WO2020137979A1 - Transparent substrate and optical device - Google Patents

Transparent substrate and optical device Download PDF

Info

Publication number
WO2020137979A1
WO2020137979A1 PCT/JP2019/050374 JP2019050374W WO2020137979A1 WO 2020137979 A1 WO2020137979 A1 WO 2020137979A1 JP 2019050374 W JP2019050374 W JP 2019050374W WO 2020137979 A1 WO2020137979 A1 WO 2020137979A1
Authority
WO
WIPO (PCT)
Prior art keywords
end portion
transparent substrate
optical
optical waveguide
opening
Prior art date
Application number
PCT/JP2019/050374
Other languages
French (fr)
Japanese (ja)
Inventor
祥哲 板倉
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2020563254A priority Critical patent/JPWO2020137979A1/en
Publication of WO2020137979A1 publication Critical patent/WO2020137979A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to a transparent substrate using an optical waveguide section and an optical device.
  • a transparent substrate has a base body including a lower surface and a side surface, a first end portion located on the lower surface and a second end portion located on the side surface, and inside the base body.
  • An optical waveguide portion extending from the second end portion to the first end portion, and a diffractive lens portion located at at least one of the first end portion and the second end portion are provided.
  • An optical device includes the above-mentioned transparent substrate, a substrate having an upper surface and an opening portion opened to the upper surface, and one or more optical elements positioned in the opening portion. There is.
  • the transparent substrate is located on the upper surface, covers the opening, and is bonded to the substrate.
  • An optical device includes a substrate having an upper surface and an opening opening in the upper surface, one or more optical elements positioned in the opening, and the opening located in the upper surface.
  • a transparent substrate bonded to the substrate by closing the portion.
  • the transparent substrate has a base body having a lower surface and side surfaces, and an optical waveguide portion located inside the base body and extending from a position on the lower surface overlapping the optical element to the side surface in a plan view.
  • FIG. 3 is a perspective view showing an optical device according to an embodiment of the present disclosure.
  • FIG. 3 is an exploded perspective view showing an optical device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic sectional view taken along the line AA of FIG. 1.
  • FIG. 3 is a cross-sectional view showing a transparent substrate according to an embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view showing a transparent substrate according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view showing an optical device according to an embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view showing an optical device according to an embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view showing an optical device according to an embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view showing an optical device according to an embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view showing an optical device according to an embodiment of the present disclosure.
  • the optical device 1 and the transparent substrate 4 according to an embodiment of the present disclosure will be described with reference to the drawings. Note that, in FIGS. 3, 6, 8, and 9, the diffractive lens portion 8 is omitted in order to describe the shape of the optical waveguide portion 41 described later.
  • the optical device 1 according to the present embodiment includes a substrate 2, an optical element 3, and a transparent substrate 4.
  • the optical device 1 includes the substrate 2, the optical element 3, and the transparent substrate 4.
  • the substrate 2 is a wiring board made of a ceramic material (ceramic wiring board)
  • it has a dielectric layer made of a ceramic material and conductors such as connection pads, internal wiring, and signal wiring formed on the dielectric layer.
  • the ceramic wiring board may include a plurality of ceramic dielectric layers.
  • Examples of the ceramic material used for the ceramic wiring board include an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic sintered body. Examples include ties.
  • the substrate 2 when it is an organic wiring substrate, it has an insulating layer made of an organic material and a wiring conductor such as a signal wiring described later formed on the insulating layer.
  • the organic wiring board may include a plurality of organic dielectric layers.
  • the organic wiring board may be, for example, a printed wiring board, a build-up wiring board, a flexible wiring board, or the like whose dielectric layer is made of an organic material. Examples of the organic material used for the organic wiring board include epoxy resin, polyimide resin, polyester resin, acrylic resin, phenol resin, and fluorine resin.
  • the substrate 2 has an upper surface 22 and an opening 21. That is, the substrate 2 is provided with a recess serving as at least one opening 21, and the optical element 3 is mounted in the opening 21.
  • the opening 21 is provided so as to open on the main surface 22 of the substrate 2 (the upper surface 22 of the substrate 2).
  • the optical device 1 may be a measurement sensor that uses the Doppler effect of light to measure the flow of a fluid such as a blood flow, or a display device such as a projector or a display. .. Further, the optical device 1 is used for controlling light such as an LED (light emitting diode), a PD (photo diode), and an LD (laser diode).
  • a measurement sensor that uses the Doppler effect of light to measure the flow of a fluid such as a blood flow
  • a display device such as a projector or a display. ..
  • the optical device 1 is used for controlling light such as an LED (light emitting diode), a PD (photo diode), and an LD (laser diode).
  • the size of the opening 21 may be appropriately set according to the size of the optical element 3 (light emitting element or light receiving element) to be housed.
  • the opening shape of the opening 21 may be rectangular or square.
  • the size of the opening 21 is, for example, 0.3 mm to 2.0 mm in length in the vertical direction, 0.3 mm to 2.0 mm in length in the horizontal direction, and 0.3 mm in depth. It may be up to 1.0 mm.
  • the opening shape of the opening 21 may be rectangular or square.
  • the size of the opening 21 is, for example, 0.3 mm to 2.0 mm in length in the vertical direction, 0.3 mm to 2.0 mm in length in the horizontal direction, and 0.4 mm in depth. It may be up to 1.5 mm.
  • the opening 21 may be opened by a size that takes into consideration the total size of the plurality of optical elements 3.
  • the opening shape of the opening 21 may be, for example, a circular shape, a square shape, a rectangular shape, or any other shape. Further, the opening 21 may have a cross-sectional shape parallel to the main surface (upper surface 22) of the substrate 2 that is uniform in the depth direction. Further, the opening 21 may be a stepped concave portion that has the same cross-sectional shape as the opening shape up to a predetermined depth, and the cross-sectional shape is smaller than the opening shape after the predetermined depth.
  • the transparent substrate 4 is located on the upper surface 22 of the substrate 2.
  • the transparent substrate 4 has, for example, a rectangular shape in a top view. Further, the transparent substrate 4 may be, for example, 2 mm ⁇ 4 mm to 3 mm ⁇ 6 mm in size and 0.2 mm to 1 mm in thickness.
  • the material of the transparent substrate 4 may be, for example, glass, organic material, resin material or the like. In addition to this, as the material of the transparent substrate 4, a transparent material can be used.
  • the transparent substrate 4 is bonded to the substrate 2 via a bonding material. At this time, the transparent substrate 4 is arranged so as to close the opening 21 of the substrate 2.
  • a material having excellent light-shielding properties is used as the bonding material, it is possible to prevent the emitted light and the incident light from escaping to the outside. It is also possible to make it difficult for external light other than incident light to reach the inside.
  • the transparent substrate 4 has a base 42, an optical waveguide section 41, and a diffractive lens section 8.
  • the base body 42 is a portion that serves as a base of the transparent substrate 4, and the material of the base body 42 may be, for example, glass, an organic material, a resin material, or the like.
  • the base body 42 is not necessarily required to be transparent as long as it satisfies the below-mentioned refractive index or the light can be delivered in the optical waveguide section 41. That is, at least the transparent substrate 4 may be one in which the optical waveguide portion 41 is transparent and allows light to pass therethrough. Since the base body 42 is the base of the transparent substrate 4, the size of the outer edge of the base body 42 is basically the same as the size of the outer edge of the transparent substrate 4.
  • the optical waveguide section 41 may be located inside the transparent substrate 4, that is, inside the base body 42, and may be integrated with the base body 42.
  • the optical waveguide section 41 contains a material different from that of the base body 42.
  • the optical waveguide section 41 has at least two ends 9 (first end 91 and second end 92).
  • the first end portion 91 is located on the lower surface 43 of the base 42 (transparent substrate 4) and above the optical element 3. In particular, it is preferable that it is located at a position overlapping the optical element 3 in a plan view.
  • the second end 92 is located on the side surface 44 of the base 42 (transparent substrate 4). Then, the optical waveguide portion 41 extends from the second end portion 92 to the first end portion 91.
  • the optical waveguide section 41 can be manufactured, for example, by forming a material having a different refractive index in the base 42 in the shape of a conductor.
  • the diffractive lens portion 8 is located at the end portion 9 (at least one of the first end portion 91 and the second end portion 92) of the optical waveguide portion 41.
  • the diffractive lens unit 8 may be integrated with the base body 42.
  • the diffractive lens section 8 contains a material different from that of the base body 42.
  • the diffractive lens section 8 radiates light to the light receiving element, it can condense the light from the optical waveguide section 41 and reduce the loss of the signal intensity of the light received by the light receiving element. Further, when the light from the light emitting element is passed through the optical waveguide section 41, the diffractive lens section 8 condenses the light above the light emitting element, thereby reducing scattering to the outside and efficiently. Light can be emitted to the outside.
  • the diffractive lens portion 8 may be located at the first end portion 91 as shown in FIG. 4, or at the second end portion 92 as shown in FIG. 5, as will be described later. Good. Further, the diffractive lens portion 8 may be located at all of the end portions 9 (not shown).
  • the diffractive lens section 8 located on the lower surface 43 of the base 42 (transparent substrate 4) scatters light from the light emitting elements to the outside. Can be reduced to collect light. Then, the condensed light can be emitted with directivity from the diffractive lens section 8 located on the side surface 42 of the base body 42 (transparent substrate 4) through the optical waveguide section 41. Further, when one or more light receiving elements are located in the opening 21, light from the outside is located on the side surface 44 of the base 42 (transparent substrate 4) from the diffractive lens section 8 to the optical waveguide section 41. The light can be emitted to the light receiving element with directivity in a state of being condensed by the diffractive lens portion 8 located on the lower surface 43 of the substrate 42 (transparent substrate 4).
