step portions 10b and 11b and the inner wall surface of the intermediate plate 12 facing the step surfaces. A packing is attached to maintain liquid tightness between the step portions 10b and 11b and the intermediate plate 12. The shape of the groove and the shape of the rubber packing can be arbitrarily selected, and for example, the structure may be such that a rubber packing having a circular cross section or a rectangular cross section is mounted.
 装置本体4には、底盤10の上面10hと、天盤11の下面11hと、中間盤12の内周面12aとで囲まれたリング形状の試験空間STが設けられている。この試験空間STに、底盤10の上面10h及び天盤11の下面11hの間を軸が延在するように試験鋼管2及び変形体3が配置されている。
 そして、装置本体4に複数の第1連結ボルト14及び第2連結ボルト15が装着されている。複数の第1連結ボルト14は、天盤11及び中間盤12の外周側の周方向に所定間隔をあけて軸方向に貫通する貫通孔11c、12cを通過し、底盤10の周方向に所定間隔をあけて設けたねじ孔10cにねじ部がねじ込まれている。複数の第2ボルト15は、天盤11の内周側の周方向に所定間隔をあけて軸方向に貫通する貫通孔11dを通過し、底盤10の内周側の周方向に所定間隔をあけて設けたねじ孔10dにねじ部がねじ込まれている。
The apparatus main body 4 is provided with a ring-shaped test space ST surrounded by an upper surface 10h of the bottom board 10, a lower surface 11h of the top board 11, and an inner peripheral surface 12a of the intermediate board 12. In this test space ST, the test steel pipe 2 and the deformable body 3 are arranged so that the axis extends between the upper surface 10h of the bottom plate 10 and the lower surface 11h of the top plate 11.
A plurality of first connecting bolts 14 and second connecting bolts 15 are attached to the device body 4. The plurality of first connecting bolts 14 pass through the through holes 11c, 12c which penetrate the axial direction at predetermined intervals in the outer circumferential side of the roof 11 and the intermediate plate 12, and the predetermined intervals in the circumferential direction of the bottom plate 10. The threaded portion is screwed into the threaded hole 10c provided by opening. The plurality of second bolts 15 pass through the through-holes 11d that penetrate through the axial direction in the circumferential direction on the inner circumferential side of the roof 11 at predetermined intervals, and set the predetermined intervals in the circumferential direction on the inner circumferential side of the bottom plate 10. The screw portion is screwed into the screw hole 10d provided as above.
 これら複数の第1及び第2連結ボルト14,15を装着することで、変形体3は軸方向の両端面3a,3bが天盤11の下面11h及び底盤10の上面10hに密着した状態で底盤10及び天盤11に挟持される。また、変形体3の外周面、中間盤12の内周面、天盤11の下面11h及び底盤10の上面10hで囲まれた空間には圧力室16が形成されている。
 天盤11には、圧力室16及び装置本体4の外部に連通する水供給路11e及び圧力計測路11fが形成されており、水供給路11eには加圧水供給部5が接続され、圧力計測路11fには圧力計7が接続されている。さらに、試験鋼管2の内周面には、複数の歪み計6が装着されている。
By mounting the plurality of first and second connecting bolts 14 and 15, the bottom surface of the deformable body 3 in a state where both end surfaces 3a and 3b in the axial direction are in close contact with the lower surface 11h of the top 11 and the upper surface 10h of the bottom board 10. It is sandwiched between 10 and the roof 11. A pressure chamber 16 is formed in a space surrounded by the outer peripheral surface of the deformable body 3, the inner peripheral surface of the intermediate plate 12, the lower surface 11h of the roof 11 and the upper surface 10h of the bottom plate 10.
A water supply passage 11e and a pressure measurement passage 11f, which communicate with the outside of the pressure chamber 16 and the apparatus body 4, are formed in the roof 11, and the pressurized water supply unit 5 is connected to the water supply passage 11e. The pressure gauge 7 is connected to 11f. Further, a plurality of strain gauges 6 are attached to the inner peripheral surface of the test steel pipe 2.
 演算部8は、図3に示すように、入力部8a、圧潰圧力演算部8b及び表示部8cなどを備えている。これら入力部8a、圧潰圧力演算部8b及び表示部8cは、具体的にはパーソナルコンピュータやワークステーション等の汎用の情報処理装置によって実現されるものであり、例えばCPU、ROM、RAM等を主要構成部品としているとともに、ネットワークで接続され、データのやり取りが可能に構成されている。 As shown in FIG. 3, the calculation unit 8 includes an input unit 8a, a crushing pressure calculation unit 8b, a display unit 8c, and the like. The input unit 8a, the crushing pressure calculation unit 8b, and the display unit 8c are specifically realized by a general-purpose information processing device such as a personal computer or a workstation, and have, for example, a CPU, a ROM, a RAM, etc. as main components. In addition to being parts, they are connected by a network and are configured to exchange data.
 演算部8の入力部8aには、圧力計7で計測した圧力室16の圧力値が入力されるとともに、試験鋼管2の内周面に装着された複数の歪み計6が計測した試験鋼管2の変位量が入力される。
 圧潰圧力演算部8bは、入力部8aに入力した圧力室16の圧力値変化と、試験鋼管2の変位量に基づいて、試験鋼管2が圧潰したときの圧力(圧潰限界圧力)を演算する。
 表示部8cは、圧潰圧力演算部8bで演算した試験鋼管2の圧潰限界圧力の値を表示する。
The pressure value of the pressure chamber 16 measured by the pressure gauge 7 is input to the input section 8a of the calculation section 8, and the test steel pipe 2 measured by the plurality of strain gauges 6 mounted on the inner peripheral surface of the test steel pipe 2 is measured. The displacement amount of is input.
The crushing pressure calculation unit 8b calculates the pressure when the test steel pipe 2 is crushed (crushing limit pressure) based on the change in the pressure value of the pressure chamber 16 input to the input unit 8a and the displacement amount of the test steel pipe 2.
The display unit 8c displays the value of the crush limit pressure of the test steel pipe 2 calculated by the crush pressure calculation unit 8b.
 なお、本発明に記載されている一対の対向壁が、天盤11の下面11h及び底盤10の上面10hに対応し、本発明に記載されている流体供給手段が、加圧水供給部5に対応し、本発明に記載されている内径測定手段が、歪み計6に対応し、本発明に記載されている流体圧力測定手段が、圧力計7に対応し、本発明に記載されている演算手段が、演算部8に対応している。 The pair of opposing walls described in the present invention correspond to the lower surface 11h of the top 11 and the upper surface 10h of the bottom board 10, and the fluid supply means described in the present invention corresponds to the pressurized water supply unit 5. The inner diameter measuring means described in the present invention corresponds to the strain gauge 6, the fluid pressure measuring means described in the present invention corresponds to the pressure gauge 7, and the arithmetic means described in the present invention. , Corresponding to the calculation unit 8.
 次に、第1実施形態の圧潰試験装置1を使用したパイプライン用鋼管の圧潰試験手順について作用とともに説明する。
 先ず、試験鋼管2の外周に変形体3を装着する。
 次に、図1に示すように、装置本体4の試験空間STに、底盤10の上面10h及び天盤11の下面11hの間を軸が延在するように試験鋼管2及び変形体3を配置する。
 次に、装置本体4に複数の第1連結ボルト14及び第2連結ボルト15を装着し、変形体3の軸方向の両端面3a,3bを天盤11の下面11h及び底盤10の上面10hに密着した状態で、変形体3を底盤10及び天盤11で挟持する。これにより、変形体3の外周面、中間盤12の内周面、天盤11の下面11h及び底盤10の上面10hで囲まれた空間に圧力室16が形成される。
Next, a crushing test procedure for a steel pipe for a pipeline using the crushing test apparatus 1 of the first embodiment will be described together with its operation.
First, the deformable body 3 is attached to the outer circumference of the test steel pipe 2.
Next, as shown in FIG. 1, the test steel pipe 2 and the deformable body 3 are arranged in the test space ST of the apparatus main body 4 so that the axis extends between the upper surface 10h of the bottom plate 10 and the lower surface 11h of the top plate 11. To do.
Next, the plurality of first connecting bolts 14 and the second connecting bolts 15 are attached to the apparatus body 4, and both axial end surfaces 3a and 3b of the deformable body 3 are attached to the lower surface 11h of the roof 11 and the upper surface 10h of the bottom board 10. The deformable body 3 is sandwiched between the bottom plate 10 and the top plate 11 in a state of being in close contact with each other. As a result, the pressure chamber 16 is formed in the space surrounded by the outer peripheral surface of the deformable body 3, the inner peripheral surface of the intermediate plate 12, the lower surface 11h of the top 11 and the upper surface 10h of the bottom plate 10.
 このとき、図2に示すように、試験鋼管2は、軸方向の一方の端面2bが底盤10の上面10hに載置され、軸方向の他方の端面2aが天盤11の下面11hには接触しない状態で、変形体3の内側に配置される。
 次に、加圧水供給部5から水供給路11eを介して圧力室16に加圧水を供給していく。加圧水供給部5からの加圧水の供給によって圧力室16の水圧が上昇していくと、水圧が変形体3の外周面に作用して変形体3が径方向内方に塑性変形していく。変形体3の塑性変形とともに、変形体3の内側に装着した試験鋼管2も径方向内方に塑性変形していく。
At this time, as shown in FIG. 2, in the test steel pipe 2, one end surface 2b in the axial direction is placed on the upper surface 10h of the bottom plate 10 and the other end surface 2a in the axial direction contacts the lower surface 11h of the roof 11. It is arranged inside the deformable body 3 in a state where it is not.
Next, the pressurized water is supplied from the pressurized water supply unit 5 to the pressure chamber 16 via the water supply passage 11e. When the water pressure in the pressure chamber 16 is increased by the supply of the pressurized water from the pressurized water supply unit 5, the water pressure acts on the outer peripheral surface of the deformable body 3 and the deformable body 3 is plastically deformed radially inward. With the plastic deformation of the deformable body 3, the test steel pipe 2 mounted inside the deformable body 3 also plastically deforms radially inward.