  • the transparent substrate 4 has the optical waveguide portion 41 and the diffractive lens portion 8 in the transparent substrate 4, so that the light can be split or split without increasing the size.
  • the combined light can be efficiently emitted or received.
  • the optical device 1 has the optical waveguide part 41 in the transparent substrate 4 and the diffractive lens part 8.
  • the transparent substrate 4 allows the lid and the optical waveguide portion 41 to be integrated with each other, so that the demultiplexing or multiplexing of the light can be efficiently emitted or received without increasing the size of the optical device 1. it can.
  • the optical device 1 can reduce the possibility that the reflection loss of light will occur at the boundary of sealing and the like, and also reduce the possibility that the light propagation efficiency will decrease. Therefore, it is possible to have a highly reliable sealing structure and exhibit high light propagation efficiency.
  • the shape of the end portion 9 (first end portion 91, second end portion 92) of the optical waveguide portion 41 of the transparent substrate 4 has a constant width as shown in FIG. More specifically, in the present embodiment, the outer edge of the first end portion 91 in cross section is substantially perpendicular to the lower surface 43, and the outer edge of the second end portion 92 in cross section is relative to the side surface 44. Is almost vertical.
  • the substrate 2 is manufactured in the same manner as various multilayer wiring board manufacturing methods.
  • the ceramic material is alumina
  • it can be manufactured as follows. That is, first, an appropriate organic solvent and a solvent are added to and mixed with a raw material powder such as alumina (Al 2 O 3 ), silica (SiO 2 ), calcia (CaO), and magnesia (MgO) to form a slurry.
  • a ceramic green sheet (hereinafter, also referred to as a green sheet) is obtained by forming into a sheet shape by a doctor blade method, a calendar roll method or the like.
  • the green sheet is punched into a predetermined shape.
  • an organic solvent and a solvent are added to and mixed with raw material powder such as tungsten (W) and a glass material to form a metal paste, and this is subjected to pattern printing by a printing method such as screen printing on the surface of a punched green sheet.
  • the via conductor can be produced by forming a through hole in the green sheet and filling the through hole with a metal paste by screen printing or the like. Further, the metallized layer serving as the ground conductor layer is formed on the outermost surface of the green sheet by the metal paste. A plurality of green sheets obtained in this way are laminated and co-fired at a temperature of about 1600° C., whereby the substrate 2 is manufactured.
  • the transparent substrate 4 is prepared.
  • the transparent substrate 4 can be obtained by cutting a glass material into a predetermined shape by cutting, cutting, or the like.
  • a light shielding film or the like may be formed on the lower surface of the transparent substrate 4 by vapor deposition, sputtering, baking, or the like.
  • the via conductor is formed in a straight line in the vertical direction within the substrate 2, but the configuration is not limited to this. That is, the via conductor may be electrically connected from the upper surface of the substrate 2 to the external connection terminal on the lower surface.
  • the via conductors may not be formed in a straight line, but may be formed in the substrate 2 so as to be displaced in the vertical direction by the inner layer wiring, the internal ground conductor layer, or the like.
  • the optical waveguide portion 41 in the transparent substrate 4 is processed in a desired direction by processing the transparent substrate 4 by fine processing such as changing the refractive index with laser light, or by bonding a transparent body having a different refractive index to the transparent substrate 4. It can be produced by a method such as cutting out.
  • the refractive index of the optical waveguide section 41 may be larger than the refractive index of the base 42 (a portion of the transparent substrate 4 excluding the optical waveguide section 41). As a result, the light passing through the inside of the optical waveguide section 41 is likely to be reflected at the boundary between the optical waveguide section 41 and the base body 42, and the light can be prevented from escaping to the outside.
  • the refractive index of the optical waveguide section 41 can be, for example, 1.3 to 3.5, and the refractive index of the substrate 42 can be, for example, 1.2 to 1.6.
  • the optical waveguide portion 41 may be branched midway as shown in FIG.
  • the third end 93 is located on the lower surface 43 of the transparent substrate 4. That is, the optical waveguide portion 41 has the branch portion B located between the first end portion 91 and the second end portion 92, and the first region extending from the second end portion 92 to the first end portion 91. 41X and a second region 42Y extending from the branch portion B to the third end portion 93.
  • the first end 91 is located corresponding to one optical element 3
  • the third end 93 is located corresponding to the other optical element 3.
  • the first region and the second region can be formed as conductive wires made of different materials. Since the optical waveguide portion 41 has the branch and the plurality of end portions 9 corresponding to the plurality of optical elements 3 are arranged in this manner, light of various colors can be received from each light emitting element. .. In addition, light of various colors can be radiated to each light receiving element separately for each color.
  • each of the plurality of end portions 9 is positioned so as to overlap the corresponding optical element 3 in a plan view. Is good. As a result, it is possible to efficiently perform the radiation and the light reception separately for each color.
  • the end portion 9 may be expanded in a tapered shape. That is, the end portion 9 may have a tapered shape. More specifically, for example, as shown in FIG. 6, the first end portion 91 has a shape in which the diameter is increased toward the lower surface 43, and the outer edge of the first end portion 91 in cross section is formed on the lower surface 43. It may be inclined with respect to it. At this time, when light is radiated from the end portion 9, it is possible to radiate light to an object having an area to a certain extent or to radiate light in a spread manner. Further, when light is incident on the end portion 9 from the light emitting element or the outside, the light from the light emitting element or the outside can be easily passed through the optical waveguide portion 41 without leaking.
  • the second end portion 92 located on the side surface 44 may have the above-described tapered shape, and in this case as well, the effects described above can be obtained.
  • the refractive index of the end portion 9 may be larger than that of the diffractive lens portion 8 and may be larger than that of the transparent substrate 4 (base 42). This makes it easy to deliver light to the diffractive lens unit 8 and at the same time makes it easier to emit light to the outside.
  • the refractive index of the diffractive lens unit 8 may be smaller than that of the transparent substrate 4 (base 42). In this case, there is little loss due to reflection and light leakage, and it becomes easier to collect light.
  • the refractive index of the end portion 9 may be higher than the refractive index of the base 42 and lower than the refractive index of the intermediate portion. In this case, there is little loss due to reflection and light leakage, and it becomes easier to collect light.
  • the refractive index of the diffractive lens unit 8 can be set to 1.1 to 1.55, and the refractive index of the transparent substrate 4 (base 42) can be set to 1.2 to 1.6, for example.
  • the refractive index of the end portion 9 can be, for example, 1.2 to 3.0, and the refractive index of the middle portion can be, for example, 1.3 to 3.5.
  • the refractive index of the first end 91 and the refractive index of the second end 92 may be the same or different from each other.
  • a plurality of external connection conductors may be provided on the lower surface of the substrate 2. Then, the plurality of external connection conductors of the board 2 are electrically connected to the external board or the like by a bonding material such as solder.
  • the light emitting element having a light emitting unit may be an element for radiation that radiates physical energy such as infrared rays, electromagnetic waves, or ultrasonic waves.
  • the light receiving element having the light receiving section may be a detection element for detecting these physical energies.
  • the light emitting element and the light receiving element are used as a pair.
  • the light emitting element include a gallium-arsenic (Ga-As) light emitting diode, an ultrasonic oscillator (ultrasonic wave), a microwave oscillator (electromagnetic wave), and the like.
  • Ga-As gallium-arsenic
  • the light receiving element more specifically, a photodiode, an ultrasonic oscillator (ultrasonic wave), a microwave detecting element (electromagnetic wave), and the like can be given.
  • a step may be provided on the inner wall of the opening 21.
  • a bonding connection terminal may be provided on the step portion, and the terminal of the optical element 3 and the bonding connection terminal on the step portion may be connected by wire bonding.
  • the bonding connection terminal provided on the substrate 2 and the terminal of the optical element 3 can be satisfactorily connected.
  • an illuminance sensor may be mounted on this step.
  • a proximity illuminance integrated sensor device having a proximity sensor function and an illuminance sensor function of detecting the illuminance and controlling the backlight of the liquid crystal screen to save power can be used.
  • optical device 1 of the present disclosure is not limited to the examples of the above embodiments, and various modifications may be made without departing from the scope of the present disclosure. In addition, various combinations are possible for each embodiment to the extent that no contradiction occurs.
  • the optical waveguide portion 41 has a shape having one branch portion B, but the optical waveguide portion 41 has two branch portions B1 and B2 as shown in FIG. May be In this case, the optical waveguide portion 41 has three end portions 9 (91, 931, 932) located on the lower surface 43, and each is located above the corresponding optical element 3.
  • the number of the end portions 9 of the optical waveguide portion 41 can be appropriately selected, and may be selected, for example, according to the number of the optical elements 3 arranged in the optical device 1.
  • the shapes of the plurality of end portions 9 may be different from each other, or may be the same.
  • the optical device 1 can be applied to a lighting fixture, a display, a projector, and the like, but other devices that operate by optical elements such as a light emitting element and a light receiving element may also be used. Good.
  • the optical device 1 can be applied to a distance measuring sensor proximity illuminance integrated sensor device, a proximity sensor device, a pulse wave blood flow sensor device, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

This transparent substrate comprises: a base body; an optical waveguide part; and a diffraction lens part. The base body includes a bottom surface and a lateral surface. The optical waveguide part: includes a first end located at the bottom surface and a second end located at the lateral surface; and extends, inside the base body, from the second end to the first end. The diffraction lens part is located at the first end and/or the second end.

Description

透明基板、および光学装置Transparent substrate and optical device
 本開示は、光導波路部を用いた透明基板、および光学装置に関する。 The present disclosure relates to a transparent substrate using an optical waveguide section and an optical device.
 従来、複数の光を合成する光導波路部を用いたプロジェクタ等が知られている。光導波路部をプロジェクタ等に用いる場合には、光導波路部の複数の入力部をそれぞれの発光素子の発光面の上方に位置させて、それぞれの入力部から入力された光を合成していく。特開2005-77971号公報には、そのような構成を有する光導波路部を用いた透明基板が開示されている光導波路部を用いた光学装置においては、高信頼性のための封止構造が要求されるとともに、高い光伝搬効率が要求されている。 Conventionally, projectors and the like that use an optical waveguide unit that combines multiple lights are known. When the optical waveguide section is used in a projector or the like, the plurality of input sections of the optical waveguide section are positioned above the light emitting surface of each light emitting element, and the light input from each input section is combined. Japanese Unexamined Patent Application Publication No. 2005-77971 discloses a transparent substrate using an optical waveguide portion having such a configuration. An optical device using the optical waveguide portion has a sealing structure for high reliability. In addition to being required, high light propagation efficiency is required.
 本開示の一実施形態に係る透明基板は、下面と側面とを含む基体と、前記下面に位置した第1端部と前記側面に位置した第2端部とを有するとともに、前記基体の内部において前記第2端部から前記第1端部まで延びる光導波路部と、前記第1端部および前記第2端部の少なくともいずれか一方に位置した回折レンズ部と、を備える。 A transparent substrate according to an embodiment of the present disclosure has a base body including a lower surface and a side surface, a first end portion located on the lower surface and a second end portion located on the side surface, and inside the base body. An optical waveguide portion extending from the second end portion to the first end portion, and a diffractive lens portion located at at least one of the first end portion and the second end portion are provided.
 本開示の一実施形態に係る光学装置は、上述した透明基板と、上面と該上面に開口した開口部とを有する基板と、前記開口部に位置した1つ以上の光学素子と、を備えている。前記透明基板は、前記上面に位置するとともに、前記開口部を塞いで前記基板と接合されている。 An optical device according to an embodiment of the present disclosure includes the above-mentioned transparent substrate, a substrate having an upper surface and an opening portion opened to the upper surface, and one or more optical elements positioned in the opening portion. There is. The transparent substrate is located on the upper surface, covers the opening, and is bonded to the substrate.
 本開示の一実施形態に係る光学装置は、上面と該上面に開口した開口部とを有する基板と、前記開口部に位置した1つ以上の光学素子と、前記上面に位置するとともに、前記開口部を塞いで前記基板と接合された透明基板と、を備える。前記透明基板は、下面と側面とを有する基体と、該基体の内部に位置するとともに平面視において前記下面のうち前記光学素子と重なる位置から前記側面にかけて延びる光導波路部と、を有する。 An optical device according to an embodiment of the present disclosure includes a substrate having an upper surface and an opening opening in the upper surface, one or more optical elements positioned in the opening, and the opening located in the upper surface. A transparent substrate bonded to the substrate by closing the portion. The transparent substrate has a base body having a lower surface and side surfaces, and an optical waveguide portion located inside the base body and extending from a position on the lower surface overlapping the optical element to the side surface in a plan view.
本開示の一実施形態に係る光学装置を示す斜視図である。FIG. 3 is a perspective view showing an optical device according to an embodiment of the present disclosure. 本開示の一実施形態に係る光学装置を示す分解斜視図である。FIG. 3 is an exploded perspective view showing an optical device according to an embodiment of the present disclosure. 図1のA―A概略断面図である。FIG. 2 is a schematic sectional view taken along the line AA of FIG. 1. 本開示の一実施形態に係る透明基板を示す断面図である。FIG. 3 is a cross-sectional view showing a transparent substrate according to an embodiment of the present disclosure. 本開示の一実施形態に係る透明基板を示す断面図である。FIG. 3 is a cross-sectional view showing a transparent substrate according to an embodiment of the present disclosure. 本開示の一実施形態に係る光学装置を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an optical device according to an embodiment of the present disclosure. 本開示の一実施形態に係る光学装置を示す断面図である。FIG. 3 is a cross-sectional view showing an optical device according to an embodiment of the present disclosure. 本開示の一実施形態に係る光学装置を示す断面図である。FIG. 3 is a cross-sectional view showing an optical device according to an embodiment of the present disclosure. 本開示の一実施形態に係る光学装置を示す断面図である。FIG. 3 is a cross-sectional view showing an optical device according to an embodiment of the present disclosure.
 本開示の一実施形態に係る光学装置1および透明基板4について、図面を参照しながら説明する。なお、図3、図6、図8および図9においては、後述する光導波路部41の形状の説明のため、回折レンズ部8を省略している。本実施形態に係る光学装置1は、基板2と、光学素子3と、透明基板4と、を備えている。 The optical device 1 and the transparent substrate 4 according to an embodiment of the present disclosure will be described with reference to the drawings. Note that, in FIGS. 3, 6, 8, and 9, the diffractive lens portion 8 is omitted in order to describe the shape of the optical waveguide portion 41 described later. The optical device 1 according to the present embodiment includes a substrate 2, an optical element 3, and a transparent substrate 4.
  <光学装置および透明基板4の構成>
 前述したように、光学装置1は、基板2と、光学素子3と、透明基板4と、を備えている。基板2が、セラミック材料の配線基板(セラミック配線基板)の場合、セラミック材料から成る誘電体層と該誘電体層に形成された接続パッド、内部配線、信号配線等の各導体とを有する。セラミック配線基板は、複数のセラミック誘電体層を含んでいてもよい。
<Structure of Optical Device and Transparent Substrate 4>
As described above, the optical device 1 includes the substrate 2, the optical element 3, and the transparent substrate 4. When the substrate 2 is a wiring board made of a ceramic material (ceramic wiring board), it has a dielectric layer made of a ceramic material and conductors such as connection pads, internal wiring, and signal wiring formed on the dielectric layer. The ceramic wiring board may include a plurality of ceramic dielectric layers.
 セラミック配線基板に用いられるセラミック材料としては、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体またはガラスセラミックス焼結体等が挙げられる。 Examples of the ceramic material used for the ceramic wiring board include an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic sintered body. Examples include ties.
 また、基板2が、有機配線基板の場合、有機材料から成る絶縁層と該絶縁層に形成された後述する信号配線等の配線導体とを有する。有機配線基板は、複数の有機誘電体層を含んでいてもよい。有機配線基板は、例えば、プリント配線基板、ビルドアップ配線基板またはフレキシブル配線基板等の誘電体層が有機材料から成るものであればよい。有機配線基板に用いられる有機材料としては、例えば、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、アクリル樹脂、フェノール樹脂またはフッ素系樹脂等が挙げられる。 Further, when the substrate 2 is an organic wiring substrate, it has an insulating layer made of an organic material and a wiring conductor such as a signal wiring described later formed on the insulating layer. The organic wiring board may include a plurality of organic dielectric layers. The organic wiring board may be, for example, a printed wiring board, a build-up wiring board, a flexible wiring board, or the like whose dielectric layer is made of an organic material. Examples of the organic material used for the organic wiring board include epoxy resin, polyimide resin, polyester resin, acrylic resin, phenol resin, and fluorine resin.
 また、図2および図3に示すように、基板2は、上面22と開口部21とを有する。すなわち、基板2には、少なくとも1つの開口部21となる凹部が設けられており、該開口部21に光学素子3が実装される。なお、開口部21は、基板2の主面22(基板2の上面22)に開口するように設けられている。 Further, as shown in FIGS. 2 and 3, the substrate 2 has an upper surface 22 and an opening 21. That is, the substrate 2 is provided with a recess serving as at least one opening 21, and the optical element 3 is mounted in the opening 21. The opening 21 is provided so as to open on the main surface 22 of the substrate 2 (the upper surface 22 of the substrate 2).
 本開示の実施形態に係る光学装置1は、光のドップラー効果を利用した、血流等の流体の流れを計測する計測センサであったり、プロジェクタ、ディスプレイ等の表示装置であったりしてもよい。また、光学装置1は、LED(light emitting diode)、PD(photo diode)、LD(laser diode)等の光のコントロールに用いられる。 The optical device 1 according to the embodiment of the present disclosure may be a measurement sensor that uses the Doppler effect of light to measure the flow of a fluid such as a blood flow, or a display device such as a projector or a display. .. Further, the optical device 1 is used for controlling light such as an LED (light emitting diode), a PD (photo diode), and an LD (laser diode).