 変形体3は合成樹脂で形成されているので、天盤11の下面11h及び底盤10の上面10hに密着していても、下面11h及び上面10hとの間に大きな摩擦力が発生しない。
 試験鋼管2は、変形体3を介して圧力室16の水圧が外周に作用するので、同様に径方向内方に塑性変形していく。このとき、試験鋼管2は、軸方向の一方の端面2bが底盤10の上面10hに載置され、軸方向の他方の端面2aが天盤11の下面11hには接触しておらず、底盤10及び天盤11に挟持されていないので、軸方向の端面2a,2bは下面11h及び上面10hとの間に摩擦力が発生しない。
Since the deformable body 3 is made of synthetic resin, even if the deformable body 3 is in close contact with the lower surface 11h of the roof 11 and the upper surface 10h of the bottom board 10, a large frictional force is not generated between the lower surface 11h and the upper surface 10h.
Since the water pressure of the pressure chamber 16 acts on the outer circumference of the test steel pipe 2 via the deformable body 3, the test steel pipe 2 is likewise plastically deformed radially inward. At this time, in the test steel pipe 2, one end surface 2b in the axial direction is placed on the upper surface 10h of the bottom plate 10 and the other end surface 2a in the axial direction is not in contact with the lower surface 11h of the roof 11, so that the bottom plate 10 is not in contact. Since it is not sandwiched between the roof 11 and the roof 11, frictional force is not generated between the axial end surfaces 2a and 2b and the lower surface 11h and the upper surface 10h.
 そして、演算部8は、入力部8aに試験鋼管2の外周に作用する圧力室16の水圧の圧力値が圧力計7から入力し、径方向内方に塑性変形する試験鋼管2の変位量が複数の歪み計6から入力するので、圧潰圧力演算部8bは、圧力室16の圧力値変化と、試験鋼管2の変位量に基づいて、試験鋼管2が圧潰したときの圧潰限界圧力を演算する。そして、表示部8cが、試験鋼管2の圧潰限界圧力の値を表示する。
 ここで、径方向内方に塑性変形する試験鋼管2は、軸長が増大する方向にも塑性変形していく。本実施形態は、変形体3の軸方向長さLc1と試験鋼管2の軸方向長さLt1の差ΔL1を0.3mm以上に設定しているが、この差ΔL1(0.3mm以上)は、軸長が増大する方向に試験鋼管2が塑性変形しても、試験鋼管2の軸方向の端面が天盤11の下面11hに接触しない値である。これにより、軸長が増大する方向に試験鋼管2が塑性変形しても、天盤11及び底盤10との間に摩擦力が発生するおそれがない。
Then, the calculation unit 8 inputs the pressure value of the water pressure of the pressure chamber 16 acting on the outer circumference of the test steel pipe 2 to the input unit 8a from the pressure gauge 7, and the displacement amount of the test steel pipe 2 plastically deformed radially inward. Since input is made from a plurality of strain gauges 6, the crush pressure calculation unit 8b calculates the crush limit pressure when the test steel pipe 2 is crushed based on the change in the pressure value of the pressure chamber 16 and the displacement amount of the test steel pipe 2. .. Then, the display unit 8c displays the value of the crushing limit pressure of the test steel pipe 2.
Here, the test steel pipe 2 which is plastically deformed radially inward is also plastically deformed in the direction in which the axial length increases. In the present embodiment, the difference ΔL1 between the axial length Lc1 of the deformable body 3 and the axial length Lt1 of the test steel pipe 2 is set to 0.3 mm or more, but this difference ΔL1 (0.3 mm or more) is Even if the test steel pipe 2 is plastically deformed in the direction in which the axial length increases, the axial end surface of the test steel pipe 2 does not come into contact with the lower surface 11h of the roof 11. As a result, even if the test steel pipe 2 is plastically deformed in the direction in which the axial length increases, there is no possibility of generating a frictional force between the top plate 11 and the bottom plate 10.
 なお、変形体3の軸方向長さLc1と試験鋼管2の軸方向長さLt1の差ΔL1が0.3mmを下回ると、試験鋼管2の端面が天盤11の下面11hに接触するので、試験鋼管2と天盤11及び底盤10との間に摩擦力が発生するおそれがある。
 また、変形体3の軸方向長さLc1と試験鋼管2の軸方向長さLt1の差ΔL1が大きすぎると、圧力室16の水圧の作用により変形体3が過度に変形してしまい、変形体3の軸方向の端面3a及び天盤11の下面11hの接触位置と、変形体3の軸方向の端面3b及び底盤10の上面10hの接触位置の液密性が低下するおそれがある。そこで、第1実施形態では、差ΔL1を5.0mm以下の値に設定することで、変形体3の過度の変形を防止して底盤10及び天盤11と変形体3との接触位置の液密性を確保している。
If the difference ΔL1 between the axial length Lc1 of the deformable body 3 and the axial length Lt1 of the test steel pipe 2 is less than 0.3 mm, the end surface of the test steel pipe 2 comes into contact with the lower surface 11h of the roof 11, so the test A frictional force may be generated between the steel pipe 2 and the top 11 and the bottom 10.
Further, if the difference ΔL1 between the axial length Lc1 of the deformable body 3 and the axial length Lt1 of the test steel pipe 2 is too large, the deformable body 3 is excessively deformed by the action of water pressure in the pressure chamber 16, and the deformable body is deformed. The liquid-tightness of the contact position between the axial end surface 3a of 3 and the lower surface 11h of the roof 11 and the contact position between the axial end surface 3b of the deformable body 3 and the upper surface 10h of the bottom plate 10 may deteriorate. Therefore, in the first embodiment, by setting the difference ΔL1 to a value of 5.0 mm or less, excessive deformation of the deformable body 3 is prevented, and the liquid at the contact position between the bottom board 10 and the roof 11 and the deformable body 3 is prevented. The tightness is secured.
 次に、第1実施形態のパイプライン用鋼管の圧潰試験装置1の効果について説明する。
 第1実施形態によると、圧潰試験を行う試験鋼管2の外周面に水圧を作用する圧力室16は、試験鋼管2の外周に装着した変形体3の外周面、中間盤12の内周面、天盤11の下面11h及び底盤10の上面10hで囲まれた空間で形成されている。そして、試験鋼管2には、変形体3を介して圧力室16の水圧が作用して径方向内方に塑性変形していくが、この試験鋼管2は、軸方向の一方の端面2bが底盤10の上面10hに載り、軸方向の他方の端面2aが天盤11の下面11hには接触しておらず、軸方向の端面2a,2bは下面11h及び上面10hとの間に摩擦力が発生しない。
Next, effects of the crushing test apparatus 1 for a steel pipe for a pipeline according to the first embodiment will be described.
According to the first embodiment, the pressure chamber 16 that applies water pressure to the outer peripheral surface of the test steel pipe 2 to be subjected to the crush test includes the outer peripheral surface of the deformable body 3 mounted on the outer peripheral surface of the test steel pipe 2, the inner peripheral surface of the intermediate plate 12, It is formed in a space surrounded by a lower surface 11h of the top 11 and an upper surface 10h of the bottom 10. Then, the water pressure of the pressure chamber 16 acts on the test steel pipe 2 via the deformable body 3 and plastically deforms inward in the radial direction. However, in this test steel pipe 2, one end surface 2b in the axial direction is the bottom plate. 10, the other axial end surface 2a is not in contact with the lower surface 11h of the roof 11, and the axial end surfaces 2a and 2b generate a frictional force between the lower surface 11h and the upper surface 10h. do not do.
 したがって、圧潰試験を行う試験鋼管2に摩擦力が発生しないので、パイプライン用鋼管の圧潰限界圧力を試験鋼管2で高精度に再現することができ、パイプライン用鋼管の耐圧潰性能を高精度に評価することができる。
 また、変形体3の軸方向長さLc1と試験鋼管2の軸方向長さLt1との差ΔL1(Lc1-Lt1)を0.3mm以上に設定しているので、試験鋼管2が軸長が増大する方向に塑性変形しても、天盤11の下面11hに接触せず天盤11との間に摩擦力が発生せず、パイプライン用鋼管の耐圧潰性能の評価をさらに高精度に行うことができる。
 また、変形体3の軸方向長さLc1と試験鋼管2の軸方向長さLt1との差ΔL1(Lc1-Lt1)を、5.0mm以下の値に設定することで、圧力室16の液密性を十分に確保することができるので、さらに、試験鋼管2の圧潰限界圧力を高精度に演算することができる。
Therefore, since no frictional force is generated in the test steel pipe 2 to be subjected to the crushing test, the crushing limit pressure of the pipeline steel pipe can be reproduced with high accuracy in the test steel pipe 2, and the pressure crushing performance of the pipeline steel pipe is highly accurate. Can be evaluated.
Further, since the difference ΔL1 (Lc1-Lt1) between the axial length Lc1 of the deformable body 3 and the axial length Lt1 of the test steel pipe 2 is set to 0.3 mm or more, the test steel pipe 2 has an increased axial length. Even if it is plastically deformed in the direction in which it does not contact the lower surface 11h of the roof 11 and no frictional force is generated between it and the roof 11, the pressure crushing performance of the pipeline steel pipe can be evaluated with higher accuracy. You can
Further, by setting the difference ΔL1 (Lc1-Lt1) between the axial length Lc1 of the deformable body 3 and the axial length Lt1 of the test steel pipe 2 to a value of 5.0 mm or less, the liquid tightness of the pressure chamber 16 can be improved. Since it is possible to sufficiently secure the property, the crushing limit pressure of the test steel pipe 2 can be calculated with high accuracy.
[第2実施形態の圧潰試験装置]
 次に、図4は、本発明に係る第2実施形態のパイプライン用鋼管の圧潰試験装置17の要部を示すものである。なお、第1実施形態のパイプライン用鋼管の圧潰試験装置1で示した構成要件と同一構成部分には、同一符号を付して説明は省略する。
 本実施形態の圧潰試験装置17の装置本体4は、第1実施形態で示した段差部10b,11bの軸方向に沿う段差面及びこれに対面する中間盤12の内壁面にリング溝が形成されておらず、代わりに、段差部10b,11bの軸方向に直交する段差面及びこれに対面する中間盤12の軸方向の面に断面四角形状のリング溝が形成されている。そして、段差部10b,11b及び中間盤12の軸方向で対面する面に形成したリング溝に矩形断面の環状パッキン23が装着されている。
[Crush Test Apparatus of Second Embodiment]
Next, FIG. 4 shows a main part of a crushing test apparatus 17 for pipeline steel pipes according to a second embodiment of the present invention. The same components as those of the crushing test apparatus 1 for a steel pipe for a pipeline according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
In the device body 4 of the crushing test device 17 of the present embodiment, ring grooves are formed on the step surfaces along the axial direction of the step portions 10b and 11b shown in the first embodiment and on the inner wall surface of the intermediate plate 12 facing the step surfaces. Instead, instead, a ring groove having a quadrangular cross section is formed on the step surfaces orthogonal to the axial direction of the step portions 10b and 11b and the axial surface of the intermediate disk 12 facing the step surfaces. An annular packing 23 having a rectangular cross section is attached to the ring grooves formed on the surfaces of the step portions 10b and 11b and the intermediate plate 12 that face each other in the axial direction.
 第2実施形態によると、天盤11を貫通して底盤10にねじ込まれることで第1及び第2連結ボルト14,15に発生する軸力が、段差部10b,11bの軸方向に直交する段差面及びこれに対面する中間盤12の軸方向に直交する面の間に装着されている環状パッキン23に大きな密着力を作用するので、第1実施形態と比較して、圧力室16の水圧を大幅に高めることが可能となる。
 したがって、第2実施形態のパイプライン用鋼管の圧潰試験装置17は、第1実施形態の圧潰試験装置1と比較して圧力室16の水圧を大幅に高めて試験鋼管2の圧潰限界圧力を測定することができるので、パイプライン用鋼管の大幅に高い値の圧潰限界圧力を試験鋼管2で高精度に再現することができる。
According to the second embodiment, the axial force generated in the first and second connecting bolts 14 and 15 by passing through the roof 11 and being screwed into the bottom plate 10 causes a step difference perpendicular to the axial direction of the step parts 10b and 11b. Since a large adhesion force acts on the annular packing 23 mounted between the surface and the surface of the intermediate plate 12 facing the surface and orthogonal to the axial direction, the water pressure in the pressure chamber 16 is increased as compared with the first embodiment. It is possible to greatly increase it.
Therefore, the crushing test apparatus 17 for steel pipes for pipelines of the second embodiment measures the crushing limit pressure of the test steel tube 2 by significantly increasing the water pressure of the pressure chamber 16 as compared with the crushing test apparatus 1 of the first embodiment. Therefore, the crushing limit pressure of a significantly high value of the pipeline steel pipe can be reproduced with high accuracy in the test steel pipe 2.
 なお、第2実施形態では段差部10b,11bの軸方向に直交する段差面及びこれに対面する中間盤12の軸方向に直交する面に設けたリング溝に環状パッキン23を装着したが、断面円弧形状のリング溝を形成し、このリング溝にOリングを装着しても、同様の効果を奏することができる。 In the second embodiment, the annular packing 23 is attached to the ring groove provided on the step surface orthogonal to the axial direction of the step portions 10b and 11b and the surface orthogonal to the axial direction of the intermediate plate 12 facing the step surface. Even if an arc-shaped ring groove is formed and an O-ring is attached to this ring groove, the same effect can be obtained.
[第3実施形態の圧潰試験装置]
 次に、図5は、本発明に係る第3実施形態のパイプライン用鋼管の圧潰試験装置の要部を示すものである。なお、第1実施形態のパイプライン用鋼管の圧潰試験装置で示した構成要件と同一構成部分には、同一符号を付して説明は省略する。
 第3実施形態の圧潰試験装置20は、変形体3の外周に、円筒形状のゴムパッキン21が装着されている。
[Crush Test Apparatus of Third Embodiment]
Next, FIG. 5 shows a main part of a crushing test apparatus for steel pipes for pipelines according to a third embodiment of the present invention. The same components as those of the crushing test device for pipeline steel pipes according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
In the crushing test device 20 of the third embodiment, a cylindrical rubber packing 21 is attached to the outer periphery of the deformable body 3.
 ゴムパッキン21は、軸方向の両端に肉厚部21a,21bを設けており、肉厚部21a,21b以外の厚さが3mmとした部材であり、自由長のときの軸方向長さが、変形体3の軸方向長さLc2より長く設定されている。また、肉厚部21a,21bは必ずしも必要ではなく、肉厚部がなくても本発明の効果を発揮できる。
 また、変形体3の軸方向長さLc2は、試験鋼管2の軸方向長さLt2に対して長く設定され、変形体3及び試験鋼管2の軸方向長さの差ΔL2(Lc2-Lt2)は、1.0mm以上1.3mm以内の範囲に設定されている(1.0≦ΔL2≦1.3)。
 なお、本発明に記載されている円筒形状の弾性体が、ゴムパッキン21に対応している。
The rubber packing 21 is a member in which thick portions 21a and 21b are provided at both ends in the axial direction, and the thickness other than the thick portions 21a and 21b is 3 mm, and the axial length in the free length is It is set to be longer than the axial length Lc2 of the deformable body 3. Further, the thick portions 21a and 21b are not always necessary, and the effect of the present invention can be exhibited without the thick portions.
Further, the axial length Lc2 of the deformable body 3 is set longer than the axial length Lt2 of the test steel pipe 2, and the difference ΔL2 (Lc2-Lt2) between the axial lengths of the deformable body 3 and the test steel pipe 2 is , 1.0 mm or more and 1.3 mm or less (1.0≦ΔL2≦1.3).
The cylindrical elastic body described in the present invention corresponds to the rubber packing 21.
 次に、第3実施形態の圧潰試験装置20を使用したパイプライン用鋼管の圧潰試験手順について作用とともに説明する。
 先ず、試験鋼管2の外周に変形体3を装着し、変形体3の外周にゴムパッキン21を装着する。
 次に、装置本体4の試験空間STに、底盤10の上面10h及び天盤11の下面11hの間を軸が延在するように試験鋼管2、変形体3及びゴムパッキン21を配置する。
Next, a crushing test procedure of a steel pipe for a pipeline using the crushing test device 20 of the third embodiment will be described together with its operation.
First, the deformable body 3 is attached to the outer periphery of the test steel pipe 2, and the rubber packing 21 is attached to the outer periphery of the deformable body 3.
Next, in the test space ST of the apparatus body 4, the test steel pipe 2, the deformable body 3, and the rubber packing 21 are arranged so that the axis extends between the upper surface 10h of the bottom plate 10 and the lower surface 11h of the roof 11.
 次に、装置本体4に複数の第1連結ボルト14及び第2連結ボルト15を装着し、変形体3の軸方向の両端面3a,3bを天盤11の下面11h及び底盤10の上面10hに密着し、ゴムパッキン21の軸方向の両端の肉厚部21a,21bを圧縮状態で弾性変形させて、変形体3を底盤10及び天盤11で挟持する。これにより、ゴムパッキン21の外周面、中間盤12の内周面、天盤11の下面11h及び底盤10の上面10hで囲まれた空間に圧力室16が形成される。
 このとき、試験鋼管2は、軸方向の一方の端面2bが底盤10の上面10hに載置され、軸方向の他方の端面2aが天盤11の下面11hには接触しない状態で、変形体3の内側に配置される。
Next, the plurality of first connecting bolts 14 and the second connecting bolts 15 are attached to the apparatus body 4, and both axial end surfaces 3a and 3b of the deformable body 3 are attached to the lower surface 11h of the roof 11 and the upper surface 10h of the bottom board 10. The thickened portions 21a and 21b at both ends of the rubber packing 21 in the axial direction are elastically deformed in a compressed state so as to sandwich the deformable body 3 between the bottom plate 10 and the top plate 11. As a result, the pressure chamber 16 is formed in a space surrounded by the outer peripheral surface of the rubber packing 21, the inner peripheral surface of the intermediate plate 12, the lower surface 11h of the top 11 and the upper surface 10h of the bottom plate 10.
At this time, in the test steel pipe 2, one end surface 2b in the axial direction is placed on the upper surface 10h of the bottom plate 10 and the other end surface 2a in the axial direction does not contact the lower surface 11h of the roof 11, and the deformable body 3 is deformed. Placed inside.
 次に、加圧水供給部5から水供給路11eを介して圧力室16に加圧水を供給していく。加圧水供給部5からの加圧水の供給によって圧力室16の水圧が上昇していくと、水圧がゴムパッキン21を介して変形体3の外周面に作用し、変形体3が径方向内方に塑性変形していく。そして、変形体3の塑性変形とともに、変形体3の内側に装着した試験鋼管2も径方向内方に塑性変形していく。
 径方向内方に塑性変形する試験鋼管2は、軸方向の一方の端面2bが底盤10の上面10hに載置され、軸方向の他方の端面2aが天盤11の下面11hには接触しておらず、底盤10及び天盤11に挟持されていないので、軸方向の端面2a,2bは下面11h及び上面10hとの間に摩擦力が発生しない。
Next, the pressurized water is supplied from the pressurized water supply unit 5 to the pressure chamber 16 via the water supply passage 11e. When the water pressure in the pressure chamber 16 increases due to the supply of the pressurized water from the pressurized water supply unit 5, the water pressure acts on the outer peripheral surface of the deformable body 3 via the rubber packing 21, and the deformable body 3 is plastically deformed radially inward. It transforms. Then, along with the plastic deformation of the deformable body 3, the test steel pipe 2 mounted inside the deformable body 3 also plastically deforms radially inward.
In the test steel pipe 2 which is plastically deformed inward in the radial direction, one end face 2b in the axial direction is placed on the upper face 10h of the bottom plate 10, and the other end face 2a in the axial direction contacts the lower face 11h of the roof 11. Since it is not sandwiched between the bottom plate 10 and the top plate 11, no frictional force is generated between the axial end faces 2a and 2b and the lower face 11h and the upper face 10h.