 開口部21の大きさは、収容しようとする光学素子3(発光素子または受光素子)の大きさに応じて適宜設定すればよい。例えば、発光素子として、垂直共振器面発光レーザ素子(VCSEL)を用いる場合、開口部21の開口形状が、例えば矩形であっても正方形であってもよい。このとき、開口部21の大きさは、例えば、縦方向の長さが0.3mm~2.0mm、横方向の長さが0.3mm~2.0mmであり、深さが、0.3mm~1.0mmであってもよい。また、受光素子として、面入射フォトダイオードを用いる場合、開口部21の開口形状が、例えば矩形であっても正方形であってもよい。このとき、開口部21の大きさは、例えば、縦方向の長さが0.3mm~2.0mm、横方向の長さが0.3mm~2.0mmであり、深さが、0.4mm~1.5mmであってもよい。また、開口部21に複数の光学素子3が実装される場合には、開口部21は、複数の光学素子3の大きさの合計を考慮した大きさの分だけ開口していればよい。 The size of the opening 21 may be appropriately set according to the size of the optical element 3 (light emitting element or light receiving element) to be housed. For example, when a vertical cavity surface emitting laser element (VCSEL) is used as the light emitting element, the opening shape of the opening 21 may be rectangular or square. At this time, the size of the opening 21 is, for example, 0.3 mm to 2.0 mm in length in the vertical direction, 0.3 mm to 2.0 mm in length in the horizontal direction, and 0.3 mm in depth. It may be up to 1.0 mm. When a surface-incidence photodiode is used as the light receiving element, the opening shape of the opening 21 may be rectangular or square. At this time, the size of the opening 21 is, for example, 0.3 mm to 2.0 mm in length in the vertical direction, 0.3 mm to 2.0 mm in length in the horizontal direction, and 0.4 mm in depth. It may be up to 1.5 mm. When a plurality of optical elements 3 are mounted in the opening 21, the opening 21 may be opened by a size that takes into consideration the total size of the plurality of optical elements 3.
 なお、開口部21の開口形状は、例えば、円形状、正方形状、矩形状等であってもよく、その他の形状であってもよい。また、開口部21は、基板2の主面(上面22)に平行な断面における断面形状が深さ方向に一様な形状であってもよい。さらに、開口部21は、前記断面形状が所定の深さまでは開口形状と同じであり、所定の深さ以降は、前記断面形状が開口形状よりも小さい、段差付きの凹部であってもよい。 Note that the opening shape of the opening 21 may be, for example, a circular shape, a square shape, a rectangular shape, or any other shape. Further, the opening 21 may have a cross-sectional shape parallel to the main surface (upper surface 22) of the substrate 2 that is uniform in the depth direction. Further, the opening 21 may be a stepped concave portion that has the same cross-sectional shape as the opening shape up to a predetermined depth, and the cross-sectional shape is smaller than the opening shape after the predetermined depth.
 透明基板4は、基板2の上面22に位置している。透明基板4は、上面視において、例えば矩形状である。また、透明基板4は、例えば、大きさが、2mm×4mm~3mm×6mmであって、厚みは、0.2mm~1mmであってもよい。 The transparent substrate 4 is located on the upper surface 22 of the substrate 2. The transparent substrate 4 has, for example, a rectangular shape in a top view. Further, the transparent substrate 4 may be, for example, 2 mm×4 mm to 3 mm×6 mm in size and 0.2 mm to 1 mm in thickness.
 透明基板4の材料は、例えば、ガラス、有機材料、樹脂材料等であってもよい。この他にも、透明基板4の材料として透光性を有するものを使用することができる。透明基板4は、基板2に接合材を介して接合される。このとき、基板2の開口部21を塞ぐように透明基板4が配置される。接合材として遮光性の優れたものを用いた場合、放射光および入射光を外部に逃げにくくすることができる。また、入射光以外の外部の光を内部に届きにくくすることもできる。 The material of the transparent substrate 4 may be, for example, glass, organic material, resin material or the like. In addition to this, as the material of the transparent substrate 4, a transparent material can be used. The transparent substrate 4 is bonded to the substrate 2 via a bonding material. At this time, the transparent substrate 4 is arranged so as to close the opening 21 of the substrate 2. When a material having excellent light-shielding properties is used as the bonding material, it is possible to prevent the emitted light and the incident light from escaping to the outside. It is also possible to make it difficult for external light other than incident light to reach the inside.
 透明基板4は、基体42と、光導波路部41と、回折レンズ部8と、を有している。基体42は、透明基板4のベースになる部分であり、基体42の材料としては、例えば、ガラス、有機材料、樹脂材料等であってもよい。特に、基体42は、後述する屈折率を満たすもの、あるいは、光導波路部41において光が届けられるものであれば、必ずしも透明である必要はない。つまり、透明基板4は、少なくとも光導波路部41が透明で光を通すものであればよい。基体42は、透明基板4のベースになる部分であるため、基本的には基体42の外縁の大きさが透明基板4の外縁の大きさと同じである。 The transparent substrate 4 has a base 42, an optical waveguide section 41, and a diffractive lens section 8. The base body 42 is a portion that serves as a base of the transparent substrate 4, and the material of the base body 42 may be, for example, glass, an organic material, a resin material, or the like. In particular, the base body 42 is not necessarily required to be transparent as long as it satisfies the below-mentioned refractive index or the light can be delivered in the optical waveguide section 41. That is, at least the transparent substrate 4 may be one in which the optical waveguide portion 41 is transparent and allows light to pass therethrough. Since the base body 42 is the base of the transparent substrate 4, the size of the outer edge of the base body 42 is basically the same as the size of the outer edge of the transparent substrate 4.
 光導波路部41は、透明基板4の内部、つまり、基体42の内部に位置し、基体42と一体的になっていてもよい。光導波路部41は、基体42と異なる材料を含んでいる。また、光導波路部41は、少なくとも2つの端部9(第1端部91および第2端部92)を有している。第1端部91は、基体42(透明基板4)の下面43に位置しており、光学素子3の上方に位置している。特に、平面視において、光学素子3と重なる位置にあるのがよい。また、第2端部92は、基体42(透明基板4)の側面44に位置している。そして、光導波路部41は、第2端部92から第1端部91まで延びている。なお、光導波路部41は、例えば、基体42の中に屈折率が異なる材料を導線の形に作ることで作製することができる。 The optical waveguide section 41 may be located inside the transparent substrate 4, that is, inside the base body 42, and may be integrated with the base body 42. The optical waveguide section 41 contains a material different from that of the base body 42. The optical waveguide section 41 has at least two ends 9 (first end 91 and second end 92). The first end portion 91 is located on the lower surface 43 of the base 42 (transparent substrate 4) and above the optical element 3. In particular, it is preferable that it is located at a position overlapping the optical element 3 in a plan view. The second end 92 is located on the side surface 44 of the base 42 (transparent substrate 4). Then, the optical waveguide portion 41 extends from the second end portion 92 to the first end portion 91. The optical waveguide section 41 can be manufactured, for example, by forming a material having a different refractive index in the base 42 in the shape of a conductor.
 光導波路部41の端部9(第1端部91および第2端部92の少なくとも一方)には、回折レンズ部8が位置している。回折レンズ部8は、基体42と一体的になっていてもよい。回折レンズ部8は、基体42と異なる材料を含んでいる。回折レンズ部8は、受光素子へ光を放射する場合には、光導波路部41からの光を集光させることができ、受光素子で受光する光の信号強度のロスを低減させることができる。また、回折レンズ部8は、発光素子からの光を光導波路部41に通す場合には、発光素子の上方で光を集光することで、外部への散乱等を減らすことができ、効率よく外部に光を放射することができる。 The diffractive lens portion 8 is located at the end portion 9 (at least one of the first end portion 91 and the second end portion 92) of the optical waveguide portion 41. The diffractive lens unit 8 may be integrated with the base body 42. The diffractive lens section 8 contains a material different from that of the base body 42. When the diffractive lens section 8 radiates light to the light receiving element, it can condense the light from the optical waveguide section 41 and reduce the loss of the signal intensity of the light received by the light receiving element. Further, when the light from the light emitting element is passed through the optical waveguide section 41, the diffractive lens section 8 condenses the light above the light emitting element, thereby reducing scattering to the outside and efficiently. Light can be emitted to the outside.
 なお、回折レンズ部8は、後述するように、図4に示すように、第1端部91に位置していてもよく、図5に示すように、第2端部92に位置していてもよい。また、回折レンズ部8は端部9のすべてに位置していてもよい(不図示)。 The diffractive lens portion 8 may be located at the first end portion 91 as shown in FIG. 4, or at the second end portion 92 as shown in FIG. 5, as will be described later. Good. Further, the diffractive lens portion 8 may be located at all of the end portions 9 (not shown).
 なお、開口部21に1つ以上の発光素子が位置している場合には、基体42(透明基板4)の下面43に位置した回折レンズ部8は、発光素子からの光の外部への散乱を低減して集光することができる。そして、集光した光は、光導波路部41を通り、基体42(透明基板4)の側面42に位置した回折レンズ部8から、指向性をもって放射させることができる。また、開口部21に1つ以上の受光素子が位置している場合には、外部からの光を基体42(透明基板4)の側面44に位置した、回折レンズ部8から、光導波路部41を通り、基体42(透明基板4)の下面43に位置した回折レンズ部8で集光した状態で、指向性をもって受光素子に放射させることができる。 When one or more light emitting elements are located in the opening 21, the diffractive lens section 8 located on the lower surface 43 of the base 42 (transparent substrate 4) scatters light from the light emitting elements to the outside. Can be reduced to collect light. Then, the condensed light can be emitted with directivity from the diffractive lens section 8 located on the side surface 42 of the base body 42 (transparent substrate 4) through the optical waveguide section 41. Further, when one or more light receiving elements are located in the opening 21, light from the outside is located on the side surface 44 of the base 42 (transparent substrate 4) from the diffractive lens section 8 to the optical waveguide section 41. The light can be emitted to the light receiving element with directivity in a state of being condensed by the diffractive lens portion 8 located on the lower surface 43 of the substrate 42 (transparent substrate 4).
 以上のことから、本発明の実施形態に係る透明基板4は、透明基板4内に光導波路部41を有するとともに、回折レンズ部8を有することによって、大型化させることなく、光の分波または合波を効率よく光を放射または受光させることができる。 From the above, the transparent substrate 4 according to the embodiment of the present invention has the optical waveguide portion 41 and the diffractive lens portion 8 in the transparent substrate 4, so that the light can be split or split without increasing the size. The combined light can be efficiently emitted or received.