 試験鋼管2は、径方向内方への塑性変形とともに、軸長が増大する方向にも塑性変形していく。第2実施形態は、変形体3の軸方向長さLc2と試験鋼管2の軸方向長さLt2の差ΔL1を1.0mm以上に設定しているが、この差ΔL2(1.0mm以上)は、軸長が増大する方向に試験鋼管2が塑性変形しても、試験鋼管2の軸方向の端面が天盤11の下面11hに接触しない値である。これにより、軸長が増大する方向に試験鋼管2が塑性変形しても、天盤11及び底盤10との間に摩擦力が発生するおそれがない。
 また、第3実施形態では、差ΔL2を1.3mm以下の値に設定することで、変形体3の過度の変形を防止して底盤10及び天盤11と変形体3との接触位置の液密性を確保している。
The test steel pipe 2 is plastically deformed inward in the radial direction and is also plastically deformed in a direction in which the axial length is increased. In the second embodiment, the difference ΔL1 between the axial length Lc2 of the deformable body 3 and the axial length Lt2 of the test steel pipe 2 is set to 1.0 mm or more, but this difference ΔL2 (1.0 mm or more) is set. Even if the test steel pipe 2 is plastically deformed in the direction in which the axial length increases, the axial end surface of the test steel pipe 2 does not come into contact with the lower surface 11h of the roof 11. As a result, even if the test steel pipe 2 is plastically deformed in the direction in which the axial length increases, there is no possibility of generating a frictional force between the top plate 11 and the bottom plate 10.
Further, in the third embodiment, by setting the difference ΔL2 to a value of 1.3 mm or less, excessive deformation of the deformable body 3 is prevented, and the liquid at the contact position between the bottom plate 10 and the roof 11 and the deformable body 3 is prevented. The tightness is secured.
 次に、第3実施形態のパイプライン用鋼管の圧潰試験装置20の効果について説明する。
 試験鋼管2には変形体3を介して圧力室16の水圧が作用して径方向内方に塑性変形していくが、試験鋼管2は、軸方向の一方の端面2bが底盤10の上面10hに載り、軸方向の他方の端面2aが天盤11の下面11hには接触しておらず、軸方向の端面2a,2bは下面11h及び上面10hとの間に摩擦力が発生しない。したがって、圧潰試験を行う試験鋼管2に摩擦力が発生しないので、パイプライン用鋼管の圧潰限界圧力を試験鋼管2で高精度に再現することができ、パイプライン用鋼管の耐圧潰性能を高精度に評価することができる。
Next, the effect of the steel pipe crushing test apparatus 20 of the third embodiment will be described.
The water pressure of the pressure chamber 16 acts on the test steel pipe 2 via the deformable body 3 and plastically deforms inward in the radial direction. However, in the test steel pipe 2, one end face 2b in the axial direction is the top face 10h of the bottom plate 10h. The other end surface 2a in the axial direction is not in contact with the lower surface 11h of the roof 11, and the axial end surfaces 2a and 2b do not generate frictional force between the lower surface 11h and the upper surface 10h. Therefore, since no frictional force is generated in the test steel pipe 2 to be subjected to the crushing test, the crushing limit pressure of the pipeline steel pipe can be reproduced with high accuracy in the test steel pipe 2, and the pressure crushing performance of the pipeline steel pipe is highly accurate. Can be evaluated.
 また、第3実施形態の圧潰試験装置20は、変形体3の外周にゴムパッキン21が装着され、変形体3を底盤10及び天盤11で挟持する際には、ゴムパッキン21の軸方向の両端の肉厚部21a,21bが天盤11の下面11h及び底盤10の上面10hに圧縮状態で弾性変形している。これにより、第3実施形態の圧潰試験装置20は、第1実施形態の圧潰試験装置1と比較して、底盤10及び天盤11と変形体3との接触位置の液密性が高まるので、圧力室16の水圧を高めることが可能となる。したがって、第3実施形態の圧潰試験装置20は、圧力室16の水圧を高めることで試験鋼管2の高い値の圧潰限界圧力を測定することができ、パイプライン用鋼管の高い値の圧潰限界圧力を試験鋼管で高精度に再現することができる。 Further, in the crushing test apparatus 20 of the third embodiment, the rubber packing 21 is attached to the outer periphery of the deformable body 3, and when the deformable body 3 is sandwiched between the bottom plate 10 and the top plate 11, the rubber packing 21 moves in the axial direction of the rubber packing 21. The thick portions 21a and 21b at both ends are elastically deformed in a compressed state on the lower surface 11h of the top board 11 and the upper surface 10h of the bottom board 10. Thereby, the crushing test apparatus 20 of the third embodiment has higher liquid-tightness at the contact position between the bottom plate 10 and the roof 11 and the deformable body 3, as compared with the crushing test apparatus 1 of the first embodiment. The water pressure in the pressure chamber 16 can be increased. Therefore, the crushing test apparatus 20 of the third embodiment can measure the high value of the crushing limit pressure of the test steel pipe 2 by increasing the water pressure in the pressure chamber 16, and the high value of the crushing limit pressure of the pipeline steel pipe can be measured. Can be reproduced with high precision using a test steel pipe.
 また、変形体3の軸方向長さLc2と試験鋼管2の軸方向長さLt2との差ΔL2(Lc2-Lt2)を1.0≦ΔL2≦1.3に設定しているので、試験鋼管2が軸長が増大する方向に塑性変形しても、天盤11の下面11hに接触せず天盤11との間に摩擦力が発生せず、パイプライン用鋼管の耐圧潰性能の評価をさらに高精度に行うことができるとともに、試験鋼管2の圧潰限界圧力を高精度に演算することができる。 Further, since the difference ΔL2 (Lc2-Lt2) between the axial length Lc2 of the deformable body 3 and the axial length Lt2 of the test steel pipe 2 is set to 1.0≦ΔL2≦1.3, the test steel pipe 2 Even if is plastically deformed in the direction of increasing the axial length, the lower surface 11h of the roof 11 does not come into contact with the roof 11 and no frictional force is generated between the roof 11 and the pressure crushing performance of the pipeline steel pipe. It can be performed with high accuracy, and the crush limit pressure of the test steel pipe 2 can be calculated with high accuracy.
[第4実施形態の圧潰試験装置]
 次に、図6は、本発明に係る第4実施形態のパイプライン用鋼管の圧潰試験装置の要部を示すものである。なお、図5で示した第3実施形態のパイプライン用鋼管の圧潰試験装置20で示した構成要件と同一構成部分には、同一符号を付して説明は省略する。
 第4実施形態の圧潰試験装置30は、変形体3の軸方向の両端面3a,3bの外周側に、環状の切り欠き3c、3dが形成されており、それら切り欠き3c,3dに、Oリング31,32が装着されている。
[Crush Test Apparatus of Fourth Embodiment]
Next, FIG. 6 shows an essential part of a crushing test apparatus for pipeline steel pipes according to a fourth embodiment of the present invention. The same components as those of the crushing test apparatus 20 for pipeline steel pipes according to the third embodiment shown in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted.
In the crushing test device 30 of the fourth embodiment, annular notches 3c and 3d are formed on the outer peripheral sides of the axially opposite end faces 3a and 3b of the deformable body 3, and the notches 3c and 3d have O Rings 31 and 32 are attached.
 また、図6では記載していないが、変形体3の軸方向長さLc2と試験鋼管2の軸方向長さLt2との差ΔL2(Lc2-Lt2)は、1.0≦ΔL2≦1.3に設定されている。
 なお、本発明に記載されている環状の凹部が、環状の切り欠き3c、3dに対応し、本発明に記載されているOリングが、Oリング31,32に対応している。
Although not shown in FIG. 6, the difference ΔL2 (Lc2-Lt2) between the axial length Lc2 of the deformable body 3 and the axial length Lt2 of the test steel pipe 2 is 1.0≦ΔL2≦1.3. Is set to.
The annular recesses described in the present invention correspond to the annular notches 3c and 3d, and the O-rings described in the present invention correspond to the O- rings 31 and 32.
 第4実施形態の圧潰試験装置30は、試験鋼管2の外周に変形体3を装着し、変形体3の両端面3a,3bに設けた環状の切り欠き3c、3dに、Oリング31,32を装着する。そして、装置本体4の試験空間STに、底盤10の上面10h及び天盤11の下面11hの間を軸が延在するように試験鋼管2及びOリング31,32を装着した変形体3を配置する。 In the crush test apparatus 30 of the fourth embodiment, the deformable body 3 is mounted on the outer circumference of the test steel pipe 2, and the O- rings 31, 32 are provided in the annular cutouts 3c, 3d provided on both end faces 3a, 3b of the deformable body 3. Put on. Then, in the test space ST of the apparatus body 4, the deformable body 3 in which the test steel pipe 2 and the O- rings 31, 32 are mounted is arranged so that the axis extends between the upper surface 10h of the bottom plate 10 and the lower surface 11h of the top plate 11. To do.
 また、装置本体4に複数の第1連結ボルト14及び第2連結ボルト15を装着し、変形体3の軸方向の両端面3a,3bを天盤11の下面11h及び底盤10の上面10hに密着し、Oリング31,32を下面11h及び上面10hに圧縮状態で弾性変形させて、変形体3を底盤10及び天盤11で挟持する。これにより、変形体3の外周面、中間盤12の内周面、天盤11の下面11h及び底盤10の上面10hで囲まれた空間に圧力室16が形成される。このとき、試験鋼管2は、軸方向の一方の端面2bが底盤10の上面10hに載置され、軸方向の他方の端面2aが天盤11の下面11hには接触しない状態で、変形体3の内側に配置される。 In addition, a plurality of first connecting bolts 14 and second connecting bolts 15 are attached to the device body 4, and both axial end faces 3a and 3b of the deformable body 3 are closely attached to the lower surface 11h of the roof 11 and the upper surface 10h of the bottom board 10. Then, the O- rings 31 and 32 are elastically deformed to the lower surface 11h and the upper surface 10h in a compressed state, and the deformable body 3 is sandwiched between the bottom plate 10 and the top plate 11. As a result, the pressure chamber 16 is formed in the space surrounded by the outer peripheral surface of the deformable body 3, the inner peripheral surface of the intermediate plate 12, the lower surface 11h of the top 11 and the upper surface 10h of the bottom plate 10. At this time, in the test steel pipe 2, one end surface 2b in the axial direction is placed on the upper surface 10h of the bottom plate 10 and the other end surface 2a in the axial direction does not contact the lower surface 11h of the roof 11, and the deformable body 3 is deformed. Placed inside.
 そして、第2実施形態の圧潰試験装置20と同様に、加圧水供給部5から水供給路11eを介して圧力室16に加圧水を供給していくと、変形体3の塑性変形とともに、変形体3の内側に装着した試験鋼管2も径方向内方に塑性変形していく。
 したがって、第4実施形態の圧潰試験装置30も、圧潰試験を行う試験鋼管2に摩擦力が発生しないので、パイプライン用鋼管の圧潰限界圧力を試験鋼管2で高精度に再現することができ、パイプライン用鋼管の耐圧潰性能を高精度に評価することができる。
Then, similarly to the crushing test apparatus 20 of the second embodiment, when pressurized water is supplied from the pressurized water supply unit 5 to the pressure chamber 16 via the water supply passage 11e, the deformable body 3 is plastically deformed and the deformable body 3 is deformed. The test steel pipe 2 mounted on the inside of the plastic also plastically deforms inward in the radial direction.
Therefore, also in the crushing test apparatus 30 of the fourth embodiment, no frictional force is generated in the test steel pipe 2 on which the crushing test is performed, so that the crushing limit pressure of the pipeline steel pipe can be reproduced with high accuracy in the test steel pipe 2, It is possible to highly accurately evaluate the pressure crushing performance of a steel pipe for a pipeline.
 また、第4実施形態の圧潰試験装置30は、変形体3の両端面3a,3b側にOリング31,32が装着され、変形体3を底盤10及び天盤11で挟持する際には、Oリング31,32が天盤11の下面11h及び底盤10の上面10hに圧縮状態で弾性変形している。これにより、第4実施形態の圧潰試験装置30も、第1実施形態の圧潰試験装置1と比較して、底盤10及び天盤11と変形体3との接触位置の液密性が高まるので、圧力室16の水圧を高めることが可能となる。 Further, in the crushing test device 30 of the fourth embodiment, the O- rings 31 and 32 are attached to both end surfaces 3a and 3b of the deformable body 3, and when the deformable body 3 is sandwiched between the bottom plate 10 and the top plate 11, The O- rings 31 and 32 are elastically deformed on the lower surface 11h of the top 11 and the upper surface 10h of the bottom 10 in a compressed state. Thereby, the crushing test apparatus 30 of the fourth embodiment also has higher liquid-tightness at the contact position between the bottom plate 10 and the roof 11 and the deformable body 3, as compared with the crushing test apparatus 1 of the first embodiment. The water pressure in the pressure chamber 16 can be increased.
 したがって、第4実施形態の圧潰試験装置30は、圧力室16の水圧を高めることで試験鋼管2の高い値の圧潰限界圧力を測定することができ、パイプライン用鋼管の高い値の圧潰限界圧力を試験鋼管で高精度に再現することができる。
 また、第1~第4実施形態の圧潰試験装置1,17,20,30を使用して圧潰試験を行うことで、高精度の圧潰限界圧力が設定されたパイプライン用鋼管を製造することができる。
Therefore, the crushing test apparatus 30 of the fourth embodiment can measure the high value of the crushing limit pressure of the test steel pipe 2 by increasing the water pressure in the pressure chamber 16, and the high value of the crushing limit pressure of the pipeline steel pipe can be measured. Can be reproduced with high precision using a test steel pipe.
Further, by performing a crush test using the crush test devices 1, 17, 20, 30 of the first to fourth embodiments, it is possible to manufacture a steel pipe for pipeline in which a crush limit pressure with high accuracy is set. it can.
[実施例1]
 次に、本発明に係るパイプライン用鋼管の圧潰試験装置を使用した圧潰試験方法による圧潰限界圧力の測定と、従来の圧潰試験装置を使用した圧潰試験方法による圧潰限界圧力の測定とを、以下の表1に示すように比較することで、本発明の効果を検証した。
[Example 1]
Next, the measurement of the crush limit pressure by the crush test method using the crush test device for pipeline steel pipe according to the present invention, and the measurement of the crush limit pressure by the crush test method using the conventional crush test device, The effects of the present invention were verified by making a comparison as shown in Table 1 above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明例1~本発明例5、比較例1,2は、公称管厚が39mmであり、公称外径が812.8mmであり、同一外径形状、同一鋼管特性のパイプライン用鋼管を使用した。
 本発明例1~本発明例3は、試験鋼管2の外周に変形体3が装着されている第1実施形態の圧潰試験装置1を使用した測定結果である。そして、本発明1は、変形体3及び試験鋼管2の軸方向長さの差ΔL1=0.3mmとし、本発明2はΔL1=0.5mmとし、本発明3はΔL1=3.0mmとした。
Inventive Example 1 to Inventive Example 5, and Comparative Examples 1 and 2, the nominal pipe thickness is 39 mm, the nominal outer diameter is 812.8 mm, and the steel pipe for pipeline having the same outer diameter shape and the same steel pipe characteristics is used. did.
Inventive Example 1 to Inventive Example 3 are measurement results using the crushing test apparatus 1 of the first embodiment in which the deformable body 3 is mounted on the outer circumference of the test steel pipe 2. The present invention 1 has a difference ΔL1=0.3 mm in the axial length between the deformable body 3 and the test steel pipe 2, the invention 2 has ΔL1=0.5 mm, and the invention 3 has ΔL1=3.0 mm. ..
 また、本発明例4,5は、試験鋼管2の外周に変形体3を装着し、変形体3の外周にゴムパッキン21を装着した第2実施形態の圧潰試験装置20を使用した測定結果である。そして、本発明例4は、変形体3及び試験鋼管2の軸方向長さの差ΔL2=1.0mmとし、本発明例5はΔL2=1.3mmとした。
 また、比較例1は、試験鋼管2の外周に変形体3を装着した第1実施形態の圧潰試験装置1を使用し、変形体3及び試験鋼管2の軸方向長さの差ΔL1=0.1mmとした。さらに、比較例2は、試験鋼管2の外周に変形体3を装着した第1実施形態の圧潰試験装置1を使用し、変形体3及び試験鋼管2の軸方向長さの差ΔL1=6.0mmとした。
In addition, Examples 4 and 5 of the present invention are measurement results using the crushing test apparatus 20 of the second embodiment in which the deformable body 3 is mounted on the outer circumference of the test steel pipe 2 and the rubber packing 21 is mounted on the outer circumference of the deformable body 3. is there. In the invention example 4, the difference in axial length between the deformable body 3 and the test steel pipe 2 was ΔL2=1.0 mm, and in the invention example 5, ΔL2=1.3 mm.
Further, Comparative Example 1 uses the crushing test apparatus 1 of the first embodiment in which the deformable body 3 is attached to the outer circumference of the test steel pipe 2, and the difference ΔL1=0.0.5 in the axial length between the deformable body 3 and the test steel pipe 2. It was set to 1 mm. Furthermore, Comparative Example 2 uses the crushing test apparatus 1 of the first embodiment in which the deformable body 3 is attached to the outer circumference of the test steel pipe 2, and the difference ΔL1=6.6 in the axial length between the deformable body 3 and the test steel pipe 2. It was set to 0 mm.
 そして、本発明例1~本発明例5、比較例1,2の圧潰限界圧力は、パイプライン用鋼管の一部を切断せず実管で測定した結果(実管試験結果)と、パイプライン用鋼管の一部を切断した試験鋼管2を使用して第1及び第3実施形態の圧潰試験装置で測定した結果(圧潰装置結果)を示し、実管試験結果及び圧潰装置結果を比較して測定精度を示した。
 表1から明らかなように、本発明例1~本発明例3は、試験鋼管2の外周に変形体3を装着したことで圧潰試験を行う際に試験鋼管2には摩擦力が発生せず、変形体3の軸方向長さLc1と試験鋼管2の軸方向長さLt1との差ΔL1を0.3mm≦ΔL1≦5.0mmに設定しているので、測定精度の誤差が0.5%以内に収まっている。
The crushing limit pressures of Inventive Example 1 to Inventive Example 5 and Comparative Examples 1 and 2 are the result of measuring the actual pipe without cutting a part of the pipeline steel pipe (actual pipe test result) and the pipeline. The result (crushing device result) measured by the crushing test device of the first and third embodiments using the test steel pipe 2 obtained by cutting a part of the steel pipe for use is shown, and the actual pipe test result and the crushing device result are compared. The measurement accuracy was shown.
As is clear from Table 1, in the present invention examples 1 to 3 the frictional force is not generated in the test steel pipe 2 when the crushing test is performed by mounting the deformable body 3 on the outer periphery of the test steel pipe 2. Since the difference ΔL1 between the axial length Lc1 of the deformable body 3 and the axial length Lt1 of the test steel pipe 2 is set to 0.3 mm≦ΔL1≦5.0 mm, the measurement accuracy error is 0.5%. It is within.
 また、本発明例4,5は、試験鋼管2の外周に変形体3を装着し、さらに変形体3の外周側にゴムパッキン21を装着したことで圧潰試験を行う際に試験鋼管2には摩擦力が発生せず、変形体3の軸方向長さLc2と試験鋼管2の軸方向長さLt2との差ΔL2を1.0mm≦ΔL2≦1.3mmに設定しているので、測定精度の誤差が1.0%未満に収まっている。
 一方、比較例1は、試験鋼管2の外周に変形体3を装着した第1実施形態の圧潰試験装置1を使用しているが、変形体3及び試験鋼管2の軸方向長さの差ΔL1=0.3mm未満としたことで、試験鋼管2が軸方向に塑性変形して天盤11の下面11h及び底盤10の上面10hに接触して摩擦力が発生し、試験鋼管2の圧潰限界圧力が高い値を示してしまい、測定誤差が5.8%と大きくなった。
In addition, in Examples 4 and 5 of the present invention, the deformable body 3 was attached to the outer circumference of the test steel pipe 2, and the rubber packing 21 was attached to the outer peripheral side of the deformable body 3, so that the test steel pipe 2 was not subjected to the crush test. Since no frictional force is generated and the difference ΔL2 between the axial length Lc2 of the deformable body 3 and the axial length Lt2 of the test steel pipe 2 is set to 1.0 mm≦ΔL2≦1.3 mm, The error is less than 1.0%.