 また、本開示の実施形態に係る光学装置1は、透明基板4内に光導波路部41を有するとともに、回折レンズ部8を有している。この透明基板4によって、蓋と光導波路部41とを一体とすることができるため、光学装置1を大型化させることなく、光の分波または合波を効率よく光を放射または受光させることができる。その結果、光学装置1は、封止の境界等で光の反射ロスが起こる可能性を低減しつつ、光伝搬効率が低下する可能性も低減することができる。そのため、高信頼性の封止構造をもつとともに高い光伝搬効率を示すことができる。 Further, the optical device 1 according to the embodiment of the present disclosure has the optical waveguide part 41 in the transparent substrate 4 and the diffractive lens part 8. The transparent substrate 4 allows the lid and the optical waveguide portion 41 to be integrated with each other, so that the demultiplexing or multiplexing of the light can be efficiently emitted or received without increasing the size of the optical device 1. it can. As a result, the optical device 1 can reduce the possibility that the reflection loss of light will occur at the boundary of sealing and the like, and also reduce the possibility that the light propagation efficiency will decrease. Therefore, it is possible to have a highly reliable sealing structure and exhibit high light propagation efficiency.
 なお、本実施形態において、透明基板4の光導波路部41の端部9(第1端部91、第2端部92)の形状は、図3に示すように、幅が一定である。より具体的には、本実施形態においては、断面視における第1端部91の外縁は、下面43に対して略垂直であり、断面視における第2端部92の外縁は、側面44に対して略垂直である。 In this embodiment, the shape of the end portion 9 (first end portion 91, second end portion 92) of the optical waveguide portion 41 of the transparent substrate 4 has a constant width as shown in FIG. More specifically, in the present embodiment, the outer edge of the first end portion 91 in cross section is substantially perpendicular to the lower surface 43, and the outer edge of the second end portion 92 in cross section is relative to the side surface 44. Is almost vertical.
  <光学装置の製造方法>
 次に、光学装置1の製造方法について説明する。まず、基板2を種々の多層配線基板の製造方法と同様にして作製する。基板2が、セラミック配線基板であり、セラミック材料がアルミナである場合は、次のように作製することができる。すなわち、まずアルミナ(Al23)やシリカ(SiO2)、カルシア(CaO)、マグネシア(MgO)等の原料粉末に適当な有機溶剤、溶媒を添加混合して泥漿状とし、これを周知のドクターブレード法やカレンダーロール法等によってシート状に成形してセラミックグリーンシート(以下、グリーンシートともいう)を得る。その後、グリーンシートを所定形状に打ち抜き加工する。そして、タングステン(W)とガラス材料等の原料粉末に有機溶剤、溶媒を添加混合して金属ペーストとし、これを打ち抜き加工したグリーンシートの表面にスクリーン印刷等の印刷法でパターン印刷する。また、ビア導体は、グリーンシートに貫通孔を設け、スクリーン印刷等によって金属ペーストを貫通孔に充填させることで作製できる。また、接地導体層となるメタライズ層は、金属ペーストによってグリーンシートの最表面に形成される。こうして得られたグリーンシートを複数枚積層し、これを約1600℃の温度で同時焼成することによって基板2が作製される。
<Method for manufacturing optical device>
Next, a method of manufacturing the optical device 1 will be described. First, the substrate 2 is manufactured in the same manner as various multilayer wiring board manufacturing methods. When the substrate 2 is a ceramic wiring board and the ceramic material is alumina, it can be manufactured as follows. That is, first, an appropriate organic solvent and a solvent are added to and mixed with a raw material powder such as alumina (Al 2 O 3 ), silica (SiO 2 ), calcia (CaO), and magnesia (MgO) to form a slurry. A ceramic green sheet (hereinafter, also referred to as a green sheet) is obtained by forming into a sheet shape by a doctor blade method, a calendar roll method or the like. Then, the green sheet is punched into a predetermined shape. Then, an organic solvent and a solvent are added to and mixed with raw material powder such as tungsten (W) and a glass material to form a metal paste, and this is subjected to pattern printing by a printing method such as screen printing on the surface of a punched green sheet. The via conductor can be produced by forming a through hole in the green sheet and filling the through hole with a metal paste by screen printing or the like. Further, the metallized layer serving as the ground conductor layer is formed on the outermost surface of the green sheet by the metal paste. A plurality of green sheets obtained in this way are laminated and co-fired at a temperature of about 1600° C., whereby the substrate 2 is manufactured.
 一方、透明基板4を準備する。例えば、透明基板4としてガラス基板を用いる場合、ガラス材料を、切削、切断等により所定の形状に切り出して透明基板4を得ることができる。このとき、透明基板4の下面に、蒸着、スパッタ、焼付け等によって遮光膜等を形成してもよい。 Meanwhile, the transparent substrate 4 is prepared. For example, when using a glass substrate as the transparent substrate 4, the transparent substrate 4 can be obtained by cutting a glass material into a predetermined shape by cutting, cutting, or the like. At this time, a light shielding film or the like may be formed on the lower surface of the transparent substrate 4 by vapor deposition, sputtering, baking, or the like.
 なお、上記では、ビア導体は、基板2内で上下方向に一直線状に形成される構成としているが、これに限らない。すなわち、ビア導体は、基板2の上面から下面の外部接続端子まで電気的に接続されていればよい。例えば、ビア導体は、一直線状でなく、基板2内で、内層配線や内部接地導体層等によって上下方向にずれて形成されていてもよい。 In the above description, the via conductor is formed in a straight line in the vertical direction within the substrate 2, but the configuration is not limited to this. That is, the via conductor may be electrically connected from the upper surface of the substrate 2 to the external connection terminal on the lower surface. For example, the via conductors may not be formed in a straight line, but may be formed in the substrate 2 so as to be displaced in the vertical direction by the inner layer wiring, the internal ground conductor layer, or the like.
 透明基板4における光導波路部41は、透明基板4をレーザ光で屈折率を変化させる等の微細加工にて加工したり、透明基板4に屈折率の異なる透明体を接着し、目的の方位に切り出したりする方法等にて作製することができる。 The optical waveguide portion 41 in the transparent substrate 4 is processed in a desired direction by processing the transparent substrate 4 by fine processing such as changing the refractive index with laser light, or by bonding a transparent body having a different refractive index to the transparent substrate 4. It can be produced by a method such as cutting out.
  <光学装置1および透明基板4の他の実施形態に係る構成>
 光導波路部41の屈折率は、基体42(透明基板4の光導波路部41を除く箇所)の屈折率よりも大きくてもよい。このことによって、光導波路部41内を通る光が、光導波路部41と基体42との境界で反射されやすくなり、外部に光が逃げにくくすることができる。
<Configurations of Optical Device 1 and Transparent Substrate 4 According to Other Embodiments>
The refractive index of the optical waveguide section 41 may be larger than the refractive index of the base 42 (a portion of the transparent substrate 4 excluding the optical waveguide section 41). As a result, the light passing through the inside of the optical waveguide section 41 is likely to be reflected at the boundary between the optical waveguide section 41 and the base body 42, and the light can be prevented from escaping to the outside.
 なお、光導波路部41の屈折率は、例えば、1.3~3.5、基体42の屈折率は、例えば、1.2~1.6とすることができる。 The refractive index of the optical waveguide section 41 can be, for example, 1.3 to 3.5, and the refractive index of the substrate 42 can be, for example, 1.2 to 1.6.
 また、上述したように、開口部21に複数の光学素子3が位置している場合には、図8に示すように、光導波路部41は途中で分岐していてもよい。この場合には、透明基板4の下面43に第3端部93が位置している。すなわち、光導波路部41は、第1端部91と第2端部92との間に位置する分岐部Bを有しており、第2端部92から第1端部91まで延びる第1領域41Xと、分岐部Bから第3端部93まで延びる第2領域42Yとに分けられる。そして、一方の光学素子3に第1端部91が対応して位置し、他方の光学素子3に第3端部93が対応して位置している。このとき、上述した分岐は、第1領域と第2領域とを互いに異なる材料の導線として作製可能である。このように光導波路部41が分岐を有しており複数の光学素子3に対応する複数の端部9が配置されていることによって、様々な色の光をそれぞれの発光素子から受けることができる。また、様々な色の光をそれぞれの受光素子に色ごとに分けて放射することができる。 Further, as described above, when the plurality of optical elements 3 are located in the opening 21, the optical waveguide portion 41 may be branched midway as shown in FIG. In this case, the third end 93 is located on the lower surface 43 of the transparent substrate 4. That is, the optical waveguide portion 41 has the branch portion B located between the first end portion 91 and the second end portion 92, and the first region extending from the second end portion 92 to the first end portion 91. 41X and a second region 42Y extending from the branch portion B to the third end portion 93. The first end 91 is located corresponding to one optical element 3, and the third end 93 is located corresponding to the other optical element 3. At this time, in the above-described branch, the first region and the second region can be formed as conductive wires made of different materials. Since the optical waveguide portion 41 has the branch and the plurality of end portions 9 corresponding to the plurality of optical elements 3 are arranged in this manner, light of various colors can be received from each light emitting element. .. In addition, light of various colors can be radiated to each light receiving element separately for each color.
 なお、図8に示すように、複数の光学素子3が位置している場合には、平面視において、複数の端部9のそれぞれが、対応する光学素子3と重なるように位置しているのがよい。これによって、上述した色ごとに分けての放射や受光を効率的におこなうことができる。 In addition, as shown in FIG. 8, when a plurality of optical elements 3 are positioned, each of the plurality of end portions 9 is positioned so as to overlap the corresponding optical element 3 in a plan view. Is good. As a result, it is possible to efficiently perform the radiation and the light reception separately for each color.
 また、端部9は、テーパー状に広がっていてもよい。すなわち、端部9は、テーパー形状であってもよい。より具体的には、例えば、図6に示すように、第1端部91は、下面43に向かうにつれて拡径した形状であって、断面視における第1端部91の外縁が、下面43に対して傾斜していてもよい。このとき、端部9から光が放射される場合には、面積がある対象物にある程度均一に光を放射させることができる、あるいは広がりをもって光を放射させることができる。また、端部9に発光素子または外部から光が入射される場合には、発光素子または外部からの光を、漏らすことなく光導波路部41に通しやすくすることができる。なお、図示しないが、側面44に位置する第2端部92が上述したテーパー形状であってもよく、この場合も上述した効果を奏すことができる。 Also, the end portion 9 may be expanded in a tapered shape. That is, the end portion 9 may have a tapered shape. More specifically, for example, as shown in FIG. 6, the first end portion 91 has a shape in which the diameter is increased toward the lower surface 43, and the outer edge of the first end portion 91 in cross section is formed on the lower surface 43. It may be inclined with respect to it. At this time, when light is radiated from the end portion 9, it is possible to radiate light to an object having an area to a certain extent or to radiate light in a spread manner. Further, when light is incident on the end portion 9 from the light emitting element or the outside, the light from the light emitting element or the outside can be easily passed through the optical waveguide portion 41 without leaking. Although not shown, the second end portion 92 located on the side surface 44 may have the above-described tapered shape, and in this case as well, the effects described above can be obtained.
 このとき、端部9の屈折率は、回折レンズ部8の屈折率よりも大きく、透明基板4(基体42)の屈折率よりも大きくてもよい。このことによって、回折レンズ部8に光を届けやすくしつつも、外部への光を放射させやすくすることができる。 At this time, the refractive index of the end portion 9 may be larger than that of the diffractive lens portion 8 and may be larger than that of the transparent substrate 4 (base 42). This makes it easy to deliver light to the diffractive lens unit 8 and at the same time makes it easier to emit light to the outside.
 さらに、回折レンズ部8の屈折率は、透明基板4(基体42)の屈折率よりも小さくてもよい。この場合、反射や光漏れによるロスが少なく集光しやすくなる。 Furthermore, the refractive index of the diffractive lens unit 8 may be smaller than that of the transparent substrate 4 (base 42). In this case, there is little loss due to reflection and light leakage, and it becomes easier to collect light.
 またさらに、光導波路部41のうち、下面43に位置する一方端部9(第1端部91)と、側面に位置する他方端部(第2端部92)との間に位置する部分を中間部とした場合、端部9の屈折率は、基体42の屈折率よりも大きく、中間部の屈折率よりも小さくてもよい。この場合、反射や光漏れによるロスが少なく集光しやすくなる。 Furthermore, a portion of the optical waveguide portion 41 located between one end portion 9 (first end portion 91) located on the lower surface 43 and the other end portion (second end portion 92) located on the side surface is disposed. In the case of the intermediate portion, the refractive index of the end portion 9 may be higher than the refractive index of the base 42 and lower than the refractive index of the intermediate portion. In this case, there is little loss due to reflection and light leakage, and it becomes easier to collect light.
 ここで、回折レンズ部8の屈折率は、例えば、1.1~1.55、透明基板4(基体42)の屈折率は、例えば、1.2~1.6とすることができる。ここで、端部9の屈折率は、例えば、1.2~3.0、中間部の屈折率は、例えば、1.3~3.5とすることができる。なお、第1端部91の屈折率と第2端部92の屈折率とは同じであってもよいし、互いに異なっていてもよい。 Here, the refractive index of the diffractive lens unit 8 can be set to 1.1 to 1.55, and the refractive index of the transparent substrate 4 (base 42) can be set to 1.2 to 1.6, for example. Here, the refractive index of the end portion 9 can be, for example, 1.2 to 3.0, and the refractive index of the middle portion can be, for example, 1.3 to 3.5. The refractive index of the first end 91 and the refractive index of the second end 92 may be the same or different from each other.
 なお、基板2の下面には、複数の外部接続導体が設けられていてもよい。そして、基板2の複数の外部接続導体が、外部基板等に半田等の接合材により電気的に接続される。 A plurality of external connection conductors may be provided on the lower surface of the substrate 2. Then, the plurality of external connection conductors of the board 2 are electrically connected to the external board or the like by a bonding material such as solder.
 ここで、発光部を有する発光素子は、例えば赤外線、電磁波または超音波等の物理的エネルギーを放射する放射用の素子からなってもよい。受光部を有する受光素子は、これらの物理的エネルギーを検知する検知用の素子からなってもよい。そして、発光素子と受光素子とが対になって用いられる。 Here, the light emitting element having a light emitting unit may be an element for radiation that radiates physical energy such as infrared rays, electromagnetic waves, or ultrasonic waves. The light receiving element having the light receiving section may be a detection element for detecting these physical energies. The light emitting element and the light receiving element are used as a pair.
 発光素子としては、より具体的には、ガリウム-ヒ素(Ga-As)発光ダイオード、超音波発振子(超音波)およびマイクロ波発振子(電磁波)等が挙げられる。また、受光素子としては、より具体的には、フォトダイオード、超音波発振子(超音波)、およびマイクロ波検知素子(電磁波)等が挙げられる。 More specific examples of the light emitting element include a gallium-arsenic (Ga-As) light emitting diode, an ultrasonic oscillator (ultrasonic wave), a microwave oscillator (electromagnetic wave), and the like. Further, as the light receiving element, more specifically, a photodiode, an ultrasonic oscillator (ultrasonic wave), a microwave detecting element (electromagnetic wave), and the like can be given.
 なお、例えば、開口部21の内壁に段差部を設けていてもよい。このとき、この段差部上にボンディング用接続端子を設けて、光学素子3の端子と段差部上のボンディング用接続端子とをワイヤーボンディングで接続してもよい。このような接続方法により、基板2に設けられたボンディング用接続端子と光学素子3の端子とを良好に接続することができる。さらに、この段差部に照度センサを搭載してもよい。この場合、近接センサ機能とともに、照度を検知して省電力のために液晶画面のバックライトを制御する照度センサ機能を有する近接照度一体型センサ装置とすることもできる。 Note that, for example, a step may be provided on the inner wall of the opening 21. At this time, a bonding connection terminal may be provided on the step portion, and the terminal of the optical element 3 and the bonding connection terminal on the step portion may be connected by wire bonding. By such a connection method, the bonding connection terminal provided on the substrate 2 and the terminal of the optical element 3 can be satisfactorily connected. Furthermore, an illuminance sensor may be mounted on this step. In this case, a proximity illuminance integrated sensor device having a proximity sensor function and an illuminance sensor function of detecting the illuminance and controlling the backlight of the liquid crystal screen to save power can be used.
 なお、本開示の光学装置1は、以上の実施の形態の例に限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の変更を加えても何ら差し支えない。また、各実施形態に関して、矛盾をきたさない程度に種々の組合せが可能である。 The optical device 1 of the present disclosure is not limited to the examples of the above embodiments, and various modifications may be made without departing from the scope of the present disclosure. In addition, various combinations are possible for each embodiment to the extent that no contradiction occurs.
 例えば、上記実施形態においては、光導波路部41が1つの分岐部Bを有した形状を示したが、光導波路部41は、図9に示すように、2つの分岐部B1、B2を有していてもよい。この場合、光導波路部41は、下面43に位置する端部9(91、931、932)は3つ有しており、それぞれが対応する光学素子3の上方に位置している。このように、光導波路部41の端部9の数は適宜選択可能であり、例えば、光学装置1に配置される光学素子3の数に応じて、選択しても良い。また、複数の端部9の形状も、互いに異なっていてもよいし、全て同じであってもよい。 For example, in the above-described embodiment, the optical waveguide portion 41 has a shape having one branch portion B, but the optical waveguide portion 41 has two branch portions B1 and B2 as shown in FIG. May be In this case, the optical waveguide portion 41 has three end portions 9 (91, 931, 932) located on the lower surface 43, and each is located above the corresponding optical element 3. As described above, the number of the end portions 9 of the optical waveguide portion 41 can be appropriately selected, and may be selected, for example, according to the number of the optical elements 3 arranged in the optical device 1. Further, the shapes of the plurality of end portions 9 may be different from each other, or may be the same.
 また、本開示の実施形態に係る光学装置1は、照明器具、ディスプレイ、プロジェクタ等に応用可能であるが、その他にも発光素子および受光素子等の光学素子により動作するその他の装置であってもよい。例えば、光学装置1は、測距センサ近接照度一体型センサ装置、近接センサ装置、脈波血流センサ装置等に応用が可能である。 Further, the optical device 1 according to the embodiment of the present disclosure can be applied to a lighting fixture, a display, a projector, and the like, but other devices that operate by optical elements such as a light emitting element and a light receiving element may also be used. Good. For example, the optical device 1 can be applied to a distance measuring sensor proximity illuminance integrated sensor device, a proximity sensor device, a pulse wave blood flow sensor device, and the like.
1 光学装置
2 基板
3 光学素子
4 透明基板
5 遮光部材
6 回路基板
7 遮光膜
8 回折レンズ部
9 端部
21 開口部
41 光導波路部
 41X 第1領域
 41Y 第2領域
42 基体
43 下面
44 側面
91 第1端部(第4端部)
92 第2端部(第5端部)
93、931、932 第3端部
B、B1、B2 分岐部
1 Optical Device 2 Substrate 3 Optical Element 4 Transparent Substrate 5 Light-shielding Member 6 Circuit Board 7 Light-shielding Film 8 Diffraction Lens 9 End 21 Opening 41 Optical Waveguide 41X First Region 41Y Second Region 42 Base 43 Bottom 44 Side 91 1 end (4th end)
92 Second end (fifth end)
93, 931, 932 Third end portion B, B1, B2 Branch portion