On the other hand, Comparative Example 1 uses the crushing test apparatus 1 of the first embodiment in which the deformable body 3 is mounted on the outer circumference of the test steel pipe 2, but the difference ΔL1 in the axial length between the deformable body 3 and the test steel pipe 2 is used. = Less than 0.3 mm, the test steel pipe 2 is plastically deformed in the axial direction and comes into contact with the lower surface 11h of the top 11 and the upper surface 10h of the bottom 10 to generate frictional force, and the crushing limit pressure of the test steel pipe 2 Showed a high value, and the measurement error was as large as 5.8%.
 また、比較例2は、測定誤差が10%以上である。これは、比較例2は試験鋼管2の外周に変形体3を装着した第1実施形態の圧潰試験装置1を使用しているが、変形体3及び試験鋼管2の軸方向長さの差ΔL1=5.0mmを上回っている。これにより、圧力室16の水圧が上昇しているときに、変形体3が、試験鋼管2の端面と天盤11の下面11hとの間に入り込んだ状態で変形して圧力室16の液密が不可能になり、試験鋼管2が圧潰する前に圧力室16の最大圧力が大きく低下してしまった。
 したがって、本願発明に係る第1実施形態の圧潰試験装置1を使用した方法、第3実施形態の圧潰試験装置20を使用した方法が、パイプライン用鋼管の圧潰限界圧力を試験鋼管で高精度に再現することができることが確認された。なお、第4実施形態の圧潰試験装置30を使用した方法も、パイプライン用鋼管の圧潰限界圧力を試験鋼管で高精度に再現することができる。
In Comparative Example 2, the measurement error is 10% or more. This comparative example 2 uses the crushing test apparatus 1 of the first embodiment in which the deformable body 3 is mounted on the outer circumference of the test steel pipe 2, but the difference ΔL1 in the axial length between the deformable body 3 and the test steel pipe 2 is used. It exceeds 5.0 mm. As a result, when the water pressure in the pressure chamber 16 is rising, the deformable body 3 is deformed in a state of entering between the end surface of the test steel pipe 2 and the lower surface 11h of the roof 11 and the liquid tightness of the pressure chamber 16 is increased. Became impossible, and the maximum pressure of the pressure chamber 16 was greatly reduced before the test steel pipe 2 was crushed.
Therefore, the method using the crushing test apparatus 1 according to the first embodiment of the present invention and the method using the crushing test apparatus 20 according to the third embodiment are highly accurate in determining the crushing limit pressure of the steel pipe for pipeline with the test steel pipe. It was confirmed that it can be reproduced. The method using the crushing test apparatus 30 of the fourth embodiment can also accurately reproduce the crushing limit pressure of the pipeline steel pipe with the test steel pipe.
[実施例2]
 次に、本発明に係るパイプライン用鋼管の圧潰試験装置を使用した圧潰試験方法による圧潰限界圧力の測定と、従来の圧潰試験装置を使用した圧潰試験方法による圧潰限界圧力の測定を行い、塑性圧潰の再現の有無を判定することで、本発明の効果を検証した。
 塑性圧潰の再現の有無は、以下の(1)式で算出される圧潰試験を行った試験鋼管2の内径変位ΔR(測定した内径変化の平均値)と、試験鋼管2の弾性変形線からのかい離量との比較により判断し、試験鋼管2の内径変位ΔRが、弾性変形線からかい離量が0.2%以上となったときに塑性圧痕が再現されていると判定する。
 ΔR = -(PR)/(tE) ……… (1)
 なお、Pは圧力(Mpa)、Rは試験鋼管2の初期内径(mm)、tは試験鋼管2の厚さ(mm)、Eはヤング率(Mpa)である。
[Example 2]
Next, the crushing limit pressure is measured by the crushing test method using the crushing test device for pipeline steel pipes according to the present invention, and the crushing limit pressure is measured by the crushing test method using the conventional crushing test device. The effect of the present invention was verified by determining whether crushing was reproduced.
Whether or not the plastic crush is reproduced is determined from the elastic deformation line of the test steel pipe 2 and the inner diameter displacement ΔR (average value of the measured inner diameter change) of the test steel pipe 2 subjected to the crush test calculated by the following formula (1). Judgment is made by comparison with the amount of separation, and when the inner diameter displacement ΔR of the test steel pipe 2 is more than 0.2% from the elastic deformation line, it is judged that the plastic indentation is reproduced.
ΔR =-(PR 2 )/(tE) ……… (1)
Note that P is the pressure (Mpa), R is the initial inner diameter (mm) of the test steel pipe 2, t is the thickness (mm) of the test steel pipe 2, and E is the Young's modulus (Mpa).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明例6と比較例3は、公称管厚が40mmであり、公称外径が691mmであり、同一外径形状、同一鋼管特性のパイプライン用鋼管を使用した。
 本発明例6は、試験鋼管2の外周に変形体3が装着されているとともに、天盤11を貫通して底盤10にねじ込まれることで第1及び第2連結ボルト14,15に発生する軸力が、段差部10b,11bの軸方向に直交する段差面及びこれに対面する中間盤12の軸方向に直交する面の間に装着されている環状パッキン23に大きな密着力を作用し、圧力室16の水圧を大幅に高めることが可能となる第2実施形態の圧潰試験装置17(図4参照)を使用した測定結果である。そして、本発明例6は、変形体3及び試験鋼管2の軸方向長さの差ΔL1=1.0mmとした。一方、比較例3は、試験鋼管2の外周に変形体3を装着した第2実施形態の圧潰試験装置17を使用し、変形体3及び試験鋼管2の軸方向長さの差ΔL1=6.0mmとした。
Inventive Example 6 and Comparative Example 3 used steel pipes for pipelines having a nominal pipe thickness of 40 mm, a nominal outer diameter of 691 mm, the same outer diameter shape, and the same steel pipe characteristics.
In the invention example 6, the deformable body 3 is mounted on the outer circumference of the test steel pipe 2, and the shaft generated in the first and second connecting bolts 14 and 15 by penetrating the roof 11 and being screwed into the bottom 10 The force exerts a large adhesion force on the annular packing 23 mounted between the step surfaces of the step portions 10b and 11b which are orthogonal to the axial direction and the surface of the intermediate plate 12 which faces the step surfaces and which is orthogonal to the axial direction, and the pressure is applied. It is a measurement result which used the crushing test apparatus 17 (refer FIG. 4) of 2nd Embodiment which can raise the water pressure of the chamber 16 significantly. Then, in Inventive Example 6, the difference in axial length between the deformable body 3 and the test steel pipe 2 was ΔL1=1.0 mm. On the other hand, Comparative Example 3 uses the crushing test apparatus 17 of the second embodiment in which the deformable body 3 is attached to the outer circumference of the test steel pipe 2, and the difference ΔL1=6.x in the axial length between the deformable body 3 and the test steel pipe 2. It was set to 0 mm.
 図7は、本発明例6の試験鋼管2について圧力室16の水圧変化と内径変位の関係を示すものであり、本発明例6の試験鋼管2は、圧力室16の水圧上昇とともに塑性変形していき、弾性変形線からのかい離量が0.8%のときに塑性圧痕が再現されることが検証された。そして、この本発明例6の塑性圧痕の再現の際には、50MPaを超える超高圧での圧潰試験が再現できることも検証できた。
 一方、変形体3及び試験鋼管2の軸方向長さの差ΔL1=6.0mmとした比較例3は、圧力室16の水圧が上昇すると、変形体3が試験鋼管2の端面と天盤11の下面11hとの間に入り込んだ状態で変形して圧力室16の液密が不可能になり、試験鋼管2が圧潰する前に圧力室16の最大圧力が大きく低下してしまった。この際の、試験鋼管2の内径変位ΔRが弾性変形線からかい離量が0.05%となり、弾性変形状態となって圧力室16の水が外部にリークするので、圧潰試験は再現することができない。
FIG. 7 shows the relationship between the water pressure change and the inner diameter displacement of the pressure chamber 16 for the test steel pipe 2 of the present invention example 6. The test steel pipe 2 of the present invention example 6 plastically deforms as the water pressure of the pressure chamber 16 increases. It was verified that the plastic indentation was reproduced when the distance from the elastic deformation line was 0.8%. It was also verified that when the plastic indentation of Inventive Example 6 was reproduced, a crushing test at an ultrahigh pressure exceeding 50 MPa could be reproduced.
On the other hand, in Comparative Example 3 in which the difference ΔL1=6.0 mm in the axial length between the deformable body 3 and the test steel pipe 2, when the water pressure in the pressure chamber 16 increases, the deformable body 3 causes the end face of the test steel pipe 2 and the roof 11 to rise. It deformed in a state of entering between the lower surface 11h and the lower surface 11h, making liquid tightness of the pressure chamber 16 impossible, and the maximum pressure of the pressure chamber 16 greatly decreased before the test steel pipe 2 was crushed. At this time, the inner diameter displacement ΔR of the test steel pipe 2 is 0.05% from the elastic deformation line, and the water in the pressure chamber 16 leaks to the outside in the elastically deformed state, so that the crush test can be reproduced. Can not.
1,17,20,30 圧潰試験装置
2 試験鋼管
2a 試験鋼管の軸方向の他方の端面
2b 試験鋼管の軸方向の一方の端面
3 変形体
3a,3b 変形体の軸方向の端面
4 装置本体
5 加圧水供給部
6 歪み計
7 圧力計
8 演算部
8a 入力部
8b 圧潰圧力演算部
8c 表示部
10 底盤
10a 貫通部
10b 段差部
10c,10d ねじ孔
10h 上面
11 天盤
11a 貫通部
11b 段差部
11c 貫通孔
11d 貫通孔
11e 水供給路
11f 圧力計測路
11h 下面
12 中間盤
12a 内周面
12c 貫通孔
14 第1連結ボルト
15 第2連結ボルト
16 圧力室
21 ゴムパッキン
21a,21b 肉厚部
22 Oリング
23 環状パッキン
ST 試験空間
Lc1 第1実施形態の変形体の軸方向長さ
Lt1 第1実施形態の試験鋼管の軸方向長さ
ΔL1 第1実施形態の変形体及び試験鋼管の軸方向長さの差
Lc2 第2実施形態の変形体の軸方向長さ
Lt2 第2実施形態の試験鋼管の軸方向長さ
ΔL2 第2実施形態の変形体及び試験鋼管の軸方向長さの差
1, 17, 20, 30 Crush test device 2 Test steel pipe 2a Another end face 2b of test steel pipe in the axial direction One end face 3 of test steel pipe in the axial direction 3 Deformation bodies 3a, 3b End face 4 of the deformation body 4 Device body 5 Pressurized water supply unit 6 Strain gauge 7 Pressure gauge 8 Calculation unit 8a Input unit 8b Crush pressure calculation unit 8c Display unit 10 Bottom plate 10a Penetration part 10b Steps 10c, 10d Screw hole 10h Top surface 11 Top 11a Penetration part 11b Step part 11c Penetration hole 11d Through hole 11e Water supply path 11f Pressure measurement path 11h Lower surface 12 Intermediate board 12a Inner peripheral surface 12c Through hole 14 First connecting bolt 15 Second connecting bolt 16 Pressure chamber 21 Rubber packing 21a, 21b Thick portion 22 O-ring 23 Ring Packing ST Test space Lc1 Axial length Lt1 of deformable body of first embodiment Axial length ΔL1 of test steel pipe of first embodiment Difference Lc2 between axial length of deformable body and test steel pipe of first embodiment Axial Length Lt2 of Deformed Body of Second Embodiment Axial Length ΔL2 of Test Steel Pipe of Second Embodiment Difference in Axial Length of Deformed Body and Test Steel Pipe of Second Embodiment

Claims (11)

  1.  パイプライン用鋼管の一部より切断され形成されたリング形状の試験鋼管の外周に、前記試験鋼管に対して軸方向長さを長く設定して合成樹脂で形成した円筒形状の変形体を装着する工程と、
     互いに対向配置した一対の対向壁の間を軸が延在するように前記試験鋼管及び前記変形体を配置し、前記一対の対向壁に前記変形体の軸方向の両端面が密着した状態で前記一対の対向壁で前記変形体を挟持する工程と、
     前記一対の対向壁及び前記変形体の外周面に対向する周壁で前記変形体の外周面を囲んで形成した圧力室に流体を供給し、前記変形体の外周面に加圧した前記流体を作用させる工程と、
     前記試験鋼管の内径を測定する工程と、
     前記圧力室の前記流体の圧力を測定する工程と、
     前記試験鋼管の内径測定値及び前記圧力室の前記流体の圧力測定値に基づいて圧潰した前記試験鋼管の圧潰限界圧力を演算する工程と、を備えたことを特徴とするパイプライン用鋼管の圧潰試験方法。
    On the outer circumference of a ring-shaped test steel pipe formed by being cut from a part of a pipeline steel pipe, a cylindrical deformable body formed of synthetic resin with an axial length set longer than that of the test steel pipe is mounted. Process,
    The test steel pipe and the deformable body are arranged so that an axis extends between a pair of opposing walls arranged to face each other, and the axial ends of the deformable body are in close contact with the pair of opposing walls. Sandwiching the deformable body between a pair of opposing walls,
    A fluid is supplied to a pressure chamber formed by surrounding the outer peripheral surface of the deformable body with a pair of opposing walls and a peripheral wall facing the outer peripheral surface of the deformable body, and the pressurized fluid acts on the outer peripheral surface of the deformable body. And the process of
    Measuring the inner diameter of the test steel pipe,
    Measuring the pressure of the fluid in the pressure chamber,
    Crushing a pipeline steel pipe, comprising: calculating a crushing limit pressure of the crushed test steel pipe based on an inner diameter measurement value of the test steel pipe and a pressure measurement value of the fluid in the pressure chamber. Test method.
  2.  前記変形体の軸方向長さをLc1、前記試験鋼管の軸方向長さをLt1とすると、前記変形体及び前記試験鋼管の軸方向長さの差ΔL1(Lc1-Lt1)が、0.3mm≦ΔL1≦5.0mmであることを特徴とする請求項1記載のパイプライン用鋼管の圧潰試験方法。 When the axial length of the deformable body is Lc1 and the axial length of the test steel pipe is Lt1, the difference ΔL1 (Lc1-Lt1) in the axial length of the deformable body and the test steel pipe is 0.3 mm≦. The method for crushing a steel pipe for pipeline according to claim 1, wherein ΔL1≦5.0 mm.
  3.  パイプライン用鋼管の一部を切断してリング形状の試験鋼管を形成する工程と、
     前記試験鋼管の外周に、当該試験鋼管に対して軸方向長さを長く設定して合成樹脂で形成した円筒形状の変形体を装着する工程と、
     前記変形体の外周に弾性体からなるシール部材を装着する工程と、
     互いに対向配置した一対の対向壁の間を軸が延在するように前記試験鋼管、前記変形体及び前記シール部材を配置し、前記一対の対向壁に前記変形体の軸方向の両端面が密着し、且つ前記シール部材を弾性変形しながら密着した状態で前記一対の対向壁で前記変形体を挟持する工程と、
     前記一対の対向壁及び前記変形体の外周面に対向する周壁で前記変形体の外周面を囲んで形成した圧力室に流体を供給し、前記変形体の外周面に加圧した流体を作用させる工程と、
     前記試験鋼管の内径を測定する工程と、
     前記圧力室の前記流体の圧力を測定する工程と、
     前記試験鋼管の内径測定値及び前記圧力室の前記流体の圧力測定値に基づいて圧潰した前記試験鋼管の圧潰限界圧力を演算する工程と、を備えたことを特徴とするパイプライン用鋼管の圧潰試験方法。
    A step of cutting a part of the steel pipe for a pipeline to form a ring-shaped test steel pipe,
    On the outer periphery of the test steel pipe, a step of mounting a cylindrical deformable body formed of synthetic resin by setting the axial length of the test steel pipe to be long,
    Mounting a seal member made of an elastic body on the outer periphery of the deformable body,
    The test steel pipe, the deformable body, and the seal member are arranged so that an axis extends between a pair of opposed walls arranged to face each other, and both axial end faces of the deformable body are closely attached to the pair of opposed walls. And sandwiching the deformable body with the pair of opposing walls in a state in which the seal member is elastically deformed and closely attached,
    A fluid is supplied to a pressure chamber formed by surrounding the outer peripheral surface of the deformable body with a pair of opposing walls and a peripheral wall facing the outer peripheral surface of the deformable body, and the pressurized fluid acts on the outer peripheral surface of the deformable body. Process,
    Measuring the inner diameter of the test steel pipe,
    Measuring the pressure of the fluid in the pressure chamber,
    Crushing a pipeline steel pipe, comprising: calculating a crushing limit pressure of the crushed test steel pipe based on an inner diameter measurement value of the test steel pipe and a pressure measurement value of the fluid in the pressure chamber. Test method.
  4.  前記変形体の軸方向長さをLc2、前記試験鋼管の軸方向長さをLt2とすると、前記変形体及び前記試験鋼管の軸方向長さの差ΔL2(Lc2-Lt2)が、1.0mm≦ΔL2≦1.3mmであることを特徴とする請求項3記載のパイプライン用鋼管の圧潰試験方法。 When the axial length of the deformable body is Lc2 and the axial length of the test steel pipe is Lt2, the difference ΔL2 (Lc2-Lt2) in the axial length between the deformable body and the test steel pipe is 1.0 mm≦. The method for crushing a steel pipe for pipeline according to claim 3, wherein ΔL2≦1.3 mm.
  5.  請求項1から4の何れか一項のパイプライン用鋼管の圧潰試験方法を行う工程を経て前記パイプライン用鋼管を製造することを特徴とするパイプライン用鋼管の製造方法。 A method for manufacturing a steel pipe for a pipeline, which comprises manufacturing the steel pipe for a pipeline through a step of performing the method for crushing a steel pipe for a pipeline according to any one of claims 1 to 4.
  6.  パイプライン用鋼管の一部を切断してリング形状に形成した試験鋼管と、
     前記試験鋼管に対して軸方向長さを長く設定して合成樹脂で形成した円筒形状の部材であり、前記試験鋼管の外周に装着される変形体と、
     前記変形体の軸方向の両端面が密着するように前記変形体を軸方向から挟持して互いに対向配置されている一対の対向壁と、当該一対の対向壁から延在して前記変形体の外周面を囲む周壁とを備えて前記変形体の外周を囲む圧力室を形成している装置本体と、
     前記圧力室に流体を供給する流体供給手段と、
     前記試験鋼管の内径を測定する内径測定手段と、
     前記圧力室の前記流体の圧力を測定する流体圧力測定手段と、
     前記内径測定手段で測定した内径測定値及び前記流体圧力測定手段で測定した前記流体の圧力測定値に基づいて圧潰した前記試験鋼管の圧潰限界圧力を演算する演算手段と、を備えたことを特徴とするパイプライン用鋼管の圧潰試験装置。
    A test steel pipe formed by cutting a part of the steel pipe for a pipeline into a ring shape,
    A cylindrical member formed of synthetic resin by setting the axial length of the test steel pipe to be long, and a deformable body mounted on the outer periphery of the test steel pipe,
    A pair of opposing walls that are arranged to face each other by sandwiching the deformable body from the axial direction so that both axial end surfaces of the deformable body are in close contact with each other, and the deformable body extends from the pair of opposing walls. An apparatus main body having a peripheral wall surrounding an outer peripheral surface and forming a pressure chamber surrounding the outer periphery of the deformable body;
    Fluid supply means for supplying fluid to the pressure chamber,
    An inner diameter measuring means for measuring the inner diameter of the test steel pipe,
    Fluid pressure measuring means for measuring the pressure of the fluid in the pressure chamber,
    Arithmetic means for calculating a crushing limit pressure of the test steel pipe crushed based on the inner diameter measurement value measured by the inner diameter measurement means and the pressure measurement value of the fluid measured by the fluid pressure measurement means. Crush tester for steel pipes for pipelines.