Claims (15)

  1.  下面と側面とを含む基体と、
    前記下面に位置した第1端部と前記側面に位置した第2端部とを有するとともに、前記基体の内部において前記第2端部から前記第1端部まで延びる光導波路部と、
    前記第1端部および前記第2端部の少なくともいずれか一方に位置した回折レンズ部と、を備えた、透明基板。
    A base body including a lower surface and a side surface,
    An optical waveguide portion having a first end portion located on the lower surface and a second end portion located on the side surface, and extending from the second end portion to the first end portion inside the base body;
    A transparent substrate, comprising: a diffractive lens portion located at at least one of the first end portion and the second end portion.
  2.  前記光導波路部の屈折率は、前記基体の屈折率よりも大きい、請求項1に記載の透明基板。 The transparent substrate according to claim 1, wherein a refractive index of the optical waveguide section is higher than a refractive index of the base body.
  3.  前記光導波路部は、前記第1端部と前記第2端部との間に位置する分岐部と、前記下面に位置するとともに前記第1端部と離れて位置した第3端部と、前記第2端部から前記第1端部まで延びる第1領域と、前記分岐部から前記第3端部まで延びる第2領域と、を有している、請求項1または請求項2に記載の透明基板。 The optical waveguide section includes a branch section located between the first end section and the second end section, a third end section located on the lower surface and separated from the first end section, The transparent according to claim 1 or 2, which has a first region extending from a second end portion to the first end portion and a second region extending from the branch portion to the third end portion. substrate.
  4.  前記回折レンズ部の屈折率は、前記基体の屈折率よりも小さい、請求項1~3のいずれか1つに記載の透明基板。 The transparent substrate according to any one of claims 1 to 3, wherein a refractive index of the diffractive lens portion is smaller than a refractive index of the base body.
  5.  前記光導波路部の前記第1端部は、テーパー形状である、請求項1~4のいずれか1つに記載の透明基板。 The transparent substrate according to any one of claims 1 to 4, wherein the first end portion of the optical waveguide portion has a tapered shape.
  6.  上面と該上面に開口した開口部とを有する基板と、
    前記開口部に位置した1つ以上の光学素子と、
    前記上面に位置するとともに、前記開口部を塞いで前記基板と接合された、請求項1~5のいずれか1つに記載の透明基板と、を備えている、光学装置。
    A substrate having an upper surface and an opening opening on the upper surface;
    One or more optical elements located in the opening;
    An optical device, comprising: the transparent substrate according to any one of claims 1 to 5, which is located on the upper surface and covers the opening and is bonded to the substrate.
  7.  上面と該上面に開口した開口部とを有する基板と、
    前記開口部に位置した1つ以上の光学素子と、
    前記上面に位置するとともに、前記開口部を塞いで前記基板と接合された透明基板と、を備えており、
    前記透明基板は、下面と側面とを有する基体と、該基体の内部に位置するとともに平面視において前記下面のうち前記光学素子と重なる位置から前記側面にかけて延びる光導波路部と、を有する、光学装置。
    A substrate having an upper surface and an opening opening on the upper surface;
    One or more optical elements located in the opening;
    A transparent substrate that is located on the upper surface and that is joined to the substrate by closing the opening is provided,
    The optical device includes: a transparent substrate having a base body having a lower surface and a side surface; and an optical waveguide portion located inside the base body and extending from a position of the lower surface overlapping the optical element to the side surface in a plan view. ..
  8.  前記光学素子は受光素子であって、
    前記光導波路部は、前記受光素子の上方に位置する第4端部を有しており、
    前記透明基板は、前記第4端部に位置する回折レンズ部を有する、請求項7に記載の光学装置。
    The optical element is a light receiving element,
    The optical waveguide portion has a fourth end portion located above the light receiving element,
    The optical device according to claim 7, wherein the transparent substrate has a diffractive lens portion located at the fourth end portion.
  9.  前記第4端部は、テーパー形状である、請求項8に記載の光学装置。 The optical device according to claim 8, wherein the fourth end portion has a tapered shape.
  10.  前記光学素子は発光素子であって、
    前記光導波路部は、前記側面に位置する第5端部を有しており、
    前記透明基板は、前記第5端部に位置する回折レンズ部を有する、請求項7~9のいずれか1つに記載の光学装置。
    The optical element is a light emitting element,
    The optical waveguide portion has a fifth end portion located on the side surface,
    The optical device according to claim 7, wherein the transparent substrate has a diffractive lens portion located at the fifth end portion.
  11.  前記第5端部は、テーパー形状である、請求項10に記載の光学装置。 The optical device according to claim 10, wherein the fifth end portion has a tapered shape.
  12.  前記回折レンズ部の屈折率は、前記透明基板の屈折率よりも小さい、請求項8~11のいずれか1つに記載の光学装置。 The optical device according to any one of claims 8 to 11, wherein a refractive index of the diffractive lens unit is smaller than a refractive index of the transparent substrate.
  13.  前記光導波路部の屈折率は、前記基体の屈折率よりも大きい、請求項7~12のいずれか1つに記載の光学装置。 The optical device according to any one of claims 7 to 12, wherein a refractive index of the optical waveguide section is higher than a refractive index of the base body.
  14.  前記光導波路部は、前記下面に位置する一方端部と、前記側面に位置する他方端部と、前記一方端部と前記他方端部との間に位置する中間部と、を有しており、
    前記一方端部および前記他方端部の屈折率は、前記基体の屈折率よりも大きく、前記中間部の屈折率よりも小さい、請求項7~13のいずれか1つに記載の光学装置。
    The optical waveguide section has one end located on the lower surface, the other end located on the side surface, and an intermediate section located between the one end and the other end. ,
    The optical device according to any one of claims 7 to 13, wherein the one end portion and the other end portion have a refractive index higher than that of the base body and lower than that of the intermediate portion.
  15.  前記開口部には、複数の光学素子が位置しており、
    前記光導波路部は、平面視において、前記複数の光学素子と重なるように前記下面に位置する複数の端部を有している、請求項7~14のいずれか1つに記載の光学装置。
    A plurality of optical elements are located in the opening,
    15. The optical device according to claim 7, wherein the optical waveguide portion has a plurality of end portions located on the lower surface so as to overlap the plurality of optical elements in a plan view.
PCT/JP2019/050374 2018-12-27 2019-12-23 Transparent substrate and optical device WO2020137979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020563254A JPWO2020137979A1 (en) 2018-12-27 2019-12-23 Transparent substrate and optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-244141 2018-12-27
JP2018244141 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137979A1 true WO2020137979A1 (en) 2020-07-02