  7.  前記変形体の軸方向長さをLc1、前記試験鋼管の軸方向長さをLt1とすると、前記変形体及び前記試験鋼管の軸方向長さの差ΔL1(Lc1-Lt1)が、0.3mm≦ΔL1≦5.0mmであることを特徴とする請求項6記載のパイプライン用鋼管の圧潰試験装置。 When the axial length of the deformable body is Lc1 and the axial length of the test steel pipe is Lt1, the difference ΔL1 (Lc1-Lt1) in the axial length of the deformable body and the test steel pipe is 0.3 mm≦. 7. The crushing test apparatus for steel pipes for pipelines according to claim 6, wherein ΔL1≦5.0 mm.
  8.  パイプライン用鋼管の一部を切断してリング形状に形成した試験鋼管と、
     前記試験鋼管に対して軸方向長さを長く設定して合成樹脂で形成した円筒形状の部材であり、前記試験鋼管の外周に装着される変形体と、
     前記変形体の外周に装着される弾性体からなるシール部材と、
     前記変形体の軸方向の両端面が密着し、且つ前記シール部材が弾性変形しながら密着するように前記変形体及び前記シール部材を軸方向から挟持して互いに対向配置されている一対の対向壁と、当該一対の対向壁から延在して前記変形体の外周面を囲む周壁とを備えて前記変形体の外周を囲む圧力室を形成している装置本体と、
     前記圧力室に流体を供給する流体供給手段と、
     前記試験鋼管の内径を測定する内径測定手段と、
     前記圧力室の前記流体の圧力を測定する流体圧力測定手段と、
     前記内径測定手段で測定した内径測定値及び前記流体圧力測定手段で測定した前記流体の圧力測定値に基づいて圧潰した前記試験鋼管の圧潰限界圧力を演算する演算手段と、を備えたことを特徴とするパイプライン用鋼管の圧潰試験装置。
    A test steel pipe formed by cutting a part of the steel pipe for a pipeline into a ring shape,
    A cylindrical member formed of synthetic resin by setting the axial length of the test steel pipe to be long, and a deformable body mounted on the outer periphery of the test steel pipe,
    A seal member made of an elastic body attached to the outer periphery of the deformable body,
    A pair of opposed walls that are arranged to face each other by sandwiching the deformable body and the seal member from the axial direction so that both axial end surfaces of the deformable body are in close contact with each other and the seal member is in close contact while being elastically deformed. And a device main body that forms a pressure chamber that surrounds the outer periphery of the deformable body by including a peripheral wall that extends from the pair of opposing walls and that surrounds the outer peripheral surface of the deformable body,
    Fluid supply means for supplying fluid to the pressure chamber,
    An inner diameter measuring means for measuring the inner diameter of the test steel pipe,
    Fluid pressure measuring means for measuring the pressure of the fluid in the pressure chamber,
    Arithmetic means for calculating a crushing limit pressure of the test steel pipe crushed based on the inner diameter measurement value measured by the inner diameter measurement means and the pressure measurement value of the fluid measured by the fluid pressure measurement means. Crush tester for steel pipes for pipelines.
  9.  前記変形体の軸方向長さをLc2、前記試験鋼管の軸方向長さをLt2とすると、前記変形体及び前記試験鋼管の軸方向長さの差ΔL2(Lc2-Lt2)が、1.0mm≦ΔL2≦1.3mmであることを特徴とする請求項8記載のパイプライン用鋼管の圧潰試験装置。 When the axial length of the deformable body is Lc2 and the axial length of the test steel pipe is Lt2, the difference ΔL2 (Lc2-Lt2) in the axial length between the deformable body and the test steel pipe is 1.0 mm≦. 9. The crushing test device for steel pipes for pipelines according to claim 8, wherein ΔL2≦1.3 mm.
  10.  前記シール部材は、前記変形体に対して軸方向長さを長くした円筒形状の弾性体であることを特徴とする請求項8又は9記載のパイプライン用鋼管の圧潰試験装置。 The crush test apparatus for a pipeline steel pipe according to claim 8 or 9, wherein the seal member is a cylindrical elastic body having an axial length longer than that of the deformable body.
  11.  前記シール部材は、前記変形体の軸方向の両端面の一部に形成した環状の凹部に嵌まり込んでいるOリングであることを特徴とする請求項8又は9記載のパイプライン用鋼管の圧潰試験装置。 10. The steel pipe for a pipeline according to claim 8 or 9, wherein the seal member is an O-ring fitted in an annular recess formed in a part of both end surfaces in the axial direction of the deformable body. Crush test device.
PCT/JP2019/050773 2018-12-25 2019-12-25 Crushing test method for steel pipe for pipeline, manufacturing method for steel pipe for pipeline, and crushing test device WO2020138145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020514774A JP6702525B1 (en) 2018-12-25 2019-12-25 Crush test method for steel pipe for pipeline, manufacturing method of steel pipe for pipeline, and crush test apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018241429 2018-12-25
JP2018-241429 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020138145A1 true WO2020138145A1 (en) 2020-07-02

Family

ID=71129520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050773 WO2020138145A1 (en) 2018-12-25 2019-12-25 Crushing test method for steel pipe for pipeline, manufacturing method for steel pipe for pipeline, and crushing test device

Country Status (1)

Country Link
WO (1) WO2020138145A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235589A (en) * 2021-12-08 2022-03-25 南通市建筑科学研究院有限公司 Clamp of hydrostatic testing machine for pipes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331238A (en) * 1964-02-29 1967-07-18 Kocks Gmbh Friedrich Sealing and clamping head for an end of a tube to be pressure-tested
JPS5123327B2 (en) * 1972-06-20 1976-07-16
JPH04158241A (en) * 1990-10-22 1992-06-01 Osaka Prefecture Testing apparatus of strength of tubular object
JPH06281554A (en) * 1992-12-28 1994-10-07 Sonoco Prod Co Device and method for experimentally measuring strength of compressed material of tubular product
JP2009537794A (en) * 2006-05-16 2009-10-29 コレンソー ユナイテッド オーワイ リミテッド Method and apparatus for inspecting tubular objects
JP2017096879A (en) * 2015-11-27 2017-06-01 日本碍子株式会社 Isostatic fracture strength test machine and isostatic fracture strength test method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331238A (en) * 1964-02-29 1967-07-18 Kocks Gmbh Friedrich Sealing and clamping head for an end of a tube to be pressure-tested
JPS5123327B2 (en) * 1972-06-20 1976-07-16
JPH04158241A (en) * 1990-10-22 1992-06-01 Osaka Prefecture Testing apparatus of strength of tubular object
JPH06281554A (en) * 1992-12-28 1994-10-07 Sonoco Prod Co Device and method for experimentally measuring strength of compressed material of tubular product
JP2009537794A (en) * 2006-05-16 2009-10-29 コレンソー ユナイテッド オーワイ リミテッド Method and apparatus for inspecting tubular objects
JP2017096879A (en) * 2015-11-27 2017-06-01 日本碍子株式会社 Isostatic fracture strength test machine and isostatic fracture strength test method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235589A (en) * 2021-12-08 2022-03-25 南通市建筑科学研究院有限公司 Clamp of hydrostatic testing machine for pipes
CN114235589B (en) * 2021-12-08 2024-04-16 南通市建筑科学研究院有限公司 Clamp of pipe hydrostatic testing machine

Similar Documents

Publication Publication Date Title
Zhang et al. Investigation of static and dynamic seal performances of a rubber O-ring
EP3642594B1 (en) Pipe testing method and apparatus
US11619323B2 (en) Method of designing a pipe joint for use in a subsea pipeline
Diany et al. An experimental-numerical procedure for stuffing box packing characterization and leak tests
Choiron et al. Simulation and experimentation on the contact width of new metal gasket for asbestos substitution
US20240011878A1 (en) A pipe testing apparatus and method
JP6702525B1 (en) Crush test method for steel pipe for pipeline, manufacturing method of steel pipe for pipeline, and crush test apparatus
WO2020138145A1 (en) Crushing test method for steel pipe for pipeline, manufacturing method for steel pipe for pipeline, and crushing test device
CN105181455B (en) A kind of method for detecting bamboo composite pressure pipe ring stiffness
Xianjun et al. Study on radial clearance sealing performance of graphite ring
Majid et al. Continuum damage modeling through theoretical and experimental pressure limit formulas
Balkaya et al. Analysis of a gasketed polyvinyl chloride pipe joint
Abid et al. Determination of load capacity of a non-gasketed flange joint under combined internal pressure, axial and bending loading for safe strength and sealing
Kondo et al. FEM stress analysis and the sealing performance evaluation in bolted flange connections with ring joint gasket subjected to internal pressure: effect of scatter in bolt preloads
CN209214813U (en) The micro- fusion pressure force snesor of glass
US9625068B2 (en) System and method of a flange seal ring
Attoui et al. On the buckling of spiral wound gaskets
Jaszak et al. Methodology of leakage prediction in gasketed flange joints at pipeline deformations. Materials 2022, 15, 4354
CN218845360U (en) Pipeline joint structure of explosion-proof pressure gauge
RU14078U1 (en) PRESSURE DIFFERENTIAL TRANSMITTER
Choiron et al. Studies of relationship between contact width and leakage on large size of new metal gasket
Sun et al. Simulation and Experiments on Sealing and Extrusion Failure on Application of Deep-Sea Adsorption by Differential Pressure
Nakade et al. The Fundamental Mechanical Characteristics Evaluation for Bolted Pipe Flange Connections With RTJ Gaskets Under Internal Pressure
Kondo et al. Scatter of bolt preloads in pipe flange connection tightened by impact wrench and the effect on sealing performance
Kondo et al. The Sealing Characteristics of Bolted Flanged Connection With Metal Gasket

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020514774

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904682

Country of ref document: EP

Kind code of ref document: A1