Family

ID=71127295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050374 WO2020137979A1 (en) 2018-12-27 2019-12-23 Transparent substrate and optical device

Country Status (2)

Country Link
JP (1) JPWO2020137979A1 (en)
WO (1) WO2020137979A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233894A (en) * 2003-01-31 2004-08-19 Ricoh Co Ltd Optical wiring substrate, its manufacturing method, and manufacturing method of optical element of optical wiring substrate
JP2004252153A (en) * 2003-02-20 2004-09-09 Hitachi Cable Ltd Optical component with spot size converting circuit
JP2005037518A (en) * 2003-07-17 2005-02-10 Matsushita Electric Ind Co Ltd Optical coupling device
JP2005038956A (en) * 2003-07-17 2005-02-10 Matsushita Electric Ind Co Ltd Optical component and manufacturing method thereof
US20070104414A1 (en) * 2005-10-24 2007-05-10 Industrial Technology Research Institute Optoelectric converting substrate
JP2008286962A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Optical module and manufacturing method
JP2016161945A (en) * 2015-03-04 2016-09-05 ロッキード マーティン コーポレイションLockheed Martin Corporation Metal-free monolithic epitaxial graphene-on-diamond pwb with optical waveguide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013931A (en) * 2010-06-30 2012-01-19 Nagoya Univ Planar waveguide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233894A (en) * 2003-01-31 2004-08-19 Ricoh Co Ltd Optical wiring substrate, its manufacturing method, and manufacturing method of optical element of optical wiring substrate
JP2004252153A (en) * 2003-02-20 2004-09-09 Hitachi Cable Ltd Optical component with spot size converting circuit
JP2005037518A (en) * 2003-07-17 2005-02-10 Matsushita Electric Ind Co Ltd Optical coupling device
JP2005038956A (en) * 2003-07-17 2005-02-10 Matsushita Electric Ind Co Ltd Optical component and manufacturing method thereof
US20070104414A1 (en) * 2005-10-24 2007-05-10 Industrial Technology Research Institute Optoelectric converting substrate
JP2008286962A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Optical module and manufacturing method
JP2016161945A (en) * 2015-03-04 2016-09-05 ロッキード マーティン コーポレイションLockheed Martin Corporation Metal-free monolithic epitaxial graphene-on-diamond pwb with optical waveguide

Also Published As

Publication number Publication date
JPWO2020137979A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
CN107833879B (en) Light emitting device
RU2581426C2 (en) Light-emitting module, lamp, lighting device and display device
JP2008270707A (en) Light-emitting device
KR20190010478A (en) Light-emitting device, integrated light-emitting device and light-emitting module
JP2020058813A (en) Measurement sensor package and measurement sensor
JP6265194B2 (en) LIGHTING DEVICE AND LIGHTING DEVICE MANUFACTURING METHOD
JP5383346B2 (en) Light emitting element mounting package and light emitting device
KR101646262B1 (en) Light emitting device package and light unit having the seme
WO2020090883A1 (en) Optical sensor device
JP6999407B2 (en) Optical sensor device
JP6246351B2 (en) Line light source and optical line sensor unit
WO2020137979A1 (en) Transparent substrate and optical device
JP2017131286A (en) Package for measurement sensor and measurement sensor
JP6773156B2 (en) Light emitting device
KR102145769B1 (en) Measurement sensor package and measurement sensor
CN110364608B (en) Wafer level linear light source light emitting device
JP2018038546A (en) Package for measurement sensor and measurement sensor
JP4984609B2 (en) Support for mounting semiconductor element and semiconductor device
WO2022176992A1 (en) Light emitting device
JP7072486B2 (en) Proximity sensor package, proximity sensor device and electronic module
JP2020053364A (en) Light emitting device
JP6923832B2 (en) Light emitting device
JP2019093078A (en) Optical sensor device
JP2019009301A (en) Substrate for optical sensor and optical sensor module
JP6753731B2 (en) Measurement sensor package and measurement sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563254

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906476

Country of ref document: EP

Kind code of ref document: A1